1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the primary stateless implementation of the
10 // Alias Analysis interface that implements identities (two different
11 // globals cannot alias, etc), but does no stateful analysis.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Analysis/BasicAliasAnalysis.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/Analysis/CaptureTracking.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/PhiValues.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GetElementPtrTypeIterator.h"
40 #include "llvm/IR/GlobalAlias.h"
41 #include "llvm/IR/GlobalVariable.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/Operator.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Compiler.h"
56 #include "llvm/Support/KnownBits.h"
62 #define DEBUG_TYPE "basicaa"
66 /// Enable analysis of recursive PHI nodes.
67 static cl::opt
<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden
,
70 /// By default, even on 32-bit architectures we use 64-bit integers for
71 /// calculations. This will allow us to more-aggressively decompose indexing
72 /// expressions calculated using i64 values (e.g., long long in C) which is
73 /// common enough to worry about.
74 static cl::opt
<bool> ForceAtLeast64Bits("basicaa-force-at-least-64b",
75 cl::Hidden
, cl::init(true));
76 static cl::opt
<bool> DoubleCalcBits("basicaa-double-calc-bits",
77 cl::Hidden
, cl::init(false));
79 /// SearchLimitReached / SearchTimes shows how often the limit of
80 /// to decompose GEPs is reached. It will affect the precision
81 /// of basic alias analysis.
82 STATISTIC(SearchLimitReached
, "Number of times the limit to "
83 "decompose GEPs is reached");
84 STATISTIC(SearchTimes
, "Number of times a GEP is decomposed");
86 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
87 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
88 /// careful with value equivalence. We use reachability to make sure a value
89 /// cannot be involved in a cycle.
90 const unsigned MaxNumPhiBBsValueReachabilityCheck
= 20;
92 // The max limit of the search depth in DecomposeGEPExpression() and
93 // GetUnderlyingObject(), both functions need to use the same search
94 // depth otherwise the algorithm in aliasGEP will assert.
95 static const unsigned MaxLookupSearchDepth
= 6;
97 bool BasicAAResult::invalidate(Function
&Fn
, const PreservedAnalyses
&PA
,
98 FunctionAnalysisManager::Invalidator
&Inv
) {
99 // We don't care if this analysis itself is preserved, it has no state. But
100 // we need to check that the analyses it depends on have been. Note that we
101 // may be created without handles to some analyses and in that case don't
103 if (Inv
.invalidate
<AssumptionAnalysis
>(Fn
, PA
) ||
104 (DT
&& Inv
.invalidate
<DominatorTreeAnalysis
>(Fn
, PA
)) ||
105 (LI
&& Inv
.invalidate
<LoopAnalysis
>(Fn
, PA
)) ||
106 (PV
&& Inv
.invalidate
<PhiValuesAnalysis
>(Fn
, PA
)))
109 // Otherwise this analysis result remains valid.
113 //===----------------------------------------------------------------------===//
115 //===----------------------------------------------------------------------===//
117 /// Returns true if the pointer is to a function-local object that never
118 /// escapes from the function.
119 static bool isNonEscapingLocalObject(
121 SmallDenseMap
<const Value
*, bool, 8> *IsCapturedCache
= nullptr) {
122 SmallDenseMap
<const Value
*, bool, 8>::iterator CacheIt
;
123 if (IsCapturedCache
) {
125 std::tie(CacheIt
, Inserted
) = IsCapturedCache
->insert({V
, false});
127 // Found cached result, return it!
128 return CacheIt
->second
;
131 // If this is a local allocation, check to see if it escapes.
132 if (isa
<AllocaInst
>(V
) || isNoAliasCall(V
)) {
133 // Set StoreCaptures to True so that we can assume in our callers that the
134 // pointer is not the result of a load instruction. Currently
135 // PointerMayBeCaptured doesn't have any special analysis for the
136 // StoreCaptures=false case; if it did, our callers could be refined to be
138 auto Ret
= !PointerMayBeCaptured(V
, false, /*StoreCaptures=*/true);
140 CacheIt
->second
= Ret
;
144 // If this is an argument that corresponds to a byval or noalias argument,
145 // then it has not escaped before entering the function. Check if it escapes
146 // inside the function.
147 if (const Argument
*A
= dyn_cast
<Argument
>(V
))
148 if (A
->hasByValAttr() || A
->hasNoAliasAttr()) {
149 // Note even if the argument is marked nocapture, we still need to check
150 // for copies made inside the function. The nocapture attribute only
151 // specifies that there are no copies made that outlive the function.
152 auto Ret
= !PointerMayBeCaptured(V
, false, /*StoreCaptures=*/true);
154 CacheIt
->second
= Ret
;
161 /// Returns true if the pointer is one which would have been considered an
162 /// escape by isNonEscapingLocalObject.
163 static bool isEscapeSource(const Value
*V
) {
164 if (isa
<CallBase
>(V
))
167 if (isa
<Argument
>(V
))
170 // The load case works because isNonEscapingLocalObject considers all
171 // stores to be escapes (it passes true for the StoreCaptures argument
172 // to PointerMayBeCaptured).
173 if (isa
<LoadInst
>(V
))
179 /// Returns the size of the object specified by V or UnknownSize if unknown.
180 static uint64_t getObjectSize(const Value
*V
, const DataLayout
&DL
,
181 const TargetLibraryInfo
&TLI
,
183 bool RoundToAlign
= false) {
186 Opts
.RoundToAlign
= RoundToAlign
;
187 Opts
.NullIsUnknownSize
= NullIsValidLoc
;
188 if (getObjectSize(V
, Size
, DL
, &TLI
, Opts
))
190 return MemoryLocation::UnknownSize
;
193 /// Returns true if we can prove that the object specified by V is smaller than
195 static bool isObjectSmallerThan(const Value
*V
, uint64_t Size
,
196 const DataLayout
&DL
,
197 const TargetLibraryInfo
&TLI
,
198 bool NullIsValidLoc
) {
199 // Note that the meanings of the "object" are slightly different in the
200 // following contexts:
201 // c1: llvm::getObjectSize()
202 // c2: llvm.objectsize() intrinsic
203 // c3: isObjectSmallerThan()
204 // c1 and c2 share the same meaning; however, the meaning of "object" in c3
205 // refers to the "entire object".
