1 /* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2015 Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/vmalloc.h>
29 #include <linux/pagemap.h>
30 #include <linux/delay.h>
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/tcp.h>
34 #include <linux/ipv6.h>
35 #include <linux/slab.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/cpu.h>
41 #include <linux/smp.h>
42 #include <linux/pm_qos.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/aer.h>
45 #include <linux/prefetch.h>
49 #define DRV_EXTRAVERSION "-k"
51 #define DRV_VERSION "3.2.6" DRV_EXTRAVERSION
52 char e1000e_driver_name
[] = "e1000e";
53 const char e1000e_driver_version
[] = DRV_VERSION
;
55 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
56 static int debug
= -1;
57 module_param(debug
, int, 0);
58 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
60 static const struct e1000_info
*e1000_info_tbl
[] = {
61 [board_82571
] = &e1000_82571_info
,
62 [board_82572
] = &e1000_82572_info
,
63 [board_82573
] = &e1000_82573_info
,
64 [board_82574
] = &e1000_82574_info
,
65 [board_82583
] = &e1000_82583_info
,
66 [board_80003es2lan
] = &e1000_es2_info
,
67 [board_ich8lan
] = &e1000_ich8_info
,
68 [board_ich9lan
] = &e1000_ich9_info
,
69 [board_ich10lan
] = &e1000_ich10_info
,
70 [board_pchlan
] = &e1000_pch_info
,
71 [board_pch2lan
] = &e1000_pch2_info
,
72 [board_pch_lpt
] = &e1000_pch_lpt_info
,
73 [board_pch_spt
] = &e1000_pch_spt_info
,
76 struct e1000_reg_info
{
81 static const struct e1000_reg_info e1000_reg_info_tbl
[] = {
82 /* General Registers */
84 {E1000_STATUS
, "STATUS"},
85 {E1000_CTRL_EXT
, "CTRL_EXT"},
87 /* Interrupt Registers */
92 {E1000_RDLEN(0), "RDLEN"},
93 {E1000_RDH(0), "RDH"},
94 {E1000_RDT(0), "RDT"},
96 {E1000_RXDCTL(0), "RXDCTL"},
98 {E1000_RDBAL(0), "RDBAL"},
99 {E1000_RDBAH(0), "RDBAH"},
100 {E1000_RDFH
, "RDFH"},
101 {E1000_RDFT
, "RDFT"},
102 {E1000_RDFHS
, "RDFHS"},
103 {E1000_RDFTS
, "RDFTS"},
104 {E1000_RDFPC
, "RDFPC"},
107 {E1000_TCTL
, "TCTL"},
108 {E1000_TDBAL(0), "TDBAL"},
109 {E1000_TDBAH(0), "TDBAH"},
110 {E1000_TDLEN(0), "TDLEN"},
111 {E1000_TDH(0), "TDH"},
112 {E1000_TDT(0), "TDT"},
113 {E1000_TIDV
, "TIDV"},
114 {E1000_TXDCTL(0), "TXDCTL"},
115 {E1000_TADV
, "TADV"},
116 {E1000_TARC(0), "TARC"},
117 {E1000_TDFH
, "TDFH"},
118 {E1000_TDFT
, "TDFT"},
119 {E1000_TDFHS
, "TDFHS"},
120 {E1000_TDFTS
, "TDFTS"},
121 {E1000_TDFPC
, "TDFPC"},
123 /* List Terminator */
128 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
129 * @hw: pointer to the HW structure
131 * When updating the MAC CSR registers, the Manageability Engine (ME) could
132 * be accessing the registers at the same time. Normally, this is handled in
133 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
134 * accesses later than it should which could result in the register to have
135 * an incorrect value. Workaround this by checking the FWSM register which
136 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
137 * and try again a number of times.
139 s32
__ew32_prepare(struct e1000_hw
*hw
)
141 s32 i
= E1000_ICH_FWSM_PCIM2PCI_COUNT
;
143 while ((er32(FWSM
) & E1000_ICH_FWSM_PCIM2PCI
) && --i
)
149 void __ew32(struct e1000_hw
*hw
, unsigned long reg
, u32 val
)
151 if (hw
->adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
154 writel(val
, hw
->hw_addr
+ reg
);
158 * e1000_regdump - register printout routine
159 * @hw: pointer to the HW structure
160 * @reginfo: pointer to the register info table
162 static void e1000_regdump(struct e1000_hw
*hw
, struct e1000_reg_info
*reginfo
)
168 switch (reginfo
->ofs
) {
169 case E1000_RXDCTL(0):
170 for (n
= 0; n
< 2; n
++)
171 regs
[n
] = __er32(hw
, E1000_RXDCTL(n
));
173 case E1000_TXDCTL(0):
174 for (n
= 0; n
< 2; n
++)
175 regs
[n
] = __er32(hw
, E1000_TXDCTL(n
));
178 for (n
= 0; n
< 2; n
++)
179 regs
[n
] = __er32(hw
, E1000_TARC(n
));
182 pr_info("%-15s %08x\n",
183 reginfo
->name
, __er32(hw
, reginfo
->ofs
));
187 snprintf(rname
, 16, "%s%s", reginfo
->name
, "[0-1]");
188 pr_info("%-15s %08x %08x\n", rname
, regs
[0], regs
[1]);
191 static void e1000e_dump_ps_pages(struct e1000_adapter
*adapter
,
192 struct e1000_buffer
*bi
)
195 struct e1000_ps_page
*ps_page
;
197 for (i
= 0; i
< adapter
->rx_ps_pages
; i
++) {
198 ps_page
= &bi
->ps_pages
[i
];
201 pr_info("packet dump for ps_page %d:\n", i
);
202 print_hex_dump(KERN_INFO
, "", DUMP_PREFIX_ADDRESS
,
203 16, 1, page_address(ps_page
->page
),
210 * e1000e_dump - Print registers, Tx-ring and Rx-ring
211 * @adapter: board private structure
213 static void e1000e_dump(struct e1000_adapter
*adapter
)
215 struct net_device
*netdev
= adapter
->netdev
;
216 struct e1000_hw
*hw
= &adapter
->hw
;
217 struct e1000_reg_info
*reginfo
;
218 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
219 struct e1000_tx_desc
*tx_desc
;
224 struct e1000_buffer
*buffer_info
;
225 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
226 union e1000_rx_desc_packet_split
*rx_desc_ps
;
227 union e1000_rx_desc_extended
*rx_desc
;
237 if (!netif_msg_hw(adapter
))
240 /* Print netdevice Info */
242 dev_info(&adapter
->pdev
->dev
, "Net device Info\n");
243 pr_info("Device Name state trans_start last_rx\n");
244 pr_info("%-15s %016lX %016lX %016lX\n", netdev
->name
,
245 netdev
->state
, netdev
->trans_start
, netdev
->last_rx
);
248 /* Print Registers */
249 dev_info(&adapter
->pdev
->dev
, "Register Dump\n");
250 pr_info(" Register Name Value\n");
251 for (reginfo
= (struct e1000_reg_info
*)e1000_reg_info_tbl
;
252 reginfo
->name
; reginfo
++) {
253 e1000_regdump(hw
, reginfo
);
256 /* Print Tx Ring Summary */
257 if (!netdev
|| !netif_running(netdev
))
260 dev_info(&adapter
->pdev
->dev
, "Tx Ring Summary\n");
261 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
262 buffer_info
= &tx_ring
->buffer_info
[tx_ring
->next_to_clean
];
263 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
264 0, tx_ring
->next_to_use
, tx_ring
->next_to_clean
,
265 (unsigned long long)buffer_info
->dma
,
267 buffer_info
->next_to_watch
,
268 (unsigned long long)buffer_info
->time_stamp
);
271 if (!netif_msg_tx_done(adapter
))
272 goto rx_ring_summary
;
274 dev_info(&adapter
->pdev
->dev
, "Tx Ring Dump\n");
276 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
278 * Legacy Transmit Descriptor
279 * +--------------------------------------------------------------+
280 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
281 * +--------------------------------------------------------------+
282 * 8 | Special | CSS | Status | CMD | CSO | Length |
283 * +--------------------------------------------------------------+
284 * 63 48 47 36 35 32 31 24 23 16 15 0
286 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
287 * 63 48 47 40 39 32 31 16 15 8 7 0
288 * +----------------------------------------------------------------+
289 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
290 * +----------------------------------------------------------------+
291 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
292 * +----------------------------------------------------------------+
293 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
295 * Extended Data Descriptor (DTYP=0x1)
296 * +----------------------------------------------------------------+
297 * 0 | Buffer Address [63:0] |
298 * +----------------------------------------------------------------+
299 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
300 * +----------------------------------------------------------------+
301 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
303 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n");
304 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n");
305 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n");
306 for (i
= 0; tx_ring
->desc
&& (i
< tx_ring
->count
); i
++) {
307 const char *next_desc
;
308 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
309 buffer_info
= &tx_ring
->buffer_info
[i
];
310 u0
= (struct my_u0
*)tx_desc
;
311 if (i
== tx_ring
->next_to_use
&& i
== tx_ring
->next_to_clean
)
312 next_desc
= " NTC/U";
313 else if (i
== tx_ring
->next_to_use
)
315 else if (i
== tx_ring
->next_to_clean
)
319 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n",
320 (!(le64_to_cpu(u0
->b
) & (1 << 29)) ? 'l' :
321 ((le64_to_cpu(u0
->b
) & (1 << 20)) ? 'd' : 'c')),
323 (unsigned long long)le64_to_cpu(u0
->a
),
324 (unsigned long long)le64_to_cpu(u0
->b
),
325 (unsigned long long)buffer_info
->dma
,
326 buffer_info
->length
, buffer_info
->next_to_watch
,
327 (unsigned long long)buffer_info
->time_stamp
,
328 buffer_info
->skb
, next_desc
);
330 if (netif_msg_pktdata(adapter
) && buffer_info
->skb
)
331 print_hex_dump(KERN_INFO
, "", DUMP_PREFIX_ADDRESS
,
332 16, 1, buffer_info
->skb
->data
,
333 buffer_info
->skb
->len
, true);
336 /* Print Rx Ring Summary */
338 dev_info(&adapter
->pdev
->dev
, "Rx Ring Summary\n");
339 pr_info("Queue [NTU] [NTC]\n");
340 pr_info(" %5d %5X %5X\n",
341 0, rx_ring
->next_to_use
, rx_ring
->next_to_clean
);
344 if (!netif_msg_rx_status(adapter
))
347 dev_info(&adapter
->pdev
->dev
, "Rx Ring Dump\n");
348 switch (adapter
->rx_ps_pages
) {
352 /* [Extended] Packet Split Receive Descriptor Format
354 * +-----------------------------------------------------+
355 * 0 | Buffer Address 0 [63:0] |
356 * +-----------------------------------------------------+
357 * 8 | Buffer Address 1 [63:0] |
358 * +-----------------------------------------------------+
359 * 16 | Buffer Address 2 [63:0] |
360 * +-----------------------------------------------------+
361 * 24 | Buffer Address 3 [63:0] |
362 * +-----------------------------------------------------+
364 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n");
365 /* [Extended] Receive Descriptor (Write-Back) Format
367 * 63 48 47 32 31 13 12 8 7 4 3 0
368 * +------------------------------------------------------+
369 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
370 * | Checksum | Ident | | Queue | | Type |
371 * +------------------------------------------------------+
372 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
373 * +------------------------------------------------------+
374 * 63 48 47 32 31 20 19 0
376 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
377 for (i
= 0; i
< rx_ring
->count
; i
++) {
378 const char *next_desc
;
379 buffer_info
= &rx_ring
->buffer_info
[i
];
380 rx_desc_ps
= E1000_RX_DESC_PS(*rx_ring
, i
);
381 u1
= (struct my_u1
*)rx_desc_ps
;
383 le32_to_cpu(rx_desc_ps
->wb
.middle
.status_error
);
385 if (i
== rx_ring
->next_to_use
)
387 else if (i
== rx_ring
->next_to_clean
)
392 if (staterr
& E1000_RXD_STAT_DD
) {
393 /* Descriptor Done */
394 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n",
396 (unsigned long long)le64_to_cpu(u1
->a
),
397 (unsigned long long)le64_to_cpu(u1
->b
),
398 (unsigned long long)le64_to_cpu(u1
->c
),
399 (unsigned long long)le64_to_cpu(u1
->d
),
400 buffer_info
->skb
, next_desc
);
402 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n",
404 (unsigned long long)le64_to_cpu(u1
->a
),
405 (unsigned long long)le64_to_cpu(u1
->b
),
406 (unsigned long long)le64_to_cpu(u1
->c
),
407 (unsigned long long)le64_to_cpu(u1
->d
),
408 (unsigned long long)buffer_info
->dma
,
409 buffer_info
->skb
, next_desc
);
411 if (netif_msg_pktdata(adapter
))
412 e1000e_dump_ps_pages(adapter
,
419 /* Extended Receive Descriptor (Read) Format
421 * +-----------------------------------------------------+
422 * 0 | Buffer Address [63:0] |
423 * +-----------------------------------------------------+
425 * +-----------------------------------------------------+
427 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n");
428 /* Extended Receive Descriptor (Write-Back) Format
430 * 63 48 47 32 31 24 23 4 3 0
431 * +------------------------------------------------------+
433 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
434 * | Packet | IP | | | Type |
435 * | Checksum | Ident | | | |
436 * +------------------------------------------------------+
437 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
438 * +------------------------------------------------------+
439 * 63 48 47 32 31 20 19 0
441 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n");
443 for (i
= 0; i
< rx_ring
->count
; i
++) {
444 const char *next_desc
;
446 buffer_info
= &rx_ring
->buffer_info
[i
];
447 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
448 u1
= (struct my_u1
*)rx_desc
;
449 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
451 if (i
== rx_ring
->next_to_use
)
453 else if (i
== rx_ring
->next_to_clean
)
458 if (staterr
& E1000_RXD_STAT_DD
) {
459 /* Descriptor Done */
460 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n",
462 (unsigned long long)le64_to_cpu(u1
->a
),
463 (unsigned long long)le64_to_cpu(u1
->b
),
464 buffer_info
->skb
, next_desc
);
466 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n",
468 (unsigned long long)le64_to_cpu(u1
->a
),
469 (unsigned long long)le64_to_cpu(u1
->b
),
470 (unsigned long long)buffer_info
->dma
,
471 buffer_info
->skb
, next_desc
);
473 if (netif_msg_pktdata(adapter
) &&
475 print_hex_dump(KERN_INFO
, "",
476 DUMP_PREFIX_ADDRESS
, 16,
478 buffer_info
->skb
->data
,
479 adapter
->rx_buffer_len
,
487 * e1000_desc_unused - calculate if we have unused descriptors
489 static int e1000_desc_unused(struct e1000_ring
*ring
)
491 if (ring
->next_to_clean
> ring
->next_to_use
)
492 return ring
->next_to_clean
- ring
->next_to_use
- 1;
494 return ring
->count
+ ring
->next_to_clean
- ring
->next_to_use
- 1;
498 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
499 * @adapter: board private structure
500 * @hwtstamps: time stamp structure to update
501 * @systim: unsigned 64bit system time value.
503 * Convert the system time value stored in the RX/TXSTMP registers into a
504 * hwtstamp which can be used by the upper level time stamping functions.
506 * The 'systim_lock' spinlock is used to protect the consistency of the
507 * system time value. This is needed because reading the 64 bit time
508 * value involves reading two 32 bit registers. The first read latches the
511 static void e1000e_systim_to_hwtstamp(struct e1000_adapter
*adapter
,
512 struct skb_shared_hwtstamps
*hwtstamps
,
518 spin_lock_irqsave(&adapter
->systim_lock
, flags
);
519 ns
= timecounter_cyc2time(&adapter
->tc
, systim
);
520 spin_unlock_irqrestore(&adapter
->systim_lock
, flags
);
522 memset(hwtstamps
, 0, sizeof(*hwtstamps
));
523 hwtstamps
->hwtstamp
= ns_to_ktime(ns
);
527 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
528 * @adapter: board private structure
529 * @status: descriptor extended error and status field
530 * @skb: particular skb to include time stamp
532 * If the time stamp is valid, convert it into the timecounter ns value
533 * and store that result into the shhwtstamps structure which is passed
534 * up the network stack.
536 static void e1000e_rx_hwtstamp(struct e1000_adapter
*adapter
, u32 status
,
539 struct e1000_hw
*hw
= &adapter
->hw
;
542 if (!(adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
) ||
543 !(status
& E1000_RXDEXT_STATERR_TST
) ||
544 !(er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_VALID
))
547 /* The Rx time stamp registers contain the time stamp. No other
548 * received packet will be time stamped until the Rx time stamp
549 * registers are read. Because only one packet can be time stamped
550 * at a time, the register values must belong to this packet and
551 * therefore none of the other additional attributes need to be
554 rxstmp
= (u64
)er32(RXSTMPL
);
555 rxstmp
|= (u64
)er32(RXSTMPH
) << 32;
556 e1000e_systim_to_hwtstamp(adapter
, skb_hwtstamps(skb
), rxstmp
);
558 adapter
->flags2
&= ~FLAG2_CHECK_RX_HWTSTAMP
;
562 * e1000_receive_skb - helper function to handle Rx indications
563 * @adapter: board private structure
564 * @staterr: descriptor extended error and status field as written by hardware
565 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
566 * @skb: pointer to sk_buff to be indicated to stack
568 static void e1000_receive_skb(struct e1000_adapter
*adapter
,
569 struct net_device
*netdev
, struct sk_buff
*skb
,
570 u32 staterr
, __le16 vlan
)
572 u16 tag
= le16_to_cpu(vlan
);
574 e1000e_rx_hwtstamp(adapter
, staterr
, skb
);
576 skb
->protocol
= eth_type_trans(skb
, netdev
);
578 if (staterr
& E1000_RXD_STAT_VP
)
579 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), tag
);
581 napi_gro_receive(&adapter
->napi
, skb
);
585 * e1000_rx_checksum - Receive Checksum Offload
586 * @adapter: board private structure
587 * @status_err: receive descriptor status and error fields
588 * @csum: receive descriptor csum field
589 * @sk_buff: socket buffer with received data
591 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
594 u16 status
= (u16
)status_err
;
595 u8 errors
= (u8
)(status_err
>> 24);
597 skb_checksum_none_assert(skb
);
599 /* Rx checksum disabled */
600 if (!(adapter
->netdev
->features
& NETIF_F_RXCSUM
))
603 /* Ignore Checksum bit is set */
604 if (status
& E1000_RXD_STAT_IXSM
)
607 /* TCP/UDP checksum error bit or IP checksum error bit is set */
608 if (errors
& (E1000_RXD_ERR_TCPE
| E1000_RXD_ERR_IPE
)) {
609 /* let the stack verify checksum errors */
610 adapter
->hw_csum_err
++;
614 /* TCP/UDP Checksum has not been calculated */
615 if (!(status
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
)))
618 /* It must be a TCP or UDP packet with a valid checksum */
619 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
620 adapter
->hw_csum_good
++;
623 static void e1000e_update_rdt_wa(struct e1000_ring
*rx_ring
, unsigned int i
)
625 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
626 struct e1000_hw
*hw
= &adapter
->hw
;
627 s32 ret_val
= __ew32_prepare(hw
);
629 writel(i
, rx_ring
->tail
);
631 if (unlikely(!ret_val
&& (i
!= readl(rx_ring
->tail
)))) {
632 u32 rctl
= er32(RCTL
);
634 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
635 e_err("ME firmware caused invalid RDT - resetting\n");
636 schedule_work(&adapter
->reset_task
);
640 static void e1000e_update_tdt_wa(struct e1000_ring
*tx_ring
, unsigned int i
)
642 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
643 struct e1000_hw
*hw
= &adapter
->hw
;
644 s32 ret_val
= __ew32_prepare(hw
);
646 writel(i
, tx_ring
->tail
);
648 if (unlikely(!ret_val
&& (i
!= readl(tx_ring
->tail
)))) {
649 u32 tctl
= er32(TCTL
);
651 ew32(TCTL
, tctl
& ~E1000_TCTL_EN
);
652 e_err("ME firmware caused invalid TDT - resetting\n");
653 schedule_work(&adapter
->reset_task
);
658 * e1000_alloc_rx_buffers - Replace used receive buffers
659 * @rx_ring: Rx descriptor ring
661 static void e1000_alloc_rx_buffers(struct e1000_ring
*rx_ring
,
662 int cleaned_count
, gfp_t gfp
)
664 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
665 struct net_device
*netdev
= adapter
->netdev
;
666 struct pci_dev
*pdev
= adapter
->pdev
;
667 union e1000_rx_desc_extended
*rx_desc
;
668 struct e1000_buffer
*buffer_info
;
671 unsigned int bufsz
= adapter
->rx_buffer_len
;
673 i
= rx_ring
->next_to_use
;
674 buffer_info
= &rx_ring
->buffer_info
[i
];
676 while (cleaned_count
--) {
677 skb
= buffer_info
->skb
;
683 skb
= __netdev_alloc_skb_ip_align(netdev
, bufsz
, gfp
);
685 /* Better luck next round */
686 adapter
->alloc_rx_buff_failed
++;
690 buffer_info
->skb
= skb
;
692 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
,
693 adapter
->rx_buffer_len
,
695 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
696 dev_err(&pdev
->dev
, "Rx DMA map failed\n");
697 adapter
->rx_dma_failed
++;
701 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
702 rx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
704 if (unlikely(!(i
& (E1000_RX_BUFFER_WRITE
- 1)))) {
705 /* Force memory writes to complete before letting h/w
706 * know there are new descriptors to fetch. (Only
707 * applicable for weak-ordered memory model archs,
711 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
712 e1000e_update_rdt_wa(rx_ring
, i
);
714 writel(i
, rx_ring
->tail
);
717 if (i
== rx_ring
->count
)
719 buffer_info
= &rx_ring
->buffer_info
[i
];
722 rx_ring
->next_to_use
= i
;
726 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
727 * @rx_ring: Rx descriptor ring
729 static void e1000_alloc_rx_buffers_ps(struct e1000_ring
*rx_ring
,
730 int cleaned_count
, gfp_t gfp
)
732 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
733 struct net_device
*netdev
= adapter
->netdev
;
734 struct pci_dev
*pdev
= adapter
->pdev
;
735 union e1000_rx_desc_packet_split
*rx_desc
;
736 struct e1000_buffer
*buffer_info
;
737 struct e1000_ps_page
*ps_page
;
741 i
= rx_ring
->next_to_use
;
742 buffer_info
= &rx_ring
->buffer_info
[i
];
744 while (cleaned_count
--) {
745 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
747 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
748 ps_page
= &buffer_info
->ps_pages
[j
];
749 if (j
>= adapter
->rx_ps_pages
) {
750 /* all unused desc entries get hw null ptr */
751 rx_desc
->read
.buffer_addr
[j
+ 1] =
755 if (!ps_page
->page
) {
756 ps_page
->page
= alloc_page(gfp
);
757 if (!ps_page
->page
) {
758 adapter
->alloc_rx_buff_failed
++;
761 ps_page
->dma
= dma_map_page(&pdev
->dev
,
765 if (dma_mapping_error(&pdev
->dev
,
767 dev_err(&adapter
->pdev
->dev
,
768 "Rx DMA page map failed\n");
769 adapter
->rx_dma_failed
++;
773 /* Refresh the desc even if buffer_addrs
774 * didn't change because each write-back
777 rx_desc
->read
.buffer_addr
[j
+ 1] =
778 cpu_to_le64(ps_page
->dma
);
781 skb
= __netdev_alloc_skb_ip_align(netdev
, adapter
->rx_ps_bsize0
,
785 adapter
->alloc_rx_buff_failed
++;
789 buffer_info
->skb
= skb
;
790 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
,
791 adapter
->rx_ps_bsize0
,
793 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
794 dev_err(&pdev
->dev
, "Rx DMA map failed\n");
795 adapter
->rx_dma_failed
++;
797 dev_kfree_skb_any(skb
);
798 buffer_info
->skb
= NULL
;
802 rx_desc
->read
.buffer_addr
[0] = cpu_to_le64(buffer_info
->dma
);
804 if (unlikely(!(i
& (E1000_RX_BUFFER_WRITE
- 1)))) {
805 /* Force memory writes to complete before letting h/w
806 * know there are new descriptors to fetch. (Only
807 * applicable for weak-ordered memory model archs,
811 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
812 e1000e_update_rdt_wa(rx_ring
, i
<< 1);
814 writel(i
<< 1, rx_ring
->tail
);
818 if (i
== rx_ring
->count
)
820 buffer_info
= &rx_ring
->buffer_info
[i
];
824 rx_ring
->next_to_use
= i
;
828 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
829 * @rx_ring: Rx descriptor ring
830 * @cleaned_count: number of buffers to allocate this pass
833 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring
*rx_ring
,
834 int cleaned_count
, gfp_t gfp
)
836 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
837 struct net_device
*netdev
= adapter
->netdev
;
838 struct pci_dev
*pdev
= adapter
->pdev
;
839 union e1000_rx_desc_extended
*rx_desc
;
840 struct e1000_buffer
*buffer_info
;
843 unsigned int bufsz
= 256 - 16; /* for skb_reserve */
845 i
= rx_ring
->next_to_use
;
846 buffer_info
= &rx_ring
->buffer_info
[i
];
848 while (cleaned_count
--) {
849 skb
= buffer_info
->skb
;
855 skb
= __netdev_alloc_skb_ip_align(netdev
, bufsz
, gfp
);
856 if (unlikely(!skb
)) {
857 /* Better luck next round */
858 adapter
->alloc_rx_buff_failed
++;
862 buffer_info
->skb
= skb
;
864 /* allocate a new page if necessary */
865 if (!buffer_info
->page
) {
866 buffer_info
->page
= alloc_page(gfp
);
867 if (unlikely(!buffer_info
->page
)) {
868 adapter
->alloc_rx_buff_failed
++;
873 if (!buffer_info
->dma
) {
874 buffer_info
->dma
= dma_map_page(&pdev
->dev
,
875 buffer_info
->page
, 0,
878 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
879 adapter
->alloc_rx_buff_failed
++;
884 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
885 rx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
887 if (unlikely(++i
== rx_ring
->count
))
889 buffer_info
= &rx_ring
->buffer_info
[i
];
892 if (likely(rx_ring
->next_to_use
!= i
)) {
893 rx_ring
->next_to_use
= i
;
894 if (unlikely(i
-- == 0))
895 i
= (rx_ring
->count
- 1);
897 /* Force memory writes to complete before letting h/w
898 * know there are new descriptors to fetch. (Only
899 * applicable for weak-ordered memory model archs,
903 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
904 e1000e_update_rdt_wa(rx_ring
, i
);
906 writel(i
, rx_ring
->tail
);
910 static inline void e1000_rx_hash(struct net_device
*netdev
, __le32 rss
,
913 if (netdev
->features
& NETIF_F_RXHASH
)
914 skb_set_hash(skb
, le32_to_cpu(rss
), PKT_HASH_TYPE_L3
);
918 * e1000_clean_rx_irq - Send received data up the network stack
919 * @rx_ring: Rx descriptor ring
921 * the return value indicates whether actual cleaning was done, there
922 * is no guarantee that everything was cleaned
924 static bool e1000_clean_rx_irq(struct e1000_ring
*rx_ring
, int *work_done
,
927 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
928 struct net_device
*netdev
= adapter
->netdev
;
929 struct pci_dev
*pdev
= adapter
->pdev
;
930 struct e1000_hw
*hw
= &adapter
->hw
;
931 union e1000_rx_desc_extended
*rx_desc
, *next_rxd
;
932 struct e1000_buffer
*buffer_info
, *next_buffer
;
935 int cleaned_count
= 0;
936 bool cleaned
= false;
937 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
939 i
= rx_ring
->next_to_clean
;
940 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
941 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
942 buffer_info
= &rx_ring
->buffer_info
[i
];
944 while (staterr
& E1000_RXD_STAT_DD
) {
947 if (*work_done
>= work_to_do
)
950 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
952 skb
= buffer_info
->skb
;
953 buffer_info
->skb
= NULL
;
955 prefetch(skb
->data
- NET_IP_ALIGN
);
958 if (i
== rx_ring
->count
)
960 next_rxd
= E1000_RX_DESC_EXT(*rx_ring
, i
);
963 next_buffer
= &rx_ring
->buffer_info
[i
];
967 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
968 adapter
->rx_buffer_len
, DMA_FROM_DEVICE
);
969 buffer_info
->dma
= 0;
971 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
973 /* !EOP means multiple descriptors were used to store a single
974 * packet, if that's the case we need to toss it. In fact, we
975 * need to toss every packet with the EOP bit clear and the
976 * next frame that _does_ have the EOP bit set, as it is by
977 * definition only a frame fragment
979 if (unlikely(!(staterr
& E1000_RXD_STAT_EOP
)))
980 adapter
->flags2
|= FLAG2_IS_DISCARDING
;
982 if (adapter
->flags2
& FLAG2_IS_DISCARDING
) {
983 /* All receives must fit into a single buffer */
984 e_dbg("Receive packet consumed multiple buffers\n");
986 buffer_info
->skb
= skb
;
987 if (staterr
& E1000_RXD_STAT_EOP
)
988 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
992 if (unlikely((staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) &&
993 !(netdev
->features
& NETIF_F_RXALL
))) {
995 buffer_info
->skb
= skb
;
999 /* adjust length to remove Ethernet CRC */
1000 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
)) {
1001 /* If configured to store CRC, don't subtract FCS,
1002 * but keep the FCS bytes out of the total_rx_bytes
1005 if (netdev
->features
& NETIF_F_RXFCS
)
1006 total_rx_bytes
-= 4;
1011 total_rx_bytes
+= length
;
1014 /* code added for copybreak, this should improve
1015 * performance for small packets with large amounts
1016 * of reassembly being done in the stack
1018 if (length
< copybreak
) {
1019 struct sk_buff
*new_skb
=
1020 napi_alloc_skb(&adapter
->napi
, length
);
1022 skb_copy_to_linear_data_offset(new_skb
,
1028 /* save the skb in buffer_info as good */
1029 buffer_info
->skb
= skb
;
1032 /* else just continue with the old one */
1034 /* end copybreak code */
1035 skb_put(skb
, length
);
1037 /* Receive Checksum Offload */
1038 e1000_rx_checksum(adapter
, staterr
, skb
);
1040 e1000_rx_hash(netdev
, rx_desc
->wb
.lower
.hi_dword
.rss
, skb
);
1042 e1000_receive_skb(adapter
, netdev
, skb
, staterr
,
1043 rx_desc
->wb
.upper
.vlan
);
1046 rx_desc
->wb
.upper
.status_error
&= cpu_to_le32(~0xFF);
1048 /* return some buffers to hardware, one at a time is too slow */
1049 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
1050 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
,
1055 /* use prefetched values */
1057 buffer_info
= next_buffer
;
1059 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
1061 rx_ring
->next_to_clean
= i
;
1063 cleaned_count
= e1000_desc_unused(rx_ring
);
1065 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
, GFP_ATOMIC
);
1067 adapter
->total_rx_bytes
+= total_rx_bytes
;
1068 adapter
->total_rx_packets
+= total_rx_packets
;
1072 static void e1000_put_txbuf(struct e1000_ring
*tx_ring
,
1073 struct e1000_buffer
*buffer_info
)
1075 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
1077 if (buffer_info
->dma
) {
1078 if (buffer_info
->mapped_as_page
)
1079 dma_unmap_page(&adapter
->pdev
->dev
, buffer_info
->dma
,
1080 buffer_info
->length
, DMA_TO_DEVICE
);
1082 dma_unmap_single(&adapter
->pdev
->dev
, buffer_info
->dma
,
1083 buffer_info
->length
, DMA_TO_DEVICE
);
1084 buffer_info
->dma
= 0;
1086 if (buffer_info
->skb
) {
1087 dev_kfree_skb_any(buffer_info
->skb
);
1088 buffer_info
->skb
= NULL
;
1090 buffer_info
->time_stamp
= 0;
1093 static void e1000_print_hw_hang(struct work_struct
*work
)
1095 struct e1000_adapter
*adapter
= container_of(work
,
1096 struct e1000_adapter
,
1098 struct net_device
*netdev
= adapter
->netdev
;
1099 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1100 unsigned int i
= tx_ring
->next_to_clean
;
1101 unsigned int eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
1102 struct e1000_tx_desc
*eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1103 struct e1000_hw
*hw
= &adapter
->hw
;
1104 u16 phy_status
, phy_1000t_status
, phy_ext_status
;
1107 if (test_bit(__E1000_DOWN
, &adapter
->state
))
1110 if (!adapter
->tx_hang_recheck
&& (adapter
->flags2
& FLAG2_DMA_BURST
)) {
1111 /* May be block on write-back, flush and detect again
1112 * flush pending descriptor writebacks to memory
1114 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
1115 /* execute the writes immediately */
1117 /* Due to rare timing issues, write to TIDV again to ensure
1118 * the write is successful
1120 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
1121 /* execute the writes immediately */
1123 adapter
->tx_hang_recheck
= true;
1126 adapter
->tx_hang_recheck
= false;
1128 if (er32(TDH(0)) == er32(TDT(0))) {
1129 e_dbg("false hang detected, ignoring\n");
1133 /* Real hang detected */
1134 netif_stop_queue(netdev
);
1136 e1e_rphy(hw
, MII_BMSR
, &phy_status
);
1137 e1e_rphy(hw
, MII_STAT1000
, &phy_1000t_status
);
1138 e1e_rphy(hw
, MII_ESTATUS
, &phy_ext_status
);
1140 pci_read_config_word(adapter
->pdev
, PCI_STATUS
, &pci_status
);
1142 /* detected Hardware unit hang */
1143 e_err("Detected Hardware Unit Hang:\n"
1146 " next_to_use <%x>\n"
1147 " next_to_clean <%x>\n"
1148 "buffer_info[next_to_clean]:\n"
1149 " time_stamp <%lx>\n"
1150 " next_to_watch <%x>\n"
1152 " next_to_watch.status <%x>\n"
1155 "PHY 1000BASE-T Status <%x>\n"
1156 "PHY Extended Status <%x>\n"
1157 "PCI Status <%x>\n",
1158 readl(tx_ring
->head
), readl(tx_ring
->tail
), tx_ring
->next_to_use
,
1159 tx_ring
->next_to_clean
, tx_ring
->buffer_info
[eop
].time_stamp
,
1160 eop
, jiffies
, eop_desc
->upper
.fields
.status
, er32(STATUS
),
1161 phy_status
, phy_1000t_status
, phy_ext_status
, pci_status
);
1163 e1000e_dump(adapter
);
1165 /* Suggest workaround for known h/w issue */
1166 if ((hw
->mac
.type
== e1000_pchlan
) && (er32(CTRL
) & E1000_CTRL_TFCE
))
1167 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1171 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1172 * @work: pointer to work struct
1174 * This work function polls the TSYNCTXCTL valid bit to determine when a
1175 * timestamp has been taken for the current stored skb. The timestamp must
1176 * be for this skb because only one such packet is allowed in the queue.
