Revert "tty: hvc: Fix data abort due to race in hvc_open"
[linux/fpc-iii.git] / kernel / sched / rt.c
blob6d60ba21ed2985e600f1f6e01fff1edf07bc64a2
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4 * policies)
5 */
6 #include "sched.h"
8 #include "pelt.h"
10 int sched_rr_timeslice = RR_TIMESLICE;
11 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
12 /* More than 4 hours if BW_SHIFT equals 20. */
13 static const u64 max_rt_runtime = MAX_BW;
15 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
17 struct rt_bandwidth def_rt_bandwidth;
19 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
21 struct rt_bandwidth *rt_b =
22 container_of(timer, struct rt_bandwidth, rt_period_timer);
23 int idle = 0;
24 int overrun;
26 raw_spin_lock(&rt_b->rt_runtime_lock);
27 for (;;) {
28 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
29 if (!overrun)
30 break;
32 raw_spin_unlock(&rt_b->rt_runtime_lock);
33 idle = do_sched_rt_period_timer(rt_b, overrun);
34 raw_spin_lock(&rt_b->rt_runtime_lock);
36 if (idle)
37 rt_b->rt_period_active = 0;
38 raw_spin_unlock(&rt_b->rt_runtime_lock);
40 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
43 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
45 rt_b->rt_period = ns_to_ktime(period);
46 rt_b->rt_runtime = runtime;
48 raw_spin_lock_init(&rt_b->rt_runtime_lock);
50 hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
51 HRTIMER_MODE_REL_HARD);
52 rt_b->rt_period_timer.function = sched_rt_period_timer;
55 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
57 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
58 return;
60 raw_spin_lock(&rt_b->rt_runtime_lock);
61 if (!rt_b->rt_period_active) {
62 rt_b->rt_period_active = 1;
64 * SCHED_DEADLINE updates the bandwidth, as a run away
65 * RT task with a DL task could hog a CPU. But DL does
66 * not reset the period. If a deadline task was running
67 * without an RT task running, it can cause RT tasks to
68 * throttle when they start up. Kick the timer right away
69 * to update the period.
71 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
72 hrtimer_start_expires(&rt_b->rt_period_timer,
73 HRTIMER_MODE_ABS_PINNED_HARD);
75 raw_spin_unlock(&rt_b->rt_runtime_lock);
78 void init_rt_rq(struct rt_rq *rt_rq)
80 struct rt_prio_array *array;
81 int i;
83 array = &rt_rq->active;
84 for (i = 0; i < MAX_RT_PRIO; i++) {
85 INIT_LIST_HEAD(array->queue + i);
86 __clear_bit(i, array->bitmap);
88 /* delimiter for bitsearch: */
89 __set_bit(MAX_RT_PRIO, array->bitmap);
91 #if defined CONFIG_SMP
92 rt_rq->highest_prio.curr = MAX_RT_PRIO;
93 rt_rq->highest_prio.next = MAX_RT_PRIO;
94 rt_rq->rt_nr_migratory = 0;
95 rt_rq->overloaded = 0;
96 plist_head_init(&rt_rq->pushable_tasks);
97 #endif /* CONFIG_SMP */
98 /* We start is dequeued state, because no RT tasks are queued */
99 rt_rq->rt_queued = 0;
101 rt_rq->rt_time = 0;
102 rt_rq->rt_throttled = 0;
103 rt_rq->rt_runtime = 0;
104 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
107 #ifdef CONFIG_RT_GROUP_SCHED
108 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
110 hrtimer_cancel(&rt_b->rt_period_timer);
113 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
115 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
117 #ifdef CONFIG_SCHED_DEBUG
118 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
119 #endif
120 return container_of(rt_se, struct task_struct, rt);
123 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
125 return rt_rq->rq;
128 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
130 return rt_se->rt_rq;
133 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
135 struct rt_rq *rt_rq = rt_se->rt_rq;
137 return rt_rq->rq;
140 void free_rt_sched_group(struct task_group *tg)
142 int i;
144 if (tg->rt_se)
145 destroy_rt_bandwidth(&tg->rt_bandwidth);
147 for_each_possible_cpu(i) {
148 if (tg->rt_rq)
149 kfree(tg->rt_rq[i]);
150 if (tg->rt_se)
151 kfree(tg->rt_se[i]);
154 kfree(tg->rt_rq);
155 kfree(tg->rt_se);
158 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
159 struct sched_rt_entity *rt_se, int cpu,
160 struct sched_rt_entity *parent)
162 struct rq *rq = cpu_rq(cpu);
164 rt_rq->highest_prio.curr = MAX_RT_PRIO;
165 rt_rq->rt_nr_boosted = 0;
166 rt_rq->rq = rq;
167 rt_rq->tg = tg;
169 tg->rt_rq[cpu] = rt_rq;
170 tg->rt_se[cpu] = rt_se;
172 if (!rt_se)
173 return;
175 if (!parent)
176 rt_se->rt_rq = &rq->rt;
177 else
178 rt_se->rt_rq = parent->my_q;
180 rt_se->my_q = rt_rq;
181 rt_se->parent = parent;
182 INIT_LIST_HEAD(&rt_se->run_list);
185 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
187 struct rt_rq *rt_rq;
188 struct sched_rt_entity *rt_se;
189 int i;
191 tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
192 if (!tg->rt_rq)
193 goto err;
194 tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
195 if (!tg->rt_se)
196 goto err;
198 init_rt_bandwidth(&tg->rt_bandwidth,
199 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
201 for_each_possible_cpu(i) {
202 rt_rq = kzalloc_node(sizeof(struct rt_rq),
203 GFP_KERNEL, cpu_to_node(i));
204 if (!rt_rq)
205 goto err;
207 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
208 GFP_KERNEL, cpu_to_node(i));
209 if (!rt_se)
210 goto err_free_rq;
212 init_rt_rq(rt_rq);
213 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
214 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
217 return 1;
219 err_free_rq:
220 kfree(rt_rq);
221 err:
222 return 0;
225 #else /* CONFIG_RT_GROUP_SCHED */
227 #define rt_entity_is_task(rt_se) (1)
229 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
231 return container_of(rt_se, struct task_struct, rt);
234 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
236 return container_of(rt_rq, struct rq, rt);
239 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
241 struct task_struct *p = rt_task_of(rt_se);
243 return task_rq(p);
246 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
248 struct rq *rq = rq_of_rt_se(rt_se);
250 return &rq->rt;
253 void free_rt_sched_group(struct task_group *tg) { }
255 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
257 return 1;
259 #endif /* CONFIG_RT_GROUP_SCHED */
261 #ifdef CONFIG_SMP
263 static void pull_rt_task(struct rq *this_rq);
265 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
267 /* Try to pull RT tasks here if we lower this rq's prio */
268 return rq->rt.highest_prio.curr > prev->prio;
271 static inline int rt_overloaded(struct rq *rq)
273 return atomic_read(&rq->rd->rto_count);
276 static inline void rt_set_overload(struct rq *rq)
278 if (!rq->online)
279 return;
281 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
283 * Make sure the mask is visible before we set
284 * the overload count. That is checked to determine
285 * if we should look at the mask. It would be a shame
286 * if we looked at the mask, but the mask was not
287 * updated yet.
289 * Matched by the barrier in pull_rt_task().
291 smp_wmb();
292 atomic_inc(&rq->rd->rto_count);
295 static inline void rt_clear_overload(struct rq *rq)
297 if (!rq->online)
298 return;
300 /* the order here really doesn't matter */
301 atomic_dec(&rq->rd->rto_count);
302 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
305 static void update_rt_migration(struct rt_rq *rt_rq)
307 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
308 if (!rt_rq->overloaded) {
309 rt_set_overload(rq_of_rt_rq(rt_rq));
310 rt_rq->overloaded = 1;
312 } else if (rt_rq->overloaded) {
313 rt_clear_overload(rq_of_rt_rq(rt_rq));
314 rt_rq->overloaded = 0;
318 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
320 struct task_struct *p;
322 if (!rt_entity_is_task(rt_se))
323 return;
325 p = rt_task_of(rt_se);
326 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
328 rt_rq->rt_nr_total++;
329 if (p->nr_cpus_allowed > 1)
330 rt_rq->rt_nr_migratory++;
332 update_rt_migration(rt_rq);
335 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
337 struct task_struct *p;
339 if (!rt_entity_is_task(rt_se))
340 return;
342 p = rt_task_of(rt_se);
343 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
345 rt_rq->rt_nr_total--;
346 if (p->nr_cpus_allowed > 1)
347 rt_rq->rt_nr_migratory--;
349 update_rt_migration(rt_rq);
352 static inline int has_pushable_tasks(struct rq *rq)
354 return !plist_head_empty(&rq->rt.pushable_tasks);
357 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
358 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
360 static void push_rt_tasks(struct rq *);
361 static void pull_rt_task(struct rq *);
363 static inline void rt_queue_push_tasks(struct rq *rq)
365 if (!has_pushable_tasks(rq))
366 return;
368 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
371 static inline void rt_queue_pull_task(struct rq *rq)
373 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
376 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
378 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
379 plist_node_init(&p->pushable_tasks, p->prio);
380 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
382 /* Update the highest prio pushable task */
383 if (p->prio < rq->rt.highest_prio.next)
384 rq->rt.highest_prio.next = p->prio;
387 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
389 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
391 /* Update the new highest prio pushable task */
392 if (has_pushable_tasks(rq)) {
393 p = plist_first_entry(&rq->rt.pushable_tasks,
394 struct task_struct, pushable_tasks);
395 rq->rt.highest_prio.next = p->prio;
396 } else
397 rq->rt.highest_prio.next = MAX_RT_PRIO;
400 #else
402 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
406 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
410 static inline
411 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
415 static inline
416 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
420 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
422 return false;
425 static inline void pull_rt_task(struct rq *this_rq)
429 static inline void rt_queue_push_tasks(struct rq *rq)
432 #endif /* CONFIG_SMP */
434 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
435 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
437 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
439 return rt_se->on_rq;
442 #ifdef CONFIG_UCLAMP_TASK
444 * Verify the fitness of task @p to run on @cpu taking into account the uclamp
445 * settings.
