1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/delay.h>
6 #include <linux/hpet.h>
14 #define pr_fmt(fmt) "hpet: " fmt
24 struct clock_event_device evt
;
30 unsigned int boot_cfg
;
35 unsigned int nr_channels
;
36 unsigned int nr_clockevents
;
37 unsigned int boot_cfg
;
38 struct hpet_channel
*channels
;
41 #define HPET_MASK CLOCKSOURCE_MASK(32)
43 #define HPET_MIN_CYCLES 128
44 #define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
47 * HPET address is set in acpi/boot.c, when an ACPI entry exists
49 unsigned long hpet_address
;
50 u8 hpet_blockid
; /* OS timer block num */
51 bool hpet_msi_disable
;
54 static DEFINE_PER_CPU(struct hpet_channel
*, cpu_hpet_channel
);
55 static struct irq_domain
*hpet_domain
;
58 static void __iomem
*hpet_virt_address
;
60 static struct hpet_base hpet_base
;
62 static bool hpet_legacy_int_enabled
;
63 static unsigned long hpet_freq
;
65 bool boot_hpet_disable
;
67 static bool hpet_verbose
;
70 struct hpet_channel
*clockevent_to_channel(struct clock_event_device
*evt
)
72 return container_of(evt
, struct hpet_channel
, evt
);
75 inline unsigned int hpet_readl(unsigned int a
)
77 return readl(hpet_virt_address
+ a
);
80 static inline void hpet_writel(unsigned int d
, unsigned int a
)
82 writel(d
, hpet_virt_address
+ a
);
85 static inline void hpet_set_mapping(void)
87 hpet_virt_address
= ioremap(hpet_address
, HPET_MMAP_SIZE
);
90 static inline void hpet_clear_mapping(void)
92 iounmap(hpet_virt_address
);
93 hpet_virt_address
= NULL
;
97 * HPET command line enable / disable
99 static int __init
hpet_setup(char *str
)
102 char *next
= strchr(str
, ',');
106 if (!strncmp("disable", str
, 7))
107 boot_hpet_disable
= true;
108 if (!strncmp("force", str
, 5))
109 hpet_force_user
= true;
110 if (!strncmp("verbose", str
, 7))
116 __setup("hpet=", hpet_setup
);
118 static int __init
disable_hpet(char *str
)
120 boot_hpet_disable
= true;
123 __setup("nohpet", disable_hpet
);
125 static inline int is_hpet_capable(void)
127 return !boot_hpet_disable
&& hpet_address
;
131 * is_hpet_enabled - Check whether the legacy HPET timer interrupt is enabled
133 int is_hpet_enabled(void)
135 return is_hpet_capable() && hpet_legacy_int_enabled
;
137 EXPORT_SYMBOL_GPL(is_hpet_enabled
);
139 static void _hpet_print_config(const char *function
, int line
)
141 u32 i
, id
, period
, cfg
, status
, channels
, l
, h
;
143 pr_info("%s(%d):\n", function
, line
);
145 id
= hpet_readl(HPET_ID
);
146 period
= hpet_readl(HPET_PERIOD
);
147 pr_info("ID: 0x%x, PERIOD: 0x%x\n", id
, period
);
149 cfg
= hpet_readl(HPET_CFG
);
150 status
= hpet_readl(HPET_STATUS
);
151 pr_info("CFG: 0x%x, STATUS: 0x%x\n", cfg
, status
);
153 l
= hpet_readl(HPET_COUNTER
);
154 h
= hpet_readl(HPET_COUNTER
+4);
155 pr_info("COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l
, h
);
157 channels
= ((id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
) + 1;
159 for (i
= 0; i
< channels
; i
++) {
160 l
= hpet_readl(HPET_Tn_CFG(i
));
161 h
= hpet_readl(HPET_Tn_CFG(i
)+4);
162 pr_info("T%d: CFG_l: 0x%x, CFG_h: 0x%x\n", i
, l
, h
);
164 l
= hpet_readl(HPET_Tn_CMP(i
));
165 h
= hpet_readl(HPET_Tn_CMP(i
)+4);
166 pr_info("T%d: CMP_l: 0x%x, CMP_h: 0x%x\n", i
, l
, h
);
168 l
= hpet_readl(HPET_Tn_ROUTE(i
));
169 h
= hpet_readl(HPET_Tn_ROUTE(i
)+4);
170 pr_info("T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n", i
, l
, h
);
174 #define hpet_print_config() \
177 _hpet_print_config(__func__, __LINE__); \
181 * When the HPET driver (/dev/hpet) is enabled, we need to reserve
182 * timer 0 and timer 1 in case of RTC emulation.
