1 // SPDX-License-Identifier: GPL-2.0
3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
10 int sched_rr_timeslice
= RR_TIMESLICE
;
11 int sysctl_sched_rr_timeslice
= (MSEC_PER_SEC
/ HZ
) * RR_TIMESLICE
;
12 /* More than 4 hours if BW_SHIFT equals 20. */
13 static const u64 max_rt_runtime
= MAX_BW
;
15 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
17 struct rt_bandwidth def_rt_bandwidth
;
19 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
21 struct rt_bandwidth
*rt_b
=
22 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
26 raw_spin_lock(&rt_b
->rt_runtime_lock
);
28 overrun
= hrtimer_forward_now(timer
, rt_b
->rt_period
);
32 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
33 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
34 raw_spin_lock(&rt_b
->rt_runtime_lock
);
37 rt_b
->rt_period_active
= 0;
38 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
40 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
43 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
45 rt_b
->rt_period
= ns_to_ktime(period
);
46 rt_b
->rt_runtime
= runtime
;
48 raw_spin_lock_init(&rt_b
->rt_runtime_lock
);
50 hrtimer_init(&rt_b
->rt_period_timer
, CLOCK_MONOTONIC
,
51 HRTIMER_MODE_REL_HARD
);
52 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
55 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
57 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
60 raw_spin_lock(&rt_b
->rt_runtime_lock
);
61 if (!rt_b
->rt_period_active
) {
62 rt_b
->rt_period_active
= 1;
64 * SCHED_DEADLINE updates the bandwidth, as a run away
65 * RT task with a DL task could hog a CPU. But DL does
66 * not reset the period. If a deadline task was running
67 * without an RT task running, it can cause RT tasks to
68 * throttle when they start up. Kick the timer right away
69 * to update the period.
71 hrtimer_forward_now(&rt_b
->rt_period_timer
, ns_to_ktime(0));
72 hrtimer_start_expires(&rt_b
->rt_period_timer
,
73 HRTIMER_MODE_ABS_PINNED_HARD
);
75 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
78 void init_rt_rq(struct rt_rq
*rt_rq
)
80 struct rt_prio_array
*array
;
83 array
= &rt_rq
->active
;
84 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
85 INIT_LIST_HEAD(array
->queue
+ i
);
86 __clear_bit(i
, array
->bitmap
);
88 /* delimiter for bitsearch: */
89 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
91 #if defined CONFIG_SMP
92 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
93 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
94 rt_rq
->rt_nr_migratory
= 0;
95 rt_rq
->overloaded
= 0;
96 plist_head_init(&rt_rq
->pushable_tasks
);
97 #endif /* CONFIG_SMP */
98 /* We start is dequeued state, because no RT tasks are queued */
102 rt_rq
->rt_throttled
= 0;
103 rt_rq
->rt_runtime
= 0;
104 raw_spin_lock_init(&rt_rq
->rt_runtime_lock
);
107 #ifdef CONFIG_RT_GROUP_SCHED
108 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
110 hrtimer_cancel(&rt_b
->rt_period_timer
);
113 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
115 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
117 #ifdef CONFIG_SCHED_DEBUG
118 WARN_ON_ONCE(!rt_entity_is_task(rt_se
));
120 return container_of(rt_se
, struct task_struct
, rt
);
123 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
128 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
133 static inline struct rq
*rq_of_rt_se(struct sched_rt_entity
*rt_se
)
135 struct rt_rq
*rt_rq
= rt_se
->rt_rq
;
140 void free_rt_sched_group(struct task_group
*tg
)
145 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
147 for_each_possible_cpu(i
) {
158 void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
159 struct sched_rt_entity
*rt_se
, int cpu
,
160 struct sched_rt_entity
*parent
)
162 struct rq
*rq
= cpu_rq(cpu
);
164 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
165 rt_rq
->rt_nr_boosted
= 0;
169 tg
->rt_rq
[cpu
] = rt_rq
;
170 tg
->rt_se
[cpu
] = rt_se
;
176 rt_se
->rt_rq
= &rq
->rt
;
178 rt_se
->rt_rq
= parent
->my_q
;
181 rt_se
->parent
= parent
;
182 INIT_LIST_HEAD(&rt_se
->run_list
);
185 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
188 struct sched_rt_entity
*rt_se
;
191 tg
->rt_rq
= kcalloc(nr_cpu_ids
, sizeof(rt_rq
), GFP_KERNEL
);
194 tg
->rt_se
= kcalloc(nr_cpu_ids
, sizeof(rt_se
), GFP_KERNEL
);
198 init_rt_bandwidth(&tg
->rt_bandwidth
,
199 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
201 for_each_possible_cpu(i
) {
202 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
203 GFP_KERNEL
, cpu_to_node(i
));
207 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
208 GFP_KERNEL
, cpu_to_node(i
));
213 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
214 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, parent
->rt_se
[i
]);
225 #else /* CONFIG_RT_GROUP_SCHED */
227 #define rt_entity_is_task(rt_se) (1)
229 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
231 return container_of(rt_se
, struct task_struct
, rt
);
234 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
236 return container_of(rt_rq
, struct rq
, rt
);
239 static inline struct rq
*rq_of_rt_se(struct sched_rt_entity
*rt_se
)
241 struct task_struct
*p
= rt_task_of(rt_se
);
246 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
248 struct rq
*rq
= rq_of_rt_se(rt_se
);
253 void free_rt_sched_group(struct task_group
*tg
) { }
255 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
259 #endif /* CONFIG_RT_GROUP_SCHED */
263 static void pull_rt_task(struct rq
*this_rq
);
265 static inline bool need_pull_rt_task(struct rq
*rq
, struct task_struct
*prev
)
267 /* Try to pull RT tasks here if we lower this rq's prio */
268 return rq
->rt
.highest_prio
.curr
> prev
->prio
;
271 static inline int rt_overloaded(struct rq
*rq
)
273 return atomic_read(&rq
->rd
->rto_count
);
276 static inline void rt_set_overload(struct rq
*rq
)
281 cpumask_set_cpu(rq
->cpu
, rq
->rd
->rto_mask
);
283 * Make sure the mask is visible before we set
284 * the overload count. That is checked to determine
285 * if we should look at the mask. It would be a shame
286 * if we looked at the mask, but the mask was not
289 * Matched by the barrier in pull_rt_task().
292 atomic_inc(&rq
->rd
->rto_count
);
295 static inline void rt_clear_overload(struct rq
*rq
)
300 /* the order here really doesn't matter */
301 atomic_dec(&rq
->rd
->rto_count
);
302 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->rto_mask
);
305 static void update_rt_migration(struct rt_rq
*rt_rq
)
307 if (rt_rq
->rt_nr_migratory
&& rt_rq
->rt_nr_total
> 1) {
308 if (!rt_rq
->overloaded
) {
309 rt_set_overload(rq_of_rt_rq(rt_rq
));
310 rt_rq
->overloaded
= 1;
312 } else if (rt_rq
->overloaded
) {
313 rt_clear_overload(rq_of_rt_rq(rt_rq
));
314 rt_rq
->overloaded
= 0;
318 static void inc_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
320 struct task_struct
*p
;
322 if (!rt_entity_is_task(rt_se
))
325 p
= rt_task_of(rt_se
);
326 rt_rq
= &rq_of_rt_rq(rt_rq
)->rt
;
328 rt_rq
->rt_nr_total
++;
329 if (p
->nr_cpus_allowed
> 1)
330 rt_rq
->rt_nr_migratory
++;
332 update_rt_migration(rt_rq
);
335 static void dec_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
337 struct task_struct
*p
;
339 if (!rt_entity_is_task(rt_se
))
342 p
= rt_task_of(rt_se
);
343 rt_rq
= &rq_of_rt_rq(rt_rq
)->rt
;
345 rt_rq
->rt_nr_total
--;
346 if (p
->nr_cpus_allowed
> 1)
347 rt_rq
->rt_nr_migratory
--;
349 update_rt_migration(rt_rq
);
352 static inline int has_pushable_tasks(struct rq
*rq
)
354 return !plist_head_empty(&rq
->rt
.pushable_tasks
);
357 static DEFINE_PER_CPU(struct callback_head
, rt_push_head
);
358 static DEFINE_PER_CPU(struct callback_head
, rt_pull_head
);
360 static void push_rt_tasks(struct rq
*);
361 static void pull_rt_task(struct rq
*);
363 static inline void rt_queue_push_tasks(struct rq
*rq
)
365 if (!has_pushable_tasks(rq
))
368 queue_balance_callback(rq
, &per_cpu(rt_push_head
, rq
->cpu
), push_rt_tasks
);
371 static inline void rt_queue_pull_task(struct rq
*rq
)
373 queue_balance_callback(rq
, &per_cpu(rt_pull_head
, rq
->cpu
), pull_rt_task
);
376 static void enqueue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
378 plist_del(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
379 plist_node_init(&p
->pushable_tasks
, p
->prio
);
380 plist_add(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
382 /* Update the highest prio pushable task */
383 if (p
->prio
< rq
->rt
.highest_prio
.next
)
384 rq
->rt
.highest_prio
.next
= p
->prio
;
387 static void dequeue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
389 plist_del(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
391 /* Update the new highest prio pushable task */
392 if (has_pushable_tasks(rq
)) {
393 p
= plist_first_entry(&rq
->rt
.pushable_tasks
,
394 struct task_struct
, pushable_tasks
);
395 rq
->rt
.highest_prio
.next
= p
->prio
;
397 rq
->rt
.highest_prio
.next
= MAX_RT_PRIO
;
402 static inline void enqueue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
406 static inline void dequeue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
411 void inc_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
416 void dec_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
420 static inline bool need_pull_rt_task(struct rq
*rq
, struct task_struct
*prev
)
425 static inline void pull_rt_task(struct rq
*this_rq
)
429 static inline void rt_queue_push_tasks(struct rq
*rq
)
432 #endif /* CONFIG_SMP */
434 static void enqueue_top_rt_rq(struct rt_rq
*rt_rq
);
435 static void dequeue_top_rt_rq(struct rt_rq
*rt_rq
);
437 static inline int on_rt_rq(struct sched_rt_entity
*rt_se
)
442 #ifdef CONFIG_UCLAMP_TASK
444 * Verify the fitness of task @p to run on @cpu taking into account the uclamp
447 * This check is only important for heterogeneous systems where uclamp_min value
448 * is higher than the capacity of a @cpu. For non-heterogeneous system this
449 * function will always return true.
