[ARM] MVE sext costs
[llvm-complete.git] / lib / MC / MCAssembler.cpp
blob22a8e73e4af3709b8b7b0389408294af92469cf8
1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/MC/MCAssembler.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/ADT/Statistic.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/MC/MCAsmBackend.h"
17 #include "llvm/MC/MCAsmInfo.h"
18 #include "llvm/MC/MCAsmLayout.h"
19 #include "llvm/MC/MCCodeEmitter.h"
20 #include "llvm/MC/MCCodeView.h"
21 #include "llvm/MC/MCContext.h"
22 #include "llvm/MC/MCDwarf.h"
23 #include "llvm/MC/MCExpr.h"
24 #include "llvm/MC/MCFixup.h"
25 #include "llvm/MC/MCFixupKindInfo.h"
26 #include "llvm/MC/MCFragment.h"
27 #include "llvm/MC/MCInst.h"
28 #include "llvm/MC/MCObjectWriter.h"
29 #include "llvm/MC/MCSection.h"
30 #include "llvm/MC/MCSectionELF.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/MC/MCValue.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/LEB128.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <cassert>
40 #include <cstdint>
41 #include <cstring>
42 #include <tuple>
43 #include <utility>
45 using namespace llvm;
47 #define DEBUG_TYPE "assembler"
49 namespace {
50 namespace stats {
52 STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
53 STATISTIC(EmittedRelaxableFragments,
54 "Number of emitted assembler fragments - relaxable");
55 STATISTIC(EmittedDataFragments,
56 "Number of emitted assembler fragments - data");
57 STATISTIC(EmittedCompactEncodedInstFragments,
58 "Number of emitted assembler fragments - compact encoded inst");
59 STATISTIC(EmittedAlignFragments,
60 "Number of emitted assembler fragments - align");
61 STATISTIC(EmittedFillFragments,
62 "Number of emitted assembler fragments - fill");
63 STATISTIC(EmittedOrgFragments,
64 "Number of emitted assembler fragments - org");
65 STATISTIC(evaluateFixup, "Number of evaluated fixups");
66 STATISTIC(FragmentLayouts, "Number of fragment layouts");
67 STATISTIC(ObjectBytes, "Number of emitted object file bytes");
68 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
69 STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
70 STATISTIC(PaddingFragmentsRelaxations,
71 "Number of Padding Fragments relaxations");
72 STATISTIC(PaddingFragmentsBytes,
73 "Total size of all padding from adding Fragments");
75 } // end namespace stats
76 } // end anonymous namespace
78 // FIXME FIXME FIXME: There are number of places in this file where we convert
79 // what is a 64-bit assembler value used for computation into a value in the
80 // object file, which may truncate it. We should detect that truncation where
81 // invalid and report errors back.
83 /* *** */
85 MCAssembler::MCAssembler(MCContext &Context,
86 std::unique_ptr<MCAsmBackend> Backend,
87 std::unique_ptr<MCCodeEmitter> Emitter,
88 std::unique_ptr<MCObjectWriter> Writer)
89 : Context(Context), Backend(std::move(Backend)),
90 Emitter(std::move(Emitter)), Writer(std::move(Writer)),
91 BundleAlignSize(0), RelaxAll(false), SubsectionsViaSymbols(false),
92 IncrementalLinkerCompatible(false), ELFHeaderEFlags(0) {
93 VersionInfo.Major = 0; // Major version == 0 for "none specified"
96 MCAssembler::~MCAssembler() = default;
98 void MCAssembler::reset() {
99 Sections.clear();
100 Symbols.clear();
101 IndirectSymbols.clear();
102 DataRegions.clear();
103 LinkerOptions.clear();
104 FileNames.clear();
105 ThumbFuncs.clear();
106 BundleAlignSize = 0;
107 RelaxAll = false;
108 SubsectionsViaSymbols = false;
109 IncrementalLinkerCompatible = false;
110 ELFHeaderEFlags = 0;
111 LOHContainer.reset();
112 VersionInfo.Major = 0;
113 VersionInfo.SDKVersion = VersionTuple();
115 // reset objects owned by us
116 if (getBackendPtr())
117 getBackendPtr()->reset();
118 if (getEmitterPtr())
119 getEmitterPtr()->reset();
120 if (getWriterPtr())
121 getWriterPtr()->reset();
122 getLOHContainer().reset();
125 bool MCAssembler::registerSection(MCSection &Section) {
126 if (Section.isRegistered())
127 return false;
128 Sections.push_back(&Section);
129 Section.setIsRegistered(true);
130 return true;
133 bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const {
134 if (ThumbFuncs.count(Symbol))
135 return true;
137 if (!Symbol->isVariable())
138 return false;
140 const MCExpr *Expr = Symbol->getVariableValue();
142 MCValue V;
143 if (!Expr->evaluateAsRelocatable(V, nullptr, nullptr))
144 return false;
146 if (V.getSymB() || V.getRefKind() != MCSymbolRefExpr::VK_None)
147 return false;
149 const MCSymbolRefExpr *Ref = V.getSymA();
150 if (!Ref)
151 return false;
153 if (Ref->getKind() != MCSymbolRefExpr::VK_None)
154 return false;
156 const MCSymbol &Sym = Ref->getSymbol();
157 if (!isThumbFunc(&Sym))
158 return false;
160 ThumbFuncs.insert(Symbol); // Cache it.
161 return true;
164 bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
165 // Non-temporary labels should always be visible to the linker.
