drm/panfrost: Remove set but not used variable 'bo'
[linux/fpc-iii.git] / fs / ocfs2 / aops.c
blob3a67a6518ddf24c16dc7c1ea02eff3bfc466434a
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* -*- mode: c; c-basic-offset: 8; -*-
3 * vim: noexpandtab sw=8 ts=8 sts=0:
5 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 */
8 #include <linux/fs.h>
9 #include <linux/slab.h>
10 #include <linux/highmem.h>
11 #include <linux/pagemap.h>
12 #include <asm/byteorder.h>
13 #include <linux/swap.h>
14 #include <linux/mpage.h>
15 #include <linux/quotaops.h>
16 #include <linux/blkdev.h>
17 #include <linux/uio.h>
18 #include <linux/mm.h>
20 #include <cluster/masklog.h>
22 #include "ocfs2.h"
24 #include "alloc.h"
25 #include "aops.h"
26 #include "dlmglue.h"
27 #include "extent_map.h"
28 #include "file.h"
29 #include "inode.h"
30 #include "journal.h"
31 #include "suballoc.h"
32 #include "super.h"
33 #include "symlink.h"
34 #include "refcounttree.h"
35 #include "ocfs2_trace.h"
37 #include "buffer_head_io.h"
38 #include "dir.h"
39 #include "namei.h"
40 #include "sysfile.h"
42 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
43 struct buffer_head *bh_result, int create)
45 int err = -EIO;
46 int status;
47 struct ocfs2_dinode *fe = NULL;
48 struct buffer_head *bh = NULL;
49 struct buffer_head *buffer_cache_bh = NULL;
50 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
51 void *kaddr;
53 trace_ocfs2_symlink_get_block(
54 (unsigned long long)OCFS2_I(inode)->ip_blkno,
55 (unsigned long long)iblock, bh_result, create);
57 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
59 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
60 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
61 (unsigned long long)iblock);
62 goto bail;
65 status = ocfs2_read_inode_block(inode, &bh);
66 if (status < 0) {
67 mlog_errno(status);
68 goto bail;
70 fe = (struct ocfs2_dinode *) bh->b_data;
72 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
73 le32_to_cpu(fe->i_clusters))) {
74 err = -ENOMEM;
75 mlog(ML_ERROR, "block offset is outside the allocated size: "
76 "%llu\n", (unsigned long long)iblock);
77 goto bail;
80 /* We don't use the page cache to create symlink data, so if
81 * need be, copy it over from the buffer cache. */
82 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
83 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
84 iblock;
85 buffer_cache_bh = sb_getblk(osb->sb, blkno);
86 if (!buffer_cache_bh) {
87 err = -ENOMEM;
88 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
89 goto bail;
92 /* we haven't locked out transactions, so a commit
93 * could've happened. Since we've got a reference on
94 * the bh, even if it commits while we're doing the
95 * copy, the data is still good. */
96 if (buffer_jbd(buffer_cache_bh)
97 && ocfs2_inode_is_new(inode)) {
98 kaddr = kmap_atomic(bh_result->b_page);
99 if (!kaddr) {
100 mlog(ML_ERROR, "couldn't kmap!\n");
101 goto bail;
103 memcpy(kaddr + (bh_result->b_size * iblock),
104 buffer_cache_bh->b_data,
105 bh_result->b_size);
106 kunmap_atomic(kaddr);
107 set_buffer_uptodate(bh_result);
109 brelse(buffer_cache_bh);
112 map_bh(bh_result, inode->i_sb,
113 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
115 err = 0;
117 bail:
118 brelse(bh);
120 return err;
123 static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
124 struct buffer_head *bh_result, int create)
126 int ret = 0;
127 struct ocfs2_inode_info *oi = OCFS2_I(inode);
129 down_read(&oi->ip_alloc_sem);
130 ret = ocfs2_get_block(inode, iblock, bh_result, create);
131 up_read(&oi->ip_alloc_sem);
133 return ret;
136 int ocfs2_get_block(struct inode *inode, sector_t iblock,
137 struct buffer_head *bh_result, int create)
139 int err = 0;
140 unsigned int ext_flags;
141 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
142 u64 p_blkno, count, past_eof;
143 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
145 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
146 (unsigned long long)iblock, bh_result, create);
148 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
149 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
150 inode, inode->i_ino);
152 if (S_ISLNK(inode->i_mode)) {
153 /* this always does I/O for some reason. */
154 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
155 goto bail;
158 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
159 &ext_flags);
160 if (err) {
161 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
162 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
163 (unsigned long long)p_blkno);
164 goto bail;
167 if (max_blocks < count)
168 count = max_blocks;
171 * ocfs2 never allocates in this function - the only time we
172 * need to use BH_New is when we're extending i_size on a file
173 * system which doesn't support holes, in which case BH_New
174 * allows __block_write_begin() to zero.
176 * If we see this on a sparse file system, then a truncate has
177 * raced us and removed the cluster. In this case, we clear
178 * the buffers dirty and uptodate bits and let the buffer code
179 * ignore it as a hole.
181 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
182 clear_buffer_dirty(bh_result);
183 clear_buffer_uptodate(bh_result);
184 goto bail;
187 /* Treat the unwritten extent as a hole for zeroing purposes. */
188 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
189 map_bh(bh_result, inode->i_sb, p_blkno);
191 bh_result->b_size = count << inode->i_blkbits;
193 if (!ocfs2_sparse_alloc(osb)) {
194 if (p_blkno == 0) {
195 err = -EIO;
196 mlog(ML_ERROR,
197 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
198 (unsigned long long)iblock,
199 (unsigned long long)p_blkno,
200 (unsigned long long)OCFS2_I(inode)->ip_blkno);
201 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
202 dump_stack();
203 goto bail;
207 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
209 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
210 (unsigned long long)past_eof);
211 if (create && (iblock >= past_eof))
212 set_buffer_new(bh_result);
214 bail:
215 if (err < 0)
216 err = -EIO;
218 return err;
221 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
222 struct buffer_head *di_bh)
224 void *kaddr;
225 loff_t size;
226 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
229 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
230 (unsigned long long)OCFS2_I(inode)->ip_blkno);
231 return -EROFS;
234 size = i_size_read(inode);
236 if (size > PAGE_SIZE ||
237 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
238 ocfs2_error(inode->i_sb,
239 "Inode %llu has with inline data has bad size: %Lu\n",
240 (unsigned long long)OCFS2_I(inode)->ip_blkno,
241 (unsigned long long)size);
242 return -EROFS;
245 kaddr = kmap_atomic(page);
246 if (size)
247 memcpy(kaddr, di->id2.i_data.id_data, size);
248 /* Clear the remaining part of the page */
249 memset(kaddr + size, 0, PAGE_SIZE - size);
250 flush_dcache_page(page);
251 kunmap_atomic(kaddr);
253 SetPageUptodate(page);
255 return 0;
258 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260 int ret;
261 struct buffer_head *di_bh = NULL;
263 BUG_ON(!PageLocked(page));
264 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
266 ret = ocfs2_read_inode_block(inode, &di_bh);
267 if (ret) {
268 mlog_errno(ret);
269 goto out;
272 ret = ocfs2_read_inline_data(inode, page, di_bh);
273 out:
274 unlock_page(page);
276 brelse(di_bh);
277 return ret;
280 static int ocfs2_readpage(struct file *file, struct page *page)
282 struct inode *inode = page->mapping->host;
283 struct ocfs2_inode_info *oi = OCFS2_I(inode);
284 loff_t start = (loff_t)page->index << PAGE_SHIFT;
285 int ret, unlock = 1;
287 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
288 (page ? page->index : 0));
290 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
291 if (ret != 0) {
292 if (ret == AOP_TRUNCATED_PAGE)
293 unlock = 0;
294 mlog_errno(ret);
295 goto out;
298 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
300 * Unlock the page and cycle ip_alloc_sem so that we don't
301 * busyloop waiting for ip_alloc_sem to unlock
303 ret = AOP_TRUNCATED_PAGE;
304 unlock_page(page);
305 unlock = 0;
306 down_read(&oi->ip_alloc_sem);
307 up_read(&oi->ip_alloc_sem);
308 goto out_inode_unlock;
312 * i_size might have just been updated as we grabed the meta lock. We
313 * might now be discovering a truncate that hit on another node.
