[llvm-objdump] - Import the test/Object/X86/no-start-symbol.test test case and rewrit...
[llvm-complete.git] / lib / Transforms / Scalar / LoopFuse.cpp
blob0bc2bcff2ae1b8552022c7f4cb27af651283c56d
1 //===- LoopFuse.cpp - Loop Fusion Pass ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the loop fusion pass.
11 /// The implementation is largely based on the following document:
12 ///
13 /// Code Transformations to Augment the Scope of Loop Fusion in a
14 /// Production Compiler
15 /// Christopher Mark Barton
16 /// MSc Thesis
17 /// https://webdocs.cs.ualberta.ca/~amaral/thesis/ChristopherBartonMSc.pdf
18 ///
19 /// The general approach taken is to collect sets of control flow equivalent
20 /// loops and test whether they can be fused. The necessary conditions for
21 /// fusion are:
22 /// 1. The loops must be adjacent (there cannot be any statements between
23 /// the two loops).
24 /// 2. The loops must be conforming (they must execute the same number of
25 /// iterations).
26 /// 3. The loops must be control flow equivalent (if one loop executes, the
27 /// other is guaranteed to execute).
28 /// 4. There cannot be any negative distance dependencies between the loops.
29 /// If all of these conditions are satisfied, it is safe to fuse the loops.
30 ///
31 /// This implementation creates FusionCandidates that represent the loop and the
32 /// necessary information needed by fusion. It then operates on the fusion
33 /// candidates, first confirming that the candidate is eligible for fusion. The
34 /// candidates are then collected into control flow equivalent sets, sorted in
35 /// dominance order. Each set of control flow equivalent candidates is then
36 /// traversed, attempting to fuse pairs of candidates in the set. If all
37 /// requirements for fusion are met, the two candidates are fused, creating a
38 /// new (fused) candidate which is then added back into the set to consider for
39 /// additional fusion.
40 ///
41 /// This implementation currently does not make any modifications to remove
42 /// conditions for fusion. Code transformations to make loops conform to each of
43 /// the conditions for fusion are discussed in more detail in the document
44 /// above. These can be added to the current implementation in the future.
45 //===----------------------------------------------------------------------===//
47 #include "llvm/Transforms/Scalar/LoopFuse.h"
48 #include "llvm/ADT/Statistic.h"
49 #include "llvm/Analysis/DependenceAnalysis.h"
50 #include "llvm/Analysis/DomTreeUpdater.h"
51 #include "llvm/Analysis/LoopInfo.h"
52 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
53 #include "llvm/Analysis/PostDominators.h"
54 #include "llvm/Analysis/ScalarEvolution.h"
55 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/Verifier.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Transforms/Scalar.h"
62 #include "llvm/Transforms/Utils.h"
63 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
65 using namespace llvm;
67 #define DEBUG_TYPE "loop-fusion"
69 STATISTIC(FuseCounter, "Count number of loop fusions performed");
70 STATISTIC(NumFusionCandidates, "Number of candidates for loop fusion");
71 STATISTIC(InvalidPreheader, "Loop has invalid preheader");
72 STATISTIC(InvalidHeader, "Loop has invalid header");
73 STATISTIC(InvalidExitingBlock, "Loop has invalid exiting blocks");
74 STATISTIC(InvalidExitBlock, "Loop has invalid exit block");
75 STATISTIC(InvalidLatch, "Loop has invalid latch");
76 STATISTIC(InvalidLoop, "Loop is invalid");
77 STATISTIC(AddressTakenBB, "Basic block has address taken");
78 STATISTIC(MayThrowException, "Loop may throw an exception");
79 STATISTIC(ContainsVolatileAccess, "Loop contains a volatile access");
80 STATISTIC(NotSimplifiedForm, "Loop is not in simplified form");
81 STATISTIC(InvalidDependencies, "Dependencies prevent fusion");
82 STATISTIC(InvalidTripCount,
83 "Loop does not have invariant backedge taken count");
84 STATISTIC(UncomputableTripCount, "SCEV cannot compute trip count of loop");
85 STATISTIC(NonEqualTripCount, "Candidate trip counts are not the same");
86 STATISTIC(NonAdjacent, "Candidates are not adjacent");
87 STATISTIC(NonEmptyPreheader, "Candidate has a non-empty preheader");
89 enum FusionDependenceAnalysisChoice {
90 FUSION_DEPENDENCE_ANALYSIS_SCEV,
91 FUSION_DEPENDENCE_ANALYSIS_DA,
92 FUSION_DEPENDENCE_ANALYSIS_ALL,
95 static cl::opt<FusionDependenceAnalysisChoice> FusionDependenceAnalysis(
96 "loop-fusion-dependence-analysis",
97 cl::desc("Which dependence analysis should loop fusion use?"),
98 cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV, "scev",
99 "Use the scalar evolution interface"),
100 clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA, "da",
101 "Use the dependence analysis interface"),
102 clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL, "all",
103 "Use all available analyses")),
104 cl::Hidden, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL), cl::ZeroOrMore);
106 #ifndef NDEBUG
107 static cl::opt<bool>
108 VerboseFusionDebugging("loop-fusion-verbose-debug",
109 cl::desc("Enable verbose debugging for Loop Fusion"),
110 cl::Hidden, cl::init(false), cl::ZeroOrMore);
111 #endif
113 /// This class is used to represent a candidate for loop fusion. When it is
114 /// constructed, it checks the conditions for loop fusion to ensure that it
115 /// represents a valid candidate. It caches several parts of a loop that are
116 /// used throughout loop fusion (e.g., loop preheader, loop header, etc) instead
117 /// of continually querying the underlying Loop to retrieve these values. It is
118 /// assumed these will not change throughout loop fusion.
120 /// The invalidate method should be used to indicate that the FusionCandidate is
121 /// no longer a valid candidate for fusion. Similarly, the isValid() method can
122 /// be used to ensure that the FusionCandidate is still valid for fusion.
123 struct FusionCandidate {
124 /// Cache of parts of the loop used throughout loop fusion. These should not
125 /// need to change throughout the analysis and transformation.
126 /// These parts are cached to avoid repeatedly looking up in the Loop class.