186 static void __init
hpet_reserve_platform_timers(void)
191 memset(&hd
, 0, sizeof(hd
));
192 hd
.hd_phys_address
= hpet_address
;
193 hd
.hd_address
= hpet_virt_address
;
194 hd
.hd_nirqs
= hpet_base
.nr_channels
;
197 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
198 * is wrong for i8259!) not the output IRQ. Many BIOS writers
199 * don't bother configuring *any* comparator interrupts.
201 hd
.hd_irq
[0] = HPET_LEGACY_8254
;
202 hd
.hd_irq
[1] = HPET_LEGACY_RTC
;
204 for (i
= 0; i
< hpet_base
.nr_channels
; i
++) {
205 struct hpet_channel
*hc
= hpet_base
.channels
+ i
;
208 hd
.hd_irq
[i
] = hc
->irq
;
211 case HPET_MODE_UNUSED
:
212 case HPET_MODE_DEVICE
:
213 hc
->mode
= HPET_MODE_DEVICE
;
215 case HPET_MODE_CLOCKEVT
:
216 case HPET_MODE_LEGACY
:
217 hpet_reserve_timer(&hd
, hc
->num
);
225 static void __init
hpet_select_device_channel(void)
229 for (i
= 0; i
< hpet_base
.nr_channels
; i
++) {
230 struct hpet_channel
*hc
= hpet_base
.channels
+ i
;
232 /* Associate the first unused channel to /dev/hpet */
233 if (hc
->mode
== HPET_MODE_UNUSED
) {
234 hc
->mode
= HPET_MODE_DEVICE
;
241 static inline void hpet_reserve_platform_timers(void) { }
242 static inline void hpet_select_device_channel(void) {}
245 /* Common HPET functions */
246 static void hpet_stop_counter(void)
248 u32 cfg
= hpet_readl(HPET_CFG
);
250 cfg
&= ~HPET_CFG_ENABLE
;
251 hpet_writel(cfg
, HPET_CFG
);
254 static void hpet_reset_counter(void)
256 hpet_writel(0, HPET_COUNTER
);
257 hpet_writel(0, HPET_COUNTER
+ 4);
260 static void hpet_start_counter(void)
262 unsigned int cfg
= hpet_readl(HPET_CFG
);
264 cfg
|= HPET_CFG_ENABLE
;
265 hpet_writel(cfg
, HPET_CFG
);
268 static void hpet_restart_counter(void)
271 hpet_reset_counter();
272 hpet_start_counter();
275 static void hpet_resume_device(void)
280 static void hpet_resume_counter(struct clocksource
*cs
)
282 hpet_resume_device();
283 hpet_restart_counter();
286 static void hpet_enable_legacy_int(void)
288 unsigned int cfg
= hpet_readl(HPET_CFG
);
290 cfg
|= HPET_CFG_LEGACY
;
291 hpet_writel(cfg
, HPET_CFG
);
292 hpet_legacy_int_enabled
= true;
295 static int hpet_clkevt_set_state_periodic(struct clock_event_device
*evt
)
297 unsigned int channel
= clockevent_to_channel(evt
)->num
;
298 unsigned int cfg
, cmp
, now
;
302 delta
= ((uint64_t)(NSEC_PER_SEC
/ HZ
)) * evt
->mult
;
303 delta
>>= evt
->shift
;
304 now
= hpet_readl(HPET_COUNTER
);
305 cmp
= now
+ (unsigned int)delta
;
306 cfg
= hpet_readl(HPET_Tn_CFG(channel
));
307 cfg
|= HPET_TN_ENABLE
| HPET_TN_PERIODIC
| HPET_TN_SETVAL
|
309 hpet_writel(cfg
, HPET_Tn_CFG(channel
));
310 hpet_writel(cmp
, HPET_Tn_CMP(channel
));
313 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
314 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
315 * bit is automatically cleared after the first write.