451 * The function will return true if the capacity of the @cpu is >= the
452 * uclamp_min and false otherwise.
454 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
457 static inline bool rt_task_fits_capacity(struct task_struct
*p
, int cpu
)
459 unsigned int min_cap
;
460 unsigned int max_cap
;
461 unsigned int cpu_cap
;
463 /* Only heterogeneous systems can benefit from this check */
464 if (!static_branch_unlikely(&sched_asym_cpucapacity
))
467 min_cap
= uclamp_eff_value(p
, UCLAMP_MIN
);
468 max_cap
= uclamp_eff_value(p
, UCLAMP_MAX
);
470 cpu_cap
= capacity_orig_of(cpu
);
472 return cpu_cap
>= min(min_cap
, max_cap
);
475 static inline bool rt_task_fits_capacity(struct task_struct
*p
, int cpu
)
481 #ifdef CONFIG_RT_GROUP_SCHED
483 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
488 return rt_rq
->rt_runtime
;
491 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
493 return ktime_to_ns(rt_rq
->tg
->rt_bandwidth
.rt_period
);
496 typedef struct task_group
*rt_rq_iter_t
;
498 static inline struct task_group
*next_task_group(struct task_group
*tg
)
501 tg
= list_entry_rcu(tg
->list
.next
,
502 typeof(struct task_group
), list
);
503 } while (&tg
->list
!= &task_groups
&& task_group_is_autogroup(tg
));
505 if (&tg
->list
== &task_groups
)
511 #define for_each_rt_rq(rt_rq, iter, rq) \
512 for (iter = container_of(&task_groups, typeof(*iter), list); \
513 (iter = next_task_group(iter)) && \
514 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
516 #define for_each_sched_rt_entity(rt_se) \
517 for (; rt_se; rt_se = rt_se->parent)
519 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
524 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
, unsigned int flags
);
525 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
, unsigned int flags
);
527 static void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
529 struct task_struct
*curr
= rq_of_rt_rq(rt_rq
)->curr
;
530 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
531 struct sched_rt_entity
*rt_se
;
533 int cpu
= cpu_of(rq
);
535 rt_se
= rt_rq
->tg
->rt_se
[cpu
];
537 if (rt_rq
->rt_nr_running
) {
539 enqueue_top_rt_rq(rt_rq
);
540 else if (!on_rt_rq(rt_se
))
541 enqueue_rt_entity(rt_se
, 0);
543 if (rt_rq
->highest_prio
.curr
< curr
->prio
)
548 static void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
550 struct sched_rt_entity
*rt_se
;
551 int cpu
= cpu_of(rq_of_rt_rq(rt_rq
));
553 rt_se
= rt_rq
->tg
->rt_se
[cpu
];
556 dequeue_top_rt_rq(rt_rq
);
557 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
558 cpufreq_update_util(rq_of_rt_rq(rt_rq
), 0);
560 else if (on_rt_rq(rt_se
))
561 dequeue_rt_entity(rt_se
, 0);
564 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
566 return rt_rq
->rt_throttled
&& !rt_rq
->rt_nr_boosted
;
569 static int rt_se_boosted(struct sched_rt_entity
*rt_se
)
571 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
572 struct task_struct
*p
;
575 return !!rt_rq
->rt_nr_boosted
;
577 p
= rt_task_of(rt_se
);
578 return p
->prio
!= p
->normal_prio
;
582 static inline const struct cpumask
*sched_rt_period_mask(void)
584 return this_rq()->rd
->span
;
587 static inline const struct cpumask
*sched_rt_period_mask(void)
589 return cpu_online_mask
;
594 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
596 return container_of(rt_b
, struct task_group
, rt_bandwidth
)->rt_rq
[cpu
];
599 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
601 return &rt_rq
->tg
->rt_bandwidth
;
604 #else /* !CONFIG_RT_GROUP_SCHED */
606 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
608 return rt_rq
->rt_runtime
;
611 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
613 return ktime_to_ns(def_rt_bandwidth
.rt_period
);
616 typedef struct rt_rq
*rt_rq_iter_t
;
618 #define for_each_rt_rq(rt_rq, iter, rq) \
619 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
621 #define for_each_sched_rt_entity(rt_se) \
622 for (; rt_se; rt_se = NULL)
624 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
629 static inline void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
631 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
633 if (!rt_rq
->rt_nr_running
)
636 enqueue_top_rt_rq(rt_rq
);
640 static inline void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
642 dequeue_top_rt_rq(rt_rq
);
645 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
647 return rt_rq
->rt_throttled
;
650 static inline const struct cpumask
*sched_rt_period_mask(void)
652 return cpu_online_mask
;
656 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
658 return &cpu_rq(cpu
)->rt
;
661 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
663 return &def_rt_bandwidth
;
666 #endif /* CONFIG_RT_GROUP_SCHED */
668 bool sched_rt_bandwidth_account(struct rt_rq
*rt_rq
)
670 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
672 return (hrtimer_active(&rt_b
->rt_period_timer
) ||
673 rt_rq
->rt_time
< rt_b
->rt_runtime
);
678 * We ran out of runtime, see if we can borrow some from our neighbours.
680 static void do_balance_runtime(struct rt_rq
*rt_rq
)
682 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
683 struct root_domain
*rd
= rq_of_rt_rq(rt_rq
)->rd
;
687 weight
= cpumask_weight(rd
->span
);
689 raw_spin_lock(&rt_b
->rt_runtime_lock
);
690 rt_period
= ktime_to_ns(rt_b
->rt_period
);
691 for_each_cpu(i
, rd
->span
) {
692 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
698 raw_spin_lock(&iter
->rt_runtime_lock
);
700 * Either all rqs have inf runtime and there's nothing to steal
701 * or __disable_runtime() below sets a specific rq to inf to
702 * indicate its been disabled and disalow stealing.
704 if (iter
->rt_runtime
== RUNTIME_INF
)
708 * From runqueues with spare time, take 1/n part of their
709 * spare time, but no more than our period.
711 diff
= iter
->rt_runtime
- iter
->rt_time
;
713 diff
= div_u64((u64
)diff
, weight
);
714 if (rt_rq
->rt_runtime
+ diff
> rt_period
)
715 diff
= rt_period
- rt_rq
->rt_runtime
;
716 iter
->rt_runtime
-= diff
;
717 rt_rq
->rt_runtime
+= diff
;
718 if (rt_rq
->rt_runtime
== rt_period
) {
719 raw_spin_unlock(&iter
->rt_runtime_lock
);
724 raw_spin_unlock(&iter
->rt_runtime_lock
);
726 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
730 * Ensure this RQ takes back all the runtime it lend to its neighbours.
732 static void __disable_runtime(struct rq
*rq
)
734 struct root_domain
*rd
= rq
->rd
;
738 if (unlikely(!scheduler_running
))
741 for_each_rt_rq(rt_rq
, iter
, rq
) {
742 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
746 raw_spin_lock(&rt_b
->rt_runtime_lock
);
747 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
749 * Either we're all inf and nobody needs to borrow, or we're
750 * already disabled and thus have nothing to do, or we have
751 * exactly the right amount of runtime to take out.
753 if (rt_rq
->rt_runtime
== RUNTIME_INF
||
754 rt_rq
->rt_runtime
== rt_b
->rt_runtime
)
756 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
759 * Calculate the difference between what we started out with
760 * and what we current have, that's the amount of runtime
761 * we lend and now have to reclaim.
763 want
= rt_b
->rt_runtime
- rt_rq
->rt_runtime
;
766 * Greedy reclaim, take back as much as we can.
768 for_each_cpu(i
, rd
->span
) {
769 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
773 * Can't reclaim from ourselves or disabled runqueues.