128 /// Preheader of the loop this candidate represents
129 BasicBlock *Preheader;
130 /// Header of the loop this candidate represents
131 BasicBlock *Header;
132 /// Blocks in the loop that exit the loop
133 BasicBlock *ExitingBlock;
134 /// The successor block of this loop (where the exiting blocks go to)
135 BasicBlock *ExitBlock;
136 /// Latch of the loop
137 BasicBlock *Latch;
138 /// The loop that this fusion candidate represents
139 Loop *L;
140 /// Vector of instructions in this loop that read from memory
141 SmallVector<Instruction *, 16> MemReads;
142 /// Vector of instructions in this loop that write to memory
143 SmallVector<Instruction *, 16> MemWrites;
144 /// Are all of the members of this fusion candidate still valid
145 bool Valid;
147 /// Dominator and PostDominator trees are needed for the
148 /// FusionCandidateCompare function, required by FusionCandidateSet to
149 /// determine where the FusionCandidate should be inserted into the set. These
150 /// are used to establish ordering of the FusionCandidates based on dominance.
151 const DominatorTree *DT;
152 const PostDominatorTree *PDT;
154 FusionCandidate(Loop *L, const DominatorTree *DT,
155 const PostDominatorTree *PDT)
156 : Preheader(L->getLoopPreheader()), Header(L->getHeader()),
157 ExitingBlock(L->getExitingBlock()), ExitBlock(L->getExitBlock()),
158 Latch(L->getLoopLatch()), L(L), Valid(true), DT(DT), PDT(PDT) {
160 // Walk over all blocks in the loop and check for conditions that may
161 // prevent fusion. For each block, walk over all instructions and collect
162 // the memory reads and writes If any instructions that prevent fusion are
163 // found, invalidate this object and return.
164 for (BasicBlock *BB : L->blocks()) {
165 if (BB->hasAddressTaken()) {
166 AddressTakenBB++;
167 invalidate();
168 return;
171 for (Instruction &I : *BB) {
172 if (I.mayThrow()) {
173 MayThrowException++;
174 invalidate();
175 return;
177 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
178 if (SI->isVolatile()) {
179 ContainsVolatileAccess++;
180 invalidate();
181 return;
184 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
185 if (LI->isVolatile()) {
186 ContainsVolatileAccess++;
187 invalidate();
188 return;
191 if (I.mayWriteToMemory())
192 MemWrites.push_back(&I);
193 if (I.mayReadFromMemory())
194 MemReads.push_back(&I);
199 /// Check if all members of the class are valid.
200 bool isValid() const {
201 return Preheader && Header && ExitingBlock && ExitBlock && Latch && L &&
202 !L->isInvalid() && Valid;
205 /// Verify that all members are in sync with the Loop object.
206 void verify() const {
207 assert(isValid() && "Candidate is not valid!!");
208 assert(!L->isInvalid() && "Loop is invalid!");
209 assert(Preheader == L->getLoopPreheader() && "Preheader is out of sync");
210 assert(Header == L->getHeader() && "Header is out of sync");
211 assert(ExitingBlock == L->getExitingBlock() &&
212 "Exiting Blocks is out of sync");
213 assert(ExitBlock == L->getExitBlock() && "Exit block is out of sync");
214 assert(Latch == L->getLoopLatch() && "Latch is out of sync");
217 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
218 LLVM_DUMP_METHOD void dump() const {
219 dbgs() << "\tPreheader: " << (Preheader ? Preheader->getName() : "nullptr")
220 << "\n"
221 << "\tHeader: " << (Header ? Header->getName() : "nullptr") << "\n"
222 << "\tExitingBB: "
223 << (ExitingBlock ? ExitingBlock->getName() : "nullptr") << "\n"
224 << "\tExitBB: " << (ExitBlock ? ExitBlock->getName() : "nullptr")
225 << "\n"
226 << "\tLatch: " << (Latch ? Latch->getName() : "nullptr") << "\n";
228 #endif
230 private:
231 // This is only used internally for now, to clear the MemWrites and MemReads
232 // list and setting Valid to false. I can't envision other uses of this right
233 // now, since once FusionCandidates are put into the FusionCandidateSet they
234 // are immutable. Thus, any time we need to change/update a FusionCandidate,
235 // we must create a new one and insert it into the FusionCandidateSet to
236 // ensure the FusionCandidateSet remains ordered correctly.
237 void invalidate() {
238 MemWrites.clear();
239 MemReads.clear();
240 Valid = false;
244 inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
245 const FusionCandidate &FC) {
246 if (FC.isValid())
247 OS << FC.Preheader->getName();
248 else
249 OS << "<Invalid>";
251 return OS;
254 struct FusionCandidateCompare {
255 /// Comparison functor to sort two Control Flow Equivalent fusion candidates
256 /// into dominance order.
257 /// If LHS dominates RHS and RHS post-dominates LHS, return true;
258 /// IF RHS dominates LHS and LHS post-dominates RHS, return false;
259 bool operator()(const FusionCandidate &LHS,
260 const FusionCandidate &RHS) const {
261 const DominatorTree *DT = LHS.DT;
263 // Do not save PDT to local variable as it is only used in asserts and thus
264 // will trigger an unused variable warning if building without asserts.
265 assert(DT && LHS.PDT && "Expecting valid dominator tree");
267 // Do this compare first so if LHS == RHS, function returns false.
268 if (DT->dominates(RHS.Preheader, LHS.Preheader)) {
269 // RHS dominates LHS
270 // Verify LHS post-dominates RHS
271 assert(LHS.PDT->dominates(LHS.Preheader, RHS.Preheader));
272 return false;
275 if (DT->dominates(LHS.Preheader, RHS.Preheader)) {
276 // Verify RHS Postdominates LHS
277 assert(LHS.PDT->dominates(RHS.Preheader, LHS.Preheader));
278 return true;
281 // If LHS does not dominate RHS and RHS does not dominate LHS then there is
282 // no dominance relationship between the two FusionCandidates. Thus, they
283 // should not be in the same set together.
