2 * arch/microblaze/mm/fault.c
4 * Copyright (C) 2007 Xilinx, Inc. All rights reserved.
6 * Derived from "arch/ppc/mm/fault.c"
7 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
9 * Derived from "arch/i386/mm/fault.c"
10 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
12 * Modified by Cort Dougan and Paul Mackerras.
14 * This file is subject to the terms and conditions of the GNU General
15 * Public License. See the file COPYING in the main directory of this
16 * archive for more details.
20 #include <linux/extable.h>
21 #include <linux/signal.h>
22 #include <linux/sched.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/string.h>
26 #include <linux/types.h>
27 #include <linux/ptrace.h>
28 #include <linux/mman.h>
30 #include <linux/interrupt.h>
33 #include <asm/pgtable.h>
35 #include <linux/mmu_context.h>
36 #include <linux/uaccess.h>
37 #include <asm/exceptions.h>
39 static unsigned long pte_misses
; /* updated by do_page_fault() */
40 static unsigned long pte_errors
; /* updated by do_page_fault() */
43 * Check whether the instruction at regs->pc is a store using
44 * an update addressing form which will update r1.
46 static int store_updates_sp(struct pt_regs
*regs
)
50 if (get_user(inst
, (unsigned int __user
*)regs
->pc
))
52 /* check for 1 in the rD field */
53 if (((inst
>> 21) & 0x1f) != 1)
55 /* check for store opcodes */
56 if ((inst
& 0xd0000000) == 0xd0000000)
63 * bad_page_fault is called when we have a bad access from the kernel.
64 * It is called from do_page_fault above and from some of the procedures
67 void bad_page_fault(struct pt_regs
*regs
, unsigned long address
, int sig
)
69 const struct exception_table_entry
*fixup
;
71 /* Are we prepared to handle this fault? */
72 fixup
= search_exception_tables(regs
->pc
);
74 regs
->pc
= fixup
->fixup
;
78 /* kernel has accessed a bad area */
79 die("kernel access of bad area", regs
, sig
);
83 * The error_code parameter is ESR for a data fault,
84 * 0 for an instruction fault.
86 void do_page_fault(struct pt_regs
*regs
, unsigned long address
,
87 unsigned long error_code
)
89 struct vm_area_struct
*vma
;
90 struct mm_struct
*mm
= current
->mm
;
91 int code
= SEGV_MAPERR
;
92 int is_write
= error_code
& ESR_S
;
94 unsigned int flags
= FAULT_FLAG_DEFAULT
;
97 regs
->esr
= error_code
;
99 /* On a kernel SLB miss we can only check for a valid exception entry */
100 if (unlikely(kernel_mode(regs
) && (address
>= TASK_SIZE
))) {
101 pr_warn("kernel task_size exceed");
102 _exception(SIGSEGV
, regs
, code
, address
);
105 /* for instr TLB miss and instr storage exception ESR_S is undefined */
106 if ((error_code
& 0x13) == 0x13 || (error_code
& 0x11) == 0x11)
109 if (unlikely(faulthandler_disabled() || !mm
)) {
110 if (kernel_mode(regs
))
111 goto bad_area_nosemaphore
;
113 /* faulthandler_disabled() in user mode is really bad,
114 as is current->mm == NULL. */
115 pr_emerg("Page fault in user mode with faulthandler_disabled(), mm = %p\n",
117 pr_emerg("r15 = %lx MSR = %lx\n",
118 regs
->r15
, regs
->msr
);
119 die("Weird page fault", regs
, SIGSEGV
);
123 flags
|= FAULT_FLAG_USER
;
125 /* When running in the kernel we expect faults to occur only to
126 * addresses in user space. All other faults represent errors in the
127 * kernel and should generate an OOPS. Unfortunately, in the case of an
128 * erroneous fault occurring in a code path which already holds mmap_sem
129 * we will deadlock attempting to validate the fault against the
130 * address space. Luckily the kernel only validly references user
131 * space from well defined areas of code, which are listed in the
134 * As the vast majority of faults will be valid we will only perform
135 * the source reference check when there is a possibility of a deadlock.