207 // Consider this example:
208 // char *p = (char*)malloc(100)
211 // In the context of c1 and c2, the "object" pointed by q refers to the
212 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
214 // However, in the context of c3, the "object" refers to the chunk of memory
215 // being allocated. So, the "object" has 100 bytes, and q points to the middle
216 // the "object". In case q is passed to isObjectSmallerThan() as the 1st
217 // parameter, before the llvm::getObjectSize() is called to get the size of
218 // entire object, we should:
219 // - either rewind the pointer q to the base-address of the object in
220 // question (in this case rewind to p), or
221 // - just give up. It is up to caller to make sure the pointer is pointing
222 // to the base address the object.
224 // We go for 2nd option for simplicity.
225 if (!isIdentifiedObject(V
))
228 // This function needs to use the aligned object size because we allow
229 // reads a bit past the end given sufficient alignment.
230 uint64_t ObjectSize
= getObjectSize(V
, DL
, TLI
, NullIsValidLoc
,
231 /*RoundToAlign*/ true);
233 return ObjectSize
!= MemoryLocation::UnknownSize
&& ObjectSize
< Size
;
236 /// Returns true if we can prove that the object specified by V has size Size.
237 static bool isObjectSize(const Value
*V
, uint64_t Size
, const DataLayout
&DL
,
238 const TargetLibraryInfo
&TLI
, bool NullIsValidLoc
) {
239 uint64_t ObjectSize
= getObjectSize(V
, DL
, TLI
, NullIsValidLoc
);
240 return ObjectSize
!= MemoryLocation::UnknownSize
&& ObjectSize
== Size
;
243 //===----------------------------------------------------------------------===//
244 // GetElementPtr Instruction Decomposition and Analysis
245 //===----------------------------------------------------------------------===//
247 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
248 /// B are constant integers.
250 /// Returns the scale and offset values as APInts and return V as a Value*, and
251 /// return whether we looked through any sign or zero extends. The incoming
252 /// Value is known to have IntegerType, and it may already be sign or zero
255 /// Note that this looks through extends, so the high bits may not be
256 /// represented in the result.
257 /*static*/ const Value
*BasicAAResult::GetLinearExpression(
258 const Value
*V
, APInt
&Scale
, APInt
&Offset
, unsigned &ZExtBits
,
259 unsigned &SExtBits
, const DataLayout
&DL
, unsigned Depth
,
260 AssumptionCache
*AC
, DominatorTree
*DT
, bool &NSW
, bool &NUW
) {
261 assert(V
->getType()->isIntegerTy() && "Not an integer value");
263 // Limit our recursion depth.
270 if (const ConstantInt
*Const
= dyn_cast
<ConstantInt
>(V
)) {
271 // If it's a constant, just convert it to an offset and remove the variable.
272 // If we've been called recursively, the Offset bit width will be greater
273 // than the constant's (the Offset's always as wide as the outermost call),
274 // so we'll zext here and process any extension in the isa<SExtInst> &
275 // isa<ZExtInst> cases below.
276 Offset
+= Const
->getValue().zextOrSelf(Offset
.getBitWidth());
277 assert(Scale
== 0 && "Constant values don't have a scale");
281 if (const BinaryOperator
*BOp
= dyn_cast
<BinaryOperator
>(V
)) {
282 if (ConstantInt
*RHSC
= dyn_cast
<ConstantInt
>(BOp
->getOperand(1))) {
283 // If we've been called recursively, then Offset and Scale will be wider
284 // than the BOp operands. We'll always zext it here as we'll process sign
285 // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
286 APInt RHS
= RHSC
->getValue().zextOrSelf(Offset
.getBitWidth());
288 switch (BOp
->getOpcode()) {
290 // We don't understand this instruction, so we can't decompose it any
295 case Instruction::Or
:
296 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't
298 if (!MaskedValueIsZero(BOp
->getOperand(0), RHSC
->getValue(), DL
, 0, AC
,
305 case Instruction::Add
:
306 V
= GetLinearExpression(BOp
->getOperand(0), Scale
, Offset
, ZExtBits
,
307 SExtBits
, DL
, Depth
+ 1, AC
, DT
, NSW
, NUW
);
310 case Instruction::Sub
:
311 V
= GetLinearExpression(BOp
->getOperand(0), Scale
, Offset
, ZExtBits
,
312 SExtBits
, DL
, Depth
+ 1, AC
, DT
, NSW
, NUW
);
315 case Instruction::Mul
:
316 V
= GetLinearExpression(BOp
->getOperand(0), Scale
, Offset
, ZExtBits
,
317 SExtBits
, DL
, Depth
+ 1, AC
, DT
, NSW
, NUW
);
321 case Instruction::Shl
:
322 V
= GetLinearExpression(BOp
->getOperand(0), Scale
, Offset
, ZExtBits
,
323 SExtBits
, DL
, Depth
+ 1, AC
, DT
, NSW
, NUW
);
325 // We're trying to linearize an expression of the kind:
327 // where the shift count exceeds the bitwidth of the type.
328 // We can't decompose this further (the expression would return
330 if (Offset
.getBitWidth() < RHS
.getLimitedValue() ||
331 Scale
.getBitWidth() < RHS
.getLimitedValue()) {
337 Offset
<<= RHS
.getLimitedValue();
338 Scale
<<= RHS
.getLimitedValue();
339 // the semantics of nsw and nuw for left shifts don't match those of
340 // multiplications, so we won't propagate them.
345 if (isa
<OverflowingBinaryOperator
>(BOp
)) {
346 NUW
&= BOp
->hasNoUnsignedWrap();
347 NSW
&= BOp
->hasNoSignedWrap();
353 // Since GEP indices are sign extended anyway, we don't care about the high
354 // bits of a sign or zero extended value - just scales and offsets. The
355 // extensions have to be consistent though.
356 if (isa
<SExtInst
>(V
) || isa
<ZExtInst
>(V
)) {
357 Value
*CastOp
= cast
<CastInst
>(V
)->getOperand(0);
358 unsigned NewWidth
= V
->getType()->getPrimitiveSizeInBits();
359 unsigned SmallWidth
= CastOp
->getType()->getPrimitiveSizeInBits();
360 unsigned OldZExtBits
= ZExtBits
, OldSExtBits
= SExtBits
;
361 const Value
*Result
=
362 GetLinearExpression(CastOp
, Scale
, Offset
, ZExtBits
, SExtBits
, DL
,
363 Depth
+ 1, AC
, DT
, NSW
, NUW
);
365 // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this
366 // by just incrementing the number of bits we've extended by.
