1 // SPDX-License-Identifier: GPL-2.0
3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
10 int sched_rr_timeslice
= RR_TIMESLICE
;
11 int sysctl_sched_rr_timeslice
= (MSEC_PER_SEC
/ HZ
) * RR_TIMESLICE
;
13 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
15 struct rt_bandwidth def_rt_bandwidth
;
17 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
19 struct rt_bandwidth
*rt_b
=
20 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
24 raw_spin_lock(&rt_b
->rt_runtime_lock
);
26 overrun
= hrtimer_forward_now(timer
, rt_b
->rt_period
);
30 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
31 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
32 raw_spin_lock(&rt_b
->rt_runtime_lock
);
35 rt_b
->rt_period_active
= 0;
36 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
38 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
41 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
43 rt_b
->rt_period
= ns_to_ktime(period
);
44 rt_b
->rt_runtime
= runtime
;
46 raw_spin_lock_init(&rt_b
->rt_runtime_lock
);
48 hrtimer_init(&rt_b
->rt_period_timer
, CLOCK_MONOTONIC
,
49 HRTIMER_MODE_REL_HARD
);
50 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
53 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
55 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
58 raw_spin_lock(&rt_b
->rt_runtime_lock
);
59 if (!rt_b
->rt_period_active
) {
60 rt_b
->rt_period_active
= 1;
62 * SCHED_DEADLINE updates the bandwidth, as a run away
63 * RT task with a DL task could hog a CPU. But DL does
64 * not reset the period. If a deadline task was running
65 * without an RT task running, it can cause RT tasks to
66 * throttle when they start up. Kick the timer right away
67 * to update the period.
69 hrtimer_forward_now(&rt_b
->rt_period_timer
, ns_to_ktime(0));
70 hrtimer_start_expires(&rt_b
->rt_period_timer
,
71 HRTIMER_MODE_ABS_PINNED_HARD
);
73 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
76 void init_rt_rq(struct rt_rq
*rt_rq
)
78 struct rt_prio_array
*array
;
81 array
= &rt_rq
->active
;
82 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
83 INIT_LIST_HEAD(array
->queue
+ i
);
84 __clear_bit(i
, array
->bitmap
);
86 /* delimiter for bitsearch: */
87 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
89 #if defined CONFIG_SMP
90 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
91 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
92 rt_rq
->rt_nr_migratory
= 0;
93 rt_rq
->overloaded
= 0;
94 plist_head_init(&rt_rq
->pushable_tasks
);
95 #endif /* CONFIG_SMP */
96 /* We start is dequeued state, because no RT tasks are queued */
100 rt_rq
->rt_throttled
= 0;
101 rt_rq
->rt_runtime
= 0;
102 raw_spin_lock_init(&rt_rq
->rt_runtime_lock
);
105 #ifdef CONFIG_RT_GROUP_SCHED
106 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
108 hrtimer_cancel(&rt_b
->rt_period_timer
);
111 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
113 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
115 #ifdef CONFIG_SCHED_DEBUG
116 WARN_ON_ONCE(!rt_entity_is_task(rt_se
));
118 return container_of(rt_se
, struct task_struct
, rt
);
121 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
126 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
131 static inline struct rq
*rq_of_rt_se(struct sched_rt_entity
*rt_se
)
133 struct rt_rq
*rt_rq
= rt_se
->rt_rq
;
138 void free_rt_sched_group(struct task_group
*tg
)
143 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
145 for_each_possible_cpu(i
) {
156 void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
157 struct sched_rt_entity
*rt_se
, int cpu
,
158 struct sched_rt_entity
*parent
)
160 struct rq
*rq
= cpu_rq(cpu
);
162 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
163 rt_rq
->rt_nr_boosted
= 0;
167 tg
->rt_rq
[cpu
] = rt_rq
;
168 tg
->rt_se
[cpu
] = rt_se
;
174 rt_se
->rt_rq
= &rq
->rt
;
176 rt_se
->rt_rq
= parent
->my_q
;
179 rt_se
->parent
= parent
;
180 INIT_LIST_HEAD(&rt_se
->run_list
);
183 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
186 struct sched_rt_entity
*rt_se
;
189 tg
->rt_rq
= kcalloc(nr_cpu_ids
, sizeof(rt_rq
), GFP_KERNEL
);
192 tg
->rt_se
= kcalloc(nr_cpu_ids
, sizeof(rt_se
), GFP_KERNEL
);
196 init_rt_bandwidth(&tg
->rt_bandwidth
,
197 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
199 for_each_possible_cpu(i
) {
200 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
201 GFP_KERNEL
, cpu_to_node(i
));
205 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
206 GFP_KERNEL
, cpu_to_node(i
));
211 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
212 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, parent
->rt_se
[i
]);
223 #else /* CONFIG_RT_GROUP_SCHED */
225 #define rt_entity_is_task(rt_se) (1)
227 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
229 return container_of(rt_se
, struct task_struct
, rt
);
232 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
234 return container_of(rt_rq
, struct rq
, rt
);
237 static inline struct rq
*rq_of_rt_se(struct sched_rt_entity
*rt_se
)
239 struct task_struct
*p
= rt_task_of(rt_se
);
244 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
246 struct rq
*rq
= rq_of_rt_se(rt_se
);
251 void free_rt_sched_group(struct task_group
*tg
) { }
253 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
257 #endif /* CONFIG_RT_GROUP_SCHED */
261 static void pull_rt_task(struct rq
*this_rq
);
263 static inline bool need_pull_rt_task(struct rq
*rq
, struct task_struct
*prev
)
265 /* Try to pull RT tasks here if we lower this rq's prio */
266 return rq
->rt
.highest_prio
.curr
> prev
->prio
;
269 static inline int rt_overloaded(struct rq
*rq
)
271 return atomic_read(&rq
->rd
->rto_count
);
274 static inline void rt_set_overload(struct rq
*rq
)
279 cpumask_set_cpu(rq
->cpu
, rq
->rd
->rto_mask
);
281 * Make sure the mask is visible before we set
282 * the overload count. That is checked to determine
283 * if we should look at the mask. It would be a shame
284 * if we looked at the mask, but the mask was not
287 * Matched by the barrier in pull_rt_task().
290 atomic_inc(&rq
->rd
->rto_count
);
293 static inline void rt_clear_overload(struct rq
*rq
)
298 /* the order here really doesn't matter */
299 atomic_dec(&rq
->rd
->rto_count
);
300 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->rto_mask
);
303 static void update_rt_migration(struct rt_rq
*rt_rq
)
305 if (rt_rq
->rt_nr_migratory
&& rt_rq
->rt_nr_total
> 1) {
306 if (!rt_rq
->overloaded
) {
307 rt_set_overload(rq_of_rt_rq(rt_rq
));
308 rt_rq
->overloaded
= 1;
310 } else if (rt_rq
->overloaded
) {
311 rt_clear_overload(rq_of_rt_rq(rt_rq
));
312 rt_rq
->overloaded
= 0;
316 static void inc_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
318 struct task_struct
*p
;
320 if (!rt_entity_is_task(rt_se
))
323 p
= rt_task_of(rt_se
);
324 rt_rq
= &rq_of_rt_rq(rt_rq
)->rt
;
326 rt_rq
->rt_nr_total
++;
327 if (p
->nr_cpus_allowed
> 1)
328 rt_rq
->rt_nr_migratory
++;
330 update_rt_migration(rt_rq
);
333 static void dec_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
335 struct task_struct
*p
;
337 if (!rt_entity_is_task(rt_se
))
340 p
= rt_task_of(rt_se
);
341 rt_rq
= &rq_of_rt_rq(rt_rq
)->rt
;
343 rt_rq
->rt_nr_total
--;
344 if (p
->nr_cpus_allowed
> 1)
345 rt_rq
->rt_nr_migratory
--;
347 update_rt_migration(rt_rq
);
350 static inline int has_pushable_tasks(struct rq
*rq
)
352 return !plist_head_empty(&rq
->rt
.pushable_tasks
);
355 static DEFINE_PER_CPU(struct callback_head
, rt_push_head
);
356 static DEFINE_PER_CPU(struct callback_head
, rt_pull_head
);
358 static void push_rt_tasks(struct rq
*);
359 static void pull_rt_task(struct rq
*);
361 static inline void rt_queue_push_tasks(struct rq
*rq
)
363 if (!has_pushable_tasks(rq
))
366 queue_balance_callback(rq
, &per_cpu(rt_push_head
, rq
->cpu
), push_rt_tasks
);
369 static inline void rt_queue_pull_task(struct rq
*rq
)
371 queue_balance_callback(rq
, &per_cpu(rt_pull_head
, rq
->cpu
), pull_rt_task
);
374 static void enqueue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
376 plist_del(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
377 plist_node_init(&p
->pushable_tasks
, p
->prio
);
378 plist_add(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
380 /* Update the highest prio pushable task */
381 if (p
->prio
< rq
->rt
.highest_prio
.next
)
382 rq
->rt
.highest_prio
.next
= p
->prio
;
385 static void dequeue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
387 plist_del(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
389 /* Update the new highest prio pushable task */
390 if (has_pushable_tasks(rq
)) {
391 p
= plist_first_entry(&rq
->rt
.pushable_tasks
,
392 struct task_struct
, pushable_tasks
);
393 rq
->rt
.highest_prio
.next
= p
->prio
;
395 rq
->rt
.highest_prio
.next
= MAX_RT_PRIO
;
400 static inline void enqueue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
404 static inline void dequeue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
409 void inc_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
414 void dec_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
418 static inline bool need_pull_rt_task(struct rq
*rq
, struct task_struct
*prev
)
423 static inline void pull_rt_task(struct rq
*this_rq
)
427 static inline void rt_queue_push_tasks(struct rq
*rq
)
430 #endif /* CONFIG_SMP */
432 static void enqueue_top_rt_rq(struct rt_rq
*rt_rq
);
433 static void dequeue_top_rt_rq(struct rt_rq
*rt_rq
);
435 static inline int on_rt_rq(struct sched_rt_entity
*rt_se
)
440 #ifdef CONFIG_UCLAMP_TASK
442 * Verify the fitness of task @p to run on @cpu taking into account the uclamp
445 * This check is only important for heterogeneous systems where uclamp_min value
446 * is higher than the capacity of a @cpu. For non-heterogeneous system this
447 * function will always return true.