1178 static void e1000e_tx_hwtstamp_work(struct work_struct
*work
)
1180 struct e1000_adapter
*adapter
= container_of(work
, struct e1000_adapter
,
1182 struct e1000_hw
*hw
= &adapter
->hw
;
1184 if (er32(TSYNCTXCTL
) & E1000_TSYNCTXCTL_VALID
) {
1185 struct skb_shared_hwtstamps shhwtstamps
;
1188 txstmp
= er32(TXSTMPL
);
1189 txstmp
|= (u64
)er32(TXSTMPH
) << 32;
1191 e1000e_systim_to_hwtstamp(adapter
, &shhwtstamps
, txstmp
);
1193 skb_tstamp_tx(adapter
->tx_hwtstamp_skb
, &shhwtstamps
);
1194 dev_kfree_skb_any(adapter
->tx_hwtstamp_skb
);
1195 adapter
->tx_hwtstamp_skb
= NULL
;
1196 } else if (time_after(jiffies
, adapter
->tx_hwtstamp_start
1197 + adapter
->tx_timeout_factor
* HZ
)) {
1198 dev_kfree_skb_any(adapter
->tx_hwtstamp_skb
);
1199 adapter
->tx_hwtstamp_skb
= NULL
;
1200 adapter
->tx_hwtstamp_timeouts
++;
1201 e_warn("clearing Tx timestamp hang\n");
1203 /* reschedule to check later */
1204 schedule_work(&adapter
->tx_hwtstamp_work
);
1209 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1210 * @tx_ring: Tx descriptor ring
1212 * the return value indicates whether actual cleaning was done, there
1213 * is no guarantee that everything was cleaned
1215 static bool e1000_clean_tx_irq(struct e1000_ring
*tx_ring
)
1217 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
1218 struct net_device
*netdev
= adapter
->netdev
;
1219 struct e1000_hw
*hw
= &adapter
->hw
;
1220 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
1221 struct e1000_buffer
*buffer_info
;
1222 unsigned int i
, eop
;
1223 unsigned int count
= 0;
1224 unsigned int total_tx_bytes
= 0, total_tx_packets
= 0;
1225 unsigned int bytes_compl
= 0, pkts_compl
= 0;
1227 i
= tx_ring
->next_to_clean
;
1228 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
1229 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1231 while ((eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
1232 (count
< tx_ring
->count
)) {
1233 bool cleaned
= false;
1235 dma_rmb(); /* read buffer_info after eop_desc */
1236 for (; !cleaned
; count
++) {
1237 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
1238 buffer_info
= &tx_ring
->buffer_info
[i
];
1239 cleaned
= (i
== eop
);
1242 total_tx_packets
+= buffer_info
->segs
;
1243 total_tx_bytes
+= buffer_info
->bytecount
;
1244 if (buffer_info
->skb
) {
1245 bytes_compl
+= buffer_info
->skb
->len
;
1250 e1000_put_txbuf(tx_ring
, buffer_info
);
1251 tx_desc
->upper
.data
= 0;
1254 if (i
== tx_ring
->count
)
1258 if (i
== tx_ring
->next_to_use
)
1260 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
1261 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1264 tx_ring
->next_to_clean
= i
;
1266 netdev_completed_queue(netdev
, pkts_compl
, bytes_compl
);
1268 #define TX_WAKE_THRESHOLD 32
1269 if (count
&& netif_carrier_ok(netdev
) &&
1270 e1000_desc_unused(tx_ring
) >= TX_WAKE_THRESHOLD
) {
1271 /* Make sure that anybody stopping the queue after this
1272 * sees the new next_to_clean.
1276 if (netif_queue_stopped(netdev
) &&
1277 !(test_bit(__E1000_DOWN
, &adapter
->state
))) {
1278 netif_wake_queue(netdev
);
1279 ++adapter
->restart_queue
;
1283 if (adapter
->detect_tx_hung
) {
1284 /* Detect a transmit hang in hardware, this serializes the
1285 * check with the clearing of time_stamp and movement of i
1287 adapter
->detect_tx_hung
= false;
1288 if (tx_ring
->buffer_info
[i
].time_stamp
&&
1289 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
1290 + (adapter
->tx_timeout_factor
* HZ
)) &&
1291 !(er32(STATUS
) & E1000_STATUS_TXOFF
))
1292 schedule_work(&adapter
->print_hang_task
);
1294 adapter
->tx_hang_recheck
= false;
1296 adapter
->total_tx_bytes
+= total_tx_bytes
;
1297 adapter
->total_tx_packets
+= total_tx_packets
;
1298 return count
< tx_ring
->count
;
1302 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1303 * @rx_ring: Rx descriptor ring
1305 * the return value indicates whether actual cleaning was done, there
1306 * is no guarantee that everything was cleaned
1308 static bool e1000_clean_rx_irq_ps(struct e1000_ring
*rx_ring
, int *work_done
,
1311 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
1312 struct e1000_hw
*hw
= &adapter
->hw
;
1313 union e1000_rx_desc_packet_split
*rx_desc
, *next_rxd
;
1314 struct net_device
*netdev
= adapter
->netdev
;
1315 struct pci_dev
*pdev
= adapter
->pdev
;
1316 struct e1000_buffer
*buffer_info
, *next_buffer
;
1317 struct e1000_ps_page
*ps_page
;
1318 struct sk_buff
*skb
;
1320 u32 length
, staterr
;
1321 int cleaned_count
= 0;
1322 bool cleaned
= false;
1323 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
1325 i
= rx_ring
->next_to_clean
;
1326 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
1327 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
1328 buffer_info
= &rx_ring
->buffer_info
[i
];
1330 while (staterr
& E1000_RXD_STAT_DD
) {
1331 if (*work_done
>= work_to_do
)
1334 skb
= buffer_info
->skb
;
1335 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1337 /* in the packet split case this is header only */
1338 prefetch(skb
->data
- NET_IP_ALIGN
);
1341 if (i
== rx_ring
->count
)
1343 next_rxd
= E1000_RX_DESC_PS(*rx_ring
, i
);
1346 next_buffer
= &rx_ring
->buffer_info
[i
];
1350 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1351 adapter
->rx_ps_bsize0
, DMA_FROM_DEVICE
);
1352 buffer_info
->dma
= 0;
1354 /* see !EOP comment in other Rx routine */
1355 if (!(staterr
& E1000_RXD_STAT_EOP
))
1356 adapter
->flags2
|= FLAG2_IS_DISCARDING
;
1358 if (adapter
->flags2
& FLAG2_IS_DISCARDING
) {
1359 e_dbg("Packet Split buffers didn't pick up the full packet\n");
1360 dev_kfree_skb_irq(skb
);
1361 if (staterr
& E1000_RXD_STAT_EOP
)
1362 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
1366 if (unlikely((staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) &&
1367 !(netdev
->features
& NETIF_F_RXALL
))) {
1368 dev_kfree_skb_irq(skb
);
1372 length
= le16_to_cpu(rx_desc
->wb
.middle
.length0
);
1375 e_dbg("Last part of the packet spanning multiple descriptors\n");
1376 dev_kfree_skb_irq(skb
);
1381 skb_put(skb
, length
);
1384 /* this looks ugly, but it seems compiler issues make
1385 * it more efficient than reusing j
1387 int l1
= le16_to_cpu(rx_desc
->wb
.upper
.length
[0]);
1389 /* page alloc/put takes too long and effects small
1390 * packet throughput, so unsplit small packets and
1391 * save the alloc/put only valid in softirq (napi)
1392 * context to call kmap_*
1394 if (l1
&& (l1
<= copybreak
) &&
1395 ((length
+ l1
) <= adapter
->rx_ps_bsize0
)) {
1398 ps_page
= &buffer_info
->ps_pages
[0];
1400 /* there is no documentation about how to call
1401 * kmap_atomic, so we can't hold the mapping
1404 dma_sync_single_for_cpu(&pdev
->dev
,
1408 vaddr
= kmap_atomic(ps_page
->page
);
1409 memcpy(skb_tail_pointer(skb
), vaddr
, l1
);
1410 kunmap_atomic(vaddr
);
1411 dma_sync_single_for_device(&pdev
->dev
,
1416 /* remove the CRC */
1417 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
)) {
1418 if (!(netdev
->features
& NETIF_F_RXFCS
))
1427 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
1428 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
[j
]);
1432 ps_page
= &buffer_info
->ps_pages
[j
];
1433 dma_unmap_page(&pdev
->dev
, ps_page
->dma
, PAGE_SIZE
,
1436 skb_fill_page_desc(skb
, j
, ps_page
->page
, 0, length
);
1437 ps_page
->page
= NULL
;
1439 skb
->data_len
+= length
;
1440 skb
->truesize
+= PAGE_SIZE
;
1443 /* strip the ethernet crc, problem is we're using pages now so
1444 * this whole operation can get a little cpu intensive
1446 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
)) {
1447 if (!(netdev
->features
& NETIF_F_RXFCS
))
1448 pskb_trim(skb
, skb
->len
- 4);
1452 total_rx_bytes
+= skb
->len
;
1455 e1000_rx_checksum(adapter
, staterr
, skb
);
1457 e1000_rx_hash(netdev
, rx_desc
->wb
.lower
.hi_dword
.rss
, skb
);
1459 if (rx_desc
->wb
.upper
.header_status
&
1460 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP
))
1461 adapter
->rx_hdr_split
++;
1463 e1000_receive_skb(adapter
, netdev
, skb
, staterr
,
1464 rx_desc
->wb
.middle
.vlan
);
1467 rx_desc
->wb
.middle
.status_error
&= cpu_to_le32(~0xFF);
1468 buffer_info
->skb
= NULL
;
1470 /* return some buffers to hardware, one at a time is too slow */
1471 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
1472 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
,
1477 /* use prefetched values */
1479 buffer_info
= next_buffer
;
1481 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
1483 rx_ring
->next_to_clean
= i
;
1485 cleaned_count
= e1000_desc_unused(rx_ring
);
1487 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
, GFP_ATOMIC
);
1489 adapter
->total_rx_bytes
+= total_rx_bytes
;
1490 adapter
->total_rx_packets
+= total_rx_packets
;
1495 * e1000_consume_page - helper function
1497 static void e1000_consume_page(struct e1000_buffer
*bi
, struct sk_buff
*skb
,
1502 skb
->data_len
+= length
;
1503 skb
->truesize
+= PAGE_SIZE
;
1507 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1508 * @adapter: board private structure
1510 * the return value indicates whether actual cleaning was done, there
1511 * is no guarantee that everything was cleaned
1513 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring
*rx_ring
, int *work_done
,
1516 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
1517 struct net_device
*netdev
= adapter
->netdev
;
1518 struct pci_dev
*pdev
= adapter
->pdev
;
1519 union e1000_rx_desc_extended
*rx_desc
, *next_rxd
;
1520 struct e1000_buffer
*buffer_info
, *next_buffer
;
1521 u32 length
, staterr
;
1523 int cleaned_count
= 0;
1524 bool cleaned
= false;
1525 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
1526 struct skb_shared_info
*shinfo
;
1528 i
= rx_ring
->next_to_clean
;
1529 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
1530 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
1531 buffer_info
= &rx_ring
->buffer_info
[i
];
1533 while (staterr
& E1000_RXD_STAT_DD
) {
1534 struct sk_buff
*skb
;
1536 if (*work_done
>= work_to_do
)
1539 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1541 skb
= buffer_info
->skb
;
1542 buffer_info
->skb
= NULL
;
1545 if (i
== rx_ring
->count
)
1547 next_rxd
= E1000_RX_DESC_EXT(*rx_ring
, i
);
1550 next_buffer
= &rx_ring
->buffer_info
[i
];
1554 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
, PAGE_SIZE
,
1556 buffer_info
->dma
= 0;
1558 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
1560 /* errors is only valid for DD + EOP descriptors */
1561 if (unlikely((staterr
& E1000_RXD_STAT_EOP
) &&
1562 ((staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) &&
1563 !(netdev
->features
& NETIF_F_RXALL
)))) {
1564 /* recycle both page and skb */
1565 buffer_info
->skb
= skb
;
1566 /* an error means any chain goes out the window too */
1567 if (rx_ring
->rx_skb_top
)
1568 dev_kfree_skb_irq(rx_ring
->rx_skb_top
);
1569 rx_ring
->rx_skb_top
= NULL
;
1572 #define rxtop (rx_ring->rx_skb_top)
1573 if (!(staterr
& E1000_RXD_STAT_EOP
)) {
1574 /* this descriptor is only the beginning (or middle) */
1576 /* this is the beginning of a chain */
1578 skb_fill_page_desc(rxtop
, 0, buffer_info
->page
,
1581 /* this is the middle of a chain */
1582 shinfo
= skb_shinfo(rxtop
);
1583 skb_fill_page_desc(rxtop
, shinfo
->nr_frags
,
1584 buffer_info
->page
, 0,
1586 /* re-use the skb, only consumed the page */
1587 buffer_info
->skb
= skb
;
1589 e1000_consume_page(buffer_info
, rxtop
, length
);
1593 /* end of the chain */
1594 shinfo
= skb_shinfo(rxtop
);
1595 skb_fill_page_desc(rxtop
, shinfo
->nr_frags
,
1596 buffer_info
->page
, 0,
1598 /* re-use the current skb, we only consumed the
1601 buffer_info
->skb
= skb
;
1604 e1000_consume_page(buffer_info
, skb
, length
);
1606 /* no chain, got EOP, this buf is the packet
1607 * copybreak to save the put_page/alloc_page
1609 if (length
<= copybreak
&&
1610 skb_tailroom(skb
) >= length
) {
1612 vaddr
= kmap_atomic(buffer_info
->page
);
1613 memcpy(skb_tail_pointer(skb
), vaddr
,
1615 kunmap_atomic(vaddr
);
1616 /* re-use the page, so don't erase
1619 skb_put(skb
, length
);
1621 skb_fill_page_desc(skb
, 0,
1622 buffer_info
->page
, 0,
1624 e1000_consume_page(buffer_info
, skb
,
1630 /* Receive Checksum Offload */
1631 e1000_rx_checksum(adapter
, staterr
, skb
);
1633 e1000_rx_hash(netdev
, rx_desc
->wb
.lower
.hi_dword
.rss
, skb
);
1635 /* probably a little skewed due to removing CRC */
1636 total_rx_bytes
+= skb
->len
;
1639 /* eth type trans needs skb->data to point to something */
1640 if (!pskb_may_pull(skb
, ETH_HLEN
)) {
1641 e_err("pskb_may_pull failed.\n");
1642 dev_kfree_skb_irq(skb
);
1646 e1000_receive_skb(adapter
, netdev
, skb
, staterr
,
1647 rx_desc
->wb
.upper
.vlan
);
1650 rx_desc
->wb
.upper
.status_error
&= cpu_to_le32(~0xFF);
1652 /* return some buffers to hardware, one at a time is too slow */
1653 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
1654 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
,
1659 /* use prefetched values */
1661 buffer_info
= next_buffer
;
1663 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
1665 rx_ring
->next_to_clean
= i
;
1667 cleaned_count
= e1000_desc_unused(rx_ring
);
1669 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
, GFP_ATOMIC
);
1671 adapter
->total_rx_bytes
+= total_rx_bytes
;
1672 adapter
->total_rx_packets
+= total_rx_packets
;
1677 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1678 * @rx_ring: Rx descriptor ring
1680 static void e1000_clean_rx_ring(struct e1000_ring
*rx_ring
)
1682 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
1683 struct e1000_buffer
*buffer_info
;
1684 struct e1000_ps_page
*ps_page
;
1685 struct pci_dev
*pdev
= adapter
->pdev
;
1688 /* Free all the Rx ring sk_buffs */
1689 for (i
= 0; i
< rx_ring
->count
; i
++) {
1690 buffer_info
= &rx_ring
->buffer_info
[i
];
1691 if (buffer_info
->dma
) {
1692 if (adapter
->clean_rx
== e1000_clean_rx_irq
)
1693 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1694 adapter
->rx_buffer_len
,
1696 else if (adapter
->clean_rx
== e1000_clean_jumbo_rx_irq
)
1697 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
,
1698 PAGE_SIZE
, DMA_FROM_DEVICE
);
1699 else if (adapter
->clean_rx
== e1000_clean_rx_irq_ps
)
1700 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1701 adapter
->rx_ps_bsize0
,
1703 buffer_info
->dma
= 0;
1706 if (buffer_info
->page
) {
1707 put_page(buffer_info
->page
);
1708 buffer_info
->page
= NULL
;
1711 if (buffer_info
->skb
) {
1712 dev_kfree_skb(buffer_info
->skb
);
1713 buffer_info
->skb
= NULL
;
1716 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
1717 ps_page
= &buffer_info
->ps_pages
[j
];
1720 dma_unmap_page(&pdev
->dev
, ps_page
->dma
, PAGE_SIZE
,
1723 put_page(ps_page
->page
);
1724 ps_page
->page
= NULL
;
1728 /* there also may be some cached data from a chained receive */
1729 if (rx_ring
->rx_skb_top
) {
1730 dev_kfree_skb(rx_ring
->rx_skb_top
);
1731 rx_ring
->rx_skb_top
= NULL
;
1734 /* Zero out the descriptor ring */
1735 memset(rx_ring
->desc
, 0, rx_ring
->size
);
1737 rx_ring
->next_to_clean
= 0;
1738 rx_ring
->next_to_use
= 0;
1739 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
1742 static void e1000e_downshift_workaround(struct work_struct
*work
)
1744 struct e1000_adapter
*adapter
= container_of(work
,
1745 struct e1000_adapter
,
1748 if (test_bit(__E1000_DOWN
, &adapter
->state
))
1751 e1000e_gig_downshift_workaround_ich8lan(&adapter
->hw
);
1755 * e1000_intr_msi - Interrupt Handler
1756 * @irq: interrupt number
1757 * @data: pointer to a network interface device structure
1759 static irqreturn_t
e1000_intr_msi(int __always_unused irq
, void *data
)
1761 struct net_device
*netdev
= data
;
1762 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1763 struct e1000_hw
*hw
= &adapter
->hw
;
1764 u32 icr
= er32(ICR
);
1766 /* read ICR disables interrupts using IAM */
1767 if (icr
& E1000_ICR_LSC
) {
1768 hw
->mac
.get_link_status
= true;
1769 /* ICH8 workaround-- Call gig speed drop workaround on cable
1770 * disconnect (LSC) before accessing any PHY registers
1772 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1773 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1774 schedule_work(&adapter
->downshift_task
);
1776 /* 80003ES2LAN workaround-- For packet buffer work-around on
1777 * link down event; disable receives here in the ISR and reset
1778 * adapter in watchdog
1780 if (netif_carrier_ok(netdev
) &&
1781 adapter
->flags
& FLAG_RX_NEEDS_RESTART
) {
1782 /* disable receives */
1783 u32 rctl
= er32(RCTL
);
1785 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1786 adapter
->flags
|= FLAG_RESTART_NOW
;
1788 /* guard against interrupt when we're going down */
1789 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1790 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1793 /* Reset on uncorrectable ECC error */
1794 if ((icr
& E1000_ICR_ECCER
) && ((hw
->mac
.type
== e1000_pch_lpt
) ||
1795 (hw
->mac
.type
== e1000_pch_spt
))) {
1796 u32 pbeccsts
= er32(PBECCSTS
);
1798 adapter
->corr_errors
+=
1799 pbeccsts
& E1000_PBECCSTS_CORR_ERR_CNT_MASK
;
1800 adapter
->uncorr_errors
+=
1801 (pbeccsts
& E1000_PBECCSTS_UNCORR_ERR_CNT_MASK
) >>
1802 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT
;
1804 /* Do the reset outside of interrupt context */
1805 schedule_work(&adapter
->reset_task
);
1807 /* return immediately since reset is imminent */
1811 if (napi_schedule_prep(&adapter
->napi
)) {
1812 adapter
->total_tx_bytes
= 0;
1813 adapter
->total_tx_packets
= 0;
1814 adapter
->total_rx_bytes
= 0;
1815 adapter
->total_rx_packets
= 0;
1816 __napi_schedule(&adapter
->napi
);
1823 * e1000_intr - Interrupt Handler
1824 * @irq: interrupt number
1825 * @data: pointer to a network interface device structure
1827 static irqreturn_t
e1000_intr(int __always_unused irq
, void *data
)
1829 struct net_device
*netdev
= data
;
1830 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1831 struct e1000_hw
*hw
= &adapter
->hw
;
1832 u32 rctl
, icr
= er32(ICR
);
1834 if (!icr
|| test_bit(__E1000_DOWN
, &adapter
->state
))
1835 return IRQ_NONE
; /* Not our interrupt */
1837 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1838 * not set, then the adapter didn't send an interrupt
1840 if (!(icr
& E1000_ICR_INT_ASSERTED
))
1843 /* Interrupt Auto-Mask...upon reading ICR,
1844 * interrupts are masked. No need for the
1848 if (icr
& E1000_ICR_LSC
) {
1849 hw
->mac
.get_link_status
= true;
1850 /* ICH8 workaround-- Call gig speed drop workaround on cable
1851 * disconnect (LSC) before accessing any PHY registers
1853 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1854 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1855 schedule_work(&adapter
->downshift_task
);
1857 /* 80003ES2LAN workaround--
1858 * For packet buffer work-around on link down event;
1859 * disable receives here in the ISR and
1860 * reset adapter in watchdog
1862 if (netif_carrier_ok(netdev
) &&
1863 (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)) {
1864 /* disable receives */
1866 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1867 adapter
->flags
|= FLAG_RESTART_NOW
;
1869 /* guard against interrupt when we're going down */
1870 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1871 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1874 /* Reset on uncorrectable ECC error */
1875 if ((icr
& E1000_ICR_ECCER
) && ((hw
->mac
.type
== e1000_pch_lpt
) ||
1876 (hw
->mac
.type
== e1000_pch_spt
))) {
1877 u32 pbeccsts
= er32(PBECCSTS
);
1879 adapter
->corr_errors
+=
1880 pbeccsts
& E1000_PBECCSTS_CORR_ERR_CNT_MASK
;
1881 adapter
->uncorr_errors
+=
1882 (pbeccsts
& E1000_PBECCSTS_UNCORR_ERR_CNT_MASK
) >>
1883 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT
;
1885 /* Do the reset outside of interrupt context */
1886 schedule_work(&adapter
->reset_task
);
1888 /* return immediately since reset is imminent */
1892 if (napi_schedule_prep(&adapter
->napi
)) {
1893 adapter
->total_tx_bytes
= 0;
1894 adapter
->total_tx_packets
= 0;
1895 adapter
->total_rx_bytes
= 0;
1896 adapter
->total_rx_packets
= 0;
1897 __napi_schedule(&adapter
->napi
);
1903 static irqreturn_t
e1000_msix_other(int __always_unused irq
, void *data
)
1905 struct net_device
*netdev
= data
;
1906 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1907 struct e1000_hw
*hw
= &adapter
->hw
;
1908 u32 icr
= er32(ICR
);
1910 if (!(icr
& E1000_ICR_INT_ASSERTED
)) {
1911 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1912 ew32(IMS
, E1000_IMS_OTHER
);
1916 if (icr
& adapter
->eiac_mask
)
1917 ew32(ICS
, (icr
& adapter
->eiac_mask
));
1919 if (icr
& E1000_ICR_OTHER
) {
1920 if (!(icr
& E1000_ICR_LSC
))
1921 goto no_link_interrupt
;
1922 hw
->mac
.get_link_status
= true;
1923 /* guard against interrupt when we're going down */
1924 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1925 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1929 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1930 ew32(IMS
, E1000_IMS_LSC
| E1000_IMS_OTHER
);
1935 static irqreturn_t
e1000_intr_msix_tx(int __always_unused irq
, void *data
)
1937 struct net_device
*netdev
= data
;
1938 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1939 struct e1000_hw
*hw
= &adapter
->hw
;
1940 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1942 adapter
->total_tx_bytes
= 0;
1943 adapter
->total_tx_packets
= 0;
1945 if (!e1000_clean_tx_irq(tx_ring
))
1946 /* Ring was not completely cleaned, so fire another interrupt */
1947 ew32(ICS
, tx_ring
->ims_val
);
1952 static irqreturn_t
e1000_intr_msix_rx(int __always_unused irq
, void *data
)
1954 struct net_device
*netdev
= data
;
1955 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1956 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1958 /* Write the ITR value calculated at the end of the
1959 * previous interrupt.
1961 if (rx_ring
->set_itr
) {
1962 writel(1000000000 / (rx_ring
->itr_val
* 256),
1963 rx_ring
->itr_register
);
1964 rx_ring
->set_itr
= 0;
1967 if (napi_schedule_prep(&adapter
->napi
)) {
1968 adapter
->total_rx_bytes
= 0;
1969 adapter
->total_rx_packets
= 0;
1970 __napi_schedule(&adapter
->napi
);
1976 * e1000_configure_msix - Configure MSI-X hardware
1978 * e1000_configure_msix sets up the hardware to properly
1979 * generate MSI-X interrupts.
