Merge tag 'regmap-fix-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / kernel / kexec_file.c
blobb02086d7049237c9c54393b4fad21f35635f2341
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kexec: kexec_file_load system call
5 * Copyright (C) 2014 Red Hat Inc.
6 * Authors:
7 * Vivek Goyal <vgoyal@redhat.com>
8 */
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/capability.h>
13 #include <linux/mm.h>
14 #include <linux/file.h>
15 #include <linux/slab.h>
16 #include <linux/kexec.h>
17 #include <linux/memblock.h>
18 #include <linux/mutex.h>
19 #include <linux/list.h>
20 #include <linux/fs.h>
21 #include <linux/ima.h>
22 #include <crypto/hash.h>
23 #include <crypto/sha2.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/kernel.h>
27 #include <linux/kernel_read_file.h>
28 #include <linux/syscalls.h>
29 #include <linux/vmalloc.h>
30 #include "kexec_internal.h"
32 static int kexec_calculate_store_digests(struct kimage *image);
35 * Currently this is the only default function that is exported as some
36 * architectures need it to do additional handlings.
37 * In the future, other default functions may be exported too if required.
39 int kexec_image_probe_default(struct kimage *image, void *buf,
40 unsigned long buf_len)
42 const struct kexec_file_ops * const *fops;
43 int ret = -ENOEXEC;
45 for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
46 ret = (*fops)->probe(buf, buf_len);
47 if (!ret) {
48 image->fops = *fops;
49 return ret;
53 return ret;
56 /* Architectures can provide this probe function */
57 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
58 unsigned long buf_len)
60 return kexec_image_probe_default(image, buf, buf_len);
63 static void *kexec_image_load_default(struct kimage *image)
65 if (!image->fops || !image->fops->load)
66 return ERR_PTR(-ENOEXEC);
68 return image->fops->load(image, image->kernel_buf,
69 image->kernel_buf_len, image->initrd_buf,
70 image->initrd_buf_len, image->cmdline_buf,
71 image->cmdline_buf_len);
74 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
76 return kexec_image_load_default(image);
79 int kexec_image_post_load_cleanup_default(struct kimage *image)
81 if (!image->fops || !image->fops->cleanup)
82 return 0;
84 return image->fops->cleanup(image->image_loader_data);
87 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
89 return kexec_image_post_load_cleanup_default(image);
92 #ifdef CONFIG_KEXEC_SIG
93 static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
94 unsigned long buf_len)
96 if (!image->fops || !image->fops->verify_sig) {
97 pr_debug("kernel loader does not support signature verification.\n");
98 return -EKEYREJECTED;
101 return image->fops->verify_sig(buf, buf_len);
104 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
105 unsigned long buf_len)
107 return kexec_image_verify_sig_default(image, buf, buf_len);
109 #endif
112 * arch_kexec_apply_relocations_add - apply relocations of type RELA
113 * @pi: Purgatory to be relocated.
114 * @section: Section relocations applying to.
115 * @relsec: Section containing RELAs.
116 * @symtab: Corresponding symtab.
118 * Return: 0 on success, negative errno on error.
120 int __weak
121 arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
122 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
124 pr_err("RELA relocation unsupported.\n");
125 return -ENOEXEC;
129 * arch_kexec_apply_relocations - apply relocations of type REL
130 * @pi: Purgatory to be relocated.
131 * @section: Section relocations applying to.
132 * @relsec: Section containing RELs.
133 * @symtab: Corresponding symtab.
135 * Return: 0 on success, negative errno on error.
137 int __weak
138 arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
139 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
141 pr_err("REL relocation unsupported.\n");
142 return -ENOEXEC;
146 * Free up memory used by kernel, initrd, and command line. This is temporary
147 * memory allocation which is not needed any more after these buffers have
148 * been loaded into separate segments and have been copied elsewhere.
150 void kimage_file_post_load_cleanup(struct kimage *image)
152 struct purgatory_info *pi = &image->purgatory_info;
154 vfree(image->kernel_buf);
155 image->kernel_buf = NULL;
157 vfree(image->initrd_buf);
158 image->initrd_buf = NULL;
160 kfree(image->cmdline_buf);
161 image->cmdline_buf = NULL;
163 vfree(pi->purgatory_buf);
164 pi->purgatory_buf = NULL;
166 vfree(pi->sechdrs);
167 pi->sechdrs = NULL;
169 /* See if architecture has anything to cleanup post load */
170 arch_kimage_file_post_load_cleanup(image);
173 * Above call should have called into bootloader to free up
174 * any data stored in kimage->image_loader_data. It should
175 * be ok now to free it up.