449 * The function will return true if the capacity of the @cpu is >= the
450 * uclamp_min and false otherwise.
452 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
455 static inline bool rt_task_fits_capacity(struct task_struct
*p
, int cpu
)
457 unsigned int min_cap
;
458 unsigned int max_cap
;
459 unsigned int cpu_cap
;
461 /* Only heterogeneous systems can benefit from this check */
462 if (!static_branch_unlikely(&sched_asym_cpucapacity
))
465 min_cap
= uclamp_eff_value(p
, UCLAMP_MIN
);
466 max_cap
= uclamp_eff_value(p
, UCLAMP_MAX
);
468 cpu_cap
= capacity_orig_of(cpu
);
470 return cpu_cap
>= min(min_cap
, max_cap
);
473 static inline bool rt_task_fits_capacity(struct task_struct
*p
, int cpu
)
479 #ifdef CONFIG_RT_GROUP_SCHED
481 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
486 return rt_rq
->rt_runtime
;
489 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
491 return ktime_to_ns(rt_rq
->tg
->rt_bandwidth
.rt_period
);
494 typedef struct task_group
*rt_rq_iter_t
;
496 static inline struct task_group
*next_task_group(struct task_group
*tg
)
499 tg
= list_entry_rcu(tg
->list
.next
,
500 typeof(struct task_group
), list
);
501 } while (&tg
->list
!= &task_groups
&& task_group_is_autogroup(tg
));
503 if (&tg
->list
== &task_groups
)
509 #define for_each_rt_rq(rt_rq, iter, rq) \
510 for (iter = container_of(&task_groups, typeof(*iter), list); \
511 (iter = next_task_group(iter)) && \
512 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
514 #define for_each_sched_rt_entity(rt_se) \
515 for (; rt_se; rt_se = rt_se->parent)
517 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
522 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
, unsigned int flags
);
523 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
, unsigned int flags
);
525 static void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
527 struct task_struct
*curr
= rq_of_rt_rq(rt_rq
)->curr
;
528 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
529 struct sched_rt_entity
*rt_se
;
531 int cpu
= cpu_of(rq
);
533 rt_se
= rt_rq
->tg
->rt_se
[cpu
];
535 if (rt_rq
->rt_nr_running
) {
537 enqueue_top_rt_rq(rt_rq
);
538 else if (!on_rt_rq(rt_se
))
539 enqueue_rt_entity(rt_se
, 0);
541 if (rt_rq
->highest_prio
.curr
< curr
->prio
)
546 static void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
548 struct sched_rt_entity
*rt_se
;
549 int cpu
= cpu_of(rq_of_rt_rq(rt_rq
));
551 rt_se
= rt_rq
->tg
->rt_se
[cpu
];
554 dequeue_top_rt_rq(rt_rq
);
555 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
556 cpufreq_update_util(rq_of_rt_rq(rt_rq
), 0);
558 else if (on_rt_rq(rt_se
))
559 dequeue_rt_entity(rt_se
, 0);
562 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
564 return rt_rq
->rt_throttled
&& !rt_rq
->rt_nr_boosted
;
567 static int rt_se_boosted(struct sched_rt_entity
*rt_se
)
569 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
570 struct task_struct
*p
;
573 return !!rt_rq
->rt_nr_boosted
;
575 p
= rt_task_of(rt_se
);
576 return p
->prio
!= p
->normal_prio
;
580 static inline const struct cpumask
*sched_rt_period_mask(void)
582 return this_rq()->rd
->span
;
585 static inline const struct cpumask
*sched_rt_period_mask(void)
587 return cpu_online_mask
;
592 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
594 return container_of(rt_b
, struct task_group
, rt_bandwidth
)->rt_rq
[cpu
];
597 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
599 return &rt_rq
->tg
->rt_bandwidth
;
602 #else /* !CONFIG_RT_GROUP_SCHED */
604 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
606 return rt_rq
->rt_runtime
;
609 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
611 return ktime_to_ns(def_rt_bandwidth
.rt_period
);
614 typedef struct rt_rq
*rt_rq_iter_t
;
616 #define for_each_rt_rq(rt_rq, iter, rq) \
617 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
619 #define for_each_sched_rt_entity(rt_se) \
620 for (; rt_se; rt_se = NULL)
622 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
627 static inline void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
629 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
631 if (!rt_rq
->rt_nr_running
)
634 enqueue_top_rt_rq(rt_rq
);
638 static inline void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
640 dequeue_top_rt_rq(rt_rq
);
643 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
645 return rt_rq
->rt_throttled
;
648 static inline const struct cpumask
*sched_rt_period_mask(void)
650 return cpu_online_mask
;
654 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
656 return &cpu_rq(cpu
)->rt
;
659 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
661 return &def_rt_bandwidth
;
664 #endif /* CONFIG_RT_GROUP_SCHED */
666 bool sched_rt_bandwidth_account(struct rt_rq
*rt_rq
)
668 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
670 return (hrtimer_active(&rt_b
->rt_period_timer
) ||
671 rt_rq
->rt_time
< rt_b
->rt_runtime
);
676 * We ran out of runtime, see if we can borrow some from our neighbours.
678 static void do_balance_runtime(struct rt_rq
*rt_rq
)
680 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
681 struct root_domain
*rd
= rq_of_rt_rq(rt_rq
)->rd
;
685 weight
= cpumask_weight(rd
->span
);
687 raw_spin_lock(&rt_b
->rt_runtime_lock
);
688 rt_period
= ktime_to_ns(rt_b
->rt_period
);
689 for_each_cpu(i
, rd
->span
) {
690 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
696 raw_spin_lock(&iter
->rt_runtime_lock
);
698 * Either all rqs have inf runtime and there's nothing to steal
699 * or __disable_runtime() below sets a specific rq to inf to
700 * indicate its been disabled and disalow stealing.
702 if (iter
->rt_runtime
== RUNTIME_INF
)
706 * From runqueues with spare time, take 1/n part of their
707 * spare time, but no more than our period.
709 diff
= iter
->rt_runtime
- iter
->rt_time
;
711 diff
= div_u64((u64
)diff
, weight
);
712 if (rt_rq
->rt_runtime
+ diff
> rt_period
)
713 diff
= rt_period
- rt_rq
->rt_runtime
;
714 iter
->rt_runtime
-= diff
;
715 rt_rq
->rt_runtime
+= diff
;
716 if (rt_rq
->rt_runtime
== rt_period
) {
717 raw_spin_unlock(&iter
->rt_runtime_lock
);
722 raw_spin_unlock(&iter
->rt_runtime_lock
);
724 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
728 * Ensure this RQ takes back all the runtime it lend to its neighbours.
730 static void __disable_runtime(struct rq
*rq
)
732 struct root_domain
*rd
= rq
->rd
;
736 if (unlikely(!scheduler_running
))
739 for_each_rt_rq(rt_rq
, iter
, rq
) {
740 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
744 raw_spin_lock(&rt_b
->rt_runtime_lock
);
745 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
747 * Either we're all inf and nobody needs to borrow, or we're
748 * already disabled and thus have nothing to do, or we have
749 * exactly the right amount of runtime to take out.
751 if (rt_rq
->rt_runtime
== RUNTIME_INF
||
752 rt_rq
->rt_runtime
== rt_b
->rt_runtime
)
754 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
757 * Calculate the difference between what we started out with
758 * and what we current have, that's the amount of runtime
759 * we lend and now have to reclaim.
761 want
= rt_b
->rt_runtime
- rt_rq
->rt_runtime
;
764 * Greedy reclaim, take back as much as we can.
766 for_each_cpu(i
, rd
->span
) {
767 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
771 * Can't reclaim from ourselves or disabled runqueues.