166 if (!Symbol.isTemporary())
167 return true;
169 // Absolute temporary labels are never visible.
170 if (!Symbol.isInSection())
171 return false;
173 if (Symbol.isUsedInReloc())
174 return true;
176 return false;
179 const MCSymbol *MCAssembler::getAtom(const MCSymbol &S) const {
180 // Linker visible symbols define atoms.
181 if (isSymbolLinkerVisible(S))
182 return &S;
184 // Absolute and undefined symbols have no defining atom.
185 if (!S.isInSection())
186 return nullptr;
188 // Non-linker visible symbols in sections which can't be atomized have no
189 // defining atom.
190 if (!getContext().getAsmInfo()->isSectionAtomizableBySymbols(
191 *S.getFragment()->getParent()))
192 return nullptr;
194 // Otherwise, return the atom for the containing fragment.
195 return S.getFragment()->getAtom();
198 bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
199 const MCFixup &Fixup, const MCFragment *DF,
200 MCValue &Target, uint64_t &Value,
201 bool &WasForced) const {
202 ++stats::evaluateFixup;
204 // FIXME: This code has some duplication with recordRelocation. We should
205 // probably merge the two into a single callback that tries to evaluate a
206 // fixup and records a relocation if one is needed.
208 // On error claim to have completely evaluated the fixup, to prevent any
209 // further processing from being done.
210 const MCExpr *Expr = Fixup.getValue();
211 MCContext &Ctx = getContext();
212 Value = 0;
213 WasForced = false;
214 if (!Expr->evaluateAsRelocatable(Target, &Layout, &Fixup)) {
215 Ctx.reportError(Fixup.getLoc(), "expected relocatable expression");
216 return true;
218 if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
219 if (RefB->getKind() != MCSymbolRefExpr::VK_None) {
220 Ctx.reportError(Fixup.getLoc(),
221 "unsupported subtraction of qualified symbol");
222 return true;
226 assert(getBackendPtr() && "Expected assembler backend");
227 bool IsPCRel = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags &
228 MCFixupKindInfo::FKF_IsPCRel;
230 bool IsResolved = false;
231 if (IsPCRel) {
232 if (Target.getSymB()) {
233 IsResolved = false;
234 } else if (!Target.getSymA()) {
235 IsResolved = false;
236 } else {
237 const MCSymbolRefExpr *A = Target.getSymA();
238 const MCSymbol &SA = A->getSymbol();
239 if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) {
240 IsResolved = false;
241 } else if (auto *Writer = getWriterPtr()) {
242 IsResolved = Writer->isSymbolRefDifferenceFullyResolvedImpl(
243 *this, SA, *DF, false, true);
246 } else {
247 IsResolved = Target.isAbsolute();
250 Value = Target.getConstant();
252 if (const MCSymbolRefExpr *A = Target.getSymA()) {
253 const MCSymbol &Sym = A->getSymbol();
254 if (Sym.isDefined())
255 Value += Layout.getSymbolOffset(Sym);
257 if (const MCSymbolRefExpr *B = Target.getSymB()) {
258 const MCSymbol &Sym = B->getSymbol();
259 if (Sym.isDefined())
260 Value -= Layout.getSymbolOffset(Sym);
263 bool ShouldAlignPC = getBackend().getFixupKindInfo(Fixup.getKind()).Flags &
264 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
265 assert((ShouldAlignPC ? IsPCRel : true) &&
266 "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
268 if (IsPCRel) {
269 uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
271 // A number of ARM fixups in Thumb mode require that the effective PC
272 // address be determined as the 32-bit aligned version of the actual offset.
273 if (ShouldAlignPC) Offset &= ~0x3;
274 Value -= Offset;
277 // Let the backend force a relocation if needed.
278 if (IsResolved && getBackend().shouldForceRelocation(*this, Fixup, Target)) {
279 IsResolved = false;
280 WasForced = true;
283 return IsResolved;
286 uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout,
287 const MCFragment &F) const {
288 assert(getBackendPtr() && "Requires assembler backend");
289 switch (F.getKind()) {
290 case MCFragment::FT_Data:
291 return cast<MCDataFragment>(F).getContents().size();
292 case MCFragment::FT_Relaxable:
293 return cast<MCRelaxableFragment>(F).getContents().size();
294 case MCFragment::FT_CompactEncodedInst:
295 return cast<MCCompactEncodedInstFragment>(F).getContents().size();
296 case MCFragment::FT_Fill: {
297 auto &FF = cast<MCFillFragment>(F);
298 int64_t NumValues = 0;
299 if (!FF.getNumValues().evaluateAsAbsolute(NumValues, Layout)) {
300 getContext().reportError(FF.getLoc(),
301 "expected assembly-time absolute expression");
302 return 0;
304 int64_t Size = NumValues * FF.getValueSize();
305 if (Size < 0) {
306 getContext().reportError(FF.getLoc(), "invalid number of bytes");
307 return 0;
309 return Size;
312 case MCFragment::FT_LEB:
313 return cast<MCLEBFragment>(F).getContents().size();
315 case MCFragment::FT_Padding:
316 return cast<MCPaddingFragment>(F).getSize();
318 case MCFragment::FT_SymbolId:
319 return 4;
321 case MCFragment::FT_Align: {
322 const MCAlignFragment &AF = cast<MCAlignFragment>(F);
323 unsigned Offset = Layout.getFragmentOffset(&AF);
324 unsigned Size = OffsetToAlignment(Offset, AF.getAlignment());
326 // Insert extra Nops for code alignment if the target define
327 // shouldInsertExtraNopBytesForCodeAlign target hook.