177 kfree(image->image_loader_data);
178 image->image_loader_data = NULL;
181 #ifdef CONFIG_KEXEC_SIG
182 static int
183 kimage_validate_signature(struct kimage *image)
185 int ret;
187 ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
188 image->kernel_buf_len);
189 if (ret) {
191 if (IS_ENABLED(CONFIG_KEXEC_SIG_FORCE)) {
192 pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
193 return ret;
197 * If IMA is guaranteed to appraise a signature on the kexec
198 * image, permit it even if the kernel is otherwise locked
199 * down.
201 if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
202 security_locked_down(LOCKDOWN_KEXEC))
203 return -EPERM;
205 pr_debug("kernel signature verification failed (%d).\n", ret);
208 return 0;
210 #endif
213 * In file mode list of segments is prepared by kernel. Copy relevant
214 * data from user space, do error checking, prepare segment list
216 static int
217 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
218 const char __user *cmdline_ptr,
219 unsigned long cmdline_len, unsigned flags)
221 int ret;
222 void *ldata;
224 ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf,
225 INT_MAX, NULL, READING_KEXEC_IMAGE);
226 if (ret < 0)
227 return ret;
228 image->kernel_buf_len = ret;
230 /* Call arch image probe handlers */
231 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
232 image->kernel_buf_len);
233 if (ret)
234 goto out;
236 #ifdef CONFIG_KEXEC_SIG
237 ret = kimage_validate_signature(image);
239 if (ret)
240 goto out;
241 #endif
242 /* It is possible that there no initramfs is being loaded */
243 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
244 ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf,
245 INT_MAX, NULL,
246 READING_KEXEC_INITRAMFS);
247 if (ret < 0)
248 goto out;
249 image->initrd_buf_len = ret;
250 ret = 0;
253 if (cmdline_len) {
254 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
255 if (IS_ERR(image->cmdline_buf)) {
256 ret = PTR_ERR(image->cmdline_buf);
257 image->cmdline_buf = NULL;
258 goto out;
261 image->cmdline_buf_len = cmdline_len;
263 /* command line should be a string with last byte null */
264 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
265 ret = -EINVAL;
266 goto out;
269 ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
270 image->cmdline_buf_len - 1);
273 /* IMA needs to pass the measurement list to the next kernel. */
274 ima_add_kexec_buffer(image);
276 /* Call arch image load handlers */
277 ldata = arch_kexec_kernel_image_load(image);
279 if (IS_ERR(ldata)) {
280 ret = PTR_ERR(ldata);
281 goto out;
284 image->image_loader_data = ldata;
285 out:
286 /* In case of error, free up all allocated memory in this function */
287 if (ret)
288 kimage_file_post_load_cleanup(image);
289 return ret;
292 static int
293 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
294 int initrd_fd, const char __user *cmdline_ptr,
295 unsigned long cmdline_len, unsigned long flags)
297 int ret;
298 struct kimage *image;
299 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
301 image = do_kimage_alloc_init();
302 if (!image)
303 return -ENOMEM;
305 image->file_mode = 1;
307 if (kexec_on_panic) {
308 /* Enable special crash kernel control page alloc policy. */
309 image->control_page = crashk_res.start;
310 image->type = KEXEC_TYPE_CRASH;
313 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
314 cmdline_ptr, cmdline_len, flags);
315 if (ret)
316 goto out_free_image;
318 ret = sanity_check_segment_list(image);
319 if (ret)
320 goto out_free_post_load_bufs;
322 ret = -ENOMEM;
323 image->control_code_page = kimage_alloc_control_pages(image,
324 get_order(KEXEC_CONTROL_PAGE_SIZE));
325 if (!image->control_code_page) {
326 pr_err("Could not allocate control_code_buffer\n");
327 goto out_free_post_load_bufs;
330 if (!kexec_on_panic) {
331 image->swap_page = kimage_alloc_control_pages(image, 0);
332 if (!image->swap_page) {
333 pr_err("Could not allocate swap buffer\n");
334 goto out_free_control_pages;
338 *rimage = image;
339 return 0;
340 out_free_control_pages:
341 kimage_free_page_list(&image->control_pages);
342 out_free_post_load_bufs:
343 kimage_file_post_load_cleanup(image);
344 out_free_image:
345 kfree(image);
346 return ret;
349 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
350 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
351 unsigned long, flags)
353 int ret = 0, i;
354 struct kimage **dest_image, *image;
356 /* We only trust the superuser with rebooting the system. */
357 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
358 return -EPERM;
360 /* Make sure we have a legal set of flags */
361 if (flags != (flags & KEXEC_FILE_FLAGS))
362 return -EINVAL;
364 image = NULL;
366 if (!mutex_trylock(&kexec_mutex))
367 return -EBUSY;
369 dest_image = &kexec_image;
370 if (flags & KEXEC_FILE_ON_CRASH) {
371 dest_image = &kexec_crash_image;
372 if (kexec_crash_image)
373 arch_kexec_unprotect_crashkres();
376 if (flags & KEXEC_FILE_UNLOAD)
377 goto exchange;
380 * In case of crash, new kernel gets loaded in reserved region. It is
381 * same memory where old crash kernel might be loaded. Free any
382 * current crash dump kernel before we corrupt it.
