drm/panfrost: Remove set but not used variable 'bo'
[linux/fpc-iii.git] / kernel / sched / rt.c
blob4043abe45459df664d96351030966fb7104384e2
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4 * policies)
5 */
6 #include "sched.h"
8 #include "pelt.h"
10 int sched_rr_timeslice = RR_TIMESLICE;
11 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
13 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
15 struct rt_bandwidth def_rt_bandwidth;
17 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
19 struct rt_bandwidth *rt_b =
20 container_of(timer, struct rt_bandwidth, rt_period_timer);
21 int idle = 0;
22 int overrun;
24 raw_spin_lock(&rt_b->rt_runtime_lock);
25 for (;;) {
26 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
27 if (!overrun)
28 break;
30 raw_spin_unlock(&rt_b->rt_runtime_lock);
31 idle = do_sched_rt_period_timer(rt_b, overrun);
32 raw_spin_lock(&rt_b->rt_runtime_lock);
34 if (idle)
35 rt_b->rt_period_active = 0;
36 raw_spin_unlock(&rt_b->rt_runtime_lock);
38 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
41 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
43 rt_b->rt_period = ns_to_ktime(period);
44 rt_b->rt_runtime = runtime;
46 raw_spin_lock_init(&rt_b->rt_runtime_lock);
48 hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
49 HRTIMER_MODE_REL_HARD);
50 rt_b->rt_period_timer.function = sched_rt_period_timer;
53 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
55 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
56 return;
58 raw_spin_lock(&rt_b->rt_runtime_lock);
59 if (!rt_b->rt_period_active) {
60 rt_b->rt_period_active = 1;
62 * SCHED_DEADLINE updates the bandwidth, as a run away
63 * RT task with a DL task could hog a CPU. But DL does
64 * not reset the period. If a deadline task was running
65 * without an RT task running, it can cause RT tasks to
66 * throttle when they start up. Kick the timer right away
67 * to update the period.
69 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
70 hrtimer_start_expires(&rt_b->rt_period_timer,
71 HRTIMER_MODE_ABS_PINNED_HARD);
73 raw_spin_unlock(&rt_b->rt_runtime_lock);
76 void init_rt_rq(struct rt_rq *rt_rq)
78 struct rt_prio_array *array;
79 int i;
81 array = &rt_rq->active;
82 for (i = 0; i < MAX_RT_PRIO; i++) {
83 INIT_LIST_HEAD(array->queue + i);
84 __clear_bit(i, array->bitmap);
86 /* delimiter for bitsearch: */
87 __set_bit(MAX_RT_PRIO, array->bitmap);
89 #if defined CONFIG_SMP
90 rt_rq->highest_prio.curr = MAX_RT_PRIO;
91 rt_rq->highest_prio.next = MAX_RT_PRIO;
92 rt_rq->rt_nr_migratory = 0;
93 rt_rq->overloaded = 0;
94 plist_head_init(&rt_rq->pushable_tasks);
95 #endif /* CONFIG_SMP */
96 /* We start is dequeued state, because no RT tasks are queued */
97 rt_rq->rt_queued = 0;
99 rt_rq->rt_time = 0;
100 rt_rq->rt_throttled = 0;
101 rt_rq->rt_runtime = 0;
102 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
105 #ifdef CONFIG_RT_GROUP_SCHED
106 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
108 hrtimer_cancel(&rt_b->rt_period_timer);
111 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
113 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
115 #ifdef CONFIG_SCHED_DEBUG
116 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
117 #endif
118 return container_of(rt_se, struct task_struct, rt);
121 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
123 return rt_rq->rq;
126 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
128 return rt_se->rt_rq;
131 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
133 struct rt_rq *rt_rq = rt_se->rt_rq;
135 return rt_rq->rq;
138 void free_rt_sched_group(struct task_group *tg)
140 int i;
142 if (tg->rt_se)
143 destroy_rt_bandwidth(&tg->rt_bandwidth);
145 for_each_possible_cpu(i) {
146 if (tg->rt_rq)
147 kfree(tg->rt_rq[i]);
148 if (tg->rt_se)
149 kfree(tg->rt_se[i]);
152 kfree(tg->rt_rq);
153 kfree(tg->rt_se);
156 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
157 struct sched_rt_entity *rt_se, int cpu,
158 struct sched_rt_entity *parent)
160 struct rq *rq = cpu_rq(cpu);
162 rt_rq->highest_prio.curr = MAX_RT_PRIO;
163 rt_rq->rt_nr_boosted = 0;
164 rt_rq->rq = rq;
165 rt_rq->tg = tg;
167 tg->rt_rq[cpu] = rt_rq;
168 tg->rt_se[cpu] = rt_se;
170 if (!rt_se)
171 return;
173 if (!parent)
174 rt_se->rt_rq = &rq->rt;
175 else
176 rt_se->rt_rq = parent->my_q;
178 rt_se->my_q = rt_rq;
179 rt_se->parent = parent;
180 INIT_LIST_HEAD(&rt_se->run_list);
183 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
185 struct rt_rq *rt_rq;
186 struct sched_rt_entity *rt_se;
187 int i;
189 tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
190 if (!tg->rt_rq)
191 goto err;
192 tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
193 if (!tg->rt_se)
194 goto err;
196 init_rt_bandwidth(&tg->rt_bandwidth,
197 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
199 for_each_possible_cpu(i) {
200 rt_rq = kzalloc_node(sizeof(struct rt_rq),
201 GFP_KERNEL, cpu_to_node(i));
202 if (!rt_rq)
203 goto err;
205 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
206 GFP_KERNEL, cpu_to_node(i));
207 if (!rt_se)
208 goto err_free_rq;
210 init_rt_rq(rt_rq);
211 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
212 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
215 return 1;
217 err_free_rq:
218 kfree(rt_rq);
219 err:
220 return 0;
223 #else /* CONFIG_RT_GROUP_SCHED */
225 #define rt_entity_is_task(rt_se) (1)
227 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
229 return container_of(rt_se, struct task_struct, rt);
232 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
234 return container_of(rt_rq, struct rq, rt);
237 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
239 struct task_struct *p = rt_task_of(rt_se);
241 return task_rq(p);
244 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
246 struct rq *rq = rq_of_rt_se(rt_se);
248 return &rq->rt;
251 void free_rt_sched_group(struct task_group *tg) { }
253 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
255 return 1;
257 #endif /* CONFIG_RT_GROUP_SCHED */
259 #ifdef CONFIG_SMP
261 static void pull_rt_task(struct rq *this_rq);
263 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
265 /* Try to pull RT tasks here if we lower this rq's prio */
266 return rq->rt.highest_prio.curr > prev->prio;
269 static inline int rt_overloaded(struct rq *rq)
271 return atomic_read(&rq->rd->rto_count);
274 static inline void rt_set_overload(struct rq *rq)
276 if (!rq->online)
277 return;
279 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
281 * Make sure the mask is visible before we set
282 * the overload count. That is checked to determine
283 * if we should look at the mask. It would be a shame
284 * if we looked at the mask, but the mask was not
285 * updated yet.
287 * Matched by the barrier in pull_rt_task().
289 smp_wmb();
290 atomic_inc(&rq->rd->rto_count);
293 static inline void rt_clear_overload(struct rq *rq)
295 if (!rq->online)
296 return;
298 /* the order here really doesn't matter */
299 atomic_dec(&rq->rd->rto_count);
300 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
303 static void update_rt_migration(struct rt_rq *rt_rq)
305 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
306 if (!rt_rq->overloaded) {
307 rt_set_overload(rq_of_rt_rq(rt_rq));
308 rt_rq->overloaded = 1;
310 } else if (rt_rq->overloaded) {
311 rt_clear_overload(rq_of_rt_rq(rt_rq));
312 rt_rq->overloaded = 0;
316 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
318 struct task_struct *p;
320 if (!rt_entity_is_task(rt_se))
321 return;
323 p = rt_task_of(rt_se);
324 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
326 rt_rq->rt_nr_total++;
327 if (p->nr_cpus_allowed > 1)
328 rt_rq->rt_nr_migratory++;
330 update_rt_migration(rt_rq);
333 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
335 struct task_struct *p;
337 if (!rt_entity_is_task(rt_se))
338 return;
340 p = rt_task_of(rt_se);
341 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
343 rt_rq->rt_nr_total--;
344 if (p->nr_cpus_allowed > 1)
345 rt_rq->rt_nr_migratory--;
347 update_rt_migration(rt_rq);
350 static inline int has_pushable_tasks(struct rq *rq)
352 return !plist_head_empty(&rq->rt.pushable_tasks);
355 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
356 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
358 static void push_rt_tasks(struct rq *);
359 static void pull_rt_task(struct rq *);
361 static inline void rt_queue_push_tasks(struct rq *rq)
363 if (!has_pushable_tasks(rq))
364 return;
366 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
369 static inline void rt_queue_pull_task(struct rq *rq)
371 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
374 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
376 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
377 plist_node_init(&p->pushable_tasks, p->prio);
378 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
380 /* Update the highest prio pushable task */
381 if (p->prio < rq->rt.highest_prio.next)
382 rq->rt.highest_prio.next = p->prio;
385 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
387 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
389 /* Update the new highest prio pushable task */
390 if (has_pushable_tasks(rq)) {
391 p = plist_first_entry(&rq->rt.pushable_tasks,
392 struct task_struct, pushable_tasks);
393 rq->rt.highest_prio.next = p->prio;
394 } else
395 rq->rt.highest_prio.next = MAX_RT_PRIO;
398 #else
400 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
404 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
408 static inline
409 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
413 static inline
414 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
418 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
420 return false;
423 static inline void pull_rt_task(struct rq *this_rq)
427 static inline void rt_queue_push_tasks(struct rq *rq)
430 #endif /* CONFIG_SMP */
432 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
433 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
435 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
437 return rt_se->on_rq;
440 #ifdef CONFIG_UCLAMP_TASK
442 * Verify the fitness of task @p to run on @cpu taking into account the uclamp
443 * settings.
