1 //===- LoopFuse.cpp - Loop Fusion Pass ------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file implements the loop fusion pass.
11 /// The implementation is largely based on the following document:
13 /// Code Transformations to Augment the Scope of Loop Fusion in a
14 /// Production Compiler
15 /// Christopher Mark Barton
17 /// https://webdocs.cs.ualberta.ca/~amaral/thesis/ChristopherBartonMSc.pdf
19 /// The general approach taken is to collect sets of control flow equivalent
20 /// loops and test whether they can be fused. The necessary conditions for
22 /// 1. The loops must be adjacent (there cannot be any statements between
24 /// 2. The loops must be conforming (they must execute the same number of
26 /// 3. The loops must be control flow equivalent (if one loop executes, the
27 /// other is guaranteed to execute).
28 /// 4. There cannot be any negative distance dependencies between the loops.
29 /// If all of these conditions are satisfied, it is safe to fuse the loops.
31 /// This implementation creates FusionCandidates that represent the loop and the
32 /// necessary information needed by fusion. It then operates on the fusion
33 /// candidates, first confirming that the candidate is eligible for fusion. The
34 /// candidates are then collected into control flow equivalent sets, sorted in
35 /// dominance order. Each set of control flow equivalent candidates is then
36 /// traversed, attempting to fuse pairs of candidates in the set. If all
37 /// requirements for fusion are met, the two candidates are fused, creating a
38 /// new (fused) candidate which is then added back into the set to consider for
39 /// additional fusion.
41 /// This implementation currently does not make any modifications to remove
42 /// conditions for fusion. Code transformations to make loops conform to each of
43 /// the conditions for fusion are discussed in more detail in the document
44 /// above. These can be added to the current implementation in the future.
45 //===----------------------------------------------------------------------===//
47 #include "llvm/Transforms/Scalar/LoopFuse.h"
48 #include "llvm/ADT/Statistic.h"
49 #include "llvm/Analysis/DependenceAnalysis.h"
50 #include "llvm/Analysis/DomTreeUpdater.h"
51 #include "llvm/Analysis/LoopInfo.h"
52 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
53 #include "llvm/Analysis/PostDominators.h"
54 #include "llvm/Analysis/ScalarEvolution.h"
55 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/Verifier.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Transforms/Scalar.h"
62 #include "llvm/Transforms/Utils.h"
63 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #define DEBUG_TYPE "loop-fusion"
69 STATISTIC(FuseCounter
, "Count number of loop fusions performed");
70 STATISTIC(NumFusionCandidates
, "Number of candidates for loop fusion");
71 STATISTIC(InvalidPreheader
, "Loop has invalid preheader");
72 STATISTIC(InvalidHeader
, "Loop has invalid header");
73 STATISTIC(InvalidExitingBlock
, "Loop has invalid exiting blocks");
74 STATISTIC(InvalidExitBlock
, "Loop has invalid exit block");
75 STATISTIC(InvalidLatch
, "Loop has invalid latch");
76 STATISTIC(InvalidLoop
, "Loop is invalid");
77 STATISTIC(AddressTakenBB
, "Basic block has address taken");
78 STATISTIC(MayThrowException
, "Loop may throw an exception");
79 STATISTIC(ContainsVolatileAccess
, "Loop contains a volatile access");
80 STATISTIC(NotSimplifiedForm
, "Loop is not in simplified form");
81 STATISTIC(InvalidDependencies
, "Dependencies prevent fusion");
82 STATISTIC(InvalidTripCount
,
83 "Loop does not have invariant backedge taken count");
84 STATISTIC(UncomputableTripCount
, "SCEV cannot compute trip count of loop");
85 STATISTIC(NonEqualTripCount
, "Candidate trip counts are not the same");
86 STATISTIC(NonAdjacent
, "Candidates are not adjacent");
87 STATISTIC(NonEmptyPreheader
, "Candidate has a non-empty preheader");
89 enum FusionDependenceAnalysisChoice
{
90 FUSION_DEPENDENCE_ANALYSIS_SCEV
,
91 FUSION_DEPENDENCE_ANALYSIS_DA
,
92 FUSION_DEPENDENCE_ANALYSIS_ALL
,
95 static cl::opt
<FusionDependenceAnalysisChoice
> FusionDependenceAnalysis(
96 "loop-fusion-dependence-analysis",
97 cl::desc("Which dependence analysis should loop fusion use?"),
98 cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV
, "scev",
99 "Use the scalar evolution interface"),
100 clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA
, "da",
101 "Use the dependence analysis interface"),
102 clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL
, "all",
103 "Use all available analyses")),
104 cl::Hidden
, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL
), cl::ZeroOrMore
);
108 VerboseFusionDebugging("loop-fusion-verbose-debug",
109 cl::desc("Enable verbose debugging for Loop Fusion"),
110 cl::Hidden
, cl::init(false), cl::ZeroOrMore
);
113 /// This class is used to represent a candidate for loop fusion. When it is
114 /// constructed, it checks the conditions for loop fusion to ensure that it
115 /// represents a valid candidate. It caches several parts of a loop that are
116 /// used throughout loop fusion (e.g., loop preheader, loop header, etc) instead
117 /// of continually querying the underlying Loop to retrieve these values. It is
118 /// assumed these will not change throughout loop fusion.
120 /// The invalidate method should be used to indicate that the FusionCandidate is
121 /// no longer a valid candidate for fusion. Similarly, the isValid() method can
122 /// be used to ensure that the FusionCandidate is still valid for fusion.
123 struct FusionCandidate
{
124 /// Cache of parts of the loop used throughout loop fusion. These should not
125 /// need to change throughout the analysis and transformation.
126 /// These parts are cached to avoid repeatedly looking up in the Loop class.