1981 static void e1000_configure_msix(struct e1000_adapter
*adapter
)
1983 struct e1000_hw
*hw
= &adapter
->hw
;
1984 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1985 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1987 u32 ctrl_ext
, ivar
= 0;
1989 adapter
->eiac_mask
= 0;
1991 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1992 if (hw
->mac
.type
== e1000_82574
) {
1993 u32 rfctl
= er32(RFCTL
);
1995 rfctl
|= E1000_RFCTL_ACK_DIS
;
1999 /* Configure Rx vector */
2000 rx_ring
->ims_val
= E1000_IMS_RXQ0
;
2001 adapter
->eiac_mask
|= rx_ring
->ims_val
;
2002 if (rx_ring
->itr_val
)
2003 writel(1000000000 / (rx_ring
->itr_val
* 256),
2004 rx_ring
->itr_register
);
2006 writel(1, rx_ring
->itr_register
);
2007 ivar
= E1000_IVAR_INT_ALLOC_VALID
| vector
;
2009 /* Configure Tx vector */
2010 tx_ring
->ims_val
= E1000_IMS_TXQ0
;
2012 if (tx_ring
->itr_val
)
2013 writel(1000000000 / (tx_ring
->itr_val
* 256),
2014 tx_ring
->itr_register
);
2016 writel(1, tx_ring
->itr_register
);
2017 adapter
->eiac_mask
|= tx_ring
->ims_val
;
2018 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 8);
2020 /* set vector for Other Causes, e.g. link changes */
2022 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 16);
2023 if (rx_ring
->itr_val
)
2024 writel(1000000000 / (rx_ring
->itr_val
* 256),
2025 hw
->hw_addr
+ E1000_EITR_82574(vector
));
2027 writel(1, hw
->hw_addr
+ E1000_EITR_82574(vector
));
2029 /* Cause Tx interrupts on every write back */
2034 /* enable MSI-X PBA support */
2035 ctrl_ext
= er32(CTRL_EXT
);
2036 ctrl_ext
|= E1000_CTRL_EXT_PBA_CLR
;
2038 /* Auto-Mask Other interrupts upon ICR read */
2039 ew32(IAM
, ~E1000_EIAC_MASK_82574
| E1000_IMS_OTHER
);
2040 ctrl_ext
|= E1000_CTRL_EXT_EIAME
;
2041 ew32(CTRL_EXT
, ctrl_ext
);
2045 void e1000e_reset_interrupt_capability(struct e1000_adapter
*adapter
)
2047 if (adapter
->msix_entries
) {
2048 pci_disable_msix(adapter
->pdev
);
2049 kfree(adapter
->msix_entries
);
2050 adapter
->msix_entries
= NULL
;
2051 } else if (adapter
->flags
& FLAG_MSI_ENABLED
) {
2052 pci_disable_msi(adapter
->pdev
);
2053 adapter
->flags
&= ~FLAG_MSI_ENABLED
;
2058 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2060 * Attempt to configure interrupts using the best available
2061 * capabilities of the hardware and kernel.
2063 void e1000e_set_interrupt_capability(struct e1000_adapter
*adapter
)
2068 switch (adapter
->int_mode
) {
2069 case E1000E_INT_MODE_MSIX
:
2070 if (adapter
->flags
& FLAG_HAS_MSIX
) {
2071 adapter
->num_vectors
= 3; /* RxQ0, TxQ0 and other */
2072 adapter
->msix_entries
= kcalloc(adapter
->num_vectors
,
2076 if (adapter
->msix_entries
) {
2077 struct e1000_adapter
*a
= adapter
;
2079 for (i
= 0; i
< adapter
->num_vectors
; i
++)
2080 adapter
->msix_entries
[i
].entry
= i
;
2082 err
= pci_enable_msix_range(a
->pdev
,
2089 /* MSI-X failed, so fall through and try MSI */
2090 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n");
2091 e1000e_reset_interrupt_capability(adapter
);
2093 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
2095 case E1000E_INT_MODE_MSI
:
2096 if (!pci_enable_msi(adapter
->pdev
)) {
2097 adapter
->flags
|= FLAG_MSI_ENABLED
;
2099 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
2100 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n");
2103 case E1000E_INT_MODE_LEGACY
:
2104 /* Don't do anything; this is the system default */
2108 /* store the number of vectors being used */
2109 adapter
->num_vectors
= 1;
2113 * e1000_request_msix - Initialize MSI-X interrupts
2115 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2118 static int e1000_request_msix(struct e1000_adapter
*adapter
)
2120 struct net_device
*netdev
= adapter
->netdev
;
2121 int err
= 0, vector
= 0;
2123 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
2124 snprintf(adapter
->rx_ring
->name
,
2125 sizeof(adapter
->rx_ring
->name
) - 1,
2126 "%s-rx-0", netdev
->name
);
2128 memcpy(adapter
->rx_ring
->name
, netdev
->name
, IFNAMSIZ
);
2129 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
2130 e1000_intr_msix_rx
, 0, adapter
->rx_ring
->name
,
2134 adapter
->rx_ring
->itr_register
= adapter
->hw
.hw_addr
+
2135 E1000_EITR_82574(vector
);
2136 adapter
->rx_ring
->itr_val
= adapter
->itr
;
2139 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
2140 snprintf(adapter
->tx_ring
->name
,
2141 sizeof(adapter
->tx_ring
->name
) - 1,
2142 "%s-tx-0", netdev
->name
);
2144 memcpy(adapter
->tx_ring
->name
, netdev
->name
, IFNAMSIZ
);
2145 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
2146 e1000_intr_msix_tx
, 0, adapter
->tx_ring
->name
,
2150 adapter
->tx_ring
->itr_register
= adapter
->hw
.hw_addr
+
2151 E1000_EITR_82574(vector
);
2152 adapter
->tx_ring
->itr_val
= adapter
->itr
;
2155 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
2156 e1000_msix_other
, 0, netdev
->name
, netdev
);
2160 e1000_configure_msix(adapter
);
2166 * e1000_request_irq - initialize interrupts
2168 * Attempts to configure interrupts using the best available
2169 * capabilities of the hardware and kernel.
2171 static int e1000_request_irq(struct e1000_adapter
*adapter
)
2173 struct net_device
*netdev
= adapter
->netdev
;
2176 if (adapter
->msix_entries
) {
2177 err
= e1000_request_msix(adapter
);
2180 /* fall back to MSI */
2181 e1000e_reset_interrupt_capability(adapter
);
2182 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
2183 e1000e_set_interrupt_capability(adapter
);
2185 if (adapter
->flags
& FLAG_MSI_ENABLED
) {
2186 err
= request_irq(adapter
->pdev
->irq
, e1000_intr_msi
, 0,
2187 netdev
->name
, netdev
);
2191 /* fall back to legacy interrupt */
2192 e1000e_reset_interrupt_capability(adapter
);
2193 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
2196 err
= request_irq(adapter
->pdev
->irq
, e1000_intr
, IRQF_SHARED
,
2197 netdev
->name
, netdev
);
2199 e_err("Unable to allocate interrupt, Error: %d\n", err
);
2204 static void e1000_free_irq(struct e1000_adapter
*adapter
)
2206 struct net_device
*netdev
= adapter
->netdev
;
2208 if (adapter
->msix_entries
) {
2211 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
2214 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
2217 /* Other Causes interrupt vector */
2218 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
2222 free_irq(adapter
->pdev
->irq
, netdev
);
2226 * e1000_irq_disable - Mask off interrupt generation on the NIC
2228 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
2230 struct e1000_hw
*hw
= &adapter
->hw
;
2233 if (adapter
->msix_entries
)
2234 ew32(EIAC_82574
, 0);
2237 if (adapter
->msix_entries
) {
2240 for (i
= 0; i
< adapter
->num_vectors
; i
++)
2241 synchronize_irq(adapter
->msix_entries
[i
].vector
);
2243 synchronize_irq(adapter
->pdev
->irq
);
2248 * e1000_irq_enable - Enable default interrupt generation settings
2250 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
2252 struct e1000_hw
*hw
= &adapter
->hw
;
2254 if (adapter
->msix_entries
) {
2255 ew32(EIAC_82574
, adapter
->eiac_mask
& E1000_EIAC_MASK_82574
);
2256 ew32(IMS
, adapter
->eiac_mask
| E1000_IMS_OTHER
| E1000_IMS_LSC
);
2257 } else if ((hw
->mac
.type
== e1000_pch_lpt
) ||
2258 (hw
->mac
.type
== e1000_pch_spt
)) {
2259 ew32(IMS
, IMS_ENABLE_MASK
| E1000_IMS_ECCER
);
2261 ew32(IMS
, IMS_ENABLE_MASK
);
2267 * e1000e_get_hw_control - get control of the h/w from f/w
2268 * @adapter: address of board private structure
2270 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2271 * For ASF and Pass Through versions of f/w this means that
2272 * the driver is loaded. For AMT version (only with 82573)
2273 * of the f/w this means that the network i/f is open.
2275 void e1000e_get_hw_control(struct e1000_adapter
*adapter
)
2277 struct e1000_hw
*hw
= &adapter
->hw
;
2281 /* Let firmware know the driver has taken over */
2282 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
2284 ew32(SWSM
, swsm
| E1000_SWSM_DRV_LOAD
);
2285 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
2286 ctrl_ext
= er32(CTRL_EXT
);
2287 ew32(CTRL_EXT
, ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
2292 * e1000e_release_hw_control - release control of the h/w to f/w
2293 * @adapter: address of board private structure
2295 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2296 * For ASF and Pass Through versions of f/w this means that the
2297 * driver is no longer loaded. For AMT version (only with 82573) i
2298 * of the f/w this means that the network i/f is closed.
2301 void e1000e_release_hw_control(struct e1000_adapter
*adapter
)
2303 struct e1000_hw
*hw
= &adapter
->hw
;
2307 /* Let firmware taken over control of h/w */
2308 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
2310 ew32(SWSM
, swsm
& ~E1000_SWSM_DRV_LOAD
);
2311 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
2312 ctrl_ext
= er32(CTRL_EXT
);
2313 ew32(CTRL_EXT
, ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
2318 * e1000_alloc_ring_dma - allocate memory for a ring structure
2320 static int e1000_alloc_ring_dma(struct e1000_adapter
*adapter
,
2321 struct e1000_ring
*ring
)
2323 struct pci_dev
*pdev
= adapter
->pdev
;
2325 ring
->desc
= dma_alloc_coherent(&pdev
->dev
, ring
->size
, &ring
->dma
,
2334 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2335 * @tx_ring: Tx descriptor ring
2337 * Return 0 on success, negative on failure
2339 int e1000e_setup_tx_resources(struct e1000_ring
*tx_ring
)
2341 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
2342 int err
= -ENOMEM
, size
;
2344 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2345 tx_ring
->buffer_info
= vzalloc(size
);
2346 if (!tx_ring
->buffer_info
)
2349 /* round up to nearest 4K */
2350 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
2351 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
2353 err
= e1000_alloc_ring_dma(adapter
, tx_ring
);
2357 tx_ring
->next_to_use
= 0;
2358 tx_ring
->next_to_clean
= 0;
2362 vfree(tx_ring
->buffer_info
);
2363 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2368 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2369 * @rx_ring: Rx descriptor ring
2371 * Returns 0 on success, negative on failure
2373 int e1000e_setup_rx_resources(struct e1000_ring
*rx_ring
)
2375 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
2376 struct e1000_buffer
*buffer_info
;
2377 int i
, size
, desc_len
, err
= -ENOMEM
;
2379 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
2380 rx_ring
->buffer_info
= vzalloc(size
);
2381 if (!rx_ring
->buffer_info
)
2384 for (i
= 0; i
< rx_ring
->count
; i
++) {
2385 buffer_info
= &rx_ring
->buffer_info
[i
];
2386 buffer_info
->ps_pages
= kcalloc(PS_PAGE_BUFFERS
,
2387 sizeof(struct e1000_ps_page
),
2389 if (!buffer_info
->ps_pages
)
2393 desc_len
= sizeof(union e1000_rx_desc_packet_split
);
2395 /* Round up to nearest 4K */
2396 rx_ring
->size
= rx_ring
->count
* desc_len
;
2397 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
2399 err
= e1000_alloc_ring_dma(adapter
, rx_ring
);
2403 rx_ring
->next_to_clean
= 0;
2404 rx_ring
->next_to_use
= 0;
2405 rx_ring
->rx_skb_top
= NULL
;
2410 for (i
= 0; i
< rx_ring
->count
; i
++) {
2411 buffer_info
= &rx_ring
->buffer_info
[i
];
2412 kfree(buffer_info
->ps_pages
);
2415 vfree(rx_ring
->buffer_info
);
2416 e_err("Unable to allocate memory for the receive descriptor ring\n");
2421 * e1000_clean_tx_ring - Free Tx Buffers
2422 * @tx_ring: Tx descriptor ring
2424 static void e1000_clean_tx_ring(struct e1000_ring
*tx_ring
)
2426 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
2427 struct e1000_buffer
*buffer_info
;
2431 for (i
= 0; i
< tx_ring
->count
; i
++) {
2432 buffer_info
= &tx_ring
->buffer_info
[i
];
2433 e1000_put_txbuf(tx_ring
, buffer_info
);
2436 netdev_reset_queue(adapter
->netdev
);
2437 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2438 memset(tx_ring
->buffer_info
, 0, size
);
2440 memset(tx_ring
->desc
, 0, tx_ring
->size
);
2442 tx_ring
->next_to_use
= 0;
2443 tx_ring
->next_to_clean
= 0;
2447 * e1000e_free_tx_resources - Free Tx Resources per Queue
2448 * @tx_ring: Tx descriptor ring
2450 * Free all transmit software resources
2452 void e1000e_free_tx_resources(struct e1000_ring
*tx_ring
)
2454 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
2455 struct pci_dev
*pdev
= adapter
->pdev
;
2457 e1000_clean_tx_ring(tx_ring
);
2459 vfree(tx_ring
->buffer_info
);
2460 tx_ring
->buffer_info
= NULL
;
2462 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
2464 tx_ring
->desc
= NULL
;
2468 * e1000e_free_rx_resources - Free Rx Resources
2469 * @rx_ring: Rx descriptor ring
2471 * Free all receive software resources
2473 void e1000e_free_rx_resources(struct e1000_ring
*rx_ring
)
2475 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
2476 struct pci_dev
*pdev
= adapter
->pdev
;
2479 e1000_clean_rx_ring(rx_ring
);
2481 for (i
= 0; i
< rx_ring
->count
; i
++)
2482 kfree(rx_ring
->buffer_info
[i
].ps_pages
);
2484 vfree(rx_ring
->buffer_info
);
2485 rx_ring
->buffer_info
= NULL
;
2487 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
2489 rx_ring
->desc
= NULL
;
2493 * e1000_update_itr - update the dynamic ITR value based on statistics
2494 * @adapter: pointer to adapter
2495 * @itr_setting: current adapter->itr
2496 * @packets: the number of packets during this measurement interval
2497 * @bytes: the number of bytes during this measurement interval
2499 * Stores a new ITR value based on packets and byte
2500 * counts during the last interrupt. The advantage of per interrupt
2501 * computation is faster updates and more accurate ITR for the current
2502 * traffic pattern. Constants in this function were computed
2503 * based on theoretical maximum wire speed and thresholds were set based
2504 * on testing data as well as attempting to minimize response time
2505 * while increasing bulk throughput. This functionality is controlled
2506 * by the InterruptThrottleRate module parameter.
2508 static unsigned int e1000_update_itr(u16 itr_setting
, int packets
, int bytes
)
2510 unsigned int retval
= itr_setting
;
2515 switch (itr_setting
) {
2516 case lowest_latency
:
2517 /* handle TSO and jumbo frames */
2518 if (bytes
/ packets
> 8000)
2519 retval
= bulk_latency
;
2520 else if ((packets
< 5) && (bytes
> 512))
2521 retval
= low_latency
;
2523 case low_latency
: /* 50 usec aka 20000 ints/s */
2524 if (bytes
> 10000) {
2525 /* this if handles the TSO accounting */
2526 if (bytes
/ packets
> 8000)
2527 retval
= bulk_latency
;
2528 else if ((packets
< 10) || ((bytes
/ packets
) > 1200))
2529 retval
= bulk_latency
;
2530 else if ((packets
> 35))
2531 retval
= lowest_latency
;
2532 } else if (bytes
/ packets
> 2000) {
2533 retval
= bulk_latency
;
2534 } else if (packets
<= 2 && bytes
< 512) {
2535 retval
= lowest_latency
;
2538 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2539 if (bytes
> 25000) {
2541 retval
= low_latency
;
2542 } else if (bytes
< 6000) {
2543 retval
= low_latency
;
2551 static void e1000_set_itr(struct e1000_adapter
*adapter
)
2554 u32 new_itr
= adapter
->itr
;
2556 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2557 if (adapter
->link_speed
!= SPEED_1000
) {
2563 if (adapter
->flags2
& FLAG2_DISABLE_AIM
) {
2568 adapter
->tx_itr
= e1000_update_itr(adapter
->tx_itr
,
2569 adapter
->total_tx_packets
,
2570 adapter
->total_tx_bytes
);
2571 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2572 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
2573 adapter
->tx_itr
= low_latency
;
2575 adapter
->rx_itr
= e1000_update_itr(adapter
->rx_itr
,
2576 adapter
->total_rx_packets
,
2577 adapter
->total_rx_bytes
);
2578 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2579 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2580 adapter
->rx_itr
= low_latency
;
2582 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2584 /* counts and packets in update_itr are dependent on these numbers */
2585 switch (current_itr
) {
2586 case lowest_latency
:
2590 new_itr
= 20000; /* aka hwitr = ~200 */
2600 if (new_itr
!= adapter
->itr
) {
2601 /* this attempts to bias the interrupt rate towards Bulk
2602 * by adding intermediate steps when interrupt rate is
2605 new_itr
= new_itr
> adapter
->itr
?
2606 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) : new_itr
;
2607 adapter
->itr
= new_itr
;
2608 adapter
->rx_ring
->itr_val
= new_itr
;
2609 if (adapter
->msix_entries
)
2610 adapter
->rx_ring
->set_itr
= 1;
2612 e1000e_write_itr(adapter
, new_itr
);
2617 * e1000e_write_itr - write the ITR value to the appropriate registers
2618 * @adapter: address of board private structure
2619 * @itr: new ITR value to program
2621 * e1000e_write_itr determines if the adapter is in MSI-X mode
2622 * and, if so, writes the EITR registers with the ITR value.
2623 * Otherwise, it writes the ITR value into the ITR register.
2625 void e1000e_write_itr(struct e1000_adapter
*adapter
, u32 itr
)
2627 struct e1000_hw
*hw
= &adapter
->hw
;
2628 u32 new_itr
= itr
? 1000000000 / (itr
* 256) : 0;
2630 if (adapter
->msix_entries
) {
2633 for (vector
= 0; vector
< adapter
->num_vectors
; vector
++)
2634 writel(new_itr
, hw
->hw_addr
+ E1000_EITR_82574(vector
));
2641 * e1000_alloc_queues - Allocate memory for all rings
2642 * @adapter: board private structure to initialize
2644 static int e1000_alloc_queues(struct e1000_adapter
*adapter
)
2646 int size
= sizeof(struct e1000_ring
);
2648 adapter
->tx_ring
= kzalloc(size
, GFP_KERNEL
);
2649 if (!adapter
->tx_ring
)
2651 adapter
->tx_ring
->count
= adapter
->tx_ring_count
;
2652 adapter
->tx_ring
->adapter
= adapter
;
2654 adapter
->rx_ring
= kzalloc(size
, GFP_KERNEL
);
2655 if (!adapter
->rx_ring
)
2657 adapter
->rx_ring
->count
= adapter
->rx_ring_count
;
2658 adapter
->rx_ring
->adapter
= adapter
;
2662 e_err("Unable to allocate memory for queues\n");
2663 kfree(adapter
->rx_ring
);
2664 kfree(adapter
->tx_ring
);
2669 * e1000e_poll - NAPI Rx polling callback
2670 * @napi: struct associated with this polling callback
2671 * @weight: number of packets driver is allowed to process this poll
2673 static int e1000e_poll(struct napi_struct
*napi
, int weight
)
2675 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
,
2677 struct e1000_hw
*hw
= &adapter
->hw
;
2678 struct net_device
*poll_dev
= adapter
->netdev
;
2679 int tx_cleaned
= 1, work_done
= 0;
2681 adapter
= netdev_priv(poll_dev
);
2683 if (!adapter
->msix_entries
||
2684 (adapter
->rx_ring
->ims_val
& adapter
->tx_ring
->ims_val
))
2685 tx_cleaned
= e1000_clean_tx_irq(adapter
->tx_ring
);
2687 adapter
->clean_rx(adapter
->rx_ring
, &work_done
, weight
);
2692 /* If weight not fully consumed, exit the polling mode */
2693 if (work_done
< weight
) {
2694 if (adapter
->itr_setting
& 3)
2695 e1000_set_itr(adapter
);
2696 napi_complete_done(napi
, work_done
);
2697 if (!test_bit(__E1000_DOWN
, &adapter
->state
)) {
2698 if (adapter
->msix_entries
)
2699 ew32(IMS
, adapter
->rx_ring
->ims_val
);
2701 e1000_irq_enable(adapter
);
2708 static int e1000_vlan_rx_add_vid(struct net_device
*netdev
,
2709 __always_unused __be16 proto
, u16 vid
)
2711 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2712 struct e1000_hw
*hw
= &adapter
->hw
;
2715 /* don't update vlan cookie if already programmed */
2716 if ((adapter
->hw
.mng_cookie
.status
&
2717 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2718 (vid
== adapter
->mng_vlan_id
))
2721 /* add VID to filter table */
2722 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2723 index
= (vid
>> 5) & 0x7F;
2724 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2725 vfta
|= (1 << (vid
& 0x1F));
2726 hw
->mac
.ops
.write_vfta(hw
, index
, vfta
);
2729 set_bit(vid
, adapter
->active_vlans
);
2734 static int e1000_vlan_rx_kill_vid(struct net_device
*netdev
,
2735 __always_unused __be16 proto
, u16 vid
)
2737 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2738 struct e1000_hw
*hw
= &adapter
->hw
;
2741 if ((adapter
->hw
.mng_cookie
.status
&
2742 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2743 (vid
== adapter
->mng_vlan_id
)) {
2744 /* release control to f/w */
2745 e1000e_release_hw_control(adapter
);
2749 /* remove VID from filter table */
2750 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2751 index
= (vid
>> 5) & 0x7F;
2752 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2753 vfta
&= ~(1 << (vid
& 0x1F));
2754 hw
->mac
.ops
.write_vfta(hw
, index
, vfta
);
2757 clear_bit(vid
, adapter
->active_vlans
);
2763 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2764 * @adapter: board private structure to initialize
2766 static void e1000e_vlan_filter_disable(struct e1000_adapter
*adapter
)
2768 struct net_device
*netdev
= adapter
->netdev
;
2769 struct e1000_hw
*hw
= &adapter
->hw
;
2772 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2773 /* disable VLAN receive filtering */
2775 rctl
&= ~(E1000_RCTL_VFE
| E1000_RCTL_CFIEN
);
2778 if (adapter
->mng_vlan_id
!= (u16
)E1000_MNG_VLAN_NONE
) {
2779 e1000_vlan_rx_kill_vid(netdev
, htons(ETH_P_8021Q
),
2780 adapter
->mng_vlan_id
);
2781 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
2787 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2788 * @adapter: board private structure to initialize
2790 static void e1000e_vlan_filter_enable(struct e1000_adapter
*adapter
)
2792 struct e1000_hw
*hw
= &adapter
->hw
;
2795 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2796 /* enable VLAN receive filtering */
2798 rctl
|= E1000_RCTL_VFE
;
2799 rctl
&= ~E1000_RCTL_CFIEN
;
2805 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2806 * @adapter: board private structure to initialize
2808 static void e1000e_vlan_strip_disable(struct e1000_adapter
*adapter
)
2810 struct e1000_hw
*hw
= &adapter
->hw
;
2813 /* disable VLAN tag insert/strip */
2815 ctrl
&= ~E1000_CTRL_VME
;
2820 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2821 * @adapter: board private structure to initialize
2823 static void e1000e_vlan_strip_enable(struct e1000_adapter
*adapter
)
2825 struct e1000_hw
*hw
= &adapter
->hw
;
2828 /* enable VLAN tag insert/strip */
2830 ctrl
|= E1000_CTRL_VME
;
2834 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
2836 struct net_device
*netdev
= adapter
->netdev
;
2837 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
2838 u16 old_vid
= adapter
->mng_vlan_id
;
2840 if (adapter
->hw
.mng_cookie
.status
& E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
2841 e1000_vlan_rx_add_vid(netdev
, htons(ETH_P_8021Q
), vid
);
2842 adapter
->mng_vlan_id
= vid
;
2845 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) && (vid
!= old_vid
))
2846 e1000_vlan_rx_kill_vid(netdev
, htons(ETH_P_8021Q
), old_vid
);
2849 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
2853 e1000_vlan_rx_add_vid(adapter
->netdev
, htons(ETH_P_8021Q
), 0);
2855 for_each_set_bit(vid
, adapter
->active_vlans
, VLAN_N_VID
)
2856 e1000_vlan_rx_add_vid(adapter
->netdev
, htons(ETH_P_8021Q
), vid
);
2859 static void e1000_init_manageability_pt(struct e1000_adapter
*adapter
)
2861 struct e1000_hw
*hw
= &adapter
->hw
;
2862 u32 manc
, manc2h
, mdef
, i
, j
;
2864 if (!(adapter
->flags
& FLAG_MNG_PT_ENABLED
))
2869 /* enable receiving management packets to the host. this will probably
2870 * generate destination unreachable messages from the host OS, but
2871 * the packets will be handled on SMBUS
2873 manc
|= E1000_MANC_EN_MNG2HOST
;
2874 manc2h
= er32(MANC2H
);
2876 switch (hw
->mac
.type
) {
2878 manc2h
|= (E1000_MANC2H_PORT_623
| E1000_MANC2H_PORT_664
);
2882 /* Check if IPMI pass-through decision filter already exists;
2885 for (i
= 0, j
= 0; i
< 8; i
++) {
2886 mdef
= er32(MDEF(i
));
2888 /* Ignore filters with anything other than IPMI ports */
2889 if (mdef
& ~(E1000_MDEF_PORT_623
| E1000_MDEF_PORT_664
))
2892 /* Enable this decision filter in MANC2H */
2899 if (j
== (E1000_MDEF_PORT_623
| E1000_MDEF_PORT_664
))
2902 /* Create new decision filter in an empty filter */
2903 for (i
= 0, j
= 0; i
< 8; i
++)
2904 if (er32(MDEF(i
)) == 0) {
2905 ew32(MDEF(i
), (E1000_MDEF_PORT_623
|
2906 E1000_MDEF_PORT_664
));
2913 e_warn("Unable to create IPMI pass-through filter\n");
2917 ew32(MANC2H
, manc2h
);
2922 * e1000_configure_tx - Configure Transmit Unit after Reset
2923 * @adapter: board private structure
2925 * Configure the Tx unit of the MAC after a reset.
2927 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
2929 struct e1000_hw
*hw
= &adapter
->hw
;
2930 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2932 u32 tdlen
, tctl
, tarc
;
2934 /* Setup the HW Tx Head and Tail descriptor pointers */
2935 tdba
= tx_ring
->dma
;
2936 tdlen
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
2937 ew32(TDBAL(0), (tdba
& DMA_BIT_MASK(32)));
2938 ew32(TDBAH(0), (tdba
>> 32));
2939 ew32(TDLEN(0), tdlen
);
2942 tx_ring
->head
= adapter
->hw
.hw_addr
+ E1000_TDH(0);
2943 tx_ring
->tail
= adapter
->hw
.hw_addr
+ E1000_TDT(0);
2945 writel(0, tx_ring
->head
);
2946 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
2947 e1000e_update_tdt_wa(tx_ring
, 0);
2949 writel(0, tx_ring
->tail
);
2951 /* Set the Tx Interrupt Delay register */
2952 ew32(TIDV
, adapter
->tx_int_delay
);
2953 /* Tx irq moderation */
2954 ew32(TADV
, adapter
->tx_abs_int_delay
);
2956 if (adapter
->flags2
& FLAG2_DMA_BURST
) {
2957 u32 txdctl
= er32(TXDCTL(0));
2959 txdctl
&= ~(E1000_TXDCTL_PTHRESH
| E1000_TXDCTL_HTHRESH
|
2960 E1000_TXDCTL_WTHRESH
);
2961 /* set up some performance related parameters to encourage the
2962 * hardware to use the bus more efficiently in bursts, depends
2963 * on the tx_int_delay to be enabled,
2964 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2965 * hthresh = 1 ==> prefetch when one or more available
2966 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2967 * BEWARE: this seems to work but should be considered first if
2968 * there are Tx hangs or other Tx related bugs
2970 txdctl
|= E1000_TXDCTL_DMA_BURST_ENABLE
;
2971 ew32(TXDCTL(0), txdctl
);
2973 /* erratum work around: set txdctl the same for both queues */
2974 ew32(TXDCTL(1), er32(TXDCTL(0)));
2976 /* Program the Transmit Control Register */
2978 tctl
&= ~E1000_TCTL_CT
;
2979 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
2980 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
2982 if (adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) {
2983 tarc
= er32(TARC(0));
2984 /* set the speed mode bit, we'll clear it if we're not at
2985 * gigabit link later
2987 #define SPEED_MODE_BIT (1 << 21)
2988 tarc
|= SPEED_MODE_BIT
;
2989 ew32(TARC(0), tarc
);
2992 /* errata: program both queues to unweighted RR */
2993 if (adapter
->flags
& FLAG_TARC_SET_BIT_ZERO
) {
2994 tarc
= er32(TARC(0));
2996 ew32(TARC(0), tarc
);
2997 tarc
= er32(TARC(1));
2999 ew32(TARC(1), tarc
);
3002 /* Setup Transmit Descriptor Settings for eop descriptor */
3003 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
3005 /* only set IDE if we are delaying interrupts using the timers */
3006 if (adapter
->tx_int_delay
)
3007 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
3009 /* enable Report Status bit */
3010 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
3014 hw
->mac
.ops
.config_collision_dist(hw
);
3016 /* SPT Si errata workaround to avoid data corruption */
3017 if (hw
->mac
.type
== e1000_pch_spt
) {
3020 reg_val
= er32(IOSFPC
);
3021 reg_val
|= E1000_RCTL_RDMTS_HEX
;
3022 ew32(IOSFPC
, reg_val
);
3024 reg_val
= er32(TARC(0));
3025 reg_val
|= E1000_TARC0_CB_MULTIQ_3_REQ
;
3026 ew32(TARC(0), reg_val
);
3031 * e1000_setup_rctl - configure the receive control registers
3032 * @adapter: Board private structure
3034 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3035 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3036 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
3038 struct e1000_hw
*hw
= &adapter
->hw
;
3042 /* Workaround Si errata on PCHx - configure jumbo frame flow.