447 * This check is only important for heterogeneous systems where uclamp_min value
448 * is higher than the capacity of a @cpu. For non-heterogeneous system this
449 * function will always return true.
451 * The function will return true if the capacity of the @cpu is >= the
452 * uclamp_min and false otherwise.
454 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
455 * > uclamp_max.
457 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
459 unsigned int min_cap;
460 unsigned int max_cap;
461 unsigned int cpu_cap;
463 /* Only heterogeneous systems can benefit from this check */
464 if (!static_branch_unlikely(&sched_asym_cpucapacity))
465 return true;
467 min_cap = uclamp_eff_value(p, UCLAMP_MIN);
468 max_cap = uclamp_eff_value(p, UCLAMP_MAX);
470 cpu_cap = capacity_orig_of(cpu);
472 return cpu_cap >= min(min_cap, max_cap);
474 #else
475 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
477 return true;
479 #endif
481 #ifdef CONFIG_RT_GROUP_SCHED
483 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
485 if (!rt_rq->tg)
486 return RUNTIME_INF;
488 return rt_rq->rt_runtime;
491 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
493 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
496 typedef struct task_group *rt_rq_iter_t;
498 static inline struct task_group *next_task_group(struct task_group *tg)
500 do {
501 tg = list_entry_rcu(tg->list.next,
502 typeof(struct task_group), list);
503 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
505 if (&tg->list == &task_groups)
506 tg = NULL;
508 return tg;
511 #define for_each_rt_rq(rt_rq, iter, rq) \
512 for (iter = container_of(&task_groups, typeof(*iter), list); \
513 (iter = next_task_group(iter)) && \
514 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
516 #define for_each_sched_rt_entity(rt_se) \
517 for (; rt_se; rt_se = rt_se->parent)
519 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
521 return rt_se->my_q;
524 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
525 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
527 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
529 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
530 struct rq *rq = rq_of_rt_rq(rt_rq);
531 struct sched_rt_entity *rt_se;
533 int cpu = cpu_of(rq);
535 rt_se = rt_rq->tg->rt_se[cpu];
537 if (rt_rq->rt_nr_running) {
538 if (!rt_se)
539 enqueue_top_rt_rq(rt_rq);
540 else if (!on_rt_rq(rt_se))
541 enqueue_rt_entity(rt_se, 0);
543 if (rt_rq->highest_prio.curr < curr->prio)
544 resched_curr(rq);
548 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
550 struct sched_rt_entity *rt_se;
551 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
553 rt_se = rt_rq->tg->rt_se[cpu];
555 if (!rt_se) {
556 dequeue_top_rt_rq(rt_rq);
557 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
558 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
560 else if (on_rt_rq(rt_se))
561 dequeue_rt_entity(rt_se, 0);
564 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
566 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
569 static int rt_se_boosted(struct sched_rt_entity *rt_se)
571 struct rt_rq *rt_rq = group_rt_rq(rt_se);
572 struct task_struct *p;
574 if (rt_rq)
575 return !!rt_rq->rt_nr_boosted;
577 p = rt_task_of(rt_se);
578 return p->prio != p->normal_prio;
581 #ifdef CONFIG_SMP
582 static inline const struct cpumask *sched_rt_period_mask(void)
584 return this_rq()->rd->span;
586 #else
587 static inline const struct cpumask *sched_rt_period_mask(void)
589 return cpu_online_mask;
591 #endif
593 static inline
594 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
596 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
599 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
601 return &rt_rq->tg->rt_bandwidth;
604 #else /* !CONFIG_RT_GROUP_SCHED */
606 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
608 return rt_rq->rt_runtime;
611 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
613 return ktime_to_ns(def_rt_bandwidth.rt_period);
616 typedef struct rt_rq *rt_rq_iter_t;
618 #define for_each_rt_rq(rt_rq, iter, rq) \
619 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
621 #define for_each_sched_rt_entity(rt_se) \
622 for (; rt_se; rt_se = NULL)
624 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
626 return NULL;
629 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
631 struct rq *rq = rq_of_rt_rq(rt_rq);
633 if (!rt_rq->rt_nr_running)
634 return;
636 enqueue_top_rt_rq(rt_rq);
637 resched_curr(rq);
640 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
642 dequeue_top_rt_rq(rt_rq);
645 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
647 return rt_rq->rt_throttled;
650 static inline const struct cpumask *sched_rt_period_mask(void)
652 return cpu_online_mask;
655 static inline
656 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
658 return &cpu_rq(cpu)->rt;
661 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
663 return &def_rt_bandwidth;
666 #endif /* CONFIG_RT_GROUP_SCHED */
668 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
670 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
672 return (hrtimer_active(&rt_b->rt_period_timer) ||
673 rt_rq->rt_time < rt_b->rt_runtime);
676 #ifdef CONFIG_SMP
678 * We ran out of runtime, see if we can borrow some from our neighbours.
680 static void do_balance_runtime(struct rt_rq *rt_rq)
682 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
683 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
684 int i, weight;
685 u64 rt_period;
687 weight = cpumask_weight(rd->span);
689 raw_spin_lock(&rt_b->rt_runtime_lock);
690 rt_period = ktime_to_ns(rt_b->rt_period);
691 for_each_cpu(i, rd->span) {
692 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
693 s64 diff;
695 if (iter == rt_rq)
696 continue;
698 raw_spin_lock(&iter->rt_runtime_lock);
700 * Either all rqs have inf runtime and there's nothing to steal
701 * or __disable_runtime() below sets a specific rq to inf to
702 * indicate its been disabled and disalow stealing.
704 if (iter->rt_runtime == RUNTIME_INF)
705 goto next;
708 * From runqueues with spare time, take 1/n part of their
709 * spare time, but no more than our period.
711 diff = iter->rt_runtime - iter->rt_time;
712 if (diff > 0) {
713 diff = div_u64((u64)diff, weight);
714 if (rt_rq->rt_runtime + diff > rt_period)
715 diff = rt_period - rt_rq->rt_runtime;
716 iter->rt_runtime -= diff;
717 rt_rq->rt_runtime += diff;
718 if (rt_rq->rt_runtime == rt_period) {
719 raw_spin_unlock(&iter->rt_runtime_lock);
720 break;
723 next:
724 raw_spin_unlock(&iter->rt_runtime_lock);
726 raw_spin_unlock(&rt_b->rt_runtime_lock);
730 * Ensure this RQ takes back all the runtime it lend to its neighbours.
732 static void __disable_runtime(struct rq *rq)
734 struct root_domain *rd = rq->rd;
735 rt_rq_iter_t iter;
736 struct rt_rq *rt_rq;
738 if (unlikely(!scheduler_running))
739 return;
741 for_each_rt_rq(rt_rq, iter, rq) {
742 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
743 s64 want;
744 int i;
746 raw_spin_lock(&rt_b->rt_runtime_lock);
747 raw_spin_lock(&rt_rq->rt_runtime_lock);
749 * Either we're all inf and nobody needs to borrow, or we're
750 * already disabled and thus have nothing to do, or we have
751 * exactly the right amount of runtime to take out.
753 if (rt_rq->rt_runtime == RUNTIME_INF ||
754 rt_rq->rt_runtime == rt_b->rt_runtime)
755 goto balanced;
756 raw_spin_unlock(&rt_rq->rt_runtime_lock);
759 * Calculate the difference between what we started out with
760 * and what we current have, that's the amount of runtime
761 * we lend and now have to reclaim.