775 if (iter
== rt_rq
|| iter
->rt_runtime
== RUNTIME_INF
)
778 raw_spin_lock(&iter
->rt_runtime_lock
);
780 diff
= min_t(s64
, iter
->rt_runtime
, want
);
781 iter
->rt_runtime
-= diff
;
784 iter
->rt_runtime
-= want
;
787 raw_spin_unlock(&iter
->rt_runtime_lock
);
793 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
795 * We cannot be left wanting - that would mean some runtime
796 * leaked out of the system.
801 * Disable all the borrow logic by pretending we have inf
802 * runtime - in which case borrowing doesn't make sense.
804 rt_rq
->rt_runtime
= RUNTIME_INF
;
805 rt_rq
->rt_throttled
= 0;
806 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
807 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
809 /* Make rt_rq available for pick_next_task() */
810 sched_rt_rq_enqueue(rt_rq
);
814 static void __enable_runtime(struct rq
*rq
)
819 if (unlikely(!scheduler_running
))
823 * Reset each runqueue's bandwidth settings
825 for_each_rt_rq(rt_rq
, iter
, rq
) {
826 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
828 raw_spin_lock(&rt_b
->rt_runtime_lock
);
829 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
830 rt_rq
->rt_runtime
= rt_b
->rt_runtime
;
832 rt_rq
->rt_throttled
= 0;
833 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
834 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
838 static void balance_runtime(struct rt_rq
*rt_rq
)
840 if (!sched_feat(RT_RUNTIME_SHARE
))
843 if (rt_rq
->rt_time
> rt_rq
->rt_runtime
) {
844 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
845 do_balance_runtime(rt_rq
);
846 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
849 #else /* !CONFIG_SMP */
850 static inline void balance_runtime(struct rt_rq
*rt_rq
) {}
851 #endif /* CONFIG_SMP */
853 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
)
855 int i
, idle
= 1, throttled
= 0;
856 const struct cpumask
*span
;
858 span
= sched_rt_period_mask();
859 #ifdef CONFIG_RT_GROUP_SCHED
861 * FIXME: isolated CPUs should really leave the root task group,
862 * whether they are isolcpus or were isolated via cpusets, lest
863 * the timer run on a CPU which does not service all runqueues,
864 * potentially leaving other CPUs indefinitely throttled. If
865 * isolation is really required, the user will turn the throttle
866 * off to kill the perturbations it causes anyway. Meanwhile,
867 * this maintains functionality for boot and/or troubleshooting.
869 if (rt_b
== &root_task_group
.rt_bandwidth
)
870 span
= cpu_online_mask
;
872 for_each_cpu(i
, span
) {
874 struct rt_rq
*rt_rq
= sched_rt_period_rt_rq(rt_b
, i
);
875 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
879 * When span == cpu_online_mask, taking each rq->lock
880 * can be time-consuming. Try to avoid it when possible.
882 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
883 if (!sched_feat(RT_RUNTIME_SHARE
) && rt_rq
->rt_runtime
!= RUNTIME_INF
)
884 rt_rq
->rt_runtime
= rt_b
->rt_runtime
;
885 skip
= !rt_rq
->rt_time
&& !rt_rq
->rt_nr_running
;
886 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
890 raw_spin_lock(&rq
->lock
);
893 if (rt_rq
->rt_time
) {
896 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
897 if (rt_rq
->rt_throttled
)
898 balance_runtime(rt_rq
);
899 runtime
= rt_rq
->rt_runtime
;
900 rt_rq
->rt_time
-= min(rt_rq
->rt_time
, overrun
*runtime
);
901 if (rt_rq
->rt_throttled
&& rt_rq
->rt_time
< runtime
) {
902 rt_rq
->rt_throttled
= 0;
906 * When we're idle and a woken (rt) task is
907 * throttled check_preempt_curr() will set
908 * skip_update and the time between the wakeup
909 * and this unthrottle will get accounted as
912 if (rt_rq
->rt_nr_running
&& rq
->curr
== rq
->idle
)
913 rq_clock_cancel_skipupdate(rq
);
915 if (rt_rq
->rt_time
|| rt_rq
->rt_nr_running
)
917 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
918 } else if (rt_rq
->rt_nr_running
) {
920 if (!rt_rq_throttled(rt_rq
))
923 if (rt_rq
->rt_throttled
)
927 sched_rt_rq_enqueue(rt_rq
);
928 raw_spin_unlock(&rq
->lock
);
931 if (!throttled
&& (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
))
937 static inline int rt_se_prio(struct sched_rt_entity
*rt_se
)
939 #ifdef CONFIG_RT_GROUP_SCHED
940 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
943 return rt_rq
->highest_prio
.curr
;
946 return rt_task_of(rt_se
)->prio
;
949 static int sched_rt_runtime_exceeded(struct rt_rq
*rt_rq
)
951 u64 runtime
= sched_rt_runtime(rt_rq
);
953 if (rt_rq
->rt_throttled
)
954 return rt_rq_throttled(rt_rq
);
956 if (runtime
>= sched_rt_period(rt_rq
))
959 balance_runtime(rt_rq
);
960 runtime
= sched_rt_runtime(rt_rq
);
961 if (runtime
== RUNTIME_INF
)
964 if (rt_rq
->rt_time
> runtime
) {
965 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
968 * Don't actually throttle groups that have no runtime assigned
969 * but accrue some time due to boosting.
971 if (likely(rt_b
->rt_runtime
)) {
972 rt_rq
->rt_throttled
= 1;
973 printk_deferred_once("sched: RT throttling activated\n");
976 * In case we did anyway, make it go away,
977 * replenishment is a joke, since it will replenish us
983 if (rt_rq_throttled(rt_rq
)) {
984 sched_rt_rq_dequeue(rt_rq
);
993 * Update the current task's runtime statistics. Skip current tasks that
994 * are not in our scheduling class.
996 static void update_curr_rt(struct rq
*rq
)
998 struct task_struct
*curr
= rq
->curr
;
999 struct sched_rt_entity
*rt_se
= &curr
->rt
;
1003 if (curr
->sched_class
!= &rt_sched_class
)
1006 now
= rq_clock_task(rq
);
1007 delta_exec
= now
- curr
->se
.exec_start
;
1008 if (unlikely((s64
)delta_exec
<= 0))
1011 schedstat_set(curr
->se
.statistics
.exec_max
,
1012 max(curr
->se
.statistics
.exec_max
, delta_exec
));
1014 curr
->se
.sum_exec_runtime
+= delta_exec
;
1015 account_group_exec_runtime(curr
, delta_exec
);
1017 curr
->se
.exec_start
= now
;
1018 cgroup_account_cputime(curr
, delta_exec
);
1020 if (!rt_bandwidth_enabled())
1023 for_each_sched_rt_entity(rt_se
) {
1024 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
1026 if (sched_rt_runtime(rt_rq
) != RUNTIME_INF
) {
1027 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
1028 rt_rq
->rt_time
+= delta_exec
;
1029 if (sched_rt_runtime_exceeded(rt_rq
))
1031 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
1037 dequeue_top_rt_rq(struct rt_rq
*rt_rq
)
1039 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
1041 BUG_ON(&rq
->rt
!= rt_rq
);
1043 if (!rt_rq
->rt_queued
)
1046 BUG_ON(!rq
->nr_running
);
1048 sub_nr_running(rq
, rt_rq
->rt_nr_running
);
1049 rt_rq
->rt_queued
= 0;
1054 enqueue_top_rt_rq(struct rt_rq
*rt_rq
)
1056 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
1058 BUG_ON(&rq
->rt
!= rt_rq
);
1060 if (rt_rq
->rt_queued
)
1063 if (rt_rq_throttled(rt_rq
))
1066 if (rt_rq
->rt_nr_running
) {
1067 add_nr_running(rq
, rt_rq
->rt_nr_running
);
1068 rt_rq
->rt_queued
= 1;
1071 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1072 cpufreq_update_util(rq
, 0);
1075 #if defined CONFIG_SMP
1078 inc_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
)
1080 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
1082 #ifdef CONFIG_RT_GROUP_SCHED
1084 * Change rq's cpupri only if rt_rq is the top queue.
1086 if (&rq
->rt
!= rt_rq
)
1089 if (rq
->online
&& prio
< prev_prio
)
1090 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, prio
);
1094 dec_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
)
1096 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
1098 #ifdef CONFIG_RT_GROUP_SCHED
1100 * Change rq's cpupri only if rt_rq is the top queue.