384 if (flags & KEXEC_FILE_ON_CRASH)
385 kimage_free(xchg(&kexec_crash_image, NULL));
387 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
388 cmdline_len, flags);
389 if (ret)
390 goto out;
392 ret = machine_kexec_prepare(image);
393 if (ret)
394 goto out;
397 * Some architecture(like S390) may touch the crash memory before
398 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
400 ret = kimage_crash_copy_vmcoreinfo(image);
401 if (ret)
402 goto out;
404 ret = kexec_calculate_store_digests(image);
405 if (ret)
406 goto out;
408 for (i = 0; i < image->nr_segments; i++) {
409 struct kexec_segment *ksegment;
411 ksegment = &image->segment[i];
412 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
413 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
414 ksegment->memsz);
416 ret = kimage_load_segment(image, &image->segment[i]);
417 if (ret)
418 goto out;
421 kimage_terminate(image);
423 ret = machine_kexec_post_load(image);
424 if (ret)
425 goto out;
428 * Free up any temporary buffers allocated which are not needed
429 * after image has been loaded
431 kimage_file_post_load_cleanup(image);
432 exchange:
433 image = xchg(dest_image, image);
434 out:
435 if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
436 arch_kexec_protect_crashkres();
438 mutex_unlock(&kexec_mutex);
439 kimage_free(image);
440 return ret;
443 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
444 struct kexec_buf *kbuf)
446 struct kimage *image = kbuf->image;
447 unsigned long temp_start, temp_end;
449 temp_end = min(end, kbuf->buf_max);
450 temp_start = temp_end - kbuf->memsz;
452 do {
453 /* align down start */
454 temp_start = temp_start & (~(kbuf->buf_align - 1));
456 if (temp_start < start || temp_start < kbuf->buf_min)
457 return 0;
459 temp_end = temp_start + kbuf->memsz - 1;
462 * Make sure this does not conflict with any of existing
463 * segments
465 if (kimage_is_destination_range(image, temp_start, temp_end)) {
466 temp_start = temp_start - PAGE_SIZE;
467 continue;
470 /* We found a suitable memory range */
471 break;
472 } while (1);
474 /* If we are here, we found a suitable memory range */
475 kbuf->mem = temp_start;
477 /* Success, stop navigating through remaining System RAM ranges */
478 return 1;
481 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
482 struct kexec_buf *kbuf)
484 struct kimage *image = kbuf->image;
485 unsigned long temp_start, temp_end;
487 temp_start = max(start, kbuf->buf_min);
489 do {
490 temp_start = ALIGN(temp_start, kbuf->buf_align);
491 temp_end = temp_start + kbuf->memsz - 1;
493 if (temp_end > end || temp_end > kbuf->buf_max)
494 return 0;
496 * Make sure this does not conflict with any of existing
497 * segments
499 if (kimage_is_destination_range(image, temp_start, temp_end)) {
500 temp_start = temp_start + PAGE_SIZE;
501 continue;
504 /* We found a suitable memory range */
505 break;
506 } while (1);
508 /* If we are here, we found a suitable memory range */
509 kbuf->mem = temp_start;
511 /* Success, stop navigating through remaining System RAM ranges */
512 return 1;
515 static int locate_mem_hole_callback(struct resource *res, void *arg)
517 struct kexec_buf *kbuf = (struct kexec_buf *)arg;
518 u64 start = res->start, end = res->end;
519 unsigned long sz = end - start + 1;
521 /* Returning 0 will take to next memory range */
523 /* Don't use memory that will be detected and handled by a driver. */
524 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
525 return 0;
527 if (sz < kbuf->memsz)
528 return 0;
530 if (end < kbuf->buf_min || start > kbuf->buf_max)
531 return 0;
534 * Allocate memory top down with-in ram range. Otherwise bottom up
535 * allocation.