328 if (AF.getParent()->UseCodeAlign() && AF.hasEmitNops() &&
329 getBackend().shouldInsertExtraNopBytesForCodeAlign(AF, Size))
330 return Size;
332 // If we are padding with nops, force the padding to be larger than the
333 // minimum nop size.
334 if (Size > 0 && AF.hasEmitNops()) {
335 while (Size % getBackend().getMinimumNopSize())
336 Size += AF.getAlignment();
338 if (Size > AF.getMaxBytesToEmit())
339 return 0;
340 return Size;
343 case MCFragment::FT_Org: {
344 const MCOrgFragment &OF = cast<MCOrgFragment>(F);
345 MCValue Value;
346 if (!OF.getOffset().evaluateAsValue(Value, Layout)) {
347 getContext().reportError(OF.getLoc(),
348 "expected assembly-time absolute expression");
349 return 0;
352 uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
353 int64_t TargetLocation = Value.getConstant();
354 if (const MCSymbolRefExpr *A = Value.getSymA()) {
355 uint64_t Val;
356 if (!Layout.getSymbolOffset(A->getSymbol(), Val)) {
357 getContext().reportError(OF.getLoc(), "expected absolute expression");
358 return 0;
360 TargetLocation += Val;
362 int64_t Size = TargetLocation - FragmentOffset;
363 if (Size < 0 || Size >= 0x40000000) {
364 getContext().reportError(
365 OF.getLoc(), "invalid .org offset '" + Twine(TargetLocation) +
366 "' (at offset '" + Twine(FragmentOffset) + "')");
367 return 0;
369 return Size;
372 case MCFragment::FT_Dwarf:
373 return cast<MCDwarfLineAddrFragment>(F).getContents().size();
374 case MCFragment::FT_DwarfFrame:
375 return cast<MCDwarfCallFrameFragment>(F).getContents().size();
376 case MCFragment::FT_CVInlineLines:
377 return cast<MCCVInlineLineTableFragment>(F).getContents().size();
378 case MCFragment::FT_CVDefRange:
379 return cast<MCCVDefRangeFragment>(F).getContents().size();
380 case MCFragment::FT_Dummy:
381 llvm_unreachable("Should not have been added");
384 llvm_unreachable("invalid fragment kind");
387 void MCAsmLayout::layoutFragment(MCFragment *F) {
388 MCFragment *Prev = F->getPrevNode();
390 // We should never try to recompute something which is valid.
391 assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!");
392 // We should never try to compute the fragment layout if its predecessor
393 // isn't valid.
394 assert((!Prev || isFragmentValid(Prev)) &&
395 "Attempt to compute fragment before its predecessor!");
397 ++stats::FragmentLayouts;
399 // Compute fragment offset and size.
400 if (Prev)
401 F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev);
402 else
403 F->Offset = 0;
404 LastValidFragment[F->getParent()] = F;
406 // If bundling is enabled and this fragment has instructions in it, it has to
407 // obey the bundling restrictions. With padding, we'll have:
410 // BundlePadding
411 // |||
412 // -------------------------------------
413 // Prev |##########| F |
414 // -------------------------------------
415 // ^
416 // |
417 // F->Offset
419 // The fragment's offset will point to after the padding, and its computed
420 // size won't include the padding.
422 // When the -mc-relax-all flag is used, we optimize bundling by writting the
423 // padding directly into fragments when the instructions are emitted inside
424 // the streamer. When the fragment is larger than the bundle size, we need to
425 // ensure that it's bundle aligned. This means that if we end up with
426 // multiple fragments, we must emit bundle padding between fragments.
428 // ".align N" is an example of a directive that introduces multiple
429 // fragments. We could add a special case to handle ".align N" by emitting
430 // within-fragment padding (which would produce less padding when N is less
431 // than the bundle size), but for now we don't.
433 if (Assembler.isBundlingEnabled() && F->hasInstructions()) {
434 assert(isa<MCEncodedFragment>(F) &&
435 "Only MCEncodedFragment implementations have instructions");
436 MCEncodedFragment *EF = cast<MCEncodedFragment>(F);
437 uint64_t FSize = Assembler.computeFragmentSize(*this, *EF);
439 if (!Assembler.getRelaxAll() && FSize > Assembler.getBundleAlignSize())
440 report_fatal_error("Fragment can't be larger than a bundle size");
442 uint64_t RequiredBundlePadding =
443 computeBundlePadding(Assembler, EF, EF->Offset, FSize);
444 if (RequiredBundlePadding > UINT8_MAX)
445 report_fatal_error("Padding cannot exceed 255 bytes");
446 EF->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
447 EF->Offset += RequiredBundlePadding;
451 void MCAssembler::registerSymbol(const MCSymbol &Symbol, bool *Created) {
452 bool New = !Symbol.isRegistered();
453 if (Created)
454 *Created = New;
455 if (New) {
456 Symbol.setIsRegistered(true);
457 Symbols.push_back(&Symbol);
461 void MCAssembler::writeFragmentPadding(raw_ostream &OS,
462 const MCEncodedFragment &EF,
463 uint64_t FSize) const {
464 assert(getBackendPtr() && "Expected assembler backend");
465 // Should NOP padding be written out before this fragment?