773 if (iter
== rt_rq
|| iter
->rt_runtime
== RUNTIME_INF
)
776 raw_spin_lock(&iter
->rt_runtime_lock
);
778 diff
= min_t(s64
, iter
->rt_runtime
, want
);
779 iter
->rt_runtime
-= diff
;
782 iter
->rt_runtime
-= want
;
785 raw_spin_unlock(&iter
->rt_runtime_lock
);
791 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
793 * We cannot be left wanting - that would mean some runtime
794 * leaked out of the system.
799 * Disable all the borrow logic by pretending we have inf
800 * runtime - in which case borrowing doesn't make sense.
802 rt_rq
->rt_runtime
= RUNTIME_INF
;
803 rt_rq
->rt_throttled
= 0;
804 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
805 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
807 /* Make rt_rq available for pick_next_task() */
808 sched_rt_rq_enqueue(rt_rq
);
812 static void __enable_runtime(struct rq
*rq
)
817 if (unlikely(!scheduler_running
))
821 * Reset each runqueue's bandwidth settings
823 for_each_rt_rq(rt_rq
, iter
, rq
) {
824 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
826 raw_spin_lock(&rt_b
->rt_runtime_lock
);
827 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
828 rt_rq
->rt_runtime
= rt_b
->rt_runtime
;
830 rt_rq
->rt_throttled
= 0;
831 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
832 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
836 static void balance_runtime(struct rt_rq
*rt_rq
)
838 if (!sched_feat(RT_RUNTIME_SHARE
))
841 if (rt_rq
->rt_time
> rt_rq
->rt_runtime
) {
842 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
843 do_balance_runtime(rt_rq
);
844 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
847 #else /* !CONFIG_SMP */
848 static inline void balance_runtime(struct rt_rq
*rt_rq
) {}
849 #endif /* CONFIG_SMP */
851 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
)
853 int i
, idle
= 1, throttled
= 0;
854 const struct cpumask
*span
;
856 span
= sched_rt_period_mask();
857 #ifdef CONFIG_RT_GROUP_SCHED
859 * FIXME: isolated CPUs should really leave the root task group,
860 * whether they are isolcpus or were isolated via cpusets, lest
861 * the timer run on a CPU which does not service all runqueues,
862 * potentially leaving other CPUs indefinitely throttled. If
863 * isolation is really required, the user will turn the throttle
864 * off to kill the perturbations it causes anyway. Meanwhile,
865 * this maintains functionality for boot and/or troubleshooting.
867 if (rt_b
== &root_task_group
.rt_bandwidth
)
868 span
= cpu_online_mask
;
870 for_each_cpu(i
, span
) {
872 struct rt_rq
*rt_rq
= sched_rt_period_rt_rq(rt_b
, i
);
873 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
877 * When span == cpu_online_mask, taking each rq->lock
878 * can be time-consuming. Try to avoid it when possible.
880 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
881 if (!sched_feat(RT_RUNTIME_SHARE
) && rt_rq
->rt_runtime
!= RUNTIME_INF
)
882 rt_rq
->rt_runtime
= rt_b
->rt_runtime
;
883 skip
= !rt_rq
->rt_time
&& !rt_rq
->rt_nr_running
;
884 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
888 raw_spin_lock(&rq
->lock
);
891 if (rt_rq
->rt_time
) {
894 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
895 if (rt_rq
->rt_throttled
)
896 balance_runtime(rt_rq
);
897 runtime
= rt_rq
->rt_runtime
;
898 rt_rq
->rt_time
-= min(rt_rq
->rt_time
, overrun
*runtime
);
899 if (rt_rq
->rt_throttled
&& rt_rq
->rt_time
< runtime
) {
900 rt_rq
->rt_throttled
= 0;
904 * When we're idle and a woken (rt) task is
905 * throttled check_preempt_curr() will set
906 * skip_update and the time between the wakeup
907 * and this unthrottle will get accounted as
910 if (rt_rq
->rt_nr_running
&& rq
->curr
== rq
->idle
)
911 rq_clock_cancel_skipupdate(rq
);
913 if (rt_rq
->rt_time
|| rt_rq
->rt_nr_running
)
915 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
916 } else if (rt_rq
->rt_nr_running
) {
918 if (!rt_rq_throttled(rt_rq
))
921 if (rt_rq
->rt_throttled
)
925 sched_rt_rq_enqueue(rt_rq
);
926 raw_spin_unlock(&rq
->lock
);
929 if (!throttled
&& (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
))
935 static inline int rt_se_prio(struct sched_rt_entity
*rt_se
)
937 #ifdef CONFIG_RT_GROUP_SCHED
938 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
941 return rt_rq
->highest_prio
.curr
;
944 return rt_task_of(rt_se
)->prio
;
947 static int sched_rt_runtime_exceeded(struct rt_rq
*rt_rq
)
949 u64 runtime
= sched_rt_runtime(rt_rq
);
951 if (rt_rq
->rt_throttled
)
952 return rt_rq_throttled(rt_rq
);
954 if (runtime
>= sched_rt_period(rt_rq
))
957 balance_runtime(rt_rq
);
958 runtime
= sched_rt_runtime(rt_rq
);
959 if (runtime
== RUNTIME_INF
)
962 if (rt_rq
->rt_time
> runtime
) {
963 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
966 * Don't actually throttle groups that have no runtime assigned
967 * but accrue some time due to boosting.
969 if (likely(rt_b
->rt_runtime
)) {
970 rt_rq
->rt_throttled
= 1;
971 printk_deferred_once("sched: RT throttling activated\n");
974 * In case we did anyway, make it go away,
975 * replenishment is a joke, since it will replenish us
981 if (rt_rq_throttled(rt_rq
)) {
982 sched_rt_rq_dequeue(rt_rq
);
991 * Update the current task's runtime statistics. Skip current tasks that
992 * are not in our scheduling class.
994 static void update_curr_rt(struct rq
*rq
)
996 struct task_struct
*curr
= rq
->curr
;
997 struct sched_rt_entity
*rt_se
= &curr
->rt
;
1001 if (curr
->sched_class
!= &rt_sched_class
)
1004 now
= rq_clock_task(rq
);
1005 delta_exec
= now
- curr
->se
.exec_start
;
1006 if (unlikely((s64
)delta_exec
<= 0))
1009 schedstat_set(curr
->se
.statistics
.exec_max
,
1010 max(curr
->se
.statistics
.exec_max
, delta_exec
));
1012 curr
->se
.sum_exec_runtime
+= delta_exec
;
1013 account_group_exec_runtime(curr
, delta_exec
);
1015 curr
->se
.exec_start
= now
;
1016 cgroup_account_cputime(curr
, delta_exec
);
1018 if (!rt_bandwidth_enabled())
1021 for_each_sched_rt_entity(rt_se
) {
1022 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
1024 if (sched_rt_runtime(rt_rq
) != RUNTIME_INF
) {
1025 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
1026 rt_rq
->rt_time
+= delta_exec
;
1027 if (sched_rt_runtime_exceeded(rt_rq
))
1029 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
1035 dequeue_top_rt_rq(struct rt_rq
*rt_rq
)
1037 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
1039 BUG_ON(&rq
->rt
!= rt_rq
);
1041 if (!rt_rq
->rt_queued
)
1044 BUG_ON(!rq
->nr_running
);
1046 sub_nr_running(rq
, rt_rq
->rt_nr_running
);
1047 rt_rq
->rt_queued
= 0;
1052 enqueue_top_rt_rq(struct rt_rq
*rt_rq
)
1054 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
1056 BUG_ON(&rq
->rt
!= rt_rq
);
1058 if (rt_rq
->rt_queued
)
1061 if (rt_rq_throttled(rt_rq
))
1064 if (rt_rq
->rt_nr_running
) {
1065 add_nr_running(rq
, rt_rq
->rt_nr_running
);
1066 rt_rq
->rt_queued
= 1;
1069 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1070 cpufreq_update_util(rq
, 0);
1073 #if defined CONFIG_SMP
1076 inc_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
)
1078 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
1080 #ifdef CONFIG_RT_GROUP_SCHED
1082 * Change rq's cpupri only if rt_rq is the top queue.
1084 if (&rq
->rt
!= rt_rq
)
1087 if (rq
->online
&& prio
< prev_prio
)
1088 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, prio
);
1092 dec_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
)
1094 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
1096 #ifdef CONFIG_RT_GROUP_SCHED
1098 * Change rq's cpupri only if rt_rq is the top queue.