1102 if (&rq
->rt
!= rt_rq
)
1105 if (rq
->online
&& rt_rq
->highest_prio
.curr
!= prev_prio
)
1106 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rt_rq
->highest_prio
.curr
);
1109 #else /* CONFIG_SMP */
1112 void inc_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
) {}
1114 void dec_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
) {}
1116 #endif /* CONFIG_SMP */
1118 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1120 inc_rt_prio(struct rt_rq
*rt_rq
, int prio
)
1122 int prev_prio
= rt_rq
->highest_prio
.curr
;
1124 if (prio
< prev_prio
)
1125 rt_rq
->highest_prio
.curr
= prio
;
1127 inc_rt_prio_smp(rt_rq
, prio
, prev_prio
);
1131 dec_rt_prio(struct rt_rq
*rt_rq
, int prio
)
1133 int prev_prio
= rt_rq
->highest_prio
.curr
;
1135 if (rt_rq
->rt_nr_running
) {
1137 WARN_ON(prio
< prev_prio
);
1140 * This may have been our highest task, and therefore
1141 * we may have some recomputation to do
1143 if (prio
== prev_prio
) {
1144 struct rt_prio_array
*array
= &rt_rq
->active
;
1146 rt_rq
->highest_prio
.curr
=
1147 sched_find_first_bit(array
->bitmap
);
1151 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
1153 dec_rt_prio_smp(rt_rq
, prio
, prev_prio
);
1158 static inline void inc_rt_prio(struct rt_rq
*rt_rq
, int prio
) {}
1159 static inline void dec_rt_prio(struct rt_rq
*rt_rq
, int prio
) {}
1161 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1163 #ifdef CONFIG_RT_GROUP_SCHED
1166 inc_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1168 if (rt_se_boosted(rt_se
))
1169 rt_rq
->rt_nr_boosted
++;
1172 start_rt_bandwidth(&rt_rq
->tg
->rt_bandwidth
);
1176 dec_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1178 if (rt_se_boosted(rt_se
))
1179 rt_rq
->rt_nr_boosted
--;
1181 WARN_ON(!rt_rq
->rt_nr_running
&& rt_rq
->rt_nr_boosted
);
1184 #else /* CONFIG_RT_GROUP_SCHED */
1187 inc_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1189 start_rt_bandwidth(&def_rt_bandwidth
);
1193 void dec_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
) {}
1195 #endif /* CONFIG_RT_GROUP_SCHED */
1198 unsigned int rt_se_nr_running(struct sched_rt_entity
*rt_se
)
1200 struct rt_rq
*group_rq
= group_rt_rq(rt_se
);
1203 return group_rq
->rt_nr_running
;
1209 unsigned int rt_se_rr_nr_running(struct sched_rt_entity
*rt_se
)
1211 struct rt_rq
*group_rq
= group_rt_rq(rt_se
);
1212 struct task_struct
*tsk
;
1215 return group_rq
->rr_nr_running
;
1217 tsk
= rt_task_of(rt_se
);
1219 return (tsk
->policy
== SCHED_RR
) ? 1 : 0;
1223 void inc_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1225 int prio
= rt_se_prio(rt_se
);
1227 WARN_ON(!rt_prio(prio
));
1228 rt_rq
->rt_nr_running
+= rt_se_nr_running(rt_se
);
1229 rt_rq
->rr_nr_running
+= rt_se_rr_nr_running(rt_se
);
1231 inc_rt_prio(rt_rq
, prio
);
1232 inc_rt_migration(rt_se
, rt_rq
);
1233 inc_rt_group(rt_se
, rt_rq
);
1237 void dec_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1239 WARN_ON(!rt_prio(rt_se_prio(rt_se
)));
1240 WARN_ON(!rt_rq
->rt_nr_running
);
1241 rt_rq
->rt_nr_running
-= rt_se_nr_running(rt_se
);
1242 rt_rq
->rr_nr_running
-= rt_se_rr_nr_running(rt_se
);
1244 dec_rt_prio(rt_rq
, rt_se_prio(rt_se
));
1245 dec_rt_migration(rt_se
, rt_rq
);
1246 dec_rt_group(rt_se
, rt_rq
);
1250 * Change rt_se->run_list location unless SAVE && !MOVE
1252 * assumes ENQUEUE/DEQUEUE flags match
1254 static inline bool move_entity(unsigned int flags
)
1256 if ((flags
& (DEQUEUE_SAVE
| DEQUEUE_MOVE
)) == DEQUEUE_SAVE
)
1262 static void __delist_rt_entity(struct sched_rt_entity
*rt_se
, struct rt_prio_array
*array
)
1264 list_del_init(&rt_se
->run_list
);
1266 if (list_empty(array
->queue
+ rt_se_prio(rt_se
)))
1267 __clear_bit(rt_se_prio(rt_se
), array
->bitmap
);
1272 static void __enqueue_rt_entity(struct sched_rt_entity
*rt_se
, unsigned int flags
)
1274 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
1275 struct rt_prio_array
*array
= &rt_rq
->active
;
1276 struct rt_rq
*group_rq
= group_rt_rq(rt_se
);
1277 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
1280 * Don't enqueue the group if its throttled, or when empty.
1281 * The latter is a consequence of the former when a child group
1282 * get throttled and the current group doesn't have any other
1285 if (group_rq
&& (rt_rq_throttled(group_rq
) || !group_rq
->rt_nr_running
)) {
1287 __delist_rt_entity(rt_se
, array
);
1291 if (move_entity(flags
)) {
1292 WARN_ON_ONCE(rt_se
->on_list
);
1293 if (flags
& ENQUEUE_HEAD
)
1294 list_add(&rt_se
->run_list
, queue
);
1296 list_add_tail(&rt_se
->run_list
, queue
);
1298 __set_bit(rt_se_prio(rt_se
), array
->bitmap
);
1303 inc_rt_tasks(rt_se
, rt_rq
);
1306 static void __dequeue_rt_entity(struct sched_rt_entity
*rt_se
, unsigned int flags
)
1308 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
1309 struct rt_prio_array
*array
= &rt_rq
->active
;
1311 if (move_entity(flags
)) {
1312 WARN_ON_ONCE(!rt_se
->on_list
);
1313 __delist_rt_entity(rt_se
, array
);
1317 dec_rt_tasks(rt_se
, rt_rq
);
1321 * Because the prio of an upper entry depends on the lower
1322 * entries, we must remove entries top - down.
1324 static void dequeue_rt_stack(struct sched_rt_entity
*rt_se
, unsigned int flags
)
1326 struct sched_rt_entity
*back
= NULL
;
1328 for_each_sched_rt_entity(rt_se
) {
1333 dequeue_top_rt_rq(rt_rq_of_se(back
));
1335 for (rt_se
= back
; rt_se
; rt_se
= rt_se
->back
) {
1336 if (on_rt_rq(rt_se
))
1337 __dequeue_rt_entity(rt_se
, flags
);
1341 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
, unsigned int flags
)
1343 struct rq
*rq
= rq_of_rt_se(rt_se
);
1345 dequeue_rt_stack(rt_se
, flags
);
1346 for_each_sched_rt_entity(rt_se
)
1347 __enqueue_rt_entity(rt_se
, flags
);
1348 enqueue_top_rt_rq(&rq
->rt
);
1351 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
, unsigned int flags
)
1353 struct rq
*rq
= rq_of_rt_se(rt_se
);
1355 dequeue_rt_stack(rt_se
, flags
);
1357 for_each_sched_rt_entity(rt_se
) {
1358 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
1360 if (rt_rq
&& rt_rq
->rt_nr_running
)
1361 __enqueue_rt_entity(rt_se
, flags
);
1363 enqueue_top_rt_rq(&rq
->rt
);
1367 * Adding/removing a task to/from a priority array:
1370 enqueue_task_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1372 struct sched_rt_entity
*rt_se
= &p
->rt
;
1374 if (flags
& ENQUEUE_WAKEUP
)
1377 enqueue_rt_entity(rt_se
, flags
);
1379 if (!task_current(rq
, p
) && p
->nr_cpus_allowed
> 1)
1380 enqueue_pushable_task(rq
, p
);
1383 static void dequeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1385 struct sched_rt_entity
*rt_se
= &p
->rt
;
1388 dequeue_rt_entity(rt_se
, flags
);
1390 dequeue_pushable_task(rq
, p
);
1394 * Put task to the head or the end of the run list without the overhead of
1395 * dequeue followed by enqueue.
1398 requeue_rt_entity(struct rt_rq
*rt_rq
, struct sched_rt_entity
*rt_se
, int head
)
1400 if (on_rt_rq(rt_se
)) {
1401 struct rt_prio_array
*array
= &rt_rq
->active
;
1402 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
1405 list_move(&rt_se
->run_list
, queue
);
1407 list_move_tail(&rt_se
->run_list
, queue
);
1411 static void requeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int head
)
1413 struct sched_rt_entity
*rt_se
= &p
->rt
;
1414 struct rt_rq
*rt_rq
;
1416 for_each_sched_rt_entity(rt_se
) {
1417 rt_rq
= rt_rq_of_se(rt_se
);
1418 requeue_rt_entity(rt_rq
, rt_se
, head
);
1422 static void yield_task_rt(struct rq
*rq
)
1424 requeue_task_rt(rq
, rq
->curr
, 0);
1428 static int find_lowest_rq(struct task_struct
*task
);
1431 select_task_rq_rt(struct task_struct
*p
, int cpu
, int sd_flag
, int flags
)
1433 struct task_struct
*curr
;
1437 /* For anything but wake ups, just return the task_cpu */
1438 if (sd_flag
!= SD_BALANCE_WAKE
&& sd_flag
!= SD_BALANCE_FORK
)
1444 curr
= READ_ONCE(rq
->curr
); /* unlocked access */
1447 * If the current task on @p's runqueue is an RT task, then
1448 * try to see if we can wake this RT task up on another
1449 * runqueue. Otherwise simply start this RT task
1450 * on its current runqueue.