537 if (kbuf->top_down)
538 return locate_mem_hole_top_down(start, end, kbuf);
539 return locate_mem_hole_bottom_up(start, end, kbuf);
542 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
543 static int kexec_walk_memblock(struct kexec_buf *kbuf,
544 int (*func)(struct resource *, void *))
546 int ret = 0;
547 u64 i;
548 phys_addr_t mstart, mend;
549 struct resource res = { };
551 if (kbuf->image->type == KEXEC_TYPE_CRASH)
552 return func(&crashk_res, kbuf);
554 if (kbuf->top_down) {
555 for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
556 &mstart, &mend, NULL) {
558 * In memblock, end points to the first byte after the
559 * range while in kexec, end points to the last byte
560 * in the range.
562 res.start = mstart;
563 res.end = mend - 1;
564 ret = func(&res, kbuf);
565 if (ret)
566 break;
568 } else {
569 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
570 &mstart, &mend, NULL) {
572 * In memblock, end points to the first byte after the
573 * range while in kexec, end points to the last byte
574 * in the range.
576 res.start = mstart;
577 res.end = mend - 1;
578 ret = func(&res, kbuf);
579 if (ret)
580 break;
584 return ret;
586 #else
587 static int kexec_walk_memblock(struct kexec_buf *kbuf,
588 int (*func)(struct resource *, void *))
590 return 0;
592 #endif
595 * kexec_walk_resources - call func(data) on free memory regions
596 * @kbuf: Context info for the search. Also passed to @func.
597 * @func: Function to call for each memory region.
599 * Return: The memory walk will stop when func returns a non-zero value
600 * and that value will be returned. If all free regions are visited without
601 * func returning non-zero, then zero will be returned.
603 static int kexec_walk_resources(struct kexec_buf *kbuf,
604 int (*func)(struct resource *, void *))
606 if (kbuf->image->type == KEXEC_TYPE_CRASH)
607 return walk_iomem_res_desc(crashk_res.desc,
608 IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
609 crashk_res.start, crashk_res.end,
610 kbuf, func);
611 else
612 return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
616 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
617 * @kbuf: Parameters for the memory search.
619 * On success, kbuf->mem will have the start address of the memory region found.
621 * Return: 0 on success, negative errno on error.
623 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
625 int ret;
627 /* Arch knows where to place */
628 if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
629 return 0;
631 if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
632 ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
633 else
634 ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
636 return ret == 1 ? 0 : -EADDRNOTAVAIL;
640 * arch_kexec_locate_mem_hole - Find free memory to place the segments.
641 * @kbuf: Parameters for the memory search.
643 * On success, kbuf->mem will have the start address of the memory region found.
645 * Return: 0 on success, negative errno on error.
647 int __weak arch_kexec_locate_mem_hole(struct kexec_buf *kbuf)
649 return kexec_locate_mem_hole(kbuf);
653 * kexec_add_buffer - place a buffer in a kexec segment
654 * @kbuf: Buffer contents and memory parameters.
656 * This function assumes that kexec_mutex is held.
657 * On successful return, @kbuf->mem will have the physical address of
658 * the buffer in memory.
660 * Return: 0 on success, negative errno on error.
662 int kexec_add_buffer(struct kexec_buf *kbuf)
664 struct kexec_segment *ksegment;
665 int ret;
667 /* Currently adding segment this way is allowed only in file mode */
668 if (!kbuf->image->file_mode)
669 return -EINVAL;
671 if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
672 return -EINVAL;
675 * Make sure we are not trying to add buffer after allocating
676 * control pages. All segments need to be placed first before
677 * any control pages are allocated. As control page allocation
678 * logic goes through list of segments to make sure there are
679 * no destination overlaps.