1100 if (&rq
->rt
!= rt_rq
)
1103 if (rq
->online
&& rt_rq
->highest_prio
.curr
!= prev_prio
)
1104 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rt_rq
->highest_prio
.curr
);
1107 #else /* CONFIG_SMP */
1110 void inc_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
) {}
1112 void dec_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
) {}
1114 #endif /* CONFIG_SMP */
1116 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1118 inc_rt_prio(struct rt_rq
*rt_rq
, int prio
)
1120 int prev_prio
= rt_rq
->highest_prio
.curr
;
1122 if (prio
< prev_prio
)
1123 rt_rq
->highest_prio
.curr
= prio
;
1125 inc_rt_prio_smp(rt_rq
, prio
, prev_prio
);
1129 dec_rt_prio(struct rt_rq
*rt_rq
, int prio
)
1131 int prev_prio
= rt_rq
->highest_prio
.curr
;
1133 if (rt_rq
->rt_nr_running
) {
1135 WARN_ON(prio
< prev_prio
);
1138 * This may have been our highest task, and therefore
1139 * we may have some recomputation to do
1141 if (prio
== prev_prio
) {
1142 struct rt_prio_array
*array
= &rt_rq
->active
;
1144 rt_rq
->highest_prio
.curr
=
1145 sched_find_first_bit(array
->bitmap
);
1149 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
1151 dec_rt_prio_smp(rt_rq
, prio
, prev_prio
);
1156 static inline void inc_rt_prio(struct rt_rq
*rt_rq
, int prio
) {}
1157 static inline void dec_rt_prio(struct rt_rq
*rt_rq
, int prio
) {}
1159 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1161 #ifdef CONFIG_RT_GROUP_SCHED
1164 inc_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1166 if (rt_se_boosted(rt_se
))
1167 rt_rq
->rt_nr_boosted
++;
1170 start_rt_bandwidth(&rt_rq
->tg
->rt_bandwidth
);
1174 dec_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1176 if (rt_se_boosted(rt_se
))
1177 rt_rq
->rt_nr_boosted
--;
1179 WARN_ON(!rt_rq
->rt_nr_running
&& rt_rq
->rt_nr_boosted
);
1182 #else /* CONFIG_RT_GROUP_SCHED */
1185 inc_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1187 start_rt_bandwidth(&def_rt_bandwidth
);
1191 void dec_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
) {}
1193 #endif /* CONFIG_RT_GROUP_SCHED */
1196 unsigned int rt_se_nr_running(struct sched_rt_entity
*rt_se
)
1198 struct rt_rq
*group_rq
= group_rt_rq(rt_se
);
1201 return group_rq
->rt_nr_running
;
1207 unsigned int rt_se_rr_nr_running(struct sched_rt_entity
*rt_se
)
1209 struct rt_rq
*group_rq
= group_rt_rq(rt_se
);
1210 struct task_struct
*tsk
;
1213 return group_rq
->rr_nr_running
;
1215 tsk
= rt_task_of(rt_se
);
1217 return (tsk
->policy
== SCHED_RR
) ? 1 : 0;
1221 void inc_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1223 int prio
= rt_se_prio(rt_se
);
1225 WARN_ON(!rt_prio(prio
));
1226 rt_rq
->rt_nr_running
+= rt_se_nr_running(rt_se
);
1227 rt_rq
->rr_nr_running
+= rt_se_rr_nr_running(rt_se
);
1229 inc_rt_prio(rt_rq
, prio
);
1230 inc_rt_migration(rt_se
, rt_rq
);
1231 inc_rt_group(rt_se
, rt_rq
);
1235 void dec_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1237 WARN_ON(!rt_prio(rt_se_prio(rt_se
)));
1238 WARN_ON(!rt_rq
->rt_nr_running
);
1239 rt_rq
->rt_nr_running
-= rt_se_nr_running(rt_se
);
1240 rt_rq
->rr_nr_running
-= rt_se_rr_nr_running(rt_se
);
1242 dec_rt_prio(rt_rq
, rt_se_prio(rt_se
));
1243 dec_rt_migration(rt_se
, rt_rq
);
1244 dec_rt_group(rt_se
, rt_rq
);
1248 * Change rt_se->run_list location unless SAVE && !MOVE
1250 * assumes ENQUEUE/DEQUEUE flags match
1252 static inline bool move_entity(unsigned int flags
)
1254 if ((flags
& (DEQUEUE_SAVE
| DEQUEUE_MOVE
)) == DEQUEUE_SAVE
)
1260 static void __delist_rt_entity(struct sched_rt_entity
*rt_se
, struct rt_prio_array
*array
)
1262 list_del_init(&rt_se
->run_list
);
1264 if (list_empty(array
->queue
+ rt_se_prio(rt_se
)))
1265 __clear_bit(rt_se_prio(rt_se
), array
->bitmap
);
1270 static void __enqueue_rt_entity(struct sched_rt_entity
*rt_se
, unsigned int flags
)
1272 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
1273 struct rt_prio_array
*array
= &rt_rq
->active
;
1274 struct rt_rq
*group_rq
= group_rt_rq(rt_se
);
1275 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
1278 * Don't enqueue the group if its throttled, or when empty.
1279 * The latter is a consequence of the former when a child group
1280 * get throttled and the current group doesn't have any other
1283 if (group_rq
&& (rt_rq_throttled(group_rq
) || !group_rq
->rt_nr_running
)) {
1285 __delist_rt_entity(rt_se
, array
);
1289 if (move_entity(flags
)) {
1290 WARN_ON_ONCE(rt_se
->on_list
);
1291 if (flags
& ENQUEUE_HEAD
)
1292 list_add(&rt_se
->run_list
, queue
);
1294 list_add_tail(&rt_se
->run_list
, queue
);
1296 __set_bit(rt_se_prio(rt_se
), array
->bitmap
);
1301 inc_rt_tasks(rt_se
, rt_rq
);
1304 static void __dequeue_rt_entity(struct sched_rt_entity
*rt_se
, unsigned int flags
)
1306 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
1307 struct rt_prio_array
*array
= &rt_rq
->active
;
1309 if (move_entity(flags
)) {
1310 WARN_ON_ONCE(!rt_se
->on_list
);
1311 __delist_rt_entity(rt_se
, array
);
1315 dec_rt_tasks(rt_se
, rt_rq
);
1319 * Because the prio of an upper entry depends on the lower
1320 * entries, we must remove entries top - down.
1322 static void dequeue_rt_stack(struct sched_rt_entity
*rt_se
, unsigned int flags
)
1324 struct sched_rt_entity
*back
= NULL
;
1326 for_each_sched_rt_entity(rt_se
) {
1331 dequeue_top_rt_rq(rt_rq_of_se(back
));
1333 for (rt_se
= back
; rt_se
; rt_se
= rt_se
->back
) {
1334 if (on_rt_rq(rt_se
))
1335 __dequeue_rt_entity(rt_se
, flags
);
1339 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
, unsigned int flags
)
1341 struct rq
*rq
= rq_of_rt_se(rt_se
);
1343 dequeue_rt_stack(rt_se
, flags
);
1344 for_each_sched_rt_entity(rt_se
)
1345 __enqueue_rt_entity(rt_se
, flags
);
1346 enqueue_top_rt_rq(&rq
->rt
);
1349 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
, unsigned int flags
)
1351 struct rq
*rq
= rq_of_rt_se(rt_se
);
1353 dequeue_rt_stack(rt_se
, flags
);
1355 for_each_sched_rt_entity(rt_se
) {
1356 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
1358 if (rt_rq
&& rt_rq
->rt_nr_running
)
1359 __enqueue_rt_entity(rt_se
, flags
);
1361 enqueue_top_rt_rq(&rq
->rt
);
1365 * Adding/removing a task to/from a priority array:
1368 enqueue_task_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1370 struct sched_rt_entity
*rt_se
= &p
->rt
;
1372 if (flags
& ENQUEUE_WAKEUP
)
1375 enqueue_rt_entity(rt_se
, flags
);
1377 if (!task_current(rq
, p
) && p
->nr_cpus_allowed
> 1)
1378 enqueue_pushable_task(rq
, p
);
1381 static void dequeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1383 struct sched_rt_entity
*rt_se
= &p
->rt
;
1386 dequeue_rt_entity(rt_se
, flags
);
1388 dequeue_pushable_task(rq
, p
);
1392 * Put task to the head or the end of the run list without the overhead of
1393 * dequeue followed by enqueue.
1396 requeue_rt_entity(struct rt_rq
*rt_rq
, struct sched_rt_entity
*rt_se
, int head
)
1398 if (on_rt_rq(rt_se
)) {
1399 struct rt_prio_array
*array
= &rt_rq
->active
;
1400 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
1403 list_move(&rt_se
->run_list
, queue
);
1405 list_move_tail(&rt_se
->run_list
, queue
);
1409 static void requeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int head
)
1411 struct sched_rt_entity
*rt_se
= &p
->rt
;
1412 struct rt_rq
*rt_rq
;
1414 for_each_sched_rt_entity(rt_se
) {
1415 rt_rq
= rt_rq_of_se(rt_se
);
1416 requeue_rt_entity(rt_rq
, rt_se
, head
);
1420 static void yield_task_rt(struct rq
*rq
)
1422 requeue_task_rt(rq
, rq
->curr
, 0);
1426 static int find_lowest_rq(struct task_struct
*task
);
1429 select_task_rq_rt(struct task_struct
*p
, int cpu
, int sd_flag
, int flags
)
1431 struct task_struct
*curr
;
1435 /* For anything but wake ups, just return the task_cpu */
1436 if (sd_flag
!= SD_BALANCE_WAKE
&& sd_flag
!= SD_BALANCE_FORK
)
1442 curr
= READ_ONCE(rq
->curr
); /* unlocked access */
1445 * If the current task on @p's runqueue is an RT task, then
1446 * try to see if we can wake this RT task up on another
1447 * runqueue. Otherwise simply start this RT task
1448 * on its current runqueue.