314 * block_read_full_page->get_block freaks out if it is asked to read
315 * beyond the end of a file, so we check here. Callers
316 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
317 * and notice that the page they just read isn't needed.
319 * XXX sys_readahead() seems to get that wrong?
321 if (start >= i_size_read(inode)) {
322 zero_user(page, 0, PAGE_SIZE);
323 SetPageUptodate(page);
324 ret = 0;
325 goto out_alloc;
328 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
329 ret = ocfs2_readpage_inline(inode, page);
330 else
331 ret = block_read_full_page(page, ocfs2_get_block);
332 unlock = 0;
334 out_alloc:
335 up_read(&oi->ip_alloc_sem);
336 out_inode_unlock:
337 ocfs2_inode_unlock(inode, 0);
338 out:
339 if (unlock)
340 unlock_page(page);
341 return ret;
345 * This is used only for read-ahead. Failures or difficult to handle
346 * situations are safe to ignore.
348 * Right now, we don't bother with BH_Boundary - in-inode extent lists
349 * are quite large (243 extents on 4k blocks), so most inodes don't
350 * grow out to a tree. If need be, detecting boundary extents could
351 * trivially be added in a future version of ocfs2_get_block().
353 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
354 struct list_head *pages, unsigned nr_pages)
356 int ret, err = -EIO;
357 struct inode *inode = mapping->host;
358 struct ocfs2_inode_info *oi = OCFS2_I(inode);
359 loff_t start;
360 struct page *last;
363 * Use the nonblocking flag for the dlm code to avoid page
364 * lock inversion, but don't bother with retrying.
366 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
367 if (ret)
368 return err;
370 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
371 ocfs2_inode_unlock(inode, 0);
372 return err;
376 * Don't bother with inline-data. There isn't anything
377 * to read-ahead in that case anyway...
379 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
380 goto out_unlock;
383 * Check whether a remote node truncated this file - we just
384 * drop out in that case as it's not worth handling here.
386 last = lru_to_page(pages);
387 start = (loff_t)last->index << PAGE_SHIFT;
388 if (start >= i_size_read(inode))
389 goto out_unlock;
391 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393 out_unlock:
394 up_read(&oi->ip_alloc_sem);
395 ocfs2_inode_unlock(inode, 0);
397 return err;
400 /* Note: Because we don't support holes, our allocation has
401 * already happened (allocation writes zeros to the file data)
402 * so we don't have to worry about ordered writes in
403 * ocfs2_writepage.
405 * ->writepage is called during the process of invalidating the page cache
406 * during blocked lock processing. It can't block on any cluster locks
407 * to during block mapping. It's relying on the fact that the block
408 * mapping can't have disappeared under the dirty pages that it is
409 * being asked to write back.
411 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413 trace_ocfs2_writepage(
414 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
415 page->index);
417 return block_write_full_page(page, ocfs2_get_block, wbc);
420 /* Taken from ext3. We don't necessarily need the full blown
421 * functionality yet, but IMHO it's better to cut and paste the whole
422 * thing so we can avoid introducing our own bugs (and easily pick up
423 * their fixes when they happen) --Mark */
424 int walk_page_buffers( handle_t *handle,
425 struct buffer_head *head,
426 unsigned from,
427 unsigned to,
428 int *partial,
429 int (*fn)( handle_t *handle,
430 struct buffer_head *bh))
432 struct buffer_head *bh;
433 unsigned block_start, block_end;
434 unsigned blocksize = head->b_size;
435 int err, ret = 0;
436 struct buffer_head *next;
438 for ( bh = head, block_start = 0;
439 ret == 0 && (bh != head || !block_start);
440 block_start = block_end, bh = next)
442 next = bh->b_this_page;
443 block_end = block_start + blocksize;
444 if (block_end <= from || block_start >= to) {
445 if (partial && !buffer_uptodate(bh))
446 *partial = 1;
447 continue;
449 err = (*fn)(handle, bh);
450 if (!ret)
451 ret = err;
453 return ret;
456 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458 sector_t status;
459 u64 p_blkno = 0;
460 int err = 0;
461 struct inode *inode = mapping->host;
463 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
464 (unsigned long long)block);
467 * The swap code (ab-)uses ->bmap to get a block mapping and then
468 * bypasseѕ the file system for actual I/O. We really can't allow
469 * that on refcounted inodes, so we have to skip out here. And yes,
470 * 0 is the magic code for a bmap error..
472 if (ocfs2_is_refcount_inode(inode))
473 return 0;
475 /* We don't need to lock journal system files, since they aren't
476 * accessed concurrently from multiple nodes.
478 if (!INODE_JOURNAL(inode)) {
479 err = ocfs2_inode_lock(inode, NULL, 0);
480 if (err) {
481 if (err != -ENOENT)
482 mlog_errno(err);
483 goto bail;
485 down_read(&OCFS2_I(inode)->ip_alloc_sem);
488 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
489 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
490 NULL);
492 if (!INODE_JOURNAL(inode)) {
493 up_read(&OCFS2_I(inode)->ip_alloc_sem);
494 ocfs2_inode_unlock(inode, 0);
497 if (err) {
498 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
499 (unsigned long long)block);
500 mlog_errno(err);
501 goto bail;
504 bail:
505 status = err ? 0 : p_blkno;
507 return status;
510 static int ocfs2_releasepage(struct page *page, gfp_t wait)
512 if (!page_has_buffers(page))
513 return 0;
514 return try_to_free_buffers(page);
517 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
518 u32 cpos,
519 unsigned int *start,
520 unsigned int *end)
522 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
524 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
525 unsigned int cpp;
527 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
529 cluster_start = cpos % cpp;
530 cluster_start = cluster_start << osb->s_clustersize_bits;
532 cluster_end = cluster_start + osb->s_clustersize;
535 BUG_ON(cluster_start > PAGE_SIZE);
536 BUG_ON(cluster_end > PAGE_SIZE);
538 if (start)
539 *start = cluster_start;
540 if (end)
541 *end = cluster_end;
545 * 'from' and 'to' are the region in the page to avoid zeroing.
547 * If pagesize > clustersize, this function will avoid zeroing outside
548 * of the cluster boundary.
550 * from == to == 0 is code for "zero the entire cluster region"
552 static void ocfs2_clear_page_regions(struct page *page,
553 struct ocfs2_super *osb, u32 cpos,
554 unsigned from, unsigned to)
556 void *kaddr;
557 unsigned int cluster_start, cluster_end;
559 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
561 kaddr = kmap_atomic(page);
563 if (from || to) {
564 if (from > cluster_start)
565 memset(kaddr + cluster_start, 0, from - cluster_start);
566 if (to < cluster_end)
567 memset(kaddr + to, 0, cluster_end - to);
568 } else {
569 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
572 kunmap_atomic(kaddr);
576 * Nonsparse file systems fully allocate before we get to the write
577 * code. This prevents ocfs2_write() from tagging the write as an
578 * allocating one, which means ocfs2_map_page_blocks() might try to
579 * read-in the blocks at the tail of our file. Avoid reading them by
580 * testing i_size against each block offset.
582 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
583 unsigned int block_start)
585 u64 offset = page_offset(page) + block_start;
587 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
588 return 1;
590 if (i_size_read(inode) > offset)
591 return 1;
593 return 0;
597 * Some of this taken from __block_write_begin(). We already have our
598 * mapping by now though, and the entire write will be allocating or
599 * it won't, so not much need to use BH_New.
601 * This will also skip zeroing, which is handled externally.
603 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
604 struct inode *inode, unsigned int from,
605 unsigned int to, int new)
607 int ret = 0;
608 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
609 unsigned int block_end, block_start;
610 unsigned int bsize = i_blocksize(inode);
612 if (!page_has_buffers(page))
613 create_empty_buffers(page, bsize, 0);
615 head = page_buffers(page);
616 for (bh = head, block_start = 0; bh != head || !block_start;
617 bh = bh->b_this_page, block_start += bsize) {
618 block_end = block_start + bsize;
620 clear_buffer_new(bh);
623 * Ignore blocks outside of our i/o range -
624 * they may belong to unallocated clusters.