1452 * We want to avoid overloading runqueues. If the woken
1453 * task is a higher priority, then it will stay on this CPU
1454 * and the lower prio task should be moved to another CPU.
1455 * Even though this will probably make the lower prio task
1456 * lose its cache, we do not want to bounce a higher task
1457 * around just because it gave up its CPU, perhaps for a
1460 * For equal prio tasks, we just let the scheduler sort it out.
1462 * Otherwise, just let it ride on the affined RQ and the
1463 * post-schedule router will push the preempted task away
1465 * This test is optimistic, if we get it wrong the load-balancer
1466 * will have to sort it out.
1468 * We take into account the capacity of the CPU to ensure it fits the
1469 * requirement of the task - which is only important on heterogeneous
1470 * systems like big.LITTLE.
1473 unlikely(rt_task(curr
)) &&
1474 (curr
->nr_cpus_allowed
< 2 || curr
->prio
<= p
->prio
);
1476 if (test
|| !rt_task_fits_capacity(p
, cpu
)) {
1477 int target
= find_lowest_rq(p
);
1480 * Bail out if we were forcing a migration to find a better
1481 * fitting CPU but our search failed.
1483 if (!test
&& target
!= -1 && !rt_task_fits_capacity(p
, target
))
1487 * Don't bother moving it if the destination CPU is
1488 * not running a lower priority task.
1491 p
->prio
< cpu_rq(target
)->rt
.highest_prio
.curr
)
1502 static void check_preempt_equal_prio(struct rq
*rq
, struct task_struct
*p
)
1505 * Current can't be migrated, useless to reschedule,
1506 * let's hope p can move out.
1508 if (rq
->curr
->nr_cpus_allowed
== 1 ||
1509 !cpupri_find(&rq
->rd
->cpupri
, rq
->curr
, NULL
))
1513 * p is migratable, so let's not schedule it and
1514 * see if it is pushed or pulled somewhere else.
1516 if (p
->nr_cpus_allowed
!= 1 &&
1517 cpupri_find(&rq
->rd
->cpupri
, p
, NULL
))
1521 * There appear to be other CPUs that can accept
1522 * the current task but none can run 'p', so lets reschedule
1523 * to try and push the current task away:
1525 requeue_task_rt(rq
, p
, 1);
1529 static int balance_rt(struct rq
*rq
, struct task_struct
*p
, struct rq_flags
*rf
)
1531 if (!on_rt_rq(&p
->rt
) && need_pull_rt_task(rq
, p
)) {
1533 * This is OK, because current is on_cpu, which avoids it being
1534 * picked for load-balance and preemption/IRQs are still
1535 * disabled avoiding further scheduler activity on it and we've
1536 * not yet started the picking loop.
1538 rq_unpin_lock(rq
, rf
);
1540 rq_repin_lock(rq
, rf
);
1543 return sched_stop_runnable(rq
) || sched_dl_runnable(rq
) || sched_rt_runnable(rq
);
1545 #endif /* CONFIG_SMP */
1548 * Preempt the current task with a newly woken task if needed:
1550 static void check_preempt_curr_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1552 if (p
->prio
< rq
->curr
->prio
) {
1561 * - the newly woken task is of equal priority to the current task
1562 * - the newly woken task is non-migratable while current is migratable
1563 * - current will be preempted on the next reschedule
1565 * we should check to see if current can readily move to a different
1566 * cpu. If so, we will reschedule to allow the push logic to try
1567 * to move current somewhere else, making room for our non-migratable
1570 if (p
->prio
== rq
->curr
->prio
&& !test_tsk_need_resched(rq
->curr
))
1571 check_preempt_equal_prio(rq
, p
);
1575 static inline void set_next_task_rt(struct rq
*rq
, struct task_struct
*p
, bool first
)
1577 p
->se
.exec_start
= rq_clock_task(rq
);
1579 /* The running task is never eligible for pushing */
1580 dequeue_pushable_task(rq
, p
);
1586 * If prev task was rt, put_prev_task() has already updated the
1587 * utilization. We only care of the case where we start to schedule a
1590 if (rq
->curr
->sched_class
!= &rt_sched_class
)
1591 update_rt_rq_load_avg(rq_clock_pelt(rq
), rq
, 0);
1593 rt_queue_push_tasks(rq
);
1596 static struct sched_rt_entity
*pick_next_rt_entity(struct rq
*rq
,
1597 struct rt_rq
*rt_rq
)
1599 struct rt_prio_array
*array
= &rt_rq
->active
;
1600 struct sched_rt_entity
*next
= NULL
;
1601 struct list_head
*queue
;
1604 idx
= sched_find_first_bit(array
->bitmap
);
1605 BUG_ON(idx
>= MAX_RT_PRIO
);
1607 queue
= array
->queue
+ idx
;
1608 next
= list_entry(queue
->next
, struct sched_rt_entity
, run_list
);
1613 static struct task_struct
*_pick_next_task_rt(struct rq
*rq
)
1615 struct sched_rt_entity
*rt_se
;
1616 struct rt_rq
*rt_rq
= &rq
->rt
;
1619 rt_se
= pick_next_rt_entity(rq
, rt_rq
);
1621 rt_rq
= group_rt_rq(rt_se
);
1624 return rt_task_of(rt_se
);
1627 static struct task_struct
*pick_next_task_rt(struct rq
*rq
)
1629 struct task_struct
*p
;
1631 if (!sched_rt_runnable(rq
))
1634 p
= _pick_next_task_rt(rq
);
1635 set_next_task_rt(rq
, p
, true);
1639 static void put_prev_task_rt(struct rq
*rq
, struct task_struct
*p
)
1643 update_rt_rq_load_avg(rq_clock_pelt(rq
), rq
, 1);
1646 * The previous task needs to be made eligible for pushing
1647 * if it is still active
1649 if (on_rt_rq(&p
->rt
) && p
->nr_cpus_allowed
> 1)
1650 enqueue_pushable_task(rq
, p
);
1655 /* Only try algorithms three times */
1656 #define RT_MAX_TRIES 3
1658 static int pick_rt_task(struct rq
*rq
, struct task_struct
*p
, int cpu
)
1660 if (!task_running(rq
, p
) &&
1661 cpumask_test_cpu(cpu
, p
->cpus_ptr
))
1668 * Return the highest pushable rq's task, which is suitable to be executed
1669 * on the CPU, NULL otherwise
1671 static struct task_struct
*pick_highest_pushable_task(struct rq
*rq
, int cpu
)
1673 struct plist_head
*head
= &rq
->rt
.pushable_tasks
;
1674 struct task_struct
*p
;
1676 if (!has_pushable_tasks(rq
))
1679 plist_for_each_entry(p
, head
, pushable_tasks
) {
1680 if (pick_rt_task(rq
, p
, cpu
))
1687 static DEFINE_PER_CPU(cpumask_var_t
, local_cpu_mask
);
1689 static int find_lowest_rq(struct task_struct
*task
)
1691 struct sched_domain
*sd
;
1692 struct cpumask
*lowest_mask
= this_cpu_cpumask_var_ptr(local_cpu_mask
);
1693 int this_cpu
= smp_processor_id();
1694 int cpu
= task_cpu(task
);
1697 /* Make sure the mask is initialized first */
1698 if (unlikely(!lowest_mask
))
1701 if (task
->nr_cpus_allowed
== 1)
1702 return -1; /* No other targets possible */
1705 * If we're on asym system ensure we consider the different capacities
1706 * of the CPUs when searching for the lowest_mask.
1708 if (static_branch_unlikely(&sched_asym_cpucapacity
)) {
1710 ret
= cpupri_find_fitness(&task_rq(task
)->rd
->cpupri
,
1712 rt_task_fits_capacity
);
1715 ret
= cpupri_find(&task_rq(task
)->rd
->cpupri
,
1720 return -1; /* No targets found */
1723 * At this point we have built a mask of CPUs representing the
1724 * lowest priority tasks in the system. Now we want to elect
1725 * the best one based on our affinity and topology.
1727 * We prioritize the last CPU that the task executed on since
1728 * it is most likely cache-hot in that location.
1730 if (cpumask_test_cpu(cpu
, lowest_mask
))
1734 * Otherwise, we consult the sched_domains span maps to figure
1735 * out which CPU is logically closest to our hot cache data.