128 /// Preheader of the loop this candidate represents
129 BasicBlock
*Preheader
;
130 /// Header of the loop this candidate represents
132 /// Blocks in the loop that exit the loop
133 BasicBlock
*ExitingBlock
;
134 /// The successor block of this loop (where the exiting blocks go to)
135 BasicBlock
*ExitBlock
;
136 /// Latch of the loop
138 /// The loop that this fusion candidate represents
140 /// Vector of instructions in this loop that read from memory
141 SmallVector
<Instruction
*, 16> MemReads
;
142 /// Vector of instructions in this loop that write to memory
143 SmallVector
<Instruction
*, 16> MemWrites
;
144 /// Are all of the members of this fusion candidate still valid
147 /// Dominator and PostDominator trees are needed for the
148 /// FusionCandidateCompare function, required by FusionCandidateSet to
149 /// determine where the FusionCandidate should be inserted into the set. These
150 /// are used to establish ordering of the FusionCandidates based on dominance.
151 const DominatorTree
*DT
;
152 const PostDominatorTree
*PDT
;
154 FusionCandidate(Loop
*L
, const DominatorTree
*DT
,
155 const PostDominatorTree
*PDT
)
156 : Preheader(L
->getLoopPreheader()), Header(L
->getHeader()),
157 ExitingBlock(L
->getExitingBlock()), ExitBlock(L
->getExitBlock()),
158 Latch(L
->getLoopLatch()), L(L
), Valid(true), DT(DT
), PDT(PDT
) {
160 // Walk over all blocks in the loop and check for conditions that may
161 // prevent fusion. For each block, walk over all instructions and collect
162 // the memory reads and writes If any instructions that prevent fusion are
163 // found, invalidate this object and return.
164 for (BasicBlock
*BB
: L
->blocks()) {
165 if (BB
->hasAddressTaken()) {
171 for (Instruction
&I
: *BB
) {
177 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(&I
)) {
178 if (SI
->isVolatile()) {
179 ContainsVolatileAccess
++;
184 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(&I
)) {
185 if (LI
->isVolatile()) {
186 ContainsVolatileAccess
++;
191 if (I
.mayWriteToMemory())
192 MemWrites
.push_back(&I
);
193 if (I
.mayReadFromMemory())
194 MemReads
.push_back(&I
);
199 /// Check if all members of the class are valid.
200 bool isValid() const {
201 return Preheader
&& Header
&& ExitingBlock
&& ExitBlock
&& Latch
&& L
&&
202 !L
->isInvalid() && Valid
;
205 /// Verify that all members are in sync with the Loop object.
206 void verify() const {
207 assert(isValid() && "Candidate is not valid!!");
208 assert(!L
->isInvalid() && "Loop is invalid!");
209 assert(Preheader
== L
->getLoopPreheader() && "Preheader is out of sync");
210 assert(Header
== L
->getHeader() && "Header is out of sync");
211 assert(ExitingBlock
== L
->getExitingBlock() &&
212 "Exiting Blocks is out of sync");
213 assert(ExitBlock
== L
->getExitBlock() && "Exit block is out of sync");
214 assert(Latch
== L
->getLoopLatch() && "Latch is out of sync");
217 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
218 LLVM_DUMP_METHOD
void dump() const {
219 dbgs() << "\tPreheader: " << (Preheader
? Preheader
->getName() : "nullptr")
221 << "\tHeader: " << (Header
? Header
->getName() : "nullptr") << "\n"
223 << (ExitingBlock
? ExitingBlock
->getName() : "nullptr") << "\n"
224 << "\tExitBB: " << (ExitBlock
? ExitBlock
->getName() : "nullptr")
226 << "\tLatch: " << (Latch
? Latch
->getName() : "nullptr") << "\n";
231 // This is only used internally for now, to clear the MemWrites and MemReads
232 // list and setting Valid to false. I can't envision other uses of this right
233 // now, since once FusionCandidates are put into the FusionCandidateSet they
234 // are immutable. Thus, any time we need to change/update a FusionCandidate,
235 // we must create a new one and insert it into the FusionCandidateSet to
236 // ensure the FusionCandidateSet remains ordered correctly.
244 inline llvm::raw_ostream
&operator<<(llvm::raw_ostream
&OS
,
245 const FusionCandidate
&FC
) {
247 OS
<< FC
.Preheader
->getName();
254 struct FusionCandidateCompare
{
255 /// Comparison functor to sort two Control Flow Equivalent fusion candidates
256 /// into dominance order.
257 /// If LHS dominates RHS and RHS post-dominates LHS, return true;
258 /// IF RHS dominates LHS and LHS post-dominates RHS, return false;
259 bool operator()(const FusionCandidate
&LHS
,
260 const FusionCandidate
&RHS
) const {
261 const DominatorTree
*DT
= LHS
.DT
;
263 // Do not save PDT to local variable as it is only used in asserts and thus
264 // will trigger an unused variable warning if building without asserts.
265 assert(DT
&& LHS
.PDT
&& "Expecting valid dominator tree");
267 // Do this compare first so if LHS == RHS, function returns false.
268 if (DT
->dominates(RHS
.Preheader
, LHS
.Preheader
)) {
270 // Verify LHS post-dominates RHS
271 assert(LHS
.PDT
->dominates(LHS
.Preheader
, RHS
.Preheader
));
275 if (DT
->dominates(LHS
.Preheader
, RHS
.Preheader
)) {
276 // Verify RHS Postdominates LHS
277 assert(LHS
.PDT
->dominates(RHS
.Preheader
, LHS
.Preheader
));
281 // If LHS does not dominate RHS and RHS does not dominate LHS then there is
282 // no dominance relationship between the two FusionCandidates. Thus, they
283 // should not be in the same set together.
285 "No dominance relationship between these fusion candidates!");
290 using LoopVector
= SmallVector
<Loop
*, 4>;
292 // Set of Control Flow Equivalent (CFE) Fusion Candidates, sorted in dominance
293 // order. Thus, if FC0 comes *before* FC1 in a FusionCandidateSet, then FC0
294 // dominates FC1 and FC1 post-dominates FC0.
295 // std::set was chosen because we want a sorted data structure with stable
296 // iterators. A subsequent patch to loop fusion will enable fusing non-ajdacent
297 // loops by moving intervening code around. When this intervening code contains
298 // loops, those loops will be moved also. The corresponding FusionCandidates
299 // will also need to be moved accordingly. As this is done, having stable
300 // iterators will simplify the logic. Similarly, having an efficient insert that
301 // keeps the FusionCandidateSet sorted will also simplify the implementation.