763 want = rt_b->rt_runtime - rt_rq->rt_runtime;
766 * Greedy reclaim, take back as much as we can.
768 for_each_cpu(i, rd->span) {
769 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
770 s64 diff;
773 * Can't reclaim from ourselves or disabled runqueues.
775 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
776 continue;
778 raw_spin_lock(&iter->rt_runtime_lock);
779 if (want > 0) {
780 diff = min_t(s64, iter->rt_runtime, want);
781 iter->rt_runtime -= diff;
782 want -= diff;
783 } else {
784 iter->rt_runtime -= want;
785 want -= want;
787 raw_spin_unlock(&iter->rt_runtime_lock);
789 if (!want)
790 break;
793 raw_spin_lock(&rt_rq->rt_runtime_lock);
795 * We cannot be left wanting - that would mean some runtime
796 * leaked out of the system.
798 BUG_ON(want);
799 balanced:
801 * Disable all the borrow logic by pretending we have inf
802 * runtime - in which case borrowing doesn't make sense.
804 rt_rq->rt_runtime = RUNTIME_INF;
805 rt_rq->rt_throttled = 0;
806 raw_spin_unlock(&rt_rq->rt_runtime_lock);
807 raw_spin_unlock(&rt_b->rt_runtime_lock);
809 /* Make rt_rq available for pick_next_task() */
810 sched_rt_rq_enqueue(rt_rq);
814 static void __enable_runtime(struct rq *rq)
816 rt_rq_iter_t iter;
817 struct rt_rq *rt_rq;
819 if (unlikely(!scheduler_running))
820 return;
823 * Reset each runqueue's bandwidth settings
825 for_each_rt_rq(rt_rq, iter, rq) {
826 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
828 raw_spin_lock(&rt_b->rt_runtime_lock);
829 raw_spin_lock(&rt_rq->rt_runtime_lock);
830 rt_rq->rt_runtime = rt_b->rt_runtime;
831 rt_rq->rt_time = 0;
832 rt_rq->rt_throttled = 0;
833 raw_spin_unlock(&rt_rq->rt_runtime_lock);
834 raw_spin_unlock(&rt_b->rt_runtime_lock);
838 static void balance_runtime(struct rt_rq *rt_rq)
840 if (!sched_feat(RT_RUNTIME_SHARE))
841 return;
843 if (rt_rq->rt_time > rt_rq->rt_runtime) {
844 raw_spin_unlock(&rt_rq->rt_runtime_lock);
845 do_balance_runtime(rt_rq);
846 raw_spin_lock(&rt_rq->rt_runtime_lock);
849 #else /* !CONFIG_SMP */
850 static inline void balance_runtime(struct rt_rq *rt_rq) {}
851 #endif /* CONFIG_SMP */
853 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
855 int i, idle = 1, throttled = 0;
856 const struct cpumask *span;
858 span = sched_rt_period_mask();
859 #ifdef CONFIG_RT_GROUP_SCHED
861 * FIXME: isolated CPUs should really leave the root task group,
862 * whether they are isolcpus or were isolated via cpusets, lest
863 * the timer run on a CPU which does not service all runqueues,
864 * potentially leaving other CPUs indefinitely throttled. If
865 * isolation is really required, the user will turn the throttle
866 * off to kill the perturbations it causes anyway. Meanwhile,
867 * this maintains functionality for boot and/or troubleshooting.
869 if (rt_b == &root_task_group.rt_bandwidth)
870 span = cpu_online_mask;
871 #endif
872 for_each_cpu(i, span) {
873 int enqueue = 0;
874 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
875 struct rq *rq = rq_of_rt_rq(rt_rq);
876 int skip;
879 * When span == cpu_online_mask, taking each rq->lock
880 * can be time-consuming. Try to avoid it when possible.
882 raw_spin_lock(&rt_rq->rt_runtime_lock);
883 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
884 rt_rq->rt_runtime = rt_b->rt_runtime;
885 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
886 raw_spin_unlock(&rt_rq->rt_runtime_lock);
887 if (skip)
888 continue;
890 raw_spin_lock(&rq->lock);
891 update_rq_clock(rq);
893 if (rt_rq->rt_time) {
894 u64 runtime;
896 raw_spin_lock(&rt_rq->rt_runtime_lock);
897 if (rt_rq->rt_throttled)
898 balance_runtime(rt_rq);
899 runtime = rt_rq->rt_runtime;
900 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
901 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
902 rt_rq->rt_throttled = 0;
903 enqueue = 1;
906 * When we're idle and a woken (rt) task is
907 * throttled check_preempt_curr() will set
908 * skip_update and the time between the wakeup
909 * and this unthrottle will get accounted as
910 * 'runtime'.
912 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
913 rq_clock_cancel_skipupdate(rq);
915 if (rt_rq->rt_time || rt_rq->rt_nr_running)
916 idle = 0;
917 raw_spin_unlock(&rt_rq->rt_runtime_lock);
918 } else if (rt_rq->rt_nr_running) {
919 idle = 0;
920 if (!rt_rq_throttled(rt_rq))
921 enqueue = 1;
923 if (rt_rq->rt_throttled)
924 throttled = 1;
926 if (enqueue)
927 sched_rt_rq_enqueue(rt_rq);
928 raw_spin_unlock(&rq->lock);
931 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
932 return 1;
934 return idle;
937 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
939 #ifdef CONFIG_RT_GROUP_SCHED
940 struct rt_rq *rt_rq = group_rt_rq(rt_se);
942 if (rt_rq)
943 return rt_rq->highest_prio.curr;
944 #endif
946 return rt_task_of(rt_se)->prio;
949 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
951 u64 runtime = sched_rt_runtime(rt_rq);
953 if (rt_rq->rt_throttled)
954 return rt_rq_throttled(rt_rq);
956 if (runtime >= sched_rt_period(rt_rq))
957 return 0;
959 balance_runtime(rt_rq);
960 runtime = sched_rt_runtime(rt_rq);
961 if (runtime == RUNTIME_INF)
962 return 0;
964 if (rt_rq->rt_time > runtime) {
965 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
968 * Don't actually throttle groups that have no runtime assigned
969 * but accrue some time due to boosting.
971 if (likely(rt_b->rt_runtime)) {
972 rt_rq->rt_throttled = 1;
973 printk_deferred_once("sched: RT throttling activated\n");
974 } else {
976 * In case we did anyway, make it go away,
977 * replenishment is a joke, since it will replenish us
978 * with exactly 0 ns.
980 rt_rq->rt_time = 0;
983 if (rt_rq_throttled(rt_rq)) {
984 sched_rt_rq_dequeue(rt_rq);
985 return 1;
989 return 0;
993 * Update the current task's runtime statistics. Skip current tasks that
994 * are not in our scheduling class.
996 static void update_curr_rt(struct rq *rq)
998 struct task_struct *curr = rq->curr;
999 struct sched_rt_entity *rt_se = &curr->rt;
1000 u64 delta_exec;
1001 u64 now;
1003 if (curr->sched_class != &rt_sched_class)
1004 return;
1006 now = rq_clock_task(rq);
1007 delta_exec = now - curr->se.exec_start;
1008 if (unlikely((s64)delta_exec <= 0))
1009 return;
1011 schedstat_set(curr->se.statistics.exec_max,
1012 max(curr->se.statistics.exec_max, delta_exec));
1014 curr->se.sum_exec_runtime += delta_exec;
1015 account_group_exec_runtime(curr, delta_exec);
1017 curr->se.exec_start = now;
1018 cgroup_account_cputime(curr, delta_exec);
1020 if (!rt_bandwidth_enabled())
1021 return;
1023 for_each_sched_rt_entity(rt_se) {
1024 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1026 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1027 raw_spin_lock(&rt_rq->rt_runtime_lock);
1028 rt_rq->rt_time += delta_exec;
1029 if (sched_rt_runtime_exceeded(rt_rq))
1030 resched_curr(rq);
1031 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1036 static void
1037 dequeue_top_rt_rq(struct rt_rq *rt_rq)
1039 struct rq *rq = rq_of_rt_rq(rt_rq);
1041 BUG_ON(&rq->rt != rt_rq);
1043 if (!rt_rq->rt_queued)
1044 return;
1046 BUG_ON(!rq->nr_running);
1048 sub_nr_running(rq, rt_rq->rt_nr_running);
1049 rt_rq->rt_queued = 0;
1053 static void
1054 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1056 struct rq *rq = rq_of_rt_rq(rt_rq);
1058 BUG_ON(&rq->rt != rt_rq);
1060 if (rt_rq->rt_queued)
1061 return;
1063 if (rt_rq_throttled(rt_rq))
1064 return;
1066 if (rt_rq->rt_nr_running) {
1067 add_nr_running(rq, rt_rq->rt_nr_running);
1068 rt_rq->rt_queued = 1;
1071 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1072 cpufreq_update_util(rq, 0);
1075 #if defined CONFIG_SMP
1077 static void
1078 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1080 struct rq *rq = rq_of_rt_rq(rt_rq);
1082 #ifdef CONFIG_RT_GROUP_SCHED
1084 * Change rq's cpupri only if rt_rq is the top queue.
