2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
10 * Handle hardware traps and faults.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/timer.h>
34 #include <linux/init.h>
35 #include <linux/bug.h>
36 #include <linux/nmi.h>
38 #include <linux/smp.h>
40 #include <asm/stacktrace.h>
41 #include <asm/processor.h>
42 #include <asm/debugreg.h>
43 #include <linux/atomic.h>
44 #include <asm/text-patching.h>
45 #include <asm/ftrace.h>
46 #include <asm/traps.h>
48 #include <asm/fpu/internal.h>
50 #include <asm/cpu_entry_area.h>
52 #include <asm/fixmap.h>
53 #include <asm/mach_traps.h>
54 #include <asm/alternative.h>
55 #include <asm/fpu/xstate.h>
59 #include <asm/insn-eval.h>
62 #include <asm/x86_init.h>
63 #include <asm/pgalloc.h>
64 #include <asm/proto.h>
66 #include <asm/processor-flags.h>
67 #include <asm/setup.h>
68 #include <asm/proto.h>
71 DECLARE_BITMAP(system_vectors
, NR_VECTORS
);
73 static inline void cond_local_irq_enable(struct pt_regs
*regs
)
75 if (regs
->flags
& X86_EFLAGS_IF
)
79 static inline void cond_local_irq_disable(struct pt_regs
*regs
)
81 if (regs
->flags
& X86_EFLAGS_IF
)
86 * In IST context, we explicitly disable preemption. This serves two
87 * purposes: it makes it much less likely that we would accidentally
88 * schedule in IST context and it will force a warning if we somehow
89 * manage to schedule by accident.
91 void ist_enter(struct pt_regs
*regs
)
93 if (user_mode(regs
)) {
94 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
97 * We might have interrupted pretty much anything. In
98 * fact, if we're a machine check, we can even interrupt
99 * NMI processing. We don't want in_nmi() to return true,
100 * but we need to notify RCU.
107 /* This code is a bit fragile. Test it. */
108 RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
110 NOKPROBE_SYMBOL(ist_enter
);
112 void ist_exit(struct pt_regs
*regs
)
114 preempt_enable_no_resched();
116 if (!user_mode(regs
))
121 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
122 * @regs: regs passed to the IST exception handler
124 * IST exception handlers normally cannot schedule. As a special
125 * exception, if the exception interrupted userspace code (i.e.
126 * user_mode(regs) would return true) and the exception was not
127 * a double fault, it can be safe to schedule. ist_begin_non_atomic()
128 * begins a non-atomic section within an ist_enter()/ist_exit() region.
129 * Callers are responsible for enabling interrupts themselves inside
130 * the non-atomic section, and callers must call ist_end_non_atomic()
133 void ist_begin_non_atomic(struct pt_regs
*regs
)
135 BUG_ON(!user_mode(regs
));
138 * Sanity check: we need to be on the normal thread stack. This
139 * will catch asm bugs and any attempt to use ist_preempt_enable
142 BUG_ON(!on_thread_stack());
144 preempt_enable_no_resched();
148 * ist_end_non_atomic() - begin a non-atomic section in an IST exception
150 * Ends a non-atomic section started with ist_begin_non_atomic().
152 void ist_end_non_atomic(void)
157 int is_valid_bugaddr(unsigned long addr
)
161 if (addr
< TASK_SIZE_MAX
)
164 if (probe_kernel_address((unsigned short *)addr
, ud
))
167 return ud
== INSN_UD0
|| ud
== INSN_UD2
;
170 int fixup_bug(struct pt_regs
*regs
, int trapnr
)
172 if (trapnr
!= X86_TRAP_UD
)
175 switch (report_bug(regs
->ip
, regs
)) {
176 case BUG_TRAP_TYPE_NONE
:
177 case BUG_TRAP_TYPE_BUG
:
180 case BUG_TRAP_TYPE_WARN
:
188 static nokprobe_inline
int
189 do_trap_no_signal(struct task_struct
*tsk
, int trapnr
, const char *str
,
190 struct pt_regs
*regs
, long error_code
)
192 if (v8086_mode(regs
)) {
194 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
195 * On nmi (interrupt 2), do_trap should not be called.