284 llvm_unreachable(
285 "No dominance relationship between these fusion candidates!");
289 namespace {
290 using LoopVector = SmallVector<Loop *, 4>;
292 // Set of Control Flow Equivalent (CFE) Fusion Candidates, sorted in dominance
293 // order. Thus, if FC0 comes *before* FC1 in a FusionCandidateSet, then FC0
294 // dominates FC1 and FC1 post-dominates FC0.
295 // std::set was chosen because we want a sorted data structure with stable
296 // iterators. A subsequent patch to loop fusion will enable fusing non-ajdacent
297 // loops by moving intervening code around. When this intervening code contains
298 // loops, those loops will be moved also. The corresponding FusionCandidates
299 // will also need to be moved accordingly. As this is done, having stable
300 // iterators will simplify the logic. Similarly, having an efficient insert that
301 // keeps the FusionCandidateSet sorted will also simplify the implementation.
302 using FusionCandidateSet = std::set<FusionCandidate, FusionCandidateCompare>;
303 using FusionCandidateCollection = SmallVector<FusionCandidateSet, 4>;
304 } // namespace
306 inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
307 const FusionCandidateSet &CandSet) {
308 for (auto IT : CandSet)
309 OS << IT << "\n";
311 return OS;
314 #if !defined(NDEBUG)
315 static void
316 printFusionCandidates(const FusionCandidateCollection &FusionCandidates) {
317 dbgs() << "Fusion Candidates: \n";
318 for (const auto &CandidateSet : FusionCandidates) {
319 dbgs() << "*** Fusion Candidate Set ***\n";
320 dbgs() << CandidateSet;
321 dbgs() << "****************************\n";
324 #endif
326 /// Collect all loops in function at the same nest level, starting at the
327 /// outermost level.
329 /// This data structure collects all loops at the same nest level for a
330 /// given function (specified by the LoopInfo object). It starts at the
331 /// outermost level.
332 struct LoopDepthTree {
333 using LoopsOnLevelTy = SmallVector<LoopVector, 4>;
334 using iterator = LoopsOnLevelTy::iterator;
335 using const_iterator = LoopsOnLevelTy::const_iterator;
337 LoopDepthTree(LoopInfo &LI) : Depth(1) {
338 if (!LI.empty())
339 LoopsOnLevel.emplace_back(LoopVector(LI.rbegin(), LI.rend()));
342 /// Test whether a given loop has been removed from the function, and thus is
343 /// no longer valid.
344 bool isRemovedLoop(const Loop *L) const { return RemovedLoops.count(L); }
346 /// Record that a given loop has been removed from the function and is no
347 /// longer valid.
348 void removeLoop(const Loop *L) { RemovedLoops.insert(L); }
350 /// Descend the tree to the next (inner) nesting level
351 void descend() {
352 LoopsOnLevelTy LoopsOnNextLevel;
354 for (const LoopVector &LV : *this)
355 for (Loop *L : LV)
356 if (!isRemovedLoop(L) && L->begin() != L->end())
357 LoopsOnNextLevel.emplace_back(LoopVector(L->begin(), L->end()));
359 LoopsOnLevel = LoopsOnNextLevel;
360 RemovedLoops.clear();
361 Depth++;
364 bool empty() const { return size() == 0; }
365 size_t size() const { return LoopsOnLevel.size() - RemovedLoops.size(); }
366 unsigned getDepth() const { return Depth; }
368 iterator begin() { return LoopsOnLevel.begin(); }
369 iterator end() { return LoopsOnLevel.end(); }
370 const_iterator begin() const { return LoopsOnLevel.begin(); }
371 const_iterator end() const { return LoopsOnLevel.end(); }
373 private:
374 /// Set of loops that have been removed from the function and are no longer
375 /// valid.
376 SmallPtrSet<const Loop *, 8> RemovedLoops;
378 /// Depth of the current level, starting at 1 (outermost loops).
379 unsigned Depth;
381 /// Vector of loops at the current depth level that have the same parent loop
382 LoopsOnLevelTy LoopsOnLevel;
385 #ifndef NDEBUG
386 static void printLoopVector(const LoopVector &LV) {
387 dbgs() << "****************************\n";
388 for (auto L : LV)
389 printLoop(*L, dbgs());
390 dbgs() << "****************************\n";
392 #endif
394 static void reportLoopFusion(const FusionCandidate &FC0,
395 const FusionCandidate &FC1,
396 OptimizationRemarkEmitter &ORE) {
397 using namespace ore;
398 ORE.emit(
399 OptimizationRemark(DEBUG_TYPE, "LoopFusion", FC0.Preheader->getParent())
400 << "Fused " << NV("Cand1", StringRef(FC0.Preheader->getName()))
401 << " with " << NV("Cand2", StringRef(FC1.Preheader->getName())));
404 struct LoopFuser {
405 private:
406 // Sets of control flow equivalent fusion candidates for a given nest level.
407 FusionCandidateCollection FusionCandidates;
409 LoopDepthTree LDT;
410 DomTreeUpdater DTU;
412 LoopInfo &LI;
413 DominatorTree &DT;
414 DependenceInfo &DI;
415 ScalarEvolution &SE;
416 PostDominatorTree &PDT;
417 OptimizationRemarkEmitter &ORE;
419 public:
420 LoopFuser(LoopInfo &LI, DominatorTree &DT, DependenceInfo &DI,
421 ScalarEvolution &SE, PostDominatorTree &PDT,
422 OptimizationRemarkEmitter &ORE, const DataLayout &DL)
423 : LDT(LI), DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy), LI(LI),
424 DT(DT), DI(DI), SE(SE), PDT(PDT), ORE(ORE) {}
426 /// This is the main entry point for loop fusion. It will traverse the
427 /// specified function and collect candidate loops to fuse, starting at the
428 /// outermost nesting level and working inwards.
429 bool fuseLoops(Function &F) {
430 #ifndef NDEBUG
431 if (VerboseFusionDebugging) {
432 LI.print(dbgs());
434 #endif
436 LLVM_DEBUG(dbgs() << "Performing Loop Fusion on function " << F.getName()
437 << "\n");
438 bool Changed = false;
440 while (!LDT.empty()) {
441 LLVM_DEBUG(dbgs() << "Got " << LDT.size() << " loop sets for depth "
442 << LDT.getDepth() << "\n";);
444 for (const LoopVector &LV : LDT) {
445 assert(LV.size() > 0 && "Empty loop set was build!");
447 // Skip singleton loop sets as they do not offer fusion opportunities on
448 // this level.