1086 if (&rq->rt != rt_rq)
1087 return;
1088 #endif
1089 if (rq->online && prio < prev_prio)
1090 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1093 static void
1094 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1096 struct rq *rq = rq_of_rt_rq(rt_rq);
1098 #ifdef CONFIG_RT_GROUP_SCHED
1100 * Change rq's cpupri only if rt_rq is the top queue.
1102 if (&rq->rt != rt_rq)
1103 return;
1104 #endif
1105 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1106 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1109 #else /* CONFIG_SMP */
1111 static inline
1112 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1113 static inline
1114 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1116 #endif /* CONFIG_SMP */
1118 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1119 static void
1120 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1122 int prev_prio = rt_rq->highest_prio.curr;
1124 if (prio < prev_prio)
1125 rt_rq->highest_prio.curr = prio;
1127 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1130 static void
1131 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1133 int prev_prio = rt_rq->highest_prio.curr;
1135 if (rt_rq->rt_nr_running) {
1137 WARN_ON(prio < prev_prio);
1140 * This may have been our highest task, and therefore
1141 * we may have some recomputation to do
1143 if (prio == prev_prio) {
1144 struct rt_prio_array *array = &rt_rq->active;
1146 rt_rq->highest_prio.curr =
1147 sched_find_first_bit(array->bitmap);
1150 } else
1151 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1153 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1156 #else
1158 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1159 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1161 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1163 #ifdef CONFIG_RT_GROUP_SCHED
1165 static void
1166 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1168 if (rt_se_boosted(rt_se))
1169 rt_rq->rt_nr_boosted++;
1171 if (rt_rq->tg)
1172 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1175 static void
1176 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1178 if (rt_se_boosted(rt_se))
1179 rt_rq->rt_nr_boosted--;
1181 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1184 #else /* CONFIG_RT_GROUP_SCHED */
1186 static void
1187 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1189 start_rt_bandwidth(&def_rt_bandwidth);
1192 static inline
1193 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1195 #endif /* CONFIG_RT_GROUP_SCHED */
1197 static inline
1198 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1200 struct rt_rq *group_rq = group_rt_rq(rt_se);
1202 if (group_rq)
1203 return group_rq->rt_nr_running;
1204 else
1205 return 1;
1208 static inline
1209 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1211 struct rt_rq *group_rq = group_rt_rq(rt_se);
1212 struct task_struct *tsk;
1214 if (group_rq)
1215 return group_rq->rr_nr_running;
1217 tsk = rt_task_of(rt_se);
1219 return (tsk->policy == SCHED_RR) ? 1 : 0;
1222 static inline
1223 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1225 int prio = rt_se_prio(rt_se);
1227 WARN_ON(!rt_prio(prio));
1228 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1229 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1231 inc_rt_prio(rt_rq, prio);
1232 inc_rt_migration(rt_se, rt_rq);
1233 inc_rt_group(rt_se, rt_rq);
1236 static inline
1237 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1239 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1240 WARN_ON(!rt_rq->rt_nr_running);
1241 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1242 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1244 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1245 dec_rt_migration(rt_se, rt_rq);
1246 dec_rt_group(rt_se, rt_rq);
1250 * Change rt_se->run_list location unless SAVE && !MOVE
1252 * assumes ENQUEUE/DEQUEUE flags match
1254 static inline bool move_entity(unsigned int flags)
1256 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1257 return false;
1259 return true;
1262 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1264 list_del_init(&rt_se->run_list);
1266 if (list_empty(array->queue + rt_se_prio(rt_se)))
1267 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1269 rt_se->on_list = 0;
1272 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1274 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1275 struct rt_prio_array *array = &rt_rq->active;
1276 struct rt_rq *group_rq = group_rt_rq(rt_se);
1277 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1280 * Don't enqueue the group if its throttled, or when empty.
1281 * The latter is a consequence of the former when a child group
1282 * get throttled and the current group doesn't have any other
1283 * active members.
1285 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1286 if (rt_se->on_list)
1287 __delist_rt_entity(rt_se, array);
1288 return;
1291 if (move_entity(flags)) {
1292 WARN_ON_ONCE(rt_se->on_list);
1293 if (flags & ENQUEUE_HEAD)
1294 list_add(&rt_se->run_list, queue);
1295 else
1296 list_add_tail(&rt_se->run_list, queue);
1298 __set_bit(rt_se_prio(rt_se), array->bitmap);
1299 rt_se->on_list = 1;
1301 rt_se->on_rq = 1;
1303 inc_rt_tasks(rt_se, rt_rq);
1306 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1308 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1309 struct rt_prio_array *array = &rt_rq->active;
1311 if (move_entity(flags)) {
1312 WARN_ON_ONCE(!rt_se->on_list);
1313 __delist_rt_entity(rt_se, array);
1315 rt_se->on_rq = 0;
1317 dec_rt_tasks(rt_se, rt_rq);
1321 * Because the prio of an upper entry depends on the lower
1322 * entries, we must remove entries top - down.
1324 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1326 struct sched_rt_entity *back = NULL;
1328 for_each_sched_rt_entity(rt_se) {
1329 rt_se->back = back;
1330 back = rt_se;
1333 dequeue_top_rt_rq(rt_rq_of_se(back));
1335 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1336 if (on_rt_rq(rt_se))
1337 __dequeue_rt_entity(rt_se, flags);
1341 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1343 struct rq *rq = rq_of_rt_se(rt_se);
1345 dequeue_rt_stack(rt_se, flags);
1346 for_each_sched_rt_entity(rt_se)
1347 __enqueue_rt_entity(rt_se, flags);
1348 enqueue_top_rt_rq(&rq->rt);
1351 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1353 struct rq *rq = rq_of_rt_se(rt_se);
1355 dequeue_rt_stack(rt_se, flags);
1357 for_each_sched_rt_entity(rt_se) {
1358 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1360 if (rt_rq && rt_rq->rt_nr_running)
1361 __enqueue_rt_entity(rt_se, flags);
1363 enqueue_top_rt_rq(&rq->rt);
1367 * Adding/removing a task to/from a priority array:
1369 static void
1370 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1372 struct sched_rt_entity *rt_se = &p->rt;
1374 if (flags & ENQUEUE_WAKEUP)
1375 rt_se->timeout = 0;
1377 enqueue_rt_entity(rt_se, flags);
1379 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1380 enqueue_pushable_task(rq, p);
1383 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1385 struct sched_rt_entity *rt_se = &p->rt;
1387 update_curr_rt(rq);
1388 dequeue_rt_entity(rt_se, flags);
1390 dequeue_pushable_task(rq, p);
1394 * Put task to the head or the end of the run list without the overhead of
1395 * dequeue followed by enqueue.
1397 static void
1398 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1400 if (on_rt_rq(rt_se)) {
1401 struct rt_prio_array *array = &rt_rq->active;
1402 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1404 if (head)
1405 list_move(&rt_se->run_list, queue);
1406 else
1407 list_move_tail(&rt_se->run_list, queue);
1411 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1413 struct sched_rt_entity *rt_se = &p->rt;
1414 struct rt_rq *rt_rq;
1416 for_each_sched_rt_entity(rt_se) {
1417 rt_rq = rt_rq_of_se(rt_se);
1418 requeue_rt_entity(rt_rq, rt_se, head);
1422 static void yield_task_rt(struct rq *rq)
1424 requeue_task_rt(rq, rq->curr, 0);
1427 #ifdef CONFIG_SMP
1428 static int find_lowest_rq(struct task_struct *task);
1430 static int
1431 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1433 struct task_struct *curr;
1434 struct rq *rq;
1435 bool test;
1437 /* For anything but wake ups, just return the task_cpu */
1438 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1439 goto out;
1441 rq = cpu_rq(cpu);
1443 rcu_read_lock();
1444 curr = READ_ONCE(rq->curr); /* unlocked access */
1447 * If the current task on @p's runqueue is an RT task, then
1448 * try to see if we can wake this RT task up on another
1449 * runqueue. Otherwise simply start this RT task
1450 * on its current runqueue.
1452 * We want to avoid overloading runqueues. If the woken
1453 * task is a higher priority, then it will stay on this CPU
1454 * and the lower prio task should be moved to another CPU.