626 if (block_start >= to || block_end <= from) {
627 if (PageUptodate(page))
628 set_buffer_uptodate(bh);
629 continue;
633 * For an allocating write with cluster size >= page
634 * size, we always write the entire page.
636 if (new)
637 set_buffer_new(bh);
639 if (!buffer_mapped(bh)) {
640 map_bh(bh, inode->i_sb, *p_blkno);
641 clean_bdev_bh_alias(bh);
644 if (PageUptodate(page)) {
645 if (!buffer_uptodate(bh))
646 set_buffer_uptodate(bh);
647 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
648 !buffer_new(bh) &&
649 ocfs2_should_read_blk(inode, page, block_start) &&
650 (block_start < from || block_end > to)) {
651 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
652 *wait_bh++=bh;
655 *p_blkno = *p_blkno + 1;
659 * If we issued read requests - let them complete.
661 while(wait_bh > wait) {
662 wait_on_buffer(*--wait_bh);
663 if (!buffer_uptodate(*wait_bh))
664 ret = -EIO;
667 if (ret == 0 || !new)
668 return ret;
671 * If we get -EIO above, zero out any newly allocated blocks
672 * to avoid exposing stale data.
674 bh = head;
675 block_start = 0;
676 do {
677 block_end = block_start + bsize;
678 if (block_end <= from)
679 goto next_bh;
680 if (block_start >= to)
681 break;
683 zero_user(page, block_start, bh->b_size);
684 set_buffer_uptodate(bh);
685 mark_buffer_dirty(bh);
687 next_bh:
688 block_start = block_end;
689 bh = bh->b_this_page;
690 } while (bh != head);
692 return ret;
695 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
696 #define OCFS2_MAX_CTXT_PAGES 1
697 #else
698 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
699 #endif
701 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
703 struct ocfs2_unwritten_extent {
704 struct list_head ue_node;
705 struct list_head ue_ip_node;
706 u32 ue_cpos;
707 u32 ue_phys;
711 * Describe the state of a single cluster to be written to.
713 struct ocfs2_write_cluster_desc {
714 u32 c_cpos;
715 u32 c_phys;
717 * Give this a unique field because c_phys eventually gets
718 * filled.
720 unsigned c_new;
721 unsigned c_clear_unwritten;
722 unsigned c_needs_zero;
725 struct ocfs2_write_ctxt {
726 /* Logical cluster position / len of write */
727 u32 w_cpos;
728 u32 w_clen;
730 /* First cluster allocated in a nonsparse extend */
731 u32 w_first_new_cpos;
733 /* Type of caller. Must be one of buffer, mmap, direct. */
734 ocfs2_write_type_t w_type;
736 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
739 * This is true if page_size > cluster_size.
741 * It triggers a set of special cases during write which might
742 * have to deal with allocating writes to partial pages.
744 unsigned int w_large_pages;
747 * Pages involved in this write.
749 * w_target_page is the page being written to by the user.
751 * w_pages is an array of pages which always contains
752 * w_target_page, and in the case of an allocating write with
753 * page_size < cluster size, it will contain zero'd and mapped
754 * pages adjacent to w_target_page which need to be written
755 * out in so that future reads from that region will get
756 * zero's.
758 unsigned int w_num_pages;
759 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
760 struct page *w_target_page;
763 * w_target_locked is used for page_mkwrite path indicating no unlocking
764 * against w_target_page in ocfs2_write_end_nolock.
766 unsigned int w_target_locked:1;
769 * ocfs2_write_end() uses this to know what the real range to
770 * write in the target should be.
772 unsigned int w_target_from;
773 unsigned int w_target_to;
776 * We could use journal_current_handle() but this is cleaner,
777 * IMHO -Mark
779 handle_t *w_handle;
781 struct buffer_head *w_di_bh;
783 struct ocfs2_cached_dealloc_ctxt w_dealloc;
785 struct list_head w_unwritten_list;
786 unsigned int w_unwritten_count;
789 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
791 int i;
793 for(i = 0; i < num_pages; i++) {
794 if (pages[i]) {
795 unlock_page(pages[i]);
796 mark_page_accessed(pages[i]);
797 put_page(pages[i]);
802 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
804 int i;
807 * w_target_locked is only set to true in the page_mkwrite() case.
808 * The intent is to allow us to lock the target page from write_begin()
809 * to write_end(). The caller must hold a ref on w_target_page.
811 if (wc->w_target_locked) {
812 BUG_ON(!wc->w_target_page);
813 for (i = 0; i < wc->w_num_pages; i++) {
814 if (wc->w_target_page == wc->w_pages[i]) {
815 wc->w_pages[i] = NULL;
816 break;
819 mark_page_accessed(wc->w_target_page);
820 put_page(wc->w_target_page);
822 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
825 static void ocfs2_free_unwritten_list(struct inode *inode,
826 struct list_head *head)
828 struct ocfs2_inode_info *oi = OCFS2_I(inode);
829 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
831 list_for_each_entry_safe(ue, tmp, head, ue_node) {
832 list_del(&ue->ue_node);
833 spin_lock(&oi->ip_lock);
834 list_del(&ue->ue_ip_node);
835 spin_unlock(&oi->ip_lock);
836 kfree(ue);
840 static void ocfs2_free_write_ctxt(struct inode *inode,
841 struct ocfs2_write_ctxt *wc)
843 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
844 ocfs2_unlock_pages(wc);
845 brelse(wc->w_di_bh);
846 kfree(wc);
849 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
850 struct ocfs2_super *osb, loff_t pos,
851 unsigned len, ocfs2_write_type_t type,
852 struct buffer_head *di_bh)
854 u32 cend;
855 struct ocfs2_write_ctxt *wc;
857 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
858 if (!wc)
859 return -ENOMEM;
861 wc->w_cpos = pos >> osb->s_clustersize_bits;
862 wc->w_first_new_cpos = UINT_MAX;
863 cend = (pos + len - 1) >> osb->s_clustersize_bits;
864 wc->w_clen = cend - wc->w_cpos + 1;
865 get_bh(di_bh);
866 wc->w_di_bh = di_bh;
867 wc->w_type = type;
869 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
870 wc->w_large_pages = 1;
871 else
872 wc->w_large_pages = 0;
874 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
875 INIT_LIST_HEAD(&wc->w_unwritten_list);
877 *wcp = wc;
879 return 0;
883 * If a page has any new buffers, zero them out here, and mark them uptodate
884 * and dirty so they'll be written out (in order to prevent uninitialised
885 * block data from leaking). And clear the new bit.
887 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
889 unsigned int block_start, block_end;
890 struct buffer_head *head, *bh;
892 BUG_ON(!PageLocked(page));
893 if (!page_has_buffers(page))
894 return;
896 bh = head = page_buffers(page);
897 block_start = 0;
898 do {
899 block_end = block_start + bh->b_size;
901 if (buffer_new(bh)) {
902 if (block_end > from && block_start < to) {
903 if (!PageUptodate(page)) {
904 unsigned start, end;
906 start = max(from, block_start);
907 end = min(to, block_end);
909 zero_user_segment(page, start, end);
910 set_buffer_uptodate(bh);
913 clear_buffer_new(bh);
914 mark_buffer_dirty(bh);
918 block_start = block_end;
919 bh = bh->b_this_page;
920 } while (bh != head);
924 * Only called when we have a failure during allocating write to write
925 * zero's to the newly allocated region.
927 static void ocfs2_write_failure(struct inode *inode,
928 struct ocfs2_write_ctxt *wc,
929 loff_t user_pos, unsigned user_len)
931 int i;
932 unsigned from = user_pos & (PAGE_SIZE - 1),
933 to = user_pos + user_len;
934 struct page *tmppage;
936 if (wc->w_target_page)
937 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
939 for(i = 0; i < wc->w_num_pages; i++) {
940 tmppage = wc->w_pages[i];
942 if (tmppage && page_has_buffers(tmppage)) {
943 if (ocfs2_should_order_data(inode))
944 ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
945 user_pos, user_len);
947 block_commit_write(tmppage, from, to);
952 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
953 struct ocfs2_write_ctxt *wc,
954 struct page *page, u32 cpos,
955 loff_t user_pos, unsigned user_len,
956 int new)
958 int ret;
959 unsigned int map_from = 0, map_to = 0;
960 unsigned int cluster_start, cluster_end;
961 unsigned int user_data_from = 0, user_data_to = 0;
963 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
964 &cluster_start, &cluster_end);
966 /* treat the write as new if the a hole/lseek spanned across
967 * the page boundary.