466 unsigned BundlePadding = EF.getBundlePadding();
467 if (BundlePadding > 0) {
468 assert(isBundlingEnabled() &&
469 "Writing bundle padding with disabled bundling");
470 assert(EF.hasInstructions() &&
471 "Writing bundle padding for a fragment without instructions");
473 unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize);
474 if (EF.alignToBundleEnd() && TotalLength > getBundleAlignSize()) {
475 // If the padding itself crosses a bundle boundary, it must be emitted
476 // in 2 pieces, since even nop instructions must not cross boundaries.
477 // v--------------v <- BundleAlignSize
478 // v---------v <- BundlePadding
479 // ----------------------------
480 // | Prev |####|####| F |
481 // ----------------------------
482 // ^-------------------^ <- TotalLength
483 unsigned DistanceToBoundary = TotalLength - getBundleAlignSize();
484 if (!getBackend().writeNopData(OS, DistanceToBoundary))
485 report_fatal_error("unable to write NOP sequence of " +
486 Twine(DistanceToBoundary) + " bytes");
487 BundlePadding -= DistanceToBoundary;
489 if (!getBackend().writeNopData(OS, BundlePadding))
490 report_fatal_error("unable to write NOP sequence of " +
491 Twine(BundlePadding) + " bytes");
495 /// Write the fragment \p F to the output file.
496 static void writeFragment(raw_ostream &OS, const MCAssembler &Asm,
497 const MCAsmLayout &Layout, const MCFragment &F) {
498 // FIXME: Embed in fragments instead?
499 uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F);
501 support::endianness Endian = Asm.getBackend().Endian;
503 if (const MCEncodedFragment *EF = dyn_cast<MCEncodedFragment>(&F))
504 Asm.writeFragmentPadding(OS, *EF, FragmentSize);
506 // This variable (and its dummy usage) is to participate in the assert at
507 // the end of the function.
508 uint64_t Start = OS.tell();
509 (void) Start;
511 ++stats::EmittedFragments;
513 switch (F.getKind()) {
514 case MCFragment::FT_Align: {
515 ++stats::EmittedAlignFragments;
516 const MCAlignFragment &AF = cast<MCAlignFragment>(F);
517 assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
519 uint64_t Count = FragmentSize / AF.getValueSize();
521 // FIXME: This error shouldn't actually occur (the front end should emit
522 // multiple .align directives to enforce the semantics it wants), but is
523 // severe enough that we want to report it. How to handle this?
524 if (Count * AF.getValueSize() != FragmentSize)
525 report_fatal_error("undefined .align directive, value size '" +
526 Twine(AF.getValueSize()) +
527 "' is not a divisor of padding size '" +
528 Twine(FragmentSize) + "'");
530 // See if we are aligning with nops, and if so do that first to try to fill
531 // the Count bytes. Then if that did not fill any bytes or there are any
532 // bytes left to fill use the Value and ValueSize to fill the rest.
533 // If we are aligning with nops, ask that target to emit the right data.
534 if (AF.hasEmitNops()) {
535 if (!Asm.getBackend().writeNopData(OS, Count))
536 report_fatal_error("unable to write nop sequence of " +
537 Twine(Count) + " bytes");
538 break;
541 // Otherwise, write out in multiples of the value size.
542 for (uint64_t i = 0; i != Count; ++i) {
543 switch (AF.getValueSize()) {
544 default: llvm_unreachable("Invalid size!");
545 case 1: OS << char(AF.getValue()); break;
546 case 2:
547 support::endian::write<uint16_t>(OS, AF.getValue(), Endian);
548 break;
549 case 4:
550 support::endian::write<uint32_t>(OS, AF.getValue(), Endian);
551 break;
552 case 8:
553 support::endian::write<uint64_t>(OS, AF.getValue(), Endian);
554 break;
557 break;
560 case MCFragment::FT_Data:
561 ++stats::EmittedDataFragments;
562 OS << cast<MCDataFragment>(F).getContents();
563 break;
565 case MCFragment::FT_Relaxable:
566 ++stats::EmittedRelaxableFragments;
567 OS << cast<MCRelaxableFragment>(F).getContents();
568 break;
570 case MCFragment::FT_CompactEncodedInst:
571 ++stats::EmittedCompactEncodedInstFragments;
572 OS << cast<MCCompactEncodedInstFragment>(F).getContents();
573 break;
575 case MCFragment::FT_Fill: {
576 ++stats::EmittedFillFragments;
577 const MCFillFragment &FF = cast<MCFillFragment>(F);
578 uint64_t V = FF.getValue();
579 unsigned VSize = FF.getValueSize();
580 const unsigned MaxChunkSize = 16;
581 char Data[MaxChunkSize];
582 // Duplicate V into Data as byte vector to reduce number of
583 // writes done. As such, do endian conversion here.
584 for (unsigned I = 0; I != VSize; ++I) {
585 unsigned index = Endian == support::little ? I : (VSize - I - 1);
586 Data[I] = uint8_t(V >> (index * 8));
588 for (unsigned I = VSize; I < MaxChunkSize; ++I)
589 Data[I] = Data[I - VSize];
591 // Set to largest multiple of VSize in Data.
592 const unsigned NumPerChunk = MaxChunkSize / VSize;
593 // Set ChunkSize to largest multiple of VSize in Data
594 const unsigned ChunkSize = VSize * NumPerChunk;
596 // Do copies by chunk.
597 StringRef Ref(Data, ChunkSize);
598 for (uint64_t I = 0, E = FragmentSize / ChunkSize; I != E; ++I)
599 OS << Ref;
601 // do remainder if needed.