445 * This check is only important for heterogeneous systems where uclamp_min value
446 * is higher than the capacity of a @cpu. For non-heterogeneous system this
447 * function will always return true.
449 * The function will return true if the capacity of the @cpu is >= the
450 * uclamp_min and false otherwise.
452 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
453 * > uclamp_max.
455 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
457 unsigned int min_cap;
458 unsigned int max_cap;
459 unsigned int cpu_cap;
461 /* Only heterogeneous systems can benefit from this check */
462 if (!static_branch_unlikely(&sched_asym_cpucapacity))
463 return true;
465 min_cap = uclamp_eff_value(p, UCLAMP_MIN);
466 max_cap = uclamp_eff_value(p, UCLAMP_MAX);
468 cpu_cap = capacity_orig_of(cpu);
470 return cpu_cap >= min(min_cap, max_cap);
472 #else
473 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
475 return true;
477 #endif
479 #ifdef CONFIG_RT_GROUP_SCHED
481 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
483 if (!rt_rq->tg)
484 return RUNTIME_INF;
486 return rt_rq->rt_runtime;
489 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
491 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
494 typedef struct task_group *rt_rq_iter_t;
496 static inline struct task_group *next_task_group(struct task_group *tg)
498 do {
499 tg = list_entry_rcu(tg->list.next,
500 typeof(struct task_group), list);
501 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
503 if (&tg->list == &task_groups)
504 tg = NULL;
506 return tg;
509 #define for_each_rt_rq(rt_rq, iter, rq) \
510 for (iter = container_of(&task_groups, typeof(*iter), list); \
511 (iter = next_task_group(iter)) && \
512 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
514 #define for_each_sched_rt_entity(rt_se) \
515 for (; rt_se; rt_se = rt_se->parent)
517 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
519 return rt_se->my_q;
522 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
523 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
525 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
527 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
528 struct rq *rq = rq_of_rt_rq(rt_rq);
529 struct sched_rt_entity *rt_se;
531 int cpu = cpu_of(rq);
533 rt_se = rt_rq->tg->rt_se[cpu];
535 if (rt_rq->rt_nr_running) {
536 if (!rt_se)
537 enqueue_top_rt_rq(rt_rq);
538 else if (!on_rt_rq(rt_se))
539 enqueue_rt_entity(rt_se, 0);
541 if (rt_rq->highest_prio.curr < curr->prio)
542 resched_curr(rq);
546 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
548 struct sched_rt_entity *rt_se;
549 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
551 rt_se = rt_rq->tg->rt_se[cpu];
553 if (!rt_se) {
554 dequeue_top_rt_rq(rt_rq);
555 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
556 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
558 else if (on_rt_rq(rt_se))
559 dequeue_rt_entity(rt_se, 0);
562 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
564 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
567 static int rt_se_boosted(struct sched_rt_entity *rt_se)
569 struct rt_rq *rt_rq = group_rt_rq(rt_se);
570 struct task_struct *p;
572 if (rt_rq)
573 return !!rt_rq->rt_nr_boosted;
575 p = rt_task_of(rt_se);
576 return p->prio != p->normal_prio;
579 #ifdef CONFIG_SMP
580 static inline const struct cpumask *sched_rt_period_mask(void)
582 return this_rq()->rd->span;
584 #else
585 static inline const struct cpumask *sched_rt_period_mask(void)
587 return cpu_online_mask;
589 #endif
591 static inline
592 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
594 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
597 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
599 return &rt_rq->tg->rt_bandwidth;
602 #else /* !CONFIG_RT_GROUP_SCHED */
604 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
606 return rt_rq->rt_runtime;
609 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
611 return ktime_to_ns(def_rt_bandwidth.rt_period);
614 typedef struct rt_rq *rt_rq_iter_t;
616 #define for_each_rt_rq(rt_rq, iter, rq) \
617 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
619 #define for_each_sched_rt_entity(rt_se) \
620 for (; rt_se; rt_se = NULL)
622 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
624 return NULL;
627 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
629 struct rq *rq = rq_of_rt_rq(rt_rq);
631 if (!rt_rq->rt_nr_running)
632 return;
634 enqueue_top_rt_rq(rt_rq);
635 resched_curr(rq);
638 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
640 dequeue_top_rt_rq(rt_rq);
643 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
645 return rt_rq->rt_throttled;
648 static inline const struct cpumask *sched_rt_period_mask(void)
650 return cpu_online_mask;
653 static inline
654 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
656 return &cpu_rq(cpu)->rt;
659 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
661 return &def_rt_bandwidth;
664 #endif /* CONFIG_RT_GROUP_SCHED */
666 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
668 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
670 return (hrtimer_active(&rt_b->rt_period_timer) ||
671 rt_rq->rt_time < rt_b->rt_runtime);
674 #ifdef CONFIG_SMP
676 * We ran out of runtime, see if we can borrow some from our neighbours.
678 static void do_balance_runtime(struct rt_rq *rt_rq)
680 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
681 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
682 int i, weight;
683 u64 rt_period;
685 weight = cpumask_weight(rd->span);
687 raw_spin_lock(&rt_b->rt_runtime_lock);
688 rt_period = ktime_to_ns(rt_b->rt_period);
689 for_each_cpu(i, rd->span) {
690 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
691 s64 diff;
693 if (iter == rt_rq)
694 continue;
696 raw_spin_lock(&iter->rt_runtime_lock);
698 * Either all rqs have inf runtime and there's nothing to steal
699 * or __disable_runtime() below sets a specific rq to inf to
700 * indicate its been disabled and disalow stealing.
702 if (iter->rt_runtime == RUNTIME_INF)
703 goto next;
706 * From runqueues with spare time, take 1/n part of their
707 * spare time, but no more than our period.
709 diff = iter->rt_runtime - iter->rt_time;
710 if (diff > 0) {
711 diff = div_u64((u64)diff, weight);
712 if (rt_rq->rt_runtime + diff > rt_period)
713 diff = rt_period - rt_rq->rt_runtime;
714 iter->rt_runtime -= diff;
715 rt_rq->rt_runtime += diff;
716 if (rt_rq->rt_runtime == rt_period) {
717 raw_spin_unlock(&iter->rt_runtime_lock);
718 break;
721 next:
722 raw_spin_unlock(&iter->rt_runtime_lock);
724 raw_spin_unlock(&rt_b->rt_runtime_lock);
728 * Ensure this RQ takes back all the runtime it lend to its neighbours.
730 static void __disable_runtime(struct rq *rq)
732 struct root_domain *rd = rq->rd;
733 rt_rq_iter_t iter;
734 struct rt_rq *rt_rq;
736 if (unlikely(!scheduler_running))
737 return;
739 for_each_rt_rq(rt_rq, iter, rq) {
740 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
741 s64 want;
742 int i;
744 raw_spin_lock(&rt_b->rt_runtime_lock);
745 raw_spin_lock(&rt_rq->rt_runtime_lock);
747 * Either we're all inf and nobody needs to borrow, or we're
748 * already disabled and thus have nothing to do, or we have
749 * exactly the right amount of runtime to take out.
751 if (rt_rq->rt_runtime == RUNTIME_INF ||
752 rt_rq->rt_runtime == rt_b->rt_runtime)
753 goto balanced;
754 raw_spin_unlock(&rt_rq->rt_runtime_lock);
757 * Calculate the difference between what we started out with
758 * and what we current have, that's the amount of runtime
759 * we lend and now have to reclaim.