197 if (trapnr
< X86_TRAP_UD
) {
198 if (!handle_vm86_trap((struct kernel_vm86_regs
*) regs
,
202 } else if (!user_mode(regs
)) {
203 if (fixup_exception(regs
, trapnr
, error_code
, 0))
206 tsk
->thread
.error_code
= error_code
;
207 tsk
->thread
.trap_nr
= trapnr
;
208 die(str
, regs
, error_code
);
212 * We want error_code and trap_nr set for userspace faults and
213 * kernelspace faults which result in die(), but not
214 * kernelspace faults which are fixed up. die() gives the
215 * process no chance to handle the signal and notice the
216 * kernel fault information, so that won't result in polluting
217 * the information about previously queued, but not yet
218 * delivered, faults. See also do_general_protection below.
220 tsk
->thread
.error_code
= error_code
;
221 tsk
->thread
.trap_nr
= trapnr
;
226 static void show_signal(struct task_struct
*tsk
, int signr
,
227 const char *type
, const char *desc
,
228 struct pt_regs
*regs
, long error_code
)
230 if (show_unhandled_signals
&& unhandled_signal(tsk
, signr
) &&
231 printk_ratelimit()) {
232 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
233 tsk
->comm
, task_pid_nr(tsk
), type
, desc
,
234 regs
->ip
, regs
->sp
, error_code
);
235 print_vma_addr(KERN_CONT
" in ", regs
->ip
);
241 do_trap(int trapnr
, int signr
, char *str
, struct pt_regs
*regs
,
242 long error_code
, int sicode
, void __user
*addr
)
244 struct task_struct
*tsk
= current
;
246 if (!do_trap_no_signal(tsk
, trapnr
, str
, regs
, error_code
))
249 show_signal(tsk
, signr
, "trap ", str
, regs
, error_code
);
254 force_sig_fault(signr
, sicode
, addr
);
256 NOKPROBE_SYMBOL(do_trap
);
258 static void do_error_trap(struct pt_regs
*regs
, long error_code
, char *str
,
259 unsigned long trapnr
, int signr
, int sicode
, void __user
*addr
)
261 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
264 * WARN*()s end up here; fix them up before we call the
267 if (!user_mode(regs
) && fixup_bug(regs
, trapnr
))
270 if (notify_die(DIE_TRAP
, str
, regs
, error_code
, trapnr
, signr
) !=
272 cond_local_irq_enable(regs
);
273 do_trap(trapnr
, signr
, str
, regs
, error_code
, sicode
, addr
);
277 #define IP ((void __user *)uprobe_get_trap_addr(regs))
278 #define DO_ERROR(trapnr, signr, sicode, addr, str, name) \
279 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
281 do_error_trap(regs, error_code, str, trapnr, signr, sicode, addr); \
284 DO_ERROR(X86_TRAP_DE
, SIGFPE
, FPE_INTDIV
, IP
, "divide error", divide_error
)
285 DO_ERROR(X86_TRAP_OF
, SIGSEGV
, 0, NULL
, "overflow", overflow
)
286 DO_ERROR(X86_TRAP_UD
, SIGILL
, ILL_ILLOPN
, IP
, "invalid opcode", invalid_op
)
287 DO_ERROR(X86_TRAP_OLD_MF
, SIGFPE
, 0, NULL
, "coprocessor segment overrun", coprocessor_segment_overrun
)
288 DO_ERROR(X86_TRAP_TS
, SIGSEGV
, 0, NULL
, "invalid TSS", invalid_TSS
)
289 DO_ERROR(X86_TRAP_NP
, SIGBUS
, 0, NULL
, "segment not present", segment_not_present
)
290 DO_ERROR(X86_TRAP_SS
, SIGBUS
, 0, NULL
, "stack segment", stack_segment
)
293 dotraplinkage
void do_alignment_check(struct pt_regs
*regs
, long error_code
)
295 char *str
= "alignment check";
297 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
299 if (notify_die(DIE_TRAP
, str
, regs
, error_code
, X86_TRAP_AC
, SIGBUS
) == NOTIFY_STOP
)
302 if (!user_mode(regs
))
303 die("Split lock detected\n", regs
, error_code
);
307 if (handle_user_split_lock(regs
, error_code
))
310 do_trap(X86_TRAP_AC
, SIGBUS
, "alignment check", regs
,
311 error_code
, BUS_ADRALN
, NULL
);
314 #ifdef CONFIG_VMAP_STACK
315 __visible
void __noreturn
handle_stack_overflow(const char *message
,
316 struct pt_regs
*regs
,
317 unsigned long fault_address
)
319 printk(KERN_EMERG
"BUG: stack guard page was hit at %p (stack is %p..%p)\n",
320 (void *)fault_address
, current
->stack
,
321 (char *)current
->stack
+ THREAD_SIZE
- 1);
322 die(message
, regs
, 0);
324 /* Be absolutely certain we don't return. */
325 panic("%s", message
);
329 #if defined(CONFIG_X86_64) || defined(CONFIG_DOUBLEFAULT)
331 * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
333 * On x86_64, this is more or less a normal kernel entry. Notwithstanding the
334 * SDM's warnings about double faults being unrecoverable, returning works as
335 * expected. Presumably what the SDM actually means is that the CPU may get
336 * the register state wrong on entry, so returning could be a bad idea.