602 unsigned TrailingCount = FragmentSize % ChunkSize;
603 if (TrailingCount)
604 OS.write(Data, TrailingCount);
605 break;
608 case MCFragment::FT_LEB: {
609 const MCLEBFragment &LF = cast<MCLEBFragment>(F);
610 OS << LF.getContents();
611 break;
614 case MCFragment::FT_Padding: {
615 if (!Asm.getBackend().writeNopData(OS, FragmentSize))
616 report_fatal_error("unable to write nop sequence of " +
617 Twine(FragmentSize) + " bytes");
618 break;
621 case MCFragment::FT_SymbolId: {
622 const MCSymbolIdFragment &SF = cast<MCSymbolIdFragment>(F);
623 support::endian::write<uint32_t>(OS, SF.getSymbol()->getIndex(), Endian);
624 break;
627 case MCFragment::FT_Org: {
628 ++stats::EmittedOrgFragments;
629 const MCOrgFragment &OF = cast<MCOrgFragment>(F);
631 for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
632 OS << char(OF.getValue());
634 break;
637 case MCFragment::FT_Dwarf: {
638 const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
639 OS << OF.getContents();
640 break;
642 case MCFragment::FT_DwarfFrame: {
643 const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
644 OS << CF.getContents();
645 break;
647 case MCFragment::FT_CVInlineLines: {
648 const auto &OF = cast<MCCVInlineLineTableFragment>(F);
649 OS << OF.getContents();
650 break;
652 case MCFragment::FT_CVDefRange: {
653 const auto &DRF = cast<MCCVDefRangeFragment>(F);
654 OS << DRF.getContents();
655 break;
657 case MCFragment::FT_Dummy:
658 llvm_unreachable("Should not have been added");
661 assert(OS.tell() - Start == FragmentSize &&
662 "The stream should advance by fragment size");
665 void MCAssembler::writeSectionData(raw_ostream &OS, const MCSection *Sec,
666 const MCAsmLayout &Layout) const {
667 assert(getBackendPtr() && "Expected assembler backend");
669 // Ignore virtual sections.
670 if (Sec->isVirtualSection()) {
671 assert(Layout.getSectionFileSize(Sec) == 0 && "Invalid size for section!");
673 // Check that contents are only things legal inside a virtual section.
674 for (const MCFragment &F : *Sec) {
675 switch (F.getKind()) {
676 default: llvm_unreachable("Invalid fragment in virtual section!");
677 case MCFragment::FT_Data: {
678 // Check that we aren't trying to write a non-zero contents (or fixups)
679 // into a virtual section. This is to support clients which use standard
680 // directives to fill the contents of virtual sections.
681 const MCDataFragment &DF = cast<MCDataFragment>(F);
682 if (DF.fixup_begin() != DF.fixup_end())
683 report_fatal_error("cannot have fixups in virtual section!");
684 for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
685 if (DF.getContents()[i]) {
686 if (auto *ELFSec = dyn_cast<const MCSectionELF>(Sec))
687 report_fatal_error("non-zero initializer found in section '" +
688 ELFSec->getSectionName() + "'");
689 else
690 report_fatal_error("non-zero initializer found in virtual section");
692 break;
694 case MCFragment::FT_Align:
695 // Check that we aren't trying to write a non-zero value into a virtual
696 // section.
697 assert((cast<MCAlignFragment>(F).getValueSize() == 0 ||
698 cast<MCAlignFragment>(F).getValue() == 0) &&
699 "Invalid align in virtual section!");
700 break;
701 case MCFragment::FT_Fill:
702 assert((cast<MCFillFragment>(F).getValue() == 0) &&
703 "Invalid fill in virtual section!");
704 break;
708 return;
711 uint64_t Start = OS.tell();
712 (void)Start;
714 for (const MCFragment &F : *Sec)
715 writeFragment(OS, *this, Layout, F);
717 assert(OS.tell() - Start == Layout.getSectionAddressSize(Sec));
720 std::tuple<MCValue, uint64_t, bool>
721 MCAssembler::handleFixup(const MCAsmLayout &Layout, MCFragment &F,
722 const MCFixup &Fixup) {
723 // Evaluate the fixup.
724 MCValue Target;
725 uint64_t FixedValue;
726 bool WasForced;
727 bool IsResolved = evaluateFixup(Layout, Fixup, &F, Target, FixedValue,
728 WasForced);
729 if (!IsResolved) {
730 // The fixup was unresolved, we need a relocation. Inform the object
731 // writer of the relocation, and give it an opportunity to adjust the
732 // fixup value if need be.
733 if (Target.getSymA() && Target.getSymB() &&
734 getBackend().requiresDiffExpressionRelocations()) {
735 // The fixup represents the difference between two symbols, which the
736 // backend has indicated must be resolved at link time. Split up the fixup
737 // into two relocations, one for the add, and one for the sub, and emit
738 // both of these. The constant will be associated with the add half of the
739 // expression.
740 MCFixup FixupAdd = MCFixup::createAddFor(Fixup);
741 MCValue TargetAdd =
742 MCValue::get(Target.getSymA(), nullptr, Target.getConstant());
743 getWriter().recordRelocation(*this, Layout, &F, FixupAdd, TargetAdd,
744 FixedValue);
745 MCFixup FixupSub = MCFixup::createSubFor(Fixup);
746 MCValue TargetSub = MCValue::get(Target.getSymB());
747 getWriter().recordRelocation(*this, Layout, &F, FixupSub, TargetSub,
748 FixedValue);
749 } else {
750 getWriter().recordRelocation(*this, Layout, &F, Fixup, Target,
751 FixedValue);
754 return std::make_tuple(Target, FixedValue, IsResolved);
757 void MCAssembler::layout(MCAsmLayout &Layout) {
758 assert(getBackendPtr() && "Expected assembler backend");
759 DEBUG_WITH_TYPE("mc-dump", {
760 errs() << "assembler backend - pre-layout\n--\n";
761 dump(); });
763 // Create dummy fragments and assign section ordinals.