302 using FusionCandidateSet
= std::set
<FusionCandidate
, FusionCandidateCompare
>;
303 using FusionCandidateCollection
= SmallVector
<FusionCandidateSet
, 4>;
306 inline llvm::raw_ostream
&operator<<(llvm::raw_ostream
&OS
,
307 const FusionCandidateSet
&CandSet
) {
308 for (auto IT
: CandSet
)
316 printFusionCandidates(const FusionCandidateCollection
&FusionCandidates
) {
317 dbgs() << "Fusion Candidates: \n";
318 for (const auto &CandidateSet
: FusionCandidates
) {
319 dbgs() << "*** Fusion Candidate Set ***\n";
320 dbgs() << CandidateSet
;
321 dbgs() << "****************************\n";
326 /// Collect all loops in function at the same nest level, starting at the
329 /// This data structure collects all loops at the same nest level for a
330 /// given function (specified by the LoopInfo object). It starts at the
332 struct LoopDepthTree
{
333 using LoopsOnLevelTy
= SmallVector
<LoopVector
, 4>;
334 using iterator
= LoopsOnLevelTy::iterator
;
335 using const_iterator
= LoopsOnLevelTy::const_iterator
;
337 LoopDepthTree(LoopInfo
&LI
) : Depth(1) {
339 LoopsOnLevel
.emplace_back(LoopVector(LI
.rbegin(), LI
.rend()));
342 /// Test whether a given loop has been removed from the function, and thus is
344 bool isRemovedLoop(const Loop
*L
) const { return RemovedLoops
.count(L
); }
346 /// Record that a given loop has been removed from the function and is no
348 void removeLoop(const Loop
*L
) { RemovedLoops
.insert(L
); }
350 /// Descend the tree to the next (inner) nesting level
352 LoopsOnLevelTy LoopsOnNextLevel
;
354 for (const LoopVector
&LV
: *this)
356 if (!isRemovedLoop(L
) && L
->begin() != L
->end())
357 LoopsOnNextLevel
.emplace_back(LoopVector(L
->begin(), L
->end()));
359 LoopsOnLevel
= LoopsOnNextLevel
;
360 RemovedLoops
.clear();
364 bool empty() const { return size() == 0; }
365 size_t size() const { return LoopsOnLevel
.size() - RemovedLoops
.size(); }
366 unsigned getDepth() const { return Depth
; }
368 iterator
begin() { return LoopsOnLevel
.begin(); }
369 iterator
end() { return LoopsOnLevel
.end(); }
370 const_iterator
begin() const { return LoopsOnLevel
.begin(); }
371 const_iterator
end() const { return LoopsOnLevel
.end(); }
374 /// Set of loops that have been removed from the function and are no longer
376 SmallPtrSet
<const Loop
*, 8> RemovedLoops
;
378 /// Depth of the current level, starting at 1 (outermost loops).
381 /// Vector of loops at the current depth level that have the same parent loop
382 LoopsOnLevelTy LoopsOnLevel
;
386 static void printLoopVector(const LoopVector
&LV
) {
387 dbgs() << "****************************\n";
389 printLoop(*L
, dbgs());
390 dbgs() << "****************************\n";
394 static void reportLoopFusion(const FusionCandidate
&FC0
,
395 const FusionCandidate
&FC1
,
396 OptimizationRemarkEmitter
&ORE
) {
399 OptimizationRemark(DEBUG_TYPE
, "LoopFusion", FC0
.Preheader
->getParent())
400 << "Fused " << NV("Cand1", StringRef(FC0
.Preheader
->getName()))
401 << " with " << NV("Cand2", StringRef(FC1
.Preheader
->getName())));
406 // Sets of control flow equivalent fusion candidates for a given nest level.
407 FusionCandidateCollection FusionCandidates
;
416 PostDominatorTree
&PDT
;
417 OptimizationRemarkEmitter
&ORE
;
420 LoopFuser(LoopInfo
&LI
, DominatorTree
&DT
, DependenceInfo
&DI
,
421 ScalarEvolution
&SE
, PostDominatorTree
&PDT
,
422 OptimizationRemarkEmitter
&ORE
, const DataLayout
&DL
)
423 : LDT(LI
), DTU(DT
, PDT
, DomTreeUpdater::UpdateStrategy::Lazy
), LI(LI
),
424 DT(DT
), DI(DI
), SE(SE
), PDT(PDT
), ORE(ORE
) {}
426 /// This is the main entry point for loop fusion. It will traverse the
427 /// specified function and collect candidate loops to fuse, starting at the
428 /// outermost nesting level and working inwards.
429 bool fuseLoops(Function
&F
) {
431 if (VerboseFusionDebugging
) {
436 LLVM_DEBUG(dbgs() << "Performing Loop Fusion on function " << F
.getName()
438 bool Changed
= false;
440 while (!LDT
.empty()) {
441 LLVM_DEBUG(dbgs() << "Got " << LDT
.size() << " loop sets for depth "
442 << LDT
.getDepth() << "\n";);
444 for (const LoopVector
&LV
: LDT
) {
445 assert(LV
.size() > 0 && "Empty loop set was build!");
447 // Skip singleton loop sets as they do not offer fusion opportunities on
452 if (VerboseFusionDebugging
) {
454 dbgs() << " Visit loop set (#" << LV
.size() << "):\n";
460 collectFusionCandidates(LV
);
461 Changed
|= fuseCandidates();
464 // Finished analyzing candidates at this level.
465 // Descend to the next level and clear all of the candidates currently
466 // collected. Note that it will not be possible to fuse any of the
467 // existing candidates with new candidates because the new candidates will
468 // be at a different nest level and thus not be control flow equivalent
469 // with all of the candidates collected so far.
470 LLVM_DEBUG(dbgs() << "Descend one level!\n");
472 FusionCandidates
.clear();
476 LLVM_DEBUG(dbgs() << "Function after Loop Fusion: \n"; F
.dump(););
480 assert(PDT
.verify());
485 LLVM_DEBUG(dbgs() << "Loop Fusion complete\n");
490 /// Determine if two fusion candidates are control flow equivalent.
492 /// Two fusion candidates are control flow equivalent if when one executes,
493 /// the other is guaranteed to execute. This is determined using dominators
494 /// and post-dominators: if A dominates B and B post-dominates A then A and B
495 /// are control-flow equivalent.