449 if (LV.size() == 1)
450 continue;
451 #ifndef NDEBUG
452 if (VerboseFusionDebugging) {
453 LLVM_DEBUG({
454 dbgs() << " Visit loop set (#" << LV.size() << "):\n";
455 printLoopVector(LV);
458 #endif
460 collectFusionCandidates(LV);
461 Changed |= fuseCandidates();
464 // Finished analyzing candidates at this level.
465 // Descend to the next level and clear all of the candidates currently
466 // collected. Note that it will not be possible to fuse any of the
467 // existing candidates with new candidates because the new candidates will
468 // be at a different nest level and thus not be control flow equivalent
469 // with all of the candidates collected so far.
470 LLVM_DEBUG(dbgs() << "Descend one level!\n");
471 LDT.descend();
472 FusionCandidates.clear();
475 if (Changed)
476 LLVM_DEBUG(dbgs() << "Function after Loop Fusion: \n"; F.dump(););
478 #ifndef NDEBUG
479 assert(DT.verify());
480 assert(PDT.verify());
481 LI.verify(DT);
482 SE.verify();
483 #endif
485 LLVM_DEBUG(dbgs() << "Loop Fusion complete\n");
486 return Changed;
489 private:
490 /// Determine if two fusion candidates are control flow equivalent.
492 /// Two fusion candidates are control flow equivalent if when one executes,
493 /// the other is guaranteed to execute. This is determined using dominators
494 /// and post-dominators: if A dominates B and B post-dominates A then A and B
495 /// are control-flow equivalent.
496 bool isControlFlowEquivalent(const FusionCandidate &FC0,
497 const FusionCandidate &FC1) const {
498 assert(FC0.Preheader && FC1.Preheader && "Expecting valid preheaders");
500 if (DT.dominates(FC0.Preheader, FC1.Preheader))
501 return PDT.dominates(FC1.Preheader, FC0.Preheader);
503 if (DT.dominates(FC1.Preheader, FC0.Preheader))
504 return PDT.dominates(FC0.Preheader, FC1.Preheader);
506 return false;
509 /// Determine if a fusion candidate (representing a loop) is eligible for
510 /// fusion. Note that this only checks whether a single loop can be fused - it
511 /// does not check whether it is *legal* to fuse two loops together.
512 bool eligibleForFusion(const FusionCandidate &FC) const {
513 if (!FC.isValid()) {
514 LLVM_DEBUG(dbgs() << "FC " << FC << " has invalid CFG requirements!\n");
515 if (!FC.Preheader)
516 InvalidPreheader++;
517 if (!FC.Header)
518 InvalidHeader++;
519 if (!FC.ExitingBlock)
520 InvalidExitingBlock++;
521 if (!FC.ExitBlock)
522 InvalidExitBlock++;
523 if (!FC.Latch)
524 InvalidLatch++;
525 if (FC.L->isInvalid())
526 InvalidLoop++;
528 return false;
531 // Require ScalarEvolution to be able to determine a trip count.
532 if (!SE.hasLoopInvariantBackedgeTakenCount(FC.L)) {
533 LLVM_DEBUG(dbgs() << "Loop " << FC.L->getName()
534 << " trip count not computable!\n");
535 InvalidTripCount++;
536 return false;
539 if (!FC.L->isLoopSimplifyForm()) {
540 LLVM_DEBUG(dbgs() << "Loop " << FC.L->getName()
541 << " is not in simplified form!\n");
542 NotSimplifiedForm++;
543 return false;
546 return true;
549 /// Iterate over all loops in the given loop set and identify the loops that
550 /// are eligible for fusion. Place all eligible fusion candidates into Control
551 /// Flow Equivalent sets, sorted by dominance.
552 void collectFusionCandidates(const LoopVector &LV) {
553 for (Loop *L : LV) {
554 FusionCandidate CurrCand(L, &DT, &PDT);
555 if (!eligibleForFusion(CurrCand))
556 continue;
558 // Go through each list in FusionCandidates and determine if L is control
559 // flow equivalent with the first loop in that list. If it is, append LV.
560 // If not, go to the next list.
561 // If no suitable list is found, start another list and add it to
562 // FusionCandidates.
563 bool FoundSet = false;
565 for (auto &CurrCandSet : FusionCandidates) {
566 if (isControlFlowEquivalent(*CurrCandSet.begin(), CurrCand)) {
567 CurrCandSet.insert(CurrCand);
568 FoundSet = true;
569 #ifndef NDEBUG
570 if (VerboseFusionDebugging)
571 LLVM_DEBUG(dbgs() << "Adding " << CurrCand
572 << " to existing candidate set\n");
573 #endif
574 break;
577 if (!FoundSet) {
578 // No set was found. Create a new set and add to FusionCandidates
579 #ifndef NDEBUG
580 if (VerboseFusionDebugging)
581 LLVM_DEBUG(dbgs() << "Adding " << CurrCand << " to new set\n");
582 #endif
583 FusionCandidateSet NewCandSet;
584 NewCandSet.insert(CurrCand);
585 FusionCandidates.push_back(NewCandSet);
587 NumFusionCandidates++;
591 /// Determine if it is beneficial to fuse two loops.
593 /// For now, this method simply returns true because we want to fuse as much
594 /// as possible (primarily to test the pass). This method will evolve, over
595 /// time, to add heuristics for profitability of fusion.
596 bool isBeneficialFusion(const FusionCandidate &FC0,
597 const FusionCandidate &FC1) {
598 return true;
601 /// Determine if two fusion candidates have the same trip count (i.e., they
602 /// execute the same number of iterations).
604 /// Note that for now this method simply returns a boolean value because there
605 /// are no mechanisms in loop fusion to handle different trip counts. In the
606 /// future, this behaviour can be extended to adjust one of the loops to make
607 /// the trip counts equal (e.g., loop peeling). When this is added, this
608 /// interface may need to change to return more information than just a
609 /// boolean value.