764 unsigned SectionIndex = 0;
765 for (MCSection &Sec : *this) {
766 // Create dummy fragments to eliminate any empty sections, this simplifies
767 // layout.
768 if (Sec.getFragmentList().empty())
769 new MCDataFragment(&Sec);
771 Sec.setOrdinal(SectionIndex++);
774 // Assign layout order indices to sections and fragments.
775 for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
776 MCSection *Sec = Layout.getSectionOrder()[i];
777 Sec->setLayoutOrder(i);
779 unsigned FragmentIndex = 0;
780 for (MCFragment &Frag : *Sec)
781 Frag.setLayoutOrder(FragmentIndex++);
784 // Layout until everything fits.
785 while (layoutOnce(Layout))
786 if (getContext().hadError())
787 return;
789 DEBUG_WITH_TYPE("mc-dump", {
790 errs() << "assembler backend - post-relaxation\n--\n";
791 dump(); });
793 // Finalize the layout, including fragment lowering.
794 finishLayout(Layout);
796 DEBUG_WITH_TYPE("mc-dump", {
797 errs() << "assembler backend - final-layout\n--\n";
798 dump(); });
800 // Allow the object writer a chance to perform post-layout binding (for
801 // example, to set the index fields in the symbol data).
802 getWriter().executePostLayoutBinding(*this, Layout);
804 // Evaluate and apply the fixups, generating relocation entries as necessary.
805 for (MCSection &Sec : *this) {
806 for (MCFragment &Frag : Sec) {
807 // Data and relaxable fragments both have fixups. So only process
808 // those here.
809 // FIXME: Is there a better way to do this? MCEncodedFragmentWithFixups
810 // being templated makes this tricky.
811 if (isa<MCEncodedFragment>(&Frag) &&
812 isa<MCCompactEncodedInstFragment>(&Frag))
813 continue;
814 if (!isa<MCEncodedFragment>(&Frag) && !isa<MCCVDefRangeFragment>(&Frag) &&
815 !isa<MCAlignFragment>(&Frag))
816 continue;
817 ArrayRef<MCFixup> Fixups;
818 MutableArrayRef<char> Contents;
819 const MCSubtargetInfo *STI = nullptr;
820 if (auto *FragWithFixups = dyn_cast<MCDataFragment>(&Frag)) {
821 Fixups = FragWithFixups->getFixups();
822 Contents = FragWithFixups->getContents();
823 STI = FragWithFixups->getSubtargetInfo();
824 assert(!FragWithFixups->hasInstructions() || STI != nullptr);
825 } else if (auto *FragWithFixups = dyn_cast<MCRelaxableFragment>(&Frag)) {
826 Fixups = FragWithFixups->getFixups();
827 Contents = FragWithFixups->getContents();
828 STI = FragWithFixups->getSubtargetInfo();
829 assert(!FragWithFixups->hasInstructions() || STI != nullptr);
830 } else if (auto *FragWithFixups = dyn_cast<MCCVDefRangeFragment>(&Frag)) {
831 Fixups = FragWithFixups->getFixups();
832 Contents = FragWithFixups->getContents();
833 } else if (auto *FragWithFixups = dyn_cast<MCDwarfLineAddrFragment>(&Frag)) {
834 Fixups = FragWithFixups->getFixups();
835 Contents = FragWithFixups->getContents();
836 } else if (auto *AF = dyn_cast<MCAlignFragment>(&Frag)) {
837 // Insert fixup type for code alignment if the target define
838 // shouldInsertFixupForCodeAlign target hook.
839 if (Sec.UseCodeAlign() && AF->hasEmitNops()) {
840 getBackend().shouldInsertFixupForCodeAlign(*this, Layout, *AF);
842 continue;
843 } else if (auto *FragWithFixups =
844 dyn_cast<MCDwarfCallFrameFragment>(&Frag)) {
845 Fixups = FragWithFixups->getFixups();
846 Contents = FragWithFixups->getContents();
847 } else
848 llvm_unreachable("Unknown fragment with fixups!");
849 for (const MCFixup &Fixup : Fixups) {
850 uint64_t FixedValue;
851 bool IsResolved;
852 MCValue Target;
853 std::tie(Target, FixedValue, IsResolved) =
854 handleFixup(Layout, Frag, Fixup);
855 getBackend().applyFixup(*this, Fixup, Target, Contents, FixedValue,
856 IsResolved, STI);
862 void MCAssembler::Finish() {
863 // Create the layout object.
864 MCAsmLayout Layout(*this);
865 layout(Layout);
867 // Write the object file.