1455 * Even though this will probably make the lower prio task
1456 * lose its cache, we do not want to bounce a higher task
1457 * around just because it gave up its CPU, perhaps for a
1458 * lock?
1460 * For equal prio tasks, we just let the scheduler sort it out.
1462 * Otherwise, just let it ride on the affined RQ and the
1463 * post-schedule router will push the preempted task away
1465 * This test is optimistic, if we get it wrong the load-balancer
1466 * will have to sort it out.
1468 * We take into account the capacity of the CPU to ensure it fits the
1469 * requirement of the task - which is only important on heterogeneous
1470 * systems like big.LITTLE.
1472 test = curr &&
1473 unlikely(rt_task(curr)) &&
1474 (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1476 if (test || !rt_task_fits_capacity(p, cpu)) {
1477 int target = find_lowest_rq(p);
1480 * Bail out if we were forcing a migration to find a better
1481 * fitting CPU but our search failed.
1483 if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1484 goto out_unlock;
1487 * Don't bother moving it if the destination CPU is
1488 * not running a lower priority task.
1490 if (target != -1 &&
1491 p->prio < cpu_rq(target)->rt.highest_prio.curr)
1492 cpu = target;
1495 out_unlock:
1496 rcu_read_unlock();
1498 out:
1499 return cpu;
1502 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1505 * Current can't be migrated, useless to reschedule,
1506 * let's hope p can move out.
1508 if (rq->curr->nr_cpus_allowed == 1 ||
1509 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1510 return;
1513 * p is migratable, so let's not schedule it and
1514 * see if it is pushed or pulled somewhere else.
1516 if (p->nr_cpus_allowed != 1 &&
1517 cpupri_find(&rq->rd->cpupri, p, NULL))
1518 return;
1521 * There appear to be other CPUs that can accept
1522 * the current task but none can run 'p', so lets reschedule
1523 * to try and push the current task away:
1525 requeue_task_rt(rq, p, 1);
1526 resched_curr(rq);
1529 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1531 if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1533 * This is OK, because current is on_cpu, which avoids it being
1534 * picked for load-balance and preemption/IRQs are still
1535 * disabled avoiding further scheduler activity on it and we've
1536 * not yet started the picking loop.
1538 rq_unpin_lock(rq, rf);
1539 pull_rt_task(rq);
1540 rq_repin_lock(rq, rf);
1543 return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1545 #endif /* CONFIG_SMP */
1548 * Preempt the current task with a newly woken task if needed:
1550 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1552 if (p->prio < rq->curr->prio) {
1553 resched_curr(rq);
1554 return;
1557 #ifdef CONFIG_SMP
1559 * If:
1561 * - the newly woken task is of equal priority to the current task
1562 * - the newly woken task is non-migratable while current is migratable
1563 * - current will be preempted on the next reschedule
1565 * we should check to see if current can readily move to a different
1566 * cpu. If so, we will reschedule to allow the push logic to try
1567 * to move current somewhere else, making room for our non-migratable
1568 * task.
1570 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1571 check_preempt_equal_prio(rq, p);
1572 #endif
1575 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1577 p->se.exec_start = rq_clock_task(rq);
1579 /* The running task is never eligible for pushing */
1580 dequeue_pushable_task(rq, p);
1582 if (!first)
1583 return;
1586 * If prev task was rt, put_prev_task() has already updated the
1587 * utilization. We only care of the case where we start to schedule a
1588 * rt task
1590 if (rq->curr->sched_class != &rt_sched_class)
1591 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1593 rt_queue_push_tasks(rq);
1596 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1597 struct rt_rq *rt_rq)
1599 struct rt_prio_array *array = &rt_rq->active;
1600 struct sched_rt_entity *next = NULL;
1601 struct list_head *queue;
1602 int idx;
1604 idx = sched_find_first_bit(array->bitmap);
1605 BUG_ON(idx >= MAX_RT_PRIO);
1607 queue = array->queue + idx;
1608 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1610 return next;
1613 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1615 struct sched_rt_entity *rt_se;
1616 struct rt_rq *rt_rq = &rq->rt;
1618 do {
1619 rt_se = pick_next_rt_entity(rq, rt_rq);
1620 BUG_ON(!rt_se);
1621 rt_rq = group_rt_rq(rt_se);
1622 } while (rt_rq);
1624 return rt_task_of(rt_se);
1627 static struct task_struct *pick_next_task_rt(struct rq *rq)
1629 struct task_struct *p;
1631 if (!sched_rt_runnable(rq))
1632 return NULL;
1634 p = _pick_next_task_rt(rq);
1635 set_next_task_rt(rq, p, true);
1636 return p;
1639 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1641 update_curr_rt(rq);
1643 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1646 * The previous task needs to be made eligible for pushing
1647 * if it is still active
1649 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1650 enqueue_pushable_task(rq, p);
1653 #ifdef CONFIG_SMP
1655 /* Only try algorithms three times */
1656 #define RT_MAX_TRIES 3
1658 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1660 if (!task_running(rq, p) &&
1661 cpumask_test_cpu(cpu, p->cpus_ptr))
1662 return 1;
1664 return 0;
1668 * Return the highest pushable rq's task, which is suitable to be executed
1669 * on the CPU, NULL otherwise
1671 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1673 struct plist_head *head = &rq->rt.pushable_tasks;
1674 struct task_struct *p;
1676 if (!has_pushable_tasks(rq))
1677 return NULL;
1679 plist_for_each_entry(p, head, pushable_tasks) {
1680 if (pick_rt_task(rq, p, cpu))
1681 return p;
1684 return NULL;
1687 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1689 static int find_lowest_rq(struct task_struct *task)
1691 struct sched_domain *sd;
1692 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1693 int this_cpu = smp_processor_id();
1694 int cpu = task_cpu(task);
1695 int ret;
1697 /* Make sure the mask is initialized first */
1698 if (unlikely(!lowest_mask))
1699 return -1;
1701 if (task->nr_cpus_allowed == 1)
1702 return -1; /* No other targets possible */
1705 * If we're on asym system ensure we consider the different capacities
1706 * of the CPUs when searching for the lowest_mask.
1708 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
1710 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1711 task, lowest_mask,
1712 rt_task_fits_capacity);
1713 } else {
1715 ret = cpupri_find(&task_rq(task)->rd->cpupri,
1716 task, lowest_mask);
1719 if (!ret)
1720 return -1; /* No targets found */
1723 * At this point we have built a mask of CPUs representing the
1724 * lowest priority tasks in the system. Now we want to elect
1725 * the best one based on our affinity and topology.
1727 * We prioritize the last CPU that the task executed on since
1728 * it is most likely cache-hot in that location.
1730 if (cpumask_test_cpu(cpu, lowest_mask))
1731 return cpu;
1734 * Otherwise, we consult the sched_domains span maps to figure
1735 * out which CPU is logically closest to our hot cache data.
1737 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1738 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1740 rcu_read_lock();
1741 for_each_domain(cpu, sd) {
1742 if (sd->flags & SD_WAKE_AFFINE) {
1743 int best_cpu;
1746 * "this_cpu" is cheaper to preempt than a
1747 * remote processor.
1749 if (this_cpu != -1 &&
1750 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1751 rcu_read_unlock();
1752 return this_cpu;
1755 best_cpu = cpumask_first_and(lowest_mask,
1756 sched_domain_span(sd));
1757 if (best_cpu < nr_cpu_ids) {
1758 rcu_read_unlock();
1759 return best_cpu;
1763 rcu_read_unlock();
1766 * And finally, if there were no matches within the domains
1767 * just give the caller *something* to work with from the compatible
1768 * locations.
1770 if (this_cpu != -1)
1771 return this_cpu;
1773 cpu = cpumask_any(lowest_mask);
1774 if (cpu < nr_cpu_ids)
1775 return cpu;
1777 return -1;
1780 /* Will lock the rq it finds */
1781 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1783 struct rq *lowest_rq = NULL;
1784 int tries;
1785 int cpu;
1787 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1788 cpu = find_lowest_rq(task);
1790 if ((cpu == -1) || (cpu == rq->cpu))
1791 break;
1793 lowest_rq = cpu_rq(cpu);
1795 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1797 * Target rq has tasks of equal or higher priority,
1798 * retrying does not release any lock and is unlikely
1799 * to yield a different result.
1801 lowest_rq = NULL;
1802 break;
1805 /* if the prio of this runqueue changed, try again */
1806 if (double_lock_balance(rq, lowest_rq)) {
1808 * We had to unlock the run queue. In
1809 * the mean time, task could have
1810 * migrated already or had its affinity changed.
1811 * Also make sure that it wasn't scheduled on its rq.