969 new = new | ((i_size_read(inode) <= page_offset(page)) &&
970 (page_offset(page) <= user_pos));
972 if (page == wc->w_target_page) {
973 map_from = user_pos & (PAGE_SIZE - 1);
974 map_to = map_from + user_len;
976 if (new)
977 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
978 cluster_start, cluster_end,
979 new);
980 else
981 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
982 map_from, map_to, new);
983 if (ret) {
984 mlog_errno(ret);
985 goto out;
988 user_data_from = map_from;
989 user_data_to = map_to;
990 if (new) {
991 map_from = cluster_start;
992 map_to = cluster_end;
994 } else {
996 * If we haven't allocated the new page yet, we
997 * shouldn't be writing it out without copying user
998 * data. This is likely a math error from the caller.
1000 BUG_ON(!new);
1002 map_from = cluster_start;
1003 map_to = cluster_end;
1005 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1006 cluster_start, cluster_end, new);
1007 if (ret) {
1008 mlog_errno(ret);
1009 goto out;
1014 * Parts of newly allocated pages need to be zero'd.
1016 * Above, we have also rewritten 'to' and 'from' - as far as
1017 * the rest of the function is concerned, the entire cluster
1018 * range inside of a page needs to be written.
1020 * We can skip this if the page is up to date - it's already
1021 * been zero'd from being read in as a hole.
1023 if (new && !PageUptodate(page))
1024 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1025 cpos, user_data_from, user_data_to);
1027 flush_dcache_page(page);
1029 out:
1030 return ret;
1034 * This function will only grab one clusters worth of pages.
1036 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1037 struct ocfs2_write_ctxt *wc,
1038 u32 cpos, loff_t user_pos,
1039 unsigned user_len, int new,
1040 struct page *mmap_page)
1042 int ret = 0, i;
1043 unsigned long start, target_index, end_index, index;
1044 struct inode *inode = mapping->host;
1045 loff_t last_byte;
1047 target_index = user_pos >> PAGE_SHIFT;
1050 * Figure out how many pages we'll be manipulating here. For
1051 * non allocating write, we just change the one
1052 * page. Otherwise, we'll need a whole clusters worth. If we're
1053 * writing past i_size, we only need enough pages to cover the
1054 * last page of the write.
1056 if (new) {
1057 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1058 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1060 * We need the index *past* the last page we could possibly
1061 * touch. This is the page past the end of the write or
1062 * i_size, whichever is greater.
1064 last_byte = max(user_pos + user_len, i_size_read(inode));
1065 BUG_ON(last_byte < 1);
1066 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1067 if ((start + wc->w_num_pages) > end_index)
1068 wc->w_num_pages = end_index - start;
1069 } else {
1070 wc->w_num_pages = 1;
1071 start = target_index;
1073 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1075 for(i = 0; i < wc->w_num_pages; i++) {
1076 index = start + i;
1078 if (index >= target_index && index <= end_index &&
1079 wc->w_type == OCFS2_WRITE_MMAP) {
1081 * ocfs2_pagemkwrite() is a little different
1082 * and wants us to directly use the page
1083 * passed in.
1085 lock_page(mmap_page);
1087 /* Exit and let the caller retry */
1088 if (mmap_page->mapping != mapping) {
1089 WARN_ON(mmap_page->mapping);
1090 unlock_page(mmap_page);
1091 ret = -EAGAIN;
1092 goto out;
1095 get_page(mmap_page);
1096 wc->w_pages[i] = mmap_page;
1097 wc->w_target_locked = true;
1098 } else if (index >= target_index && index <= end_index &&
1099 wc->w_type == OCFS2_WRITE_DIRECT) {
1100 /* Direct write has no mapping page. */
1101 wc->w_pages[i] = NULL;
1102 continue;
1103 } else {
1104 wc->w_pages[i] = find_or_create_page(mapping, index,
1105 GFP_NOFS);
1106 if (!wc->w_pages[i]) {
1107 ret = -ENOMEM;
1108 mlog_errno(ret);
1109 goto out;
1112 wait_for_stable_page(wc->w_pages[i]);
1114 if (index == target_index)
1115 wc->w_target_page = wc->w_pages[i];
1117 out:
1118 if (ret)
1119 wc->w_target_locked = false;
1120 return ret;
1124 * Prepare a single cluster for write one cluster into the file.
1126 static int ocfs2_write_cluster(struct address_space *mapping,
1127 u32 *phys, unsigned int new,
1128 unsigned int clear_unwritten,
1129 unsigned int should_zero,
1130 struct ocfs2_alloc_context *data_ac,
1131 struct ocfs2_alloc_context *meta_ac,
1132 struct ocfs2_write_ctxt *wc, u32 cpos,
1133 loff_t user_pos, unsigned user_len)
1135 int ret, i;
1136 u64 p_blkno;
1137 struct inode *inode = mapping->host;
1138 struct ocfs2_extent_tree et;
1139 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1141 if (new) {
1142 u32 tmp_pos;
1145 * This is safe to call with the page locks - it won't take
1146 * any additional semaphores or cluster locks.
1148 tmp_pos = cpos;
1149 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1150 &tmp_pos, 1, !clear_unwritten,
1151 wc->w_di_bh, wc->w_handle,
1152 data_ac, meta_ac, NULL);
1154 * This shouldn't happen because we must have already
1155 * calculated the correct meta data allocation required. The
1156 * internal tree allocation code should know how to increase
1157 * transaction credits itself.
1159 * If need be, we could handle -EAGAIN for a
1160 * RESTART_TRANS here.
1162 mlog_bug_on_msg(ret == -EAGAIN,
1163 "Inode %llu: EAGAIN return during allocation.\n",
1164 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1165 if (ret < 0) {
1166 mlog_errno(ret);
1167 goto out;
1169 } else if (clear_unwritten) {
1170 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1171 wc->w_di_bh);
1172 ret = ocfs2_mark_extent_written(inode, &et,
1173 wc->w_handle, cpos, 1, *phys,
1174 meta_ac, &wc->w_dealloc);
1175 if (ret < 0) {
1176 mlog_errno(ret);
1177 goto out;
1182 * The only reason this should fail is due to an inability to
1183 * find the extent added.
1185 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1186 if (ret < 0) {
1187 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1188 "at logical cluster %u",
1189 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1190 goto out;
1193 BUG_ON(*phys == 0);
1195 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1196 if (!should_zero)
1197 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1199 for(i = 0; i < wc->w_num_pages; i++) {
1200 int tmpret;
1202 /* This is the direct io target page. */
1203 if (wc->w_pages[i] == NULL) {
1204 p_blkno++;
1205 continue;
1208 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1209 wc->w_pages[i], cpos,
1210 user_pos, user_len,
1211 should_zero);
1212 if (tmpret) {
1213 mlog_errno(tmpret);
1214 if (ret == 0)
1215 ret = tmpret;
1220 * We only have cleanup to do in case of allocating write.
1222 if (ret && new)
1223 ocfs2_write_failure(inode, wc, user_pos, user_len);
1225 out:
1227 return ret;
1230 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1231 struct ocfs2_alloc_context *data_ac,
1232 struct ocfs2_alloc_context *meta_ac,
1233 struct ocfs2_write_ctxt *wc,
1234 loff_t pos, unsigned len)
1236 int ret, i;
1237 loff_t cluster_off;
1238 unsigned int local_len = len;
1239 struct ocfs2_write_cluster_desc *desc;
1240 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1242 for (i = 0; i < wc->w_clen; i++) {
1243 desc = &wc->w_desc[i];
1246 * We have to make sure that the total write passed in
1247 * doesn't extend past a single cluster.