868 stats::ObjectBytes += getWriter().writeObject(*this, Layout);
871 bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
872 const MCRelaxableFragment *DF,
873 const MCAsmLayout &Layout) const {
874 assert(getBackendPtr() && "Expected assembler backend");
875 MCValue Target;
876 uint64_t Value;
877 bool WasForced;
878 bool Resolved = evaluateFixup(Layout, Fixup, DF, Target, Value, WasForced);
879 if (Target.getSymA() &&
880 Target.getSymA()->getKind() == MCSymbolRefExpr::VK_X86_ABS8 &&
881 Fixup.getKind() == FK_Data_1)
882 return false;
883 return getBackend().fixupNeedsRelaxationAdvanced(Fixup, Resolved, Value, DF,
884 Layout, WasForced);
887 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F,
888 const MCAsmLayout &Layout) const {
889 assert(getBackendPtr() && "Expected assembler backend");
890 // If this inst doesn't ever need relaxation, ignore it. This occurs when we
891 // are intentionally pushing out inst fragments, or because we relaxed a
892 // previous instruction to one that doesn't need relaxation.
893 if (!getBackend().mayNeedRelaxation(F->getInst(), *F->getSubtargetInfo()))
894 return false;
896 for (const MCFixup &Fixup : F->getFixups())
897 if (fixupNeedsRelaxation(Fixup, F, Layout))
898 return true;
900 return false;
903 bool MCAssembler::relaxInstruction(MCAsmLayout &Layout,
904 MCRelaxableFragment &F) {
905 assert(getEmitterPtr() &&
906 "Expected CodeEmitter defined for relaxInstruction");
907 if (!fragmentNeedsRelaxation(&F, Layout))
908 return false;
910 ++stats::RelaxedInstructions;
912 // FIXME-PERF: We could immediately lower out instructions if we can tell
913 // they are fully resolved, to avoid retesting on later passes.
915 // Relax the fragment.
917 MCInst Relaxed;
918 getBackend().relaxInstruction(F.getInst(), *F.getSubtargetInfo(), Relaxed);
920 // Encode the new instruction.
922 // FIXME-PERF: If it matters, we could let the target do this. It can
923 // probably do so more efficiently in many cases.
924 SmallVector<MCFixup, 4> Fixups;
925 SmallString<256> Code;
926 raw_svector_ostream VecOS(Code);
927 getEmitter().encodeInstruction(Relaxed, VecOS, Fixups, *F.getSubtargetInfo());
929 // Update the fragment.
930 F.setInst(Relaxed);
931 F.getContents() = Code;
932 F.getFixups() = Fixups;
934 return true;
937 bool MCAssembler::relaxPaddingFragment(MCAsmLayout &Layout,
938 MCPaddingFragment &PF) {
939 assert(getBackendPtr() && "Expected assembler backend");
940 uint64_t OldSize = PF.getSize();
941 if (!getBackend().relaxFragment(&PF, Layout))
942 return false;
943 uint64_t NewSize = PF.getSize();
945 ++stats::PaddingFragmentsRelaxations;
946 stats::PaddingFragmentsBytes += NewSize;
947 stats::PaddingFragmentsBytes -= OldSize;
948 return true;
951 bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
952 uint64_t OldSize = LF.getContents().size();
953 int64_t Value;
954 bool Abs = LF.getValue().evaluateKnownAbsolute(Value, Layout);
955 if (!Abs)
956 report_fatal_error("sleb128 and uleb128 expressions must be absolute");
957 SmallString<8> &Data = LF.getContents();
958 Data.clear();
959 raw_svector_ostream OSE(Data);
960 // The compiler can generate EH table assembly that is impossible to assemble
961 // without either adding padding to an LEB fragment or adding extra padding
962 // to a later alignment fragment. To accommodate such tables, relaxation can
963 // only increase an LEB fragment size here, not decrease it. See PR35809.
964 if (LF.isSigned())
965 encodeSLEB128(Value, OSE, OldSize);
966 else
967 encodeULEB128(Value, OSE, OldSize);
968 return OldSize != LF.getContents().size();
971 bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
972 MCDwarfLineAddrFragment &DF) {
973 MCContext &Context = Layout.getAssembler().getContext();
974 uint64_t OldSize = DF.getContents().size();
975 int64_t AddrDelta;
976 bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
977 assert(Abs && "We created a line delta with an invalid expression");
978 (void)Abs;
979 int64_t LineDelta;
980 LineDelta = DF.getLineDelta();
981 SmallVectorImpl<char> &Data = DF.getContents();
982 Data.clear();
983 raw_svector_ostream OSE(Data);
984 DF.getFixups().clear();
986 if (!getBackend().requiresDiffExpressionRelocations()) {
987 MCDwarfLineAddr::Encode(Context, getDWARFLinetableParams(), LineDelta,
988 AddrDelta, OSE);
989 } else {
990 uint32_t Offset;
991 uint32_t Size;
992 bool SetDelta = MCDwarfLineAddr::FixedEncode(Context,
993 getDWARFLinetableParams(),
994 LineDelta, AddrDelta,
995 OSE, &Offset, &Size);
996 // Add Fixups for address delta or new address.