367 unsigned ExtendedBy
= NewWidth
- SmallWidth
;
369 if (isa
<SExtInst
>(V
) && ZExtBits
== 0) {
370 // sext(sext(%x, a), b) == sext(%x, a + b)
373 // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
374 // into sext(%x) + sext(c). We'll sext the Offset ourselves:
375 unsigned OldWidth
= Offset
.getBitWidth();
376 Offset
= Offset
.trunc(SmallWidth
).sext(NewWidth
).zextOrSelf(OldWidth
);
378 // We may have signed-wrapped, so don't decompose sext(%x + c) into
379 // sext(%x) + sext(c)
383 ZExtBits
= OldZExtBits
;
384 SExtBits
= OldSExtBits
;
386 SExtBits
+= ExtendedBy
;
388 // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
391 // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
392 // zext(%x) + zext(c)
396 ZExtBits
= OldZExtBits
;
397 SExtBits
= OldSExtBits
;
399 ZExtBits
+= ExtendedBy
;
410 /// To ensure a pointer offset fits in an integer of size PointerSize
411 /// (in bits) when that size is smaller than the maximum pointer size. This is
412 /// an issue, for example, in particular for 32b pointers with negative indices
413 /// that rely on two's complement wrap-arounds for precise alias information
414 /// where the maximum pointer size is 64b.
415 static APInt
adjustToPointerSize(APInt Offset
, unsigned PointerSize
) {
416 assert(PointerSize
<= Offset
.getBitWidth() && "Invalid PointerSize!");
417 unsigned ShiftBits
= Offset
.getBitWidth() - PointerSize
;
418 return (Offset
<< ShiftBits
).ashr(ShiftBits
);
421 static unsigned getMaxPointerSize(const DataLayout
&DL
) {
422 unsigned MaxPointerSize
= DL
.getMaxPointerSizeInBits();
423 if (MaxPointerSize
< 64 && ForceAtLeast64Bits
) MaxPointerSize
= 64;
424 if (DoubleCalcBits
) MaxPointerSize
*= 2;
426 return MaxPointerSize
;
429 /// If V is a symbolic pointer expression, decompose it into a base pointer
430 /// with a constant offset and a number of scaled symbolic offsets.
432 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
433 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
434 /// specified amount, but which may have other unrepresented high bits. As
435 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
437 /// When DataLayout is around, this function is capable of analyzing everything
438 /// that GetUnderlyingObject can look through. To be able to do that
439 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search
440 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks
441 /// through pointer casts.
442 bool BasicAAResult::DecomposeGEPExpression(const Value
*V
,
443 DecomposedGEP
&Decomposed
, const DataLayout
&DL
, AssumptionCache
*AC
,
445 // Limit recursion depth to limit compile time in crazy cases.
446 unsigned MaxLookup
= MaxLookupSearchDepth
;
449 unsigned MaxPointerSize
= getMaxPointerSize(DL
);
450 Decomposed
.VarIndices
.clear();
452 // See if this is a bitcast or GEP.
453 const Operator
*Op
= dyn_cast
<Operator
>(V
);
455 // The only non-operator case we can handle are GlobalAliases.
456 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(V
)) {
457 if (!GA
->isInterposable()) {
458 V
= GA
->getAliasee();
466 if (Op
->getOpcode() == Instruction::BitCast
||
467 Op
->getOpcode() == Instruction::AddrSpaceCast
) {
468 V
= Op
->getOperand(0);
472 const GEPOperator
*GEPOp
= dyn_cast
<GEPOperator
>(Op
);
474 if (const auto *Call
= dyn_cast
<CallBase
>(V
)) {
475 // CaptureTracking can know about special capturing properties of some
476 // intrinsics like launder.invariant.group, that can't be expressed with
477 // the attributes, but have properties like returning aliasing pointer.
478 // Because some analysis may assume that nocaptured pointer is not
479 // returned from some special intrinsic (because function would have to
480 // be marked with returns attribute), it is crucial to use this function
481 // because it should be in sync with CaptureTracking. Not using it may
482 // cause weird miscompilations where 2 aliasing pointers are assumed to
484 if (auto *RP
= getArgumentAliasingToReturnedPointer(Call
)) {
490 // If it's not a GEP, hand it off to SimplifyInstruction to see if it
491 // can come up with something. This matches what GetUnderlyingObject does.
492 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
))
493 // TODO: Get a DominatorTree and AssumptionCache and use them here
494 // (these are both now available in this function, but this should be
495 // updated when GetUnderlyingObject is updated). TLI should be
497 if (const Value
*Simplified
=
498 SimplifyInstruction(const_cast<Instruction
*>(I
), DL
)) {
507 // Don't attempt to analyze GEPs over unsized objects.
508 if (!GEPOp
->getSourceElementType()->isSized()) {
513 unsigned AS
= GEPOp
->getPointerAddressSpace();
514 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
515 gep_type_iterator GTI
= gep_type_begin(GEPOp
);
516 unsigned PointerSize
= DL
.getPointerSizeInBits(AS
);
517 // Assume all GEP operands are constants until proven otherwise.
518 bool GepHasConstantOffset
= true;
519 for (User::const_op_iterator I
= GEPOp
->op_begin() + 1, E
= GEPOp
->op_end();
520 I
!= E
; ++I
, ++GTI
) {
521 const Value
*Index
= *I
;
522 // Compute the (potentially symbolic) offset in bytes for this index.
523 if (StructType
*STy
= GTI
.getStructTypeOrNull()) {
524 // For a struct, add the member offset.
525 unsigned FieldNo
= cast
<ConstantInt
>(Index
)->getZExtValue();
529 Decomposed
.StructOffset
+=
530 DL
.getStructLayout(STy
)->getElementOffset(FieldNo
);
534 // For an array/pointer, add the element offset, explicitly scaled.
535 if (const ConstantInt
*CIdx
= dyn_cast
<ConstantInt
>(Index
)) {
538 Decomposed
.OtherOffset
+=
539 (DL
.getTypeAllocSize(GTI
.getIndexedType()) *
540 CIdx
->getValue().sextOrSelf(MaxPointerSize
))
541 .sextOrTrunc(MaxPointerSize
);
545 GepHasConstantOffset
= false;
547 APInt
Scale(MaxPointerSize
, DL
.getTypeAllocSize(GTI
.getIndexedType()));
548 unsigned ZExtBits
= 0, SExtBits
= 0;
550 // If the integer type is smaller than the pointer size, it is implicitly
551 // sign extended to pointer size.