338 * Various CPU engineers have promised that double faults due to an IRET fault
339 * while the stack is read-only are, in fact, recoverable.
341 * On x86_32, this is entered through a task gate, and regs are synthesized
342 * from the TSS. Returning is, in principle, okay, but changes to regs will
343 * be lost. If, for some reason, we need to return to a context with modified
344 * regs, the shim code could be adjusted to synchronize the registers.
346 dotraplinkage
void do_double_fault(struct pt_regs
*regs
, long error_code
, unsigned long cr2
)
348 static const char str
[] = "double fault";
349 struct task_struct
*tsk
= current
;
351 #ifdef CONFIG_X86_ESPFIX64
352 extern unsigned char native_irq_return_iret
[];
355 * If IRET takes a non-IST fault on the espfix64 stack, then we
356 * end up promoting it to a doublefault. In that case, take
357 * advantage of the fact that we're not using the normal (TSS.sp0)
358 * stack right now. We can write a fake #GP(0) frame at TSS.sp0
359 * and then modify our own IRET frame so that, when we return,
360 * we land directly at the #GP(0) vector with the stack already
361 * set up according to its expectations.
363 * The net result is that our #GP handler will think that we
364 * entered from usermode with the bad user context.
366 * No need for ist_enter here because we don't use RCU.
368 if (((long)regs
->sp
>> P4D_SHIFT
) == ESPFIX_PGD_ENTRY
&&
369 regs
->cs
== __KERNEL_CS
&&
370 regs
->ip
== (unsigned long)native_irq_return_iret
)
372 struct pt_regs
*gpregs
= (struct pt_regs
*)this_cpu_read(cpu_tss_rw
.x86_tss
.sp0
) - 1;
375 * regs->sp points to the failing IRET frame on the
376 * ESPFIX64 stack. Copy it to the entry stack. This fills
377 * in gpregs->ss through gpregs->ip.
380 memmove(&gpregs
->ip
, (void *)regs
->sp
, 5*8);
381 gpregs
->orig_ax
= 0; /* Missing (lost) #GP error code */
384 * Adjust our frame so that we return straight to the #GP
385 * vector with the expected RSP value. This is safe because
386 * we won't enable interupts or schedule before we invoke
387 * general_protection, so nothing will clobber the stack
388 * frame we just set up.
390 * We will enter general_protection with kernel GSBASE,
391 * which is what the stub expects, given that the faulting
392 * RIP will be the IRET instruction.
394 regs
->ip
= (unsigned long)general_protection
;
395 regs
->sp
= (unsigned long)&gpregs
->orig_ax
;
402 notify_die(DIE_TRAP
, str
, regs
, error_code
, X86_TRAP_DF
, SIGSEGV
);
404 tsk
->thread
.error_code
= error_code
;
405 tsk
->thread
.trap_nr
= X86_TRAP_DF
;
407 #ifdef CONFIG_VMAP_STACK
409 * If we overflow the stack into a guard page, the CPU will fail
410 * to deliver #PF and will send #DF instead. Similarly, if we
411 * take any non-IST exception while too close to the bottom of
412 * the stack, the processor will get a page fault while
413 * delivering the exception and will generate a double fault.
415 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
416 * Page-Fault Exception (#PF):
418 * Processors update CR2 whenever a page fault is detected. If a
419 * second page fault occurs while an earlier page fault is being
420 * delivered, the faulting linear address of the second fault will
421 * overwrite the contents of CR2 (replacing the previous
422 * address). These updates to CR2 occur even if the page fault
423 * results in a double fault or occurs during the delivery of a
426 * The logic below has a small possibility of incorrectly diagnosing
427 * some errors as stack overflows. For example, if the IDT or GDT
428 * gets corrupted such that #GP delivery fails due to a bad descriptor
429 * causing #GP and we hit this condition while CR2 coincidentally
430 * points to the stack guard page, we'll think we overflowed the
431 * stack. Given that we're going to panic one way or another
432 * if this happens, this isn't necessarily worth fixing.