681 if (!list_empty(&kbuf->image->control_pages)) {
682 WARN_ON(1);
683 return -EINVAL;
686 /* Ensure minimum alignment needed for segments. */
687 kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
688 kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
690 /* Walk the RAM ranges and allocate a suitable range for the buffer */
691 ret = arch_kexec_locate_mem_hole(kbuf);
692 if (ret)
693 return ret;
695 /* Found a suitable memory range */
696 ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
697 ksegment->kbuf = kbuf->buffer;
698 ksegment->bufsz = kbuf->bufsz;
699 ksegment->mem = kbuf->mem;
700 ksegment->memsz = kbuf->memsz;
701 kbuf->image->nr_segments++;
702 return 0;
705 /* Calculate and store the digest of segments */
706 static int kexec_calculate_store_digests(struct kimage *image)
708 struct crypto_shash *tfm;
709 struct shash_desc *desc;
710 int ret = 0, i, j, zero_buf_sz, sha_region_sz;
711 size_t desc_size, nullsz;
712 char *digest;
713 void *zero_buf;
714 struct kexec_sha_region *sha_regions;
715 struct purgatory_info *pi = &image->purgatory_info;
717 if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
718 return 0;
720 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
721 zero_buf_sz = PAGE_SIZE;
723 tfm = crypto_alloc_shash("sha256", 0, 0);
724 if (IS_ERR(tfm)) {
725 ret = PTR_ERR(tfm);
726 goto out;
729 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
730 desc = kzalloc(desc_size, GFP_KERNEL);
731 if (!desc) {
732 ret = -ENOMEM;
733 goto out_free_tfm;
736 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
737 sha_regions = vzalloc(sha_region_sz);
738 if (!sha_regions)
739 goto out_free_desc;
741 desc->tfm = tfm;
743 ret = crypto_shash_init(desc);
744 if (ret < 0)
745 goto out_free_sha_regions;
747 digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
748 if (!digest) {
749 ret = -ENOMEM;
750 goto out_free_sha_regions;
753 for (j = i = 0; i < image->nr_segments; i++) {
754 struct kexec_segment *ksegment;
756 ksegment = &image->segment[i];
758 * Skip purgatory as it will be modified once we put digest
759 * info in purgatory.
761 if (ksegment->kbuf == pi->purgatory_buf)
762 continue;
764 ret = crypto_shash_update(desc, ksegment->kbuf,
765 ksegment->bufsz);
766 if (ret)
767 break;
770 * Assume rest of the buffer is filled with zero and
771 * update digest accordingly.
773 nullsz = ksegment->memsz - ksegment->bufsz;
774 while (nullsz) {
775 unsigned long bytes = nullsz;
777 if (bytes > zero_buf_sz)
778 bytes = zero_buf_sz;
779 ret = crypto_shash_update(desc, zero_buf, bytes);
780 if (ret)
781 break;
782 nullsz -= bytes;
785 if (ret)
786 break;
788 sha_regions[j].start = ksegment->mem;
789 sha_regions[j].len = ksegment->memsz;
790 j++;
793 if (!ret) {
794 ret = crypto_shash_final(desc, digest);
795 if (ret)
796 goto out_free_digest;
797 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
798 sha_regions, sha_region_sz, 0);
799 if (ret)
800 goto out_free_digest;
802 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
803 digest, SHA256_DIGEST_SIZE, 0);
804 if (ret)
805 goto out_free_digest;
808 out_free_digest:
809 kfree(digest);
810 out_free_sha_regions:
811 vfree(sha_regions);
812 out_free_desc:
813 kfree(desc);
814 out_free_tfm:
815 kfree(tfm);
816 out:
817 return ret;
820 #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
822 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
823 * @pi: Purgatory to be loaded.
824 * @kbuf: Buffer to setup.
826 * Allocates the memory needed for the buffer. Caller is responsible to free
827 * the memory after use.
829 * Return: 0 on success, negative errno on error.
831 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
832 struct kexec_buf *kbuf)
834 const Elf_Shdr *sechdrs;
835 unsigned long bss_align;
836 unsigned long bss_sz;
837 unsigned long align;
838 int i, ret;
840 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
841 kbuf->buf_align = bss_align = 1;
842 kbuf->bufsz = bss_sz = 0;
844 for (i = 0; i < pi->ehdr->e_shnum; i++) {
845 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
846 continue;
848 align = sechdrs[i].sh_addralign;
849 if (sechdrs[i].sh_type != SHT_NOBITS) {
850 if (kbuf->buf_align < align)
851 kbuf->buf_align = align;
852 kbuf->bufsz = ALIGN(kbuf->bufsz, align);
853 kbuf->bufsz += sechdrs[i].sh_size;
854 } else {
855 if (bss_align < align)
856 bss_align = align;
857 bss_sz = ALIGN(bss_sz, align);
858 bss_sz += sechdrs[i].sh_size;
861 kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
862 kbuf->memsz = kbuf->bufsz + bss_sz;
863 if (kbuf->buf_align < bss_align)
864 kbuf->buf_align = bss_align;
866 kbuf->buffer = vzalloc(kbuf->bufsz);
867 if (!kbuf->buffer)
868 return -ENOMEM;
869 pi->purgatory_buf = kbuf->buffer;
871 ret = kexec_add_buffer(kbuf);
872 if (ret)
873 goto out;
875 return 0;
876 out:
877 vfree(pi->purgatory_buf);
878 pi->purgatory_buf = NULL;
879 return ret;
883 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
884 * @pi: Purgatory to be loaded.