552 unsigned Width
= Index
->getType()->getIntegerBitWidth();
553 if (PointerSize
> Width
)
554 SExtBits
+= PointerSize
- Width
;
556 // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
557 APInt
IndexScale(Width
, 0), IndexOffset(Width
, 0);
558 bool NSW
= true, NUW
= true;
559 const Value
*OrigIndex
= Index
;
560 Index
= GetLinearExpression(Index
, IndexScale
, IndexOffset
, ZExtBits
,
561 SExtBits
, DL
, 0, AC
, DT
, NSW
, NUW
);
563 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
564 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
566 // It can be the case that, even through C1*V+C2 does not overflow for
567 // relevant values of V, (C2*Scale) can overflow. In that case, we cannot
568 // decompose the expression in this way.
570 // FIXME: C1*Scale and the other operations in the decomposed
571 // (C1*Scale)*V+C2*Scale can also overflow. We should check for this
573 APInt WideScaledOffset
= IndexOffset
.sextOrTrunc(MaxPointerSize
*2) *
574 Scale
.sext(MaxPointerSize
*2);
575 if (WideScaledOffset
.getMinSignedBits() > MaxPointerSize
) {
580 ZExtBits
= SExtBits
= 0;
581 if (PointerSize
> Width
)
582 SExtBits
+= PointerSize
- Width
;
584 Decomposed
.OtherOffset
+= IndexOffset
.sextOrTrunc(MaxPointerSize
) * Scale
;
585 Scale
*= IndexScale
.sextOrTrunc(MaxPointerSize
);
588 // If we already had an occurrence of this index variable, merge this
589 // scale into it. For example, we want to handle:
590 // A[x][x] -> x*16 + x*4 -> x*20
591 // This also ensures that 'x' only appears in the index list once.
592 for (unsigned i
= 0, e
= Decomposed
.VarIndices
.size(); i
!= e
; ++i
) {
593 if (Decomposed
.VarIndices
[i
].V
== Index
&&
594 Decomposed
.VarIndices
[i
].ZExtBits
== ZExtBits
&&
595 Decomposed
.VarIndices
[i
].SExtBits
== SExtBits
) {
596 Scale
+= Decomposed
.VarIndices
[i
].Scale
;
597 Decomposed
.VarIndices
.erase(Decomposed
.VarIndices
.begin() + i
);
602 // Make sure that we have a scale that makes sense for this target's
604 Scale
= adjustToPointerSize(Scale
, PointerSize
);
607 VariableGEPIndex Entry
= {Index
, ZExtBits
, SExtBits
, Scale
};
608 Decomposed
.VarIndices
.push_back(Entry
);
612 // Take care of wrap-arounds
613 if (GepHasConstantOffset
) {
614 Decomposed
.StructOffset
=
615 adjustToPointerSize(Decomposed
.StructOffset
, PointerSize
);
616 Decomposed
.OtherOffset
=
617 adjustToPointerSize(Decomposed
.OtherOffset
, PointerSize
);
620 // Analyze the base pointer next.
621 V
= GEPOp
->getOperand(0);
622 } while (--MaxLookup
);
624 // If the chain of expressions is too deep, just return early.
626 SearchLimitReached
++;
630 /// Returns whether the given pointer value points to memory that is local to
631 /// the function, with global constants being considered local to all
633 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation
&Loc
,
634 AAQueryInfo
&AAQI
, bool OrLocal
) {
635 assert(Visited
.empty() && "Visited must be cleared after use!");
637 unsigned MaxLookup
= 8;
638 SmallVector
<const Value
*, 16> Worklist
;
639 Worklist
.push_back(Loc
.Ptr
);
641 const Value
*V
= GetUnderlyingObject(Worklist
.pop_back_val(), DL
);
642 if (!Visited
.insert(V
).second
) {
644 return AAResultBase::pointsToConstantMemory(Loc
, AAQI
, OrLocal
);
647 // An alloca instruction defines local memory.
648 if (OrLocal
&& isa
<AllocaInst
>(V
))
651 // A global constant counts as local memory for our purposes.
652 if (const GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(V
)) {
653 // Note: this doesn't require GV to be "ODR" because it isn't legal for a
654 // global to be marked constant in some modules and non-constant in
655 // others. GV may even be a declaration, not a definition.
656 if (!GV
->isConstant()) {
658 return AAResultBase::pointsToConstantMemory(Loc
, AAQI
, OrLocal
);
663 // If both select values point to local memory, then so does the select.
664 if (const SelectInst
*SI
= dyn_cast
<SelectInst
>(V
)) {
665 Worklist
.push_back(SI
->getTrueValue());
666 Worklist
.push_back(SI
->getFalseValue());
670 // If all values incoming to a phi node point to local memory, then so does
672 if (const PHINode
*PN
= dyn_cast
<PHINode
>(V
)) {
673 // Don't bother inspecting phi nodes with many operands.
674 if (PN
->getNumIncomingValues() > MaxLookup
) {
676 return AAResultBase::pointsToConstantMemory(Loc
, AAQI
, OrLocal
);
678 for (Value
*IncValue
: PN
->incoming_values())
679 Worklist
.push_back(IncValue
);
683 // Otherwise be conservative.
685 return AAResultBase::pointsToConstantMemory(Loc
, AAQI
, OrLocal
);
686 } while (!Worklist
.empty() && --MaxLookup
);
689 return Worklist
.empty();
692 /// Returns the behavior when calling the given call site.
693 FunctionModRefBehavior
BasicAAResult::getModRefBehavior(const CallBase
*Call
) {
694 if (Call
->doesNotAccessMemory())
695 // Can't do better than this.