761 want = rt_b->rt_runtime - rt_rq->rt_runtime;
764 * Greedy reclaim, take back as much as we can.
766 for_each_cpu(i, rd->span) {
767 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
768 s64 diff;
771 * Can't reclaim from ourselves or disabled runqueues.
773 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
774 continue;
776 raw_spin_lock(&iter->rt_runtime_lock);
777 if (want > 0) {
778 diff = min_t(s64, iter->rt_runtime, want);
779 iter->rt_runtime -= diff;
780 want -= diff;
781 } else {
782 iter->rt_runtime -= want;
783 want -= want;
785 raw_spin_unlock(&iter->rt_runtime_lock);
787 if (!want)
788 break;
791 raw_spin_lock(&rt_rq->rt_runtime_lock);
793 * We cannot be left wanting - that would mean some runtime
794 * leaked out of the system.
796 BUG_ON(want);
797 balanced:
799 * Disable all the borrow logic by pretending we have inf
800 * runtime - in which case borrowing doesn't make sense.
802 rt_rq->rt_runtime = RUNTIME_INF;
803 rt_rq->rt_throttled = 0;
804 raw_spin_unlock(&rt_rq->rt_runtime_lock);
805 raw_spin_unlock(&rt_b->rt_runtime_lock);
807 /* Make rt_rq available for pick_next_task() */
808 sched_rt_rq_enqueue(rt_rq);
812 static void __enable_runtime(struct rq *rq)
814 rt_rq_iter_t iter;
815 struct rt_rq *rt_rq;
817 if (unlikely(!scheduler_running))
818 return;
821 * Reset each runqueue's bandwidth settings
823 for_each_rt_rq(rt_rq, iter, rq) {
824 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
826 raw_spin_lock(&rt_b->rt_runtime_lock);
827 raw_spin_lock(&rt_rq->rt_runtime_lock);
828 rt_rq->rt_runtime = rt_b->rt_runtime;
829 rt_rq->rt_time = 0;
830 rt_rq->rt_throttled = 0;
831 raw_spin_unlock(&rt_rq->rt_runtime_lock);
832 raw_spin_unlock(&rt_b->rt_runtime_lock);
836 static void balance_runtime(struct rt_rq *rt_rq)
838 if (!sched_feat(RT_RUNTIME_SHARE))
839 return;
841 if (rt_rq->rt_time > rt_rq->rt_runtime) {
842 raw_spin_unlock(&rt_rq->rt_runtime_lock);
843 do_balance_runtime(rt_rq);
844 raw_spin_lock(&rt_rq->rt_runtime_lock);
847 #else /* !CONFIG_SMP */
848 static inline void balance_runtime(struct rt_rq *rt_rq) {}
849 #endif /* CONFIG_SMP */
851 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
853 int i, idle = 1, throttled = 0;
854 const struct cpumask *span;
856 span = sched_rt_period_mask();
857 #ifdef CONFIG_RT_GROUP_SCHED
859 * FIXME: isolated CPUs should really leave the root task group,
860 * whether they are isolcpus or were isolated via cpusets, lest
861 * the timer run on a CPU which does not service all runqueues,
862 * potentially leaving other CPUs indefinitely throttled. If
863 * isolation is really required, the user will turn the throttle
864 * off to kill the perturbations it causes anyway. Meanwhile,
865 * this maintains functionality for boot and/or troubleshooting.
867 if (rt_b == &root_task_group.rt_bandwidth)
868 span = cpu_online_mask;
869 #endif
870 for_each_cpu(i, span) {
871 int enqueue = 0;
872 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
873 struct rq *rq = rq_of_rt_rq(rt_rq);
874 int skip;
877 * When span == cpu_online_mask, taking each rq->lock
878 * can be time-consuming. Try to avoid it when possible.
880 raw_spin_lock(&rt_rq->rt_runtime_lock);
881 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
882 rt_rq->rt_runtime = rt_b->rt_runtime;
883 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
884 raw_spin_unlock(&rt_rq->rt_runtime_lock);
885 if (skip)
886 continue;
888 raw_spin_lock(&rq->lock);
889 update_rq_clock(rq);
891 if (rt_rq->rt_time) {
892 u64 runtime;
894 raw_spin_lock(&rt_rq->rt_runtime_lock);
895 if (rt_rq->rt_throttled)
896 balance_runtime(rt_rq);
897 runtime = rt_rq->rt_runtime;
898 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
899 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
900 rt_rq->rt_throttled = 0;
901 enqueue = 1;
904 * When we're idle and a woken (rt) task is
905 * throttled check_preempt_curr() will set
906 * skip_update and the time between the wakeup
907 * and this unthrottle will get accounted as
908 * 'runtime'.
910 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
911 rq_clock_cancel_skipupdate(rq);
913 if (rt_rq->rt_time || rt_rq->rt_nr_running)
914 idle = 0;
915 raw_spin_unlock(&rt_rq->rt_runtime_lock);
916 } else if (rt_rq->rt_nr_running) {
917 idle = 0;
918 if (!rt_rq_throttled(rt_rq))
919 enqueue = 1;
921 if (rt_rq->rt_throttled)
922 throttled = 1;
924 if (enqueue)
925 sched_rt_rq_enqueue(rt_rq);
926 raw_spin_unlock(&rq->lock);
929 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
930 return 1;
932 return idle;
935 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
937 #ifdef CONFIG_RT_GROUP_SCHED
938 struct rt_rq *rt_rq = group_rt_rq(rt_se);
940 if (rt_rq)
941 return rt_rq->highest_prio.curr;
942 #endif
944 return rt_task_of(rt_se)->prio;
947 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
949 u64 runtime = sched_rt_runtime(rt_rq);
951 if (rt_rq->rt_throttled)
952 return rt_rq_throttled(rt_rq);
954 if (runtime >= sched_rt_period(rt_rq))
955 return 0;
957 balance_runtime(rt_rq);
958 runtime = sched_rt_runtime(rt_rq);
959 if (runtime == RUNTIME_INF)
960 return 0;
962 if (rt_rq->rt_time > runtime) {
963 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
966 * Don't actually throttle groups that have no runtime assigned
967 * but accrue some time due to boosting.
969 if (likely(rt_b->rt_runtime)) {
970 rt_rq->rt_throttled = 1;
971 printk_deferred_once("sched: RT throttling activated\n");
972 } else {
974 * In case we did anyway, make it go away,
975 * replenishment is a joke, since it will replenish us
976 * with exactly 0 ns.
978 rt_rq->rt_time = 0;
981 if (rt_rq_throttled(rt_rq)) {
982 sched_rt_rq_dequeue(rt_rq);
983 return 1;
987 return 0;
991 * Update the current task's runtime statistics. Skip current tasks that
992 * are not in our scheduling class.
994 static void update_curr_rt(struct rq *rq)
996 struct task_struct *curr = rq->curr;
997 struct sched_rt_entity *rt_se = &curr->rt;
998 u64 delta_exec;
999 u64 now;
1001 if (curr->sched_class != &rt_sched_class)
1002 return;
1004 now = rq_clock_task(rq);
1005 delta_exec = now - curr->se.exec_start;
1006 if (unlikely((s64)delta_exec <= 0))
1007 return;
1009 schedstat_set(curr->se.statistics.exec_max,
1010 max(curr->se.statistics.exec_max, delta_exec));
1012 curr->se.sum_exec_runtime += delta_exec;
1013 account_group_exec_runtime(curr, delta_exec);
1015 curr->se.exec_start = now;
1016 cgroup_account_cputime(curr, delta_exec);
1018 if (!rt_bandwidth_enabled())
1019 return;
1021 for_each_sched_rt_entity(rt_se) {
1022 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1024 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1025 raw_spin_lock(&rt_rq->rt_runtime_lock);
1026 rt_rq->rt_time += delta_exec;
1027 if (sched_rt_runtime_exceeded(rt_rq))
1028 resched_curr(rq);
1029 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1034 static void
1035 dequeue_top_rt_rq(struct rt_rq *rt_rq)
1037 struct rq *rq = rq_of_rt_rq(rt_rq);
1039 BUG_ON(&rq->rt != rt_rq);
1041 if (!rt_rq->rt_queued)
1042 return;
1044 BUG_ON(!rq->nr_running);
1046 sub_nr_running(rq, rt_rq->rt_nr_running);
1047 rt_rq->rt_queued = 0;
1051 static void
1052 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1054 struct rq *rq = rq_of_rt_rq(rt_rq);
1056 BUG_ON(&rq->rt != rt_rq);
1058 if (rt_rq->rt_queued)
1059 return;
1061 if (rt_rq_throttled(rt_rq))
1062 return;
1064 if (rt_rq->rt_nr_running) {
1065 add_nr_running(rq, rt_rq->rt_nr_running);
1066 rt_rq->rt_queued = 1;
1069 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1070 cpufreq_update_util(rq, 0);
1073 #if defined CONFIG_SMP
1075 static void
1076 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1078 struct rq *rq = rq_of_rt_rq(rt_rq);
1080 #ifdef CONFIG_RT_GROUP_SCHED
1082 * Change rq's cpupri only if rt_rq is the top queue.