496 bool isControlFlowEquivalent(const FusionCandidate
&FC0
,
497 const FusionCandidate
&FC1
) const {
498 assert(FC0
.Preheader
&& FC1
.Preheader
&& "Expecting valid preheaders");
500 if (DT
.dominates(FC0
.Preheader
, FC1
.Preheader
))
501 return PDT
.dominates(FC1
.Preheader
, FC0
.Preheader
);
503 if (DT
.dominates(FC1
.Preheader
, FC0
.Preheader
))
504 return PDT
.dominates(FC0
.Preheader
, FC1
.Preheader
);
509 /// Determine if a fusion candidate (representing a loop) is eligible for
510 /// fusion. Note that this only checks whether a single loop can be fused - it
511 /// does not check whether it is *legal* to fuse two loops together.
512 bool eligibleForFusion(const FusionCandidate
&FC
) const {
514 LLVM_DEBUG(dbgs() << "FC " << FC
<< " has invalid CFG requirements!\n");
519 if (!FC
.ExitingBlock
)
520 InvalidExitingBlock
++;
525 if (FC
.L
->isInvalid())
531 // Require ScalarEvolution to be able to determine a trip count.
532 if (!SE
.hasLoopInvariantBackedgeTakenCount(FC
.L
)) {
533 LLVM_DEBUG(dbgs() << "Loop " << FC
.L
->getName()
534 << " trip count not computable!\n");
539 if (!FC
.L
->isLoopSimplifyForm()) {
540 LLVM_DEBUG(dbgs() << "Loop " << FC
.L
->getName()
541 << " is not in simplified form!\n");
549 /// Iterate over all loops in the given loop set and identify the loops that
550 /// are eligible for fusion. Place all eligible fusion candidates into Control
551 /// Flow Equivalent sets, sorted by dominance.
552 void collectFusionCandidates(const LoopVector
&LV
) {
554 FusionCandidate
CurrCand(L
, &DT
, &PDT
);
555 if (!eligibleForFusion(CurrCand
))
558 // Go through each list in FusionCandidates and determine if L is control
559 // flow equivalent with the first loop in that list. If it is, append LV.
560 // If not, go to the next list.
561 // If no suitable list is found, start another list and add it to
563 bool FoundSet
= false;
565 for (auto &CurrCandSet
: FusionCandidates
) {
566 if (isControlFlowEquivalent(*CurrCandSet
.begin(), CurrCand
)) {
567 CurrCandSet
.insert(CurrCand
);
570 if (VerboseFusionDebugging
)
571 LLVM_DEBUG(dbgs() << "Adding " << CurrCand
572 << " to existing candidate set\n");
578 // No set was found. Create a new set and add to FusionCandidates
580 if (VerboseFusionDebugging
)
581 LLVM_DEBUG(dbgs() << "Adding " << CurrCand
<< " to new set\n");
583 FusionCandidateSet NewCandSet
;
584 NewCandSet
.insert(CurrCand
);
585 FusionCandidates
.push_back(NewCandSet
);
587 NumFusionCandidates
++;
591 /// Determine if it is beneficial to fuse two loops.
593 /// For now, this method simply returns true because we want to fuse as much
594 /// as possible (primarily to test the pass). This method will evolve, over
595 /// time, to add heuristics for profitability of fusion.
596 bool isBeneficialFusion(const FusionCandidate
&FC0
,
597 const FusionCandidate
&FC1
) {
601 /// Determine if two fusion candidates have the same trip count (i.e., they
602 /// execute the same number of iterations).
604 /// Note that for now this method simply returns a boolean value because there
605 /// are no mechanisms in loop fusion to handle different trip counts. In the
606 /// future, this behaviour can be extended to adjust one of the loops to make
607 /// the trip counts equal (e.g., loop peeling). When this is added, this
608 /// interface may need to change to return more information than just a
610 bool identicalTripCounts(const FusionCandidate
&FC0
,
611 const FusionCandidate
&FC1
) const {
612 const SCEV
*TripCount0
= SE
.getBackedgeTakenCount(FC0
.L
);
613 if (isa
<SCEVCouldNotCompute
>(TripCount0
)) {
614 UncomputableTripCount
++;
615 LLVM_DEBUG(dbgs() << "Trip count of first loop could not be computed!");
619 const SCEV
*TripCount1
= SE
.getBackedgeTakenCount(FC1
.L
);
620 if (isa
<SCEVCouldNotCompute
>(TripCount1
)) {
621 UncomputableTripCount
++;
622 LLVM_DEBUG(dbgs() << "Trip count of second loop could not be computed!");
625 LLVM_DEBUG(dbgs() << "\tTrip counts: " << *TripCount0
<< " & "
626 << *TripCount1
<< " are "
627 << (TripCount0
== TripCount1
? "identical" : "different")
630 return (TripCount0
== TripCount1
);
633 /// Walk each set of control flow equivalent fusion candidates and attempt to
634 /// fuse them. This does a single linear traversal of all candidates in the
635 /// set. The conditions for legal fusion are checked at this point. If a pair
636 /// of fusion candidates passes all legality checks, they are fused together
637 /// and a new fusion candidate is created and added to the FusionCandidateSet.
638 /// The original fusion candidates are then removed, as they are no longer
640 bool fuseCandidates() {
642 LLVM_DEBUG(printFusionCandidates(FusionCandidates
));
643 for (auto &CandidateSet
: FusionCandidates
) {
644 if (CandidateSet
.size() < 2)
647 LLVM_DEBUG(dbgs() << "Attempting fusion on Candidate Set:\n"
648 << CandidateSet
<< "\n");
650 for (auto FC0
= CandidateSet
.begin(); FC0
!= CandidateSet
.end(); ++FC0
) {
651 assert(!LDT
.isRemovedLoop(FC0
->L
) &&
652 "Should not have removed loops in CandidateSet!");
654 for (++FC1
; FC1
!= CandidateSet
.end(); ++FC1
) {
655 assert(!LDT
.isRemovedLoop(FC1
->L
) &&
656 "Should not have removed loops in CandidateSet!");
658 LLVM_DEBUG(dbgs() << "Attempting to fuse candidate \n"; FC0
->dump();
659 dbgs() << " with\n"; FC1
->dump(); dbgs() << "\n");
664 if (!identicalTripCounts(*FC0
, *FC1
)) {
665 LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical trip "
666 "counts. Not fusing.\n");
671 if (!isAdjacent(*FC0
, *FC1
)) {
673 << "Fusion candidates are not adjacent. Not fusing.\n");
678 // For now we skip fusing if the second candidate has any instructions
679 // in the preheader. This is done because we currently do not have the
680 // safety checks to determine if it is save to move the preheader of
681 // the second candidate past the body of the first candidate. Once
682 // these checks are added, this condition can be removed.