696 return FMRB_DoesNotAccessMemory
;
698 FunctionModRefBehavior Min
= FMRB_UnknownModRefBehavior
;
700 // If the callsite knows it only reads memory, don't return worse
702 if (Call
->onlyReadsMemory())
703 Min
= FMRB_OnlyReadsMemory
;
704 else if (Call
->doesNotReadMemory())
705 Min
= FMRB_DoesNotReadMemory
;
707 if (Call
->onlyAccessesArgMemory())
708 Min
= FunctionModRefBehavior(Min
& FMRB_OnlyAccessesArgumentPointees
);
709 else if (Call
->onlyAccessesInaccessibleMemory())
710 Min
= FunctionModRefBehavior(Min
& FMRB_OnlyAccessesInaccessibleMem
);
711 else if (Call
->onlyAccessesInaccessibleMemOrArgMem())
712 Min
= FunctionModRefBehavior(Min
& FMRB_OnlyAccessesInaccessibleOrArgMem
);
714 // If the call has operand bundles then aliasing attributes from the function
715 // it calls do not directly apply to the call. This can be made more precise
717 if (!Call
->hasOperandBundles())
718 if (const Function
*F
= Call
->getCalledFunction())
720 FunctionModRefBehavior(Min
& getBestAAResults().getModRefBehavior(F
));
725 /// Returns the behavior when calling the given function. For use when the call
726 /// site is not known.
727 FunctionModRefBehavior
BasicAAResult::getModRefBehavior(const Function
*F
) {
728 // If the function declares it doesn't access memory, we can't do better.
729 if (F
->doesNotAccessMemory())
730 return FMRB_DoesNotAccessMemory
;
732 FunctionModRefBehavior Min
= FMRB_UnknownModRefBehavior
;
734 // If the function declares it only reads memory, go with that.
735 if (F
->onlyReadsMemory())
736 Min
= FMRB_OnlyReadsMemory
;
737 else if (F
->doesNotReadMemory())
738 Min
= FMRB_DoesNotReadMemory
;
740 if (F
->onlyAccessesArgMemory())
741 Min
= FunctionModRefBehavior(Min
& FMRB_OnlyAccessesArgumentPointees
);
742 else if (F
->onlyAccessesInaccessibleMemory())
743 Min
= FunctionModRefBehavior(Min
& FMRB_OnlyAccessesInaccessibleMem
);
744 else if (F
->onlyAccessesInaccessibleMemOrArgMem())
745 Min
= FunctionModRefBehavior(Min
& FMRB_OnlyAccessesInaccessibleOrArgMem
);
750 /// Returns true if this is a writeonly (i.e Mod only) parameter.
751 static bool isWriteOnlyParam(const CallBase
*Call
, unsigned ArgIdx
,
752 const TargetLibraryInfo
&TLI
) {
753 if (Call
->paramHasAttr(ArgIdx
, Attribute::WriteOnly
))
756 // We can bound the aliasing properties of memset_pattern16 just as we can
757 // for memcpy/memset. This is particularly important because the
758 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
759 // whenever possible.
760 // FIXME Consider handling this in InferFunctionAttr.cpp together with other
763 if (Call
->getCalledFunction() &&
764 TLI
.getLibFunc(*Call
->getCalledFunction(), F
) &&
765 F
== LibFunc_memset_pattern16
&& TLI
.has(F
))
769 // TODO: memset_pattern4, memset_pattern8
770 // TODO: _chk variants
771 // TODO: strcmp, strcpy
776 ModRefInfo
BasicAAResult::getArgModRefInfo(const CallBase
*Call
,
778 // Checking for known builtin intrinsics and target library functions.
779 if (isWriteOnlyParam(Call
, ArgIdx
, TLI
))
780 return ModRefInfo::Mod
;
782 if (Call
->paramHasAttr(ArgIdx
, Attribute::ReadOnly
))
783 return ModRefInfo::Ref
;
785 if (Call
->paramHasAttr(ArgIdx
, Attribute::ReadNone
))
786 return ModRefInfo::NoModRef
;
788 return AAResultBase::getArgModRefInfo(Call
, ArgIdx
);
791 static bool isIntrinsicCall(const CallBase
*Call
, Intrinsic::ID IID
) {
792 const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Call
);
793 return II
&& II
->getIntrinsicID() == IID
;
797 static const Function
*getParent(const Value
*V
) {
798 if (const Instruction
*inst
= dyn_cast
<Instruction
>(V
)) {
799 if (!inst
->getParent())
801 return inst
->getParent()->getParent();
804 if (const Argument
*arg
= dyn_cast
<Argument
>(V
))
805 return arg
->getParent();
810 static bool notDifferentParent(const Value
*O1
, const Value
*O2
) {
812 const Function
*F1
= getParent(O1
);
813 const Function
*F2
= getParent(O2
);
815 return !F1
|| !F2
|| F1
== F2
;
819 AliasResult
BasicAAResult::alias(const MemoryLocation
&LocA
,
820 const MemoryLocation
&LocB
,
822 assert(notDifferentParent(LocA
.Ptr
, LocB
.Ptr
) &&
823 "BasicAliasAnalysis doesn't support interprocedural queries.");
825 // If we have a directly cached entry for these locations, we have recursed
826 // through this once, so just return the cached results. Notably, when this
827 // happens, we don't clear the cache.
828 auto CacheIt
= AAQI
.AliasCache
.find(AAQueryInfo::LocPair(LocA
, LocB
));
829 if (CacheIt
!= AAQI
.AliasCache
.end())
830 return CacheIt
->second
;
832 CacheIt
= AAQI
.AliasCache
.find(AAQueryInfo::LocPair(LocB
, LocA
));
833 if (CacheIt
!= AAQI
.AliasCache
.end())
834 return CacheIt
->second
;
836 AliasResult Alias
= aliasCheck(LocA
.Ptr
, LocA
.Size
, LocA
.AATags
, LocB
.Ptr
,
837 LocB
.Size
, LocB
.AATags
, AAQI
);
839 VisitedPhiBBs
.clear();
843 /// Checks to see if the specified callsite can clobber the specified memory
846 /// Since we only look at local properties of this function, we really can't
847 /// say much about this query. We do, however, use simple "address taken"
848 /// analysis on local objects.
849 ModRefInfo
BasicAAResult::getModRefInfo(const CallBase
*Call
,
850 const MemoryLocation
&Loc
,
852 assert(notDifferentParent(Call
, Loc
.Ptr
) &&
853 "AliasAnalysis query involving multiple functions!");
855 const Value
*Object
= GetUnderlyingObject(Loc
.Ptr
, DL
);
857 // Calls marked 'tail' cannot read or write allocas from the current frame
858 // because the current frame might be destroyed by the time they run. However,
859 // a tail call may use an alloca with byval. Calling with byval copies the
860 // contents of the alloca into argument registers or stack slots, so there is
861 // no lifetime issue.