1813 if (unlikely(task_rq(task) != rq ||
1814 !cpumask_test_cpu(lowest_rq->cpu, task->cpus_ptr) ||
1815 task_running(rq, task) ||
1816 !rt_task(task) ||
1817 !task_on_rq_queued(task))) {
1819 double_unlock_balance(rq, lowest_rq);
1820 lowest_rq = NULL;
1821 break;
1825 /* If this rq is still suitable use it. */
1826 if (lowest_rq->rt.highest_prio.curr > task->prio)
1827 break;
1829 /* try again */
1830 double_unlock_balance(rq, lowest_rq);
1831 lowest_rq = NULL;
1834 return lowest_rq;
1837 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1839 struct task_struct *p;
1841 if (!has_pushable_tasks(rq))
1842 return NULL;
1844 p = plist_first_entry(&rq->rt.pushable_tasks,
1845 struct task_struct, pushable_tasks);
1847 BUG_ON(rq->cpu != task_cpu(p));
1848 BUG_ON(task_current(rq, p));
1849 BUG_ON(p->nr_cpus_allowed <= 1);
1851 BUG_ON(!task_on_rq_queued(p));
1852 BUG_ON(!rt_task(p));
1854 return p;
1858 * If the current CPU has more than one RT task, see if the non
1859 * running task can migrate over to a CPU that is running a task
1860 * of lesser priority.
1862 static int push_rt_task(struct rq *rq)
1864 struct task_struct *next_task;
1865 struct rq *lowest_rq;
1866 int ret = 0;
1868 if (!rq->rt.overloaded)
1869 return 0;
1871 next_task = pick_next_pushable_task(rq);
1872 if (!next_task)
1873 return 0;
1875 retry:
1876 if (WARN_ON(next_task == rq->curr))
1877 return 0;
1880 * It's possible that the next_task slipped in of
1881 * higher priority than current. If that's the case
1882 * just reschedule current.
1884 if (unlikely(next_task->prio < rq->curr->prio)) {
1885 resched_curr(rq);
1886 return 0;
1889 /* We might release rq lock */
1890 get_task_struct(next_task);
1892 /* find_lock_lowest_rq locks the rq if found */
1893 lowest_rq = find_lock_lowest_rq(next_task, rq);
1894 if (!lowest_rq) {
1895 struct task_struct *task;
1897 * find_lock_lowest_rq releases rq->lock
1898 * so it is possible that next_task has migrated.
1900 * We need to make sure that the task is still on the same
1901 * run-queue and is also still the next task eligible for
1902 * pushing.
1904 task = pick_next_pushable_task(rq);
1905 if (task == next_task) {
1907 * The task hasn't migrated, and is still the next
1908 * eligible task, but we failed to find a run-queue
1909 * to push it to. Do not retry in this case, since
1910 * other CPUs will pull from us when ready.
1912 goto out;
1915 if (!task)
1916 /* No more tasks, just exit */
1917 goto out;
1920 * Something has shifted, try again.
1922 put_task_struct(next_task);
1923 next_task = task;
1924 goto retry;
1927 deactivate_task(rq, next_task, 0);
1928 set_task_cpu(next_task, lowest_rq->cpu);
1929 activate_task(lowest_rq, next_task, 0);
1930 ret = 1;
1932 resched_curr(lowest_rq);
1934 double_unlock_balance(rq, lowest_rq);
1936 out:
1937 put_task_struct(next_task);
1939 return ret;
1942 static void push_rt_tasks(struct rq *rq)
1944 /* push_rt_task will return true if it moved an RT */
1945 while (push_rt_task(rq))
1949 #ifdef HAVE_RT_PUSH_IPI
1952 * When a high priority task schedules out from a CPU and a lower priority
1953 * task is scheduled in, a check is made to see if there's any RT tasks
1954 * on other CPUs that are waiting to run because a higher priority RT task
1955 * is currently running on its CPU. In this case, the CPU with multiple RT
1956 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1957 * up that may be able to run one of its non-running queued RT tasks.
1959 * All CPUs with overloaded RT tasks need to be notified as there is currently
1960 * no way to know which of these CPUs have the highest priority task waiting
1961 * to run. Instead of trying to take a spinlock on each of these CPUs,
1962 * which has shown to cause large latency when done on machines with many
1963 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1964 * RT tasks waiting to run.
1966 * Just sending an IPI to each of the CPUs is also an issue, as on large
1967 * count CPU machines, this can cause an IPI storm on a CPU, especially
1968 * if its the only CPU with multiple RT tasks queued, and a large number
1969 * of CPUs scheduling a lower priority task at the same time.
1971 * Each root domain has its own irq work function that can iterate over
1972 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1973 * tassk must be checked if there's one or many CPUs that are lowering
1974 * their priority, there's a single irq work iterator that will try to
1975 * push off RT tasks that are waiting to run.
1977 * When a CPU schedules a lower priority task, it will kick off the
1978 * irq work iterator that will jump to each CPU with overloaded RT tasks.
1979 * As it only takes the first CPU that schedules a lower priority task
1980 * to start the process, the rto_start variable is incremented and if
1981 * the atomic result is one, then that CPU will try to take the rto_lock.
1982 * This prevents high contention on the lock as the process handles all
1983 * CPUs scheduling lower priority tasks.
1985 * All CPUs that are scheduling a lower priority task will increment the
1986 * rt_loop_next variable. This will make sure that the irq work iterator
1987 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1988 * priority task, even if the iterator is in the middle of a scan. Incrementing
1989 * the rt_loop_next will cause the iterator to perform another scan.
1992 static int rto_next_cpu(struct root_domain *rd)
1994 int next;
1995 int cpu;
1998 * When starting the IPI RT pushing, the rto_cpu is set to -1,
1999 * rt_next_cpu() will simply return the first CPU found in
2000 * the rto_mask.
2002 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2003 * will return the next CPU found in the rto_mask.
2005 * If there are no more CPUs left in the rto_mask, then a check is made
2006 * against rto_loop and rto_loop_next. rto_loop is only updated with
2007 * the rto_lock held, but any CPU may increment the rto_loop_next
2008 * without any locking.
2010 for (;;) {
2012 /* When rto_cpu is -1 this acts like cpumask_first() */
2013 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2015 rd->rto_cpu = cpu;
2017 if (cpu < nr_cpu_ids)
2018 return cpu;
2020 rd->rto_cpu = -1;
2023 * ACQUIRE ensures we see the @rto_mask changes
2024 * made prior to the @next value observed.
2026 * Matches WMB in rt_set_overload().
2028 next = atomic_read_acquire(&rd->rto_loop_next);
2030 if (rd->rto_loop == next)
2031 break;
2033 rd->rto_loop = next;
2036 return -1;
2039 static inline bool rto_start_trylock(atomic_t *v)
2041 return !atomic_cmpxchg_acquire(v, 0, 1);
2044 static inline void rto_start_unlock(atomic_t *v)
2046 atomic_set_release(v, 0);
2049 static void tell_cpu_to_push(struct rq *rq)
2051 int cpu = -1;
2053 /* Keep the loop going if the IPI is currently active */
2054 atomic_inc(&rq->rd->rto_loop_next);
2056 /* Only one CPU can initiate a loop at a time */
2057 if (!rto_start_trylock(&rq->rd->rto_loop_start))
2058 return;
2060 raw_spin_lock(&rq->rd->rto_lock);
2063 * The rto_cpu is updated under the lock, if it has a valid CPU
2064 * then the IPI is still running and will continue due to the
2065 * update to loop_next, and nothing needs to be done here.
2066 * Otherwise it is finishing up and an ipi needs to be sent.
2068 if (rq->rd->rto_cpu < 0)
2069 cpu = rto_next_cpu(rq->rd);
2071 raw_spin_unlock(&rq->rd->rto_lock);
2073 rto_start_unlock(&rq->rd->rto_loop_start);
2075 if (cpu >= 0) {
2076 /* Make sure the rd does not get freed while pushing */
2077 sched_get_rd(rq->rd);
2078 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2082 /* Called from hardirq context */
2083 void rto_push_irq_work_func(struct irq_work *work)
2085 struct root_domain *rd =
2086 container_of(work, struct root_domain, rto_push_work);
2087 struct rq *rq;
2088 int cpu;
2090 rq = this_rq();
2093 * We do not need to grab the lock to check for has_pushable_tasks.
2094 * When it gets updated, a check is made if a push is possible.