997 const MCExpr *FixupExpr;
998 if (SetDelta) {
999 FixupExpr = &DF.getAddrDelta();
1000 } else {
1001 const MCBinaryExpr *ABE = cast<MCBinaryExpr>(&DF.getAddrDelta());
1002 FixupExpr = ABE->getLHS();
1004 DF.getFixups().push_back(
1005 MCFixup::create(Offset, FixupExpr,
1006 MCFixup::getKindForSize(Size, false /*isPCRel*/)));
1009 return OldSize != Data.size();
1012 bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
1013 MCDwarfCallFrameFragment &DF) {
1014 MCContext &Context = Layout.getAssembler().getContext();
1015 uint64_t OldSize = DF.getContents().size();
1016 int64_t AddrDelta;
1017 bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
1018 assert(Abs && "We created call frame with an invalid expression");
1019 (void) Abs;
1020 SmallVectorImpl<char> &Data = DF.getContents();
1021 Data.clear();
1022 raw_svector_ostream OSE(Data);
1023 DF.getFixups().clear();
1025 if (getBackend().requiresDiffExpressionRelocations()) {
1026 uint32_t Offset;
1027 uint32_t Size;
1028 MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE, &Offset,
1029 &Size);
1030 if (Size) {
1031 DF.getFixups().push_back(MCFixup::create(
1032 Offset, &DF.getAddrDelta(),
1033 MCFixup::getKindForSizeInBits(Size /*In bits.*/, false /*isPCRel*/)));
1035 } else {
1036 MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE);
1039 return OldSize != Data.size();
1042 bool MCAssembler::relaxCVInlineLineTable(MCAsmLayout &Layout,
1043 MCCVInlineLineTableFragment &F) {
1044 unsigned OldSize = F.getContents().size();
1045 getContext().getCVContext().encodeInlineLineTable(Layout, F);
1046 return OldSize != F.getContents().size();
1049 bool MCAssembler::relaxCVDefRange(MCAsmLayout &Layout,
1050 MCCVDefRangeFragment &F) {
1051 unsigned OldSize = F.getContents().size();
1052 getContext().getCVContext().encodeDefRange(Layout, F);
1053 return OldSize != F.getContents().size();
1056 bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSection &Sec) {
1057 // Holds the first fragment which needed relaxing during this layout. It will
1058 // remain NULL if none were relaxed.
1059 // When a fragment is relaxed, all the fragments following it should get
1060 // invalidated because their offset is going to change.
1061 MCFragment *FirstRelaxedFragment = nullptr;
1063 // Attempt to relax all the fragments in the section.
1064 for (MCSection::iterator I = Sec.begin(), IE = Sec.end(); I != IE; ++I) {
1065 // Check if this is a fragment that needs relaxation.
1066 bool RelaxedFrag = false;
1067 switch(I->getKind()) {
1068 default:
1069 break;
1070 case MCFragment::FT_Relaxable:
1071 assert(!getRelaxAll() &&
1072 "Did not expect a MCRelaxableFragment in RelaxAll mode");
1073 RelaxedFrag = relaxInstruction(Layout, *cast<MCRelaxableFragment>(I));
1074 break;
1075 case MCFragment::FT_Dwarf:
1076 RelaxedFrag = relaxDwarfLineAddr(Layout,
1077 *cast<MCDwarfLineAddrFragment>(I));
1078 break;
1079 case MCFragment::FT_DwarfFrame:
1080 RelaxedFrag =
1081 relaxDwarfCallFrameFragment(Layout,
1082 *cast<MCDwarfCallFrameFragment>(I));
1083 break;
1084 case MCFragment::FT_LEB:
1085 RelaxedFrag = relaxLEB(Layout, *cast<MCLEBFragment>(I));
1086 break;
1087 case MCFragment::FT_Padding:
1088 RelaxedFrag = relaxPaddingFragment(Layout, *cast<MCPaddingFragment>(I));
1089 break;
1090 case MCFragment::FT_CVInlineLines:
1091 RelaxedFrag =
1092 relaxCVInlineLineTable(Layout, *cast<MCCVInlineLineTableFragment>(I));
1093 break;
1094 case MCFragment::FT_CVDefRange:
1095 RelaxedFrag = relaxCVDefRange(Layout, *cast<MCCVDefRangeFragment>(I));
1096 break;
1098 if (RelaxedFrag && !FirstRelaxedFragment)
1099 FirstRelaxedFragment = &*I;
1101 if (FirstRelaxedFragment) {
1102 Layout.invalidateFragmentsFrom(FirstRelaxedFragment);
1103 return true;
1105 return false;
1108 bool MCAssembler::layoutOnce(MCAsmLayout &Layout) {
1109 ++stats::RelaxationSteps;
1111 bool WasRelaxed = false;
1112 for (iterator it = begin(), ie = end(); it != ie; ++it) {
1113 MCSection &Sec = *it;
1114 while (layoutSectionOnce(Layout, Sec))
1115 WasRelaxed = true;
1118 return WasRelaxed;
1121 void MCAssembler::finishLayout(MCAsmLayout &Layout) {
1122 assert(getBackendPtr() && "Expected assembler backend");
1123 // The layout is done. Mark every fragment as valid.
1124 for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
1125 MCSection &Section = *Layout.getSectionOrder()[i];
1126 Layout.getFragmentOffset(&*Section.rbegin());
1127 computeFragmentSize(Layout, *Section.rbegin());
1129 getBackend().finishLayout(*this, Layout);
1132 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1133 LLVM_DUMP_METHOD void MCAssembler::dump() const{
1134 raw_ostream &OS = errs();
1136 OS << "<MCAssembler\n";
1137 OS << " Sections:[\n ";
1138 for (const_iterator it = begin(), ie = end(); it != ie; ++it) {
1139 if (it != begin()) OS << ",\n ";
1140 it->dump();
1142 OS << "],\n";
1143 OS << " Symbols:[";
1145 for (const_symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
1146 if (it != symbol_begin()) OS << ",\n ";
1147 OS << "(";
1148 it->dump();
1149 OS << ", Index:" << it->getIndex() << ", ";
1150 OS << ")";
1152 OS << "]>\n";
1154 #endif