316 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
317 * Publication # 24674)
319 hpet_writel((unsigned int)delta
, HPET_Tn_CMP(channel
));
320 hpet_start_counter();
326 static int hpet_clkevt_set_state_oneshot(struct clock_event_device
*evt
)
328 unsigned int channel
= clockevent_to_channel(evt
)->num
;
331 cfg
= hpet_readl(HPET_Tn_CFG(channel
));
332 cfg
&= ~HPET_TN_PERIODIC
;
333 cfg
|= HPET_TN_ENABLE
| HPET_TN_32BIT
;
334 hpet_writel(cfg
, HPET_Tn_CFG(channel
));
339 static int hpet_clkevt_set_state_shutdown(struct clock_event_device
*evt
)
341 unsigned int channel
= clockevent_to_channel(evt
)->num
;
344 cfg
= hpet_readl(HPET_Tn_CFG(channel
));
345 cfg
&= ~HPET_TN_ENABLE
;
346 hpet_writel(cfg
, HPET_Tn_CFG(channel
));
351 static int hpet_clkevt_legacy_resume(struct clock_event_device
*evt
)
353 hpet_enable_legacy_int();
359 hpet_clkevt_set_next_event(unsigned long delta
, struct clock_event_device
*evt
)
361 unsigned int channel
= clockevent_to_channel(evt
)->num
;
365 cnt
= hpet_readl(HPET_COUNTER
);
367 hpet_writel(cnt
, HPET_Tn_CMP(channel
));
370 * HPETs are a complete disaster. The compare register is
371 * based on a equal comparison and neither provides a less
372 * than or equal functionality (which would require to take
373 * the wraparound into account) nor a simple count down event
374 * mode. Further the write to the comparator register is
375 * delayed internally up to two HPET clock cycles in certain
376 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
377 * longer delays. We worked around that by reading back the
378 * compare register, but that required another workaround for
379 * ICH9,10 chips where the first readout after write can
380 * return the old stale value. We already had a minimum
381 * programming delta of 5us enforced, but a NMI or SMI hitting
382 * between the counter readout and the comparator write can
383 * move us behind that point easily. Now instead of reading
384 * the compare register back several times, we make the ETIME
385 * decision based on the following: Return ETIME if the
386 * counter value after the write is less than HPET_MIN_CYCLES
387 * away from the event or if the counter is already ahead of
388 * the event. The minimum programming delta for the generic
389 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
391 res
= (s32
)(cnt
- hpet_readl(HPET_COUNTER
));
393 return res
< HPET_MIN_CYCLES
? -ETIME
: 0;
396 static void hpet_init_clockevent(struct hpet_channel
*hc
, unsigned int rating
)
398 struct clock_event_device
*evt
= &hc
->evt
;
400 evt
->rating
= rating
;
402 evt
->name
= hc
->name
;
403 evt
->cpumask
= cpumask_of(hc
->cpu
);
404 evt
->set_state_oneshot
= hpet_clkevt_set_state_oneshot
;
405 evt
->set_next_event
= hpet_clkevt_set_next_event
;
406 evt
->set_state_shutdown
= hpet_clkevt_set_state_shutdown
;
408 evt
->features
= CLOCK_EVT_FEAT_ONESHOT
;
409 if (hc
->boot_cfg
& HPET_TN_PERIODIC
) {
410 evt
->features
|= CLOCK_EVT_FEAT_PERIODIC
;
411 evt
->set_state_periodic
= hpet_clkevt_set_state_periodic
;
415 static void __init
hpet_legacy_clockevent_register(struct hpet_channel
*hc
)
418 * Start HPET with the boot CPU's cpumask and make it global after
419 * the IO_APIC has been initialized.
421 hc
->cpu
= boot_cpu_data
.cpu_index
;
422 strncpy(hc
->name
, "hpet", sizeof(hc
->name
));
423 hpet_init_clockevent(hc
, 50);
425 hc
->evt
.tick_resume
= hpet_clkevt_legacy_resume
;
428 * Legacy horrors and sins from the past. HPET used periodic mode
429 * unconditionally forever on the legacy channel 0. Removing the
430 * below hack and using the conditional in hpet_init_clockevent()
431 * makes at least Qemu and one hardware machine fail to boot.
432 * There are two issues which cause the boot failure:
434 * #1 After the timer delivery test in IOAPIC and the IOAPIC setup
435 * the next interrupt is not delivered despite the HPET channel
436 * being programmed correctly. Reprogramming the HPET after
437 * switching to IOAPIC makes it work again. After fixing this,
438 * the next issue surfaces:
440 * #2 Due to the unconditional periodic mode availability the Local
441 * APIC timer calibration can hijack the global clockevents
442 * event handler without causing damage. Using oneshot at this
443 * stage makes if hang because the HPET does not get
444 * reprogrammed due to the handler hijacking. Duh, stupid me!
446 * Both issues require major surgery and especially the kick HPET
447 * again after enabling IOAPIC results in really nasty hackery.
448 * This 'assume periodic works' magic has survived since HPET
449 * support got added, so it's questionable whether this should be
450 * fixed. Both Qemu and the failing hardware machine support
451 * periodic mode despite the fact that both don't advertise it in
452 * the configuration register and both need that extra kick after
453 * switching to IOAPIC. Seems to be a feature...