1249 local_len = len;
1250 cluster_off = pos & (osb->s_clustersize - 1);
1251 if ((cluster_off + local_len) > osb->s_clustersize)
1252 local_len = osb->s_clustersize - cluster_off;
1254 ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1255 desc->c_new,
1256 desc->c_clear_unwritten,
1257 desc->c_needs_zero,
1258 data_ac, meta_ac,
1259 wc, desc->c_cpos, pos, local_len);
1260 if (ret) {
1261 mlog_errno(ret);
1262 goto out;
1265 len -= local_len;
1266 pos += local_len;
1269 ret = 0;
1270 out:
1271 return ret;
1275 * ocfs2_write_end() wants to know which parts of the target page it
1276 * should complete the write on. It's easiest to compute them ahead of
1277 * time when a more complete view of the write is available.
1279 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1280 struct ocfs2_write_ctxt *wc,
1281 loff_t pos, unsigned len, int alloc)
1283 struct ocfs2_write_cluster_desc *desc;
1285 wc->w_target_from = pos & (PAGE_SIZE - 1);
1286 wc->w_target_to = wc->w_target_from + len;
1288 if (alloc == 0)
1289 return;
1292 * Allocating write - we may have different boundaries based
1293 * on page size and cluster size.
1295 * NOTE: We can no longer compute one value from the other as
1296 * the actual write length and user provided length may be
1297 * different.
1300 if (wc->w_large_pages) {
1302 * We only care about the 1st and last cluster within
1303 * our range and whether they should be zero'd or not. Either
1304 * value may be extended out to the start/end of a
1305 * newly allocated cluster.
1307 desc = &wc->w_desc[0];
1308 if (desc->c_needs_zero)
1309 ocfs2_figure_cluster_boundaries(osb,
1310 desc->c_cpos,
1311 &wc->w_target_from,
1312 NULL);
1314 desc = &wc->w_desc[wc->w_clen - 1];
1315 if (desc->c_needs_zero)
1316 ocfs2_figure_cluster_boundaries(osb,
1317 desc->c_cpos,
1318 NULL,
1319 &wc->w_target_to);
1320 } else {
1321 wc->w_target_from = 0;
1322 wc->w_target_to = PAGE_SIZE;
1327 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1328 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1329 * by the direct io procedure.
1330 * If this is a new extent that allocated by direct io, we should mark it in
1331 * the ip_unwritten_list.
1333 static int ocfs2_unwritten_check(struct inode *inode,
1334 struct ocfs2_write_ctxt *wc,
1335 struct ocfs2_write_cluster_desc *desc)
1337 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1338 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1339 int ret = 0;
1341 if (!desc->c_needs_zero)
1342 return 0;
1344 retry:
1345 spin_lock(&oi->ip_lock);
1346 /* Needs not to zero no metter buffer or direct. The one who is zero
1347 * the cluster is doing zero. And he will clear unwritten after all
1348 * cluster io finished. */
1349 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1350 if (desc->c_cpos == ue->ue_cpos) {
1351 BUG_ON(desc->c_new);
1352 desc->c_needs_zero = 0;
1353 desc->c_clear_unwritten = 0;
1354 goto unlock;
1358 if (wc->w_type != OCFS2_WRITE_DIRECT)
1359 goto unlock;
1361 if (new == NULL) {
1362 spin_unlock(&oi->ip_lock);
1363 new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1364 GFP_NOFS);
1365 if (new == NULL) {
1366 ret = -ENOMEM;
1367 goto out;
1369 goto retry;
1371 /* This direct write will doing zero. */
1372 new->ue_cpos = desc->c_cpos;
1373 new->ue_phys = desc->c_phys;
1374 desc->c_clear_unwritten = 0;
1375 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1376 list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1377 wc->w_unwritten_count++;
1378 new = NULL;
1379 unlock:
1380 spin_unlock(&oi->ip_lock);
1381 out:
1382 kfree(new);
1383 return ret;
1387 * Populate each single-cluster write descriptor in the write context
1388 * with information about the i/o to be done.
1390 * Returns the number of clusters that will have to be allocated, as
1391 * well as a worst case estimate of the number of extent records that
1392 * would have to be created during a write to an unwritten region.
1394 static int ocfs2_populate_write_desc(struct inode *inode,
1395 struct ocfs2_write_ctxt *wc,
1396 unsigned int *clusters_to_alloc,
1397 unsigned int *extents_to_split)
1399 int ret;
1400 struct ocfs2_write_cluster_desc *desc;
1401 unsigned int num_clusters = 0;
1402 unsigned int ext_flags = 0;
1403 u32 phys = 0;
1404 int i;
1406 *clusters_to_alloc = 0;
1407 *extents_to_split = 0;
1409 for (i = 0; i < wc->w_clen; i++) {
1410 desc = &wc->w_desc[i];
1411 desc->c_cpos = wc->w_cpos + i;
1413 if (num_clusters == 0) {
1415 * Need to look up the next extent record.
1417 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1418 &num_clusters, &ext_flags);
1419 if (ret) {
1420 mlog_errno(ret);
1421 goto out;
1424 /* We should already CoW the refcountd extent. */
1425 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1428 * Assume worst case - that we're writing in
1429 * the middle of the extent.
1431 * We can assume that the write proceeds from
1432 * left to right, in which case the extent
1433 * insert code is smart enough to coalesce the
1434 * next splits into the previous records created.
1436 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1437 *extents_to_split = *extents_to_split + 2;
1438 } else if (phys) {
1440 * Only increment phys if it doesn't describe
1441 * a hole.
1443 phys++;
1447 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1448 * file that got extended. w_first_new_cpos tells us
1449 * where the newly allocated clusters are so we can
1450 * zero them.
1452 if (desc->c_cpos >= wc->w_first_new_cpos) {
1453 BUG_ON(phys == 0);
1454 desc->c_needs_zero = 1;
1457 desc->c_phys = phys;
1458 if (phys == 0) {
1459 desc->c_new = 1;
1460 desc->c_needs_zero = 1;
1461 desc->c_clear_unwritten = 1;
1462 *clusters_to_alloc = *clusters_to_alloc + 1;
1465 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1466 desc->c_clear_unwritten = 1;
1467 desc->c_needs_zero = 1;
1470 ret = ocfs2_unwritten_check(inode, wc, desc);
1471 if (ret) {
1472 mlog_errno(ret);
1473 goto out;
1476 num_clusters--;
1479 ret = 0;
1480 out:
1481 return ret;
1484 static int ocfs2_write_begin_inline(struct address_space *mapping,
1485 struct inode *inode,
1486 struct ocfs2_write_ctxt *wc)
1488 int ret;
1489 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1490 struct page *page;
1491 handle_t *handle;
1492 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1494 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1495 if (IS_ERR(handle)) {
1496 ret = PTR_ERR(handle);
1497 mlog_errno(ret);
1498 goto out;
1501 page = find_or_create_page(mapping, 0, GFP_NOFS);
1502 if (!page) {
1503 ocfs2_commit_trans(osb, handle);
1504 ret = -ENOMEM;
1505 mlog_errno(ret);
1506 goto out;
1509 * If we don't set w_num_pages then this page won't get unlocked
1510 * and freed on cleanup of the write context.
1512 wc->w_pages[0] = wc->w_target_page = page;
1513 wc->w_num_pages = 1;
1515 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1516 OCFS2_JOURNAL_ACCESS_WRITE);
1517 if (ret) {
1518 ocfs2_commit_trans(osb, handle);
1520 mlog_errno(ret);
1521 goto out;
1524 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1525 ocfs2_set_inode_data_inline(inode, di);
1527 if (!PageUptodate(page)) {
1528 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1529 if (ret) {
1530 ocfs2_commit_trans(osb, handle);
1532 goto out;
1536 wc->w_handle = handle;
1537 out:
1538 return ret;
1541 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1543 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1545 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1546 return 1;
1547 return 0;
1550 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1551 struct inode *inode, loff_t pos,
1552 unsigned len, struct page *mmap_page,
1553 struct ocfs2_write_ctxt *wc)
1555 int ret, written = 0;
1556 loff_t end = pos + len;
1557 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1558 struct ocfs2_dinode *di = NULL;
1560 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1561 len, (unsigned long long)pos,
1562 oi->ip_dyn_features);
1565 * Handle inodes which already have inline data 1st.
1567 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1568 if (mmap_page == NULL &&
1569 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1570 goto do_inline_write;
1573 * The write won't fit - we have to give this inode an
1574 * inline extent list now.
1576 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1577 if (ret)
1578 mlog_errno(ret);
1579 goto out;
1583 * Check whether the inode can accept inline data.