3043 * If jumbo frames not set, program related MAC/PHY registers
3046 if (hw
->mac
.type
>= e1000_pch2lan
) {
3049 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
)
3050 ret_val
= e1000_lv_jumbo_workaround_ich8lan(hw
, true);
3052 ret_val
= e1000_lv_jumbo_workaround_ich8lan(hw
, false);
3055 e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3058 /* Program MC offset vector base */
3060 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
3061 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
3062 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
3063 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
3065 /* Do not Store bad packets */
3066 rctl
&= ~E1000_RCTL_SBP
;
3068 /* Enable Long Packet receive */
3069 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
3070 rctl
&= ~E1000_RCTL_LPE
;
3072 rctl
|= E1000_RCTL_LPE
;
3074 /* Some systems expect that the CRC is included in SMBUS traffic. The
3075 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3076 * host memory when this is enabled
3078 if (adapter
->flags2
& FLAG2_CRC_STRIPPING
)
3079 rctl
|= E1000_RCTL_SECRC
;
3081 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3082 if ((hw
->phy
.type
== e1000_phy_82577
) && (rctl
& E1000_RCTL_LPE
)) {
3085 e1e_rphy(hw
, PHY_REG(770, 26), &phy_data
);
3087 phy_data
|= (1 << 2);
3088 e1e_wphy(hw
, PHY_REG(770, 26), phy_data
);
3090 e1e_rphy(hw
, 22, &phy_data
);
3092 phy_data
|= (1 << 14);
3093 e1e_wphy(hw
, 0x10, 0x2823);
3094 e1e_wphy(hw
, 0x11, 0x0003);
3095 e1e_wphy(hw
, 22, phy_data
);
3098 /* Setup buffer sizes */
3099 rctl
&= ~E1000_RCTL_SZ_4096
;
3100 rctl
|= E1000_RCTL_BSEX
;
3101 switch (adapter
->rx_buffer_len
) {
3104 rctl
|= E1000_RCTL_SZ_2048
;
3105 rctl
&= ~E1000_RCTL_BSEX
;
3108 rctl
|= E1000_RCTL_SZ_4096
;
3111 rctl
|= E1000_RCTL_SZ_8192
;
3114 rctl
|= E1000_RCTL_SZ_16384
;
3118 /* Enable Extended Status in all Receive Descriptors */
3119 rfctl
= er32(RFCTL
);
3120 rfctl
|= E1000_RFCTL_EXTEN
;
3123 /* 82571 and greater support packet-split where the protocol
3124 * header is placed in skb->data and the packet data is
3125 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3126 * In the case of a non-split, skb->data is linearly filled,
3127 * followed by the page buffers. Therefore, skb->data is
3128 * sized to hold the largest protocol header.
3130 * allocations using alloc_page take too long for regular MTU
3131 * so only enable packet split for jumbo frames
3133 * Using pages when the page size is greater than 16k wastes
3134 * a lot of memory, since we allocate 3 pages at all times
3137 pages
= PAGE_USE_COUNT(adapter
->netdev
->mtu
);
3138 if ((pages
<= 3) && (PAGE_SIZE
<= 16384) && (rctl
& E1000_RCTL_LPE
))
3139 adapter
->rx_ps_pages
= pages
;
3141 adapter
->rx_ps_pages
= 0;
3143 if (adapter
->rx_ps_pages
) {
3146 /* Enable Packet split descriptors */
3147 rctl
|= E1000_RCTL_DTYP_PS
;
3149 psrctl
|= adapter
->rx_ps_bsize0
>> E1000_PSRCTL_BSIZE0_SHIFT
;
3151 switch (adapter
->rx_ps_pages
) {
3153 psrctl
|= PAGE_SIZE
<< E1000_PSRCTL_BSIZE3_SHIFT
;
3156 psrctl
|= PAGE_SIZE
<< E1000_PSRCTL_BSIZE2_SHIFT
;
3159 psrctl
|= PAGE_SIZE
>> E1000_PSRCTL_BSIZE1_SHIFT
;
3163 ew32(PSRCTL
, psrctl
);
3166 /* This is useful for sniffing bad packets. */
3167 if (adapter
->netdev
->features
& NETIF_F_RXALL
) {
3168 /* UPE and MPE will be handled by normal PROMISC logic
3169 * in e1000e_set_rx_mode
3171 rctl
|= (E1000_RCTL_SBP
| /* Receive bad packets */
3172 E1000_RCTL_BAM
| /* RX All Bcast Pkts */
3173 E1000_RCTL_PMCF
); /* RX All MAC Ctrl Pkts */
3175 rctl
&= ~(E1000_RCTL_VFE
| /* Disable VLAN filter */
3176 E1000_RCTL_DPF
| /* Allow filtered pause */
3177 E1000_RCTL_CFIEN
); /* Dis VLAN CFIEN Filter */
3178 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3179 * and that breaks VLANs.
3184 /* just started the receive unit, no need to restart */
3185 adapter
->flags
&= ~FLAG_RESTART_NOW
;
3189 * e1000_configure_rx - Configure Receive Unit after Reset
3190 * @adapter: board private structure
3192 * Configure the Rx unit of the MAC after a reset.
3194 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
3196 struct e1000_hw
*hw
= &adapter
->hw
;
3197 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
3199 u32 rdlen
, rctl
, rxcsum
, ctrl_ext
;
3201 if (adapter
->rx_ps_pages
) {
3202 /* this is a 32 byte descriptor */
3203 rdlen
= rx_ring
->count
*
3204 sizeof(union e1000_rx_desc_packet_split
);
3205 adapter
->clean_rx
= e1000_clean_rx_irq_ps
;
3206 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers_ps
;
3207 } else if (adapter
->netdev
->mtu
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
3208 rdlen
= rx_ring
->count
* sizeof(union e1000_rx_desc_extended
);
3209 adapter
->clean_rx
= e1000_clean_jumbo_rx_irq
;
3210 adapter
->alloc_rx_buf
= e1000_alloc_jumbo_rx_buffers
;
3212 rdlen
= rx_ring
->count
* sizeof(union e1000_rx_desc_extended
);
3213 adapter
->clean_rx
= e1000_clean_rx_irq
;
3214 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
3217 /* disable receives while setting up the descriptors */
3219 if (!(adapter
->flags2
& FLAG2_NO_DISABLE_RX
))
3220 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
3222 usleep_range(10000, 20000);
3224 if (adapter
->flags2
& FLAG2_DMA_BURST
) {
3225 /* set the writeback threshold (only takes effect if the RDTR
3226 * is set). set GRAN=1 and write back up to 0x4 worth, and
3227 * enable prefetching of 0x20 Rx descriptors
3233 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE
);
3234 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE
);
3236 /* override the delay timers for enabling bursting, only if
3237 * the value was not set by the user via module options
3239 if (adapter
->rx_int_delay
== DEFAULT_RDTR
)
3240 adapter
->rx_int_delay
= BURST_RDTR
;
3241 if (adapter
->rx_abs_int_delay
== DEFAULT_RADV
)
3242 adapter
->rx_abs_int_delay
= BURST_RADV
;
3245 /* set the Receive Delay Timer Register */
3246 ew32(RDTR
, adapter
->rx_int_delay
);
3248 /* irq moderation */
3249 ew32(RADV
, adapter
->rx_abs_int_delay
);
3250 if ((adapter
->itr_setting
!= 0) && (adapter
->itr
!= 0))
3251 e1000e_write_itr(adapter
, adapter
->itr
);
3253 ctrl_ext
= er32(CTRL_EXT
);
3254 /* Auto-Mask interrupts upon ICR access */
3255 ctrl_ext
|= E1000_CTRL_EXT_IAME
;
3256 ew32(IAM
, 0xffffffff);
3257 ew32(CTRL_EXT
, ctrl_ext
);
3260 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3261 * the Base and Length of the Rx Descriptor Ring
3263 rdba
= rx_ring
->dma
;
3264 ew32(RDBAL(0), (rdba
& DMA_BIT_MASK(32)));
3265 ew32(RDBAH(0), (rdba
>> 32));
3266 ew32(RDLEN(0), rdlen
);
3269 rx_ring
->head
= adapter
->hw
.hw_addr
+ E1000_RDH(0);
3270 rx_ring
->tail
= adapter
->hw
.hw_addr
+ E1000_RDT(0);
3272 writel(0, rx_ring
->head
);
3273 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
3274 e1000e_update_rdt_wa(rx_ring
, 0);
3276 writel(0, rx_ring
->tail
);
3278 /* Enable Receive Checksum Offload for TCP and UDP */
3279 rxcsum
= er32(RXCSUM
);
3280 if (adapter
->netdev
->features
& NETIF_F_RXCSUM
)
3281 rxcsum
|= E1000_RXCSUM_TUOFL
;
3283 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
3284 ew32(RXCSUM
, rxcsum
);
3286 /* With jumbo frames, excessive C-state transition latencies result
3287 * in dropped transactions.
3289 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
3291 ((er32(PBA
) & E1000_PBA_RXA_MASK
) * 1024 -
3292 adapter
->max_frame_size
) * 8 / 1000;
3294 if (adapter
->flags
& FLAG_IS_ICH
) {
3295 u32 rxdctl
= er32(RXDCTL(0));
3297 ew32(RXDCTL(0), rxdctl
| 0x3);
3300 pm_qos_update_request(&adapter
->pm_qos_req
, lat
);
3302 pm_qos_update_request(&adapter
->pm_qos_req
,
3303 PM_QOS_DEFAULT_VALUE
);
3306 /* Enable Receives */
3311 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3312 * @netdev: network interface device structure
3314 * Writes multicast address list to the MTA hash table.
3315 * Returns: -ENOMEM on failure
3316 * 0 on no addresses written
3317 * X on writing X addresses to MTA
3319 static int e1000e_write_mc_addr_list(struct net_device
*netdev
)
3321 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3322 struct e1000_hw
*hw
= &adapter
->hw
;
3323 struct netdev_hw_addr
*ha
;
3327 if (netdev_mc_empty(netdev
)) {
3328 /* nothing to program, so clear mc list */
3329 hw
->mac
.ops
.update_mc_addr_list(hw
, NULL
, 0);
3333 mta_list
= kzalloc(netdev_mc_count(netdev
) * ETH_ALEN
, GFP_ATOMIC
);
3337 /* update_mc_addr_list expects a packed array of only addresses. */
3339 netdev_for_each_mc_addr(ha
, netdev
)
3340 memcpy(mta_list
+ (i
++ * ETH_ALEN
), ha
->addr
, ETH_ALEN
);
3342 hw
->mac
.ops
.update_mc_addr_list(hw
, mta_list
, i
);
3345 return netdev_mc_count(netdev
);
3349 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3350 * @netdev: network interface device structure
3352 * Writes unicast address list to the RAR table.
3353 * Returns: -ENOMEM on failure/insufficient address space
3354 * 0 on no addresses written
3355 * X on writing X addresses to the RAR table
3357 static int e1000e_write_uc_addr_list(struct net_device
*netdev
)
3359 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3360 struct e1000_hw
*hw
= &adapter
->hw
;
3361 unsigned int rar_entries
;
3364 rar_entries
= hw
->mac
.ops
.rar_get_count(hw
);
3366 /* save a rar entry for our hardware address */
3369 /* save a rar entry for the LAA workaround */
3370 if (adapter
->flags
& FLAG_RESET_OVERWRITES_LAA
)
3373 /* return ENOMEM indicating insufficient memory for addresses */
3374 if (netdev_uc_count(netdev
) > rar_entries
)
3377 if (!netdev_uc_empty(netdev
) && rar_entries
) {
3378 struct netdev_hw_addr
*ha
;
3380 /* write the addresses in reverse order to avoid write
3383 netdev_for_each_uc_addr(ha
, netdev
) {
3388 rval
= hw
->mac
.ops
.rar_set(hw
, ha
->addr
, rar_entries
--);
3395 /* zero out the remaining RAR entries not used above */
3396 for (; rar_entries
> 0; rar_entries
--) {
3397 ew32(RAH(rar_entries
), 0);
3398 ew32(RAL(rar_entries
), 0);
3406 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3407 * @netdev: network interface device structure
3409 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3410 * address list or the network interface flags are updated. This routine is
3411 * responsible for configuring the hardware for proper unicast, multicast,
3412 * promiscuous mode, and all-multi behavior.
3414 static void e1000e_set_rx_mode(struct net_device
*netdev
)
3416 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3417 struct e1000_hw
*hw
= &adapter
->hw
;
3420 if (pm_runtime_suspended(netdev
->dev
.parent
))
3423 /* Check for Promiscuous and All Multicast modes */
3426 /* clear the affected bits */
3427 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
3429 if (netdev
->flags
& IFF_PROMISC
) {
3430 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
3431 /* Do not hardware filter VLANs in promisc mode */
3432 e1000e_vlan_filter_disable(adapter
);
3436 if (netdev
->flags
& IFF_ALLMULTI
) {
3437 rctl
|= E1000_RCTL_MPE
;
3439 /* Write addresses to the MTA, if the attempt fails
3440 * then we should just turn on promiscuous mode so
3441 * that we can at least receive multicast traffic
3443 count
= e1000e_write_mc_addr_list(netdev
);
3445 rctl
|= E1000_RCTL_MPE
;
3447 e1000e_vlan_filter_enable(adapter
);
3448 /* Write addresses to available RAR registers, if there is not
3449 * sufficient space to store all the addresses then enable
3450 * unicast promiscuous mode
3452 count
= e1000e_write_uc_addr_list(netdev
);
3454 rctl
|= E1000_RCTL_UPE
;
3459 if (netdev
->features
& NETIF_F_HW_VLAN_CTAG_RX
)
3460 e1000e_vlan_strip_enable(adapter
);
3462 e1000e_vlan_strip_disable(adapter
);
3465 static void e1000e_setup_rss_hash(struct e1000_adapter
*adapter
)
3467 struct e1000_hw
*hw
= &adapter
->hw
;
3472 netdev_rss_key_fill(rss_key
, sizeof(rss_key
));
3473 for (i
= 0; i
< 10; i
++)
3474 ew32(RSSRK(i
), rss_key
[i
]);
3476 /* Direct all traffic to queue 0 */
3477 for (i
= 0; i
< 32; i
++)
3480 /* Disable raw packet checksumming so that RSS hash is placed in
3481 * descriptor on writeback.
3483 rxcsum
= er32(RXCSUM
);
3484 rxcsum
|= E1000_RXCSUM_PCSD
;
3486 ew32(RXCSUM
, rxcsum
);
3488 mrqc
= (E1000_MRQC_RSS_FIELD_IPV4
|
3489 E1000_MRQC_RSS_FIELD_IPV4_TCP
|
3490 E1000_MRQC_RSS_FIELD_IPV6
|
3491 E1000_MRQC_RSS_FIELD_IPV6_TCP
|
3492 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX
);
3498 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3499 * @adapter: board private structure
3500 * @timinca: pointer to returned time increment attributes
3502 * Get attributes for incrementing the System Time Register SYSTIML/H at
3503 * the default base frequency, and set the cyclecounter shift value.
3505 s32
e1000e_get_base_timinca(struct e1000_adapter
*adapter
, u32
*timinca
)
3507 struct e1000_hw
*hw
= &adapter
->hw
;
3508 u32 incvalue
, incperiod
, shift
;
3510 /* Make sure clock is enabled on I217/I218/I219 before checking
3513 if (((hw
->mac
.type
== e1000_pch_lpt
) ||
3514 (hw
->mac
.type
== e1000_pch_spt
)) &&
3515 !(er32(TSYNCTXCTL
) & E1000_TSYNCTXCTL_ENABLED
) &&
3516 !(er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_ENABLED
)) {
3517 u32 fextnvm7
= er32(FEXTNVM7
);
3519 if (!(fextnvm7
& (1 << 0))) {
3520 ew32(FEXTNVM7
, fextnvm7
| (1 << 0));
3525 switch (hw
->mac
.type
) {
3528 if (er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_SYSCFI
) {
3529 /* Stable 96MHz frequency */
3530 incperiod
= INCPERIOD_96MHz
;
3531 incvalue
= INCVALUE_96MHz
;
3532 shift
= INCVALUE_SHIFT_96MHz
;
3533 adapter
->cc
.shift
= shift
+ INCPERIOD_SHIFT_96MHz
;
3535 /* Stable 25MHz frequency */
3536 incperiod
= INCPERIOD_25MHz
;
3537 incvalue
= INCVALUE_25MHz
;
3538 shift
= INCVALUE_SHIFT_25MHz
;
3539 adapter
->cc
.shift
= shift
;
3543 if (er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_SYSCFI
) {
3544 /* Stable 24MHz frequency */
3545 incperiod
= INCPERIOD_24MHz
;
3546 incvalue
= INCVALUE_24MHz
;
3547 shift
= INCVALUE_SHIFT_24MHz
;
3548 adapter
->cc
.shift
= shift
;
3554 /* Stable 25MHz frequency */
3555 incperiod
= INCPERIOD_25MHz
;
3556 incvalue
= INCVALUE_25MHz
;
3557 shift
= INCVALUE_SHIFT_25MHz
;
3558 adapter
->cc
.shift
= shift
;
3564 *timinca
= ((incperiod
<< E1000_TIMINCA_INCPERIOD_SHIFT
) |
3565 ((incvalue
<< shift
) & E1000_TIMINCA_INCVALUE_MASK
));
3571 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3572 * @adapter: board private structure
3574 * Outgoing time stamping can be enabled and disabled. Play nice and
3575 * disable it when requested, although it shouldn't cause any overhead
3576 * when no packet needs it. At most one packet in the queue may be
3577 * marked for time stamping, otherwise it would be impossible to tell
3578 * for sure to which packet the hardware time stamp belongs.
3580 * Incoming time stamping has to be configured via the hardware filters.
3581 * Not all combinations are supported, in particular event type has to be
3582 * specified. Matching the kind of event packet is not supported, with the
3583 * exception of "all V2 events regardless of level 2 or 4".
3585 static int e1000e_config_hwtstamp(struct e1000_adapter
*adapter
,
3586 struct hwtstamp_config
*config
)
3588 struct e1000_hw
*hw
= &adapter
->hw
;
3589 u32 tsync_tx_ctl
= E1000_TSYNCTXCTL_ENABLED
;
3590 u32 tsync_rx_ctl
= E1000_TSYNCRXCTL_ENABLED
;
3598 if (!(adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
))
3601 /* flags reserved for future extensions - must be zero */
3605 switch (config
->tx_type
) {
3606 case HWTSTAMP_TX_OFF
:
3609 case HWTSTAMP_TX_ON
:
3615 switch (config
->rx_filter
) {
3616 case HWTSTAMP_FILTER_NONE
:
3619 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC
:
3620 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L4_V1
;
3621 rxmtrl
= E1000_RXMTRL_PTP_V1_SYNC_MESSAGE
;
3624 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
:
3625 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L4_V1
;
3626 rxmtrl
= E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE
;
3629 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC
:
3630 /* Also time stamps V2 L2 Path Delay Request/Response */
3631 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L2_V2
;
3632 rxmtrl
= E1000_RXMTRL_PTP_V2_SYNC_MESSAGE
;
3635 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ
:
3636 /* Also time stamps V2 L2 Path Delay Request/Response. */
3637 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L2_V2
;
3638 rxmtrl
= E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE
;
3641 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC
:
3642 /* Hardware cannot filter just V2 L4 Sync messages;
3643 * fall-through to V2 (both L2 and L4) Sync.
3645 case HWTSTAMP_FILTER_PTP_V2_SYNC
:
3646 /* Also time stamps V2 Path Delay Request/Response. */
3647 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L2_L4_V2
;
3648 rxmtrl
= E1000_RXMTRL_PTP_V2_SYNC_MESSAGE
;
3652 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
:
3653 /* Hardware cannot filter just V2 L4 Delay Request messages;
3654 * fall-through to V2 (both L2 and L4) Delay Request.
3656 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
:
3657 /* Also time stamps V2 Path Delay Request/Response. */
3658 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L2_L4_V2
;
3659 rxmtrl
= E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE
;
3663 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT
:
3664 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT
:
3665 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3666 * fall-through to all V2 (both L2 and L4) Events.
3668 case HWTSTAMP_FILTER_PTP_V2_EVENT
:
3669 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_EVENT_V2
;
3670 config
->rx_filter
= HWTSTAMP_FILTER_PTP_V2_EVENT
;
3674 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT
:
3675 /* For V1, the hardware can only filter Sync messages or
3676 * Delay Request messages but not both so fall-through to
3677 * time stamp all packets.
3679 case HWTSTAMP_FILTER_ALL
:
3682 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_ALL
;
3683 config
->rx_filter
= HWTSTAMP_FILTER_ALL
;
3689 adapter
->hwtstamp_config
= *config
;
3691 /* enable/disable Tx h/w time stamping */
3692 regval
= er32(TSYNCTXCTL
);
3693 regval
&= ~E1000_TSYNCTXCTL_ENABLED
;
3694 regval
|= tsync_tx_ctl
;
3695 ew32(TSYNCTXCTL
, regval
);
3696 if ((er32(TSYNCTXCTL
) & E1000_TSYNCTXCTL_ENABLED
) !=
3697 (regval
& E1000_TSYNCTXCTL_ENABLED
)) {
3698 e_err("Timesync Tx Control register not set as expected\n");
3702 /* enable/disable Rx h/w time stamping */
3703 regval
= er32(TSYNCRXCTL
);
3704 regval
&= ~(E1000_TSYNCRXCTL_ENABLED
| E1000_TSYNCRXCTL_TYPE_MASK
);
3705 regval
|= tsync_rx_ctl
;
3706 ew32(TSYNCRXCTL
, regval
);
3707 if ((er32(TSYNCRXCTL
) & (E1000_TSYNCRXCTL_ENABLED
|
3708 E1000_TSYNCRXCTL_TYPE_MASK
)) !=
3709 (regval
& (E1000_TSYNCRXCTL_ENABLED
|
3710 E1000_TSYNCRXCTL_TYPE_MASK
))) {
3711 e_err("Timesync Rx Control register not set as expected\n");
3715 /* L2: define ethertype filter for time stamped packets */
3717 rxmtrl
|= ETH_P_1588
;
3719 /* define which PTP packets get time stamped */
3720 ew32(RXMTRL
, rxmtrl
);
3722 /* Filter by destination port */
3724 rxudp
= PTP_EV_PORT
;
3725 cpu_to_be16s(&rxudp
);
3731 /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3735 /* Get and set the System Time Register SYSTIM base frequency */
3736 ret_val
= e1000e_get_base_timinca(adapter
, ®val
);
3739 ew32(TIMINCA
, regval
);
3741 /* reset the ns time counter */
3742 timecounter_init(&adapter
->tc
, &adapter
->cc
,
3743 ktime_to_ns(ktime_get_real()));
3749 * e1000_configure - configure the hardware for Rx and Tx
3750 * @adapter: private board structure
3752 static void e1000_configure(struct e1000_adapter
*adapter
)
3754 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
3756 e1000e_set_rx_mode(adapter
->netdev
);
3758 e1000_restore_vlan(adapter
);
3759 e1000_init_manageability_pt(adapter
);
3761 e1000_configure_tx(adapter
);
3763 if (adapter
->netdev
->features
& NETIF_F_RXHASH
)
3764 e1000e_setup_rss_hash(adapter
);
3765 e1000_setup_rctl(adapter
);
3766 e1000_configure_rx(adapter
);
3767 adapter
->alloc_rx_buf(rx_ring
, e1000_desc_unused(rx_ring
), GFP_KERNEL
);
3771 * e1000e_power_up_phy - restore link in case the phy was powered down
3772 * @adapter: address of board private structure
3774 * The phy may be powered down to save power and turn off link when the
3775 * driver is unloaded and wake on lan is not enabled (among others)
3776 * *** this routine MUST be followed by a call to e1000e_reset ***
3778 void e1000e_power_up_phy(struct e1000_adapter
*adapter
)
3780 if (adapter
->hw
.phy
.ops
.power_up
)
3781 adapter
->hw
.phy
.ops
.power_up(&adapter
->hw
);
3783 adapter
->hw
.mac
.ops
.setup_link(&adapter
->hw
);
3787 * e1000_power_down_phy - Power down the PHY
3789 * Power down the PHY so no link is implied when interface is down.
3790 * The PHY cannot be powered down if management or WoL is active.
3792 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
3794 if (adapter
->hw
.phy
.ops
.power_down
)
3795 adapter
->hw
.phy
.ops
.power_down(&adapter
->hw
);
3799 * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3801 * We want to clear all pending descriptors from the TX ring.
3802 * zeroing happens when the HW reads the regs. We assign the ring itself as
3803 * the data of the next descriptor. We don't care about the data we are about
3806 static void e1000_flush_tx_ring(struct e1000_adapter
*adapter
)
3808 struct e1000_hw
*hw
= &adapter
->hw
;
3809 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3810 struct e1000_tx_desc
*tx_desc
= NULL
;
3811 u32 tdt
, tctl
, txd_lower
= E1000_TXD_CMD_IFCS
;
3815 ew32(TCTL
, tctl
| E1000_TCTL_EN
);
3817 BUG_ON(tdt
!= tx_ring
->next_to_use
);
3818 tx_desc
= E1000_TX_DESC(*tx_ring
, tx_ring
->next_to_use
);
3819 tx_desc
->buffer_addr
= tx_ring
->dma
;
3821 tx_desc
->lower
.data
= cpu_to_le32(txd_lower
| size
);
3822 tx_desc
->upper
.data
= 0;
3823 /* flush descriptors to memory before notifying the HW */
3825 tx_ring
->next_to_use
++;
3826 if (tx_ring
->next_to_use
== tx_ring
->count
)
3827 tx_ring
->next_to_use
= 0;
3828 ew32(TDT(0), tx_ring
->next_to_use
);
3830 usleep_range(200, 250);
3834 * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3836 * Mark all descriptors in the RX ring as consumed and disable the rx ring
3838 static void e1000_flush_rx_ring(struct e1000_adapter
*adapter
)
3841 struct e1000_hw
*hw
= &adapter
->hw
;
3844 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
3846 usleep_range(100, 150);
3848 rxdctl
= er32(RXDCTL(0));
3849 /* zero the lower 14 bits (prefetch and host thresholds) */
3850 rxdctl
&= 0xffffc000;
3852 /* update thresholds: prefetch threshold to 31, host threshold to 1
3853 * and make sure the granularity is "descriptors" and not "cache lines"
3855 rxdctl
|= (0x1F | (1 << 8) | E1000_RXDCTL_THRESH_UNIT_DESC
);
3857 ew32(RXDCTL(0), rxdctl
);
3858 /* momentarily enable the RX ring for the changes to take effect */
3859 ew32(RCTL
, rctl
| E1000_RCTL_EN
);
3861 usleep_range(100, 150);
3862 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
3866 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3868 * In i219, the descriptor rings must be emptied before resetting the HW
3869 * or before changing the device state to D3 during runtime (runtime PM).
3871 * Failure to do this will cause the HW to enter a unit hang state which can
3872 * only be released by PCI reset on the device
3876 static void e1000_flush_desc_rings(struct e1000_adapter
*adapter
)
3879 u32 fext_nvm11
, tdlen
;
3880 struct e1000_hw
*hw
= &adapter
->hw
;
3882 /* First, disable MULR fix in FEXTNVM11 */
3883 fext_nvm11
= er32(FEXTNVM11
);
3884 fext_nvm11
|= E1000_FEXTNVM11_DISABLE_MULR_FIX
;
3885 ew32(FEXTNVM11
, fext_nvm11
);
3886 /* do nothing if we're not in faulty state, or if the queue is empty */
3887 tdlen
= er32(TDLEN(0));
3888 pci_read_config_word(adapter
->pdev
, PCICFG_DESC_RING_STATUS
,
3890 if (!(hang_state
& FLUSH_DESC_REQUIRED
) || !tdlen
)
3892 e1000_flush_tx_ring(adapter
);
3893 /* recheck, maybe the fault is caused by the rx ring */
3894 pci_read_config_word(adapter
->pdev
, PCICFG_DESC_RING_STATUS
,
3896 if (hang_state
& FLUSH_DESC_REQUIRED
)
3897 e1000_flush_rx_ring(adapter
);
3901 * e1000e_reset - bring the hardware into a known good state
3903 * This function boots the hardware and enables some settings that
3904 * require a configuration cycle of the hardware - those cannot be
3905 * set/changed during runtime. After reset the device needs to be
3906 * properly configured for Rx, Tx etc.