862 if (isa
<AllocaInst
>(Object
))
863 if (const CallInst
*CI
= dyn_cast
<CallInst
>(Call
))
864 if (CI
->isTailCall() &&
865 !CI
->getAttributes().hasAttrSomewhere(Attribute::ByVal
))
866 return ModRefInfo::NoModRef
;
868 // Stack restore is able to modify unescaped dynamic allocas. Assume it may
869 // modify them even though the alloca is not escaped.
870 if (auto *AI
= dyn_cast
<AllocaInst
>(Object
))
871 if (!AI
->isStaticAlloca() && isIntrinsicCall(Call
, Intrinsic::stackrestore
))
872 return ModRefInfo::Mod
;
874 // If the pointer is to a locally allocated object that does not escape,
875 // then the call can not mod/ref the pointer unless the call takes the pointer
876 // as an argument, and itself doesn't capture it.
877 if (!isa
<Constant
>(Object
) && Call
!= Object
&&
878 isNonEscapingLocalObject(Object
, &AAQI
.IsCapturedCache
)) {
880 // Optimistically assume that call doesn't touch Object and check this
881 // assumption in the following loop.
882 ModRefInfo Result
= ModRefInfo::NoModRef
;
883 bool IsMustAlias
= true;
885 unsigned OperandNo
= 0;
886 for (auto CI
= Call
->data_operands_begin(), CE
= Call
->data_operands_end();
887 CI
!= CE
; ++CI
, ++OperandNo
) {
888 // Only look at the no-capture or byval pointer arguments. If this
889 // pointer were passed to arguments that were neither of these, then it
890 // couldn't be no-capture.
891 if (!(*CI
)->getType()->isPointerTy() ||
892 (!Call
->doesNotCapture(OperandNo
) &&
893 OperandNo
< Call
->getNumArgOperands() &&
894 !Call
->isByValArgument(OperandNo
)))
897 // Call doesn't access memory through this operand, so we don't care
898 // if it aliases with Object.
899 if (Call
->doesNotAccessMemory(OperandNo
))
902 // If this is a no-capture pointer argument, see if we can tell that it
903 // is impossible to alias the pointer we're checking.
904 AliasResult AR
= getBestAAResults().alias(MemoryLocation(*CI
),
905 MemoryLocation(Object
), AAQI
);
908 // Operand doesn't alias 'Object', continue looking for other aliases
911 // Operand aliases 'Object', but call doesn't modify it. Strengthen
912 // initial assumption and keep looking in case if there are more aliases.
913 if (Call
->onlyReadsMemory(OperandNo
)) {
914 Result
= setRef(Result
);
917 // Operand aliases 'Object' but call only writes into it.
918 if (Call
->doesNotReadMemory(OperandNo
)) {
919 Result
= setMod(Result
);
922 // This operand aliases 'Object' and call reads and writes into it.
923 // Setting ModRef will not yield an early return below, MustAlias is not
925 Result
= ModRefInfo::ModRef
;
929 // No operand aliases, reset Must bit. Add below if at least one aliases
930 // and all aliases found are MustAlias.
931 if (isNoModRef(Result
))
934 // Early return if we improved mod ref information
935 if (!isModAndRefSet(Result
)) {
936 if (isNoModRef(Result
))
937 return ModRefInfo::NoModRef
;
938 return IsMustAlias
? setMust(Result
) : clearMust(Result
);
942 // If the call is to malloc or calloc, we can assume that it doesn't
943 // modify any IR visible value. This is only valid because we assume these
944 // routines do not read values visible in the IR. TODO: Consider special
945 // casing realloc and strdup routines which access only their arguments as
946 // well. Or alternatively, replace all of this with inaccessiblememonly once
947 // that's implemented fully.
948 if (isMallocOrCallocLikeFn(Call
, &TLI
)) {
949 // Be conservative if the accessed pointer may alias the allocation -
950 // fallback to the generic handling below.
951 if (getBestAAResults().alias(MemoryLocation(Call
), Loc
, AAQI
) == NoAlias
)
952 return ModRefInfo::NoModRef
;
955 // The semantics of memcpy intrinsics forbid overlap between their respective
956 // operands, i.e., source and destination of any given memcpy must no-alias.
957 // If Loc must-aliases either one of these two locations, then it necessarily
958 // no-aliases the other.
959 if (auto *Inst
= dyn_cast
<AnyMemCpyInst
>(Call
)) {
960 AliasResult SrcAA
, DestAA
;
962 if ((SrcAA
= getBestAAResults().alias(MemoryLocation::getForSource(Inst
),
963 Loc
, AAQI
)) == MustAlias
)
964 // Loc is exactly the memcpy source thus disjoint from memcpy dest.
965 return ModRefInfo::Ref
;
966 if ((DestAA
= getBestAAResults().alias(MemoryLocation::getForDest(Inst
),
967 Loc
, AAQI
)) == MustAlias
)
968 // The converse case.
969 return ModRefInfo::Mod
;
971 // It's also possible for Loc to alias both src and dest, or neither.
972 ModRefInfo rv
= ModRefInfo::NoModRef
;
973 if (SrcAA
!= NoAlias
)
975 if (DestAA
!= NoAlias
)
980 // While the assume intrinsic is marked as arbitrarily writing so that
981 // proper control dependencies will be maintained, it never aliases any
982 // particular memory location.
983 if (isIntrinsicCall(Call
, Intrinsic::assume
))
984 return ModRefInfo::NoModRef
;
986 // Like assumes, guard intrinsics are also marked as arbitrarily writing so
987 // that proper control dependencies are maintained but they never mods any
988 // particular memory location.
990 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
991 // heap state at the point the guard is issued needs to be consistent in case
992 // the guard invokes the "deopt" continuation.
993 if (isIntrinsicCall(Call
, Intrinsic::experimental_guard
))
994 return ModRefInfo::Ref
;
996 // Like assumes, invariant.start intrinsics were also marked as arbitrarily
997 // writing so that proper control dependencies are maintained but they never
998 // mod any particular memory location visible to the IR.
999 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
1000 // intrinsic is now modeled as reading memory. This prevents hoisting the
1001 // invariant.start intrinsic over stores. Consider:
1004 // invariant_start(ptr)
1008 // This cannot be transformed to:
1011 // invariant_start(ptr)
1016 // The transformation will cause the second store to be ignored (based on
1017 // rules of invariant.start) and print 40, while the first program always
1019 if (isIntrinsicCall(Call
, Intrinsic::invariant_start
))
1020 return ModRefInfo::Ref
;
1022 // The AAResultBase base class has some smarts, lets use them.