683 if (!isEmptyPreheader(*FC1
)) {
684 LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty "
685 "preheader. Not fusing.\n");
690 if (!dependencesAllowFusion(*FC0
, *FC1
)) {
691 LLVM_DEBUG(dbgs() << "Memory dependencies do not allow fusion!\n");
695 bool BeneficialToFuse
= isBeneficialFusion(*FC0
, *FC1
);
697 << "\tFusion appears to be "
698 << (BeneficialToFuse
? "" : "un") << "profitable!\n");
699 if (!BeneficialToFuse
)
702 // All analysis has completed and has determined that fusion is legal
703 // and profitable. At this point, start transforming the code and
706 LLVM_DEBUG(dbgs() << "\tFusion is performed: " << *FC0
<< " and "
709 // Report fusion to the Optimization Remarks.
710 // Note this needs to be done *before* performFusion because
711 // performFusion will change the original loops, making it not
712 // possible to identify them after fusion is complete.
713 reportLoopFusion(*FC0
, *FC1
, ORE
);
715 FusionCandidate
FusedCand(performFusion(*FC0
, *FC1
), &DT
, &PDT
);
717 assert(eligibleForFusion(FusedCand
) &&
718 "Fused candidate should be eligible for fusion!");
720 // Notify the loop-depth-tree that these loops are not valid objects
722 LDT
.removeLoop(FC1
->L
);
724 CandidateSet
.erase(FC0
);
725 CandidateSet
.erase(FC1
);
727 auto InsertPos
= CandidateSet
.insert(FusedCand
);
729 assert(InsertPos
.second
&&
730 "Unable to insert TargetCandidate in CandidateSet!");
732 // Reset FC0 and FC1 the new (fused) candidate. Subsequent iterations
733 // of the FC1 loop will attempt to fuse the new (fused) loop with the
734 // remaining candidates in the current candidate set.
735 FC0
= FC1
= InsertPos
.first
;
737 LLVM_DEBUG(dbgs() << "Candidate Set (after fusion): " << CandidateSet
747 /// Rewrite all additive recurrences in a SCEV to use a new loop.
748 class AddRecLoopReplacer
: public SCEVRewriteVisitor
<AddRecLoopReplacer
> {
750 AddRecLoopReplacer(ScalarEvolution
&SE
, const Loop
&OldL
, const Loop
&NewL
,
752 : SCEVRewriteVisitor(SE
), Valid(true), UseMax(UseMax
), OldL(OldL
),
755 const SCEV
*visitAddRecExpr(const SCEVAddRecExpr
*Expr
) {
756 const Loop
*ExprL
= Expr
->getLoop();
757 SmallVector
<const SCEV
*, 2> Operands
;
758 if (ExprL
== &OldL
) {
759 Operands
.append(Expr
->op_begin(), Expr
->op_end());
760 return SE
.getAddRecExpr(Operands
, &NewL
, Expr
->getNoWrapFlags());
763 if (OldL
.contains(ExprL
)) {
764 bool Pos
= SE
.isKnownPositive(Expr
->getStepRecurrence(SE
));
765 if (!UseMax
|| !Pos
|| !Expr
->isAffine()) {
769 return visit(Expr
->getStart());
772 for (const SCEV
*Op
: Expr
->operands())
773 Operands
.push_back(visit(Op
));
774 return SE
.getAddRecExpr(Operands
, ExprL
, Expr
->getNoWrapFlags());
777 bool wasValidSCEV() const { return Valid
; }
781 const Loop
&OldL
, &NewL
;
784 /// Return false if the access functions of \p I0 and \p I1 could cause
785 /// a negative dependence.
786 bool accessDiffIsPositive(const Loop
&L0
, const Loop
&L1
, Instruction
&I0
,
787 Instruction
&I1
, bool EqualIsInvalid
) {
788 Value
*Ptr0
= getLoadStorePointerOperand(&I0
);
789 Value
*Ptr1
= getLoadStorePointerOperand(&I1
);
793 const SCEV
*SCEVPtr0
= SE
.getSCEVAtScope(Ptr0
, &L0
);
794 const SCEV
*SCEVPtr1
= SE
.getSCEVAtScope(Ptr1
, &L1
);
796 if (VerboseFusionDebugging
)
797 LLVM_DEBUG(dbgs() << " Access function check: " << *SCEVPtr0
<< " vs "
798 << *SCEVPtr1
<< "\n");
800 AddRecLoopReplacer
Rewriter(SE
, L0
, L1
);
801 SCEVPtr0
= Rewriter
.visit(SCEVPtr0
);
803 if (VerboseFusionDebugging
)
804 LLVM_DEBUG(dbgs() << " Access function after rewrite: " << *SCEVPtr0
805 << " [Valid: " << Rewriter
.wasValidSCEV() << "]\n");
807 if (!Rewriter
.wasValidSCEV())
810 // TODO: isKnownPredicate doesnt work well when one SCEV is loop carried (by
811 // L0) and the other is not. We could check if it is monotone and test
812 // the beginning and end value instead.