455 hc
->evt
.features
|= CLOCK_EVT_FEAT_PERIODIC
;
456 hc
->evt
.set_state_periodic
= hpet_clkevt_set_state_periodic
;
458 /* Start HPET legacy interrupts */
459 hpet_enable_legacy_int();
461 clockevents_config_and_register(&hc
->evt
, hpet_freq
,
462 HPET_MIN_PROG_DELTA
, 0x7FFFFFFF);
463 global_clock_event
= &hc
->evt
;
464 pr_debug("Clockevent registered\n");
470 #ifdef CONFIG_PCI_MSI
472 void hpet_msi_unmask(struct irq_data
*data
)
474 struct hpet_channel
*hc
= irq_data_get_irq_handler_data(data
);
477 cfg
= hpet_readl(HPET_Tn_CFG(hc
->num
));
478 cfg
|= HPET_TN_ENABLE
| HPET_TN_FSB
;
479 hpet_writel(cfg
, HPET_Tn_CFG(hc
->num
));
482 void hpet_msi_mask(struct irq_data
*data
)
484 struct hpet_channel
*hc
= irq_data_get_irq_handler_data(data
);
487 cfg
= hpet_readl(HPET_Tn_CFG(hc
->num
));
488 cfg
&= ~(HPET_TN_ENABLE
| HPET_TN_FSB
);
489 hpet_writel(cfg
, HPET_Tn_CFG(hc
->num
));
492 void hpet_msi_write(struct hpet_channel
*hc
, struct msi_msg
*msg
)
494 hpet_writel(msg
->data
, HPET_Tn_ROUTE(hc
->num
));
495 hpet_writel(msg
->address_lo
, HPET_Tn_ROUTE(hc
->num
) + 4);
498 static int hpet_clkevt_msi_resume(struct clock_event_device
*evt
)
500 struct hpet_channel
*hc
= clockevent_to_channel(evt
);
501 struct irq_data
*data
= irq_get_irq_data(hc
->irq
);
504 /* Restore the MSI msg and unmask the interrupt */
505 irq_chip_compose_msi_msg(data
, &msg
);
506 hpet_msi_write(hc
, &msg
);
507 hpet_msi_unmask(data
);
511 static irqreturn_t
hpet_msi_interrupt_handler(int irq
, void *data
)
513 struct hpet_channel
*hc
= data
;
514 struct clock_event_device
*evt
= &hc
->evt
;
516 if (!evt
->event_handler
) {
517 pr_info("Spurious interrupt HPET channel %d\n", hc
->num
);
521 evt
->event_handler(evt
);
525 static int hpet_setup_msi_irq(struct hpet_channel
*hc
)
527 if (request_irq(hc
->irq
, hpet_msi_interrupt_handler
,
528 IRQF_TIMER
| IRQF_NOBALANCING
,
532 disable_irq(hc
->irq
);
533 irq_set_affinity(hc
->irq
, cpumask_of(hc
->cpu
));
536 pr_debug("%s irq %u for MSI\n", hc
->name
, hc
->irq
);
541 /* Invoked from the hotplug callback on @cpu */
542 static void init_one_hpet_msi_clockevent(struct hpet_channel
*hc
, int cpu
)
544 struct clock_event_device
*evt
= &hc
->evt
;
547 per_cpu(cpu_hpet_channel
, cpu
) = hc
;
548 hpet_setup_msi_irq(hc
);
550 hpet_init_clockevent(hc
, 110);
551 evt
->tick_resume
= hpet_clkevt_msi_resume
;
553 clockevents_config_and_register(evt
, hpet_freq
, HPET_MIN_PROG_DELTA
,
557 static struct hpet_channel
*hpet_get_unused_clockevent(void)
561 for (i
= 0; i
< hpet_base
.nr_channels
; i
++) {
562 struct hpet_channel
*hc
= hpet_base
.channels
+ i
;
564 if (hc
->mode
!= HPET_MODE_CLOCKEVT
|| hc
->in_use
)
572 static int hpet_cpuhp_online(unsigned int cpu
)
574 struct hpet_channel
*hc
= hpet_get_unused_clockevent();
577 init_one_hpet_msi_clockevent(hc
, cpu
);
581 static int hpet_cpuhp_dead(unsigned int cpu
)
583 struct hpet_channel
*hc
= per_cpu(cpu_hpet_channel
, cpu
);
587 free_irq(hc
->irq
, hc
);
589 per_cpu(cpu_hpet_channel
, cpu
) = NULL
;
593 static void __init
hpet_select_clockevents(void)
597 hpet_base
.nr_clockevents
= 0;
599 /* No point if MSI is disabled or CPU has an Always Runing APIC Timer */
600 if (hpet_msi_disable
|| boot_cpu_has(X86_FEATURE_ARAT
))
605 hpet_domain
= hpet_create_irq_domain(hpet_blockid
);
609 for (i
= 0; i
< hpet_base
.nr_channels
; i
++) {
610 struct hpet_channel
*hc
= hpet_base
.channels
+ i
;
613 if (hc
->mode
!= HPET_MODE_UNUSED
)
616 /* Only consider HPET channel with MSI support */
617 if (!(hc
->boot_cfg
& HPET_TN_FSB_CAP
))
620 sprintf(hc
->name
, "hpet%d", i
);
622 irq
= hpet_assign_irq(hpet_domain
, hc
, hc
->num
);
627 hc
->mode
= HPET_MODE_CLOCKEVT
;
629 if (++hpet_base
.nr_clockevents
== num_possible_cpus())
633 pr_info("%d channels of %d reserved for per-cpu timers\n",
634 hpet_base
.nr_channels
, hpet_base
.nr_clockevents
);
639 static inline void hpet_select_clockevents(void) { }
641 #define hpet_cpuhp_online NULL
642 #define hpet_cpuhp_dead NULL
647 * Clock source related code
649 #if defined(CONFIG_SMP) && defined(CONFIG_64BIT)
651 * Reading the HPET counter is a very slow operation. If a large number of
652 * CPUs are trying to access the HPET counter simultaneously, it can cause
653 * massive delays and slow down system performance dramatically. This may
654 * happen when HPET is the default clock source instead of TSC. For a
655 * really large system with hundreds of CPUs, the slowdown may be so
656 * severe, that it can actually crash the system because of a NMI watchdog
657 * soft lockup, for example.