1084 if (&rq->rt != rt_rq)
1085 return;
1086 #endif
1087 if (rq->online && prio < prev_prio)
1088 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1091 static void
1092 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1094 struct rq *rq = rq_of_rt_rq(rt_rq);
1096 #ifdef CONFIG_RT_GROUP_SCHED
1098 * Change rq's cpupri only if rt_rq is the top queue.
1100 if (&rq->rt != rt_rq)
1101 return;
1102 #endif
1103 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1104 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1107 #else /* CONFIG_SMP */
1109 static inline
1110 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1111 static inline
1112 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1114 #endif /* CONFIG_SMP */
1116 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1117 static void
1118 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1120 int prev_prio = rt_rq->highest_prio.curr;
1122 if (prio < prev_prio)
1123 rt_rq->highest_prio.curr = prio;
1125 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1128 static void
1129 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1131 int prev_prio = rt_rq->highest_prio.curr;
1133 if (rt_rq->rt_nr_running) {
1135 WARN_ON(prio < prev_prio);
1138 * This may have been our highest task, and therefore
1139 * we may have some recomputation to do
1141 if (prio == prev_prio) {
1142 struct rt_prio_array *array = &rt_rq->active;
1144 rt_rq->highest_prio.curr =
1145 sched_find_first_bit(array->bitmap);
1148 } else
1149 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1151 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1154 #else
1156 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1157 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1159 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1161 #ifdef CONFIG_RT_GROUP_SCHED
1163 static void
1164 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1166 if (rt_se_boosted(rt_se))
1167 rt_rq->rt_nr_boosted++;
1169 if (rt_rq->tg)
1170 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1173 static void
1174 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1176 if (rt_se_boosted(rt_se))
1177 rt_rq->rt_nr_boosted--;
1179 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1182 #else /* CONFIG_RT_GROUP_SCHED */
1184 static void
1185 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1187 start_rt_bandwidth(&def_rt_bandwidth);
1190 static inline
1191 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1193 #endif /* CONFIG_RT_GROUP_SCHED */
1195 static inline
1196 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1198 struct rt_rq *group_rq = group_rt_rq(rt_se);
1200 if (group_rq)
1201 return group_rq->rt_nr_running;
1202 else
1203 return 1;
1206 static inline
1207 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1209 struct rt_rq *group_rq = group_rt_rq(rt_se);
1210 struct task_struct *tsk;
1212 if (group_rq)
1213 return group_rq->rr_nr_running;
1215 tsk = rt_task_of(rt_se);
1217 return (tsk->policy == SCHED_RR) ? 1 : 0;
1220 static inline
1221 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1223 int prio = rt_se_prio(rt_se);
1225 WARN_ON(!rt_prio(prio));
1226 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1227 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1229 inc_rt_prio(rt_rq, prio);
1230 inc_rt_migration(rt_se, rt_rq);
1231 inc_rt_group(rt_se, rt_rq);
1234 static inline
1235 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1237 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1238 WARN_ON(!rt_rq->rt_nr_running);
1239 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1240 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1242 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1243 dec_rt_migration(rt_se, rt_rq);
1244 dec_rt_group(rt_se, rt_rq);
1248 * Change rt_se->run_list location unless SAVE && !MOVE
1250 * assumes ENQUEUE/DEQUEUE flags match
1252 static inline bool move_entity(unsigned int flags)
1254 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1255 return false;
1257 return true;
1260 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1262 list_del_init(&rt_se->run_list);
1264 if (list_empty(array->queue + rt_se_prio(rt_se)))
1265 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1267 rt_se->on_list = 0;
1270 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1272 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1273 struct rt_prio_array *array = &rt_rq->active;
1274 struct rt_rq *group_rq = group_rt_rq(rt_se);
1275 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1278 * Don't enqueue the group if its throttled, or when empty.
1279 * The latter is a consequence of the former when a child group
1280 * get throttled and the current group doesn't have any other
1281 * active members.
1283 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1284 if (rt_se->on_list)
1285 __delist_rt_entity(rt_se, array);
1286 return;
1289 if (move_entity(flags)) {
1290 WARN_ON_ONCE(rt_se->on_list);
1291 if (flags & ENQUEUE_HEAD)
1292 list_add(&rt_se->run_list, queue);
1293 else
1294 list_add_tail(&rt_se->run_list, queue);
1296 __set_bit(rt_se_prio(rt_se), array->bitmap);
1297 rt_se->on_list = 1;
1299 rt_se->on_rq = 1;
1301 inc_rt_tasks(rt_se, rt_rq);
1304 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1306 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1307 struct rt_prio_array *array = &rt_rq->active;
1309 if (move_entity(flags)) {
1310 WARN_ON_ONCE(!rt_se->on_list);
1311 __delist_rt_entity(rt_se, array);
1313 rt_se->on_rq = 0;
1315 dec_rt_tasks(rt_se, rt_rq);
1319 * Because the prio of an upper entry depends on the lower
1320 * entries, we must remove entries top - down.
1322 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1324 struct sched_rt_entity *back = NULL;
1326 for_each_sched_rt_entity(rt_se) {
1327 rt_se->back = back;
1328 back = rt_se;
1331 dequeue_top_rt_rq(rt_rq_of_se(back));
1333 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1334 if (on_rt_rq(rt_se))
1335 __dequeue_rt_entity(rt_se, flags);
1339 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1341 struct rq *rq = rq_of_rt_se(rt_se);
1343 dequeue_rt_stack(rt_se, flags);
1344 for_each_sched_rt_entity(rt_se)
1345 __enqueue_rt_entity(rt_se, flags);
1346 enqueue_top_rt_rq(&rq->rt);
1349 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1351 struct rq *rq = rq_of_rt_se(rt_se);
1353 dequeue_rt_stack(rt_se, flags);
1355 for_each_sched_rt_entity(rt_se) {
1356 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1358 if (rt_rq && rt_rq->rt_nr_running)
1359 __enqueue_rt_entity(rt_se, flags);
1361 enqueue_top_rt_rq(&rq->rt);
1365 * Adding/removing a task to/from a priority array:
1367 static void
1368 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1370 struct sched_rt_entity *rt_se = &p->rt;
1372 if (flags & ENQUEUE_WAKEUP)
1373 rt_se->timeout = 0;
1375 enqueue_rt_entity(rt_se, flags);
1377 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1378 enqueue_pushable_task(rq, p);
1381 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1383 struct sched_rt_entity *rt_se = &p->rt;
1385 update_curr_rt(rq);
1386 dequeue_rt_entity(rt_se, flags);
1388 dequeue_pushable_task(rq, p);
1392 * Put task to the head or the end of the run list without the overhead of
1393 * dequeue followed by enqueue.
1395 static void
1396 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1398 if (on_rt_rq(rt_se)) {
1399 struct rt_prio_array *array = &rt_rq->active;
1400 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1402 if (head)
1403 list_move(&rt_se->run_list, queue);
1404 else
1405 list_move_tail(&rt_se->run_list, queue);
1409 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1411 struct sched_rt_entity *rt_se = &p->rt;
1412 struct rt_rq *rt_rq;
1414 for_each_sched_rt_entity(rt_se) {
1415 rt_rq = rt_rq_of_se(rt_se);
1416 requeue_rt_entity(rt_rq, rt_se, head);
1420 static void yield_task_rt(struct rq *rq)
1422 requeue_task_rt(rq, rq->curr, 0);
1425 #ifdef CONFIG_SMP
1426 static int find_lowest_rq(struct task_struct *task);
1428 static int
1429 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1431 struct task_struct *curr;
1432 struct rq *rq;
1433 bool test;
1435 /* For anything but wake ups, just return the task_cpu */
1436 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1437 goto out;
1439 rq = cpu_rq(cpu);
1441 rcu_read_lock();
1442 curr = READ_ONCE(rq->curr); /* unlocked access */
1445 * If the current task on @p's runqueue is an RT task, then
1446 * try to see if we can wake this RT task up on another
1447 * runqueue. Otherwise simply start this RT task
1448 * on its current runqueue.