814 BasicBlock
*L0Header
= L0
.getHeader();
815 auto HasNonLinearDominanceRelation
= [&](const SCEV
*S
) {
816 const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(S
);
819 return !DT
.dominates(L0Header
, AddRec
->getLoop()->getHeader()) &&
820 !DT
.dominates(AddRec
->getLoop()->getHeader(), L0Header
);
822 if (SCEVExprContains(SCEVPtr1
, HasNonLinearDominanceRelation
))
825 ICmpInst::Predicate Pred
=
826 EqualIsInvalid
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_SGE
;
827 bool IsAlwaysGE
= SE
.isKnownPredicate(Pred
, SCEVPtr0
, SCEVPtr1
);
829 if (VerboseFusionDebugging
)
830 LLVM_DEBUG(dbgs() << " Relation: " << *SCEVPtr0
831 << (IsAlwaysGE
? " >= " : " may < ") << *SCEVPtr1
837 /// Return true if the dependences between @p I0 (in @p L0) and @p I1 (in
838 /// @p L1) allow loop fusion of @p L0 and @p L1. The dependence analyses
839 /// specified by @p DepChoice are used to determine this.
840 bool dependencesAllowFusion(const FusionCandidate
&FC0
,
841 const FusionCandidate
&FC1
, Instruction
&I0
,
842 Instruction
&I1
, bool AnyDep
,
843 FusionDependenceAnalysisChoice DepChoice
) {
845 if (VerboseFusionDebugging
) {
846 LLVM_DEBUG(dbgs() << "Check dep: " << I0
<< " vs " << I1
<< " : "
847 << DepChoice
<< "\n");
851 case FUSION_DEPENDENCE_ANALYSIS_SCEV
:
852 return accessDiffIsPositive(*FC0
.L
, *FC1
.L
, I0
, I1
, AnyDep
);
853 case FUSION_DEPENDENCE_ANALYSIS_DA
: {
854 auto DepResult
= DI
.depends(&I0
, &I1
, true);
858 if (VerboseFusionDebugging
) {
859 LLVM_DEBUG(dbgs() << "DA res: "; DepResult
->dump(dbgs());
860 dbgs() << " [#l: " << DepResult
->getLevels() << "][Ordered: "
861 << (DepResult
->isOrdered() ? "true" : "false")
863 LLVM_DEBUG(dbgs() << "DepResult Levels: " << DepResult
->getLevels()
868 if (DepResult
->getNextPredecessor() || DepResult
->getNextSuccessor())
870 dbgs() << "TODO: Implement pred/succ dependence handling!\n");
872 // TODO: Can we actually use the dependence info analysis here?
876 case FUSION_DEPENDENCE_ANALYSIS_ALL
:
877 return dependencesAllowFusion(FC0
, FC1
, I0
, I1
, AnyDep
,
878 FUSION_DEPENDENCE_ANALYSIS_SCEV
) ||
879 dependencesAllowFusion(FC0
, FC1
, I0
, I1
, AnyDep
,
880 FUSION_DEPENDENCE_ANALYSIS_DA
);
883 llvm_unreachable("Unknown fusion dependence analysis choice!");
886 /// Perform a dependence check and return if @p FC0 and @p FC1 can be fused.
887 bool dependencesAllowFusion(const FusionCandidate
&FC0
,
888 const FusionCandidate
&FC1
) {
889 LLVM_DEBUG(dbgs() << "Check if " << FC0
<< " can be fused with " << FC1
891 assert(FC0
.L
->getLoopDepth() == FC1
.L
->getLoopDepth());
892 assert(DT
.dominates(FC0
.Preheader
, FC1
.Preheader
));
894 for (Instruction
*WriteL0
: FC0
.MemWrites
) {
895 for (Instruction
*WriteL1
: FC1
.MemWrites
)
896 if (!dependencesAllowFusion(FC0
, FC1
, *WriteL0
, *WriteL1
,
898 FusionDependenceAnalysis
)) {
899 InvalidDependencies
++;
902 for (Instruction
*ReadL1
: FC1
.MemReads
)
903 if (!dependencesAllowFusion(FC0
, FC1
, *WriteL0
, *ReadL1
,
905 FusionDependenceAnalysis
)) {
906 InvalidDependencies
++;
911 for (Instruction
*WriteL1
: FC1
.MemWrites
) {
912 for (Instruction
*WriteL0
: FC0
.MemWrites
)
913 if (!dependencesAllowFusion(FC0
, FC1
, *WriteL0
, *WriteL1
,
915 FusionDependenceAnalysis
)) {
916 InvalidDependencies
++;
919 for (Instruction
*ReadL0
: FC0
.MemReads
)
920 if (!dependencesAllowFusion(FC0
, FC1
, *ReadL0
, *WriteL1
,
922 FusionDependenceAnalysis
)) {
923 InvalidDependencies
++;
928 // Walk through all uses in FC1. For each use, find the reaching def. If the
929 // def is located in FC0 then it is is not safe to fuse.
930 for (BasicBlock
*BB
: FC1
.L
->blocks())
931 for (Instruction
&I
: *BB
)
932 for (auto &Op
: I
.operands())
933 if (Instruction
*Def
= dyn_cast
<Instruction
>(Op
))
934 if (FC0
.L
->contains(Def
->getParent())) {
935 InvalidDependencies
++;
942 /// Determine if the exit block of \p FC0 is the preheader of \p FC1. In this
943 /// case, there is no code in between the two fusion candidates, thus making
945 bool isAdjacent(const FusionCandidate
&FC0
,
946 const FusionCandidate
&FC1
) const {
947 return FC0
.ExitBlock
== FC1
.Preheader
;
950 bool isEmptyPreheader(const FusionCandidate
&FC
) const {
951 return FC
.Preheader
->size() == 1;
954 /// Fuse two fusion candidates, creating a new fused loop.
956 /// This method contains the mechanics of fusing two loops, represented by \p
957 /// FC0 and \p FC1. It is assumed that \p FC0 dominates \p FC1 and \p FC1
958 /// postdominates \p FC0 (making them control flow equivalent). It also
959 /// assumes that the other conditions for fusion have been met: adjacent,
960 /// identical trip counts, and no negative distance dependencies exist that
961 /// would prevent fusion. Thus, there is no checking for these conditions in
964 /// Fusion is performed by rewiring the CFG to update successor blocks of the
965 /// components of tho loop. Specifically, the following changes are done:
967 /// 1. The preheader of \p FC1 is removed as it is no longer necessary
968 /// (because it is currently only a single statement block).
969 /// 2. The latch of \p FC0 is modified to jump to the header of \p FC1.