1585 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1586 return 0;
1589 * Check whether the write can fit.
1591 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1592 if (mmap_page ||
1593 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1594 return 0;
1596 do_inline_write:
1597 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1598 if (ret) {
1599 mlog_errno(ret);
1600 goto out;
1604 * This signals to the caller that the data can be written
1605 * inline.
1607 written = 1;
1608 out:
1609 return written ? written : ret;
1613 * This function only does anything for file systems which can't
1614 * handle sparse files.
1616 * What we want to do here is fill in any hole between the current end
1617 * of allocation and the end of our write. That way the rest of the
1618 * write path can treat it as an non-allocating write, which has no
1619 * special case code for sparse/nonsparse files.
1621 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1622 struct buffer_head *di_bh,
1623 loff_t pos, unsigned len,
1624 struct ocfs2_write_ctxt *wc)
1626 int ret;
1627 loff_t newsize = pos + len;
1629 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1631 if (newsize <= i_size_read(inode))
1632 return 0;
1634 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1635 if (ret)
1636 mlog_errno(ret);
1638 /* There is no wc if this is call from direct. */
1639 if (wc)
1640 wc->w_first_new_cpos =
1641 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1643 return ret;
1646 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1647 loff_t pos)
1649 int ret = 0;
1651 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1652 if (pos > i_size_read(inode))
1653 ret = ocfs2_zero_extend(inode, di_bh, pos);
1655 return ret;
1658 int ocfs2_write_begin_nolock(struct address_space *mapping,
1659 loff_t pos, unsigned len, ocfs2_write_type_t type,
1660 struct page **pagep, void **fsdata,
1661 struct buffer_head *di_bh, struct page *mmap_page)
1663 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1664 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1665 struct ocfs2_write_ctxt *wc;
1666 struct inode *inode = mapping->host;
1667 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1668 struct ocfs2_dinode *di;
1669 struct ocfs2_alloc_context *data_ac = NULL;
1670 struct ocfs2_alloc_context *meta_ac = NULL;
1671 handle_t *handle;
1672 struct ocfs2_extent_tree et;
1673 int try_free = 1, ret1;
1675 try_again:
1676 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1677 if (ret) {
1678 mlog_errno(ret);
1679 return ret;
1682 if (ocfs2_supports_inline_data(osb)) {
1683 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1684 mmap_page, wc);
1685 if (ret == 1) {
1686 ret = 0;
1687 goto success;
1689 if (ret < 0) {
1690 mlog_errno(ret);
1691 goto out;
1695 /* Direct io change i_size late, should not zero tail here. */
1696 if (type != OCFS2_WRITE_DIRECT) {
1697 if (ocfs2_sparse_alloc(osb))
1698 ret = ocfs2_zero_tail(inode, di_bh, pos);
1699 else
1700 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1701 len, wc);
1702 if (ret) {
1703 mlog_errno(ret);
1704 goto out;
1708 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1709 if (ret < 0) {
1710 mlog_errno(ret);
1711 goto out;
1712 } else if (ret == 1) {
1713 clusters_need = wc->w_clen;
1714 ret = ocfs2_refcount_cow(inode, di_bh,
1715 wc->w_cpos, wc->w_clen, UINT_MAX);
1716 if (ret) {
1717 mlog_errno(ret);
1718 goto out;
1722 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1723 &extents_to_split);
1724 if (ret) {
1725 mlog_errno(ret);
1726 goto out;
1728 clusters_need += clusters_to_alloc;
1730 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1732 trace_ocfs2_write_begin_nolock(
1733 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1734 (long long)i_size_read(inode),
1735 le32_to_cpu(di->i_clusters),
1736 pos, len, type, mmap_page,
1737 clusters_to_alloc, extents_to_split);
1740 * We set w_target_from, w_target_to here so that
1741 * ocfs2_write_end() knows which range in the target page to
1742 * write out. An allocation requires that we write the entire
1743 * cluster range.
1745 if (clusters_to_alloc || extents_to_split) {
1747 * XXX: We are stretching the limits of
1748 * ocfs2_lock_allocators(). It greatly over-estimates
1749 * the work to be done.
1751 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1752 wc->w_di_bh);
1753 ret = ocfs2_lock_allocators(inode, &et,
1754 clusters_to_alloc, extents_to_split,
1755 &data_ac, &meta_ac);
1756 if (ret) {
1757 mlog_errno(ret);
1758 goto out;
1761 if (data_ac)
1762 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1764 credits = ocfs2_calc_extend_credits(inode->i_sb,
1765 &di->id2.i_list);
1766 } else if (type == OCFS2_WRITE_DIRECT)
1767 /* direct write needs not to start trans if no extents alloc. */
1768 goto success;
1771 * We have to zero sparse allocated clusters, unwritten extent clusters,
1772 * and non-sparse clusters we just extended. For non-sparse writes,
1773 * we know zeros will only be needed in the first and/or last cluster.
1775 if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1776 wc->w_desc[wc->w_clen - 1].c_needs_zero))
1777 cluster_of_pages = 1;
1778 else
1779 cluster_of_pages = 0;
1781 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1783 handle = ocfs2_start_trans(osb, credits);
1784 if (IS_ERR(handle)) {
1785 ret = PTR_ERR(handle);
1786 mlog_errno(ret);
1787 goto out;
1790 wc->w_handle = handle;
1792 if (clusters_to_alloc) {
1793 ret = dquot_alloc_space_nodirty(inode,
1794 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1795 if (ret)
1796 goto out_commit;
1799 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1800 OCFS2_JOURNAL_ACCESS_WRITE);
1801 if (ret) {
1802 mlog_errno(ret);
1803 goto out_quota;
1807 * Fill our page array first. That way we've grabbed enough so
1808 * that we can zero and flush if we error after adding the
1809 * extent.
1811 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1812 cluster_of_pages, mmap_page);
1813 if (ret && ret != -EAGAIN) {
1814 mlog_errno(ret);
1815 goto out_quota;
1819 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1820 * the target page. In this case, we exit with no error and no target
1821 * page. This will trigger the caller, page_mkwrite(), to re-try
1822 * the operation.
1824 if (ret == -EAGAIN) {
1825 BUG_ON(wc->w_target_page);
1826 ret = 0;
1827 goto out_quota;
1830 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1831 len);
1832 if (ret) {
1833 mlog_errno(ret);
1834 goto out_quota;
1837 if (data_ac)
1838 ocfs2_free_alloc_context(data_ac);
1839 if (meta_ac)
1840 ocfs2_free_alloc_context(meta_ac);
1842 success:
1843 if (pagep)
1844 *pagep = wc->w_target_page;
1845 *fsdata = wc;
1846 return 0;
1847 out_quota:
1848 if (clusters_to_alloc)
1849 dquot_free_space(inode,
1850 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1851 out_commit:
1852 ocfs2_commit_trans(osb, handle);
1854 out:
1856 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1857 * even in case of error here like ENOSPC and ENOMEM. So, we need
1858 * to unlock the target page manually to prevent deadlocks when
1859 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1860 * to VM code.
1862 if (wc->w_target_locked)
1863 unlock_page(mmap_page);
1865 ocfs2_free_write_ctxt(inode, wc);
1867 if (data_ac) {
1868 ocfs2_free_alloc_context(data_ac);
1869 data_ac = NULL;
1871 if (meta_ac) {
1872 ocfs2_free_alloc_context(meta_ac);
1873 meta_ac = NULL;
1876 if (ret == -ENOSPC && try_free) {
1878 * Try to free some truncate log so that we can have enough
1879 * clusters to allocate.
1881 try_free = 0;
1883 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1884 if (ret1 == 1)
1885 goto try_again;
1887 if (ret1 < 0)
1888 mlog_errno(ret1);
1891 return ret;
1894 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1895 loff_t pos, unsigned len, unsigned flags,
1896 struct page **pagep, void **fsdata)
1898 int ret;
1899 struct buffer_head *di_bh = NULL;
1900 struct inode *inode = mapping->host;
1902 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1903 if (ret) {
1904 mlog_errno(ret);
1905 return ret;
1909 * Take alloc sem here to prevent concurrent lookups. That way
1910 * the mapping, zeroing and tree manipulation within
1911 * ocfs2_write() will be safe against ->readpage(). This
1912 * should also serve to lock out allocation from a shared
1913 * writeable region.