1450 * We want to avoid overloading runqueues. If the woken
1451 * task is a higher priority, then it will stay on this CPU
1452 * and the lower prio task should be moved to another CPU.
1453 * Even though this will probably make the lower prio task
1454 * lose its cache, we do not want to bounce a higher task
1455 * around just because it gave up its CPU, perhaps for a
1456 * lock?
1458 * For equal prio tasks, we just let the scheduler sort it out.
1460 * Otherwise, just let it ride on the affined RQ and the
1461 * post-schedule router will push the preempted task away
1463 * This test is optimistic, if we get it wrong the load-balancer
1464 * will have to sort it out.
1466 * We take into account the capacity of the CPU to ensure it fits the
1467 * requirement of the task - which is only important on heterogeneous
1468 * systems like big.LITTLE.
1470 test = curr &&
1471 unlikely(rt_task(curr)) &&
1472 (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1474 if (test || !rt_task_fits_capacity(p, cpu)) {
1475 int target = find_lowest_rq(p);
1478 * Don't bother moving it if the destination CPU is
1479 * not running a lower priority task.
1481 if (target != -1 &&
1482 p->prio < cpu_rq(target)->rt.highest_prio.curr)
1483 cpu = target;
1485 rcu_read_unlock();
1487 out:
1488 return cpu;
1491 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1494 * Current can't be migrated, useless to reschedule,
1495 * let's hope p can move out.
1497 if (rq->curr->nr_cpus_allowed == 1 ||
1498 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL, NULL))
1499 return;
1502 * p is migratable, so let's not schedule it and
1503 * see if it is pushed or pulled somewhere else.
1505 if (p->nr_cpus_allowed != 1 &&
1506 cpupri_find(&rq->rd->cpupri, p, NULL, NULL))
1507 return;
1510 * There appear to be other CPUs that can accept
1511 * the current task but none can run 'p', so lets reschedule
1512 * to try and push the current task away:
1514 requeue_task_rt(rq, p, 1);
1515 resched_curr(rq);
1518 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1520 if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1522 * This is OK, because current is on_cpu, which avoids it being
1523 * picked for load-balance and preemption/IRQs are still
1524 * disabled avoiding further scheduler activity on it and we've
1525 * not yet started the picking loop.
1527 rq_unpin_lock(rq, rf);
1528 pull_rt_task(rq);
1529 rq_repin_lock(rq, rf);
1532 return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1534 #endif /* CONFIG_SMP */
1537 * Preempt the current task with a newly woken task if needed:
1539 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1541 if (p->prio < rq->curr->prio) {
1542 resched_curr(rq);
1543 return;
1546 #ifdef CONFIG_SMP
1548 * If:
1550 * - the newly woken task is of equal priority to the current task
1551 * - the newly woken task is non-migratable while current is migratable
1552 * - current will be preempted on the next reschedule
1554 * we should check to see if current can readily move to a different
1555 * cpu. If so, we will reschedule to allow the push logic to try
1556 * to move current somewhere else, making room for our non-migratable
1557 * task.
1559 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1560 check_preempt_equal_prio(rq, p);
1561 #endif
1564 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1566 p->se.exec_start = rq_clock_task(rq);
1568 /* The running task is never eligible for pushing */
1569 dequeue_pushable_task(rq, p);
1571 if (!first)
1572 return;
1575 * If prev task was rt, put_prev_task() has already updated the
1576 * utilization. We only care of the case where we start to schedule a
1577 * rt task
1579 if (rq->curr->sched_class != &rt_sched_class)
1580 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1582 rt_queue_push_tasks(rq);
1585 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1586 struct rt_rq *rt_rq)
1588 struct rt_prio_array *array = &rt_rq->active;
1589 struct sched_rt_entity *next = NULL;
1590 struct list_head *queue;
1591 int idx;
1593 idx = sched_find_first_bit(array->bitmap);
1594 BUG_ON(idx >= MAX_RT_PRIO);
1596 queue = array->queue + idx;
1597 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1599 return next;
1602 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1604 struct sched_rt_entity *rt_se;
1605 struct rt_rq *rt_rq = &rq->rt;
1607 do {
1608 rt_se = pick_next_rt_entity(rq, rt_rq);
1609 BUG_ON(!rt_se);
1610 rt_rq = group_rt_rq(rt_se);
1611 } while (rt_rq);
1613 return rt_task_of(rt_se);
1616 static struct task_struct *pick_next_task_rt(struct rq *rq)
1618 struct task_struct *p;
1620 if (!sched_rt_runnable(rq))
1621 return NULL;
1623 p = _pick_next_task_rt(rq);
1624 set_next_task_rt(rq, p, true);
1625 return p;
1628 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1630 update_curr_rt(rq);
1632 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1635 * The previous task needs to be made eligible for pushing
1636 * if it is still active
1638 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1639 enqueue_pushable_task(rq, p);
1642 #ifdef CONFIG_SMP
1644 /* Only try algorithms three times */
1645 #define RT_MAX_TRIES 3
1647 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1649 if (!task_running(rq, p) &&
1650 cpumask_test_cpu(cpu, p->cpus_ptr) &&
1651 rt_task_fits_capacity(p, cpu))
1652 return 1;
1654 return 0;
1658 * Return the highest pushable rq's task, which is suitable to be executed
1659 * on the CPU, NULL otherwise
1661 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1663 struct plist_head *head = &rq->rt.pushable_tasks;
1664 struct task_struct *p;
1666 if (!has_pushable_tasks(rq))
1667 return NULL;
1669 plist_for_each_entry(p, head, pushable_tasks) {
1670 if (pick_rt_task(rq, p, cpu))
1671 return p;
1674 return NULL;
1677 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1679 static int find_lowest_rq(struct task_struct *task)
1681 struct sched_domain *sd;
1682 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1683 int this_cpu = smp_processor_id();
1684 int cpu = task_cpu(task);
1686 /* Make sure the mask is initialized first */
1687 if (unlikely(!lowest_mask))
1688 return -1;
1690 if (task->nr_cpus_allowed == 1)
1691 return -1; /* No other targets possible */
1693 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask,
1694 rt_task_fits_capacity))
1695 return -1; /* No targets found */
1698 * At this point we have built a mask of CPUs representing the
1699 * lowest priority tasks in the system. Now we want to elect
1700 * the best one based on our affinity and topology.
1702 * We prioritize the last CPU that the task executed on since
1703 * it is most likely cache-hot in that location.
1705 if (cpumask_test_cpu(cpu, lowest_mask))
1706 return cpu;
1709 * Otherwise, we consult the sched_domains span maps to figure
1710 * out which CPU is logically closest to our hot cache data.
1712 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1713 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1715 rcu_read_lock();
1716 for_each_domain(cpu, sd) {
1717 if (sd->flags & SD_WAKE_AFFINE) {
1718 int best_cpu;
1721 * "this_cpu" is cheaper to preempt than a
1722 * remote processor.
1724 if (this_cpu != -1 &&
1725 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1726 rcu_read_unlock();
1727 return this_cpu;
1730 best_cpu = cpumask_first_and(lowest_mask,
1731 sched_domain_span(sd));
1732 if (best_cpu < nr_cpu_ids) {
1733 rcu_read_unlock();
1734 return best_cpu;
1738 rcu_read_unlock();
1741 * And finally, if there were no matches within the domains
1742 * just give the caller *something* to work with from the compatible
1743 * locations.
1745 if (this_cpu != -1)
1746 return this_cpu;
1748 cpu = cpumask_any(lowest_mask);
1749 if (cpu < nr_cpu_ids)
1750 return cpu;
1752 return -1;
1755 /* Will lock the rq it finds */
1756 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1758 struct rq *lowest_rq = NULL;
1759 int tries;
1760 int cpu;
1762 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1763 cpu = find_lowest_rq(task);
1765 if ((cpu == -1) || (cpu == rq->cpu))
1766 break;
1768 lowest_rq = cpu_rq(cpu);
1770 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1772 * Target rq has tasks of equal or higher priority,
1773 * retrying does not release any lock and is unlikely
1774 * to yield a different result.
1776 lowest_rq = NULL;
1777 break;
1780 /* if the prio of this runqueue changed, try again */
1781 if (double_lock_balance(rq, lowest_rq)) {
1783 * We had to unlock the run queue. In
1784 * the mean time, task could have
1785 * migrated already or had its affinity changed.
1786 * Also make sure that it wasn't scheduled on its rq.