970 /// 3. The latch of \p FC1 i modified to jump to the header of \p FC0.
971 /// 4. All blocks from \p FC1 are removed from FC1 and added to FC0.
973 /// All of these modifications are done with dominator tree updates, thus
974 /// keeping the dominator (and post dominator) information up-to-date.
976 /// This can be improved in the future by actually merging blocks during
977 /// fusion. For example, the preheader of \p FC1 can be merged with the
978 /// preheader of \p FC0. This would allow loops with more than a single
979 /// statement in the preheader to be fused. Similarly, the latch blocks of the
980 /// two loops could also be fused into a single block. This will require
981 /// analysis to prove it is safe to move the contents of the block past
982 /// existing code, which currently has not been implemented.
983 Loop
*performFusion(const FusionCandidate
&FC0
, const FusionCandidate
&FC1
) {
984 assert(FC0
.isValid() && FC1
.isValid() &&
985 "Expecting valid fusion candidates");
987 LLVM_DEBUG(dbgs() << "Fusion Candidate 0: \n"; FC0
.dump();
988 dbgs() << "Fusion Candidate 1: \n"; FC1
.dump(););
990 assert(FC1
.Preheader
== FC0
.ExitBlock
);
991 assert(FC1
.Preheader
->size() == 1 &&
992 FC1
.Preheader
->getSingleSuccessor() == FC1
.Header
);
994 // Remember the phi nodes originally in the header of FC0 in order to rewire
995 // them later. However, this is only necessary if the new loop carried
996 // values might not dominate the exiting branch. While we do not generally
997 // test if this is the case but simply insert intermediate phi nodes, we
998 // need to make sure these intermediate phi nodes have different
999 // predecessors. To this end, we filter the special case where the exiting
1000 // block is the latch block of the first loop. Nothing needs to be done
1001 // anyway as all loop carried values dominate the latch and thereby also the
1003 SmallVector
<PHINode
*, 8> OriginalFC0PHIs
;
1004 if (FC0
.ExitingBlock
!= FC0
.Latch
)
1005 for (PHINode
&PHI
: FC0
.Header
->phis())
1006 OriginalFC0PHIs
.push_back(&PHI
);
1008 // Replace incoming blocks for header PHIs first.
1009 FC1
.Preheader
->replaceSuccessorsPhiUsesWith(FC0
.Preheader
);
1010 FC0
.Latch
->replaceSuccessorsPhiUsesWith(FC1
.Latch
);
1012 // Then modify the control flow and update DT and PDT.
1013 SmallVector
<DominatorTree::UpdateType
, 8> TreeUpdates
;
1015 // The old exiting block of the first loop (FC0) has to jump to the header
1016 // of the second as we need to execute the code in the second header block
1017 // regardless of the trip count. That is, if the trip count is 0, so the
1018 // back edge is never taken, we still have to execute both loop headers,
1019 // especially (but not only!) if the second is a do-while style loop.
1020 // However, doing so might invalidate the phi nodes of the first loop as
1021 // the new values do only need to dominate their latch and not the exiting
1022 // predicate. To remedy this potential problem we always introduce phi
1023 // nodes in the header of the second loop later that select the loop carried
1024 // value, if the second header was reached through an old latch of the
1025 // first, or undef otherwise. This is sound as exiting the first implies the
1026 // second will exit too, __without__ taking the back-edge. [Their
1027 // trip-counts are equal after all.
1028 // KB: Would this sequence be simpler to just just make FC0.ExitingBlock go
1029 // to FC1.Header? I think this is basically what the three sequences are
1030 // trying to accomplish; however, doing this directly in the CFG may mean
1031 // the DT/PDT becomes invalid
1032 FC0
.ExitingBlock
->getTerminator()->replaceUsesOfWith(FC1
.Preheader
,
1034 TreeUpdates
.emplace_back(DominatorTree::UpdateType(
1035 DominatorTree::Delete
, FC0
.ExitingBlock
, FC1
.Preheader
));
1036 TreeUpdates
.emplace_back(DominatorTree::UpdateType(
1037 DominatorTree::Insert
, FC0
.ExitingBlock
, FC1
.Header
));
1039 // The pre-header of L1 is not necessary anymore.
1040 assert(pred_begin(FC1
.Preheader
) == pred_end(FC1
.Preheader
));
1041 FC1
.Preheader
->getTerminator()->eraseFromParent();
1042 new UnreachableInst(FC1
.Preheader
->getContext(), FC1
.Preheader
);
1043 TreeUpdates
.emplace_back(DominatorTree::UpdateType(
1044 DominatorTree::Delete
, FC1
.Preheader
, FC1
.Header
));
1046 // Moves the phi nodes from the second to the first loops header block.
1047 while (PHINode
*PHI
= dyn_cast
<PHINode
>(&FC1
.Header
->front())) {
1048 if (SE
.isSCEVable(PHI
->getType()))
1049 SE
.forgetValue(PHI
);
1050 if (PHI
->hasNUsesOrMore(1))
1051 PHI
->moveBefore(&*FC0
.Header
->getFirstInsertionPt());
1053 PHI
->eraseFromParent();
1056 // Introduce new phi nodes in the second loop header to ensure
1057 // exiting the first and jumping to the header of the second does not break
1058 // the SSA property of the phis originally in the first loop. See also the
1060 Instruction
*L1HeaderIP
= &FC1
.Header
->front();
1061 for (PHINode
*LCPHI
: OriginalFC0PHIs
) {
1062 int L1LatchBBIdx
= LCPHI
->getBasicBlockIndex(FC1
.Latch
);
1063 assert(L1LatchBBIdx
>= 0 &&
1064 "Expected loop carried value to be rewired at this point!");
1066 Value
*LCV
= LCPHI
->getIncomingValue(L1LatchBBIdx
);
1068 PHINode
*L1HeaderPHI
= PHINode::Create(
1069 LCV
->getType(), 2, LCPHI
->getName() + ".afterFC0", L1HeaderIP
);
1070 L1HeaderPHI
->addIncoming(LCV
, FC0
.Latch
);
1071 L1HeaderPHI
->addIncoming(UndefValue::get(LCV
->getType()),
1074 LCPHI
->setIncomingValue(L1LatchBBIdx
, L1HeaderPHI
);
1077 // Replace latch terminator destinations.