3908 void e1000e_reset(struct e1000_adapter
*adapter
)
3910 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
3911 struct e1000_fc_info
*fc
= &adapter
->hw
.fc
;
3912 struct e1000_hw
*hw
= &adapter
->hw
;
3913 u32 tx_space
, min_tx_space
, min_rx_space
;
3914 u32 pba
= adapter
->pba
;
3917 /* reset Packet Buffer Allocation to default */
3920 if (adapter
->max_frame_size
> (VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN
)) {
3921 /* To maintain wire speed transmits, the Tx FIFO should be
3922 * large enough to accommodate two full transmit packets,
3923 * rounded up to the next 1KB and expressed in KB. Likewise,
3924 * the Rx FIFO should be large enough to accommodate at least
3925 * one full receive packet and is similarly rounded up and
3929 /* upper 16 bits has Tx packet buffer allocation size in KB */
3930 tx_space
= pba
>> 16;
3931 /* lower 16 bits has Rx packet buffer allocation size in KB */
3933 /* the Tx fifo also stores 16 bytes of information about the Tx
3934 * but don't include ethernet FCS because hardware appends it
3936 min_tx_space
= (adapter
->max_frame_size
+
3937 sizeof(struct e1000_tx_desc
) - ETH_FCS_LEN
) * 2;
3938 min_tx_space
= ALIGN(min_tx_space
, 1024);
3939 min_tx_space
>>= 10;
3940 /* software strips receive CRC, so leave room for it */
3941 min_rx_space
= adapter
->max_frame_size
;
3942 min_rx_space
= ALIGN(min_rx_space
, 1024);
3943 min_rx_space
>>= 10;
3945 /* If current Tx allocation is less than the min Tx FIFO size,
3946 * and the min Tx FIFO size is less than the current Rx FIFO
3947 * allocation, take space away from current Rx allocation
3949 if ((tx_space
< min_tx_space
) &&
3950 ((min_tx_space
- tx_space
) < pba
)) {
3951 pba
-= min_tx_space
- tx_space
;
3953 /* if short on Rx space, Rx wins and must trump Tx
3956 if (pba
< min_rx_space
)
3963 /* flow control settings
3965 * The high water mark must be low enough to fit one full frame
3966 * (or the size used for early receive) above it in the Rx FIFO.
3967 * Set it to the lower of:
3968 * - 90% of the Rx FIFO size, and
3969 * - the full Rx FIFO size minus one full frame
3971 if (adapter
->flags
& FLAG_DISABLE_FC_PAUSE_TIME
)
3972 fc
->pause_time
= 0xFFFF;
3974 fc
->pause_time
= E1000_FC_PAUSE_TIME
;
3975 fc
->send_xon
= true;
3976 fc
->current_mode
= fc
->requested_mode
;
3978 switch (hw
->mac
.type
) {
3980 case e1000_ich10lan
:
3981 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
3984 fc
->high_water
= 0x2800;
3985 fc
->low_water
= fc
->high_water
- 8;
3990 hwm
= min(((pba
<< 10) * 9 / 10),
3991 ((pba
<< 10) - adapter
->max_frame_size
));
3993 fc
->high_water
= hwm
& E1000_FCRTH_RTH
; /* 8-byte granularity */
3994 fc
->low_water
= fc
->high_water
- 8;
3997 /* Workaround PCH LOM adapter hangs with certain network
3998 * loads. If hangs persist, try disabling Tx flow control.
4000 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
4001 fc
->high_water
= 0x3500;
4002 fc
->low_water
= 0x1500;
4004 fc
->high_water
= 0x5000;
4005 fc
->low_water
= 0x3000;
4007 fc
->refresh_time
= 0x1000;
4012 fc
->refresh_time
= 0x0400;
4014 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
) {
4015 fc
->high_water
= 0x05C20;
4016 fc
->low_water
= 0x05048;
4017 fc
->pause_time
= 0x0650;
4023 fc
->high_water
= ((pba
<< 10) * 9 / 10) & E1000_FCRTH_RTH
;
4024 fc
->low_water
= ((pba
<< 10) * 8 / 10) & E1000_FCRTL_RTL
;
4028 /* Alignment of Tx data is on an arbitrary byte boundary with the
4029 * maximum size per Tx descriptor limited only to the transmit
4030 * allocation of the packet buffer minus 96 bytes with an upper
4031 * limit of 24KB due to receive synchronization limitations.
4033 adapter
->tx_fifo_limit
= min_t(u32
, ((er32(PBA
) >> 16) << 10) - 96,
4036 /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4037 * fit in receive buffer.
4039 if (adapter
->itr_setting
& 0x3) {
4040 if ((adapter
->max_frame_size
* 2) > (pba
<< 10)) {
4041 if (!(adapter
->flags2
& FLAG2_DISABLE_AIM
)) {
4042 dev_info(&adapter
->pdev
->dev
,
4043 "Interrupt Throttle Rate off\n");
4044 adapter
->flags2
|= FLAG2_DISABLE_AIM
;
4045 e1000e_write_itr(adapter
, 0);
4047 } else if (adapter
->flags2
& FLAG2_DISABLE_AIM
) {
4048 dev_info(&adapter
->pdev
->dev
,
4049 "Interrupt Throttle Rate on\n");
4050 adapter
->flags2
&= ~FLAG2_DISABLE_AIM
;
4051 adapter
->itr
= 20000;
4052 e1000e_write_itr(adapter
, adapter
->itr
);
4056 if (hw
->mac
.type
== e1000_pch_spt
)
4057 e1000_flush_desc_rings(adapter
);
4058 /* Allow time for pending master requests to run */
4059 mac
->ops
.reset_hw(hw
);
4061 /* For parts with AMT enabled, let the firmware know
4062 * that the network interface is in control
4064 if (adapter
->flags
& FLAG_HAS_AMT
)
4065 e1000e_get_hw_control(adapter
);
4069 if (mac
->ops
.init_hw(hw
))
4070 e_err("Hardware Error\n");
4072 e1000_update_mng_vlan(adapter
);
4074 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4075 ew32(VET
, ETH_P_8021Q
);
4077 e1000e_reset_adaptive(hw
);
4079 /* initialize systim and reset the ns time counter */
4080 e1000e_config_hwtstamp(adapter
, &adapter
->hwtstamp_config
);
4082 /* Set EEE advertisement as appropriate */
4083 if (adapter
->flags2
& FLAG2_HAS_EEE
) {
4087 switch (hw
->phy
.type
) {
4088 case e1000_phy_82579
:
4089 adv_addr
= I82579_EEE_ADVERTISEMENT
;
4091 case e1000_phy_i217
:
4092 adv_addr
= I217_EEE_ADVERTISEMENT
;
4095 dev_err(&adapter
->pdev
->dev
,
4096 "Invalid PHY type setting EEE advertisement\n");
4100 ret_val
= hw
->phy
.ops
.acquire(hw
);
4102 dev_err(&adapter
->pdev
->dev
,
4103 "EEE advertisement - unable to acquire PHY\n");
4107 e1000_write_emi_reg_locked(hw
, adv_addr
,
4108 hw
->dev_spec
.ich8lan
.eee_disable
?
4109 0 : adapter
->eee_advert
);
4111 hw
->phy
.ops
.release(hw
);
4114 if (!netif_running(adapter
->netdev
) &&
4115 !test_bit(__E1000_TESTING
, &adapter
->state
))
4116 e1000_power_down_phy(adapter
);
4118 e1000_get_phy_info(hw
);
4120 if ((adapter
->flags
& FLAG_HAS_SMART_POWER_DOWN
) &&
4121 !(adapter
->flags
& FLAG_SMART_POWER_DOWN
)) {
4123 /* speed up time to link by disabling smart power down, ignore
4124 * the return value of this function because there is nothing
4125 * different we would do if it failed
4127 e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &phy_data
);
4128 phy_data
&= ~IGP02E1000_PM_SPD
;
4129 e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, phy_data
);
4131 if (hw
->mac
.type
== e1000_pch_spt
&& adapter
->int_mode
== 0) {
4134 /* Fextnvm7 @ 0xe4[2] = 1 */
4135 reg
= er32(FEXTNVM7
);
4136 reg
|= E1000_FEXTNVM7_SIDE_CLK_UNGATE
;
4137 ew32(FEXTNVM7
, reg
);
4138 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4139 reg
= er32(FEXTNVM9
);
4140 reg
|= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS
|
4141 E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS
;
4142 ew32(FEXTNVM9
, reg
);
4147 int e1000e_up(struct e1000_adapter
*adapter
)
4149 struct e1000_hw
*hw
= &adapter
->hw
;
4151 /* hardware has been reset, we need to reload some things */
4152 e1000_configure(adapter
);
4154 clear_bit(__E1000_DOWN
, &adapter
->state
);
4156 if (adapter
->msix_entries
)
4157 e1000_configure_msix(adapter
);
4158 e1000_irq_enable(adapter
);
4160 netif_start_queue(adapter
->netdev
);
4162 /* fire a link change interrupt to start the watchdog */
4163 if (adapter
->msix_entries
)
4164 ew32(ICS
, E1000_ICS_LSC
| E1000_ICR_OTHER
);
4166 ew32(ICS
, E1000_ICS_LSC
);
4171 static void e1000e_flush_descriptors(struct e1000_adapter
*adapter
)
4173 struct e1000_hw
*hw
= &adapter
->hw
;
4175 if (!(adapter
->flags2
& FLAG2_DMA_BURST
))
4178 /* flush pending descriptor writebacks to memory */
4179 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
4180 ew32(RDTR
, adapter
->rx_int_delay
| E1000_RDTR_FPD
);
4182 /* execute the writes immediately */
4185 /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4186 * write is successful
4188 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
4189 ew32(RDTR
, adapter
->rx_int_delay
| E1000_RDTR_FPD
);
4191 /* execute the writes immediately */
4195 static void e1000e_update_stats(struct e1000_adapter
*adapter
);
4198 * e1000e_down - quiesce the device and optionally reset the hardware
4199 * @adapter: board private structure
4200 * @reset: boolean flag to reset the hardware or not
4202 void e1000e_down(struct e1000_adapter
*adapter
, bool reset
)
4204 struct net_device
*netdev
= adapter
->netdev
;
4205 struct e1000_hw
*hw
= &adapter
->hw
;
4208 /* signal that we're down so the interrupt handler does not
4209 * reschedule our watchdog timer
4211 set_bit(__E1000_DOWN
, &adapter
->state
);
4213 netif_carrier_off(netdev
);
4215 /* disable receives in the hardware */
4217 if (!(adapter
->flags2
& FLAG2_NO_DISABLE_RX
))
4218 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
4219 /* flush and sleep below */
4221 netif_stop_queue(netdev
);
4223 /* disable transmits in the hardware */
4225 tctl
&= ~E1000_TCTL_EN
;
4228 /* flush both disables and wait for them to finish */
4230 usleep_range(10000, 20000);
4232 e1000_irq_disable(adapter
);
4234 napi_synchronize(&adapter
->napi
);
4236 del_timer_sync(&adapter
->watchdog_timer
);
4237 del_timer_sync(&adapter
->phy_info_timer
);
4239 spin_lock(&adapter
->stats64_lock
);
4240 e1000e_update_stats(adapter
);
4241 spin_unlock(&adapter
->stats64_lock
);
4243 e1000e_flush_descriptors(adapter
);
4245 adapter
->link_speed
= 0;
4246 adapter
->link_duplex
= 0;
4248 /* Disable Si errata workaround on PCHx for jumbo frame flow */
4249 if ((hw
->mac
.type
>= e1000_pch2lan
) &&
4250 (adapter
->netdev
->mtu
> ETH_DATA_LEN
) &&
4251 e1000_lv_jumbo_workaround_ich8lan(hw
, false))
4252 e_dbg("failed to disable jumbo frame workaround mode\n");
4254 if (!pci_channel_offline(adapter
->pdev
)) {
4256 e1000e_reset(adapter
);
4257 else if (hw
->mac
.type
== e1000_pch_spt
)
4258 e1000_flush_desc_rings(adapter
);
4260 e1000_clean_tx_ring(adapter
->tx_ring
);
4261 e1000_clean_rx_ring(adapter
->rx_ring
);
4264 void e1000e_reinit_locked(struct e1000_adapter
*adapter
)
4267 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
4268 usleep_range(1000, 2000);
4269 e1000e_down(adapter
, true);
4271 clear_bit(__E1000_RESETTING
, &adapter
->state
);
4275 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4276 * @cc: cyclecounter structure
4278 static cycle_t
e1000e_cyclecounter_read(const struct cyclecounter
*cc
)
4280 struct e1000_adapter
*adapter
= container_of(cc
, struct e1000_adapter
,
4282 struct e1000_hw
*hw
= &adapter
->hw
;
4283 u32 systimel_1
, systimel_2
, systimeh
;
4284 cycle_t systim
, systim_next
;
4285 /* SYSTIMH latching upon SYSTIML read does not work well.
4286 * This means that if SYSTIML overflows after we read it but before
4287 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4288 * will experience a huge non linear increment in the systime value
4289 * to fix that we test for overflow and if true, we re-read systime.
4291 systimel_1
= er32(SYSTIML
);
4292 systimeh
= er32(SYSTIMH
);
4293 systimel_2
= er32(SYSTIML
);
4294 /* Check for overflow. If there was no overflow, use the values */
4295 if (systimel_1
< systimel_2
) {
4296 systim
= (cycle_t
)systimel_1
;
4297 systim
|= (cycle_t
)systimeh
<< 32;
4299 /* There was an overflow, read again SYSTIMH, and use
4302 systimeh
= er32(SYSTIMH
);
4303 systim
= (cycle_t
)systimel_2
;
4304 systim
|= (cycle_t
)systimeh
<< 32;
4307 if ((hw
->mac
.type
== e1000_82574
) || (hw
->mac
.type
== e1000_82583
)) {
4308 u64 incvalue
, time_delta
, rem
, temp
;
4311 /* errata for 82574/82583 possible bad bits read from SYSTIMH/L
4312 * check to see that the time is incrementing at a reasonable
4313 * rate and is a multiple of incvalue
4315 incvalue
= er32(TIMINCA
) & E1000_TIMINCA_INCVALUE_MASK
;
4316 for (i
= 0; i
< E1000_MAX_82574_SYSTIM_REREADS
; i
++) {
4317 /* latch SYSTIMH on read of SYSTIML */
4318 systim_next
= (cycle_t
)er32(SYSTIML
);
4319 systim_next
|= (cycle_t
)er32(SYSTIMH
) << 32;
4321 time_delta
= systim_next
- systim
;
4323 rem
= do_div(temp
, incvalue
);
4325 systim
= systim_next
;
4327 if ((time_delta
< E1000_82574_SYSTIM_EPSILON
) &&
4336 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4337 * @adapter: board private structure to initialize
4339 * e1000_sw_init initializes the Adapter private data structure.
4340 * Fields are initialized based on PCI device information and
4341 * OS network device settings (MTU size).
4343 static int e1000_sw_init(struct e1000_adapter
*adapter
)
4345 struct net_device
*netdev
= adapter
->netdev
;
4347 adapter
->rx_buffer_len
= VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN
;
4348 adapter
->rx_ps_bsize0
= 128;
4349 adapter
->max_frame_size
= netdev
->mtu
+ VLAN_ETH_HLEN
+ ETH_FCS_LEN
;
4350 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
4351 adapter
->tx_ring_count
= E1000_DEFAULT_TXD
;
4352 adapter
->rx_ring_count
= E1000_DEFAULT_RXD
;
4354 spin_lock_init(&adapter
->stats64_lock
);
4356 e1000e_set_interrupt_capability(adapter
);
4358 if (e1000_alloc_queues(adapter
))
4361 /* Setup hardware time stamping cyclecounter */
4362 if (adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
) {
4363 adapter
->cc
.read
= e1000e_cyclecounter_read
;
4364 adapter
->cc
.mask
= CYCLECOUNTER_MASK(64);
4365 adapter
->cc
.mult
= 1;
4366 /* cc.shift set in e1000e_get_base_tininca() */
4368 spin_lock_init(&adapter
->systim_lock
);
4369 INIT_WORK(&adapter
->tx_hwtstamp_work
, e1000e_tx_hwtstamp_work
);
4372 /* Explicitly disable IRQ since the NIC can be in any state. */
4373 e1000_irq_disable(adapter
);
4375 set_bit(__E1000_DOWN
, &adapter
->state
);
4380 * e1000_intr_msi_test - Interrupt Handler
4381 * @irq: interrupt number
4382 * @data: pointer to a network interface device structure
4384 static irqreturn_t
e1000_intr_msi_test(int __always_unused irq
, void *data
)
4386 struct net_device
*netdev
= data
;
4387 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4388 struct e1000_hw
*hw
= &adapter
->hw
;
4389 u32 icr
= er32(ICR
);
4391 e_dbg("icr is %08X\n", icr
);
4392 if (icr
& E1000_ICR_RXSEQ
) {
4393 adapter
->flags
&= ~FLAG_MSI_TEST_FAILED
;
4394 /* Force memory writes to complete before acknowledging the
4395 * interrupt is handled.
4404 * e1000_test_msi_interrupt - Returns 0 for successful test
4405 * @adapter: board private struct
4407 * code flow taken from tg3.c
4409 static int e1000_test_msi_interrupt(struct e1000_adapter
*adapter
)
4411 struct net_device
*netdev
= adapter
->netdev
;
4412 struct e1000_hw
*hw
= &adapter
->hw
;
4415 /* poll_enable hasn't been called yet, so don't need disable */
4416 /* clear any pending events */
4419 /* free the real vector and request a test handler */
4420 e1000_free_irq(adapter
);
4421 e1000e_reset_interrupt_capability(adapter
);
4423 /* Assume that the test fails, if it succeeds then the test
4424 * MSI irq handler will unset this flag
4426 adapter
->flags
|= FLAG_MSI_TEST_FAILED
;
4428 err
= pci_enable_msi(adapter
->pdev
);
4430 goto msi_test_failed
;
4432 err
= request_irq(adapter
->pdev
->irq
, e1000_intr_msi_test
, 0,
4433 netdev
->name
, netdev
);
4435 pci_disable_msi(adapter
->pdev
);
4436 goto msi_test_failed
;
4439 /* Force memory writes to complete before enabling and firing an
4444 e1000_irq_enable(adapter
);
4446 /* fire an unusual interrupt on the test handler */
4447 ew32(ICS
, E1000_ICS_RXSEQ
);
4451 e1000_irq_disable(adapter
);
4453 rmb(); /* read flags after interrupt has been fired */
4455 if (adapter
->flags
& FLAG_MSI_TEST_FAILED
) {
4456 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
4457 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4459 e_dbg("MSI interrupt test succeeded!\n");
4462 free_irq(adapter
->pdev
->irq
, netdev
);
4463 pci_disable_msi(adapter
->pdev
);
4466 e1000e_set_interrupt_capability(adapter
);
4467 return e1000_request_irq(adapter
);
4471 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4472 * @adapter: board private struct
4474 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4476 static int e1000_test_msi(struct e1000_adapter
*adapter
)
4481 if (!(adapter
->flags
& FLAG_MSI_ENABLED
))
4484 /* disable SERR in case the MSI write causes a master abort */
4485 pci_read_config_word(adapter
->pdev
, PCI_COMMAND
, &pci_cmd
);
4486 if (pci_cmd
& PCI_COMMAND_SERR
)
4487 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
,
4488 pci_cmd
& ~PCI_COMMAND_SERR
);
4490 err
= e1000_test_msi_interrupt(adapter
);
4492 /* re-enable SERR */
4493 if (pci_cmd
& PCI_COMMAND_SERR
) {
4494 pci_read_config_word(adapter
->pdev
, PCI_COMMAND
, &pci_cmd
);
4495 pci_cmd
|= PCI_COMMAND_SERR
;
4496 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
, pci_cmd
);
4503 * e1000_open - Called when a network interface is made active
4504 * @netdev: network interface device structure
4506 * Returns 0 on success, negative value on failure
4508 * The open entry point is called when a network interface is made
4509 * active by the system (IFF_UP). At this point all resources needed
4510 * for transmit and receive operations are allocated, the interrupt
4511 * handler is registered with the OS, the watchdog timer is started,
4512 * and the stack is notified that the interface is ready.
4514 static int e1000_open(struct net_device
*netdev
)
4516 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4517 struct e1000_hw
*hw
= &adapter
->hw
;
4518 struct pci_dev
*pdev
= adapter
->pdev
;
4521 /* disallow open during test */
4522 if (test_bit(__E1000_TESTING
, &adapter
->state
))
4525 pm_runtime_get_sync(&pdev
->dev
);
4527 netif_carrier_off(netdev
);
4529 /* allocate transmit descriptors */
4530 err
= e1000e_setup_tx_resources(adapter
->tx_ring
);
4534 /* allocate receive descriptors */
4535 err
= e1000e_setup_rx_resources(adapter
->rx_ring
);
4539 /* If AMT is enabled, let the firmware know that the network
4540 * interface is now open and reset the part to a known state.
4542 if (adapter
->flags
& FLAG_HAS_AMT
) {
4543 e1000e_get_hw_control(adapter
);
4544 e1000e_reset(adapter
);
4547 e1000e_power_up_phy(adapter
);
4549 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
4550 if ((adapter
->hw
.mng_cookie
.status
& E1000_MNG_DHCP_COOKIE_STATUS_VLAN
))
4551 e1000_update_mng_vlan(adapter
);
4553 /* DMA latency requirement to workaround jumbo issue */
4554 pm_qos_add_request(&adapter
->pm_qos_req
, PM_QOS_CPU_DMA_LATENCY
,
4555 PM_QOS_DEFAULT_VALUE
);
4557 /* before we allocate an interrupt, we must be ready to handle it.
4558 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4559 * as soon as we call pci_request_irq, so we have to setup our
4560 * clean_rx handler before we do so.
4562 e1000_configure(adapter
);
4564 err
= e1000_request_irq(adapter
);
4568 /* Work around PCIe errata with MSI interrupts causing some chipsets to
4569 * ignore e1000e MSI messages, which means we need to test our MSI
4572 if (adapter
->int_mode
!= E1000E_INT_MODE_LEGACY
) {
4573 err
= e1000_test_msi(adapter
);
4575 e_err("Interrupt allocation failed\n");
4580 /* From here on the code is the same as e1000e_up() */
4581 clear_bit(__E1000_DOWN
, &adapter
->state
);
4583 napi_enable(&adapter
->napi
);
4585 e1000_irq_enable(adapter
);
4587 adapter
->tx_hang_recheck
= false;
4588 netif_start_queue(netdev
);
4590 hw
->mac
.get_link_status
= true;
4591 pm_runtime_put(&pdev
->dev
);
4593 /* fire a link status change interrupt to start the watchdog */
4594 if (adapter
->msix_entries
)
4595 ew32(ICS
, E1000_ICS_LSC
| E1000_ICR_OTHER
);
4597 ew32(ICS
, E1000_ICS_LSC
);
4602 pm_qos_remove_request(&adapter
->pm_qos_req
);
4603 e1000e_release_hw_control(adapter
);
4604 e1000_power_down_phy(adapter
);
4605 e1000e_free_rx_resources(adapter
->rx_ring
);
4607 e1000e_free_tx_resources(adapter
->tx_ring
);
4609 e1000e_reset(adapter
);
4610 pm_runtime_put_sync(&pdev
->dev
);
4616 * e1000_close - Disables a network interface
4617 * @netdev: network interface device structure
4619 * Returns 0, this is not allowed to fail
4621 * The close entry point is called when an interface is de-activated
4622 * by the OS. The hardware is still under the drivers control, but
4623 * needs to be disabled. A global MAC reset is issued to stop the
4624 * hardware, and all transmit and receive resources are freed.
4626 static int e1000_close(struct net_device
*netdev
)
4628 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4629 struct pci_dev
*pdev
= adapter
->pdev
;
4630 int count
= E1000_CHECK_RESET_COUNT
;
4632 while (test_bit(__E1000_RESETTING
, &adapter
->state
) && count
--)
4633 usleep_range(10000, 20000);
4635 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
4637 pm_runtime_get_sync(&pdev
->dev
);
4639 if (!test_bit(__E1000_DOWN
, &adapter
->state
)) {
4640 e1000e_down(adapter
, true);
4641 e1000_free_irq(adapter
);
4643 /* Link status message must follow this format */
4644 pr_info("%s NIC Link is Down\n", adapter
->netdev
->name
);
4647 napi_disable(&adapter
->napi
);
4649 e1000e_free_tx_resources(adapter
->tx_ring
);
4650 e1000e_free_rx_resources(adapter
->rx_ring
);
4652 /* kill manageability vlan ID if supported, but not if a vlan with
4653 * the same ID is registered on the host OS (let 8021q kill it)
4655 if (adapter
->hw
.mng_cookie
.status
& E1000_MNG_DHCP_COOKIE_STATUS_VLAN
)
4656 e1000_vlan_rx_kill_vid(netdev
, htons(ETH_P_8021Q
),
4657 adapter
->mng_vlan_id
);
4659 /* If AMT is enabled, let the firmware know that the network
4660 * interface is now closed
4662 if ((adapter
->flags
& FLAG_HAS_AMT
) &&
4663 !test_bit(__E1000_TESTING
, &adapter
->state
))
4664 e1000e_release_hw_control(adapter
);
4666 pm_qos_remove_request(&adapter
->pm_qos_req
);
4668 pm_runtime_put_sync(&pdev
->dev
);
4674 * e1000_set_mac - Change the Ethernet Address of the NIC
4675 * @netdev: network interface device structure
4676 * @p: pointer to an address structure
4678 * Returns 0 on success, negative on failure
4680 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
4682 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4683 struct e1000_hw
*hw
= &adapter
->hw
;
4684 struct sockaddr
*addr
= p
;
4686 if (!is_valid_ether_addr(addr
->sa_data
))
4687 return -EADDRNOTAVAIL
;
4689 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
4690 memcpy(adapter
->hw
.mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
4692 hw
->mac
.ops
.rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
, 0);
4694 if (adapter
->flags
& FLAG_RESET_OVERWRITES_LAA
) {
4695 /* activate the work around */
4696 e1000e_set_laa_state_82571(&adapter
->hw
, 1);
4698 /* Hold a copy of the LAA in RAR[14] This is done so that
4699 * between the time RAR[0] gets clobbered and the time it
4700 * gets fixed (in e1000_watchdog), the actual LAA is in one
4701 * of the RARs and no incoming packets directed to this port
4702 * are dropped. Eventually the LAA will be in RAR[0] and
4705 hw
->mac
.ops
.rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
,
4706 adapter
->hw
.mac
.rar_entry_count
- 1);
4713 * e1000e_update_phy_task - work thread to update phy
4714 * @work: pointer to our work struct
4716 * this worker thread exists because we must acquire a
4717 * semaphore to read the phy, which we could msleep while
4718 * waiting for it, and we can't msleep in a timer.
4720 static void e1000e_update_phy_task(struct work_struct
*work
)
4722 struct e1000_adapter
*adapter
= container_of(work
,
4723 struct e1000_adapter
,
4725 struct e1000_hw
*hw
= &adapter
->hw
;
4727 if (test_bit(__E1000_DOWN
, &adapter
->state
))
4730 e1000_get_phy_info(hw
);
4732 /* Enable EEE on 82579 after link up */
4733 if (hw
->phy
.type
>= e1000_phy_82579
)
4734 e1000_set_eee_pchlan(hw
);
4738 * e1000_update_phy_info - timre call-back to update PHY info
4739 * @data: pointer to adapter cast into an unsigned long
4741 * Need to wait a few seconds after link up to get diagnostic information from
4744 static void e1000_update_phy_info(unsigned long data
)
4746 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
4748 if (test_bit(__E1000_DOWN
, &adapter
->state
))
4751 schedule_work(&adapter
->update_phy_task
);
4755 * e1000e_update_phy_stats - Update the PHY statistics counters
4756 * @adapter: board private structure
4758 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4760 static void e1000e_update_phy_stats(struct e1000_adapter
*adapter
)
4762 struct e1000_hw
*hw
= &adapter
->hw
;
4766 ret_val
= hw
->phy
.ops
.acquire(hw
);
4770 /* A page set is expensive so check if already on desired page.
4771 * If not, set to the page with the PHY status registers.
4774 ret_val
= e1000e_read_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
,
4778 if (phy_data
!= (HV_STATS_PAGE
<< IGP_PAGE_SHIFT
)) {
4779 ret_val
= hw
->phy
.ops
.set_page(hw
,
4780 HV_STATS_PAGE
<< IGP_PAGE_SHIFT
);
4785 /* Single Collision Count */
4786 hw
->phy
.ops
.read_reg_page(hw
, HV_SCC_UPPER
, &phy_data
);
4787 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_SCC_LOWER
, &phy_data
);
4789 adapter
->stats
.scc
+= phy_data
;
4791 /* Excessive Collision Count */
4792 hw
->phy
.ops
.read_reg_page(hw
, HV_ECOL_UPPER
, &phy_data
);
4793 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_ECOL_LOWER
, &phy_data
);
4795 adapter
->stats
.ecol
+= phy_data
;
4797 /* Multiple Collision Count */
4798 hw
->phy
.ops
.read_reg_page(hw
, HV_MCC_UPPER
, &phy_data
);
4799 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_MCC_LOWER
, &phy_data
);
4801 adapter
->stats
.mcc
+= phy_data
;
4803 /* Late Collision Count */
4804 hw
->phy
.ops
.read_reg_page(hw
, HV_LATECOL_UPPER
, &phy_data
);
4805 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_LATECOL_LOWER
, &phy_data
);
4807 adapter
->stats
.latecol
+= phy_data
;
4809 /* Collision Count - also used for adaptive IFS */
4810 hw
->phy
.ops
.read_reg_page(hw
, HV_COLC_UPPER
, &phy_data
);
4811 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_COLC_LOWER
, &phy_data
);
4813 hw
->mac
.collision_delta
= phy_data
;
4816 hw
->phy
.ops
.read_reg_page(hw
, HV_DC_UPPER
, &phy_data
);
4817 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_DC_LOWER
, &phy_data
);
4819 adapter
->stats
.dc
+= phy_data
;
4821 /* Transmit with no CRS */
4822 hw
->phy
.ops
.read_reg_page(hw
, HV_TNCRS_UPPER
, &phy_data
);
4823 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_TNCRS_LOWER
, &phy_data
);
4825 adapter
->stats
.tncrs
+= phy_data
;
4828 hw
->phy
.ops
.release(hw
);
4832 * e1000e_update_stats - Update the board statistics counters
4833 * @adapter: board private structure
4835 static void e1000e_update_stats(struct e1000_adapter
*adapter
)
4837 struct net_device
*netdev
= adapter
->netdev
;
4838 struct e1000_hw
*hw
= &adapter
->hw
;
4839 struct pci_dev
*pdev
= adapter
->pdev
;
4841 /* Prevent stats update while adapter is being reset, or if the pci
4842 * connection is down.