1788 if (unlikely(task_rq(task) != rq ||
1789 !cpumask_test_cpu(lowest_rq->cpu, task->cpus_ptr) ||
1790 task_running(rq, task) ||
1791 !rt_task(task) ||
1792 !task_on_rq_queued(task))) {
1794 double_unlock_balance(rq, lowest_rq);
1795 lowest_rq = NULL;
1796 break;
1800 /* If this rq is still suitable use it. */
1801 if (lowest_rq->rt.highest_prio.curr > task->prio)
1802 break;
1804 /* try again */
1805 double_unlock_balance(rq, lowest_rq);
1806 lowest_rq = NULL;
1809 return lowest_rq;
1812 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1814 struct task_struct *p;
1816 if (!has_pushable_tasks(rq))
1817 return NULL;
1819 p = plist_first_entry(&rq->rt.pushable_tasks,
1820 struct task_struct, pushable_tasks);
1822 BUG_ON(rq->cpu != task_cpu(p));
1823 BUG_ON(task_current(rq, p));
1824 BUG_ON(p->nr_cpus_allowed <= 1);
1826 BUG_ON(!task_on_rq_queued(p));
1827 BUG_ON(!rt_task(p));
1829 return p;
1833 * If the current CPU has more than one RT task, see if the non
1834 * running task can migrate over to a CPU that is running a task
1835 * of lesser priority.
1837 static int push_rt_task(struct rq *rq)
1839 struct task_struct *next_task;
1840 struct rq *lowest_rq;
1841 int ret = 0;
1843 if (!rq->rt.overloaded)
1844 return 0;
1846 next_task = pick_next_pushable_task(rq);
1847 if (!next_task)
1848 return 0;
1850 retry:
1851 if (WARN_ON(next_task == rq->curr))
1852 return 0;
1855 * It's possible that the next_task slipped in of
1856 * higher priority than current. If that's the case
1857 * just reschedule current.
1859 if (unlikely(next_task->prio < rq->curr->prio)) {
1860 resched_curr(rq);
1861 return 0;
1864 /* We might release rq lock */
1865 get_task_struct(next_task);
1867 /* find_lock_lowest_rq locks the rq if found */
1868 lowest_rq = find_lock_lowest_rq(next_task, rq);
1869 if (!lowest_rq) {
1870 struct task_struct *task;
1872 * find_lock_lowest_rq releases rq->lock
1873 * so it is possible that next_task has migrated.
1875 * We need to make sure that the task is still on the same
1876 * run-queue and is also still the next task eligible for
1877 * pushing.
1879 task = pick_next_pushable_task(rq);
1880 if (task == next_task) {
1882 * The task hasn't migrated, and is still the next
1883 * eligible task, but we failed to find a run-queue
1884 * to push it to. Do not retry in this case, since
1885 * other CPUs will pull from us when ready.
1887 goto out;
1890 if (!task)
1891 /* No more tasks, just exit */
1892 goto out;
1895 * Something has shifted, try again.
1897 put_task_struct(next_task);
1898 next_task = task;
1899 goto retry;
1902 deactivate_task(rq, next_task, 0);
1903 set_task_cpu(next_task, lowest_rq->cpu);
1904 activate_task(lowest_rq, next_task, 0);
1905 ret = 1;
1907 resched_curr(lowest_rq);
1909 double_unlock_balance(rq, lowest_rq);
1911 out:
1912 put_task_struct(next_task);
1914 return ret;
1917 static void push_rt_tasks(struct rq *rq)
1919 /* push_rt_task will return true if it moved an RT */
1920 while (push_rt_task(rq))
1924 #ifdef HAVE_RT_PUSH_IPI
1927 * When a high priority task schedules out from a CPU and a lower priority
1928 * task is scheduled in, a check is made to see if there's any RT tasks
1929 * on other CPUs that are waiting to run because a higher priority RT task
1930 * is currently running on its CPU. In this case, the CPU with multiple RT
1931 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1932 * up that may be able to run one of its non-running queued RT tasks.
1934 * All CPUs with overloaded RT tasks need to be notified as there is currently
1935 * no way to know which of these CPUs have the highest priority task waiting
1936 * to run. Instead of trying to take a spinlock on each of these CPUs,
1937 * which has shown to cause large latency when done on machines with many
1938 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1939 * RT tasks waiting to run.
1941 * Just sending an IPI to each of the CPUs is also an issue, as on large
1942 * count CPU machines, this can cause an IPI storm on a CPU, especially
1943 * if its the only CPU with multiple RT tasks queued, and a large number
1944 * of CPUs scheduling a lower priority task at the same time.
1946 * Each root domain has its own irq work function that can iterate over
1947 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1948 * tassk must be checked if there's one or many CPUs that are lowering
1949 * their priority, there's a single irq work iterator that will try to
1950 * push off RT tasks that are waiting to run.
1952 * When a CPU schedules a lower priority task, it will kick off the
1953 * irq work iterator that will jump to each CPU with overloaded RT tasks.
1954 * As it only takes the first CPU that schedules a lower priority task
1955 * to start the process, the rto_start variable is incremented and if
1956 * the atomic result is one, then that CPU will try to take the rto_lock.
1957 * This prevents high contention on the lock as the process handles all
1958 * CPUs scheduling lower priority tasks.
1960 * All CPUs that are scheduling a lower priority task will increment the
1961 * rt_loop_next variable. This will make sure that the irq work iterator
1962 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1963 * priority task, even if the iterator is in the middle of a scan. Incrementing
1964 * the rt_loop_next will cause the iterator to perform another scan.
1967 static int rto_next_cpu(struct root_domain *rd)
1969 int next;
1970 int cpu;
1973 * When starting the IPI RT pushing, the rto_cpu is set to -1,
1974 * rt_next_cpu() will simply return the first CPU found in
1975 * the rto_mask.
1977 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
1978 * will return the next CPU found in the rto_mask.
1980 * If there are no more CPUs left in the rto_mask, then a check is made
1981 * against rto_loop and rto_loop_next. rto_loop is only updated with
1982 * the rto_lock held, but any CPU may increment the rto_loop_next
1983 * without any locking.
1985 for (;;) {
1987 /* When rto_cpu is -1 this acts like cpumask_first() */
1988 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
1990 rd->rto_cpu = cpu;
1992 if (cpu < nr_cpu_ids)
1993 return cpu;
1995 rd->rto_cpu = -1;
1998 * ACQUIRE ensures we see the @rto_mask changes
1999 * made prior to the @next value observed.
2001 * Matches WMB in rt_set_overload().
2003 next = atomic_read_acquire(&rd->rto_loop_next);
2005 if (rd->rto_loop == next)
2006 break;
2008 rd->rto_loop = next;
2011 return -1;
2014 static inline bool rto_start_trylock(atomic_t *v)
2016 return !atomic_cmpxchg_acquire(v, 0, 1);
2019 static inline void rto_start_unlock(atomic_t *v)
2021 atomic_set_release(v, 0);
2024 static void tell_cpu_to_push(struct rq *rq)
2026 int cpu = -1;
2028 /* Keep the loop going if the IPI is currently active */
2029 atomic_inc(&rq->rd->rto_loop_next);
2031 /* Only one CPU can initiate a loop at a time */
2032 if (!rto_start_trylock(&rq->rd->rto_loop_start))
2033 return;
2035 raw_spin_lock(&rq->rd->rto_lock);
2038 * The rto_cpu is updated under the lock, if it has a valid CPU
2039 * then the IPI is still running and will continue due to the
2040 * update to loop_next, and nothing needs to be done here.
2041 * Otherwise it is finishing up and an ipi needs to be sent.
2043 if (rq->rd->rto_cpu < 0)
2044 cpu = rto_next_cpu(rq->rd);
2046 raw_spin_unlock(&rq->rd->rto_lock);
2048 rto_start_unlock(&rq->rd->rto_loop_start);
2050 if (cpu >= 0) {
2051 /* Make sure the rd does not get freed while pushing */
2052 sched_get_rd(rq->rd);
2053 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2057 /* Called from hardirq context */
2058 void rto_push_irq_work_func(struct irq_work *work)
2060 struct root_domain *rd =
2061 container_of(work, struct root_domain, rto_push_work);
2062 struct rq *rq;
2063 int cpu;
2065 rq = this_rq();
2068 * We do not need to grab the lock to check for has_pushable_tasks.
2069 * When it gets updated, a check is made if a push is possible.
2071 if (has_pushable_tasks(rq)) {
2072 raw_spin_lock(&rq->lock);
2073 push_rt_tasks(rq);
2074 raw_spin_unlock(&rq->lock);
2077 raw_spin_lock(&rd->rto_lock);
2079 /* Pass the IPI to the next rt overloaded queue */
2080 cpu = rto_next_cpu(rd);
2082 raw_spin_unlock(&rd->rto_lock);
2084 if (cpu < 0) {
2085 sched_put_rd(rd);
2086 return;
2089 /* Try the next RT overloaded CPU */
2090 irq_work_queue_on(&rd->rto_push_work, cpu);
2092 #endif /* HAVE_RT_PUSH_IPI */
2094 static void pull_rt_task(struct rq *this_rq)
2096 int this_cpu = this_rq->cpu, cpu;
2097 bool resched = false;
2098 struct task_struct *p;
2099 struct rq *src_rq;
2100 int rt_overload_count = rt_overloaded(this_rq);
2102 if (likely(!rt_overload_count))
2103 return;
2106 * Match the barrier from rt_set_overloaded; this guarantees that if we
2107 * see overloaded we must also see the rto_mask bit.