659 * If multiple CPUs are trying to access the HPET counter at the same time,
660 * we don't actually need to read the counter multiple times. Instead, the
661 * other CPUs can use the counter value read by the first CPU in the group.
663 * This special feature is only enabled on x86-64 systems. It is unlikely
664 * that 32-bit x86 systems will have enough CPUs to require this feature
665 * with its associated locking overhead. We also need 64-bit atomic read.
667 * The lock and the HPET value are stored together and can be read in a
668 * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t
669 * is 32 bits in size.
673 arch_spinlock_t lock
;
679 static union hpet_lock hpet __cacheline_aligned
= {
680 { .lock
= __ARCH_SPIN_LOCK_UNLOCKED
, },
683 static u64
read_hpet(struct clocksource
*cs
)
686 union hpet_lock old
, new;
688 BUILD_BUG_ON(sizeof(union hpet_lock
) != 8);
691 * Read HPET directly if in NMI.
694 return (u64
)hpet_readl(HPET_COUNTER
);
697 * Read the current state of the lock and HPET value atomically.
699 old
.lockval
= READ_ONCE(hpet
.lockval
);
701 if (arch_spin_is_locked(&old
.lock
))
704 local_irq_save(flags
);
705 if (arch_spin_trylock(&hpet
.lock
)) {
706 new.value
= hpet_readl(HPET_COUNTER
);
708 * Use WRITE_ONCE() to prevent store tearing.
710 WRITE_ONCE(hpet
.value
, new.value
);
711 arch_spin_unlock(&hpet
.lock
);
712 local_irq_restore(flags
);
713 return (u64
)new.value
;
715 local_irq_restore(flags
);
721 * Wait until the HPET value change or the lock is free to indicate
722 * its value is up-to-date.
724 * It is possible that old.value has already contained the latest
725 * HPET value while the lock holder was in the process of releasing
726 * the lock. Checking for lock state change will enable us to return
727 * the value immediately instead of waiting for the next HPET reader
732 new.lockval
= READ_ONCE(hpet
.lockval
);
733 } while ((new.value
== old
.value
) && arch_spin_is_locked(&new.lock
));
735 return (u64
)new.value
;
741 static u64
read_hpet(struct clocksource
*cs
)
743 return (u64
)hpet_readl(HPET_COUNTER
);
747 static struct clocksource clocksource_hpet
= {
752 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
753 .resume
= hpet_resume_counter
,
757 * AMD SB700 based systems with spread spectrum enabled use a SMM based
758 * HPET emulation to provide proper frequency setting.
760 * On such systems the SMM code is initialized with the first HPET register
761 * access and takes some time to complete. During this time the config
762 * register reads 0xffffffff. We check for max 1000 loops whether the
763 * config register reads a non-0xffffffff value to make sure that the
764 * HPET is up and running before we proceed any further.
766 * A counting loop is safe, as the HPET access takes thousands of CPU cycles.