2096 if (has_pushable_tasks(rq)) {
2097 raw_spin_lock(&rq->lock);
2098 push_rt_tasks(rq);
2099 raw_spin_unlock(&rq->lock);
2102 raw_spin_lock(&rd->rto_lock);
2104 /* Pass the IPI to the next rt overloaded queue */
2105 cpu = rto_next_cpu(rd);
2107 raw_spin_unlock(&rd->rto_lock);
2109 if (cpu < 0) {
2110 sched_put_rd(rd);
2111 return;
2114 /* Try the next RT overloaded CPU */
2115 irq_work_queue_on(&rd->rto_push_work, cpu);
2117 #endif /* HAVE_RT_PUSH_IPI */
2119 static void pull_rt_task(struct rq *this_rq)
2121 int this_cpu = this_rq->cpu, cpu;
2122 bool resched = false;
2123 struct task_struct *p;
2124 struct rq *src_rq;
2125 int rt_overload_count = rt_overloaded(this_rq);
2127 if (likely(!rt_overload_count))
2128 return;
2131 * Match the barrier from rt_set_overloaded; this guarantees that if we
2132 * see overloaded we must also see the rto_mask bit.
2134 smp_rmb();
2136 /* If we are the only overloaded CPU do nothing */
2137 if (rt_overload_count == 1 &&
2138 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2139 return;
2141 #ifdef HAVE_RT_PUSH_IPI
2142 if (sched_feat(RT_PUSH_IPI)) {
2143 tell_cpu_to_push(this_rq);
2144 return;
2146 #endif
2148 for_each_cpu(cpu, this_rq->rd->rto_mask) {
2149 if (this_cpu == cpu)
2150 continue;
2152 src_rq = cpu_rq(cpu);
2155 * Don't bother taking the src_rq->lock if the next highest
2156 * task is known to be lower-priority than our current task.
2157 * This may look racy, but if this value is about to go
2158 * logically higher, the src_rq will push this task away.
2159 * And if its going logically lower, we do not care
2161 if (src_rq->rt.highest_prio.next >=
2162 this_rq->rt.highest_prio.curr)
2163 continue;
2166 * We can potentially drop this_rq's lock in
2167 * double_lock_balance, and another CPU could
2168 * alter this_rq
2170 double_lock_balance(this_rq, src_rq);
2173 * We can pull only a task, which is pushable
2174 * on its rq, and no others.
2176 p = pick_highest_pushable_task(src_rq, this_cpu);
2179 * Do we have an RT task that preempts
2180 * the to-be-scheduled task?
2182 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2183 WARN_ON(p == src_rq->curr);
2184 WARN_ON(!task_on_rq_queued(p));
2187 * There's a chance that p is higher in priority
2188 * than what's currently running on its CPU.
2189 * This is just that p is wakeing up and hasn't
2190 * had a chance to schedule. We only pull
2191 * p if it is lower in priority than the
2192 * current task on the run queue
2194 if (p->prio < src_rq->curr->prio)
2195 goto skip;
2197 resched = true;
2199 deactivate_task(src_rq, p, 0);
2200 set_task_cpu(p, this_cpu);
2201 activate_task(this_rq, p, 0);
2203 * We continue with the search, just in
2204 * case there's an even higher prio task
2205 * in another runqueue. (low likelihood
2206 * but possible)
2209 skip:
2210 double_unlock_balance(this_rq, src_rq);
2213 if (resched)
2214 resched_curr(this_rq);
2218 * If we are not running and we are not going to reschedule soon, we should
2219 * try to push tasks away now
2221 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2223 bool need_to_push = !task_running(rq, p) &&
2224 !test_tsk_need_resched(rq->curr) &&
2225 p->nr_cpus_allowed > 1 &&
2226 (dl_task(rq->curr) || rt_task(rq->curr)) &&
2227 (rq->curr->nr_cpus_allowed < 2 ||
2228 rq->curr->prio <= p->prio);
2230 if (need_to_push)
2231 push_rt_tasks(rq);
2234 /* Assumes rq->lock is held */
2235 static void rq_online_rt(struct rq *rq)
2237 if (rq->rt.overloaded)
2238 rt_set_overload(rq);
2240 __enable_runtime(rq);
2242 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2245 /* Assumes rq->lock is held */
2246 static void rq_offline_rt(struct rq *rq)
2248 if (rq->rt.overloaded)
2249 rt_clear_overload(rq);
2251 __disable_runtime(rq);
2253 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2257 * When switch from the rt queue, we bring ourselves to a position
2258 * that we might want to pull RT tasks from other runqueues.
2260 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2263 * If there are other RT tasks then we will reschedule
2264 * and the scheduling of the other RT tasks will handle
2265 * the balancing. But if we are the last RT task
2266 * we may need to handle the pulling of RT tasks
2267 * now.
2269 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2270 return;
2272 rt_queue_pull_task(rq);
2275 void __init init_sched_rt_class(void)
2277 unsigned int i;
2279 for_each_possible_cpu(i) {
2280 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2281 GFP_KERNEL, cpu_to_node(i));
2284 #endif /* CONFIG_SMP */
2287 * When switching a task to RT, we may overload the runqueue
2288 * with RT tasks. In this case we try to push them off to
2289 * other runqueues.
2291 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2294 * If we are already running, then there's nothing
2295 * that needs to be done. But if we are not running
2296 * we may need to preempt the current running task.
2297 * If that current running task is also an RT task
2298 * then see if we can move to another run queue.
2300 if (task_on_rq_queued(p) && rq->curr != p) {
2301 #ifdef CONFIG_SMP
2302 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2303 rt_queue_push_tasks(rq);
2304 #endif /* CONFIG_SMP */
2305 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2306 resched_curr(rq);
2311 * Priority of the task has changed. This may cause
2312 * us to initiate a push or pull.
2314 static void
2315 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2317 if (!task_on_rq_queued(p))
2318 return;
2320 if (rq->curr == p) {
2321 #ifdef CONFIG_SMP
2323 * If our priority decreases while running, we
2324 * may need to pull tasks to this runqueue.
2326 if (oldprio < p->prio)
2327 rt_queue_pull_task(rq);
2330 * If there's a higher priority task waiting to run
2331 * then reschedule.
2333 if (p->prio > rq->rt.highest_prio.curr)
2334 resched_curr(rq);
2335 #else
2336 /* For UP simply resched on drop of prio */
2337 if (oldprio < p->prio)
2338 resched_curr(rq);
2339 #endif /* CONFIG_SMP */
2340 } else {
2342 * This task is not running, but if it is
2343 * greater than the current running task
2344 * then reschedule.
2346 if (p->prio < rq->curr->prio)
2347 resched_curr(rq);
2351 #ifdef CONFIG_POSIX_TIMERS
2352 static void watchdog(struct rq *rq, struct task_struct *p)
2354 unsigned long soft, hard;
2356 /* max may change after cur was read, this will be fixed next tick */
2357 soft = task_rlimit(p, RLIMIT_RTTIME);
2358 hard = task_rlimit_max(p, RLIMIT_RTTIME);
2360 if (soft != RLIM_INFINITY) {
2361 unsigned long next;
2363 if (p->rt.watchdog_stamp != jiffies) {
2364 p->rt.timeout++;
2365 p->rt.watchdog_stamp = jiffies;
2368 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2369 if (p->rt.timeout > next) {
2370 posix_cputimers_rt_watchdog(&p->posix_cputimers,
2371 p->se.sum_exec_runtime);
2375 #else
2376 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2377 #endif
2380 * scheduler tick hitting a task of our scheduling class.
2382 * NOTE: This function can be called remotely by the tick offload that
2383 * goes along full dynticks. Therefore no local assumption can be made
2384 * and everything must be accessed through the @rq and @curr passed in
2385 * parameters.
2387 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2389 struct sched_rt_entity *rt_se = &p->rt;
2391 update_curr_rt(rq);
2392 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2394 watchdog(rq, p);
2397 * RR tasks need a special form of timeslice management.
2398 * FIFO tasks have no timeslices.
2400 if (p->policy != SCHED_RR)
2401 return;
2403 if (--p->rt.time_slice)
2404 return;
2406 p->rt.time_slice = sched_rr_timeslice;
2409 * Requeue to the end of queue if we (and all of our ancestors) are not
2410 * the only element on the queue
2412 for_each_sched_rt_entity(rt_se) {
2413 if (rt_se->run_list.prev != rt_se->run_list.next) {
2414 requeue_task_rt(rq, p, 0);
2415 resched_curr(rq);
2416 return;
2421 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2424 * Time slice is 0 for SCHED_FIFO tasks
2426 if (task->policy == SCHED_RR)
2427 return sched_rr_timeslice;
2428 else
2429 return 0;
2432 const struct sched_class rt_sched_class = {
2433 .next = &fair_sched_class,
2434 .enqueue_task = enqueue_task_rt,
2435 .dequeue_task = dequeue_task_rt,
2436 .yield_task = yield_task_rt,
2438 .check_preempt_curr = check_preempt_curr_rt,
2440 .pick_next_task = pick_next_task_rt,
2441 .put_prev_task = put_prev_task_rt,
2442 .set_next_task = set_next_task_rt,
2444 #ifdef CONFIG_SMP
2445 .balance = balance_rt,
2446 .select_task_rq = select_task_rq_rt,
2447 .set_cpus_allowed = set_cpus_allowed_common,
2448 .rq_online = rq_online_rt,
2449 .rq_offline = rq_offline_rt,
2450 .task_woken = task_woken_rt,
2451 .switched_from = switched_from_rt,
2452 #endif
2454 .task_tick = task_tick_rt,
2456 .get_rr_interval = get_rr_interval_rt,
2458 .prio_changed = prio_changed_rt,
2459 .switched_to = switched_to_rt,
2461 .update_curr = update_curr_rt,
2463 #ifdef CONFIG_UCLAMP_TASK
2464 .uclamp_enabled = 1,
2465 #endif
2468 #ifdef CONFIG_RT_GROUP_SCHED
2470 * Ensure that the real time constraints are schedulable.