434 * If necessary, we could improve the test by only diagnosing
435 * a stack overflow if the saved RSP points within 47 bytes of
436 * the bottom of the stack: if RSP == tsk_stack + 48 and we
437 * take an exception, the stack is already aligned and there
438 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
439 * possible error code, so a stack overflow would *not* double
440 * fault. With any less space left, exception delivery could
441 * fail, and, as a practical matter, we've overflowed the
442 * stack even if the actual trigger for the double fault was
445 if ((unsigned long)task_stack_page(tsk
) - 1 - cr2
< PAGE_SIZE
)
446 handle_stack_overflow("kernel stack overflow (double-fault)", regs
, cr2
);
449 pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code
);
450 die("double fault", regs
, error_code
);
451 panic("Machine halted.");
455 dotraplinkage
void do_bounds(struct pt_regs
*regs
, long error_code
)
457 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
458 if (notify_die(DIE_TRAP
, "bounds", regs
, error_code
,
459 X86_TRAP_BR
, SIGSEGV
) == NOTIFY_STOP
)
461 cond_local_irq_enable(regs
);
463 if (!user_mode(regs
))
464 die("bounds", regs
, error_code
);
466 do_trap(X86_TRAP_BR
, SIGSEGV
, "bounds", regs
, error_code
, 0, NULL
);
469 enum kernel_gp_hint
{
476 * When an uncaught #GP occurs, try to determine the memory address accessed by
477 * the instruction and return that address to the caller. Also, try to figure
478 * out whether any part of the access to that address was non-canonical.
480 static enum kernel_gp_hint
get_kernel_gp_address(struct pt_regs
*regs
,
483 u8 insn_buf
[MAX_INSN_SIZE
];
486 if (probe_kernel_read(insn_buf
, (void *)regs
->ip
, MAX_INSN_SIZE
))
489 kernel_insn_init(&insn
, insn_buf
, MAX_INSN_SIZE
);
490 insn_get_modrm(&insn
);
493 *addr
= (unsigned long)insn_get_addr_ref(&insn
, regs
);
500 * - the operand is not in the kernel half
501 * - the last byte of the operand is not in the user canonical half
503 if (*addr
< ~__VIRTUAL_MASK
&&
504 *addr
+ insn
.opnd_bytes
- 1 > __VIRTUAL_MASK
)
505 return GP_NON_CANONICAL
;
511 #define GPFSTR "general protection fault"
513 dotraplinkage
void do_general_protection(struct pt_regs
*regs
, long error_code
)
515 char desc
[sizeof(GPFSTR
) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR
;
516 enum kernel_gp_hint hint
= GP_NO_HINT
;
517 struct task_struct
*tsk
;
518 unsigned long gp_addr
;
521 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
522 cond_local_irq_enable(regs
);
524 if (static_cpu_has(X86_FEATURE_UMIP
)) {
525 if (user_mode(regs
) && fixup_umip_exception(regs
))
529 if (v8086_mode(regs
)) {
531 handle_vm86_fault((struct kernel_vm86_regs
*) regs
, error_code
);
537 if (user_mode(regs
)) {
538 tsk
->thread
.error_code
= error_code
;
539 tsk
->thread
.trap_nr
= X86_TRAP_GP
;
541 show_signal(tsk
, SIGSEGV
, "", desc
, regs
, error_code
);
547 if (fixup_exception(regs
, X86_TRAP_GP
, error_code
, 0))
550 tsk
->thread
.error_code
= error_code
;
551 tsk
->thread
.trap_nr
= X86_TRAP_GP
;
554 * To be potentially processing a kprobe fault and to trust the result
555 * from kprobe_running(), we have to be non-preemptible.