610 bool identicalTripCounts(const FusionCandidate &FC0,
611 const FusionCandidate &FC1) const {
612 const SCEV *TripCount0 = SE.getBackedgeTakenCount(FC0.L);
613 if (isa<SCEVCouldNotCompute>(TripCount0)) {
614 UncomputableTripCount++;
615 LLVM_DEBUG(dbgs() << "Trip count of first loop could not be computed!");
616 return false;
619 const SCEV *TripCount1 = SE.getBackedgeTakenCount(FC1.L);
620 if (isa<SCEVCouldNotCompute>(TripCount1)) {
621 UncomputableTripCount++;
622 LLVM_DEBUG(dbgs() << "Trip count of second loop could not be computed!");
623 return false;
625 LLVM_DEBUG(dbgs() << "\tTrip counts: " << *TripCount0 << " & "
626 << *TripCount1 << " are "
627 << (TripCount0 == TripCount1 ? "identical" : "different")
628 << "\n");
630 return (TripCount0 == TripCount1);
633 /// Walk each set of control flow equivalent fusion candidates and attempt to
634 /// fuse them. This does a single linear traversal of all candidates in the
635 /// set. The conditions for legal fusion are checked at this point. If a pair
636 /// of fusion candidates passes all legality checks, they are fused together
637 /// and a new fusion candidate is created and added to the FusionCandidateSet.
638 /// The original fusion candidates are then removed, as they are no longer
639 /// valid.
640 bool fuseCandidates() {
641 bool Fused = false;
642 LLVM_DEBUG(printFusionCandidates(FusionCandidates));
643 for (auto &CandidateSet : FusionCandidates) {
644 if (CandidateSet.size() < 2)
645 continue;
647 LLVM_DEBUG(dbgs() << "Attempting fusion on Candidate Set:\n"
648 << CandidateSet << "\n");
650 for (auto FC0 = CandidateSet.begin(); FC0 != CandidateSet.end(); ++FC0) {
651 assert(!LDT.isRemovedLoop(FC0->L) &&
652 "Should not have removed loops in CandidateSet!");
653 auto FC1 = FC0;
654 for (++FC1; FC1 != CandidateSet.end(); ++FC1) {
655 assert(!LDT.isRemovedLoop(FC1->L) &&
656 "Should not have removed loops in CandidateSet!");
658 LLVM_DEBUG(dbgs() << "Attempting to fuse candidate \n"; FC0->dump();
659 dbgs() << " with\n"; FC1->dump(); dbgs() << "\n");
661 FC0->verify();
662 FC1->verify();
664 if (!identicalTripCounts(*FC0, *FC1)) {
665 LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical trip "
666 "counts. Not fusing.\n");
667 NonEqualTripCount++;
668 continue;
671 if (!isAdjacent(*FC0, *FC1)) {
672 LLVM_DEBUG(dbgs()
673 << "Fusion candidates are not adjacent. Not fusing.\n");
674 NonAdjacent++;
675 continue;
678 // For now we skip fusing if the second candidate has any instructions
679 // in the preheader. This is done because we currently do not have the
680 // safety checks to determine if it is save to move the preheader of
681 // the second candidate past the body of the first candidate. Once
682 // these checks are added, this condition can be removed.
683 if (!isEmptyPreheader(*FC1)) {
684 LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty "
685 "preheader. Not fusing.\n");
686 NonEmptyPreheader++;
687 continue;
690 if (!dependencesAllowFusion(*FC0, *FC1)) {
691 LLVM_DEBUG(dbgs() << "Memory dependencies do not allow fusion!\n");
692 continue;
695 bool BeneficialToFuse = isBeneficialFusion(*FC0, *FC1);
696 LLVM_DEBUG(dbgs()
697 << "\tFusion appears to be "
698 << (BeneficialToFuse ? "" : "un") << "profitable!\n");
699 if (!BeneficialToFuse)
700 continue;
702 // All analysis has completed and has determined that fusion is legal
703 // and profitable. At this point, start transforming the code and
704 // perform fusion.
706 LLVM_DEBUG(dbgs() << "\tFusion is performed: " << *FC0 << " and "
707 << *FC1 << "\n");
709 // Report fusion to the Optimization Remarks.
710 // Note this needs to be done *before* performFusion because
711 // performFusion will change the original loops, making it not
712 // possible to identify them after fusion is complete.
713 reportLoopFusion(*FC0, *FC1, ORE);
715 FusionCandidate FusedCand(performFusion(*FC0, *FC1), &DT, &PDT);
716 FusedCand.verify();
717 assert(eligibleForFusion(FusedCand) &&
718 "Fused candidate should be eligible for fusion!");
720 // Notify the loop-depth-tree that these loops are not valid objects
721 // anymore.
722 LDT.removeLoop(FC1->L);
724 CandidateSet.erase(FC0);
725 CandidateSet.erase(FC1);
727 auto InsertPos = CandidateSet.insert(FusedCand);
729 assert(InsertPos.second &&
730 "Unable to insert TargetCandidate in CandidateSet!");
732 // Reset FC0 and FC1 the new (fused) candidate. Subsequent iterations
733 // of the FC1 loop will attempt to fuse the new (fused) loop with the
734 // remaining candidates in the current candidate set.
735 FC0 = FC1 = InsertPos.first;
737 LLVM_DEBUG(dbgs() << "Candidate Set (after fusion): " << CandidateSet
738 << "\n");
740 Fused = true;
744 return Fused;
747 /// Rewrite all additive recurrences in a SCEV to use a new loop.