1078 FC0
.Latch
->getTerminator()->replaceUsesOfWith(FC0
.Header
, FC1
.Header
);
1079 FC1
.Latch
->getTerminator()->replaceUsesOfWith(FC1
.Header
, FC0
.Header
);
1081 // If FC0.Latch and FC0.ExitingBlock are the same then we have already
1082 // performed the updates above.
1083 if (FC0
.Latch
!= FC0
.ExitingBlock
)
1084 TreeUpdates
.emplace_back(DominatorTree::UpdateType(
1085 DominatorTree::Insert
, FC0
.Latch
, FC1
.Header
));
1087 TreeUpdates
.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete
,
1088 FC0
.Latch
, FC0
.Header
));
1089 TreeUpdates
.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert
,
1090 FC1
.Latch
, FC0
.Header
));
1091 TreeUpdates
.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete
,
1092 FC1
.Latch
, FC1
.Header
));
1095 DTU
.applyUpdates(TreeUpdates
);
1097 LI
.removeBlock(FC1
.Preheader
);
1098 DTU
.deleteBB(FC1
.Preheader
);
1101 // Is there a way to keep SE up-to-date so we don't need to forget the loops
1102 // and rebuild the information in subsequent passes of fusion?
1103 SE
.forgetLoop(FC1
.L
);
1104 SE
.forgetLoop(FC0
.L
);
1107 SmallVector
<BasicBlock
*, 8> Blocks(FC1
.L
->block_begin(),
1108 FC1
.L
->block_end());
1109 for (BasicBlock
*BB
: Blocks
) {
1110 FC0
.L
->addBlockEntry(BB
);
1111 FC1
.L
->removeBlockFromLoop(BB
);
1112 if (LI
.getLoopFor(BB
) != FC1
.L
)
1114 LI
.changeLoopFor(BB
, FC0
.L
);
1116 while (!FC1
.L
->empty()) {
1117 const auto &ChildLoopIt
= FC1
.L
->begin();
1118 Loop
*ChildLoop
= *ChildLoopIt
;
1119 FC1
.L
->removeChildLoop(ChildLoopIt
);
1120 FC0
.L
->addChildLoop(ChildLoop
);
1123 // Delete the now empty loop L1.
1127 assert(!verifyFunction(*FC0
.Header
->getParent(), &errs()));
1128 assert(DT
.verify(DominatorTree::VerificationLevel::Fast
));
1129 assert(PDT
.verify());
1136 LLVM_DEBUG(dbgs() << "Fusion done:\n");
1142 struct LoopFuseLegacy
: public FunctionPass
{
1146 LoopFuseLegacy() : FunctionPass(ID
) {
1147 initializeLoopFuseLegacyPass(*PassRegistry::getPassRegistry());
1150 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
1151 AU
.addRequiredID(LoopSimplifyID
);
1152 AU
.addRequired
<ScalarEvolutionWrapperPass
>();
1153 AU
.addRequired
<LoopInfoWrapperPass
>();
1154 AU
.addRequired
<DominatorTreeWrapperPass
>();
1155 AU
.addRequired
<PostDominatorTreeWrapperPass
>();
1156 AU
.addRequired
<OptimizationRemarkEmitterWrapperPass
>();
1157 AU
.addRequired
<DependenceAnalysisWrapperPass
>();
1159 AU
.addPreserved
<ScalarEvolutionWrapperPass
>();
1160 AU
.addPreserved
<LoopInfoWrapperPass
>();
1161 AU
.addPreserved
<DominatorTreeWrapperPass
>();
1162 AU
.addPreserved
<PostDominatorTreeWrapperPass
>();
1165 bool runOnFunction(Function
&F
) override
{
1166 if (skipFunction(F
))
1168 auto &LI
= getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
1169 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
1170 auto &DI
= getAnalysis
<DependenceAnalysisWrapperPass
>().getDI();
1171 auto &SE
= getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
1172 auto &PDT
= getAnalysis
<PostDominatorTreeWrapperPass
>().getPostDomTree();
1173 auto &ORE
= getAnalysis
<OptimizationRemarkEmitterWrapperPass
>().getORE();
1175 const DataLayout
&DL
= F
.getParent()->getDataLayout();
1176 LoopFuser
LF(LI
, DT
, DI
, SE
, PDT
, ORE
, DL
);
1177 return LF
.fuseLoops(F
);
1181 PreservedAnalyses
LoopFusePass::run(Function
&F
, FunctionAnalysisManager
&AM
) {
1182 auto &LI
= AM
.getResult
<LoopAnalysis
>(F
);
1183 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
1184 auto &DI
= AM
.getResult
<DependenceAnalysis
>(F
);
1185 auto &SE
= AM
.getResult
<ScalarEvolutionAnalysis
>(F
);
1186 auto &PDT
= AM
.getResult
<PostDominatorTreeAnalysis
>(F
);
1187 auto &ORE
= AM
.getResult
<OptimizationRemarkEmitterAnalysis
>(F
);
1189 const DataLayout
&DL
= F
.getParent()->getDataLayout();
1190 LoopFuser
LF(LI
, DT
, DI
, SE
, PDT
, ORE
, DL
);
1191 bool Changed
= LF
.fuseLoops(F
);
1193 return PreservedAnalyses::all();
1195 PreservedAnalyses PA
;
1196 PA
.preserve
<DominatorTreeAnalysis
>();
1197 PA
.preserve
<PostDominatorTreeAnalysis
>();
1198 PA
.preserve
<ScalarEvolutionAnalysis
>();
1199 PA
.preserve
<LoopAnalysis
>();
1203 char LoopFuseLegacy::ID
= 0;
1205 INITIALIZE_PASS_BEGIN(LoopFuseLegacy
, "loop-fusion", "Loop Fusion", false,
1207 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass
)
1208 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass
)
1209 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
1210 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass
)
1211 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
1212 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass
)
1213 INITIALIZE_PASS_END(LoopFuseLegacy
, "loop-fusion", "Loop Fusion", false, false)
1215 FunctionPass
*llvm::createLoopFusePass() { return new LoopFuseLegacy(); }