2109 smp_rmb();
2111 /* If we are the only overloaded CPU do nothing */
2112 if (rt_overload_count == 1 &&
2113 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2114 return;
2116 #ifdef HAVE_RT_PUSH_IPI
2117 if (sched_feat(RT_PUSH_IPI)) {
2118 tell_cpu_to_push(this_rq);
2119 return;
2121 #endif
2123 for_each_cpu(cpu, this_rq->rd->rto_mask) {
2124 if (this_cpu == cpu)
2125 continue;
2127 src_rq = cpu_rq(cpu);
2130 * Don't bother taking the src_rq->lock if the next highest
2131 * task is known to be lower-priority than our current task.
2132 * This may look racy, but if this value is about to go
2133 * logically higher, the src_rq will push this task away.
2134 * And if its going logically lower, we do not care
2136 if (src_rq->rt.highest_prio.next >=
2137 this_rq->rt.highest_prio.curr)
2138 continue;
2141 * We can potentially drop this_rq's lock in
2142 * double_lock_balance, and another CPU could
2143 * alter this_rq
2145 double_lock_balance(this_rq, src_rq);
2148 * We can pull only a task, which is pushable
2149 * on its rq, and no others.
2151 p = pick_highest_pushable_task(src_rq, this_cpu);
2154 * Do we have an RT task that preempts
2155 * the to-be-scheduled task?
2157 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2158 WARN_ON(p == src_rq->curr);
2159 WARN_ON(!task_on_rq_queued(p));
2162 * There's a chance that p is higher in priority
2163 * than what's currently running on its CPU.
2164 * This is just that p is wakeing up and hasn't
2165 * had a chance to schedule. We only pull
2166 * p if it is lower in priority than the
2167 * current task on the run queue
2169 if (p->prio < src_rq->curr->prio)
2170 goto skip;
2172 resched = true;
2174 deactivate_task(src_rq, p, 0);
2175 set_task_cpu(p, this_cpu);
2176 activate_task(this_rq, p, 0);
2178 * We continue with the search, just in
2179 * case there's an even higher prio task
2180 * in another runqueue. (low likelihood
2181 * but possible)
2184 skip:
2185 double_unlock_balance(this_rq, src_rq);
2188 if (resched)
2189 resched_curr(this_rq);
2193 * If we are not running and we are not going to reschedule soon, we should
2194 * try to push tasks away now
2196 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2198 bool need_to_push = !task_running(rq, p) &&
2199 !test_tsk_need_resched(rq->curr) &&
2200 p->nr_cpus_allowed > 1 &&
2201 (dl_task(rq->curr) || rt_task(rq->curr)) &&
2202 (rq->curr->nr_cpus_allowed < 2 ||
2203 rq->curr->prio <= p->prio);
2205 if (need_to_push || !rt_task_fits_capacity(p, cpu_of(rq)))
2206 push_rt_tasks(rq);
2209 /* Assumes rq->lock is held */
2210 static void rq_online_rt(struct rq *rq)
2212 if (rq->rt.overloaded)
2213 rt_set_overload(rq);
2215 __enable_runtime(rq);
2217 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2220 /* Assumes rq->lock is held */
2221 static void rq_offline_rt(struct rq *rq)
2223 if (rq->rt.overloaded)
2224 rt_clear_overload(rq);
2226 __disable_runtime(rq);
2228 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2232 * When switch from the rt queue, we bring ourselves to a position
2233 * that we might want to pull RT tasks from other runqueues.
2235 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2238 * If there are other RT tasks then we will reschedule
2239 * and the scheduling of the other RT tasks will handle
2240 * the balancing. But if we are the last RT task
2241 * we may need to handle the pulling of RT tasks
2242 * now.
2244 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2245 return;
2247 rt_queue_pull_task(rq);
2250 void __init init_sched_rt_class(void)
2252 unsigned int i;
2254 for_each_possible_cpu(i) {
2255 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2256 GFP_KERNEL, cpu_to_node(i));
2259 #endif /* CONFIG_SMP */
2262 * When switching a task to RT, we may overload the runqueue
2263 * with RT tasks. In this case we try to push them off to
2264 * other runqueues.
2266 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2269 * If we are already running, then there's nothing
2270 * that needs to be done. But if we are not running
2271 * we may need to preempt the current running task.
2272 * If that current running task is also an RT task
2273 * then see if we can move to another run queue.
2275 if (task_on_rq_queued(p) && rq->curr != p) {
2276 #ifdef CONFIG_SMP
2277 bool need_to_push = rq->rt.overloaded ||
2278 !rt_task_fits_capacity(p, cpu_of(rq));
2280 if (p->nr_cpus_allowed > 1 && need_to_push)
2281 rt_queue_push_tasks(rq);
2282 #endif /* CONFIG_SMP */
2283 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2284 resched_curr(rq);
2289 * Priority of the task has changed. This may cause
2290 * us to initiate a push or pull.
2292 static void
2293 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2295 if (!task_on_rq_queued(p))
2296 return;
2298 if (rq->curr == p) {
2299 #ifdef CONFIG_SMP
2301 * If our priority decreases while running, we
2302 * may need to pull tasks to this runqueue.
2304 if (oldprio < p->prio)
2305 rt_queue_pull_task(rq);
2308 * If there's a higher priority task waiting to run
2309 * then reschedule.
2311 if (p->prio > rq->rt.highest_prio.curr)
2312 resched_curr(rq);
2313 #else
2314 /* For UP simply resched on drop of prio */
2315 if (oldprio < p->prio)
2316 resched_curr(rq);
2317 #endif /* CONFIG_SMP */
2318 } else {
2320 * This task is not running, but if it is
2321 * greater than the current running task
2322 * then reschedule.
2324 if (p->prio < rq->curr->prio)
2325 resched_curr(rq);
2329 #ifdef CONFIG_POSIX_TIMERS
2330 static void watchdog(struct rq *rq, struct task_struct *p)
2332 unsigned long soft, hard;
2334 /* max may change after cur was read, this will be fixed next tick */
2335 soft = task_rlimit(p, RLIMIT_RTTIME);
2336 hard = task_rlimit_max(p, RLIMIT_RTTIME);
2338 if (soft != RLIM_INFINITY) {
2339 unsigned long next;
2341 if (p->rt.watchdog_stamp != jiffies) {
2342 p->rt.timeout++;
2343 p->rt.watchdog_stamp = jiffies;
2346 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2347 if (p->rt.timeout > next) {
2348 posix_cputimers_rt_watchdog(&p->posix_cputimers,
2349 p->se.sum_exec_runtime);
2353 #else
2354 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2355 #endif
2358 * scheduler tick hitting a task of our scheduling class.
2360 * NOTE: This function can be called remotely by the tick offload that
2361 * goes along full dynticks. Therefore no local assumption can be made
2362 * and everything must be accessed through the @rq and @curr passed in
2363 * parameters.
2365 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2367 struct sched_rt_entity *rt_se = &p->rt;
2369 update_curr_rt(rq);
2370 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2372 watchdog(rq, p);
2375 * RR tasks need a special form of timeslice management.
2376 * FIFO tasks have no timeslices.