748 class AddRecLoopReplacer : public SCEVRewriteVisitor<AddRecLoopReplacer> {
749 public:
750 AddRecLoopReplacer(ScalarEvolution &SE, const Loop &OldL, const Loop &NewL,
751 bool UseMax = true)
752 : SCEVRewriteVisitor(SE), Valid(true), UseMax(UseMax), OldL(OldL),
753 NewL(NewL) {}
755 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
756 const Loop *ExprL = Expr->getLoop();
757 SmallVector<const SCEV *, 2> Operands;
758 if (ExprL == &OldL) {
759 Operands.append(Expr->op_begin(), Expr->op_end());
760 return SE.getAddRecExpr(Operands, &NewL, Expr->getNoWrapFlags());
763 if (OldL.contains(ExprL)) {
764 bool Pos = SE.isKnownPositive(Expr->getStepRecurrence(SE));
765 if (!UseMax || !Pos || !Expr->isAffine()) {
766 Valid = false;
767 return Expr;
769 return visit(Expr->getStart());
772 for (const SCEV *Op : Expr->operands())
773 Operands.push_back(visit(Op));
774 return SE.getAddRecExpr(Operands, ExprL, Expr->getNoWrapFlags());
777 bool wasValidSCEV() const { return Valid; }
779 private:
780 bool Valid, UseMax;
781 const Loop &OldL, &NewL;
784 /// Return false if the access functions of \p I0 and \p I1 could cause
785 /// a negative dependence.
786 bool accessDiffIsPositive(const Loop &L0, const Loop &L1, Instruction &I0,
787 Instruction &I1, bool EqualIsInvalid) {
788 Value *Ptr0 = getLoadStorePointerOperand(&I0);
789 Value *Ptr1 = getLoadStorePointerOperand(&I1);
790 if (!Ptr0 || !Ptr1)
791 return false;
793 const SCEV *SCEVPtr0 = SE.getSCEVAtScope(Ptr0, &L0);
794 const SCEV *SCEVPtr1 = SE.getSCEVAtScope(Ptr1, &L1);
795 #ifndef NDEBUG
796 if (VerboseFusionDebugging)
797 LLVM_DEBUG(dbgs() << " Access function check: " << *SCEVPtr0 << " vs "
798 << *SCEVPtr1 << "\n");
799 #endif
800 AddRecLoopReplacer Rewriter(SE, L0, L1);
801 SCEVPtr0 = Rewriter.visit(SCEVPtr0);
802 #ifndef NDEBUG
803 if (VerboseFusionDebugging)
804 LLVM_DEBUG(dbgs() << " Access function after rewrite: " << *SCEVPtr0
805 << " [Valid: " << Rewriter.wasValidSCEV() << "]\n");
806 #endif
807 if (!Rewriter.wasValidSCEV())
808 return false;
810 // TODO: isKnownPredicate doesnt work well when one SCEV is loop carried (by
811 // L0) and the other is not. We could check if it is monotone and test
812 // the beginning and end value instead.
814 BasicBlock *L0Header = L0.getHeader();
815 auto HasNonLinearDominanceRelation = [&](const SCEV *S) {
816 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S);
817 if (!AddRec)
818 return false;
819 return !DT.dominates(L0Header, AddRec->getLoop()->getHeader()) &&
820 !DT.dominates(AddRec->getLoop()->getHeader(), L0Header);
822 if (SCEVExprContains(SCEVPtr1, HasNonLinearDominanceRelation))
823 return false;
825 ICmpInst::Predicate Pred =
826 EqualIsInvalid ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_SGE;
827 bool IsAlwaysGE = SE.isKnownPredicate(Pred, SCEVPtr0, SCEVPtr1);
828 #ifndef NDEBUG
829 if (VerboseFusionDebugging)
830 LLVM_DEBUG(dbgs() << " Relation: " << *SCEVPtr0
831 << (IsAlwaysGE ? " >= " : " may < ") << *SCEVPtr1
832 << "\n");
833 #endif
834 return IsAlwaysGE;
837 /// Return true if the dependences between @p I0 (in @p L0) and @p I1 (in
838 /// @p L1) allow loop fusion of @p L0 and @p L1. The dependence analyses
839 /// specified by @p DepChoice are used to determine this.
840 bool dependencesAllowFusion(const FusionCandidate &FC0,
841 const FusionCandidate &FC1, Instruction &I0,
842 Instruction &I1, bool AnyDep,
843 FusionDependenceAnalysisChoice DepChoice) {
844 #ifndef NDEBUG
845 if (VerboseFusionDebugging) {
846 LLVM_DEBUG(dbgs() << "Check dep: " << I0 << " vs " << I1 << " : "
847 << DepChoice << "\n");
849 #endif
850 switch (DepChoice) {
851 case FUSION_DEPENDENCE_ANALYSIS_SCEV:
852 return accessDiffIsPositive(*FC0.L, *FC1.L, I0, I1, AnyDep);
853 case FUSION_DEPENDENCE_ANALYSIS_DA: {
854 auto DepResult = DI.depends(&I0, &I1, true);
855 if (!DepResult)
856 return true;
857 #ifndef NDEBUG
858 if (VerboseFusionDebugging) {
859 LLVM_DEBUG(dbgs() << "DA res: "; DepResult->dump(dbgs());
860 dbgs() << " [#l: " << DepResult->getLevels() << "][Ordered: "
861 << (DepResult->isOrdered() ? "true" : "false")
862 << "]\n");
863 LLVM_DEBUG(dbgs() << "DepResult Levels: " << DepResult->getLevels()
864 << "\n");
866 #endif
868 if (DepResult->getNextPredecessor() || DepResult->getNextSuccessor())
869 LLVM_DEBUG(
870 dbgs() << "TODO: Implement pred/succ dependence handling!\n");
872 // TODO: Can we actually use the dependence info analysis here?
873 return false;
876 case FUSION_DEPENDENCE_ANALYSIS_ALL:
877 return dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
878 FUSION_DEPENDENCE_ANALYSIS_SCEV) ||
879 dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
880 FUSION_DEPENDENCE_ANALYSIS_DA);
883 llvm_unreachable("Unknown fusion dependence analysis choice!");
886 /// Perform a dependence check and return if @p FC0 and @p FC1 can be fused.