1450 * We want to avoid overloading runqueues. If the woken
1451 * task is a higher priority, then it will stay on this CPU
1452 * and the lower prio task should be moved to another CPU.
1453 * Even though this will probably make the lower prio task
1454 * lose its cache, we do not want to bounce a higher task
1455 * around just because it gave up its CPU, perhaps for a
1458 * For equal prio tasks, we just let the scheduler sort it out.
1460 * Otherwise, just let it ride on the affined RQ and the
1461 * post-schedule router will push the preempted task away
1463 * This test is optimistic, if we get it wrong the load-balancer
1464 * will have to sort it out.
1466 * We take into account the capacity of the CPU to ensure it fits the
1467 * requirement of the task - which is only important on heterogeneous
1468 * systems like big.LITTLE.
1471 unlikely(rt_task(curr
)) &&
1472 (curr
->nr_cpus_allowed
< 2 || curr
->prio
<= p
->prio
);
1474 if (test
|| !rt_task_fits_capacity(p
, cpu
)) {
1475 int target
= find_lowest_rq(p
);
1478 * Don't bother moving it if the destination CPU is
1479 * not running a lower priority task.
1482 p
->prio
< cpu_rq(target
)->rt
.highest_prio
.curr
)
1491 static void check_preempt_equal_prio(struct rq
*rq
, struct task_struct
*p
)
1494 * Current can't be migrated, useless to reschedule,
1495 * let's hope p can move out.
1497 if (rq
->curr
->nr_cpus_allowed
== 1 ||
1498 !cpupri_find(&rq
->rd
->cpupri
, rq
->curr
, NULL
, NULL
))
1502 * p is migratable, so let's not schedule it and
1503 * see if it is pushed or pulled somewhere else.
1505 if (p
->nr_cpus_allowed
!= 1 &&
1506 cpupri_find(&rq
->rd
->cpupri
, p
, NULL
, NULL
))
1510 * There appear to be other CPUs that can accept
1511 * the current task but none can run 'p', so lets reschedule
1512 * to try and push the current task away:
1514 requeue_task_rt(rq
, p
, 1);
1518 static int balance_rt(struct rq
*rq
, struct task_struct
*p
, struct rq_flags
*rf
)
1520 if (!on_rt_rq(&p
->rt
) && need_pull_rt_task(rq
, p
)) {
1522 * This is OK, because current is on_cpu, which avoids it being
1523 * picked for load-balance and preemption/IRQs are still
1524 * disabled avoiding further scheduler activity on it and we've
1525 * not yet started the picking loop.
1527 rq_unpin_lock(rq
, rf
);
1529 rq_repin_lock(rq
, rf
);
1532 return sched_stop_runnable(rq
) || sched_dl_runnable(rq
) || sched_rt_runnable(rq
);
1534 #endif /* CONFIG_SMP */
1537 * Preempt the current task with a newly woken task if needed:
1539 static void check_preempt_curr_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1541 if (p
->prio
< rq
->curr
->prio
) {
1550 * - the newly woken task is of equal priority to the current task
1551 * - the newly woken task is non-migratable while current is migratable
1552 * - current will be preempted on the next reschedule
1554 * we should check to see if current can readily move to a different
1555 * cpu. If so, we will reschedule to allow the push logic to try
1556 * to move current somewhere else, making room for our non-migratable
1559 if (p
->prio
== rq
->curr
->prio
&& !test_tsk_need_resched(rq
->curr
))
1560 check_preempt_equal_prio(rq
, p
);
1564 static inline void set_next_task_rt(struct rq
*rq
, struct task_struct
*p
, bool first
)
1566 p
->se
.exec_start
= rq_clock_task(rq
);
1568 /* The running task is never eligible for pushing */
1569 dequeue_pushable_task(rq
, p
);
1575 * If prev task was rt, put_prev_task() has already updated the
1576 * utilization. We only care of the case where we start to schedule a
1579 if (rq
->curr
->sched_class
!= &rt_sched_class
)
1580 update_rt_rq_load_avg(rq_clock_pelt(rq
), rq
, 0);
1582 rt_queue_push_tasks(rq
);
1585 static struct sched_rt_entity
*pick_next_rt_entity(struct rq
*rq
,
1586 struct rt_rq
*rt_rq
)
1588 struct rt_prio_array
*array
= &rt_rq
->active
;
1589 struct sched_rt_entity
*next
= NULL
;
1590 struct list_head
*queue
;
1593 idx
= sched_find_first_bit(array
->bitmap
);
1594 BUG_ON(idx
>= MAX_RT_PRIO
);
1596 queue
= array
->queue
+ idx
;
1597 next
= list_entry(queue
->next
, struct sched_rt_entity
, run_list
);
1602 static struct task_struct
*_pick_next_task_rt(struct rq
*rq
)
1604 struct sched_rt_entity
*rt_se
;
1605 struct rt_rq
*rt_rq
= &rq
->rt
;
1608 rt_se
= pick_next_rt_entity(rq
, rt_rq
);
1610 rt_rq
= group_rt_rq(rt_se
);
1613 return rt_task_of(rt_se
);
1616 static struct task_struct
*pick_next_task_rt(struct rq
*rq
)
1618 struct task_struct
*p
;
1620 if (!sched_rt_runnable(rq
))
1623 p
= _pick_next_task_rt(rq
);
1624 set_next_task_rt(rq
, p
, true);
1628 static void put_prev_task_rt(struct rq
*rq
, struct task_struct
*p
)
1632 update_rt_rq_load_avg(rq_clock_pelt(rq
), rq
, 1);
1635 * The previous task needs to be made eligible for pushing
1636 * if it is still active
1638 if (on_rt_rq(&p
->rt
) && p
->nr_cpus_allowed
> 1)
1639 enqueue_pushable_task(rq
, p
);
1644 /* Only try algorithms three times */
1645 #define RT_MAX_TRIES 3
1647 static int pick_rt_task(struct rq
*rq
, struct task_struct
*p
, int cpu
)
1649 if (!task_running(rq
, p
) &&
1650 cpumask_test_cpu(cpu
, p
->cpus_ptr
) &&
1651 rt_task_fits_capacity(p
, cpu
))
1658 * Return the highest pushable rq's task, which is suitable to be executed
1659 * on the CPU, NULL otherwise
1661 static struct task_struct
*pick_highest_pushable_task(struct rq
*rq
, int cpu
)
1663 struct plist_head
*head
= &rq
->rt
.pushable_tasks
;
1664 struct task_struct
*p
;
1666 if (!has_pushable_tasks(rq
))
1669 plist_for_each_entry(p
, head
, pushable_tasks
) {
1670 if (pick_rt_task(rq
, p
, cpu
))
1677 static DEFINE_PER_CPU(cpumask_var_t
, local_cpu_mask
);
1679 static int find_lowest_rq(struct task_struct
*task
)
1681 struct sched_domain
*sd
;
1682 struct cpumask
*lowest_mask
= this_cpu_cpumask_var_ptr(local_cpu_mask
);
1683 int this_cpu
= smp_processor_id();
1684 int cpu
= task_cpu(task
);
1686 /* Make sure the mask is initialized first */
1687 if (unlikely(!lowest_mask
))
1690 if (task
->nr_cpus_allowed
== 1)
1691 return -1; /* No other targets possible */
1693 if (!cpupri_find(&task_rq(task
)->rd
->cpupri
, task
, lowest_mask
,
1694 rt_task_fits_capacity
))
1695 return -1; /* No targets found */
1698 * At this point we have built a mask of CPUs representing the
1699 * lowest priority tasks in the system. Now we want to elect
1700 * the best one based on our affinity and topology.
1702 * We prioritize the last CPU that the task executed on since
1703 * it is most likely cache-hot in that location.
1705 if (cpumask_test_cpu(cpu
, lowest_mask
))
1709 * Otherwise, we consult the sched_domains span maps to figure
1710 * out which CPU is logically closest to our hot cache data.
