Revert "tty: hvc: Fix data abort due to race in hvc_open"
[linux/fpc-iii.git] / kernel / sched / pelt.h
blobeb034d9f024da54a5caf32807822c5f9721ba6b0
1 #ifdef CONFIG_SMP
2 #include "sched-pelt.h"
4 int __update_load_avg_blocked_se(u64 now, struct sched_entity *se);
5 int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se);
6 int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq);
7 int update_rt_rq_load_avg(u64 now, struct rq *rq, int running);
8 int update_dl_rq_load_avg(u64 now, struct rq *rq, int running);
10 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
11 int update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity);
13 static inline u64 thermal_load_avg(struct rq *rq)
15 return READ_ONCE(rq->avg_thermal.load_avg);
17 #else
18 static inline int
19 update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity)
21 return 0;
24 static inline u64 thermal_load_avg(struct rq *rq)
26 return 0;
28 #endif
30 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
31 int update_irq_load_avg(struct rq *rq, u64 running);
32 #else
33 static inline int
34 update_irq_load_avg(struct rq *rq, u64 running)
36 return 0;
38 #endif
41 * When a task is dequeued, its estimated utilization should not be update if
42 * its util_avg has not been updated at least once.
43 * This flag is used to synchronize util_avg updates with util_est updates.
44 * We map this information into the LSB bit of the utilization saved at
45 * dequeue time (i.e. util_est.dequeued).
47 #define UTIL_AVG_UNCHANGED 0x1
49 static inline void cfs_se_util_change(struct sched_avg *avg)
51 unsigned int enqueued;
53 if (!sched_feat(UTIL_EST))
54 return;
56 /* Avoid store if the flag has been already set */
57 enqueued = avg->util_est.enqueued;
58 if (!(enqueued & UTIL_AVG_UNCHANGED))
59 return;
61 /* Reset flag to report util_avg has been updated */
62 enqueued &= ~UTIL_AVG_UNCHANGED;
63 WRITE_ONCE(avg->util_est.enqueued, enqueued);
67 * The clock_pelt scales the time to reflect the effective amount of
68 * computation done during the running delta time but then sync back to
69 * clock_task when rq is idle.
72 * absolute time | 1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14|15|16
73 * @ max capacity ------******---------------******---------------
74 * @ half capacity ------************---------************---------
75 * clock pelt | 1| 2| 3| 4| 7| 8| 9| 10| 11|14|15|16
78 static inline void update_rq_clock_pelt(struct rq *rq, s64 delta)
80 if (unlikely(is_idle_task(rq->curr))) {
81 /* The rq is idle, we can sync to clock_task */
82 rq->clock_pelt = rq_clock_task(rq);
83 return;
87 * When a rq runs at a lower compute capacity, it will need
88 * more time to do the same amount of work than at max
89 * capacity. In order to be invariant, we scale the delta to
90 * reflect how much work has been really done.
91 * Running longer results in stealing idle time that will
92 * disturb the load signal compared to max capacity. This
93 * stolen idle time will be automatically reflected when the
94 * rq will be idle and the clock will be synced with
95 * rq_clock_task.
99 * Scale the elapsed time to reflect the real amount of
100 * computation
102 delta = cap_scale(delta, arch_scale_cpu_capacity(cpu_of(rq)));
103 delta = cap_scale(delta, arch_scale_freq_capacity(cpu_of(rq)));
105 rq->clock_pelt += delta;
109 * When rq becomes idle, we have to check if it has lost idle time
110 * because it was fully busy. A rq is fully used when the /Sum util_sum
111 * is greater or equal to:
112 * (LOAD_AVG_MAX - 1024 + rq->cfs.avg.period_contrib) << SCHED_CAPACITY_SHIFT;
113 * For optimization and computing rounding purpose, we don't take into account
114 * the position in the current window (period_contrib) and we use the higher
115 * bound of util_sum to decide.
117 static inline void update_idle_rq_clock_pelt(struct rq *rq)
119 u32 divider = ((LOAD_AVG_MAX - 1024) << SCHED_CAPACITY_SHIFT) - LOAD_AVG_MAX;
120 u32 util_sum = rq->cfs.avg.util_sum;
121 util_sum += rq->avg_rt.util_sum;
122 util_sum += rq->avg_dl.util_sum;
125 * Reflecting stolen time makes sense only if the idle
126 * phase would be present at max capacity. As soon as the
127 * utilization of a rq has reached the maximum value, it is
128 * considered as an always runnig rq without idle time to
129 * steal. This potential idle time is considered as lost in
130 * this case. We keep track of this lost idle time compare to
131 * rq's clock_task.
133 if (util_sum >= divider)
134 rq->lost_idle_time += rq_clock_task(rq) - rq->clock_pelt;
137 static inline u64 rq_clock_pelt(struct rq *rq)
139 lockdep_assert_held(&rq->lock);
140 assert_clock_updated(rq);
142 return rq->clock_pelt - rq->lost_idle_time;
145 #ifdef CONFIG_CFS_BANDWIDTH
146 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
147 static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
149 if (unlikely(cfs_rq->throttle_count))
150 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
152 return rq_clock_pelt(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
154 #else
155 static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
157 return rq_clock_pelt(rq_of(cfs_rq));
159 #endif
161 #else
163 static inline int
164 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
166 return 0;
169 static inline int
170 update_rt_rq_load_avg(u64 now, struct rq *rq, int running)
172 return 0;
175 static inline int
176 update_dl_rq_load_avg(u64 now, struct rq *rq, int running)
178 return 0;
181 static inline int
182 update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity)
184 return 0;
187 static inline u64 thermal_load_avg(struct rq *rq)
189 return 0;
192 static inline int
193 update_irq_load_avg(struct rq *rq, u64 running)
195 return 0;
198 static inline u64 rq_clock_pelt(struct rq *rq)
200 return rq_clock_task(rq);
203 static inline void
204 update_rq_clock_pelt(struct rq *rq, s64 delta) { }
206 static inline void
207 update_idle_rq_clock_pelt(struct rq *rq) { }
209 #endif