887 bool dependencesAllowFusion(const FusionCandidate &FC0,
888 const FusionCandidate &FC1) {
889 LLVM_DEBUG(dbgs() << "Check if " << FC0 << " can be fused with " << FC1
890 << "\n");
891 assert(FC0.L->getLoopDepth() == FC1.L->getLoopDepth());
892 assert(DT.dominates(FC0.Preheader, FC1.Preheader));
894 for (Instruction *WriteL0 : FC0.MemWrites) {
895 for (Instruction *WriteL1 : FC1.MemWrites)
896 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
897 /* AnyDep */ false,
898 FusionDependenceAnalysis)) {
899 InvalidDependencies++;
900 return false;
902 for (Instruction *ReadL1 : FC1.MemReads)
903 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *ReadL1,
904 /* AnyDep */ false,
905 FusionDependenceAnalysis)) {
906 InvalidDependencies++;
907 return false;
911 for (Instruction *WriteL1 : FC1.MemWrites) {
912 for (Instruction *WriteL0 : FC0.MemWrites)
913 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
914 /* AnyDep */ false,
915 FusionDependenceAnalysis)) {
916 InvalidDependencies++;
917 return false;
919 for (Instruction *ReadL0 : FC0.MemReads)
920 if (!dependencesAllowFusion(FC0, FC1, *ReadL0, *WriteL1,
921 /* AnyDep */ false,
922 FusionDependenceAnalysis)) {
923 InvalidDependencies++;
924 return false;
928 // Walk through all uses in FC1. For each use, find the reaching def. If the
929 // def is located in FC0 then it is is not safe to fuse.
930 for (BasicBlock *BB : FC1.L->blocks())
931 for (Instruction &I : *BB)
932 for (auto &Op : I.operands())
933 if (Instruction *Def = dyn_cast<Instruction>(Op))
934 if (FC0.L->contains(Def->getParent())) {
935 InvalidDependencies++;
936 return false;
939 return true;
942 /// Determine if the exit block of \p FC0 is the preheader of \p FC1. In this
943 /// case, there is no code in between the two fusion candidates, thus making
944 /// them adjacent.
945 bool isAdjacent(const FusionCandidate &FC0,
946 const FusionCandidate &FC1) const {
947 return FC0.ExitBlock == FC1.Preheader;
950 bool isEmptyPreheader(const FusionCandidate &FC) const {
951 return FC.Preheader->size() == 1;
954 /// Fuse two fusion candidates, creating a new fused loop.
956 /// This method contains the mechanics of fusing two loops, represented by \p
957 /// FC0 and \p FC1. It is assumed that \p FC0 dominates \p FC1 and \p FC1
958 /// postdominates \p FC0 (making them control flow equivalent). It also
959 /// assumes that the other conditions for fusion have been met: adjacent,
960 /// identical trip counts, and no negative distance dependencies exist that
961 /// would prevent fusion. Thus, there is no checking for these conditions in
962 /// this method.
964 /// Fusion is performed by rewiring the CFG to update successor blocks of the
965 /// components of tho loop. Specifically, the following changes are done:
967 /// 1. The preheader of \p FC1 is removed as it is no longer necessary
968 /// (because it is currently only a single statement block).
969 /// 2. The latch of \p FC0 is modified to jump to the header of \p FC1.
970 /// 3. The latch of \p FC1 i modified to jump to the header of \p FC0.
971 /// 4. All blocks from \p FC1 are removed from FC1 and added to FC0.
973 /// All of these modifications are done with dominator tree updates, thus
974 /// keeping the dominator (and post dominator) information up-to-date.
976 /// This can be improved in the future by actually merging blocks during
977 /// fusion. For example, the preheader of \p FC1 can be merged with the
978 /// preheader of \p FC0. This would allow loops with more than a single
979 /// statement in the preheader to be fused. Similarly, the latch blocks of the
980 /// two loops could also be fused into a single block. This will require
981 /// analysis to prove it is safe to move the contents of the block past
982 /// existing code, which currently has not been implemented.
983 Loop *performFusion(const FusionCandidate &FC0, const FusionCandidate &FC1) {
984 assert(FC0.isValid() && FC1.isValid() &&
985 "Expecting valid fusion candidates");
987 LLVM_DEBUG(dbgs() << "Fusion Candidate 0: \n"; FC0.dump();
988 dbgs() << "Fusion Candidate 1: \n"; FC1.dump(););
990 assert(FC1.Preheader == FC0.ExitBlock);
991 assert(FC1.Preheader->size() == 1 &&
992 FC1.Preheader->getSingleSuccessor() == FC1.Header);
994 // Remember the phi nodes originally in the header of FC0 in order to rewire
995 // them later. However, this is only necessary if the new loop carried
996 // values might not dominate the exiting branch. While we do not generally
997 // test if this is the case but simply insert intermediate phi nodes, we
998 // need to make sure these intermediate phi nodes have different
999 // predecessors. To this end, we filter the special case where the exiting
1000 // block is the latch block of the first loop. Nothing needs to be done
1001 // anyway as all loop carried values dominate the latch and thereby also the
1002 // exiting branch.
1003 SmallVector<PHINode *, 8> OriginalFC0PHIs;
1004 if (FC0.ExitingBlock != FC0.Latch)
1005 for (PHINode &PHI : FC0.Header->phis())
1006 OriginalFC0PHIs.push_back(&PHI);
1008 // Replace incoming blocks for header PHIs first.
1009 FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
1010 FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
1012 // Then modify the control flow and update DT and PDT.
1013 SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
1015 // The old exiting block of the first loop (FC0) has to jump to the header
1016 // of the second as we need to execute the code in the second header block
1017 // regardless of the trip count. That is, if the trip count is 0, so the
1018 // back edge is never taken, we still have to execute both loop headers,
1019 // especially (but not only!) if the second is a do-while style loop.
1020 // However, doing so might invalidate the phi nodes of the first loop as
1021 // the new values do only need to dominate their latch and not the exiting
1022 // predicate. To remedy this potential problem we always introduce phi
1023 // nodes in the header of the second loop later that select the loop carried
1024 // value, if the second header was reached through an old latch of the
1025 // first, or undef otherwise. This is sound as exiting the first implies the
1026 // second will exit too, __without__ taking the back-edge. [Their
1027 // trip-counts are equal after all.
1028 // KB: Would this sequence be simpler to just just make FC0.ExitingBlock go
1029 // to FC1.Header? I think this is basically what the three sequences are
1030 // trying to accomplish; however, doing this directly in the CFG may mean
1031 // the DT/PDT becomes invalid
1032 FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC1.Preheader,
1033 FC1.Header);
1034 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1035 DominatorTree::Delete, FC0.ExitingBlock, FC1.Preheader));
1036 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1037 DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1039 // The pre-header of L1 is not necessary anymore.