1712 if (!cpumask_test_cpu(this_cpu
, lowest_mask
))
1713 this_cpu
= -1; /* Skip this_cpu opt if not among lowest */
1716 for_each_domain(cpu
, sd
) {
1717 if (sd
->flags
& SD_WAKE_AFFINE
) {
1721 * "this_cpu" is cheaper to preempt than a
1724 if (this_cpu
!= -1 &&
1725 cpumask_test_cpu(this_cpu
, sched_domain_span(sd
))) {
1730 best_cpu
= cpumask_first_and(lowest_mask
,
1731 sched_domain_span(sd
));
1732 if (best_cpu
< nr_cpu_ids
) {
1741 * And finally, if there were no matches within the domains
1742 * just give the caller *something* to work with from the compatible
1748 cpu
= cpumask_any(lowest_mask
);
1749 if (cpu
< nr_cpu_ids
)
1755 /* Will lock the rq it finds */
1756 static struct rq
*find_lock_lowest_rq(struct task_struct
*task
, struct rq
*rq
)
1758 struct rq
*lowest_rq
= NULL
;
1762 for (tries
= 0; tries
< RT_MAX_TRIES
; tries
++) {
1763 cpu
= find_lowest_rq(task
);
1765 if ((cpu
== -1) || (cpu
== rq
->cpu
))
1768 lowest_rq
= cpu_rq(cpu
);
1770 if (lowest_rq
->rt
.highest_prio
.curr
<= task
->prio
) {
1772 * Target rq has tasks of equal or higher priority,
1773 * retrying does not release any lock and is unlikely
1774 * to yield a different result.
1780 /* if the prio of this runqueue changed, try again */
1781 if (double_lock_balance(rq
, lowest_rq
)) {
1783 * We had to unlock the run queue. In
1784 * the mean time, task could have
1785 * migrated already or had its affinity changed.
1786 * Also make sure that it wasn't scheduled on its rq.
1788 if (unlikely(task_rq(task
) != rq
||
1789 !cpumask_test_cpu(lowest_rq
->cpu
, task
->cpus_ptr
) ||
1790 task_running(rq
, task
) ||
1792 !task_on_rq_queued(task
))) {
1794 double_unlock_balance(rq
, lowest_rq
);
1800 /* If this rq is still suitable use it. */
1801 if (lowest_rq
->rt
.highest_prio
.curr
> task
->prio
)
1805 double_unlock_balance(rq
, lowest_rq
);
1812 static struct task_struct
*pick_next_pushable_task(struct rq
*rq
)
1814 struct task_struct
*p
;
1816 if (!has_pushable_tasks(rq
))
1819 p
= plist_first_entry(&rq
->rt
.pushable_tasks
,
1820 struct task_struct
, pushable_tasks
);
1822 BUG_ON(rq
->cpu
!= task_cpu(p
));
1823 BUG_ON(task_current(rq
, p
));
1824 BUG_ON(p
->nr_cpus_allowed
<= 1);
1826 BUG_ON(!task_on_rq_queued(p
));
1827 BUG_ON(!rt_task(p
));
1833 * If the current CPU has more than one RT task, see if the non
1834 * running task can migrate over to a CPU that is running a task
1835 * of lesser priority.
1837 static int push_rt_task(struct rq
*rq
)
1839 struct task_struct
*next_task
;
1840 struct rq
*lowest_rq
;
1843 if (!rq
->rt
.overloaded
)
1846 next_task
= pick_next_pushable_task(rq
);
1851 if (WARN_ON(next_task
== rq
->curr
))
1855 * It's possible that the next_task slipped in of
1856 * higher priority than current. If that's the case
1857 * just reschedule current.
1859 if (unlikely(next_task
->prio
< rq
->curr
->prio
)) {
1864 /* We might release rq lock */
1865 get_task_struct(next_task
);
1867 /* find_lock_lowest_rq locks the rq if found */
1868 lowest_rq
= find_lock_lowest_rq(next_task
, rq
);
1870 struct task_struct
*task
;
1872 * find_lock_lowest_rq releases rq->lock
1873 * so it is possible that next_task has migrated.
1875 * We need to make sure that the task is still on the same
1876 * run-queue and is also still the next task eligible for
1879 task
= pick_next_pushable_task(rq
);
1880 if (task
== next_task
) {
1882 * The task hasn't migrated, and is still the next
1883 * eligible task, but we failed to find a run-queue
1884 * to push it to. Do not retry in this case, since
1885 * other CPUs will pull from us when ready.
1891 /* No more tasks, just exit */
1895 * Something has shifted, try again.
1897 put_task_struct(next_task
);
1902 deactivate_task(rq
, next_task
, 0);
1903 set_task_cpu(next_task
, lowest_rq
->cpu
);
1904 activate_task(lowest_rq
, next_task
, 0);
1907 resched_curr(lowest_rq
);
1909 double_unlock_balance(rq
, lowest_rq
);
1912 put_task_struct(next_task
);
1917 static void push_rt_tasks(struct rq
*rq
)
1919 /* push_rt_task will return true if it moved an RT */
1920 while (push_rt_task(rq
))
1924 #ifdef HAVE_RT_PUSH_IPI
1927 * When a high priority task schedules out from a CPU and a lower priority
1928 * task is scheduled in, a check is made to see if there's any RT tasks
1929 * on other CPUs that are waiting to run because a higher priority RT task
1930 * is currently running on its CPU. In this case, the CPU with multiple RT
1931 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1932 * up that may be able to run one of its non-running queued RT tasks.
1934 * All CPUs with overloaded RT tasks need to be notified as there is currently
1935 * no way to know which of these CPUs have the highest priority task waiting
1936 * to run. Instead of trying to take a spinlock on each of these CPUs,
1937 * which has shown to cause large latency when done on machines with many
1938 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1939 * RT tasks waiting to run.
1941 * Just sending an IPI to each of the CPUs is also an issue, as on large
1942 * count CPU machines, this can cause an IPI storm on a CPU, especially
1943 * if its the only CPU with multiple RT tasks queued, and a large number
1944 * of CPUs scheduling a lower priority task at the same time.
1946 * Each root domain has its own irq work function that can iterate over
1947 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1948 * tassk must be checked if there's one or many CPUs that are lowering
1949 * their priority, there's a single irq work iterator that will try to
1950 * push off RT tasks that are waiting to run.
1952 * When a CPU schedules a lower priority task, it will kick off the
1953 * irq work iterator that will jump to each CPU with overloaded RT tasks.
1954 * As it only takes the first CPU that schedules a lower priority task
1955 * to start the process, the rto_start variable is incremented and if
1956 * the atomic result is one, then that CPU will try to take the rto_lock.
1957 * This prevents high contention on the lock as the process handles all
1958 * CPUs scheduling lower priority tasks.
1960 * All CPUs that are scheduling a lower priority task will increment the
1961 * rt_loop_next variable. This will make sure that the irq work iterator
1962 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1963 * priority task, even if the iterator is in the middle of a scan. Incrementing
1964 * the rt_loop_next will cause the iterator to perform another scan.
1967 static int rto_next_cpu(struct root_domain
*rd
)
1973 * When starting the IPI RT pushing, the rto_cpu is set to -1,
1974 * rt_next_cpu() will simply return the first CPU found in
1977 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
1978 * will return the next CPU found in the rto_mask.
1980 * If there are no more CPUs left in the rto_mask, then a check is made
1981 * against rto_loop and rto_loop_next. rto_loop is only updated with
1982 * the rto_lock held, but any CPU may increment the rto_loop_next
1983 * without any locking.
1987 /* When rto_cpu is -1 this acts like cpumask_first() */
1988 cpu
= cpumask_next(rd
->rto_cpu
, rd
->rto_mask
);
1992 if (cpu
< nr_cpu_ids
)
1998 * ACQUIRE ensures we see the @rto_mask changes
1999 * made prior to the @next value observed.
2001 * Matches WMB in rt_set_overload().
2003 next
= atomic_read_acquire(&rd
->rto_loop_next
);
2005 if (rd
->rto_loop
== next
)
2008 rd
->rto_loop
= next
;
2014 static inline bool rto_start_trylock(atomic_t
*v
)
2016 return !atomic_cmpxchg_acquire(v
, 0, 1);
2019 static inline void rto_start_unlock(atomic_t
*v
)
2021 atomic_set_release(v
, 0);
2024 static void tell_cpu_to_push(struct rq
*rq
)
2028 /* Keep the loop going if the IPI is currently active */
2029 atomic_inc(&rq
->rd
->rto_loop_next
);
2031 /* Only one CPU can initiate a loop at a time */
2032 if (!rto_start_trylock(&rq
->rd
->rto_loop_start
))
2035 raw_spin_lock(&rq
->rd
->rto_lock
);
2038 * The rto_cpu is updated under the lock, if it has a valid CPU
2039 * then the IPI is still running and will continue due to the
2040 * update to loop_next, and nothing needs to be done here.
2041 * Otherwise it is finishing up and an ipi needs to be sent.
2043 if (rq
->rd
->rto_cpu
< 0)
2044 cpu
= rto_next_cpu(rq
->rd
);
2046 raw_spin_unlock(&rq
->rd
->rto_lock
);
2048 rto_start_unlock(&rq
->rd
->rto_loop_start
);
2051 /* Make sure the rd does not get freed while pushing */
2052 sched_get_rd(rq
->rd
);
2053 irq_work_queue_on(&rq
->rd
->rto_push_work
, cpu
);
2057 /* Called from hardirq context */
2058 void rto_push_irq_work_func(struct irq_work
*work
)
2060 struct root_domain
*rd
=
2061 container_of(work
, struct root_domain
, rto_push_work
);
2068 * We do not need to grab the lock to check for has_pushable_tasks.