557 if (!preemptible() &&
559 kprobe_fault_handler(regs
, X86_TRAP_GP
))
562 ret
= notify_die(DIE_GPF
, desc
, regs
, error_code
, X86_TRAP_GP
, SIGSEGV
);
563 if (ret
== NOTIFY_STOP
)
567 snprintf(desc
, sizeof(desc
), "segment-related " GPFSTR
);
569 hint
= get_kernel_gp_address(regs
, &gp_addr
);
571 if (hint
!= GP_NO_HINT
)
572 snprintf(desc
, sizeof(desc
), GPFSTR
", %s 0x%lx",
573 (hint
== GP_NON_CANONICAL
) ? "probably for non-canonical address"
574 : "maybe for address",
578 * KASAN is interested only in the non-canonical case, clear it
581 if (hint
!= GP_NON_CANONICAL
)
584 die_addr(desc
, regs
, error_code
, gp_addr
);
587 NOKPROBE_SYMBOL(do_general_protection
);
589 dotraplinkage
void notrace
do_int3(struct pt_regs
*regs
, long error_code
)
591 if (poke_int3_handler(regs
))
595 * Unlike any other non-IST entry, we can be called from a kprobe in
596 * non-CONTEXT_KERNEL kernel mode or even during context tracking
597 * state changes. Make sure that we wake up RCU even if we're coming
600 * This means that we can't schedule even if we came from a
601 * preemptible kernel context. That's okay.
603 if (!user_mode(regs
)) {
607 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
609 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
610 if (kgdb_ll_trap(DIE_INT3
, "int3", regs
, error_code
, X86_TRAP_BP
,
611 SIGTRAP
) == NOTIFY_STOP
)
613 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
615 #ifdef CONFIG_KPROBES
616 if (kprobe_int3_handler(regs
))
620 if (notify_die(DIE_INT3
, "int3", regs
, error_code
, X86_TRAP_BP
,
621 SIGTRAP
) == NOTIFY_STOP
)
624 cond_local_irq_enable(regs
);
625 do_trap(X86_TRAP_BP
, SIGTRAP
, "int3", regs
, error_code
, 0, NULL
);
626 cond_local_irq_disable(regs
);
629 if (!user_mode(regs
)) {
630 preempt_enable_no_resched();
634 NOKPROBE_SYMBOL(do_int3
);
638 * Help handler running on a per-cpu (IST or entry trampoline) stack
639 * to switch to the normal thread stack if the interrupted code was in
640 * user mode. The actual stack switch is done in entry_64.S
642 asmlinkage __visible notrace
struct pt_regs
*sync_regs(struct pt_regs
*eregs
)
644 struct pt_regs
*regs
= (struct pt_regs
*)this_cpu_read(cpu_current_top_of_stack
) - 1;
649 NOKPROBE_SYMBOL(sync_regs
);
651 struct bad_iret_stack
{
652 void *error_entry_ret
;
656 asmlinkage __visible notrace
657 struct bad_iret_stack
*fixup_bad_iret(struct bad_iret_stack
*s
)
660 * This is called from entry_64.S early in handling a fault
661 * caused by a bad iret to user mode. To handle the fault
662 * correctly, we want to move our stack frame to where it would
663 * be had we entered directly on the entry stack (rather than
664 * just below the IRET frame) and we want to pretend that the
665 * exception came from the IRET target.
667 struct bad_iret_stack
*new_stack
=
668 (struct bad_iret_stack
*)this_cpu_read(cpu_tss_rw
.x86_tss
.sp0
) - 1;
670 /* Copy the IRET target to the new stack. */
671 memmove(&new_stack
->regs
.ip
, (void *)s
->regs
.sp
, 5*8);
673 /* Copy the remainder of the stack from the current stack. */
674 memmove(new_stack
, s
, offsetof(struct bad_iret_stack
, regs
.ip
));
676 BUG_ON(!user_mode(&new_stack
->regs
));
679 NOKPROBE_SYMBOL(fixup_bad_iret
);
682 static bool is_sysenter_singlestep(struct pt_regs
*regs
)
685 * We don't try for precision here. If we're anywhere in the region of
686 * code that can be single-stepped in the SYSENTER entry path, then
687 * assume that this is a useless single-step trap due to SYSENTER
688 * being invoked with TF set. (We don't know in advance exactly
689 * which instructions will be hit because BTF could plausibly
693 return (regs
->ip
- (unsigned long)__begin_SYSENTER_singlestep_region
) <
694 (unsigned long)__end_SYSENTER_singlestep_region
-
695 (unsigned long)__begin_SYSENTER_singlestep_region
;
696 #elif defined(CONFIG_IA32_EMULATION)
697 return (regs
->ip
- (unsigned long)entry_SYSENTER_compat
) <
698 (unsigned long)__end_entry_SYSENTER_compat
-
699 (unsigned long)entry_SYSENTER_compat
;
706 * Our handling of the processor debug registers is non-trivial.