1040 assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader));
1041 FC1.Preheader->getTerminator()->eraseFromParent();
1042 new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
1043 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1044 DominatorTree::Delete, FC1.Preheader, FC1.Header));
1046 // Moves the phi nodes from the second to the first loops header block.
1047 while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
1048 if (SE.isSCEVable(PHI->getType()))
1049 SE.forgetValue(PHI);
1050 if (PHI->hasNUsesOrMore(1))
1051 PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
1052 else
1053 PHI->eraseFromParent();
1056 // Introduce new phi nodes in the second loop header to ensure
1057 // exiting the first and jumping to the header of the second does not break
1058 // the SSA property of the phis originally in the first loop. See also the
1059 // comment above.
1060 Instruction *L1HeaderIP = &FC1.Header->front();
1061 for (PHINode *LCPHI : OriginalFC0PHIs) {
1062 int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
1063 assert(L1LatchBBIdx >= 0 &&
1064 "Expected loop carried value to be rewired at this point!");
1066 Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
1068 PHINode *L1HeaderPHI = PHINode::Create(
1069 LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
1070 L1HeaderPHI->addIncoming(LCV, FC0.Latch);
1071 L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
1072 FC0.ExitingBlock);
1074 LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
1077 // Replace latch terminator destinations.
1078 FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
1079 FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
1081 // If FC0.Latch and FC0.ExitingBlock are the same then we have already
1082 // performed the updates above.
1083 if (FC0.Latch != FC0.ExitingBlock)
1084 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1085 DominatorTree::Insert, FC0.Latch, FC1.Header));
1087 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1088 FC0.Latch, FC0.Header));
1089 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
1090 FC1.Latch, FC0.Header));
1091 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1092 FC1.Latch, FC1.Header));
1094 // Update DT/PDT
1095 DTU.applyUpdates(TreeUpdates);
1097 LI.removeBlock(FC1.Preheader);
1098 DTU.deleteBB(FC1.Preheader);
1099 DTU.flush();
1101 // Is there a way to keep SE up-to-date so we don't need to forget the loops
1102 // and rebuild the information in subsequent passes of fusion?
1103 SE.forgetLoop(FC1.L);
1104 SE.forgetLoop(FC0.L);
1106 // Merge the loops.
1107 SmallVector<BasicBlock *, 8> Blocks(FC1.L->block_begin(),
1108 FC1.L->block_end());
1109 for (BasicBlock *BB : Blocks) {
1110 FC0.L->addBlockEntry(BB);
1111 FC1.L->removeBlockFromLoop(BB);
1112 if (LI.getLoopFor(BB) != FC1.L)
1113 continue;
1114 LI.changeLoopFor(BB, FC0.L);
1116 while (!FC1.L->empty()) {
1117 const auto &ChildLoopIt = FC1.L->begin();
1118 Loop *ChildLoop = *ChildLoopIt;
1119 FC1.L->removeChildLoop(ChildLoopIt);
1120 FC0.L->addChildLoop(ChildLoop);
1123 // Delete the now empty loop L1.
1124 LI.erase(FC1.L);
1126 #ifndef NDEBUG
1127 assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
1128 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1129 assert(PDT.verify());
1130 LI.verify(DT);
1131 SE.verify();
1132 #endif
1134 FuseCounter++;
1136 LLVM_DEBUG(dbgs() << "Fusion done:\n");
1138 return FC0.L;
1142 struct LoopFuseLegacy : public FunctionPass {
1144 static char ID;
1146 LoopFuseLegacy() : FunctionPass(ID) {
1147 initializeLoopFuseLegacyPass(*PassRegistry::getPassRegistry());
1150 void getAnalysisUsage(AnalysisUsage &AU) const override {
1151 AU.addRequiredID(LoopSimplifyID);
1152 AU.addRequired<ScalarEvolutionWrapperPass>();
1153 AU.addRequired<LoopInfoWrapperPass>();
1154 AU.addRequired<DominatorTreeWrapperPass>();
1155 AU.addRequired<PostDominatorTreeWrapperPass>();
1156 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1157 AU.addRequired<DependenceAnalysisWrapperPass>();
1159 AU.addPreserved<ScalarEvolutionWrapperPass>();
1160 AU.addPreserved<LoopInfoWrapperPass>();
1161 AU.addPreserved<DominatorTreeWrapperPass>();
1162 AU.addPreserved<PostDominatorTreeWrapperPass>();
1165 bool runOnFunction(Function &F) override {
1166 if (skipFunction(F))
1167 return false;
1168 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1169 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1170 auto &DI = getAnalysis<DependenceAnalysisWrapperPass>().getDI();
1171 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1172 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1173 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1175 const DataLayout &DL = F.getParent()->getDataLayout();
1176 LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL);
1177 return LF.fuseLoops(F);
1181 PreservedAnalyses LoopFusePass::run(Function &F, FunctionAnalysisManager &AM) {
1182 auto &LI = AM.getResult<LoopAnalysis>(F);
1183 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1184 auto &DI = AM.getResult<DependenceAnalysis>(F);
1185 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1186 auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
1187 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1189 const DataLayout &DL = F.getParent()->getDataLayout();
1190 LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL);
1191 bool Changed = LF.fuseLoops(F);
1192 if (!Changed)
1193 return PreservedAnalyses::all();
1195 PreservedAnalyses PA;
1196 PA.preserve<DominatorTreeAnalysis>();
1197 PA.preserve<PostDominatorTreeAnalysis>();
1198 PA.preserve<ScalarEvolutionAnalysis>();
1199 PA.preserve<LoopAnalysis>();
1200 return PA;
1203 char LoopFuseLegacy::ID = 0;
1205 INITIALIZE_PASS_BEGIN(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false,
1206 false)
1207 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
1208 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1209 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1210 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1211 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1212 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1213 INITIALIZE_PASS_END(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, false)
1215 FunctionPass *llvm::createLoopFusePass() { return new LoopFuseLegacy(); }