1737 if (!cpumask_test_cpu(this_cpu
, lowest_mask
))
1738 this_cpu
= -1; /* Skip this_cpu opt if not among lowest */
1741 for_each_domain(cpu
, sd
) {
1742 if (sd
->flags
& SD_WAKE_AFFINE
) {
1746 * "this_cpu" is cheaper to preempt than a
1749 if (this_cpu
!= -1 &&
1750 cpumask_test_cpu(this_cpu
, sched_domain_span(sd
))) {
1755 best_cpu
= cpumask_first_and(lowest_mask
,
1756 sched_domain_span(sd
));
1757 if (best_cpu
< nr_cpu_ids
) {
1766 * And finally, if there were no matches within the domains
1767 * just give the caller *something* to work with from the compatible
1773 cpu
= cpumask_any(lowest_mask
);
1774 if (cpu
< nr_cpu_ids
)
1780 /* Will lock the rq it finds */
1781 static struct rq
*find_lock_lowest_rq(struct task_struct
*task
, struct rq
*rq
)
1783 struct rq
*lowest_rq
= NULL
;
1787 for (tries
= 0; tries
< RT_MAX_TRIES
; tries
++) {
1788 cpu
= find_lowest_rq(task
);
1790 if ((cpu
== -1) || (cpu
== rq
->cpu
))
1793 lowest_rq
= cpu_rq(cpu
);
1795 if (lowest_rq
->rt
.highest_prio
.curr
<= task
->prio
) {
1797 * Target rq has tasks of equal or higher priority,
1798 * retrying does not release any lock and is unlikely
1799 * to yield a different result.
1805 /* if the prio of this runqueue changed, try again */
1806 if (double_lock_balance(rq
, lowest_rq
)) {
1808 * We had to unlock the run queue. In
1809 * the mean time, task could have
1810 * migrated already or had its affinity changed.
1811 * Also make sure that it wasn't scheduled on its rq.
1813 if (unlikely(task_rq(task
) != rq
||
1814 !cpumask_test_cpu(lowest_rq
->cpu
, task
->cpus_ptr
) ||
1815 task_running(rq
, task
) ||
1817 !task_on_rq_queued(task
))) {
1819 double_unlock_balance(rq
, lowest_rq
);
1825 /* If this rq is still suitable use it. */
1826 if (lowest_rq
->rt
.highest_prio
.curr
> task
->prio
)
1830 double_unlock_balance(rq
, lowest_rq
);
1837 static struct task_struct
*pick_next_pushable_task(struct rq
*rq
)
1839 struct task_struct
*p
;
1841 if (!has_pushable_tasks(rq
))
1844 p
= plist_first_entry(&rq
->rt
.pushable_tasks
,
1845 struct task_struct
, pushable_tasks
);
1847 BUG_ON(rq
->cpu
!= task_cpu(p
));
1848 BUG_ON(task_current(rq
, p
));
1849 BUG_ON(p
->nr_cpus_allowed
<= 1);
1851 BUG_ON(!task_on_rq_queued(p
));
1852 BUG_ON(!rt_task(p
));
1858 * If the current CPU has more than one RT task, see if the non
1859 * running task can migrate over to a CPU that is running a task
1860 * of lesser priority.
1862 static int push_rt_task(struct rq
*rq
)
1864 struct task_struct
*next_task
;
1865 struct rq
*lowest_rq
;
1868 if (!rq
->rt
.overloaded
)
1871 next_task
= pick_next_pushable_task(rq
);
1876 if (WARN_ON(next_task
== rq
->curr
))
1880 * It's possible that the next_task slipped in of
1881 * higher priority than current. If that's the case
1882 * just reschedule current.
1884 if (unlikely(next_task
->prio
< rq
->curr
->prio
)) {
1889 /* We might release rq lock */
1890 get_task_struct(next_task
);
1892 /* find_lock_lowest_rq locks the rq if found */
1893 lowest_rq
= find_lock_lowest_rq(next_task
, rq
);
1895 struct task_struct
*task
;
1897 * find_lock_lowest_rq releases rq->lock
1898 * so it is possible that next_task has migrated.
1900 * We need to make sure that the task is still on the same
1901 * run-queue and is also still the next task eligible for
1904 task
= pick_next_pushable_task(rq
);
1905 if (task
== next_task
) {
1907 * The task hasn't migrated, and is still the next
1908 * eligible task, but we failed to find a run-queue
1909 * to push it to. Do not retry in this case, since
1910 * other CPUs will pull from us when ready.
1916 /* No more tasks, just exit */
1920 * Something has shifted, try again.
1922 put_task_struct(next_task
);
1927 deactivate_task(rq
, next_task
, 0);
1928 set_task_cpu(next_task
, lowest_rq
->cpu
);
1929 activate_task(lowest_rq
, next_task
, 0);
1932 resched_curr(lowest_rq
);
1934 double_unlock_balance(rq
, lowest_rq
);
1937 put_task_struct(next_task
);
1942 static void push_rt_tasks(struct rq
*rq
)
1944 /* push_rt_task will return true if it moved an RT */
1945 while (push_rt_task(rq
))
1949 #ifdef HAVE_RT_PUSH_IPI
1952 * When a high priority task schedules out from a CPU and a lower priority
1953 * task is scheduled in, a check is made to see if there's any RT tasks
1954 * on other CPUs that are waiting to run because a higher priority RT task
1955 * is currently running on its CPU. In this case, the CPU with multiple RT
1956 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1957 * up that may be able to run one of its non-running queued RT tasks.
1959 * All CPUs with overloaded RT tasks need to be notified as there is currently
1960 * no way to know which of these CPUs have the highest priority task waiting
1961 * to run. Instead of trying to take a spinlock on each of these CPUs,
1962 * which has shown to cause large latency when done on machines with many
1963 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1964 * RT tasks waiting to run.
1966 * Just sending an IPI to each of the CPUs is also an issue, as on large
1967 * count CPU machines, this can cause an IPI storm on a CPU, especially
1968 * if its the only CPU with multiple RT tasks queued, and a large number
1969 * of CPUs scheduling a lower priority task at the same time.
1971 * Each root domain has its own irq work function that can iterate over
1972 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1973 * tassk must be checked if there's one or many CPUs that are lowering
1974 * their priority, there's a single irq work iterator that will try to
1975 * push off RT tasks that are waiting to run.
1977 * When a CPU schedules a lower priority task, it will kick off the
1978 * irq work iterator that will jump to each CPU with overloaded RT tasks.
1979 * As it only takes the first CPU that schedules a lower priority task
1980 * to start the process, the rto_start variable is incremented and if
1981 * the atomic result is one, then that CPU will try to take the rto_lock.
1982 * This prevents high contention on the lock as the process handles all
1983 * CPUs scheduling lower priority tasks.
1985 * All CPUs that are scheduling a lower priority task will increment the
1986 * rt_loop_next variable. This will make sure that the irq work iterator
1987 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1988 * priority task, even if the iterator is in the middle of a scan. Incrementing
1989 * the rt_loop_next will cause the iterator to perform another scan.
1992 static int rto_next_cpu(struct root_domain
*rd
)
1998 * When starting the IPI RT pushing, the rto_cpu is set to -1,
1999 * rt_next_cpu() will simply return the first CPU found in
2002 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2003 * will return the next CPU found in the rto_mask.
2005 * If there are no more CPUs left in the rto_mask, then a check is made
2006 * against rto_loop and rto_loop_next. rto_loop is only updated with
2007 * the rto_lock held, but any CPU may increment the rto_loop_next
2008 * without any locking.
2012 /* When rto_cpu is -1 this acts like cpumask_first() */
2013 cpu
= cpumask_next(rd
->rto_cpu
, rd
->rto_mask
);
2017 if (cpu
< nr_cpu_ids
)
2023 * ACQUIRE ensures we see the @rto_mask changes
2024 * made prior to the @next value observed.
2026 * Matches WMB in rt_set_overload().
2028 next
= atomic_read_acquire(&rd
->rto_loop_next
);
2030 if (rd
->rto_loop
== next
)
2033 rd
->rto_loop
= next
;
2039 static inline bool rto_start_trylock(atomic_t
*v
)
2041 return !atomic_cmpxchg_acquire(v
, 0, 1);
2044 static inline void rto_start_unlock(atomic_t
*v
)
2046 atomic_set_release(v
, 0);
2049 static void tell_cpu_to_push(struct rq
*rq
)
2053 /* Keep the loop going if the IPI is currently active */
2054 atomic_inc(&rq
->rd
->rto_loop_next
);
2056 /* Only one CPU can initiate a loop at a time */
2057 if (!rto_start_trylock(&rq
->rd
->rto_loop_start
))
2060 raw_spin_lock(&rq
->rd
->rto_lock
);
2063 * The rto_cpu is updated under the lock, if it has a valid CPU
2064 * then the IPI is still running and will continue due to the
2065 * update to loop_next, and nothing needs to be done here.
2066 * Otherwise it is finishing up and an ipi needs to be sent.
2068 if (rq
->rd
->rto_cpu
< 0)
2069 cpu
= rto_next_cpu(rq
->rd
);
2071 raw_spin_unlock(&rq
->rd
->rto_lock
);
2073 rto_start_unlock(&rq
->rd
->rto_loop_start
);
2076 /* Make sure the rd does not get freed while pushing */
2077 sched_get_rd(rq
->rd
);
2078 irq_work_queue_on(&rq
->rd
->rto_push_work
, cpu
);
2082 /* Called from hardirq context */
2083 void rto_push_irq_work_func(struct irq_work
*work
)
2085 struct root_domain
*rd
=
2086 container_of(work
, struct root_domain
, rto_push_work
);
2093 * We do not need to grab the lock to check for has_pushable_tasks.