768 * On non-SB700 based machines this check is only done once and has no
771 static bool __init
hpet_cfg_working(void)
775 for (i
= 0; i
< 1000; i
++) {
776 if (hpet_readl(HPET_CFG
) != 0xFFFFFFFF)
780 pr_warn("Config register invalid. Disabling HPET\n");
784 static bool __init
hpet_counting(void)
788 hpet_restart_counter();
790 t1
= hpet_readl(HPET_COUNTER
);
794 * We don't know the TSC frequency yet, but waiting for
795 * 200000 TSC cycles is safe:
800 if (t1
!= hpet_readl(HPET_COUNTER
))
803 } while ((now
- start
) < 200000UL);
805 pr_warn("Counter not counting. HPET disabled\n");
810 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
812 int __init
hpet_enable(void)
814 u32 hpet_period
, cfg
, id
, irq
;
815 unsigned int i
, channels
;
816 struct hpet_channel
*hc
;
819 if (!is_hpet_capable())
823 if (!hpet_virt_address
)
826 /* Validate that the config register is working */
827 if (!hpet_cfg_working())
831 * Read the period and check for a sane value:
833 hpet_period
= hpet_readl(HPET_PERIOD
);
834 if (hpet_period
< HPET_MIN_PERIOD
|| hpet_period
> HPET_MAX_PERIOD
)
837 /* The period is a femtoseconds value. Convert it to a frequency. */
839 do_div(freq
, hpet_period
);
843 * Read the HPET ID register to retrieve the IRQ routing
844 * information and the number of channels
846 id
= hpet_readl(HPET_ID
);
849 /* This is the HPET channel number which is zero based */
850 channels
= ((id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
) + 1;
853 * The legacy routing mode needs at least two channels, tick timer
854 * and the rtc emulation channel.
856 if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC
) && channels
< 2)
859 hc
= kcalloc(channels
, sizeof(*hc
), GFP_KERNEL
);
861 pr_warn("Disabling HPET.\n");
864 hpet_base
.channels
= hc
;
865 hpet_base
.nr_channels
= channels
;
867 /* Read, store and sanitize the global configuration */
868 cfg
= hpet_readl(HPET_CFG
);
869 hpet_base
.boot_cfg
= cfg
;
870 cfg
&= ~(HPET_CFG_ENABLE
| HPET_CFG_LEGACY
);
871 hpet_writel(cfg
, HPET_CFG
);
873 pr_warn("Global config: Unknown bits %#x\n", cfg
);
875 /* Read, store and sanitize the per channel configuration */
876 for (i
= 0; i
< channels
; i
++, hc
++) {
879 cfg
= hpet_readl(HPET_Tn_CFG(i
));
881 irq
= (cfg
& Tn_INT_ROUTE_CNF_MASK
) >> Tn_INT_ROUTE_CNF_SHIFT
;
884 cfg
&= ~(HPET_TN_ENABLE
| HPET_TN_LEVEL
| HPET_TN_FSB
);
885 hpet_writel(cfg
, HPET_Tn_CFG(i
));
887 cfg
&= ~(HPET_TN_PERIODIC
| HPET_TN_PERIODIC_CAP
888 | HPET_TN_64BIT_CAP
| HPET_TN_32BIT
| HPET_TN_ROUTE
889 | HPET_TN_FSB
| HPET_TN_FSB_CAP
);
891 pr_warn("Channel #%u config: Unknown bits %#x\n", i
, cfg
);
896 * Validate that the counter is counting. This needs to be done
897 * after sanitizing the config registers to properly deal with
898 * force enabled HPETs.
900 if (!hpet_counting())
903 clocksource_register_hz(&clocksource_hpet
, (u32
)hpet_freq
);
905 if (id
& HPET_ID_LEGSUP
) {
906 hpet_legacy_clockevent_register(&hpet_base
.channels
[0]);
907 hpet_base
.channels
[0].mode
= HPET_MODE_LEGACY
;
908 if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC
))
909 hpet_base
.channels
[1].mode
= HPET_MODE_LEGACY
;
915 kfree(hpet_base
.channels
);
916 hpet_base
.channels
= NULL
;
917 hpet_base
.nr_channels
= 0;
918 hpet_clear_mapping();
924 * The late initialization runs after the PCI quirks have been invoked
925 * which might have detected a system on which the HPET can be enforced.