1023 return AAResultBase::getModRefInfo(Call
, Loc
, AAQI
);
1026 ModRefInfo
BasicAAResult::getModRefInfo(const CallBase
*Call1
,
1027 const CallBase
*Call2
,
1028 AAQueryInfo
&AAQI
) {
1029 // While the assume intrinsic is marked as arbitrarily writing so that
1030 // proper control dependencies will be maintained, it never aliases any
1031 // particular memory location.
1032 if (isIntrinsicCall(Call1
, Intrinsic::assume
) ||
1033 isIntrinsicCall(Call2
, Intrinsic::assume
))
1034 return ModRefInfo::NoModRef
;
1036 // Like assumes, guard intrinsics are also marked as arbitrarily writing so
1037 // that proper control dependencies are maintained but they never mod any
1038 // particular memory location.
1040 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
1041 // heap state at the point the guard is issued needs to be consistent in case
1042 // the guard invokes the "deopt" continuation.
1044 // NB! This function is *not* commutative, so we special case two
1045 // possibilities for guard intrinsics.
1047 if (isIntrinsicCall(Call1
, Intrinsic::experimental_guard
))
1048 return isModSet(createModRefInfo(getModRefBehavior(Call2
)))
1050 : ModRefInfo::NoModRef
;
1052 if (isIntrinsicCall(Call2
, Intrinsic::experimental_guard
))
1053 return isModSet(createModRefInfo(getModRefBehavior(Call1
)))
1055 : ModRefInfo::NoModRef
;
1057 // The AAResultBase base class has some smarts, lets use them.
1058 return AAResultBase::getModRefInfo(Call1
, Call2
, AAQI
);
1061 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
1062 /// both having the exact same pointer operand.
1063 static AliasResult
aliasSameBasePointerGEPs(const GEPOperator
*GEP1
,
1064 LocationSize MaybeV1Size
,
1065 const GEPOperator
*GEP2
,
1066 LocationSize MaybeV2Size
,
1067 const DataLayout
&DL
) {
1068 assert(GEP1
->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
1069 GEP2
->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
1070 GEP1
->getPointerOperandType() == GEP2
->getPointerOperandType() &&
1071 "Expected GEPs with the same pointer operand");
1073 // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
1074 // such that the struct field accesses provably cannot alias.
1075 // We also need at least two indices (the pointer, and the struct field).
1076 if (GEP1
->getNumIndices() != GEP2
->getNumIndices() ||
1077 GEP1
->getNumIndices() < 2)
1080 // If we don't know the size of the accesses through both GEPs, we can't
1081 // determine whether the struct fields accessed can't alias.
1082 if (MaybeV1Size
== LocationSize::unknown() ||
1083 MaybeV2Size
== LocationSize::unknown())
1086 const uint64_t V1Size
= MaybeV1Size
.getValue();
1087 const uint64_t V2Size
= MaybeV2Size
.getValue();
1090 dyn_cast
<ConstantInt
>(GEP1
->getOperand(GEP1
->getNumOperands() - 1));
1092 dyn_cast
<ConstantInt
>(GEP2
->getOperand(GEP2
->getNumOperands() - 1));
1094 // If the last (struct) indices are constants and are equal, the other indices
1095 // might be also be dynamically equal, so the GEPs can alias.
1097 unsigned BitWidth
= std::max(C1
->getBitWidth(), C2
->getBitWidth());
1098 if (C1
->getValue().sextOrSelf(BitWidth
) ==
1099 C2
->getValue().sextOrSelf(BitWidth
))
1103 // Find the last-indexed type of the GEP, i.e., the type you'd get if
1104 // you stripped the last index.
1105 // On the way, look at each indexed type. If there's something other
1106 // than an array, different indices can lead to different final types.
1107 SmallVector
<Value
*, 8> IntermediateIndices
;
1109 // Insert the first index; we don't need to check the type indexed
1110 // through it as it only drops the pointer indirection.
1111 assert(GEP1
->getNumIndices() > 1 && "Not enough GEP indices to examine");
1112 IntermediateIndices
.push_back(GEP1
->getOperand(1));
1114 // Insert all the remaining indices but the last one.
1115 // Also, check that they all index through arrays.
1116 for (unsigned i
= 1, e
= GEP1
->getNumIndices() - 1; i
!= e
; ++i
) {
1117 if (!isa
<ArrayType
>(GetElementPtrInst::getIndexedType(
1118 GEP1
->getSourceElementType(), IntermediateIndices
)))
1120 IntermediateIndices
.push_back(GEP1
->getOperand(i
+ 1));
1123 auto *Ty
= GetElementPtrInst::getIndexedType(
1124 GEP1
->getSourceElementType(), IntermediateIndices
);
1125 StructType
*LastIndexedStruct
= dyn_cast
<StructType
>(Ty
);
1127 if (isa
<SequentialType
>(Ty
)) {
1129 // - both GEPs begin indexing from the exact same pointer;
1130 // - the last indices in both GEPs are constants, indexing into a sequential
1131 // type (array or pointer);
1132 // - both GEPs only index through arrays prior to that.
1134 // Because array indices greater than the number of elements are valid in
1135 // GEPs, unless we know the intermediate indices are identical between
1136 // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
1137 // partially overlap. We also need to check that the loaded size matches
1138 // the element size, otherwise we could still have overlap.
1139 const uint64_t ElementSize
=
1140 DL
.getTypeStoreSize(cast
<SequentialType
>(Ty
)->getElementType());
1141 if (V1Size
!= ElementSize
|| V2Size
!= ElementSize
)
1144 for (unsigned i
= 0, e
= GEP1
->getNumIndices() - 1; i
!= e
; ++i
)
1145 if (GEP1
->getOperand(i
+ 1) != GEP2
->getOperand(i
+ 1))
1148 // Now we know that the array/pointer that GEP1 indexes into and that
1149 // that GEP2 indexes into must either precisely overlap or be disjoint.
1150 // Because they cannot partially overlap and because fields in an array
1151 // cannot overlap, if we can prove the final indices are different between
1152 // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
1154 // If the last indices are constants, we've already checked they don't
1155 // equal each other so we can exit early.