136 * Attempt to lock the address space, if we cannot we then validate the
137 * source. If this is invalid we can skip the address space check,
138 * thus avoiding the deadlock.
140 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
141 if (kernel_mode(regs
) && !search_exception_tables(regs
->pc
))
142 goto bad_area_nosemaphore
;
145 down_read(&mm
->mmap_sem
);
148 vma
= find_vma(mm
, address
);
152 if (vma
->vm_start
<= address
)
155 if (unlikely(!(vma
->vm_flags
& VM_GROWSDOWN
)))
158 if (unlikely(!is_write
))
162 * N.B. The ABI allows programs to access up to
163 * a few hundred bytes below the stack pointer (TBD).
164 * The kernel signal delivery code writes up to about 1.5kB
165 * below the stack pointer (r1) before decrementing it.
166 * The exec code can write slightly over 640kB to the stack
167 * before setting the user r1. Thus we allow the stack to
168 * expand to 1MB without further checks.
170 if (unlikely(address
+ 0x100000 < vma
->vm_end
)) {
172 /* get user regs even if this fault is in kernel mode */
173 struct pt_regs
*uregs
= current
->thread
.regs
;
178 * A user-mode access to an address a long way below
179 * the stack pointer is only valid if the instruction
180 * is one which would update the stack pointer to the
181 * address accessed if the instruction completed,
182 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
183 * (or the byte, halfword, float or double forms).
185 * If we don't check this then any write to the area
186 * between the last mapped region and the stack will
187 * expand the stack rather than segfaulting.
189 if (address
+ 2048 < uregs
->r1
190 && (kernel_mode(regs
) || !store_updates_sp(regs
)))
193 if (expand_stack(vma
, address
))
200 if (unlikely(is_write
)) {
201 if (unlikely(!(vma
->vm_flags
& VM_WRITE
)))
203 flags
|= FAULT_FLAG_WRITE
;
206 /* protection fault */
207 if (unlikely(error_code
& 0x08000000))
209 if (unlikely(!(vma
->vm_flags
& (VM_READ
| VM_EXEC
))))
214 * If for any reason at all we couldn't handle the fault,
215 * make sure we exit gracefully rather than endlessly redo
218 fault
= handle_mm_fault(vma
, address
, flags
);
220 if (fault_signal_pending(fault
, regs
))
223 if (unlikely(fault
& VM_FAULT_ERROR
)) {
224 if (fault
& VM_FAULT_OOM
)
226 else if (fault
& VM_FAULT_SIGSEGV
)
228 else if (fault
& VM_FAULT_SIGBUS
)
233 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
234 if (unlikely(fault
& VM_FAULT_MAJOR
))
238 if (fault
& VM_FAULT_RETRY
) {
239 flags
|= FAULT_FLAG_TRIED
;
242 * No need to up_read(&mm->mmap_sem) as we would
243 * have already released it in __lock_page_or_retry
251 up_read(&mm
->mmap_sem
);
254 * keep track of tlb+htab misses that are good addrs but
255 * just need pte's created via handle_mm_fault()
262 up_read(&mm
->mmap_sem
);
264 bad_area_nosemaphore
:
267 /* User mode accesses cause a SIGSEGV */
268 if (user_mode(regs
)) {
269 _exception(SIGSEGV
, regs
, code
, address
);
273 bad_page_fault(regs
, address
, SIGSEGV
);
277 * We ran out of memory, or some other thing happened to us that made
278 * us unable to handle the page fault gracefully.
281 up_read(&mm
->mmap_sem
);
282 if (!user_mode(regs
))
283 bad_page_fault(regs
, address
, SIGKILL
);
285 pagefault_out_of_memory();
289 up_read(&mm
->mmap_sem
);
290 if (user_mode(regs
)) {
291 force_sig_fault(SIGBUS
, BUS_ADRERR
, (void __user
*)address
);
294 bad_page_fault(regs
, address
, SIGBUS
);