1915 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1917 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1918 pagep, fsdata, di_bh, NULL);
1919 if (ret) {
1920 mlog_errno(ret);
1921 goto out_fail;
1924 brelse(di_bh);
1926 return 0;
1928 out_fail:
1929 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1931 brelse(di_bh);
1932 ocfs2_inode_unlock(inode, 1);
1934 return ret;
1937 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1938 unsigned len, unsigned *copied,
1939 struct ocfs2_dinode *di,
1940 struct ocfs2_write_ctxt *wc)
1942 void *kaddr;
1944 if (unlikely(*copied < len)) {
1945 if (!PageUptodate(wc->w_target_page)) {
1946 *copied = 0;
1947 return;
1951 kaddr = kmap_atomic(wc->w_target_page);
1952 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1953 kunmap_atomic(kaddr);
1955 trace_ocfs2_write_end_inline(
1956 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1957 (unsigned long long)pos, *copied,
1958 le16_to_cpu(di->id2.i_data.id_count),
1959 le16_to_cpu(di->i_dyn_features));
1962 int ocfs2_write_end_nolock(struct address_space *mapping,
1963 loff_t pos, unsigned len, unsigned copied, void *fsdata)
1965 int i, ret;
1966 unsigned from, to, start = pos & (PAGE_SIZE - 1);
1967 struct inode *inode = mapping->host;
1968 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1969 struct ocfs2_write_ctxt *wc = fsdata;
1970 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1971 handle_t *handle = wc->w_handle;
1972 struct page *tmppage;
1974 BUG_ON(!list_empty(&wc->w_unwritten_list));
1976 if (handle) {
1977 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1978 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1979 if (ret) {
1980 copied = ret;
1981 mlog_errno(ret);
1982 goto out;
1986 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1987 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1988 goto out_write_size;
1991 if (unlikely(copied < len) && wc->w_target_page) {
1992 if (!PageUptodate(wc->w_target_page))
1993 copied = 0;
1995 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1996 start+len);
1998 if (wc->w_target_page)
1999 flush_dcache_page(wc->w_target_page);
2001 for(i = 0; i < wc->w_num_pages; i++) {
2002 tmppage = wc->w_pages[i];
2004 /* This is the direct io target page. */
2005 if (tmppage == NULL)
2006 continue;
2008 if (tmppage == wc->w_target_page) {
2009 from = wc->w_target_from;
2010 to = wc->w_target_to;
2012 BUG_ON(from > PAGE_SIZE ||
2013 to > PAGE_SIZE ||
2014 to < from);
2015 } else {
2017 * Pages adjacent to the target (if any) imply
2018 * a hole-filling write in which case we want
2019 * to flush their entire range.
2021 from = 0;
2022 to = PAGE_SIZE;
2025 if (page_has_buffers(tmppage)) {
2026 if (handle && ocfs2_should_order_data(inode)) {
2027 loff_t start_byte =
2028 ((loff_t)tmppage->index << PAGE_SHIFT) +
2029 from;
2030 loff_t length = to - from;
2031 ocfs2_jbd2_inode_add_write(handle, inode,
2032 start_byte, length);
2034 block_commit_write(tmppage, from, to);
2038 out_write_size:
2039 /* Direct io do not update i_size here. */
2040 if (wc->w_type != OCFS2_WRITE_DIRECT) {
2041 pos += copied;
2042 if (pos > i_size_read(inode)) {
2043 i_size_write(inode, pos);
2044 mark_inode_dirty(inode);
2046 inode->i_blocks = ocfs2_inode_sector_count(inode);
2047 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2048 inode->i_mtime = inode->i_ctime = current_time(inode);
2049 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2050 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2051 if (handle)
2052 ocfs2_update_inode_fsync_trans(handle, inode, 1);
2054 if (handle)
2055 ocfs2_journal_dirty(handle, wc->w_di_bh);
2057 out:
2058 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2059 * lock, or it will cause a deadlock since journal commit threads holds
2060 * this lock and will ask for the page lock when flushing the data.
2061 * put it here to preserve the unlock order.
2063 ocfs2_unlock_pages(wc);
2065 if (handle)
2066 ocfs2_commit_trans(osb, handle);
2068 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2070 brelse(wc->w_di_bh);
2071 kfree(wc);
2073 return copied;
2076 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2077 loff_t pos, unsigned len, unsigned copied,
2078 struct page *page, void *fsdata)
2080 int ret;
2081 struct inode *inode = mapping->host;
2083 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2085 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2086 ocfs2_inode_unlock(inode, 1);
2088 return ret;
2091 struct ocfs2_dio_write_ctxt {
2092 struct list_head dw_zero_list;
2093 unsigned dw_zero_count;
2094 int dw_orphaned;
2095 pid_t dw_writer_pid;
2098 static struct ocfs2_dio_write_ctxt *
2099 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2101 struct ocfs2_dio_write_ctxt *dwc = NULL;
2103 if (bh->b_private)
2104 return bh->b_private;
2106 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2107 if (dwc == NULL)
2108 return NULL;
2109 INIT_LIST_HEAD(&dwc->dw_zero_list);
2110 dwc->dw_zero_count = 0;
2111 dwc->dw_orphaned = 0;
2112 dwc->dw_writer_pid = task_pid_nr(current);
2113 bh->b_private = dwc;
2114 *alloc = 1;
2116 return dwc;
2119 static void ocfs2_dio_free_write_ctx(struct inode *inode,
2120 struct ocfs2_dio_write_ctxt *dwc)
2122 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2123 kfree(dwc);
2127 * TODO: Make this into a generic get_blocks function.
2129 * From do_direct_io in direct-io.c:
2130 * "So what we do is to permit the ->get_blocks function to populate
2131 * bh.b_size with the size of IO which is permitted at this offset and
2132 * this i_blkbits."
2134 * This function is called directly from get_more_blocks in direct-io.c.
2136 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2137 * fs_count, map_bh, dio->rw == WRITE);
2139 static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2140 struct buffer_head *bh_result, int create)
2142 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2143 struct ocfs2_inode_info *oi = OCFS2_I(inode);
2144 struct ocfs2_write_ctxt *wc;
2145 struct ocfs2_write_cluster_desc *desc = NULL;
2146 struct ocfs2_dio_write_ctxt *dwc = NULL;
2147 struct buffer_head *di_bh = NULL;
2148 u64 p_blkno;
2149 unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
2150 loff_t pos = iblock << i_blkbits;
2151 sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
2152 unsigned len, total_len = bh_result->b_size;
2153 int ret = 0, first_get_block = 0;
2155 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2156 len = min(total_len, len);
2159 * bh_result->b_size is count in get_more_blocks according to write
2160 * "pos" and "end", we need map twice to return different buffer state:
2161 * 1. area in file size, not set NEW;
2162 * 2. area out file size, set NEW.
2164 * iblock endblk
2165 * |--------|---------|---------|---------
2166 * |<-------area in file------->|
2169 if ((iblock <= endblk) &&
2170 ((iblock + ((len - 1) >> i_blkbits)) > endblk))
2171 len = (endblk - iblock + 1) << i_blkbits;
2173 mlog(0, "get block of %lu at %llu:%u req %u\n",
2174 inode->i_ino, pos, len, total_len);
2177 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2178 * we may need to add it to orphan dir. So can not fall to fast path
2179 * while file size will be changed.
2181 if (pos + total_len <= i_size_read(inode)) {
2183 /* This is the fast path for re-write. */
2184 ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2185 if (buffer_mapped(bh_result) &&
2186 !buffer_new(bh_result) &&
2187 ret == 0)
2188 goto out;
2190 /* Clear state set by ocfs2_get_block. */
2191 bh_result->b_state = 0;
2194 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2195 if (unlikely(dwc == NULL)) {
2196 ret = -ENOMEM;
2197 mlog_errno(ret);
2198 goto out;
2201 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2202 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2203 !dwc->dw_orphaned) {
2205 * when we are going to alloc extents beyond file size, add the
2206 * inode to orphan dir, so we can recall those spaces when
2207 * system crashed during write.