4844 if (adapter
->link_speed
== 0)
4846 if (pci_channel_offline(pdev
))
4849 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
4850 adapter
->stats
.gprc
+= er32(GPRC
);
4851 adapter
->stats
.gorc
+= er32(GORCL
);
4852 er32(GORCH
); /* Clear gorc */
4853 adapter
->stats
.bprc
+= er32(BPRC
);
4854 adapter
->stats
.mprc
+= er32(MPRC
);
4855 adapter
->stats
.roc
+= er32(ROC
);
4857 adapter
->stats
.mpc
+= er32(MPC
);
4859 /* Half-duplex statistics */
4860 if (adapter
->link_duplex
== HALF_DUPLEX
) {
4861 if (adapter
->flags2
& FLAG2_HAS_PHY_STATS
) {
4862 e1000e_update_phy_stats(adapter
);
4864 adapter
->stats
.scc
+= er32(SCC
);
4865 adapter
->stats
.ecol
+= er32(ECOL
);
4866 adapter
->stats
.mcc
+= er32(MCC
);
4867 adapter
->stats
.latecol
+= er32(LATECOL
);
4868 adapter
->stats
.dc
+= er32(DC
);
4870 hw
->mac
.collision_delta
= er32(COLC
);
4872 if ((hw
->mac
.type
!= e1000_82574
) &&
4873 (hw
->mac
.type
!= e1000_82583
))
4874 adapter
->stats
.tncrs
+= er32(TNCRS
);
4876 adapter
->stats
.colc
+= hw
->mac
.collision_delta
;
4879 adapter
->stats
.xonrxc
+= er32(XONRXC
);
4880 adapter
->stats
.xontxc
+= er32(XONTXC
);
4881 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
4882 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
4883 adapter
->stats
.gptc
+= er32(GPTC
);
4884 adapter
->stats
.gotc
+= er32(GOTCL
);
4885 er32(GOTCH
); /* Clear gotc */
4886 adapter
->stats
.rnbc
+= er32(RNBC
);
4887 adapter
->stats
.ruc
+= er32(RUC
);
4889 adapter
->stats
.mptc
+= er32(MPTC
);
4890 adapter
->stats
.bptc
+= er32(BPTC
);
4892 /* used for adaptive IFS */
4894 hw
->mac
.tx_packet_delta
= er32(TPT
);
4895 adapter
->stats
.tpt
+= hw
->mac
.tx_packet_delta
;
4897 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
4898 adapter
->stats
.rxerrc
+= er32(RXERRC
);
4899 adapter
->stats
.cexterr
+= er32(CEXTERR
);
4900 adapter
->stats
.tsctc
+= er32(TSCTC
);
4901 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
4903 /* Fill out the OS statistics structure */
4904 netdev
->stats
.multicast
= adapter
->stats
.mprc
;
4905 netdev
->stats
.collisions
= adapter
->stats
.colc
;
4909 /* RLEC on some newer hardware can be incorrect so build
4910 * our own version based on RUC and ROC
4912 netdev
->stats
.rx_errors
= adapter
->stats
.rxerrc
+
4913 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
4914 adapter
->stats
.ruc
+ adapter
->stats
.roc
+ adapter
->stats
.cexterr
;
4915 netdev
->stats
.rx_length_errors
= adapter
->stats
.ruc
+
4917 netdev
->stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
4918 netdev
->stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
4919 netdev
->stats
.rx_missed_errors
= adapter
->stats
.mpc
;
4922 netdev
->stats
.tx_errors
= adapter
->stats
.ecol
+ adapter
->stats
.latecol
;
4923 netdev
->stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
4924 netdev
->stats
.tx_window_errors
= adapter
->stats
.latecol
;
4925 netdev
->stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
4927 /* Tx Dropped needs to be maintained elsewhere */
4929 /* Management Stats */
4930 adapter
->stats
.mgptc
+= er32(MGTPTC
);
4931 adapter
->stats
.mgprc
+= er32(MGTPRC
);
4932 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
4934 /* Correctable ECC Errors */
4935 if ((hw
->mac
.type
== e1000_pch_lpt
) ||
4936 (hw
->mac
.type
== e1000_pch_spt
)) {
4937 u32 pbeccsts
= er32(PBECCSTS
);
4939 adapter
->corr_errors
+=
4940 pbeccsts
& E1000_PBECCSTS_CORR_ERR_CNT_MASK
;
4941 adapter
->uncorr_errors
+=
4942 (pbeccsts
& E1000_PBECCSTS_UNCORR_ERR_CNT_MASK
) >>
4943 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT
;
4948 * e1000_phy_read_status - Update the PHY register status snapshot
4949 * @adapter: board private structure
4951 static void e1000_phy_read_status(struct e1000_adapter
*adapter
)
4953 struct e1000_hw
*hw
= &adapter
->hw
;
4954 struct e1000_phy_regs
*phy
= &adapter
->phy_regs
;
4956 if (!pm_runtime_suspended((&adapter
->pdev
->dev
)->parent
) &&
4957 (er32(STATUS
) & E1000_STATUS_LU
) &&
4958 (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
)) {
4961 ret_val
= e1e_rphy(hw
, MII_BMCR
, &phy
->bmcr
);
4962 ret_val
|= e1e_rphy(hw
, MII_BMSR
, &phy
->bmsr
);
4963 ret_val
|= e1e_rphy(hw
, MII_ADVERTISE
, &phy
->advertise
);
4964 ret_val
|= e1e_rphy(hw
, MII_LPA
, &phy
->lpa
);
4965 ret_val
|= e1e_rphy(hw
, MII_EXPANSION
, &phy
->expansion
);
4966 ret_val
|= e1e_rphy(hw
, MII_CTRL1000
, &phy
->ctrl1000
);
4967 ret_val
|= e1e_rphy(hw
, MII_STAT1000
, &phy
->stat1000
);
4968 ret_val
|= e1e_rphy(hw
, MII_ESTATUS
, &phy
->estatus
);
4970 e_warn("Error reading PHY register\n");
4972 /* Do not read PHY registers if link is not up
4973 * Set values to typical power-on defaults
4975 phy
->bmcr
= (BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_FULLDPLX
);
4976 phy
->bmsr
= (BMSR_100FULL
| BMSR_100HALF
| BMSR_10FULL
|
4977 BMSR_10HALF
| BMSR_ESTATEN
| BMSR_ANEGCAPABLE
|
4979 phy
->advertise
= (ADVERTISE_PAUSE_ASYM
| ADVERTISE_PAUSE_CAP
|
4980 ADVERTISE_ALL
| ADVERTISE_CSMA
);
4982 phy
->expansion
= EXPANSION_ENABLENPAGE
;
4983 phy
->ctrl1000
= ADVERTISE_1000FULL
;
4985 phy
->estatus
= (ESTATUS_1000_TFULL
| ESTATUS_1000_THALF
);
4989 static void e1000_print_link_info(struct e1000_adapter
*adapter
)
4991 struct e1000_hw
*hw
= &adapter
->hw
;
4992 u32 ctrl
= er32(CTRL
);
4994 /* Link status message must follow this format for user tools */
4995 pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4996 adapter
->netdev
->name
, adapter
->link_speed
,
4997 adapter
->link_duplex
== FULL_DUPLEX
? "Full" : "Half",
4998 (ctrl
& E1000_CTRL_TFCE
) && (ctrl
& E1000_CTRL_RFCE
) ? "Rx/Tx" :
4999 (ctrl
& E1000_CTRL_RFCE
) ? "Rx" :
5000 (ctrl
& E1000_CTRL_TFCE
) ? "Tx" : "None");
5003 static bool e1000e_has_link(struct e1000_adapter
*adapter
)
5005 struct e1000_hw
*hw
= &adapter
->hw
;
5006 bool link_active
= false;
5009 /* get_link_status is set on LSC (link status) interrupt or
5010 * Rx sequence error interrupt. get_link_status will stay
5011 * false until the check_for_link establishes link
5012 * for copper adapters ONLY
5014 switch (hw
->phy
.media_type
) {
5015 case e1000_media_type_copper
:
5016 if (hw
->mac
.get_link_status
) {
5017 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
5018 link_active
= !hw
->mac
.get_link_status
;
5023 case e1000_media_type_fiber
:
5024 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
5025 link_active
= !!(er32(STATUS
) & E1000_STATUS_LU
);
5027 case e1000_media_type_internal_serdes
:
5028 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
5029 link_active
= adapter
->hw
.mac
.serdes_has_link
;
5032 case e1000_media_type_unknown
:
5036 if ((ret_val
== E1000_ERR_PHY
) && (hw
->phy
.type
== e1000_phy_igp_3
) &&
5037 (er32(CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)) {
5038 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5039 e_info("Gigabit has been disabled, downgrading speed\n");
5045 static void e1000e_enable_receives(struct e1000_adapter
*adapter
)
5047 /* make sure the receive unit is started */
5048 if ((adapter
->flags
& FLAG_RX_NEEDS_RESTART
) &&
5049 (adapter
->flags
& FLAG_RESTART_NOW
)) {
5050 struct e1000_hw
*hw
= &adapter
->hw
;
5051 u32 rctl
= er32(RCTL
);
5053 ew32(RCTL
, rctl
| E1000_RCTL_EN
);
5054 adapter
->flags
&= ~FLAG_RESTART_NOW
;
5058 static void e1000e_check_82574_phy_workaround(struct e1000_adapter
*adapter
)
5060 struct e1000_hw
*hw
= &adapter
->hw
;
5062 /* With 82574 controllers, PHY needs to be checked periodically
5063 * for hung state and reset, if two calls return true
5065 if (e1000_check_phy_82574(hw
))
5066 adapter
->phy_hang_count
++;
5068 adapter
->phy_hang_count
= 0;
5070 if (adapter
->phy_hang_count
> 1) {
5071 adapter
->phy_hang_count
= 0;
5072 e_dbg("PHY appears hung - resetting\n");
5073 schedule_work(&adapter
->reset_task
);
5078 * e1000_watchdog - Timer Call-back
5079 * @data: pointer to adapter cast into an unsigned long
5081 static void e1000_watchdog(unsigned long data
)
5083 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
5085 /* Do the rest outside of interrupt context */
5086 schedule_work(&adapter
->watchdog_task
);
5088 /* TODO: make this use queue_delayed_work() */
5091 static void e1000_watchdog_task(struct work_struct
*work
)
5093 struct e1000_adapter
*adapter
= container_of(work
,
5094 struct e1000_adapter
,
5096 struct net_device
*netdev
= adapter
->netdev
;
5097 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
5098 struct e1000_phy_info
*phy
= &adapter
->hw
.phy
;
5099 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
5100 struct e1000_hw
*hw
= &adapter
->hw
;
5103 if (test_bit(__E1000_DOWN
, &adapter
->state
))
5106 link
= e1000e_has_link(adapter
);
5107 if ((netif_carrier_ok(netdev
)) && link
) {
5108 /* Cancel scheduled suspend requests. */
5109 pm_runtime_resume(netdev
->dev
.parent
);
5111 e1000e_enable_receives(adapter
);
5115 if ((e1000e_enable_tx_pkt_filtering(hw
)) &&
5116 (adapter
->mng_vlan_id
!= adapter
->hw
.mng_cookie
.vlan_id
))
5117 e1000_update_mng_vlan(adapter
);
5120 if (!netif_carrier_ok(netdev
)) {
5123 /* Cancel scheduled suspend requests. */
5124 pm_runtime_resume(netdev
->dev
.parent
);
5126 /* update snapshot of PHY registers on LSC */
5127 e1000_phy_read_status(adapter
);
5128 mac
->ops
.get_link_up_info(&adapter
->hw
,
5129 &adapter
->link_speed
,
5130 &adapter
->link_duplex
);
5131 e1000_print_link_info(adapter
);
5133 /* check if SmartSpeed worked */
5134 e1000e_check_downshift(hw
);
5135 if (phy
->speed_downgraded
)
5137 "Link Speed was downgraded by SmartSpeed\n");
5139 /* On supported PHYs, check for duplex mismatch only
5140 * if link has autonegotiated at 10/100 half
5142 if ((hw
->phy
.type
== e1000_phy_igp_3
||
5143 hw
->phy
.type
== e1000_phy_bm
) &&
5145 (adapter
->link_speed
== SPEED_10
||
5146 adapter
->link_speed
== SPEED_100
) &&
5147 (adapter
->link_duplex
== HALF_DUPLEX
)) {
5150 e1e_rphy(hw
, MII_EXPANSION
, &autoneg_exp
);
5152 if (!(autoneg_exp
& EXPANSION_NWAY
))
5153 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n");
5156 /* adjust timeout factor according to speed/duplex */
5157 adapter
->tx_timeout_factor
= 1;
5158 switch (adapter
->link_speed
) {
5161 adapter
->tx_timeout_factor
= 16;
5165 adapter
->tx_timeout_factor
= 10;
5169 /* workaround: re-program speed mode bit after
5172 if ((adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) &&
5176 tarc0
= er32(TARC(0));
5177 tarc0
&= ~SPEED_MODE_BIT
;
5178 ew32(TARC(0), tarc0
);
5181 /* disable TSO for pcie and 10/100 speeds, to avoid
5182 * some hardware issues
5184 if (!(adapter
->flags
& FLAG_TSO_FORCE
)) {
5185 switch (adapter
->link_speed
) {
5188 e_info("10/100 speed: disabling TSO\n");
5189 netdev
->features
&= ~NETIF_F_TSO
;
5190 netdev
->features
&= ~NETIF_F_TSO6
;
5193 netdev
->features
|= NETIF_F_TSO
;
5194 netdev
->features
|= NETIF_F_TSO6
;
5202 /* enable transmits in the hardware, need to do this
5203 * after setting TARC(0)
5206 tctl
|= E1000_TCTL_EN
;
5209 /* Perform any post-link-up configuration before
5210 * reporting link up.
5212 if (phy
->ops
.cfg_on_link_up
)
5213 phy
->ops
.cfg_on_link_up(hw
);
5215 netif_carrier_on(netdev
);
5217 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
5218 mod_timer(&adapter
->phy_info_timer
,
5219 round_jiffies(jiffies
+ 2 * HZ
));
5222 if (netif_carrier_ok(netdev
)) {
5223 adapter
->link_speed
= 0;
5224 adapter
->link_duplex
= 0;
5225 /* Link status message must follow this format */
5226 pr_info("%s NIC Link is Down\n", adapter
->netdev
->name
);
5227 netif_carrier_off(netdev
);
5228 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
5229 mod_timer(&adapter
->phy_info_timer
,
5230 round_jiffies(jiffies
+ 2 * HZ
));
5232 /* 8000ES2LAN requires a Rx packet buffer work-around
5233 * on link down event; reset the controller to flush
5234 * the Rx packet buffer.
5236 if (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)
5237 adapter
->flags
|= FLAG_RESTART_NOW
;
5239 pm_schedule_suspend(netdev
->dev
.parent
,
5245 spin_lock(&adapter
->stats64_lock
);
5246 e1000e_update_stats(adapter
);
5248 mac
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
5249 adapter
->tpt_old
= adapter
->stats
.tpt
;
5250 mac
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
5251 adapter
->colc_old
= adapter
->stats
.colc
;
5253 adapter
->gorc
= adapter
->stats
.gorc
- adapter
->gorc_old
;
5254 adapter
->gorc_old
= adapter
->stats
.gorc
;
5255 adapter
->gotc
= adapter
->stats
.gotc
- adapter
->gotc_old
;
5256 adapter
->gotc_old
= adapter
->stats
.gotc
;
5257 spin_unlock(&adapter
->stats64_lock
);
5259 /* If the link is lost the controller stops DMA, but
5260 * if there is queued Tx work it cannot be done. So
5261 * reset the controller to flush the Tx packet buffers.
5263 if (!netif_carrier_ok(netdev
) &&
5264 (e1000_desc_unused(tx_ring
) + 1 < tx_ring
->count
))
5265 adapter
->flags
|= FLAG_RESTART_NOW
;
5267 /* If reset is necessary, do it outside of interrupt context. */
5268 if (adapter
->flags
& FLAG_RESTART_NOW
) {
5269 schedule_work(&adapter
->reset_task
);
5270 /* return immediately since reset is imminent */
5274 e1000e_update_adaptive(&adapter
->hw
);
5276 /* Simple mode for Interrupt Throttle Rate (ITR) */
5277 if (adapter
->itr_setting
== 4) {
5278 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5279 * Total asymmetrical Tx or Rx gets ITR=8000;
5280 * everyone else is between 2000-8000.
5282 u32 goc
= (adapter
->gotc
+ adapter
->gorc
) / 10000;
5283 u32 dif
= (adapter
->gotc
> adapter
->gorc
?
5284 adapter
->gotc
- adapter
->gorc
:
5285 adapter
->gorc
- adapter
->gotc
) / 10000;
5286 u32 itr
= goc
> 0 ? (dif
* 6000 / goc
+ 2000) : 8000;
5288 e1000e_write_itr(adapter
, itr
);
5291 /* Cause software interrupt to ensure Rx ring is cleaned */
5292 if (adapter
->msix_entries
)
5293 ew32(ICS
, adapter
->rx_ring
->ims_val
);
5295 ew32(ICS
, E1000_ICS_RXDMT0
);
5297 /* flush pending descriptors to memory before detecting Tx hang */
5298 e1000e_flush_descriptors(adapter
);
5300 /* Force detection of hung controller every watchdog period */
5301 adapter
->detect_tx_hung
= true;
5303 /* With 82571 controllers, LAA may be overwritten due to controller
5304 * reset from the other port. Set the appropriate LAA in RAR[0]
5306 if (e1000e_get_laa_state_82571(hw
))
5307 hw
->mac
.ops
.rar_set(hw
, adapter
->hw
.mac
.addr
, 0);
5309 if (adapter
->flags2
& FLAG2_CHECK_PHY_HANG
)
5310 e1000e_check_82574_phy_workaround(adapter
);
5312 /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5313 if (adapter
->hwtstamp_config
.rx_filter
!= HWTSTAMP_FILTER_NONE
) {
5314 if ((adapter
->flags2
& FLAG2_CHECK_RX_HWTSTAMP
) &&
5315 (er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_VALID
)) {
5317 adapter
->rx_hwtstamp_cleared
++;
5319 adapter
->flags2
|= FLAG2_CHECK_RX_HWTSTAMP
;
5323 /* Reset the timer */
5324 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
5325 mod_timer(&adapter
->watchdog_timer
,
5326 round_jiffies(jiffies
+ 2 * HZ
));
5329 #define E1000_TX_FLAGS_CSUM 0x00000001
5330 #define E1000_TX_FLAGS_VLAN 0x00000002
5331 #define E1000_TX_FLAGS_TSO 0x00000004
5332 #define E1000_TX_FLAGS_IPV4 0x00000008
5333 #define E1000_TX_FLAGS_NO_FCS 0x00000010
5334 #define E1000_TX_FLAGS_HWTSTAMP 0x00000020
5335 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
5336 #define E1000_TX_FLAGS_VLAN_SHIFT 16
5338 static int e1000_tso(struct e1000_ring
*tx_ring
, struct sk_buff
*skb
,
5341 struct e1000_context_desc
*context_desc
;
5342 struct e1000_buffer
*buffer_info
;
5346 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
5349 if (!skb_is_gso(skb
))
5352 err
= skb_cow_head(skb
, 0);
5356 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
5357 mss
= skb_shinfo(skb
)->gso_size
;
5358 if (protocol
== htons(ETH_P_IP
)) {
5359 struct iphdr
*iph
= ip_hdr(skb
);
5362 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
, iph
->daddr
,
5364 cmd_length
= E1000_TXD_CMD_IP
;
5365 ipcse
= skb_transport_offset(skb
) - 1;
5366 } else if (skb_is_gso_v6(skb
)) {
5367 ipv6_hdr(skb
)->payload_len
= 0;
5368 tcp_hdr(skb
)->check
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
5369 &ipv6_hdr(skb
)->daddr
,
5373 ipcss
= skb_network_offset(skb
);
5374 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
5375 tucss
= skb_transport_offset(skb
);
5376 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
5378 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
5379 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
5381 i
= tx_ring
->next_to_use
;
5382 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
5383 buffer_info
= &tx_ring
->buffer_info
[i
];
5385 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
5386 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
5387 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
5388 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
5389 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
5390 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
5391 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
5392 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
5393 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
5395 buffer_info
->time_stamp
= jiffies
;
5396 buffer_info
->next_to_watch
= i
;
5399 if (i
== tx_ring
->count
)
5401 tx_ring
->next_to_use
= i
;
5406 static bool e1000_tx_csum(struct e1000_ring
*tx_ring
, struct sk_buff
*skb
,
5409 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
5410 struct e1000_context_desc
*context_desc
;
5411 struct e1000_buffer
*buffer_info
;
5414 u32 cmd_len
= E1000_TXD_CMD_DEXT
;
5416 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
5420 case cpu_to_be16(ETH_P_IP
):
5421 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
5422 cmd_len
|= E1000_TXD_CMD_TCP
;
5424 case cpu_to_be16(ETH_P_IPV6
):
5425 /* XXX not handling all IPV6 headers */
5426 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
5427 cmd_len
|= E1000_TXD_CMD_TCP
;
5430 if (unlikely(net_ratelimit()))
5431 e_warn("checksum_partial proto=%x!\n",
5432 be16_to_cpu(protocol
));
5436 css
= skb_checksum_start_offset(skb
);
5438 i
= tx_ring
->next_to_use
;
5439 buffer_info
= &tx_ring
->buffer_info
[i
];
5440 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
5442 context_desc
->lower_setup
.ip_config
= 0;
5443 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
5444 context_desc
->upper_setup
.tcp_fields
.tucso
= css
+ skb
->csum_offset
;
5445 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
5446 context_desc
->tcp_seg_setup
.data
= 0;
5447 context_desc
->cmd_and_length
= cpu_to_le32(cmd_len
);
5449 buffer_info
->time_stamp
= jiffies
;
5450 buffer_info
->next_to_watch
= i
;
5453 if (i
== tx_ring
->count
)
5455 tx_ring
->next_to_use
= i
;
5460 static int e1000_tx_map(struct e1000_ring
*tx_ring
, struct sk_buff
*skb
,
5461 unsigned int first
, unsigned int max_per_txd
,
5462 unsigned int nr_frags
)
5464 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
5465 struct pci_dev
*pdev
= adapter
->pdev
;
5466 struct e1000_buffer
*buffer_info
;
5467 unsigned int len
= skb_headlen(skb
);
5468 unsigned int offset
= 0, size
, count
= 0, i
;
5469 unsigned int f
, bytecount
, segs
;
5471 i
= tx_ring
->next_to_use
;
5474 buffer_info
= &tx_ring
->buffer_info
[i
];
5475 size
= min(len
, max_per_txd
);
5477 buffer_info
->length
= size
;
5478 buffer_info
->time_stamp
= jiffies
;
5479 buffer_info
->next_to_watch
= i
;
5480 buffer_info
->dma
= dma_map_single(&pdev
->dev
,
5482 size
, DMA_TO_DEVICE
);
5483 buffer_info
->mapped_as_page
= false;
5484 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
5493 if (i
== tx_ring
->count
)
5498 for (f
= 0; f
< nr_frags
; f
++) {
5499 const struct skb_frag_struct
*frag
;
5501 frag
= &skb_shinfo(skb
)->frags
[f
];
5502 len
= skb_frag_size(frag
);
5507 if (i
== tx_ring
->count
)
5510 buffer_info
= &tx_ring
->buffer_info
[i
];
5511 size
= min(len
, max_per_txd
);
5513 buffer_info
->length
= size
;
5514 buffer_info
->time_stamp
= jiffies
;
5515 buffer_info
->next_to_watch
= i
;
5516 buffer_info
->dma
= skb_frag_dma_map(&pdev
->dev
, frag
,
5519 buffer_info
->mapped_as_page
= true;
5520 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
5529 segs
= skb_shinfo(skb
)->gso_segs
? : 1;
5530 /* multiply data chunks by size of headers */
5531 bytecount
= ((segs
- 1) * skb_headlen(skb
)) + skb
->len
;
5533 tx_ring
->buffer_info
[i
].skb
= skb
;
5534 tx_ring
->buffer_info
[i
].segs
= segs
;
5535 tx_ring
->buffer_info
[i
].bytecount
= bytecount
;
5536 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
5541 dev_err(&pdev
->dev
, "Tx DMA map failed\n");
5542 buffer_info
->dma
= 0;
5548 i
+= tx_ring
->count
;
5550 buffer_info
= &tx_ring
->buffer_info
[i
];
5551 e1000_put_txbuf(tx_ring
, buffer_info
);
5557 static void e1000_tx_queue(struct e1000_ring
*tx_ring
, int tx_flags
, int count
)
5559 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
5560 struct e1000_tx_desc
*tx_desc
= NULL
;
5561 struct e1000_buffer
*buffer_info
;
5562 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
5565 if (tx_flags
& E1000_TX_FLAGS_TSO
) {
5566 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
5568 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
5570 if (tx_flags
& E1000_TX_FLAGS_IPV4
)
5571 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
5574 if (tx_flags
& E1000_TX_FLAGS_CSUM
) {
5575 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
5576 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
5579 if (tx_flags
& E1000_TX_FLAGS_VLAN
) {
5580 txd_lower
|= E1000_TXD_CMD_VLE
;
5581 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
5584 if (unlikely(tx_flags
& E1000_TX_FLAGS_NO_FCS
))
5585 txd_lower
&= ~(E1000_TXD_CMD_IFCS
);
5587 if (unlikely(tx_flags
& E1000_TX_FLAGS_HWTSTAMP
)) {
5588 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
5589 txd_upper
|= E1000_TXD_EXTCMD_TSTAMP
;
5592 i
= tx_ring
->next_to_use
;
5595 buffer_info
= &tx_ring
->buffer_info
[i
];
5596 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
5597 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
5598 tx_desc
->lower
.data
= cpu_to_le32(txd_lower
|
5599 buffer_info
->length
);
5600 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
5603 if (i
== tx_ring
->count
)
5605 } while (--count
> 0);
5607 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
5609 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5610 if (unlikely(tx_flags
& E1000_TX_FLAGS_NO_FCS
))
5611 tx_desc
->lower
.data
&= ~(cpu_to_le32(E1000_TXD_CMD_IFCS
));
5613 /* Force memory writes to complete before letting h/w
5614 * know there are new descriptors to fetch. (Only
5615 * applicable for weak-ordered memory model archs,
5620 tx_ring
->next_to_use
= i
;
5623 #define MINIMUM_DHCP_PACKET_SIZE 282
5624 static int e1000_transfer_dhcp_info(struct e1000_adapter
*adapter
,
5625 struct sk_buff
*skb
)
5627 struct e1000_hw
*hw
= &adapter
->hw
;
5630 if (skb_vlan_tag_present(skb
) &&
5631 !((skb_vlan_tag_get(skb
) == adapter
->hw
.mng_cookie
.vlan_id
) &&
5632 (adapter
->hw
.mng_cookie
.status
&
5633 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
)))
5636 if (skb
->len
<= MINIMUM_DHCP_PACKET_SIZE
)
5639 if (((struct ethhdr
*)skb
->data
)->h_proto
!= htons(ETH_P_IP
))
5643 const struct iphdr
*ip
= (struct iphdr
*)((u8
*)skb
->data
+ 14);
5646 if (ip
->protocol
!= IPPROTO_UDP
)
5649 udp
= (struct udphdr
*)((u8
*)ip
+ (ip
->ihl
<< 2));
5650 if (ntohs(udp
->dest
) != 67)
5653 offset
= (u8
*)udp
+ 8 - skb
->data
;
5654 length
= skb
->len
- offset
;
5655 return e1000e_mng_write_dhcp_info(hw
, (u8
*)udp
+ 8, length
);
5661 static int __e1000_maybe_stop_tx(struct e1000_ring
*tx_ring
, int size
)
5663 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
5665 netif_stop_queue(adapter
->netdev
);
5666 /* Herbert's original patch had:
5667 * smp_mb__after_netif_stop_queue();
5668 * but since that doesn't exist yet, just open code it.
5672 /* We need to check again in a case another CPU has just
5673 * made room available.
5675 if (e1000_desc_unused(tx_ring
) < size
)
5679 netif_start_queue(adapter
->netdev
);
5680 ++adapter
->restart_queue
;
5684 static int e1000_maybe_stop_tx(struct e1000_ring
*tx_ring
, int size
)
5686 BUG_ON(size
> tx_ring
->count
);
5688 if (e1000_desc_unused(tx_ring
) >= size
)
5690 return __e1000_maybe_stop_tx(tx_ring
, size
);
5693 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
5694 struct net_device
*netdev
)
5696 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5697 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
5699 unsigned int tx_flags
= 0;
5700 unsigned int len
= skb_headlen(skb
);
5701 unsigned int nr_frags
;
5706 __be16 protocol
= vlan_get_protocol(skb
);
5708 if (test_bit(__E1000_DOWN
, &adapter
->state
)) {
5709 dev_kfree_skb_any(skb
);
5710 return NETDEV_TX_OK
;
5713 if (skb
->len
<= 0) {
5714 dev_kfree_skb_any(skb
);
5715 return NETDEV_TX_OK
;
5718 /* The minimum packet size with TCTL.PSP set is 17 bytes so
5719 * pad skb in order to meet this minimum size requirement
5721 if (skb_put_padto(skb
, 17))
5722 return NETDEV_TX_OK
;
5724 mss
= skb_shinfo(skb
)->gso_size
;
5728 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5729 * points to just header, pull a few bytes of payload from
5730 * frags into skb->data
5732 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
5733 /* we do this workaround for ES2LAN, but it is un-necessary,
5734 * avoiding it could save a lot of cycles
5736 if (skb
->data_len
&& (hdr_len
== len
)) {
5737 unsigned int pull_size
;
5739 pull_size
= min_t(unsigned int, 4, skb
->data_len
);
5740 if (!__pskb_pull_tail(skb
, pull_size
)) {
5741 e_err("__pskb_pull_tail failed.\n");
5742 dev_kfree_skb_any(skb
);
5743 return NETDEV_TX_OK
;
5745 len
= skb_headlen(skb
);
5749 /* reserve a descriptor for the offload context */
5750 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
5754 count
+= DIV_ROUND_UP(len
, adapter
->tx_fifo_limit
);
5756 nr_frags
= skb_shinfo(skb
)->nr_frags
;
5757 for (f
= 0; f
< nr_frags
; f
++)
5758 count
+= DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb
)->frags
[f
]),
5759 adapter
->tx_fifo_limit
);
5761 if (adapter
->hw
.mac
.tx_pkt_filtering
)
5762 e1000_transfer_dhcp_info(adapter
, skb
);
5764 /* need: count + 2 desc gap to keep tail from touching
5765 * head, otherwise try next time
5767 if (e1000_maybe_stop_tx(tx_ring
, count
+ 2))
5768 return NETDEV_TX_BUSY
;
5770 if (skb_vlan_tag_present(skb
)) {
5771 tx_flags
|= E1000_TX_FLAGS_VLAN
;
5772 tx_flags
|= (skb_vlan_tag_get(skb
) <<
5773 E1000_TX_FLAGS_VLAN_SHIFT
);
5776 first
= tx_ring
->next_to_use
;
5778 tso
= e1000_tso(tx_ring
, skb
, protocol
);
5780 dev_kfree_skb_any(skb
);
5781 return NETDEV_TX_OK
;
5785 tx_flags
|= E1000_TX_FLAGS_TSO
;
5786 else if (e1000_tx_csum(tx_ring
, skb
, protocol
))
5787 tx_flags
|= E1000_TX_FLAGS_CSUM
;
5789 /* Old method was to assume IPv4 packet by default if TSO was enabled.