885 * @kbuf: Buffer prepared to store purgatory.
887 * Allocates the memory needed for the buffer. Caller is responsible to free
888 * the memory after use.
890 * Return: 0 on success, negative errno on error.
892 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
893 struct kexec_buf *kbuf)
895 unsigned long bss_addr;
896 unsigned long offset;
897 Elf_Shdr *sechdrs;
898 int i;
901 * The section headers in kexec_purgatory are read-only. In order to
902 * have them modifiable make a temporary copy.
904 sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
905 if (!sechdrs)
906 return -ENOMEM;
907 memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
908 pi->ehdr->e_shnum * sizeof(Elf_Shdr));
909 pi->sechdrs = sechdrs;
911 offset = 0;
912 bss_addr = kbuf->mem + kbuf->bufsz;
913 kbuf->image->start = pi->ehdr->e_entry;
915 for (i = 0; i < pi->ehdr->e_shnum; i++) {
916 unsigned long align;
917 void *src, *dst;
919 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
920 continue;
922 align = sechdrs[i].sh_addralign;
923 if (sechdrs[i].sh_type == SHT_NOBITS) {
924 bss_addr = ALIGN(bss_addr, align);
925 sechdrs[i].sh_addr = bss_addr;
926 bss_addr += sechdrs[i].sh_size;
927 continue;
930 offset = ALIGN(offset, align);
931 if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
932 pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
933 pi->ehdr->e_entry < (sechdrs[i].sh_addr
934 + sechdrs[i].sh_size)) {
935 kbuf->image->start -= sechdrs[i].sh_addr;
936 kbuf->image->start += kbuf->mem + offset;
939 src = (void *)pi->ehdr + sechdrs[i].sh_offset;
940 dst = pi->purgatory_buf + offset;
941 memcpy(dst, src, sechdrs[i].sh_size);
943 sechdrs[i].sh_addr = kbuf->mem + offset;
944 sechdrs[i].sh_offset = offset;
945 offset += sechdrs[i].sh_size;
948 return 0;
951 static int kexec_apply_relocations(struct kimage *image)
953 int i, ret;
954 struct purgatory_info *pi = &image->purgatory_info;
955 const Elf_Shdr *sechdrs;
957 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
959 for (i = 0; i < pi->ehdr->e_shnum; i++) {
960 const Elf_Shdr *relsec;
961 const Elf_Shdr *symtab;
962 Elf_Shdr *section;
964 relsec = sechdrs + i;
966 if (relsec->sh_type != SHT_RELA &&
967 relsec->sh_type != SHT_REL)
968 continue;
971 * For section of type SHT_RELA/SHT_REL,
972 * ->sh_link contains section header index of associated
973 * symbol table. And ->sh_info contains section header
974 * index of section to which relocations apply.
976 if (relsec->sh_info >= pi->ehdr->e_shnum ||
977 relsec->sh_link >= pi->ehdr->e_shnum)
978 return -ENOEXEC;
980 section = pi->sechdrs + relsec->sh_info;
981 symtab = sechdrs + relsec->sh_link;
983 if (!(section->sh_flags & SHF_ALLOC))
984 continue;
987 * symtab->sh_link contain section header index of associated
988 * string table.
990 if (symtab->sh_link >= pi->ehdr->e_shnum)
991 /* Invalid section number? */
992 continue;
995 * Respective architecture needs to provide support for applying
996 * relocations of type SHT_RELA/SHT_REL.
998 if (relsec->sh_type == SHT_RELA)
999 ret = arch_kexec_apply_relocations_add(pi, section,
1000 relsec, symtab);
1001 else if (relsec->sh_type == SHT_REL)
1002 ret = arch_kexec_apply_relocations(pi, section,
1003 relsec, symtab);
1004 if (ret)
1005 return ret;
1008 return 0;
1012 * kexec_load_purgatory - Load and relocate the purgatory object.
1013 * @image: Image to add the purgatory to.
1014 * @kbuf: Memory parameters to use.
1016 * Allocates the memory needed for image->purgatory_info.sechdrs and
1017 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1018 * to free the memory after use.
1020 * Return: 0 on success, negative errno on error.
1022 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1024 struct purgatory_info *pi = &image->purgatory_info;
1025 int ret;
1027 if (kexec_purgatory_size <= 0)
1028 return -EINVAL;
1030 pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1032 ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1033 if (ret)
1034 return ret;
1036 ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1037 if (ret)
1038 goto out_free_kbuf;
1040 ret = kexec_apply_relocations(image);
1041 if (ret)
1042 goto out;
1044 return 0;
1045 out:
1046 vfree(pi->sechdrs);
1047 pi->sechdrs = NULL;
1048 out_free_kbuf:
1049 vfree(pi->purgatory_buf);
1050 pi->purgatory_buf = NULL;
1051 return ret;
1055 * kexec_purgatory_find_symbol - find a symbol in the purgatory
1056 * @pi: Purgatory to search in.