2069 * When it gets updated, a check is made if a push is possible.
2071 if (has_pushable_tasks(rq
)) {
2072 raw_spin_lock(&rq
->lock
);
2074 raw_spin_unlock(&rq
->lock
);
2077 raw_spin_lock(&rd
->rto_lock
);
2079 /* Pass the IPI to the next rt overloaded queue */
2080 cpu
= rto_next_cpu(rd
);
2082 raw_spin_unlock(&rd
->rto_lock
);
2089 /* Try the next RT overloaded CPU */
2090 irq_work_queue_on(&rd
->rto_push_work
, cpu
);
2092 #endif /* HAVE_RT_PUSH_IPI */
2094 static void pull_rt_task(struct rq
*this_rq
)
2096 int this_cpu
= this_rq
->cpu
, cpu
;
2097 bool resched
= false;
2098 struct task_struct
*p
;
2100 int rt_overload_count
= rt_overloaded(this_rq
);
2102 if (likely(!rt_overload_count
))
2106 * Match the barrier from rt_set_overloaded; this guarantees that if we
2107 * see overloaded we must also see the rto_mask bit.
2111 /* If we are the only overloaded CPU do nothing */
2112 if (rt_overload_count
== 1 &&
2113 cpumask_test_cpu(this_rq
->cpu
, this_rq
->rd
->rto_mask
))
2116 #ifdef HAVE_RT_PUSH_IPI
2117 if (sched_feat(RT_PUSH_IPI
)) {
2118 tell_cpu_to_push(this_rq
);
2123 for_each_cpu(cpu
, this_rq
->rd
->rto_mask
) {
2124 if (this_cpu
== cpu
)
2127 src_rq
= cpu_rq(cpu
);
2130 * Don't bother taking the src_rq->lock if the next highest
2131 * task is known to be lower-priority than our current task.
2132 * This may look racy, but if this value is about to go
2133 * logically higher, the src_rq will push this task away.
2134 * And if its going logically lower, we do not care
2136 if (src_rq
->rt
.highest_prio
.next
>=
2137 this_rq
->rt
.highest_prio
.curr
)
2141 * We can potentially drop this_rq's lock in
2142 * double_lock_balance, and another CPU could
2145 double_lock_balance(this_rq
, src_rq
);
2148 * We can pull only a task, which is pushable
2149 * on its rq, and no others.
2151 p
= pick_highest_pushable_task(src_rq
, this_cpu
);
2154 * Do we have an RT task that preempts
2155 * the to-be-scheduled task?
2157 if (p
&& (p
->prio
< this_rq
->rt
.highest_prio
.curr
)) {
2158 WARN_ON(p
== src_rq
->curr
);
2159 WARN_ON(!task_on_rq_queued(p
));
2162 * There's a chance that p is higher in priority
2163 * than what's currently running on its CPU.
2164 * This is just that p is wakeing up and hasn't
2165 * had a chance to schedule. We only pull
2166 * p if it is lower in priority than the
2167 * current task on the run queue
2169 if (p
->prio
< src_rq
->curr
->prio
)
2174 deactivate_task(src_rq
, p
, 0);
2175 set_task_cpu(p
, this_cpu
);
2176 activate_task(this_rq
, p
, 0);
2178 * We continue with the search, just in
2179 * case there's an even higher prio task
2180 * in another runqueue. (low likelihood
2185 double_unlock_balance(this_rq
, src_rq
);
2189 resched_curr(this_rq
);
2193 * If we are not running and we are not going to reschedule soon, we should
2194 * try to push tasks away now
2196 static void task_woken_rt(struct rq
*rq
, struct task_struct
*p
)
2198 bool need_to_push
= !task_running(rq
, p
) &&
2199 !test_tsk_need_resched(rq
->curr
) &&
2200 p
->nr_cpus_allowed
> 1 &&
2201 (dl_task(rq
->curr
) || rt_task(rq
->curr
)) &&
2202 (rq
->curr
->nr_cpus_allowed
< 2 ||
2203 rq
->curr
->prio
<= p
->prio
);
2205 if (need_to_push
|| !rt_task_fits_capacity(p
, cpu_of(rq
)))
2209 /* Assumes rq->lock is held */
2210 static void rq_online_rt(struct rq
*rq
)
2212 if (rq
->rt
.overloaded
)
2213 rt_set_overload(rq
);
2215 __enable_runtime(rq
);
2217 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rq
->rt
.highest_prio
.curr
);
2220 /* Assumes rq->lock is held */
2221 static void rq_offline_rt(struct rq
*rq
)
2223 if (rq
->rt
.overloaded
)
2224 rt_clear_overload(rq
);
2226 __disable_runtime(rq
);
2228 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, CPUPRI_INVALID
);
2232 * When switch from the rt queue, we bring ourselves to a position
2233 * that we might want to pull RT tasks from other runqueues.
2235 static void switched_from_rt(struct rq
*rq
, struct task_struct
*p
)
2238 * If there are other RT tasks then we will reschedule
2239 * and the scheduling of the other RT tasks will handle
2240 * the balancing. But if we are the last RT task
2241 * we may need to handle the pulling of RT tasks
2244 if (!task_on_rq_queued(p
) || rq
->rt
.rt_nr_running
)
2247 rt_queue_pull_task(rq
);
2250 void __init
init_sched_rt_class(void)
2254 for_each_possible_cpu(i
) {
2255 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask
, i
),
2256 GFP_KERNEL
, cpu_to_node(i
));
2259 #endif /* CONFIG_SMP */
2262 * When switching a task to RT, we may overload the runqueue
2263 * with RT tasks. In this case we try to push them off to
2266 static void switched_to_rt(struct rq
*rq
, struct task_struct
*p
)
2269 * If we are already running, then there's nothing
2270 * that needs to be done. But if we are not running
2271 * we may need to preempt the current running task.
2272 * If that current running task is also an RT task
2273 * then see if we can move to another run queue.
2275 if (task_on_rq_queued(p
) && rq
->curr
!= p
) {
2277 bool need_to_push
= rq
->rt
.overloaded
||
2278 !rt_task_fits_capacity(p
, cpu_of(rq
));
2280 if (p
->nr_cpus_allowed
> 1 && need_to_push
)
2281 rt_queue_push_tasks(rq
);
2282 #endif /* CONFIG_SMP */
2283 if (p
->prio
< rq
->curr
->prio
&& cpu_online(cpu_of(rq
)))
2289 * Priority of the task has changed. This may cause
2290 * us to initiate a push or pull.
2293 prio_changed_rt(struct rq
*rq
, struct task_struct
*p
, int oldprio
)
2295 if (!task_on_rq_queued(p
))
2298 if (rq
->curr
== p
) {
2301 * If our priority decreases while running, we
2302 * may need to pull tasks to this runqueue.
2304 if (oldprio
< p
->prio
)
2305 rt_queue_pull_task(rq
);
2308 * If there's a higher priority task waiting to run
2311 if (p
->prio
> rq
->rt
.highest_prio
.curr
)
2314 /* For UP simply resched on drop of prio */
2315 if (oldprio
< p
->prio
)
2317 #endif /* CONFIG_SMP */
2320 * This task is not running, but if it is
2321 * greater than the current running task
2324 if (p
->prio
< rq
->curr
->prio
)
2329 #ifdef CONFIG_POSIX_TIMERS
2330 static void watchdog(struct rq
*rq
, struct task_struct
*p
)
2332 unsigned long soft
, hard
;
2334 /* max may change after cur was read, this will be fixed next tick */
2335 soft
= task_rlimit(p
, RLIMIT_RTTIME
);
2336 hard
= task_rlimit_max(p
, RLIMIT_RTTIME
);
2338 if (soft
!= RLIM_INFINITY
) {
2341 if (p
->rt
.watchdog_stamp
!= jiffies
) {
2343 p
->rt
.watchdog_stamp
= jiffies
;
2346 next
= DIV_ROUND_UP(min(soft
, hard
), USEC_PER_SEC
/HZ
);
2347 if (p
->rt
.timeout
> next
) {
2348 posix_cputimers_rt_watchdog(&p
->posix_cputimers
,
2349 p
->se
.sum_exec_runtime
);
2354 static inline void watchdog(struct rq
*rq
, struct task_struct
*p
) { }
2358 * scheduler tick hitting a task of our scheduling class.
2360 * NOTE: This function can be called remotely by the tick offload that
2361 * goes along full dynticks. Therefore no local assumption can be made
2362 * and everything must be accessed through the @rq and @curr passed in
2365 static void task_tick_rt(struct rq
*rq
, struct task_struct
*p
, int queued
)
2367 struct sched_rt_entity
*rt_se
= &p
->rt
;
2370 update_rt_rq_load_avg(rq_clock_pelt(rq
), rq
, 1);
2375 * RR tasks need a special form of timeslice management.
2376 * FIFO tasks have no timeslices.