2209 ret = ocfs2_add_inode_to_orphan(osb, inode);
2210 if (ret < 0) {
2211 mlog_errno(ret);
2212 goto out;
2214 dwc->dw_orphaned = 1;
2217 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2218 if (ret) {
2219 mlog_errno(ret);
2220 goto out;
2223 down_write(&oi->ip_alloc_sem);
2225 if (first_get_block) {
2226 if (ocfs2_sparse_alloc(osb))
2227 ret = ocfs2_zero_tail(inode, di_bh, pos);
2228 else
2229 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2230 total_len, NULL);
2231 if (ret < 0) {
2232 mlog_errno(ret);
2233 goto unlock;
2237 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2238 OCFS2_WRITE_DIRECT, NULL,
2239 (void **)&wc, di_bh, NULL);
2240 if (ret) {
2241 mlog_errno(ret);
2242 goto unlock;
2245 desc = &wc->w_desc[0];
2247 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2248 BUG_ON(p_blkno == 0);
2249 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2251 map_bh(bh_result, inode->i_sb, p_blkno);
2252 bh_result->b_size = len;
2253 if (desc->c_needs_zero)
2254 set_buffer_new(bh_result);
2256 if (iblock > endblk)
2257 set_buffer_new(bh_result);
2259 /* May sleep in end_io. It should not happen in a irq context. So defer
2260 * it to dio work queue. */
2261 set_buffer_defer_completion(bh_result);
2263 if (!list_empty(&wc->w_unwritten_list)) {
2264 struct ocfs2_unwritten_extent *ue = NULL;
2266 ue = list_first_entry(&wc->w_unwritten_list,
2267 struct ocfs2_unwritten_extent,
2268 ue_node);
2269 BUG_ON(ue->ue_cpos != desc->c_cpos);
2270 /* The physical address may be 0, fill it. */
2271 ue->ue_phys = desc->c_phys;
2273 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2274 dwc->dw_zero_count += wc->w_unwritten_count;
2277 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2278 BUG_ON(ret != len);
2279 ret = 0;
2280 unlock:
2281 up_write(&oi->ip_alloc_sem);
2282 ocfs2_inode_unlock(inode, 1);
2283 brelse(di_bh);
2284 out:
2285 if (ret < 0)
2286 ret = -EIO;
2287 return ret;
2290 static int ocfs2_dio_end_io_write(struct inode *inode,
2291 struct ocfs2_dio_write_ctxt *dwc,
2292 loff_t offset,
2293 ssize_t bytes)
2295 struct ocfs2_cached_dealloc_ctxt dealloc;
2296 struct ocfs2_extent_tree et;
2297 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2298 struct ocfs2_inode_info *oi = OCFS2_I(inode);
2299 struct ocfs2_unwritten_extent *ue = NULL;
2300 struct buffer_head *di_bh = NULL;
2301 struct ocfs2_dinode *di;
2302 struct ocfs2_alloc_context *data_ac = NULL;
2303 struct ocfs2_alloc_context *meta_ac = NULL;
2304 handle_t *handle = NULL;
2305 loff_t end = offset + bytes;
2306 int ret = 0, credits = 0, locked = 0;
2308 ocfs2_init_dealloc_ctxt(&dealloc);
2310 /* We do clear unwritten, delete orphan, change i_size here. If neither
2311 * of these happen, we can skip all this. */
2312 if (list_empty(&dwc->dw_zero_list) &&
2313 end <= i_size_read(inode) &&
2314 !dwc->dw_orphaned)
2315 goto out;
2317 /* ocfs2_file_write_iter will get i_mutex, so we need not lock if we
2318 * are in that context. */
2319 if (dwc->dw_writer_pid != task_pid_nr(current)) {
2320 inode_lock(inode);
2321 locked = 1;
2324 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2325 if (ret < 0) {
2326 mlog_errno(ret);
2327 goto out;
2330 down_write(&oi->ip_alloc_sem);
2332 /* Delete orphan before acquire i_mutex. */
2333 if (dwc->dw_orphaned) {
2334 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2336 end = end > i_size_read(inode) ? end : 0;
2338 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2339 !!end, end);
2340 if (ret < 0)
2341 mlog_errno(ret);
2344 di = (struct ocfs2_dinode *)di_bh->b_data;
2346 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2348 /* Attach dealloc with extent tree in case that we may reuse extents
2349 * which are already unlinked from current extent tree due to extent
2350 * rotation and merging.
2352 et.et_dealloc = &dealloc;
2354 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2355 &data_ac, &meta_ac);
2356 if (ret) {
2357 mlog_errno(ret);
2358 goto unlock;
2361 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2363 handle = ocfs2_start_trans(osb, credits);
2364 if (IS_ERR(handle)) {
2365 ret = PTR_ERR(handle);
2366 mlog_errno(ret);
2367 goto unlock;
2369 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2370 OCFS2_JOURNAL_ACCESS_WRITE);
2371 if (ret) {
2372 mlog_errno(ret);
2373 goto commit;
2376 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2377 ret = ocfs2_mark_extent_written(inode, &et, handle,
2378 ue->ue_cpos, 1,
2379 ue->ue_phys,
2380 meta_ac, &dealloc);
2381 if (ret < 0) {
2382 mlog_errno(ret);
2383 break;
2387 if (end > i_size_read(inode)) {
2388 ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2389 if (ret < 0)
2390 mlog_errno(ret);
2392 commit:
2393 ocfs2_commit_trans(osb, handle);
2394 unlock:
2395 up_write(&oi->ip_alloc_sem);
2396 ocfs2_inode_unlock(inode, 1);
2397 brelse(di_bh);
2398 out:
2399 if (data_ac)
2400 ocfs2_free_alloc_context(data_ac);
2401 if (meta_ac)
2402 ocfs2_free_alloc_context(meta_ac);
2403 ocfs2_run_deallocs(osb, &dealloc);
2404 if (locked)
2405 inode_unlock(inode);
2406 ocfs2_dio_free_write_ctx(inode, dwc);
2408 return ret;
2412 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
2413 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
2414 * to protect io on one node from truncation on another.
2416 static int ocfs2_dio_end_io(struct kiocb *iocb,
2417 loff_t offset,
2418 ssize_t bytes,
2419 void *private)
2421 struct inode *inode = file_inode(iocb->ki_filp);
2422 int level;
2423 int ret = 0;
2425 /* this io's submitter should not have unlocked this before we could */
2426 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2428 if (bytes <= 0)
2429 mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2430 (long long)bytes);
2431 if (private) {
2432 if (bytes > 0)
2433 ret = ocfs2_dio_end_io_write(inode, private, offset,
2434 bytes);
2435 else
2436 ocfs2_dio_free_write_ctx(inode, private);
2439 ocfs2_iocb_clear_rw_locked(iocb);
2441 level = ocfs2_iocb_rw_locked_level(iocb);
2442 ocfs2_rw_unlock(inode, level);
2443 return ret;
2446 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2448 struct file *file = iocb->ki_filp;
2449 struct inode *inode = file->f_mapping->host;
2450 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2451 get_block_t *get_block;
2454 * Fallback to buffered I/O if we see an inode without
2455 * extents.
2457 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2458 return 0;
2460 /* Fallback to buffered I/O if we do not support append dio. */
2461 if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2462 !ocfs2_supports_append_dio(osb))
2463 return 0;
2465 if (iov_iter_rw(iter) == READ)
2466 get_block = ocfs2_lock_get_block;
2467 else
2468 get_block = ocfs2_dio_wr_get_block;
2470 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2471 iter, get_block,
2472 ocfs2_dio_end_io, NULL, 0);
2475 const struct address_space_operations ocfs2_aops = {
2476 .readpage = ocfs2_readpage,
2477 .readpages = ocfs2_readpages,
2478 .writepage = ocfs2_writepage,
2479 .write_begin = ocfs2_write_begin,
2480 .write_end = ocfs2_write_end,
2481 .bmap = ocfs2_bmap,
2482 .direct_IO = ocfs2_direct_IO,
2483 .invalidatepage = block_invalidatepage,
2484 .releasepage = ocfs2_releasepage,
2485 .migratepage = buffer_migrate_page,
2486 .is_partially_uptodate = block_is_partially_uptodate,
2487 .error_remove_page = generic_error_remove_page,