927 * Also, the MSI machinery is not working yet when the HPET is initialized
930 * If the HPET is enabled, then:
932 * 1) Reserve one channel for /dev/hpet if CONFIG_HPET=y
933 * 2) Reserve up to num_possible_cpus() channels as per CPU clockevents
934 * 3) Setup /dev/hpet if CONFIG_HPET=y
935 * 4) Register hotplug callbacks when clockevents are available
937 static __init
int hpet_late_init(void)
942 if (!force_hpet_address
)
945 hpet_address
= force_hpet_address
;
949 if (!hpet_virt_address
)
952 hpet_select_device_channel();
953 hpet_select_clockevents();
954 hpet_reserve_platform_timers();
957 if (!hpet_base
.nr_clockevents
)
960 ret
= cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE
, "x86/hpet:online",
961 hpet_cpuhp_online
, NULL
);
964 ret
= cpuhp_setup_state(CPUHP_X86_HPET_DEAD
, "x86/hpet:dead", NULL
,
971 cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE
);
974 fs_initcall(hpet_late_init
);
976 void hpet_disable(void)
981 if (!is_hpet_capable() || !hpet_virt_address
)
984 /* Restore boot configuration with the enable bit cleared */
985 cfg
= hpet_base
.boot_cfg
;
986 cfg
&= ~HPET_CFG_ENABLE
;
987 hpet_writel(cfg
, HPET_CFG
);
989 /* Restore the channel boot configuration */
990 for (i
= 0; i
< hpet_base
.nr_channels
; i
++)
991 hpet_writel(hpet_base
.channels
[i
].boot_cfg
, HPET_Tn_CFG(i
));
993 /* If the HPET was enabled at boot time, reenable it */
994 if (hpet_base
.boot_cfg
& HPET_CFG_ENABLE
)
995 hpet_writel(hpet_base
.boot_cfg
, HPET_CFG
);
998 #ifdef CONFIG_HPET_EMULATE_RTC
1001 * HPET in LegacyReplacement mode eats up the RTC interrupt line. When HPET
1002 * is enabled, we support RTC interrupt functionality in software.
1004 * RTC has 3 kinds of interrupts:
1006 * 1) Update Interrupt - generate an interrupt, every second, when the
1007 * RTC clock is updated
1008 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1009 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1010 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all frequencies in powers of 2)
1012 * (1) and (2) above are implemented using polling at a frequency of 64 Hz:
1013 * DEFAULT_RTC_INT_FREQ.
1015 * The exact frequency is a tradeoff between accuracy and interrupt overhead.
1017 * For (3), we use interrupts at 64 Hz, or the user specified periodic frequency,
1020 #include <linux/mc146818rtc.h>
1021 #include <linux/rtc.h>
1023 #define DEFAULT_RTC_INT_FREQ 64
1024 #define DEFAULT_RTC_SHIFT 6
1025 #define RTC_NUM_INTS 1
1027 static unsigned long hpet_rtc_flags
;
1028 static int hpet_prev_update_sec
;
1029 static struct rtc_time hpet_alarm_time
;
1030 static unsigned long hpet_pie_count
;
1031 static u32 hpet_t1_cmp
;
1032 static u32 hpet_default_delta
;
1033 static u32 hpet_pie_delta
;
1034 static unsigned long hpet_pie_limit
;
1036 static rtc_irq_handler irq_handler
;
1039 * Check that the HPET counter c1 is ahead of c2
1041 static inline int hpet_cnt_ahead(u32 c1
, u32 c2
)
1043 return (s32
)(c2
- c1
) < 0;
1047 * Registers a IRQ handler.
1049 int hpet_register_irq_handler(rtc_irq_handler handler
)
1051 if (!is_hpet_enabled())
1056 irq_handler
= handler
;
1060 EXPORT_SYMBOL_GPL(hpet_register_irq_handler
);
1063 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1066 void hpet_unregister_irq_handler(rtc_irq_handler handler
)
1068 if (!is_hpet_enabled())
1074 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler
);
1077 * Channel 1 for RTC emulation. We use one shot mode, as periodic mode
1078 * is not supported by all HPET implementations for channel 1.
1080 * hpet_rtc_timer_init() is called when the rtc is initialized.
1082 int hpet_rtc_timer_init(void)
1084 unsigned int cfg
, cnt
, delta
;
1085 unsigned long flags
;
1087 if (!is_hpet_enabled())
1090 if (!hpet_default_delta
) {
1091 struct clock_event_device
*evt
= &hpet_base
.channels
[0].evt
;
1094 clc
= (uint64_t) evt
->mult
* NSEC_PER_SEC
;
1095 clc
>>= evt
->shift
+ DEFAULT_RTC_SHIFT
;
1096 hpet_default_delta
= clc
;
1099 if (!(hpet_rtc_flags
& RTC_PIE
) || hpet_pie_limit
)
1100 delta
= hpet_default_delta
;
1102 delta
= hpet_pie_delta
;
1104 local_irq_save(flags
);
1106 cnt
= delta
+ hpet_readl(HPET_COUNTER
);
1107 hpet_writel(cnt
, HPET_T1_CMP
);
1110 cfg
= hpet_readl(HPET_T1_CFG
);
1111 cfg
&= ~HPET_TN_PERIODIC
;
1112 cfg
|= HPET_TN_ENABLE
| HPET_TN_32BIT
;
1113 hpet_writel(cfg
, HPET_T1_CFG
);
1115 local_irq_restore(flags
);
1119 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init
);
1121 static void hpet_disable_rtc_channel(void)
1123 u32 cfg
= hpet_readl(HPET_T1_CFG
);
1125 cfg
&= ~HPET_TN_ENABLE
;
1126 hpet_writel(cfg
, HPET_T1_CFG
);
1130 * The functions below are called from rtc driver.