5790 * 82571 hardware supports TSO capabilities for IPv6 as well...
5791 * no longer assume, we must.
5793 if (protocol
== htons(ETH_P_IP
))
5794 tx_flags
|= E1000_TX_FLAGS_IPV4
;
5796 if (unlikely(skb
->no_fcs
))
5797 tx_flags
|= E1000_TX_FLAGS_NO_FCS
;
5799 /* if count is 0 then mapping error has occurred */
5800 count
= e1000_tx_map(tx_ring
, skb
, first
, adapter
->tx_fifo_limit
,
5803 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_HW_TSTAMP
) &&
5804 (adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
) &&
5805 !adapter
->tx_hwtstamp_skb
) {
5806 skb_shinfo(skb
)->tx_flags
|= SKBTX_IN_PROGRESS
;
5807 tx_flags
|= E1000_TX_FLAGS_HWTSTAMP
;
5808 adapter
->tx_hwtstamp_skb
= skb_get(skb
);
5809 adapter
->tx_hwtstamp_start
= jiffies
;
5810 schedule_work(&adapter
->tx_hwtstamp_work
);
5812 skb_tx_timestamp(skb
);
5815 netdev_sent_queue(netdev
, skb
->len
);
5816 e1000_tx_queue(tx_ring
, tx_flags
, count
);
5817 /* Make sure there is space in the ring for the next send. */
5818 e1000_maybe_stop_tx(tx_ring
,
5820 DIV_ROUND_UP(PAGE_SIZE
,
5821 adapter
->tx_fifo_limit
) + 2));
5823 if (!skb
->xmit_more
||
5824 netif_xmit_stopped(netdev_get_tx_queue(netdev
, 0))) {
5825 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
5826 e1000e_update_tdt_wa(tx_ring
,
5827 tx_ring
->next_to_use
);
5829 writel(tx_ring
->next_to_use
, tx_ring
->tail
);
5831 /* we need this if more than one processor can write
5832 * to our tail at a time, it synchronizes IO on
5838 dev_kfree_skb_any(skb
);
5839 tx_ring
->buffer_info
[first
].time_stamp
= 0;
5840 tx_ring
->next_to_use
= first
;
5843 return NETDEV_TX_OK
;
5847 * e1000_tx_timeout - Respond to a Tx Hang
5848 * @netdev: network interface device structure
5850 static void e1000_tx_timeout(struct net_device
*netdev
)
5852 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5854 /* Do the reset outside of interrupt context */
5855 adapter
->tx_timeout_count
++;
5856 schedule_work(&adapter
->reset_task
);
5859 static void e1000_reset_task(struct work_struct
*work
)
5861 struct e1000_adapter
*adapter
;
5862 adapter
= container_of(work
, struct e1000_adapter
, reset_task
);
5864 /* don't run the task if already down */
5865 if (test_bit(__E1000_DOWN
, &adapter
->state
))
5868 if (!(adapter
->flags
& FLAG_RESTART_NOW
)) {
5869 e1000e_dump(adapter
);
5870 e_err("Reset adapter unexpectedly\n");
5872 e1000e_reinit_locked(adapter
);
5876 * e1000_get_stats64 - Get System Network Statistics
5877 * @netdev: network interface device structure
5878 * @stats: rtnl_link_stats64 pointer
5880 * Returns the address of the device statistics structure.
5882 struct rtnl_link_stats64
*e1000e_get_stats64(struct net_device
*netdev
,
5883 struct rtnl_link_stats64
*stats
)
5885 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5887 memset(stats
, 0, sizeof(struct rtnl_link_stats64
));
5888 spin_lock(&adapter
->stats64_lock
);
5889 e1000e_update_stats(adapter
);
5890 /* Fill out the OS statistics structure */
5891 stats
->rx_bytes
= adapter
->stats
.gorc
;
5892 stats
->rx_packets
= adapter
->stats
.gprc
;
5893 stats
->tx_bytes
= adapter
->stats
.gotc
;
5894 stats
->tx_packets
= adapter
->stats
.gptc
;
5895 stats
->multicast
= adapter
->stats
.mprc
;
5896 stats
->collisions
= adapter
->stats
.colc
;
5900 /* RLEC on some newer hardware can be incorrect so build
5901 * our own version based on RUC and ROC
5903 stats
->rx_errors
= adapter
->stats
.rxerrc
+
5904 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
5905 adapter
->stats
.ruc
+ adapter
->stats
.roc
+ adapter
->stats
.cexterr
;
5906 stats
->rx_length_errors
= adapter
->stats
.ruc
+ adapter
->stats
.roc
;
5907 stats
->rx_crc_errors
= adapter
->stats
.crcerrs
;
5908 stats
->rx_frame_errors
= adapter
->stats
.algnerrc
;
5909 stats
->rx_missed_errors
= adapter
->stats
.mpc
;
5912 stats
->tx_errors
= adapter
->stats
.ecol
+ adapter
->stats
.latecol
;
5913 stats
->tx_aborted_errors
= adapter
->stats
.ecol
;
5914 stats
->tx_window_errors
= adapter
->stats
.latecol
;
5915 stats
->tx_carrier_errors
= adapter
->stats
.tncrs
;
5917 /* Tx Dropped needs to be maintained elsewhere */
5919 spin_unlock(&adapter
->stats64_lock
);
5924 * e1000_change_mtu - Change the Maximum Transfer Unit
5925 * @netdev: network interface device structure
5926 * @new_mtu: new value for maximum frame size
5928 * Returns 0 on success, negative on failure
5930 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
5932 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5933 int max_frame
= new_mtu
+ VLAN_ETH_HLEN
+ ETH_FCS_LEN
;
5935 /* Jumbo frame support */
5936 if ((max_frame
> (VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN
)) &&
5937 !(adapter
->flags
& FLAG_HAS_JUMBO_FRAMES
)) {
5938 e_err("Jumbo Frames not supported.\n");
5942 /* Supported frame sizes */
5943 if ((new_mtu
< (VLAN_ETH_ZLEN
+ ETH_FCS_LEN
)) ||
5944 (max_frame
> adapter
->max_hw_frame_size
)) {
5945 e_err("Unsupported MTU setting\n");
5949 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5950 if ((adapter
->hw
.mac
.type
>= e1000_pch2lan
) &&
5951 !(adapter
->flags2
& FLAG2_CRC_STRIPPING
) &&
5952 (new_mtu
> ETH_DATA_LEN
)) {
5953 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5957 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
5958 usleep_range(1000, 2000);
5959 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5960 adapter
->max_frame_size
= max_frame
;
5961 e_info("changing MTU from %d to %d\n", netdev
->mtu
, new_mtu
);
5962 netdev
->mtu
= new_mtu
;
5964 pm_runtime_get_sync(netdev
->dev
.parent
);
5966 if (netif_running(netdev
))
5967 e1000e_down(adapter
, true);
5969 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5970 * means we reserve 2 more, this pushes us to allocate from the next
5972 * i.e. RXBUFFER_2048 --> size-4096 slab
5973 * However with the new *_jumbo_rx* routines, jumbo receives will use
5977 if (max_frame
<= 2048)
5978 adapter
->rx_buffer_len
= 2048;
5980 adapter
->rx_buffer_len
= 4096;
5982 /* adjust allocation if LPE protects us, and we aren't using SBP */
5983 if (max_frame
<= (VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN
))
5984 adapter
->rx_buffer_len
= VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN
;
5986 if (netif_running(netdev
))
5989 e1000e_reset(adapter
);
5991 pm_runtime_put_sync(netdev
->dev
.parent
);
5993 clear_bit(__E1000_RESETTING
, &adapter
->state
);
5998 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
6001 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6002 struct mii_ioctl_data
*data
= if_mii(ifr
);
6004 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
6009 data
->phy_id
= adapter
->hw
.phy
.addr
;
6012 e1000_phy_read_status(adapter
);
6014 switch (data
->reg_num
& 0x1F) {
6016 data
->val_out
= adapter
->phy_regs
.bmcr
;
6019 data
->val_out
= adapter
->phy_regs
.bmsr
;
6022 data
->val_out
= (adapter
->hw
.phy
.id
>> 16);
6025 data
->val_out
= (adapter
->hw
.phy
.id
& 0xFFFF);
6028 data
->val_out
= adapter
->phy_regs
.advertise
;
6031 data
->val_out
= adapter
->phy_regs
.lpa
;
6034 data
->val_out
= adapter
->phy_regs
.expansion
;
6037 data
->val_out
= adapter
->phy_regs
.ctrl1000
;
6040 data
->val_out
= adapter
->phy_regs
.stat1000
;
6043 data
->val_out
= adapter
->phy_regs
.estatus
;
6057 * e1000e_hwtstamp_ioctl - control hardware time stamping
6058 * @netdev: network interface device structure
6059 * @ifreq: interface request
6061 * Outgoing time stamping can be enabled and disabled. Play nice and
6062 * disable it when requested, although it shouldn't cause any overhead
6063 * when no packet needs it. At most one packet in the queue may be
6064 * marked for time stamping, otherwise it would be impossible to tell
6065 * for sure to which packet the hardware time stamp belongs.
6067 * Incoming time stamping has to be configured via the hardware filters.
6068 * Not all combinations are supported, in particular event type has to be
6069 * specified. Matching the kind of event packet is not supported, with the
6070 * exception of "all V2 events regardless of level 2 or 4".
6072 static int e1000e_hwtstamp_set(struct net_device
*netdev
, struct ifreq
*ifr
)
6074 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6075 struct hwtstamp_config config
;
6078 if (copy_from_user(&config
, ifr
->ifr_data
, sizeof(config
)))
6081 ret_val
= e1000e_config_hwtstamp(adapter
, &config
);
6085 switch (config
.rx_filter
) {
6086 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC
:
6087 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC
:
6088 case HWTSTAMP_FILTER_PTP_V2_SYNC
:
6089 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
:
6090 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ
:
6091 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
:
6092 /* With V2 type filters which specify a Sync or Delay Request,
6093 * Path Delay Request/Response messages are also time stamped
6094 * by hardware so notify the caller the requested packets plus
6095 * some others are time stamped.
6097 config
.rx_filter
= HWTSTAMP_FILTER_SOME
;
6103 return copy_to_user(ifr
->ifr_data
, &config
,
6104 sizeof(config
)) ? -EFAULT
: 0;
6107 static int e1000e_hwtstamp_get(struct net_device
*netdev
, struct ifreq
*ifr
)
6109 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6111 return copy_to_user(ifr
->ifr_data
, &adapter
->hwtstamp_config
,
6112 sizeof(adapter
->hwtstamp_config
)) ? -EFAULT
: 0;
6115 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
6121 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
6123 return e1000e_hwtstamp_set(netdev
, ifr
);
6125 return e1000e_hwtstamp_get(netdev
, ifr
);
6131 static int e1000_init_phy_wakeup(struct e1000_adapter
*adapter
, u32 wufc
)
6133 struct e1000_hw
*hw
= &adapter
->hw
;
6134 u32 i
, mac_reg
, wuc
;
6135 u16 phy_reg
, wuc_enable
;
6138 /* copy MAC RARs to PHY RARs */
6139 e1000_copy_rx_addrs_to_phy_ich8lan(hw
);
6141 retval
= hw
->phy
.ops
.acquire(hw
);
6143 e_err("Could not acquire PHY\n");
6147 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6148 retval
= e1000_enable_phy_wakeup_reg_access_bm(hw
, &wuc_enable
);
6152 /* copy MAC MTA to PHY MTA - only needed for pchlan */
6153 for (i
= 0; i
< adapter
->hw
.mac
.mta_reg_count
; i
++) {
6154 mac_reg
= E1000_READ_REG_ARRAY(hw
, E1000_MTA
, i
);
6155 hw
->phy
.ops
.write_reg_page(hw
, BM_MTA(i
),
6156 (u16
)(mac_reg
& 0xFFFF));
6157 hw
->phy
.ops
.write_reg_page(hw
, BM_MTA(i
) + 1,
6158 (u16
)((mac_reg
>> 16) & 0xFFFF));
6161 /* configure PHY Rx Control register */
6162 hw
->phy
.ops
.read_reg_page(&adapter
->hw
, BM_RCTL
, &phy_reg
);
6163 mac_reg
= er32(RCTL
);
6164 if (mac_reg
& E1000_RCTL_UPE
)
6165 phy_reg
|= BM_RCTL_UPE
;
6166 if (mac_reg
& E1000_RCTL_MPE
)
6167 phy_reg
|= BM_RCTL_MPE
;
6168 phy_reg
&= ~(BM_RCTL_MO_MASK
);
6169 if (mac_reg
& E1000_RCTL_MO_3
)
6170 phy_reg
|= (((mac_reg
& E1000_RCTL_MO_3
) >> E1000_RCTL_MO_SHIFT
)
6171 << BM_RCTL_MO_SHIFT
);
6172 if (mac_reg
& E1000_RCTL_BAM
)
6173 phy_reg
|= BM_RCTL_BAM
;
6174 if (mac_reg
& E1000_RCTL_PMCF
)
6175 phy_reg
|= BM_RCTL_PMCF
;
6176 mac_reg
= er32(CTRL
);
6177 if (mac_reg
& E1000_CTRL_RFCE
)
6178 phy_reg
|= BM_RCTL_RFCE
;
6179 hw
->phy
.ops
.write_reg_page(&adapter
->hw
, BM_RCTL
, phy_reg
);
6181 wuc
= E1000_WUC_PME_EN
;
6182 if (wufc
& (E1000_WUFC_MAG
| E1000_WUFC_LNKC
))
6183 wuc
|= E1000_WUC_APME
;
6185 /* enable PHY wakeup in MAC register */
6187 ew32(WUC
, (E1000_WUC_PHY_WAKE
| E1000_WUC_APMPME
|
6188 E1000_WUC_PME_STATUS
| wuc
));
6190 /* configure and enable PHY wakeup in PHY registers */
6191 hw
->phy
.ops
.write_reg_page(&adapter
->hw
, BM_WUFC
, wufc
);
6192 hw
->phy
.ops
.write_reg_page(&adapter
->hw
, BM_WUC
, wuc
);
6194 /* activate PHY wakeup */
6195 wuc_enable
|= BM_WUC_ENABLE_BIT
| BM_WUC_HOST_WU_BIT
;
6196 retval
= e1000_disable_phy_wakeup_reg_access_bm(hw
, &wuc_enable
);
6198 e_err("Could not set PHY Host Wakeup bit\n");
6200 hw
->phy
.ops
.release(hw
);
6205 static void e1000e_flush_lpic(struct pci_dev
*pdev
)
6207 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6208 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6209 struct e1000_hw
*hw
= &adapter
->hw
;
6212 pm_runtime_get_sync(netdev
->dev
.parent
);
6214 ret_val
= hw
->phy
.ops
.acquire(hw
);
6218 pr_info("EEE TX LPI TIMER: %08X\n",
6219 er32(LPIC
) >> E1000_LPIC_LPIET_SHIFT
);
6221 hw
->phy
.ops
.release(hw
);
6224 pm_runtime_put_sync(netdev
->dev
.parent
);
6227 static int e1000e_pm_freeze(struct device
*dev
)
6229 struct net_device
*netdev
= pci_get_drvdata(to_pci_dev(dev
));
6230 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6232 netif_device_detach(netdev
);
6234 if (netif_running(netdev
)) {
6235 int count
= E1000_CHECK_RESET_COUNT
;
6237 while (test_bit(__E1000_RESETTING
, &adapter
->state
) && count
--)
6238 usleep_range(10000, 20000);
6240 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
6242 /* Quiesce the device without resetting the hardware */
6243 e1000e_down(adapter
, false);
6244 e1000_free_irq(adapter
);
6246 e1000e_reset_interrupt_capability(adapter
);
6248 /* Allow time for pending master requests to run */
6249 e1000e_disable_pcie_master(&adapter
->hw
);
6254 static int __e1000_shutdown(struct pci_dev
*pdev
, bool runtime
)
6256 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6257 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6258 struct e1000_hw
*hw
= &adapter
->hw
;
6259 u32 ctrl
, ctrl_ext
, rctl
, status
;
6260 /* Runtime suspend should only enable wakeup for link changes */
6261 u32 wufc
= runtime
? E1000_WUFC_LNKC
: adapter
->wol
;
6264 status
= er32(STATUS
);
6265 if (status
& E1000_STATUS_LU
)
6266 wufc
&= ~E1000_WUFC_LNKC
;
6269 e1000_setup_rctl(adapter
);
6270 e1000e_set_rx_mode(netdev
);
6272 /* turn on all-multi mode if wake on multicast is enabled */
6273 if (wufc
& E1000_WUFC_MC
) {
6275 rctl
|= E1000_RCTL_MPE
;
6280 ctrl
|= E1000_CTRL_ADVD3WUC
;
6281 if (!(adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
))
6282 ctrl
|= E1000_CTRL_EN_PHY_PWR_MGMT
;
6285 if (adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
||
6286 adapter
->hw
.phy
.media_type
==
6287 e1000_media_type_internal_serdes
) {
6288 /* keep the laser running in D3 */
6289 ctrl_ext
= er32(CTRL_EXT
);
6290 ctrl_ext
|= E1000_CTRL_EXT_SDP3_DATA
;
6291 ew32(CTRL_EXT
, ctrl_ext
);
6295 e1000e_power_up_phy(adapter
);
6297 if (adapter
->flags
& FLAG_IS_ICH
)
6298 e1000_suspend_workarounds_ich8lan(&adapter
->hw
);
6300 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
6301 /* enable wakeup by the PHY */
6302 retval
= e1000_init_phy_wakeup(adapter
, wufc
);
6306 /* enable wakeup by the MAC */
6308 ew32(WUC
, E1000_WUC_PME_EN
);
6314 e1000_power_down_phy(adapter
);
6317 if (adapter
->hw
.phy
.type
== e1000_phy_igp_3
) {
6318 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter
->hw
);
6319 } else if ((hw
->mac
.type
== e1000_pch_lpt
) ||
6320 (hw
->mac
.type
== e1000_pch_spt
)) {
6321 if (!(wufc
& (E1000_WUFC_EX
| E1000_WUFC_MC
| E1000_WUFC_BC
)))
6322 /* ULP does not support wake from unicast, multicast
6325 retval
= e1000_enable_ulp_lpt_lp(hw
, !runtime
);
6331 /* Ensure that the appropriate bits are set in LPI_CTRL
6334 if ((hw
->phy
.type
>= e1000_phy_i217
) &&
6335 adapter
->eee_advert
&& hw
->dev_spec
.ich8lan
.eee_lp_ability
) {
6338 retval
= hw
->phy
.ops
.acquire(hw
);
6340 retval
= e1e_rphy_locked(hw
, I82579_LPI_CTRL
,
6343 if (adapter
->eee_advert
&
6344 hw
->dev_spec
.ich8lan
.eee_lp_ability
&
6345 I82579_EEE_100_SUPPORTED
)
6346 lpi_ctrl
|= I82579_LPI_CTRL_100_ENABLE
;
6347 if (adapter
->eee_advert
&
6348 hw
->dev_spec
.ich8lan
.eee_lp_ability
&
6349 I82579_EEE_1000_SUPPORTED
)
6350 lpi_ctrl
|= I82579_LPI_CTRL_1000_ENABLE
;
6352 retval
= e1e_wphy_locked(hw
, I82579_LPI_CTRL
,
6356 hw
->phy
.ops
.release(hw
);
6359 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6360 * would have already happened in close and is redundant.
6362 e1000e_release_hw_control(adapter
);
6364 pci_clear_master(pdev
);
6366 /* The pci-e switch on some quad port adapters will report a
6367 * correctable error when the MAC transitions from D0 to D3. To
6368 * prevent this we need to mask off the correctable errors on the
6369 * downstream port of the pci-e switch.
6371 * We don't have the associated upstream bridge while assigning
6372 * the PCI device into guest. For example, the KVM on power is
6375 if (adapter
->flags
& FLAG_IS_QUAD_PORT
) {
6376 struct pci_dev
*us_dev
= pdev
->bus
->self
;
6382 pcie_capability_read_word(us_dev
, PCI_EXP_DEVCTL
, &devctl
);
6383 pcie_capability_write_word(us_dev
, PCI_EXP_DEVCTL
,
6384 (devctl
& ~PCI_EXP_DEVCTL_CERE
));
6386 pci_save_state(pdev
);
6387 pci_prepare_to_sleep(pdev
);
6389 pcie_capability_write_word(us_dev
, PCI_EXP_DEVCTL
, devctl
);
6396 * __e1000e_disable_aspm - Disable ASPM states
6397 * @pdev: pointer to PCI device struct
6398 * @state: bit-mask of ASPM states to disable
6399 * @locked: indication if this context holds pci_bus_sem locked.
6401 * Some devices *must* have certain ASPM states disabled per hardware errata.
6403 static void __e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
, int locked
)
6405 struct pci_dev
*parent
= pdev
->bus
->self
;
6406 u16 aspm_dis_mask
= 0;
6407 u16 pdev_aspmc
, parent_aspmc
;
6410 case PCIE_LINK_STATE_L0S
:
6411 case PCIE_LINK_STATE_L0S
| PCIE_LINK_STATE_L1
:
6412 aspm_dis_mask
|= PCI_EXP_LNKCTL_ASPM_L0S
;
6413 /* fall-through - can't have L1 without L0s */
6414 case PCIE_LINK_STATE_L1
:
6415 aspm_dis_mask
|= PCI_EXP_LNKCTL_ASPM_L1
;
6421 pcie_capability_read_word(pdev
, PCI_EXP_LNKCTL
, &pdev_aspmc
);
6422 pdev_aspmc
&= PCI_EXP_LNKCTL_ASPMC
;
6425 pcie_capability_read_word(parent
, PCI_EXP_LNKCTL
,
6427 parent_aspmc
&= PCI_EXP_LNKCTL_ASPMC
;
6430 /* Nothing to do if the ASPM states to be disabled already are */
6431 if (!(pdev_aspmc
& aspm_dis_mask
) &&
6432 (!parent
|| !(parent_aspmc
& aspm_dis_mask
)))
6435 dev_info(&pdev
->dev
, "Disabling ASPM %s %s\n",
6436 (aspm_dis_mask
& pdev_aspmc
& PCI_EXP_LNKCTL_ASPM_L0S
) ?
6438 (aspm_dis_mask
& pdev_aspmc
& PCI_EXP_LNKCTL_ASPM_L1
) ?
6441 #ifdef CONFIG_PCIEASPM
6443 pci_disable_link_state_locked(pdev
, state
);
6445 pci_disable_link_state(pdev
, state
);
6447 /* Double-check ASPM control. If not disabled by the above, the
6448 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6449 * not enabled); override by writing PCI config space directly.
6451 pcie_capability_read_word(pdev
, PCI_EXP_LNKCTL
, &pdev_aspmc
);
6452 pdev_aspmc
&= PCI_EXP_LNKCTL_ASPMC
;
6454 if (!(aspm_dis_mask
& pdev_aspmc
))
6458 /* Both device and parent should have the same ASPM setting.
6459 * Disable ASPM in downstream component first and then upstream.
6461 pcie_capability_clear_word(pdev
, PCI_EXP_LNKCTL
, aspm_dis_mask
);
6464 pcie_capability_clear_word(parent
, PCI_EXP_LNKCTL
,
6469 * e1000e_disable_aspm - Disable ASPM states.
6470 * @pdev: pointer to PCI device struct
6471 * @state: bit-mask of ASPM states to disable
6473 * This function acquires the pci_bus_sem!
6474 * Some devices *must* have certain ASPM states disabled per hardware errata.
6476 static void e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
)
6478 __e1000e_disable_aspm(pdev
, state
, 0);
6482 * e1000e_disable_aspm_locked Disable ASPM states.
6483 * @pdev: pointer to PCI device struct
6484 * @state: bit-mask of ASPM states to disable
6486 * This function must be called with pci_bus_sem acquired!
6487 * Some devices *must* have certain ASPM states disabled per hardware errata.
6489 static void e1000e_disable_aspm_locked(struct pci_dev
*pdev
, u16 state
)
6491 __e1000e_disable_aspm(pdev
, state
, 1);
6495 static int __e1000_resume(struct pci_dev
*pdev
)
6497 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6498 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6499 struct e1000_hw
*hw
= &adapter
->hw
;
6500 u16 aspm_disable_flag
= 0;
6502 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L0S
)
6503 aspm_disable_flag
= PCIE_LINK_STATE_L0S
;
6504 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L1
)
6505 aspm_disable_flag
|= PCIE_LINK_STATE_L1
;
6506 if (aspm_disable_flag
)
6507 e1000e_disable_aspm(pdev
, aspm_disable_flag
);
6509 pci_set_master(pdev
);
6511 if (hw
->mac
.type
>= e1000_pch2lan
)
6512 e1000_resume_workarounds_pchlan(&adapter
->hw
);
6514 e1000e_power_up_phy(adapter
);
6516 /* report the system wakeup cause from S3/S4 */
6517 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
6520 e1e_rphy(&adapter
->hw
, BM_WUS
, &phy_data
);
6522 e_info("PHY Wakeup cause - %s\n",
6523 phy_data
& E1000_WUS_EX
? "Unicast Packet" :
6524 phy_data
& E1000_WUS_MC
? "Multicast Packet" :
6525 phy_data
& E1000_WUS_BC
? "Broadcast Packet" :
6526 phy_data
& E1000_WUS_MAG
? "Magic Packet" :
6527 phy_data
& E1000_WUS_LNKC
?
6528 "Link Status Change" : "other");
6530 e1e_wphy(&adapter
->hw
, BM_WUS
, ~0);
6532 u32 wus
= er32(WUS
);
6535 e_info("MAC Wakeup cause - %s\n",
6536 wus
& E1000_WUS_EX
? "Unicast Packet" :
6537 wus
& E1000_WUS_MC
? "Multicast Packet" :
6538 wus
& E1000_WUS_BC
? "Broadcast Packet" :
6539 wus
& E1000_WUS_MAG
? "Magic Packet" :
6540 wus
& E1000_WUS_LNKC
? "Link Status Change" :
6546 e1000e_reset(adapter
);
6548 e1000_init_manageability_pt(adapter
);
6550 /* If the controller has AMT, do not set DRV_LOAD until the interface
6551 * is up. For all other cases, let the f/w know that the h/w is now
6552 * under the control of the driver.
6554 if (!(adapter
->flags
& FLAG_HAS_AMT
))
6555 e1000e_get_hw_control(adapter
);
6560 #ifdef CONFIG_PM_SLEEP
6561 static int e1000e_pm_thaw(struct device
*dev
)
6563 struct net_device
*netdev
= pci_get_drvdata(to_pci_dev(dev
));
6564 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6566 e1000e_set_interrupt_capability(adapter
);
6567 if (netif_running(netdev
)) {
6568 u32 err
= e1000_request_irq(adapter
);
6576 netif_device_attach(netdev
);
6581 static int e1000e_pm_suspend(struct device
*dev
)
6583 struct pci_dev
*pdev
= to_pci_dev(dev
);
6585 e1000e_flush_lpic(pdev
);
6587 e1000e_pm_freeze(dev
);
6589 return __e1000_shutdown(pdev
, false);
6592 static int e1000e_pm_resume(struct device
*dev
)
6594 struct pci_dev
*pdev
= to_pci_dev(dev
);
6597 rc
= __e1000_resume(pdev
);
6601 return e1000e_pm_thaw(dev
);
6603 #endif /* CONFIG_PM_SLEEP */
6605 static int e1000e_pm_runtime_idle(struct device
*dev
)
6607 struct pci_dev
*pdev
= to_pci_dev(dev
);
6608 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6609 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6612 eee_lp
= adapter
->hw
.dev_spec
.ich8lan
.eee_lp_ability
;
6614 if (!e1000e_has_link(adapter
)) {
6615 adapter
->hw
.dev_spec
.ich8lan
.eee_lp_ability
= eee_lp
;
6616 pm_schedule_suspend(dev
, 5 * MSEC_PER_SEC
);
6622 static int e1000e_pm_runtime_resume(struct device
*dev
)
6624 struct pci_dev
*pdev
= to_pci_dev(dev
);
6625 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6626 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6629 rc
= __e1000_resume(pdev
);
6633 if (netdev
->flags
& IFF_UP
)
6634 rc
= e1000e_up(adapter
);
6639 static int e1000e_pm_runtime_suspend(struct device
*dev
)
6641 struct pci_dev
*pdev
= to_pci_dev(dev
);
6642 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6643 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6645 if (netdev
->flags
& IFF_UP
) {
6646 int count
= E1000_CHECK_RESET_COUNT
;
6648 while (test_bit(__E1000_RESETTING
, &adapter
->state
) && count
--)
6649 usleep_range(10000, 20000);
6651 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
6653 /* Down the device without resetting the hardware */
6654 e1000e_down(adapter
, false);
6657 if (__e1000_shutdown(pdev
, true)) {
6658 e1000e_pm_runtime_resume(dev
);
6664 #endif /* CONFIG_PM */
6666 static void e1000_shutdown(struct pci_dev
*pdev
)
6668 e1000e_flush_lpic(pdev
);
6670 e1000e_pm_freeze(&pdev
->dev
);
6672 __e1000_shutdown(pdev
, false);
6675 #ifdef CONFIG_NET_POLL_CONTROLLER
6677 static irqreturn_t
e1000_intr_msix(int __always_unused irq
, void *data
)
6679 struct net_device
*netdev
= data
;
6680 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6682 if (adapter
->msix_entries
) {
6683 int vector
, msix_irq
;
6686 msix_irq
= adapter
->msix_entries
[vector
].vector
;
6687 disable_irq(msix_irq
);
6688 e1000_intr_msix_rx(msix_irq
, netdev
);
6689 enable_irq(msix_irq
);
6692 msix_irq
= adapter
->msix_entries
[vector
].vector
;
6693 disable_irq(msix_irq
);
6694 e1000_intr_msix_tx(msix_irq
, netdev
);
6695 enable_irq(msix_irq
);
6698 msix_irq
= adapter
->msix_entries
[vector
].vector
;
6699 disable_irq(msix_irq
);
6700 e1000_msix_other(msix_irq
, netdev
);
6701 enable_irq(msix_irq
);
6709 * @netdev: network interface device structure
6711 * Polling 'interrupt' - used by things like netconsole to send skbs
6712 * without having to re-enable interrupts. It's not called while
6713 * the interrupt routine is executing.