707 * We do not clear them on entry and exit from the kernel. Therefore
708 * it is possible to get a watchpoint trap here from inside the kernel.
709 * However, the code in ./ptrace.c has ensured that the user can
710 * only set watchpoints on userspace addresses. Therefore the in-kernel
711 * watchpoint trap can only occur in code which is reading/writing
712 * from user space. Such code must not hold kernel locks (since it
713 * can equally take a page fault), therefore it is safe to call
714 * force_sig_info even though that claims and releases locks.
716 * Code in ./signal.c ensures that the debug control register
717 * is restored before we deliver any signal, and therefore that
718 * user code runs with the correct debug control register even though
721 * Being careful here means that we don't have to be as careful in a
722 * lot of more complicated places (task switching can be a bit lazy
723 * about restoring all the debug state, and ptrace doesn't have to
724 * find every occurrence of the TF bit that could be saved away even
727 * May run on IST stack.
729 dotraplinkage
void do_debug(struct pt_regs
*regs
, long error_code
)
731 struct task_struct
*tsk
= current
;
738 get_debugreg(dr6
, 6);
740 * The Intel SDM says:
742 * Certain debug exceptions may clear bits 0-3. The remaining
743 * contents of the DR6 register are never cleared by the
744 * processor. To avoid confusion in identifying debug
745 * exceptions, debug handlers should clear the register before
746 * returning to the interrupted task.
748 * Keep it simple: clear DR6 immediately.
752 /* Filter out all the reserved bits which are preset to 1 */
753 dr6
&= ~DR6_RESERVED
;
756 * The SDM says "The processor clears the BTF flag when it
757 * generates a debug exception." Clear TIF_BLOCKSTEP to keep
758 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
760 clear_tsk_thread_flag(tsk
, TIF_BLOCKSTEP
);
762 if (unlikely(!user_mode(regs
) && (dr6
& DR_STEP
) &&
763 is_sysenter_singlestep(regs
))) {
768 * else we might have gotten a single-step trap and hit a
769 * watchpoint at the same time, in which case we should fall
770 * through and handle the watchpoint.
775 * If dr6 has no reason to give us about the origin of this trap,
776 * then it's very likely the result of an icebp/int01 trap.
777 * User wants a sigtrap for that.
779 if (!dr6
&& user_mode(regs
))
782 /* Store the virtualized DR6 value */
783 tsk
->thread
.debugreg6
= dr6
;
785 #ifdef CONFIG_KPROBES
786 if (kprobe_debug_handler(regs
))
790 if (notify_die(DIE_DEBUG
, "debug", regs
, (long)&dr6
, error_code
,
791 SIGTRAP
) == NOTIFY_STOP
)
795 * Let others (NMI) know that the debug stack is in use
796 * as we may switch to the interrupt stack.
798 debug_stack_usage_inc();
800 /* It's safe to allow irq's after DR6 has been saved */
801 cond_local_irq_enable(regs
);
803 if (v8086_mode(regs
)) {
804 handle_vm86_trap((struct kernel_vm86_regs
*) regs
, error_code
,
806 cond_local_irq_disable(regs
);
807 debug_stack_usage_dec();
811 if (WARN_ON_ONCE((dr6
& DR_STEP
) && !user_mode(regs
))) {
813 * Historical junk that used to handle SYSENTER single-stepping.
814 * This should be unreachable now. If we survive for a while
815 * without anyone hitting this warning, we'll turn this into
818 tsk
->thread
.debugreg6
&= ~DR_STEP
;
819 set_tsk_thread_flag(tsk
, TIF_SINGLESTEP
);
820 regs
->flags
&= ~X86_EFLAGS_TF
;
822 si_code
= get_si_code(tsk
->thread
.debugreg6
);
823 if (tsk
->thread
.debugreg6
& (DR_STEP
| DR_TRAP_BITS
) || user_icebp
)
824 send_sigtrap(regs
, error_code
, si_code
);
825 cond_local_irq_disable(regs
);
826 debug_stack_usage_dec();
831 NOKPROBE_SYMBOL(do_debug
);
834 * Note that we play around with the 'TS' bit in an attempt to get
835 * the correct behaviour even in the presence of the asynchronous
838 static void math_error(struct pt_regs
*regs
, int error_code
, int trapnr
)
840 struct task_struct
*task
= current
;
841 struct fpu
*fpu
= &task
->thread
.fpu
;
843 char *str
= (trapnr
== X86_TRAP_MF
) ? "fpu exception" :
846 cond_local_irq_enable(regs
);
848 if (!user_mode(regs
)) {
849 if (fixup_exception(regs
, trapnr
, error_code
, 0))
852 task
->thread
.error_code
= error_code
;
853 task
->thread
.trap_nr
= trapnr
;
855 if (notify_die(DIE_TRAP
, str
, regs
, error_code
,
856 trapnr
, SIGFPE
) != NOTIFY_STOP
)
857 die(str
, regs
, error_code
);
862 * Save the info for the exception handler and clear the error.