2094 * When it gets updated, a check is made if a push is possible.
2096 if (has_pushable_tasks(rq
)) {
2097 raw_spin_lock(&rq
->lock
);
2099 raw_spin_unlock(&rq
->lock
);
2102 raw_spin_lock(&rd
->rto_lock
);
2104 /* Pass the IPI to the next rt overloaded queue */
2105 cpu
= rto_next_cpu(rd
);
2107 raw_spin_unlock(&rd
->rto_lock
);
2114 /* Try the next RT overloaded CPU */
2115 irq_work_queue_on(&rd
->rto_push_work
, cpu
);
2117 #endif /* HAVE_RT_PUSH_IPI */
2119 static void pull_rt_task(struct rq
*this_rq
)
2121 int this_cpu
= this_rq
->cpu
, cpu
;
2122 bool resched
= false;
2123 struct task_struct
*p
;
2125 int rt_overload_count
= rt_overloaded(this_rq
);
2127 if (likely(!rt_overload_count
))
2131 * Match the barrier from rt_set_overloaded; this guarantees that if we
2132 * see overloaded we must also see the rto_mask bit.
2136 /* If we are the only overloaded CPU do nothing */
2137 if (rt_overload_count
== 1 &&
2138 cpumask_test_cpu(this_rq
->cpu
, this_rq
->rd
->rto_mask
))
2141 #ifdef HAVE_RT_PUSH_IPI
2142 if (sched_feat(RT_PUSH_IPI
)) {
2143 tell_cpu_to_push(this_rq
);
2148 for_each_cpu(cpu
, this_rq
->rd
->rto_mask
) {
2149 if (this_cpu
== cpu
)
2152 src_rq
= cpu_rq(cpu
);
2155 * Don't bother taking the src_rq->lock if the next highest
2156 * task is known to be lower-priority than our current task.
2157 * This may look racy, but if this value is about to go
2158 * logically higher, the src_rq will push this task away.
2159 * And if its going logically lower, we do not care
2161 if (src_rq
->rt
.highest_prio
.next
>=
2162 this_rq
->rt
.highest_prio
.curr
)
2166 * We can potentially drop this_rq's lock in
2167 * double_lock_balance, and another CPU could
2170 double_lock_balance(this_rq
, src_rq
);
2173 * We can pull only a task, which is pushable
2174 * on its rq, and no others.
2176 p
= pick_highest_pushable_task(src_rq
, this_cpu
);
2179 * Do we have an RT task that preempts
2180 * the to-be-scheduled task?
2182 if (p
&& (p
->prio
< this_rq
->rt
.highest_prio
.curr
)) {
2183 WARN_ON(p
== src_rq
->curr
);
2184 WARN_ON(!task_on_rq_queued(p
));
2187 * There's a chance that p is higher in priority
2188 * than what's currently running on its CPU.
2189 * This is just that p is wakeing up and hasn't
2190 * had a chance to schedule. We only pull
2191 * p if it is lower in priority than the
2192 * current task on the run queue
2194 if (p
->prio
< src_rq
->curr
->prio
)
2199 deactivate_task(src_rq
, p
, 0);
2200 set_task_cpu(p
, this_cpu
);
2201 activate_task(this_rq
, p
, 0);
2203 * We continue with the search, just in
2204 * case there's an even higher prio task
2205 * in another runqueue. (low likelihood
2210 double_unlock_balance(this_rq
, src_rq
);
2214 resched_curr(this_rq
);
2218 * If we are not running and we are not going to reschedule soon, we should
2219 * try to push tasks away now
2221 static void task_woken_rt(struct rq
*rq
, struct task_struct
*p
)
2223 bool need_to_push
= !task_running(rq
, p
) &&
2224 !test_tsk_need_resched(rq
->curr
) &&
2225 p
->nr_cpus_allowed
> 1 &&
2226 (dl_task(rq
->curr
) || rt_task(rq
->curr
)) &&
2227 (rq
->curr
->nr_cpus_allowed
< 2 ||
2228 rq
->curr
->prio
<= p
->prio
);
2234 /* Assumes rq->lock is held */
2235 static void rq_online_rt(struct rq
*rq
)
2237 if (rq
->rt
.overloaded
)
2238 rt_set_overload(rq
);
2240 __enable_runtime(rq
);
2242 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rq
->rt
.highest_prio
.curr
);
2245 /* Assumes rq->lock is held */
2246 static void rq_offline_rt(struct rq
*rq
)
2248 if (rq
->rt
.overloaded
)
2249 rt_clear_overload(rq
);
2251 __disable_runtime(rq
);
2253 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, CPUPRI_INVALID
);
2257 * When switch from the rt queue, we bring ourselves to a position
2258 * that we might want to pull RT tasks from other runqueues.
2260 static void switched_from_rt(struct rq
*rq
, struct task_struct
*p
)
2263 * If there are other RT tasks then we will reschedule
2264 * and the scheduling of the other RT tasks will handle
2265 * the balancing. But if we are the last RT task
2266 * we may need to handle the pulling of RT tasks
2269 if (!task_on_rq_queued(p
) || rq
->rt
.rt_nr_running
)
2272 rt_queue_pull_task(rq
);
2275 void __init
init_sched_rt_class(void)
2279 for_each_possible_cpu(i
) {
2280 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask
, i
),
2281 GFP_KERNEL
, cpu_to_node(i
));
2284 #endif /* CONFIG_SMP */
2287 * When switching a task to RT, we may overload the runqueue
2288 * with RT tasks. In this case we try to push them off to
2291 static void switched_to_rt(struct rq
*rq
, struct task_struct
*p
)
2294 * If we are already running, then there's nothing
2295 * that needs to be done. But if we are not running
2296 * we may need to preempt the current running task.
2297 * If that current running task is also an RT task
2298 * then see if we can move to another run queue.
2300 if (task_on_rq_queued(p
) && rq
->curr
!= p
) {
2302 if (p
->nr_cpus_allowed
> 1 && rq
->rt
.overloaded
)
2303 rt_queue_push_tasks(rq
);
2304 #endif /* CONFIG_SMP */
2305 if (p
->prio
< rq
->curr
->prio
&& cpu_online(cpu_of(rq
)))
2311 * Priority of the task has changed. This may cause
2312 * us to initiate a push or pull.
2315 prio_changed_rt(struct rq
*rq
, struct task_struct
*p
, int oldprio
)
2317 if (!task_on_rq_queued(p
))
2320 if (rq
->curr
== p
) {
2323 * If our priority decreases while running, we
2324 * may need to pull tasks to this runqueue.
2326 if (oldprio
< p
->prio
)
2327 rt_queue_pull_task(rq
);
2330 * If there's a higher priority task waiting to run
2333 if (p
->prio
> rq
->rt
.highest_prio
.curr
)
2336 /* For UP simply resched on drop of prio */
2337 if (oldprio
< p
->prio
)
2339 #endif /* CONFIG_SMP */
2342 * This task is not running, but if it is
2343 * greater than the current running task
2346 if (p
->prio
< rq
->curr
->prio
)
2351 #ifdef CONFIG_POSIX_TIMERS
2352 static void watchdog(struct rq
*rq
, struct task_struct
*p
)
2354 unsigned long soft
, hard
;
2356 /* max may change after cur was read, this will be fixed next tick */
2357 soft
= task_rlimit(p
, RLIMIT_RTTIME
);
2358 hard
= task_rlimit_max(p
, RLIMIT_RTTIME
);
2360 if (soft
!= RLIM_INFINITY
) {
2363 if (p
->rt
.watchdog_stamp
!= jiffies
) {
2365 p
->rt
.watchdog_stamp
= jiffies
;
2368 next
= DIV_ROUND_UP(min(soft
, hard
), USEC_PER_SEC
/HZ
);
2369 if (p
->rt
.timeout
> next
) {
2370 posix_cputimers_rt_watchdog(&p
->posix_cputimers
,
2371 p
->se
.sum_exec_runtime
);
2376 static inline void watchdog(struct rq
*rq
, struct task_struct
*p
) { }
2380 * scheduler tick hitting a task of our scheduling class.
2382 * NOTE: This function can be called remotely by the tick offload that
2383 * goes along full dynticks. Therefore no local assumption can be made
2384 * and everything must be accessed through the @rq and @curr passed in
2387 static void task_tick_rt(struct rq
*rq
, struct task_struct
*p
, int queued
)
2389 struct sched_rt_entity
*rt_se
= &p
->rt
;
2392 update_rt_rq_load_avg(rq_clock_pelt(rq
), rq
, 1);
2397 * RR tasks need a special form of timeslice management.
2398 * FIFO tasks have no timeslices.