6715 static void e1000_netpoll(struct net_device
*netdev
)
6717 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6719 switch (adapter
->int_mode
) {
6720 case E1000E_INT_MODE_MSIX
:
6721 e1000_intr_msix(adapter
->pdev
->irq
, netdev
);
6723 case E1000E_INT_MODE_MSI
:
6724 disable_irq(adapter
->pdev
->irq
);
6725 e1000_intr_msi(adapter
->pdev
->irq
, netdev
);
6726 enable_irq(adapter
->pdev
->irq
);
6728 default: /* E1000E_INT_MODE_LEGACY */
6729 disable_irq(adapter
->pdev
->irq
);
6730 e1000_intr(adapter
->pdev
->irq
, netdev
);
6731 enable_irq(adapter
->pdev
->irq
);
6738 * e1000_io_error_detected - called when PCI error is detected
6739 * @pdev: Pointer to PCI device
6740 * @state: The current pci connection state
6742 * This function is called after a PCI bus error affecting
6743 * this device has been detected.
6745 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
6746 pci_channel_state_t state
)
6748 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6749 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6751 netif_device_detach(netdev
);
6753 if (state
== pci_channel_io_perm_failure
)
6754 return PCI_ERS_RESULT_DISCONNECT
;
6756 if (netif_running(netdev
))
6757 e1000e_down(adapter
, true);
6758 pci_disable_device(pdev
);
6760 /* Request a slot slot reset. */
6761 return PCI_ERS_RESULT_NEED_RESET
;
6765 * e1000_io_slot_reset - called after the pci bus has been reset.
6766 * @pdev: Pointer to PCI device
6768 * Restart the card from scratch, as if from a cold-boot. Implementation
6769 * resembles the first-half of the e1000e_pm_resume routine.
6771 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
6773 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6774 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6775 struct e1000_hw
*hw
= &adapter
->hw
;
6776 u16 aspm_disable_flag
= 0;
6778 pci_ers_result_t result
;
6780 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L0S
)
6781 aspm_disable_flag
= PCIE_LINK_STATE_L0S
;
6782 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L1
)
6783 aspm_disable_flag
|= PCIE_LINK_STATE_L1
;
6784 if (aspm_disable_flag
)
6785 e1000e_disable_aspm_locked(pdev
, aspm_disable_flag
);
6787 err
= pci_enable_device_mem(pdev
);
6790 "Cannot re-enable PCI device after reset.\n");
6791 result
= PCI_ERS_RESULT_DISCONNECT
;
6793 pdev
->state_saved
= true;
6794 pci_restore_state(pdev
);
6795 pci_set_master(pdev
);
6797 pci_enable_wake(pdev
, PCI_D3hot
, 0);
6798 pci_enable_wake(pdev
, PCI_D3cold
, 0);
6800 e1000e_reset(adapter
);
6802 result
= PCI_ERS_RESULT_RECOVERED
;
6805 pci_cleanup_aer_uncorrect_error_status(pdev
);
6811 * e1000_io_resume - called when traffic can start flowing again.
6812 * @pdev: Pointer to PCI device
6814 * This callback is called when the error recovery driver tells us that
6815 * its OK to resume normal operation. Implementation resembles the
6816 * second-half of the e1000e_pm_resume routine.
6818 static void e1000_io_resume(struct pci_dev
*pdev
)
6820 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6821 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6823 e1000_init_manageability_pt(adapter
);
6825 if (netif_running(netdev
)) {
6826 if (e1000e_up(adapter
)) {
6828 "can't bring device back up after reset\n");
6833 netif_device_attach(netdev
);
6835 /* If the controller has AMT, do not set DRV_LOAD until the interface
6836 * is up. For all other cases, let the f/w know that the h/w is now
6837 * under the control of the driver.
6839 if (!(adapter
->flags
& FLAG_HAS_AMT
))
6840 e1000e_get_hw_control(adapter
);
6843 static void e1000_print_device_info(struct e1000_adapter
*adapter
)
6845 struct e1000_hw
*hw
= &adapter
->hw
;
6846 struct net_device
*netdev
= adapter
->netdev
;
6848 u8 pba_str
[E1000_PBANUM_LENGTH
];
6850 /* print bus type/speed/width info */
6851 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6853 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
) ? "Width x4" :
6857 e_info("Intel(R) PRO/%s Network Connection\n",
6858 (hw
->phy
.type
== e1000_phy_ife
) ? "10/100" : "1000");
6859 ret_val
= e1000_read_pba_string_generic(hw
, pba_str
,
6860 E1000_PBANUM_LENGTH
);
6862 strlcpy((char *)pba_str
, "Unknown", sizeof(pba_str
));
6863 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6864 hw
->mac
.type
, hw
->phy
.type
, pba_str
);
6867 static void e1000_eeprom_checks(struct e1000_adapter
*adapter
)
6869 struct e1000_hw
*hw
= &adapter
->hw
;
6873 if (hw
->mac
.type
!= e1000_82573
)
6876 ret_val
= e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &buf
);
6878 if (!ret_val
&& (!(buf
& (1 << 0)))) {
6879 /* Deep Smart Power Down (DSPD) */
6880 dev_warn(&adapter
->pdev
->dev
,
6881 "Warning: detected DSPD enabled in EEPROM\n");
6885 static netdev_features_t
e1000_fix_features(struct net_device
*netdev
,
6886 netdev_features_t features
)
6888 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6889 struct e1000_hw
*hw
= &adapter
->hw
;
6891 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6892 if ((hw
->mac
.type
>= e1000_pch2lan
) && (netdev
->mtu
> ETH_DATA_LEN
))
6893 features
&= ~NETIF_F_RXFCS
;
6898 static int e1000_set_features(struct net_device
*netdev
,
6899 netdev_features_t features
)
6901 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6902 netdev_features_t changed
= features
^ netdev
->features
;
6904 if (changed
& (NETIF_F_TSO
| NETIF_F_TSO6
))
6905 adapter
->flags
|= FLAG_TSO_FORCE
;
6907 if (!(changed
& (NETIF_F_HW_VLAN_CTAG_RX
| NETIF_F_HW_VLAN_CTAG_TX
|
6908 NETIF_F_RXCSUM
| NETIF_F_RXHASH
| NETIF_F_RXFCS
|
6912 if (changed
& NETIF_F_RXFCS
) {
6913 if (features
& NETIF_F_RXFCS
) {
6914 adapter
->flags2
&= ~FLAG2_CRC_STRIPPING
;
6916 /* We need to take it back to defaults, which might mean
6917 * stripping is still disabled at the adapter level.
6919 if (adapter
->flags2
& FLAG2_DFLT_CRC_STRIPPING
)
6920 adapter
->flags2
|= FLAG2_CRC_STRIPPING
;
6922 adapter
->flags2
&= ~FLAG2_CRC_STRIPPING
;
6926 netdev
->features
= features
;
6928 if (netif_running(netdev
))
6929 e1000e_reinit_locked(adapter
);
6931 e1000e_reset(adapter
);
6936 static const struct net_device_ops e1000e_netdev_ops
= {
6937 .ndo_open
= e1000_open
,
6938 .ndo_stop
= e1000_close
,
6939 .ndo_start_xmit
= e1000_xmit_frame
,
6940 .ndo_get_stats64
= e1000e_get_stats64
,
6941 .ndo_set_rx_mode
= e1000e_set_rx_mode
,
6942 .ndo_set_mac_address
= e1000_set_mac
,
6943 .ndo_change_mtu
= e1000_change_mtu
,
6944 .ndo_do_ioctl
= e1000_ioctl
,
6945 .ndo_tx_timeout
= e1000_tx_timeout
,
6946 .ndo_validate_addr
= eth_validate_addr
,
6948 .ndo_vlan_rx_add_vid
= e1000_vlan_rx_add_vid
,
6949 .ndo_vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
,
6950 #ifdef CONFIG_NET_POLL_CONTROLLER
6951 .ndo_poll_controller
= e1000_netpoll
,
6953 .ndo_set_features
= e1000_set_features
,
6954 .ndo_fix_features
= e1000_fix_features
,
6955 .ndo_features_check
= passthru_features_check
,
6959 * e1000_probe - Device Initialization Routine
6960 * @pdev: PCI device information struct
6961 * @ent: entry in e1000_pci_tbl
6963 * Returns 0 on success, negative on failure
6965 * e1000_probe initializes an adapter identified by a pci_dev structure.
6966 * The OS initialization, configuring of the adapter private structure,
6967 * and a hardware reset occur.
6969 static int e1000_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
6971 struct net_device
*netdev
;
6972 struct e1000_adapter
*adapter
;
6973 struct e1000_hw
*hw
;
6974 const struct e1000_info
*ei
= e1000_info_tbl
[ent
->driver_data
];
6975 resource_size_t mmio_start
, mmio_len
;
6976 resource_size_t flash_start
, flash_len
;
6977 static int cards_found
;
6978 u16 aspm_disable_flag
= 0;
6979 int bars
, i
, err
, pci_using_dac
;
6980 u16 eeprom_data
= 0;
6981 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
6984 if (ei
->flags2
& FLAG2_DISABLE_ASPM_L0S
)
6985 aspm_disable_flag
= PCIE_LINK_STATE_L0S
;
6986 if (ei
->flags2
& FLAG2_DISABLE_ASPM_L1
)
6987 aspm_disable_flag
|= PCIE_LINK_STATE_L1
;
6988 if (aspm_disable_flag
)
6989 e1000e_disable_aspm(pdev
, aspm_disable_flag
);
6991 err
= pci_enable_device_mem(pdev
);
6996 err
= dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(64));
7000 err
= dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(32));
7003 "No usable DMA configuration, aborting\n");
7008 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
);
7009 err
= pci_request_selected_regions_exclusive(pdev
, bars
,
7010 e1000e_driver_name
);
7014 /* AER (Advanced Error Reporting) hooks */
7015 pci_enable_pcie_error_reporting(pdev
);
7017 pci_set_master(pdev
);
7018 /* PCI config space info */
7019 err
= pci_save_state(pdev
);
7021 goto err_alloc_etherdev
;
7024 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
7026 goto err_alloc_etherdev
;
7028 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
7030 netdev
->irq
= pdev
->irq
;
7032 pci_set_drvdata(pdev
, netdev
);
7033 adapter
= netdev_priv(netdev
);
7035 adapter
->netdev
= netdev
;
7036 adapter
->pdev
= pdev
;
7038 adapter
->pba
= ei
->pba
;
7039 adapter
->flags
= ei
->flags
;
7040 adapter
->flags2
= ei
->flags2
;
7041 adapter
->hw
.adapter
= adapter
;
7042 adapter
->hw
.mac
.type
= ei
->mac
;
7043 adapter
->max_hw_frame_size
= ei
->max_hw_frame_size
;
7044 adapter
->msg_enable
= netif_msg_init(debug
, DEFAULT_MSG_ENABLE
);
7046 mmio_start
= pci_resource_start(pdev
, 0);
7047 mmio_len
= pci_resource_len(pdev
, 0);
7050 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
7051 if (!adapter
->hw
.hw_addr
)
7054 if ((adapter
->flags
& FLAG_HAS_FLASH
) &&
7055 (pci_resource_flags(pdev
, 1) & IORESOURCE_MEM
) &&
7056 (hw
->mac
.type
< e1000_pch_spt
)) {
7057 flash_start
= pci_resource_start(pdev
, 1);
7058 flash_len
= pci_resource_len(pdev
, 1);
7059 adapter
->hw
.flash_address
= ioremap(flash_start
, flash_len
);
7060 if (!adapter
->hw
.flash_address
)
7064 /* Set default EEE advertisement */
7065 if (adapter
->flags2
& FLAG2_HAS_EEE
)
7066 adapter
->eee_advert
= MDIO_EEE_100TX
| MDIO_EEE_1000T
;
7068 /* construct the net_device struct */
7069 netdev
->netdev_ops
= &e1000e_netdev_ops
;
7070 e1000e_set_ethtool_ops(netdev
);
7071 netdev
->watchdog_timeo
= 5 * HZ
;
7072 netif_napi_add(netdev
, &adapter
->napi
, e1000e_poll
, 64);
7073 strlcpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
));
7075 netdev
->mem_start
= mmio_start
;
7076 netdev
->mem_end
= mmio_start
+ mmio_len
;
7078 adapter
->bd_number
= cards_found
++;
7080 e1000e_check_options(adapter
);
7082 /* setup adapter struct */
7083 err
= e1000_sw_init(adapter
);
7087 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
7088 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
7089 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
7091 err
= ei
->get_variants(adapter
);
7095 if ((adapter
->flags
& FLAG_IS_ICH
) &&
7096 (adapter
->flags
& FLAG_READ_ONLY_NVM
) &&
7097 (hw
->mac
.type
< e1000_pch_spt
))
7098 e1000e_write_protect_nvm_ich8lan(&adapter
->hw
);
7100 hw
->mac
.ops
.get_bus_info(&adapter
->hw
);
7102 adapter
->hw
.phy
.autoneg_wait_to_complete
= 0;
7104 /* Copper options */
7105 if (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
) {
7106 adapter
->hw
.phy
.mdix
= AUTO_ALL_MODES
;
7107 adapter
->hw
.phy
.disable_polarity_correction
= 0;
7108 adapter
->hw
.phy
.ms_type
= e1000_ms_hw_default
;
7111 if (hw
->phy
.ops
.check_reset_block
&& hw
->phy
.ops
.check_reset_block(hw
))
7112 dev_info(&pdev
->dev
,
7113 "PHY reset is blocked due to SOL/IDER session.\n");
7115 /* Set initial default active device features */
7116 netdev
->features
= (NETIF_F_SG
|
7117 NETIF_F_HW_VLAN_CTAG_RX
|
7118 NETIF_F_HW_VLAN_CTAG_TX
|
7125 /* Set user-changeable features (subset of all device features) */
7126 netdev
->hw_features
= netdev
->features
;
7127 netdev
->hw_features
|= NETIF_F_RXFCS
;
7128 netdev
->priv_flags
|= IFF_SUPP_NOFCS
;
7129 netdev
->hw_features
|= NETIF_F_RXALL
;
7131 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
)
7132 netdev
->features
|= NETIF_F_HW_VLAN_CTAG_FILTER
;
7134 netdev
->vlan_features
|= (NETIF_F_SG
|
7139 netdev
->priv_flags
|= IFF_UNICAST_FLT
;
7141 if (pci_using_dac
) {
7142 netdev
->features
|= NETIF_F_HIGHDMA
;
7143 netdev
->vlan_features
|= NETIF_F_HIGHDMA
;
7146 if (e1000e_enable_mng_pass_thru(&adapter
->hw
))
7147 adapter
->flags
|= FLAG_MNG_PT_ENABLED
;
7149 /* before reading the NVM, reset the controller to
7150 * put the device in a known good starting state
7152 adapter
->hw
.mac
.ops
.reset_hw(&adapter
->hw
);
7154 /* systems with ASPM and others may see the checksum fail on the first
7155 * attempt. Let's give it a few tries
7158 if (e1000_validate_nvm_checksum(&adapter
->hw
) >= 0)
7161 dev_err(&pdev
->dev
, "The NVM Checksum Is Not Valid\n");
7167 e1000_eeprom_checks(adapter
);
7169 /* copy the MAC address */
7170 if (e1000e_read_mac_addr(&adapter
->hw
))
7172 "NVM Read Error while reading MAC address\n");
7174 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
7176 if (!is_valid_ether_addr(netdev
->dev_addr
)) {
7177 dev_err(&pdev
->dev
, "Invalid MAC Address: %pM\n",
7183 init_timer(&adapter
->watchdog_timer
);
7184 adapter
->watchdog_timer
.function
= e1000_watchdog
;
7185 adapter
->watchdog_timer
.data
= (unsigned long)adapter
;
7187 init_timer(&adapter
->phy_info_timer
);
7188 adapter
->phy_info_timer
.function
= e1000_update_phy_info
;
7189 adapter
->phy_info_timer
.data
= (unsigned long)adapter
;
7191 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
7192 INIT_WORK(&adapter
->watchdog_task
, e1000_watchdog_task
);
7193 INIT_WORK(&adapter
->downshift_task
, e1000e_downshift_workaround
);
7194 INIT_WORK(&adapter
->update_phy_task
, e1000e_update_phy_task
);
7195 INIT_WORK(&adapter
->print_hang_task
, e1000_print_hw_hang
);
7197 /* Initialize link parameters. User can change them with ethtool */
7198 adapter
->hw
.mac
.autoneg
= 1;
7199 adapter
->fc_autoneg
= true;
7200 adapter
->hw
.fc
.requested_mode
= e1000_fc_default
;
7201 adapter
->hw
.fc
.current_mode
= e1000_fc_default
;
7202 adapter
->hw
.phy
.autoneg_advertised
= 0x2f;
7204 /* Initial Wake on LAN setting - If APM wake is enabled in
7205 * the EEPROM, enable the ACPI Magic Packet filter
7207 if (adapter
->flags
& FLAG_APME_IN_WUC
) {
7208 /* APME bit in EEPROM is mapped to WUC.APME */
7209 eeprom_data
= er32(WUC
);
7210 eeprom_apme_mask
= E1000_WUC_APME
;
7211 if ((hw
->mac
.type
> e1000_ich10lan
) &&
7212 (eeprom_data
& E1000_WUC_PHY_WAKE
))
7213 adapter
->flags2
|= FLAG2_HAS_PHY_WAKEUP
;
7214 } else if (adapter
->flags
& FLAG_APME_IN_CTRL3
) {
7215 if (adapter
->flags
& FLAG_APME_CHECK_PORT_B
&&
7216 (adapter
->hw
.bus
.func
== 1))
7217 rval
= e1000_read_nvm(&adapter
->hw
,
7218 NVM_INIT_CONTROL3_PORT_B
,
7221 rval
= e1000_read_nvm(&adapter
->hw
,
7222 NVM_INIT_CONTROL3_PORT_A
,
7226 /* fetch WoL from EEPROM */
7228 e_dbg("NVM read error getting WoL initial values: %d\n", rval
);
7229 else if (eeprom_data
& eeprom_apme_mask
)
7230 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
7232 /* now that we have the eeprom settings, apply the special cases
7233 * where the eeprom may be wrong or the board simply won't support
7234 * wake on lan on a particular port
7236 if (!(adapter
->flags
& FLAG_HAS_WOL
))
7237 adapter
->eeprom_wol
= 0;
7239 /* initialize the wol settings based on the eeprom settings */
7240 adapter
->wol
= adapter
->eeprom_wol
;
7242 /* make sure adapter isn't asleep if manageability is enabled */
7243 if (adapter
->wol
|| (adapter
->flags
& FLAG_MNG_PT_ENABLED
) ||
7244 (hw
->mac
.ops
.check_mng_mode(hw
)))
7245 device_wakeup_enable(&pdev
->dev
);
7247 /* save off EEPROM version number */
7248 rval
= e1000_read_nvm(&adapter
->hw
, 5, 1, &adapter
->eeprom_vers
);
7251 e_dbg("NVM read error getting EEPROM version: %d\n", rval
);
7252 adapter
->eeprom_vers
= 0;
7255 /* reset the hardware with the new settings */
7256 e1000e_reset(adapter
);
7258 /* If the controller has AMT, do not set DRV_LOAD until the interface
7259 * is up. For all other cases, let the f/w know that the h/w is now
7260 * under the control of the driver.
7262 if (!(adapter
->flags
& FLAG_HAS_AMT
))
7263 e1000e_get_hw_control(adapter
);
7265 strlcpy(netdev
->name
, "eth%d", sizeof(netdev
->name
));
7266 err
= register_netdev(netdev
);
7270 /* carrier off reporting is important to ethtool even BEFORE open */
7271 netif_carrier_off(netdev
);
7273 /* init PTP hardware clock */
7274 e1000e_ptp_init(adapter
);
7276 e1000_print_device_info(adapter
);
7278 if (pci_dev_run_wake(pdev
))
7279 pm_runtime_put_noidle(&pdev
->dev
);
7284 if (!(adapter
->flags
& FLAG_HAS_AMT
))
7285 e1000e_release_hw_control(adapter
);
7287 if (hw
->phy
.ops
.check_reset_block
&& !hw
->phy
.ops
.check_reset_block(hw
))
7288 e1000_phy_hw_reset(&adapter
->hw
);
7290 kfree(adapter
->tx_ring
);
7291 kfree(adapter
->rx_ring
);
7293 if ((adapter
->hw
.flash_address
) && (hw
->mac
.type
< e1000_pch_spt
))
7294 iounmap(adapter
->hw
.flash_address
);
7295 e1000e_reset_interrupt_capability(adapter
);
7297 iounmap(adapter
->hw
.hw_addr
);
7299 free_netdev(netdev
);
7301 pci_release_selected_regions(pdev
,
7302 pci_select_bars(pdev
, IORESOURCE_MEM
));
7305 pci_disable_device(pdev
);
7310 * e1000_remove - Device Removal Routine
7311 * @pdev: PCI device information struct
7313 * e1000_remove is called by the PCI subsystem to alert the driver
7314 * that it should release a PCI device. The could be caused by a
7315 * Hot-Plug event, or because the driver is going to be removed from
7318 static void e1000_remove(struct pci_dev
*pdev
)
7320 struct net_device
*netdev
= pci_get_drvdata(pdev
);
7321 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
7322 bool down
= test_bit(__E1000_DOWN
, &adapter
->state
);
7324 e1000e_ptp_remove(adapter
);
7326 /* The timers may be rescheduled, so explicitly disable them
7327 * from being rescheduled.
7330 set_bit(__E1000_DOWN
, &adapter
->state
);
7331 del_timer_sync(&adapter
->watchdog_timer
);
7332 del_timer_sync(&adapter
->phy_info_timer
);
7334 cancel_work_sync(&adapter
->reset_task
);
7335 cancel_work_sync(&adapter
->watchdog_task
);
7336 cancel_work_sync(&adapter
->downshift_task
);
7337 cancel_work_sync(&adapter
->update_phy_task
);
7338 cancel_work_sync(&adapter
->print_hang_task
);
7340 if (adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
) {
7341 cancel_work_sync(&adapter
->tx_hwtstamp_work
);
7342 if (adapter
->tx_hwtstamp_skb
) {
7343 dev_kfree_skb_any(adapter
->tx_hwtstamp_skb
);
7344 adapter
->tx_hwtstamp_skb
= NULL
;
7348 /* Don't lie to e1000_close() down the road. */
7350 clear_bit(__E1000_DOWN
, &adapter
->state
);
7351 unregister_netdev(netdev
);
7353 if (pci_dev_run_wake(pdev
))
7354 pm_runtime_get_noresume(&pdev
->dev
);
7356 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7357 * would have already happened in close and is redundant.
7359 e1000e_release_hw_control(adapter
);
7361 e1000e_reset_interrupt_capability(adapter
);
7362 kfree(adapter
->tx_ring
);
7363 kfree(adapter
->rx_ring
);
7365 iounmap(adapter
->hw
.hw_addr
);
7366 if ((adapter
->hw
.flash_address
) &&
7367 (adapter
->hw
.mac
.type
< e1000_pch_spt
))
7368 iounmap(adapter
->hw
.flash_address
);
7369 pci_release_selected_regions(pdev
,
7370 pci_select_bars(pdev
, IORESOURCE_MEM
));
7372 free_netdev(netdev
);
7375 pci_disable_pcie_error_reporting(pdev
);
7377 pci_disable_device(pdev
);
7380 /* PCI Error Recovery (ERS) */
7381 static const struct pci_error_handlers e1000_err_handler
= {
7382 .error_detected
= e1000_io_error_detected
,
7383 .slot_reset
= e1000_io_slot_reset
,
7384 .resume
= e1000_io_resume
,
7387 static const struct pci_device_id e1000_pci_tbl
[] = {
7388 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_COPPER
), board_82571
},
7389 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_FIBER
), board_82571
},
7390 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER
), board_82571
},
7391 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER_LP
),
7393 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_FIBER
), board_82571
},
7394 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES
), board_82571
},
7395 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_DUAL
), board_82571
},
7396 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_QUAD
), board_82571
},
7397 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571PT_QUAD_COPPER
), board_82571
},
7399 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI
), board_82572
},
7400 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_COPPER
), board_82572
},
7401 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_FIBER
), board_82572
},
7402 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_SERDES
), board_82572
},
7404 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E
), board_82573
},
7405 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E_IAMT
), board_82573
},
7406 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573L
), board_82573
},
7408 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574L
), board_82574
},
7409 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574LA
), board_82574
},
7410 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82583V
), board_82583
},
7412 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_DPT
),
7413 board_80003es2lan
},
7414 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_SPT
),
7415 board_80003es2lan
},
7416 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_DPT
),
7417 board_80003es2lan
},
7418 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_SPT
),
7419 board_80003es2lan
},
7421 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE
), board_ich8lan
},
7422 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_G
), board_ich8lan
},
7423 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_GT
), board_ich8lan
},
7424 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_AMT
), board_ich8lan
},
7425 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_C
), board_ich8lan
},
7426 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M
), board_ich8lan
},
7427 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M_AMT
), board_ich8lan
},
7428 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_82567V_3
), board_ich8lan
},
7430 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE
), board_ich9lan
},
7431 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_G
), board_ich9lan
},
7432 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_GT
), board_ich9lan
},
7433 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_AMT
), board_ich9lan
},
7434 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_C
), board_ich9lan
},
7435 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_BM
), board_ich9lan
},
7436 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M
), board_ich9lan
},
7437 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_AMT
), board_ich9lan
},
7438 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_V
), board_ich9lan
},
7440 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LM
), board_ich9lan
},
7441 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LF
), board_ich9lan
},
7442 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_V
), board_ich9lan
},
7444 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LM
), board_ich10lan
},
7445 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LF
), board_ich10lan
},
7446 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_V
), board_ich10lan
},
7448 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LM
), board_pchlan
},
7449 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LC
), board_pchlan
},
7450 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DM
), board_pchlan
},
7451 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DC
), board_pchlan
},
7453 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH2_LV_LM
), board_pch2lan
},
7454 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH2_LV_V
), board_pch2lan
},
7456 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LPT_I217_LM
), board_pch_lpt
},
7457 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LPT_I217_V
), board_pch_lpt
},
7458 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LPTLP_I218_LM
), board_pch_lpt
},
7459 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LPTLP_I218_V
), board_pch_lpt
},
7460 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_I218_LM2
), board_pch_lpt
},
7461 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_I218_V2
), board_pch_lpt
},
7462 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_I218_LM3
), board_pch_lpt
},
7463 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_I218_V3
), board_pch_lpt
},
7464 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_LM
), board_pch_spt
},
7465 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_V
), board_pch_spt
},
7466 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_LM2
), board_pch_spt
},
7467 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_SPT_I219_V2
), board_pch_spt
},
7469 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7471 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
7473 static const struct dev_pm_ops e1000_pm_ops
= {
7474 #ifdef CONFIG_PM_SLEEP
7475 .suspend
= e1000e_pm_suspend
,
7476 .resume
= e1000e_pm_resume
,
7477 .freeze
= e1000e_pm_freeze
,
7478 .thaw
= e1000e_pm_thaw
,
7479 .poweroff
= e1000e_pm_suspend
,
7480 .restore
= e1000e_pm_resume
,
7482 SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend
, e1000e_pm_runtime_resume
,
7483 e1000e_pm_runtime_idle
)
7486 /* PCI Device API Driver */
7487 static struct pci_driver e1000_driver
= {
7488 .name
= e1000e_driver_name
,
7489 .id_table
= e1000_pci_tbl
,
7490 .probe
= e1000_probe
,
7491 .remove
= e1000_remove
,
7493 .pm
= &e1000_pm_ops
,
7495 .shutdown
= e1000_shutdown
,
7496 .err_handler
= &e1000_err_handler
7500 * e1000_init_module - Driver Registration Routine
7502 * e1000_init_module is the first routine called when the driver is
7503 * loaded. All it does is register with the PCI subsystem.
7505 static int __init
e1000_init_module(void)
7509 pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7510 e1000e_driver_version
);
7511 pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7512 ret
= pci_register_driver(&e1000_driver
);
7516 module_init(e1000_init_module
);
7519 * e1000_exit_module - Driver Exit Cleanup Routine
7521 * e1000_exit_module is called just before the driver is removed
7524 static void __exit
e1000_exit_module(void)
7526 pci_unregister_driver(&e1000_driver
);
7528 module_exit(e1000_exit_module
);
7530 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7531 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7532 MODULE_LICENSE("GPL");
7533 MODULE_VERSION(DRV_VERSION
);