1057 * @name: Name of the symbol.
1059 * Return: pointer to symbol in read-only symtab on success, NULL on error.
1061 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1062 const char *name)
1064 const Elf_Shdr *sechdrs;
1065 const Elf_Ehdr *ehdr;
1066 const Elf_Sym *syms;
1067 const char *strtab;
1068 int i, k;
1070 if (!pi->ehdr)
1071 return NULL;
1073 ehdr = pi->ehdr;
1074 sechdrs = (void *)ehdr + ehdr->e_shoff;
1076 for (i = 0; i < ehdr->e_shnum; i++) {
1077 if (sechdrs[i].sh_type != SHT_SYMTAB)
1078 continue;
1080 if (sechdrs[i].sh_link >= ehdr->e_shnum)
1081 /* Invalid strtab section number */
1082 continue;
1083 strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1084 syms = (void *)ehdr + sechdrs[i].sh_offset;
1086 /* Go through symbols for a match */
1087 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1088 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1089 continue;
1091 if (strcmp(strtab + syms[k].st_name, name) != 0)
1092 continue;
1094 if (syms[k].st_shndx == SHN_UNDEF ||
1095 syms[k].st_shndx >= ehdr->e_shnum) {
1096 pr_debug("Symbol: %s has bad section index %d.\n",
1097 name, syms[k].st_shndx);
1098 return NULL;
1101 /* Found the symbol we are looking for */
1102 return &syms[k];
1106 return NULL;
1109 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1111 struct purgatory_info *pi = &image->purgatory_info;
1112 const Elf_Sym *sym;
1113 Elf_Shdr *sechdr;
1115 sym = kexec_purgatory_find_symbol(pi, name);
1116 if (!sym)
1117 return ERR_PTR(-EINVAL);
1119 sechdr = &pi->sechdrs[sym->st_shndx];
1122 * Returns the address where symbol will finally be loaded after
1123 * kexec_load_segment()
1125 return (void *)(sechdr->sh_addr + sym->st_value);
1129 * Get or set value of a symbol. If "get_value" is true, symbol value is
1130 * returned in buf otherwise symbol value is set based on value in buf.
1132 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1133 void *buf, unsigned int size, bool get_value)
1135 struct purgatory_info *pi = &image->purgatory_info;
1136 const Elf_Sym *sym;
1137 Elf_Shdr *sec;
1138 char *sym_buf;
1140 sym = kexec_purgatory_find_symbol(pi, name);
1141 if (!sym)
1142 return -EINVAL;
1144 if (sym->st_size != size) {
1145 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1146 name, (unsigned long)sym->st_size, size);
1147 return -EINVAL;
1150 sec = pi->sechdrs + sym->st_shndx;
1152 if (sec->sh_type == SHT_NOBITS) {
1153 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1154 get_value ? "get" : "set");
1155 return -EINVAL;
1158 sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1160 if (get_value)
1161 memcpy((void *)buf, sym_buf, size);
1162 else
1163 memcpy((void *)sym_buf, buf, size);
1165 return 0;
1167 #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1169 int crash_exclude_mem_range(struct crash_mem *mem,
1170 unsigned long long mstart, unsigned long long mend)
1172 int i, j;
1173 unsigned long long start, end, p_start, p_end;
1174 struct crash_mem_range temp_range = {0, 0};
1176 for (i = 0; i < mem->nr_ranges; i++) {
1177 start = mem->ranges[i].start;
1178 end = mem->ranges[i].end;
1179 p_start = mstart;
1180 p_end = mend;
1182 if (mstart > end || mend < start)
1183 continue;
1185 /* Truncate any area outside of range */
1186 if (mstart < start)
1187 p_start = start;
1188 if (mend > end)
1189 p_end = end;
1191 /* Found completely overlapping range */
1192 if (p_start == start && p_end == end) {
1193 mem->ranges[i].start = 0;
1194 mem->ranges[i].end = 0;
1195 if (i < mem->nr_ranges - 1) {
1196 /* Shift rest of the ranges to left */
1197 for (j = i; j < mem->nr_ranges - 1; j++) {
1198 mem->ranges[j].start =
1199 mem->ranges[j+1].start;
1200 mem->ranges[j].end =
1201 mem->ranges[j+1].end;
1205 * Continue to check if there are another overlapping ranges
1206 * from the current position because of shifting the above
1207 * mem ranges.