2400 if (p
->policy
!= SCHED_RR
)
2403 if (--p
->rt
.time_slice
)
2406 p
->rt
.time_slice
= sched_rr_timeslice
;
2409 * Requeue to the end of queue if we (and all of our ancestors) are not
2410 * the only element on the queue
2412 for_each_sched_rt_entity(rt_se
) {
2413 if (rt_se
->run_list
.prev
!= rt_se
->run_list
.next
) {
2414 requeue_task_rt(rq
, p
, 0);
2421 static unsigned int get_rr_interval_rt(struct rq
*rq
, struct task_struct
*task
)
2424 * Time slice is 0 for SCHED_FIFO tasks
2426 if (task
->policy
== SCHED_RR
)
2427 return sched_rr_timeslice
;
2432 const struct sched_class rt_sched_class
= {
2433 .next
= &fair_sched_class
,
2434 .enqueue_task
= enqueue_task_rt
,
2435 .dequeue_task
= dequeue_task_rt
,
2436 .yield_task
= yield_task_rt
,
2438 .check_preempt_curr
= check_preempt_curr_rt
,
2440 .pick_next_task
= pick_next_task_rt
,
2441 .put_prev_task
= put_prev_task_rt
,
2442 .set_next_task
= set_next_task_rt
,
2445 .balance
= balance_rt
,
2446 .select_task_rq
= select_task_rq_rt
,
2447 .set_cpus_allowed
= set_cpus_allowed_common
,
2448 .rq_online
= rq_online_rt
,
2449 .rq_offline
= rq_offline_rt
,
2450 .task_woken
= task_woken_rt
,
2451 .switched_from
= switched_from_rt
,
2454 .task_tick
= task_tick_rt
,
2456 .get_rr_interval
= get_rr_interval_rt
,
2458 .prio_changed
= prio_changed_rt
,
2459 .switched_to
= switched_to_rt
,
2461 .update_curr
= update_curr_rt
,
2463 #ifdef CONFIG_UCLAMP_TASK
2464 .uclamp_enabled
= 1,
2468 #ifdef CONFIG_RT_GROUP_SCHED
2470 * Ensure that the real time constraints are schedulable.
2472 static DEFINE_MUTEX(rt_constraints_mutex
);
2474 static inline int tg_has_rt_tasks(struct task_group
*tg
)
2476 struct task_struct
*task
;
2477 struct css_task_iter it
;
2481 * Autogroups do not have RT tasks; see autogroup_create().
2483 if (task_group_is_autogroup(tg
))
2486 css_task_iter_start(&tg
->css
, 0, &it
);
2487 while (!ret
&& (task
= css_task_iter_next(&it
)))
2488 ret
|= rt_task(task
);
2489 css_task_iter_end(&it
);
2494 struct rt_schedulable_data
{
2495 struct task_group
*tg
;
2500 static int tg_rt_schedulable(struct task_group
*tg
, void *data
)
2502 struct rt_schedulable_data
*d
= data
;
2503 struct task_group
*child
;
2504 unsigned long total
, sum
= 0;
2505 u64 period
, runtime
;
2507 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
2508 runtime
= tg
->rt_bandwidth
.rt_runtime
;
2511 period
= d
->rt_period
;
2512 runtime
= d
->rt_runtime
;
2516 * Cannot have more runtime than the period.
2518 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
2522 * Ensure we don't starve existing RT tasks if runtime turns zero.
2524 if (rt_bandwidth_enabled() && !runtime
&&
2525 tg
->rt_bandwidth
.rt_runtime
&& tg_has_rt_tasks(tg
))
2528 total
= to_ratio(period
, runtime
);
2531 * Nobody can have more than the global setting allows.
2533 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
2537 * The sum of our children's runtime should not exceed our own.
2539 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
2540 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
2541 runtime
= child
->rt_bandwidth
.rt_runtime
;
2543 if (child
== d
->tg
) {
2544 period
= d
->rt_period
;
2545 runtime
= d
->rt_runtime
;
2548 sum
+= to_ratio(period
, runtime
);
2557 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
2561 struct rt_schedulable_data data
= {
2563 .rt_period
= period
,
2564 .rt_runtime
= runtime
,
2568 ret
= walk_tg_tree(tg_rt_schedulable
, tg_nop
, &data
);
2574 static int tg_set_rt_bandwidth(struct task_group
*tg
,
2575 u64 rt_period
, u64 rt_runtime
)
2580 * Disallowing the root group RT runtime is BAD, it would disallow the
2581 * kernel creating (and or operating) RT threads.
2583 if (tg
== &root_task_group
&& rt_runtime
== 0)
2586 /* No period doesn't make any sense. */
2591 * Bound quota to defend quota against overflow during bandwidth shift.
2593 if (rt_runtime
!= RUNTIME_INF
&& rt_runtime
> max_rt_runtime
)
2596 mutex_lock(&rt_constraints_mutex
);
2597 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
2601 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
2602 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
2603 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
2605 for_each_possible_cpu(i
) {
2606 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
2608 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
2609 rt_rq
->rt_runtime
= rt_runtime
;
2610 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
2612 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
2614 mutex_unlock(&rt_constraints_mutex
);
2619 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
2621 u64 rt_runtime
, rt_period
;
2623 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
2624 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
2625 if (rt_runtime_us
< 0)
2626 rt_runtime
= RUNTIME_INF
;
2627 else if ((u64
)rt_runtime_us
> U64_MAX
/ NSEC_PER_USEC
)
2630 return tg_set_rt_bandwidth(tg
, rt_period
, rt_runtime
);
2633 long sched_group_rt_runtime(struct task_group
*tg
)
2637 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
2640 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
2641 do_div(rt_runtime_us
, NSEC_PER_USEC
);
2642 return rt_runtime_us
;
2645 int sched_group_set_rt_period(struct task_group
*tg
, u64 rt_period_us
)
2647 u64 rt_runtime
, rt_period
;
2649 if (rt_period_us
> U64_MAX
/ NSEC_PER_USEC
)
2652 rt_period
= rt_period_us
* NSEC_PER_USEC
;
2653 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
2655 return tg_set_rt_bandwidth(tg
, rt_period
, rt_runtime
);
2658 long sched_group_rt_period(struct task_group
*tg
)
2662 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
2663 do_div(rt_period_us
, NSEC_PER_USEC
);
2664 return rt_period_us
;
2667 static int sched_rt_global_constraints(void)
2671 mutex_lock(&rt_constraints_mutex
);
2672 ret
= __rt_schedulable(NULL
, 0, 0);
2673 mutex_unlock(&rt_constraints_mutex
);
2678 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
2680 /* Don't accept realtime tasks when there is no way for them to run */
2681 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
2687 #else /* !CONFIG_RT_GROUP_SCHED */
2688 static int sched_rt_global_constraints(void)
2690 unsigned long flags
;
2693 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
2694 for_each_possible_cpu(i
) {
2695 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
2697 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
2698 rt_rq
->rt_runtime
= global_rt_runtime();
2699 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
2701 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
2705 #endif /* CONFIG_RT_GROUP_SCHED */
2707 static int sched_rt_global_validate(void)
2709 if (sysctl_sched_rt_period
<= 0)
2712 if ((sysctl_sched_rt_runtime
!= RUNTIME_INF
) &&
2713 ((sysctl_sched_rt_runtime
> sysctl_sched_rt_period
) ||
2714 ((u64
)sysctl_sched_rt_runtime
*
2715 NSEC_PER_USEC
> max_rt_runtime
)))
2721 static void sched_rt_do_global(void)
2723 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
2724 def_rt_bandwidth
.rt_period
= ns_to_ktime(global_rt_period());
2727 int sched_rt_handler(struct ctl_table
*table
, int write
,
2728 void __user
*buffer
, size_t *lenp
,
2731 int old_period
, old_runtime
;
2732 static DEFINE_MUTEX(mutex
);
2736 old_period
= sysctl_sched_rt_period
;
2737 old_runtime
= sysctl_sched_rt_runtime
;
2739 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
2741 if (!ret
&& write
) {
2742 ret
= sched_rt_global_validate();
2746 ret
= sched_dl_global_validate();
2750 ret
= sched_rt_global_constraints();
2754 sched_rt_do_global();
2755 sched_dl_do_global();
2759 sysctl_sched_rt_period
= old_period
;
2760 sysctl_sched_rt_runtime
= old_runtime
;
2762 mutex_unlock(&mutex
);
2767 int sched_rr_handler(struct ctl_table
*table
, int write
,
2768 void __user
*buffer
, size_t *lenp
,
2772 static DEFINE_MUTEX(mutex
);
2775 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
2777 * Make sure that internally we keep jiffies.
2778 * Also, writing zero resets the timeslice to default:
2780 if (!ret
&& write
) {
2781 sched_rr_timeslice
=
2782 sysctl_sched_rr_timeslice
<= 0 ? RR_TIMESLICE
:
2783 msecs_to_jiffies(sysctl_sched_rr_timeslice
);
2785 mutex_unlock(&mutex
);
2790 #ifdef CONFIG_SCHED_DEBUG
2791 void print_rt_stats(struct seq_file
*m
, int cpu
)
2794 struct rt_rq
*rt_rq
;
2797 for_each_rt_rq(rt_rq
, iter
, cpu_rq(cpu
))
2798 print_rt_rq(m
, cpu
, rt_rq
);
2801 #endif /* CONFIG_SCHED_DEBUG */