1131 * Return 0 if HPET is not being used.
1132 * Otherwise do the necessary changes and return 1.
1134 int hpet_mask_rtc_irq_bit(unsigned long bit_mask
)
1136 if (!is_hpet_enabled())
1139 hpet_rtc_flags
&= ~bit_mask
;
1140 if (unlikely(!hpet_rtc_flags
))
1141 hpet_disable_rtc_channel();
1145 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit
);
1147 int hpet_set_rtc_irq_bit(unsigned long bit_mask
)
1149 unsigned long oldbits
= hpet_rtc_flags
;
1151 if (!is_hpet_enabled())
1154 hpet_rtc_flags
|= bit_mask
;
1156 if ((bit_mask
& RTC_UIE
) && !(oldbits
& RTC_UIE
))
1157 hpet_prev_update_sec
= -1;
1160 hpet_rtc_timer_init();
1164 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit
);
1166 int hpet_set_alarm_time(unsigned char hrs
, unsigned char min
, unsigned char sec
)
1168 if (!is_hpet_enabled())
1171 hpet_alarm_time
.tm_hour
= hrs
;
1172 hpet_alarm_time
.tm_min
= min
;
1173 hpet_alarm_time
.tm_sec
= sec
;
1177 EXPORT_SYMBOL_GPL(hpet_set_alarm_time
);
1179 int hpet_set_periodic_freq(unsigned long freq
)
1183 if (!is_hpet_enabled())
1186 if (freq
<= DEFAULT_RTC_INT_FREQ
) {
1187 hpet_pie_limit
= DEFAULT_RTC_INT_FREQ
/ freq
;
1189 struct clock_event_device
*evt
= &hpet_base
.channels
[0].evt
;
1191 clc
= (uint64_t) evt
->mult
* NSEC_PER_SEC
;
1194 hpet_pie_delta
= clc
;
1200 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq
);
1202 int hpet_rtc_dropped_irq(void)
1204 return is_hpet_enabled();
1206 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq
);
1208 static void hpet_rtc_timer_reinit(void)
1213 if (unlikely(!hpet_rtc_flags
))
1214 hpet_disable_rtc_channel();
1216 if (!(hpet_rtc_flags
& RTC_PIE
) || hpet_pie_limit
)
1217 delta
= hpet_default_delta
;
1219 delta
= hpet_pie_delta
;
1222 * Increment the comparator value until we are ahead of the
1226 hpet_t1_cmp
+= delta
;
1227 hpet_writel(hpet_t1_cmp
, HPET_T1_CMP
);
1229 } while (!hpet_cnt_ahead(hpet_t1_cmp
, hpet_readl(HPET_COUNTER
)));
1232 if (hpet_rtc_flags
& RTC_PIE
)
1233 hpet_pie_count
+= lost_ints
;
1234 if (printk_ratelimit())
1235 pr_warn("Lost %d RTC interrupts\n", lost_ints
);
1239 irqreturn_t
hpet_rtc_interrupt(int irq
, void *dev_id
)
1241 struct rtc_time curr_time
;
1242 unsigned long rtc_int_flag
= 0;
1244 hpet_rtc_timer_reinit();
1245 memset(&curr_time
, 0, sizeof(struct rtc_time
));
1247 if (hpet_rtc_flags
& (RTC_UIE
| RTC_AIE
))
1248 mc146818_get_time(&curr_time
);
1250 if (hpet_rtc_flags
& RTC_UIE
&&
1251 curr_time
.tm_sec
!= hpet_prev_update_sec
) {
1252 if (hpet_prev_update_sec
>= 0)
1253 rtc_int_flag
= RTC_UF
;
1254 hpet_prev_update_sec
= curr_time
.tm_sec
;
1257 if (hpet_rtc_flags
& RTC_PIE
&& ++hpet_pie_count
>= hpet_pie_limit
) {
1258 rtc_int_flag
|= RTC_PF
;
1262 if (hpet_rtc_flags
& RTC_AIE
&&
1263 (curr_time
.tm_sec
== hpet_alarm_time
.tm_sec
) &&
1264 (curr_time
.tm_min
== hpet_alarm_time
.tm_min
) &&
1265 (curr_time
.tm_hour
== hpet_alarm_time
.tm_hour
))
1266 rtc_int_flag
|= RTC_AF
;
1269 rtc_int_flag
|= (RTC_IRQF
| (RTC_NUM_INTS
<< 8));
1271 irq_handler(rtc_int_flag
, dev_id
);
1275 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt
);