2378 if (p
->policy
!= SCHED_RR
)
2381 if (--p
->rt
.time_slice
)
2384 p
->rt
.time_slice
= sched_rr_timeslice
;
2387 * Requeue to the end of queue if we (and all of our ancestors) are not
2388 * the only element on the queue
2390 for_each_sched_rt_entity(rt_se
) {
2391 if (rt_se
->run_list
.prev
!= rt_se
->run_list
.next
) {
2392 requeue_task_rt(rq
, p
, 0);
2399 static unsigned int get_rr_interval_rt(struct rq
*rq
, struct task_struct
*task
)
2402 * Time slice is 0 for SCHED_FIFO tasks
2404 if (task
->policy
== SCHED_RR
)
2405 return sched_rr_timeslice
;
2410 const struct sched_class rt_sched_class
= {
2411 .next
= &fair_sched_class
,
2412 .enqueue_task
= enqueue_task_rt
,
2413 .dequeue_task
= dequeue_task_rt
,
2414 .yield_task
= yield_task_rt
,
2416 .check_preempt_curr
= check_preempt_curr_rt
,
2418 .pick_next_task
= pick_next_task_rt
,
2419 .put_prev_task
= put_prev_task_rt
,
2420 .set_next_task
= set_next_task_rt
,
2423 .balance
= balance_rt
,
2424 .select_task_rq
= select_task_rq_rt
,
2425 .set_cpus_allowed
= set_cpus_allowed_common
,
2426 .rq_online
= rq_online_rt
,
2427 .rq_offline
= rq_offline_rt
,
2428 .task_woken
= task_woken_rt
,
2429 .switched_from
= switched_from_rt
,
2432 .task_tick
= task_tick_rt
,
2434 .get_rr_interval
= get_rr_interval_rt
,
2436 .prio_changed
= prio_changed_rt
,
2437 .switched_to
= switched_to_rt
,
2439 .update_curr
= update_curr_rt
,
2441 #ifdef CONFIG_UCLAMP_TASK
2442 .uclamp_enabled
= 1,
2446 #ifdef CONFIG_RT_GROUP_SCHED
2448 * Ensure that the real time constraints are schedulable.
2450 static DEFINE_MUTEX(rt_constraints_mutex
);
2452 /* Must be called with tasklist_lock held */
2453 static inline int tg_has_rt_tasks(struct task_group
*tg
)
2455 struct task_struct
*g
, *p
;
2458 * Autogroups do not have RT tasks; see autogroup_create().
2460 if (task_group_is_autogroup(tg
))
2463 for_each_process_thread(g
, p
) {
2464 if (rt_task(p
) && task_group(p
) == tg
)
2471 struct rt_schedulable_data
{
2472 struct task_group
*tg
;
2477 static int tg_rt_schedulable(struct task_group
*tg
, void *data
)
2479 struct rt_schedulable_data
*d
= data
;
2480 struct task_group
*child
;
2481 unsigned long total
, sum
= 0;
2482 u64 period
, runtime
;
2484 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
2485 runtime
= tg
->rt_bandwidth
.rt_runtime
;
2488 period
= d
->rt_period
;
2489 runtime
= d
->rt_runtime
;
2493 * Cannot have more runtime than the period.
2495 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
2499 * Ensure we don't starve existing RT tasks.
2501 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
2504 total
= to_ratio(period
, runtime
);
2507 * Nobody can have more than the global setting allows.
2509 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
2513 * The sum of our children's runtime should not exceed our own.
2515 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
2516 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
2517 runtime
= child
->rt_bandwidth
.rt_runtime
;
2519 if (child
== d
->tg
) {
2520 period
= d
->rt_period
;
2521 runtime
= d
->rt_runtime
;
2524 sum
+= to_ratio(period
, runtime
);
2533 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
2537 struct rt_schedulable_data data
= {
2539 .rt_period
= period
,
2540 .rt_runtime
= runtime
,
2544 ret
= walk_tg_tree(tg_rt_schedulable
, tg_nop
, &data
);
2550 static int tg_set_rt_bandwidth(struct task_group
*tg
,
2551 u64 rt_period
, u64 rt_runtime
)
2556 * Disallowing the root group RT runtime is BAD, it would disallow the
2557 * kernel creating (and or operating) RT threads.
2559 if (tg
== &root_task_group
&& rt_runtime
== 0)
2562 /* No period doesn't make any sense. */
2566 mutex_lock(&rt_constraints_mutex
);
2567 read_lock(&tasklist_lock
);
2568 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
2572 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
2573 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
2574 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
2576 for_each_possible_cpu(i
) {
2577 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
2579 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
2580 rt_rq
->rt_runtime
= rt_runtime
;
2581 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
2583 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
2585 read_unlock(&tasklist_lock
);
2586 mutex_unlock(&rt_constraints_mutex
);
2591 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
2593 u64 rt_runtime
, rt_period
;
2595 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
2596 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
2597 if (rt_runtime_us
< 0)
2598 rt_runtime
= RUNTIME_INF
;
2599 else if ((u64
)rt_runtime_us
> U64_MAX
/ NSEC_PER_USEC
)
2602 return tg_set_rt_bandwidth(tg
, rt_period
, rt_runtime
);
2605 long sched_group_rt_runtime(struct task_group
*tg
)
2609 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
2612 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
2613 do_div(rt_runtime_us
, NSEC_PER_USEC
);
2614 return rt_runtime_us
;
2617 int sched_group_set_rt_period(struct task_group
*tg
, u64 rt_period_us
)
2619 u64 rt_runtime
, rt_period
;
2621 if (rt_period_us
> U64_MAX
/ NSEC_PER_USEC
)
2624 rt_period
= rt_period_us
* NSEC_PER_USEC
;
2625 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
2627 return tg_set_rt_bandwidth(tg
, rt_period
, rt_runtime
);
2630 long sched_group_rt_period(struct task_group
*tg
)
2634 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
2635 do_div(rt_period_us
, NSEC_PER_USEC
);
2636 return rt_period_us
;
2639 static int sched_rt_global_constraints(void)
2643 mutex_lock(&rt_constraints_mutex
);
2644 read_lock(&tasklist_lock
);
2645 ret
= __rt_schedulable(NULL
, 0, 0);
2646 read_unlock(&tasklist_lock
);
2647 mutex_unlock(&rt_constraints_mutex
);
2652 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
2654 /* Don't accept realtime tasks when there is no way for them to run */
2655 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
2661 #else /* !CONFIG_RT_GROUP_SCHED */
2662 static int sched_rt_global_constraints(void)
2664 unsigned long flags
;
2667 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
2668 for_each_possible_cpu(i
) {
2669 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
2671 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
2672 rt_rq
->rt_runtime
= global_rt_runtime();
2673 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
2675 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
2679 #endif /* CONFIG_RT_GROUP_SCHED */
2681 static int sched_rt_global_validate(void)
2683 if (sysctl_sched_rt_period
<= 0)
2686 if ((sysctl_sched_rt_runtime
!= RUNTIME_INF
) &&
2687 (sysctl_sched_rt_runtime
> sysctl_sched_rt_period
))
2693 static void sched_rt_do_global(void)
2695 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
2696 def_rt_bandwidth
.rt_period
= ns_to_ktime(global_rt_period());
2699 int sched_rt_handler(struct ctl_table
*table
, int write
,
2700 void __user
*buffer
, size_t *lenp
,
2703 int old_period
, old_runtime
;
2704 static DEFINE_MUTEX(mutex
);
2708 old_period
= sysctl_sched_rt_period
;
2709 old_runtime
= sysctl_sched_rt_runtime
;
2711 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
2713 if (!ret
&& write
) {
2714 ret
= sched_rt_global_validate();
2718 ret
= sched_dl_global_validate();
2722 ret
= sched_rt_global_constraints();
2726 sched_rt_do_global();
2727 sched_dl_do_global();
2731 sysctl_sched_rt_period
= old_period
;
2732 sysctl_sched_rt_runtime
= old_runtime
;
2734 mutex_unlock(&mutex
);
2739 int sched_rr_handler(struct ctl_table
*table
, int write
,
2740 void __user
*buffer
, size_t *lenp
,
2744 static DEFINE_MUTEX(mutex
);
2747 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
2749 * Make sure that internally we keep jiffies.
2750 * Also, writing zero resets the timeslice to default:
2752 if (!ret
&& write
) {
2753 sched_rr_timeslice
=
2754 sysctl_sched_rr_timeslice
<= 0 ? RR_TIMESLICE
:
2755 msecs_to_jiffies(sysctl_sched_rr_timeslice
);
2757 mutex_unlock(&mutex
);
2762 #ifdef CONFIG_SCHED_DEBUG
2763 void print_rt_stats(struct seq_file
*m
, int cpu
)
2766 struct rt_rq
*rt_rq
;
2769 for_each_rt_rq(rt_rq
, iter
, cpu_rq(cpu
))
2770 print_rt_rq(m
, cpu
, rt_rq
);
2773 #endif /* CONFIG_SCHED_DEBUG */