866 task
->thread
.trap_nr
= trapnr
;
867 task
->thread
.error_code
= error_code
;
869 si_code
= fpu__exception_code(fpu
, trapnr
);
870 /* Retry when we get spurious exceptions: */
874 force_sig_fault(SIGFPE
, si_code
,
875 (void __user
*)uprobe_get_trap_addr(regs
));
878 dotraplinkage
void do_coprocessor_error(struct pt_regs
*regs
, long error_code
)
880 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
881 math_error(regs
, error_code
, X86_TRAP_MF
);
885 do_simd_coprocessor_error(struct pt_regs
*regs
, long error_code
)
887 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
888 math_error(regs
, error_code
, X86_TRAP_XF
);
892 do_spurious_interrupt_bug(struct pt_regs
*regs
, long error_code
)
895 * This addresses a Pentium Pro Erratum:
897 * PROBLEM: If the APIC subsystem is configured in mixed mode with
898 * Virtual Wire mode implemented through the local APIC, an
899 * interrupt vector of 0Fh (Intel reserved encoding) may be
900 * generated by the local APIC (Int 15). This vector may be
901 * generated upon receipt of a spurious interrupt (an interrupt
902 * which is removed before the system receives the INTA sequence)
903 * instead of the programmed 8259 spurious interrupt vector.
905 * IMPLICATION: The spurious interrupt vector programmed in the
906 * 8259 is normally handled by an operating system's spurious
907 * interrupt handler. However, a vector of 0Fh is unknown to some
908 * operating systems, which would crash if this erratum occurred.
910 * In theory this could be limited to 32bit, but the handler is not
911 * hurting and who knows which other CPUs suffer from this.
916 do_device_not_available(struct pt_regs
*regs
, long error_code
)
918 unsigned long cr0
= read_cr0();
920 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
922 #ifdef CONFIG_MATH_EMULATION
923 if (!boot_cpu_has(X86_FEATURE_FPU
) && (cr0
& X86_CR0_EM
)) {
924 struct math_emu_info info
= { };
926 cond_local_irq_enable(regs
);
934 /* This should not happen. */
935 if (WARN(cr0
& X86_CR0_TS
, "CR0.TS was set")) {
936 /* Try to fix it up and carry on. */
937 write_cr0(cr0
& ~X86_CR0_TS
);
940 * Something terrible happened, and we're better off trying
941 * to kill the task than getting stuck in a never-ending
942 * loop of #NM faults.
944 die("unexpected #NM exception", regs
, error_code
);
947 NOKPROBE_SYMBOL(do_device_not_available
);
950 dotraplinkage
void do_iret_error(struct pt_regs
*regs
, long error_code
)
952 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
955 if (notify_die(DIE_TRAP
, "iret exception", regs
, error_code
,
956 X86_TRAP_IRET
, SIGILL
) != NOTIFY_STOP
) {
957 do_trap(X86_TRAP_IRET
, SIGILL
, "iret exception", regs
, error_code
,
958 ILL_BADSTK
, (void __user
*)NULL
);
963 void __init
trap_init(void)
965 /* Init cpu_entry_area before IST entries are set up */
966 setup_cpu_entry_areas();
971 * Set the IDT descriptor to a fixed read-only location, so that the
972 * "sidt" instruction will not leak the location of the kernel, and
973 * to defend the IDT against arbitrary memory write vulnerabilities.
974 * It will be reloaded in cpu_init() */
975 cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR
, __pa_symbol(idt_table
),
977 idt_descr
.address
= CPU_ENTRY_AREA_RO_IDT
;
980 * Should be a barrier for any external CPU state:
984 idt_setup_ist_traps();
986 x86_init
.irqs
.trap_init();
988 idt_setup_debugidt_traps();