2472 static DEFINE_MUTEX(rt_constraints_mutex);
2474 static inline int tg_has_rt_tasks(struct task_group *tg)
2476 struct task_struct *task;
2477 struct css_task_iter it;
2478 int ret = 0;
2481 * Autogroups do not have RT tasks; see autogroup_create().
2483 if (task_group_is_autogroup(tg))
2484 return 0;
2486 css_task_iter_start(&tg->css, 0, &it);
2487 while (!ret && (task = css_task_iter_next(&it)))
2488 ret |= rt_task(task);
2489 css_task_iter_end(&it);
2491 return ret;
2494 struct rt_schedulable_data {
2495 struct task_group *tg;
2496 u64 rt_period;
2497 u64 rt_runtime;
2500 static int tg_rt_schedulable(struct task_group *tg, void *data)
2502 struct rt_schedulable_data *d = data;
2503 struct task_group *child;
2504 unsigned long total, sum = 0;
2505 u64 period, runtime;
2507 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2508 runtime = tg->rt_bandwidth.rt_runtime;
2510 if (tg == d->tg) {
2511 period = d->rt_period;
2512 runtime = d->rt_runtime;
2516 * Cannot have more runtime than the period.
2518 if (runtime > period && runtime != RUNTIME_INF)
2519 return -EINVAL;
2522 * Ensure we don't starve existing RT tasks if runtime turns zero.
2524 if (rt_bandwidth_enabled() && !runtime &&
2525 tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2526 return -EBUSY;
2528 total = to_ratio(period, runtime);
2531 * Nobody can have more than the global setting allows.
2533 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2534 return -EINVAL;
2537 * The sum of our children's runtime should not exceed our own.
2539 list_for_each_entry_rcu(child, &tg->children, siblings) {
2540 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2541 runtime = child->rt_bandwidth.rt_runtime;
2543 if (child == d->tg) {
2544 period = d->rt_period;
2545 runtime = d->rt_runtime;
2548 sum += to_ratio(period, runtime);
2551 if (sum > total)
2552 return -EINVAL;
2554 return 0;
2557 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2559 int ret;
2561 struct rt_schedulable_data data = {
2562 .tg = tg,
2563 .rt_period = period,
2564 .rt_runtime = runtime,
2567 rcu_read_lock();
2568 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2569 rcu_read_unlock();
2571 return ret;
2574 static int tg_set_rt_bandwidth(struct task_group *tg,
2575 u64 rt_period, u64 rt_runtime)
2577 int i, err = 0;
2580 * Disallowing the root group RT runtime is BAD, it would disallow the
2581 * kernel creating (and or operating) RT threads.
2583 if (tg == &root_task_group && rt_runtime == 0)
2584 return -EINVAL;
2586 /* No period doesn't make any sense. */
2587 if (rt_period == 0)
2588 return -EINVAL;
2591 * Bound quota to defend quota against overflow during bandwidth shift.
2593 if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2594 return -EINVAL;
2596 mutex_lock(&rt_constraints_mutex);
2597 err = __rt_schedulable(tg, rt_period, rt_runtime);
2598 if (err)
2599 goto unlock;
2601 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2602 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2603 tg->rt_bandwidth.rt_runtime = rt_runtime;
2605 for_each_possible_cpu(i) {
2606 struct rt_rq *rt_rq = tg->rt_rq[i];
2608 raw_spin_lock(&rt_rq->rt_runtime_lock);
2609 rt_rq->rt_runtime = rt_runtime;
2610 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2612 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2613 unlock:
2614 mutex_unlock(&rt_constraints_mutex);
2616 return err;
2619 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2621 u64 rt_runtime, rt_period;
2623 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2624 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2625 if (rt_runtime_us < 0)
2626 rt_runtime = RUNTIME_INF;
2627 else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2628 return -EINVAL;
2630 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2633 long sched_group_rt_runtime(struct task_group *tg)
2635 u64 rt_runtime_us;
2637 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2638 return -1;
2640 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2641 do_div(rt_runtime_us, NSEC_PER_USEC);
2642 return rt_runtime_us;
2645 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2647 u64 rt_runtime, rt_period;
2649 if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2650 return -EINVAL;
2652 rt_period = rt_period_us * NSEC_PER_USEC;
2653 rt_runtime = tg->rt_bandwidth.rt_runtime;
2655 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2658 long sched_group_rt_period(struct task_group *tg)
2660 u64 rt_period_us;
2662 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2663 do_div(rt_period_us, NSEC_PER_USEC);
2664 return rt_period_us;
2667 static int sched_rt_global_constraints(void)
2669 int ret = 0;
2671 mutex_lock(&rt_constraints_mutex);
2672 ret = __rt_schedulable(NULL, 0, 0);
2673 mutex_unlock(&rt_constraints_mutex);
2675 return ret;
2678 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2680 /* Don't accept realtime tasks when there is no way for them to run */
2681 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2682 return 0;
2684 return 1;
2687 #else /* !CONFIG_RT_GROUP_SCHED */
2688 static int sched_rt_global_constraints(void)
2690 unsigned long flags;
2691 int i;
2693 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2694 for_each_possible_cpu(i) {
2695 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2697 raw_spin_lock(&rt_rq->rt_runtime_lock);
2698 rt_rq->rt_runtime = global_rt_runtime();
2699 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2701 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2703 return 0;
2705 #endif /* CONFIG_RT_GROUP_SCHED */
2707 static int sched_rt_global_validate(void)
2709 if (sysctl_sched_rt_period <= 0)
2710 return -EINVAL;
2712 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2713 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2714 ((u64)sysctl_sched_rt_runtime *
2715 NSEC_PER_USEC > max_rt_runtime)))
2716 return -EINVAL;
2718 return 0;
2721 static void sched_rt_do_global(void)
2723 def_rt_bandwidth.rt_runtime = global_rt_runtime();
2724 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2727 int sched_rt_handler(struct ctl_table *table, int write,
2728 void __user *buffer, size_t *lenp,
2729 loff_t *ppos)
2731 int old_period, old_runtime;
2732 static DEFINE_MUTEX(mutex);
2733 int ret;
2735 mutex_lock(&mutex);
2736 old_period = sysctl_sched_rt_period;
2737 old_runtime = sysctl_sched_rt_runtime;
2739 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2741 if (!ret && write) {
2742 ret = sched_rt_global_validate();
2743 if (ret)
2744 goto undo;
2746 ret = sched_dl_global_validate();
2747 if (ret)
2748 goto undo;
2750 ret = sched_rt_global_constraints();
2751 if (ret)
2752 goto undo;
2754 sched_rt_do_global();
2755 sched_dl_do_global();
2757 if (0) {
2758 undo:
2759 sysctl_sched_rt_period = old_period;
2760 sysctl_sched_rt_runtime = old_runtime;
2762 mutex_unlock(&mutex);
2764 return ret;
2767 int sched_rr_handler(struct ctl_table *table, int write,
2768 void __user *buffer, size_t *lenp,
2769 loff_t *ppos)
2771 int ret;
2772 static DEFINE_MUTEX(mutex);
2774 mutex_lock(&mutex);
2775 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2777 * Make sure that internally we keep jiffies.
2778 * Also, writing zero resets the timeslice to default:
2780 if (!ret && write) {
2781 sched_rr_timeslice =
2782 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2783 msecs_to_jiffies(sysctl_sched_rr_timeslice);
2785 mutex_unlock(&mutex);
2787 return ret;
2790 #ifdef CONFIG_SCHED_DEBUG
2791 void print_rt_stats(struct seq_file *m, int cpu)
2793 rt_rq_iter_t iter;
2794 struct rt_rq *rt_rq;
2796 rcu_read_lock();
2797 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2798 print_rt_rq(m, cpu, rt_rq);
2799 rcu_read_unlock();
2801 #endif /* CONFIG_SCHED_DEBUG */