1209 i--;
1210 mem->nr_ranges--;
1211 continue;
1213 mem->nr_ranges--;
1214 return 0;
1217 if (p_start > start && p_end < end) {
1218 /* Split original range */
1219 mem->ranges[i].end = p_start - 1;
1220 temp_range.start = p_end + 1;
1221 temp_range.end = end;
1222 } else if (p_start != start)
1223 mem->ranges[i].end = p_start - 1;
1224 else
1225 mem->ranges[i].start = p_end + 1;
1226 break;
1229 /* If a split happened, add the split to array */
1230 if (!temp_range.end)
1231 return 0;
1233 /* Split happened */
1234 if (i == mem->max_nr_ranges - 1)
1235 return -ENOMEM;
1237 /* Location where new range should go */
1238 j = i + 1;
1239 if (j < mem->nr_ranges) {
1240 /* Move over all ranges one slot towards the end */
1241 for (i = mem->nr_ranges - 1; i >= j; i--)
1242 mem->ranges[i + 1] = mem->ranges[i];
1245 mem->ranges[j].start = temp_range.start;
1246 mem->ranges[j].end = temp_range.end;
1247 mem->nr_ranges++;
1248 return 0;
1251 int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1252 void **addr, unsigned long *sz)
1254 Elf64_Ehdr *ehdr;
1255 Elf64_Phdr *phdr;
1256 unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1257 unsigned char *buf;
1258 unsigned int cpu, i;
1259 unsigned long long notes_addr;
1260 unsigned long mstart, mend;
1262 /* extra phdr for vmcoreinfo ELF note */
1263 nr_phdr = nr_cpus + 1;
1264 nr_phdr += mem->nr_ranges;
1267 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1268 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1269 * I think this is required by tools like gdb. So same physical
1270 * memory will be mapped in two ELF headers. One will contain kernel
1271 * text virtual addresses and other will have __va(physical) addresses.
1274 nr_phdr++;
1275 elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1276 elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1278 buf = vzalloc(elf_sz);
1279 if (!buf)
1280 return -ENOMEM;
1282 ehdr = (Elf64_Ehdr *)buf;
1283 phdr = (Elf64_Phdr *)(ehdr + 1);
1284 memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1285 ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1286 ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1287 ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1288 ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1289 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1290 ehdr->e_type = ET_CORE;
1291 ehdr->e_machine = ELF_ARCH;
1292 ehdr->e_version = EV_CURRENT;
1293 ehdr->e_phoff = sizeof(Elf64_Ehdr);
1294 ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1295 ehdr->e_phentsize = sizeof(Elf64_Phdr);
1297 /* Prepare one phdr of type PT_NOTE for each present CPU */
1298 for_each_present_cpu(cpu) {
1299 phdr->p_type = PT_NOTE;
1300 notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1301 phdr->p_offset = phdr->p_paddr = notes_addr;
1302 phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1303 (ehdr->e_phnum)++;
1304 phdr++;
1307 /* Prepare one PT_NOTE header for vmcoreinfo */
1308 phdr->p_type = PT_NOTE;
1309 phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1310 phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1311 (ehdr->e_phnum)++;
1312 phdr++;
1314 /* Prepare PT_LOAD type program header for kernel text region */
1315 if (kernel_map) {
1316 phdr->p_type = PT_LOAD;
1317 phdr->p_flags = PF_R|PF_W|PF_X;
1318 phdr->p_vaddr = (unsigned long) _text;
1319 phdr->p_filesz = phdr->p_memsz = _end - _text;
1320 phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1321 ehdr->e_phnum++;
1322 phdr++;
1325 /* Go through all the ranges in mem->ranges[] and prepare phdr */
1326 for (i = 0; i < mem->nr_ranges; i++) {
1327 mstart = mem->ranges[i].start;
1328 mend = mem->ranges[i].end;
1330 phdr->p_type = PT_LOAD;
1331 phdr->p_flags = PF_R|PF_W|PF_X;
1332 phdr->p_offset = mstart;
1334 phdr->p_paddr = mstart;
1335 phdr->p_vaddr = (unsigned long) __va(mstart);
1336 phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1337 phdr->p_align = 0;
1338 ehdr->e_phnum++;
1339 pr_debug("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1340 phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1341 ehdr->e_phnum, phdr->p_offset);
1342 phdr++;
1345 *addr = buf;
1346 *sz = elf_sz;
1347 return 0;