2378 if (p->policy != SCHED_RR)
2379 return;
2381 if (--p->rt.time_slice)
2382 return;
2384 p->rt.time_slice = sched_rr_timeslice;
2387 * Requeue to the end of queue if we (and all of our ancestors) are not
2388 * the only element on the queue
2390 for_each_sched_rt_entity(rt_se) {
2391 if (rt_se->run_list.prev != rt_se->run_list.next) {
2392 requeue_task_rt(rq, p, 0);
2393 resched_curr(rq);
2394 return;
2399 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2402 * Time slice is 0 for SCHED_FIFO tasks
2404 if (task->policy == SCHED_RR)
2405 return sched_rr_timeslice;
2406 else
2407 return 0;
2410 const struct sched_class rt_sched_class = {
2411 .next = &fair_sched_class,
2412 .enqueue_task = enqueue_task_rt,
2413 .dequeue_task = dequeue_task_rt,
2414 .yield_task = yield_task_rt,
2416 .check_preempt_curr = check_preempt_curr_rt,
2418 .pick_next_task = pick_next_task_rt,
2419 .put_prev_task = put_prev_task_rt,
2420 .set_next_task = set_next_task_rt,
2422 #ifdef CONFIG_SMP
2423 .balance = balance_rt,
2424 .select_task_rq = select_task_rq_rt,
2425 .set_cpus_allowed = set_cpus_allowed_common,
2426 .rq_online = rq_online_rt,
2427 .rq_offline = rq_offline_rt,
2428 .task_woken = task_woken_rt,
2429 .switched_from = switched_from_rt,
2430 #endif
2432 .task_tick = task_tick_rt,
2434 .get_rr_interval = get_rr_interval_rt,
2436 .prio_changed = prio_changed_rt,
2437 .switched_to = switched_to_rt,
2439 .update_curr = update_curr_rt,
2441 #ifdef CONFIG_UCLAMP_TASK
2442 .uclamp_enabled = 1,
2443 #endif
2446 #ifdef CONFIG_RT_GROUP_SCHED
2448 * Ensure that the real time constraints are schedulable.
2450 static DEFINE_MUTEX(rt_constraints_mutex);
2452 /* Must be called with tasklist_lock held */
2453 static inline int tg_has_rt_tasks(struct task_group *tg)
2455 struct task_struct *g, *p;
2458 * Autogroups do not have RT tasks; see autogroup_create().
2460 if (task_group_is_autogroup(tg))
2461 return 0;
2463 for_each_process_thread(g, p) {
2464 if (rt_task(p) && task_group(p) == tg)
2465 return 1;
2468 return 0;
2471 struct rt_schedulable_data {
2472 struct task_group *tg;
2473 u64 rt_period;
2474 u64 rt_runtime;
2477 static int tg_rt_schedulable(struct task_group *tg, void *data)
2479 struct rt_schedulable_data *d = data;
2480 struct task_group *child;
2481 unsigned long total, sum = 0;
2482 u64 period, runtime;
2484 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2485 runtime = tg->rt_bandwidth.rt_runtime;
2487 if (tg == d->tg) {
2488 period = d->rt_period;
2489 runtime = d->rt_runtime;
2493 * Cannot have more runtime than the period.
2495 if (runtime > period && runtime != RUNTIME_INF)
2496 return -EINVAL;
2499 * Ensure we don't starve existing RT tasks.
2501 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
2502 return -EBUSY;
2504 total = to_ratio(period, runtime);
2507 * Nobody can have more than the global setting allows.
2509 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2510 return -EINVAL;
2513 * The sum of our children's runtime should not exceed our own.
2515 list_for_each_entry_rcu(child, &tg->children, siblings) {
2516 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2517 runtime = child->rt_bandwidth.rt_runtime;
2519 if (child == d->tg) {
2520 period = d->rt_period;
2521 runtime = d->rt_runtime;
2524 sum += to_ratio(period, runtime);
2527 if (sum > total)
2528 return -EINVAL;
2530 return 0;
2533 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2535 int ret;
2537 struct rt_schedulable_data data = {
2538 .tg = tg,
2539 .rt_period = period,
2540 .rt_runtime = runtime,
2543 rcu_read_lock();
2544 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2545 rcu_read_unlock();
2547 return ret;
2550 static int tg_set_rt_bandwidth(struct task_group *tg,
2551 u64 rt_period, u64 rt_runtime)
2553 int i, err = 0;
2556 * Disallowing the root group RT runtime is BAD, it would disallow the
2557 * kernel creating (and or operating) RT threads.
2559 if (tg == &root_task_group && rt_runtime == 0)
2560 return -EINVAL;
2562 /* No period doesn't make any sense. */
2563 if (rt_period == 0)
2564 return -EINVAL;
2566 mutex_lock(&rt_constraints_mutex);
2567 read_lock(&tasklist_lock);
2568 err = __rt_schedulable(tg, rt_period, rt_runtime);
2569 if (err)
2570 goto unlock;
2572 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2573 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2574 tg->rt_bandwidth.rt_runtime = rt_runtime;
2576 for_each_possible_cpu(i) {
2577 struct rt_rq *rt_rq = tg->rt_rq[i];
2579 raw_spin_lock(&rt_rq->rt_runtime_lock);
2580 rt_rq->rt_runtime = rt_runtime;
2581 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2583 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2584 unlock:
2585 read_unlock(&tasklist_lock);
2586 mutex_unlock(&rt_constraints_mutex);
2588 return err;
2591 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2593 u64 rt_runtime, rt_period;
2595 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2596 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2597 if (rt_runtime_us < 0)
2598 rt_runtime = RUNTIME_INF;
2599 else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2600 return -EINVAL;
2602 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2605 long sched_group_rt_runtime(struct task_group *tg)
2607 u64 rt_runtime_us;
2609 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2610 return -1;
2612 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2613 do_div(rt_runtime_us, NSEC_PER_USEC);
2614 return rt_runtime_us;
2617 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2619 u64 rt_runtime, rt_period;
2621 if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2622 return -EINVAL;
2624 rt_period = rt_period_us * NSEC_PER_USEC;
2625 rt_runtime = tg->rt_bandwidth.rt_runtime;
2627 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2630 long sched_group_rt_period(struct task_group *tg)
2632 u64 rt_period_us;
2634 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2635 do_div(rt_period_us, NSEC_PER_USEC);
2636 return rt_period_us;
2639 static int sched_rt_global_constraints(void)
2641 int ret = 0;
2643 mutex_lock(&rt_constraints_mutex);
2644 read_lock(&tasklist_lock);
2645 ret = __rt_schedulable(NULL, 0, 0);
2646 read_unlock(&tasklist_lock);
2647 mutex_unlock(&rt_constraints_mutex);
2649 return ret;
2652 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2654 /* Don't accept realtime tasks when there is no way for them to run */
2655 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2656 return 0;
2658 return 1;
2661 #else /* !CONFIG_RT_GROUP_SCHED */
2662 static int sched_rt_global_constraints(void)
2664 unsigned long flags;
2665 int i;
2667 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2668 for_each_possible_cpu(i) {
2669 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2671 raw_spin_lock(&rt_rq->rt_runtime_lock);
2672 rt_rq->rt_runtime = global_rt_runtime();
2673 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2675 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2677 return 0;
2679 #endif /* CONFIG_RT_GROUP_SCHED */
2681 static int sched_rt_global_validate(void)
2683 if (sysctl_sched_rt_period <= 0)
2684 return -EINVAL;
2686 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2687 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
2688 return -EINVAL;
2690 return 0;
2693 static void sched_rt_do_global(void)
2695 def_rt_bandwidth.rt_runtime = global_rt_runtime();
2696 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2699 int sched_rt_handler(struct ctl_table *table, int write,
2700 void __user *buffer, size_t *lenp,
2701 loff_t *ppos)
2703 int old_period, old_runtime;
2704 static DEFINE_MUTEX(mutex);
2705 int ret;
2707 mutex_lock(&mutex);
2708 old_period = sysctl_sched_rt_period;
2709 old_runtime = sysctl_sched_rt_runtime;
2711 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2713 if (!ret && write) {
2714 ret = sched_rt_global_validate();
2715 if (ret)
2716 goto undo;
2718 ret = sched_dl_global_validate();
2719 if (ret)
2720 goto undo;
2722 ret = sched_rt_global_constraints();
2723 if (ret)
2724 goto undo;
2726 sched_rt_do_global();
2727 sched_dl_do_global();
2729 if (0) {
2730 undo:
2731 sysctl_sched_rt_period = old_period;
2732 sysctl_sched_rt_runtime = old_runtime;
2734 mutex_unlock(&mutex);
2736 return ret;
2739 int sched_rr_handler(struct ctl_table *table, int write,
2740 void __user *buffer, size_t *lenp,
2741 loff_t *ppos)
2743 int ret;
2744 static DEFINE_MUTEX(mutex);
2746 mutex_lock(&mutex);
2747 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2749 * Make sure that internally we keep jiffies.
2750 * Also, writing zero resets the timeslice to default:
2752 if (!ret && write) {
2753 sched_rr_timeslice =
2754 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2755 msecs_to_jiffies(sysctl_sched_rr_timeslice);
2757 mutex_unlock(&mutex);
2759 return ret;
2762 #ifdef CONFIG_SCHED_DEBUG
2763 void print_rt_stats(struct seq_file *m, int cpu)
2765 rt_rq_iter_t iter;
2766 struct rt_rq *rt_rq;
2768 rcu_read_lock();
2769 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2770 print_rt_rq(m, cpu, rt_rq);
2771 rcu_read_unlock();
2773 #endif /* CONFIG_SCHED_DEBUG */