1159 Value
*GEP1LastIdx
= GEP1
->getOperand(GEP1
->getNumOperands() - 1);
1160 Value
*GEP2LastIdx
= GEP2
->getOperand(GEP2
->getNumOperands() - 1);
1161 if (isa
<PHINode
>(GEP1LastIdx
) || isa
<PHINode
>(GEP2LastIdx
)) {
1162 // If one of the indices is a PHI node, be safe and only use
1163 // computeKnownBits so we don't make any assumptions about the
1164 // relationships between the two indices. This is important if we're
1165 // asking about values from different loop iterations. See PR32314.
1166 // TODO: We may be able to change the check so we only do this when
1167 // we definitely looked through a PHINode.
1168 if (GEP1LastIdx
!= GEP2LastIdx
&&
1169 GEP1LastIdx
->getType() == GEP2LastIdx
->getType()) {
1170 KnownBits Known1
= computeKnownBits(GEP1LastIdx
, DL
);
1171 KnownBits Known2
= computeKnownBits(GEP2LastIdx
, DL
);
1172 if (Known1
.Zero
.intersects(Known2
.One
) ||
1173 Known1
.One
.intersects(Known2
.Zero
))
1176 } else if (isKnownNonEqual(GEP1LastIdx
, GEP2LastIdx
, DL
))
1180 } else if (!LastIndexedStruct
|| !C1
|| !C2
) {
1184 if (C1
->getValue().getActiveBits() > 64 ||
1185 C2
->getValue().getActiveBits() > 64)
1189 // - both GEPs begin indexing from the exact same pointer;
1190 // - the last indices in both GEPs are constants, indexing into a struct;
1191 // - said indices are different, hence, the pointed-to fields are different;
1192 // - both GEPs only index through arrays prior to that.
1194 // This lets us determine that the struct that GEP1 indexes into and the
1195 // struct that GEP2 indexes into must either precisely overlap or be
1196 // completely disjoint. Because they cannot partially overlap, indexing into
1197 // different non-overlapping fields of the struct will never alias.
1199 // Therefore, the only remaining thing needed to show that both GEPs can't
1200 // alias is that the fields are not overlapping.
1201 const StructLayout
*SL
= DL
.getStructLayout(LastIndexedStruct
);
1202 const uint64_t StructSize
= SL
->getSizeInBytes();
1203 const uint64_t V1Off
= SL
->getElementOffset(C1
->getZExtValue());
1204 const uint64_t V2Off
= SL
->getElementOffset(C2
->getZExtValue());
1206 auto EltsDontOverlap
= [StructSize
](uint64_t V1Off
, uint64_t V1Size
,
1207 uint64_t V2Off
, uint64_t V2Size
) {
1208 return V1Off
< V2Off
&& V1Off
+ V1Size
<= V2Off
&&
1209 ((V2Off
+ V2Size
<= StructSize
) ||
1210 (V2Off
+ V2Size
- StructSize
<= V1Off
));
1213 if (EltsDontOverlap(V1Off
, V1Size
, V2Off
, V2Size
) ||
1214 EltsDontOverlap(V2Off
, V2Size
, V1Off
, V1Size
))
1220 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the
1221 // beginning of the object the GEP points would have a negative offset with
1222 // repsect to the alloca, that means the GEP can not alias pointer (b).
1223 // Note that the pointer based on the alloca may not be a GEP. For
1224 // example, it may be the alloca itself.
1225 // The same applies if (b) is based on a GlobalVariable. Note that just being
1226 // based on isIdentifiedObject() is not enough - we need an identified object
1227 // that does not permit access to negative offsets. For example, a negative
1228 // offset from a noalias argument or call can be inbounds w.r.t the actual
1229 // underlying object.
1231 // For example, consider:
1233 // struct { int f0, int f1, ...} foo;
1235 // foo* random = bar(alloca);
1236 // int *f0 = &alloca.f0
1237 // int *f1 = &random->f1;
1239 // Which is lowered, approximately, to:
1241 // %alloca = alloca %struct.foo
1242 // %random = call %struct.foo* @random(%struct.foo* %alloca)
1243 // %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0
1244 // %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1
1246 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated
1247 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also
1248 // point into the same object. But since %f0 points to the beginning of %alloca,
1249 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher
1250 // than (%alloca - 1), and so is not inbounds, a contradiction.
1251 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator
*GEPOp
,
1252 const DecomposedGEP
&DecompGEP
, const DecomposedGEP
&DecompObject
,
1253 LocationSize MaybeObjectAccessSize
) {
1254 // If the object access size is unknown, or the GEP isn't inbounds, bail.
1255 if (MaybeObjectAccessSize
== LocationSize::unknown() || !GEPOp
->isInBounds())
1258 const uint64_t ObjectAccessSize
= MaybeObjectAccessSize
.getValue();
1260 // We need the object to be an alloca or a globalvariable, and want to know
1261 // the offset of the pointer from the object precisely, so no variable
1262 // indices are allowed.
1263 if (!(isa
<AllocaInst
>(DecompObject
.Base
) ||
1264 isa
<GlobalVariable
>(DecompObject
.Base
)) ||
1265 !DecompObject
.VarIndices
.empty())
1268 APInt ObjectBaseOffset
= DecompObject
.StructOffset
+
1269 DecompObject
.OtherOffset
;
1271 // If the GEP has no variable indices, we know the precise offset
1272 // from the base, then use it. If the GEP has variable indices,
1273 // we can't get exact GEP offset to identify pointer alias. So return
1274 // false in that case.
1275 if (!DecompGEP
.VarIndices
.empty())
1278 APInt GEPBaseOffset
= DecompGEP
.StructOffset
;
1279 GEPBaseOffset
+= DecompGEP
.OtherOffset
;
1281 return GEPBaseOffset
.sge(ObjectBaseOffset
+ (int64_t)ObjectAccessSize
);
1284 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1285 /// another pointer.
1287 /// We know that V1 is a GEP, but we don't know anything about V2.
1288 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for
1290 AliasResult
BasicAAResult::aliasGEP(
1291 const GEPOperator
*GEP1
, LocationSize V1Size
, const AAMDNodes
&V1AAInfo
,
1292 const Value
*V2
, LocationSize V2Size
, const AAMDNodes
&V2AAInfo
,
1293 const Value
*UnderlyingV1
, const Value
*UnderlyingV2
, AAQueryInfo
&AAQI
) {
1294 DecomposedGEP DecompGEP1
, DecompGEP2
;
1295 unsigned MaxPointerSize
= getMaxPointerSize(DL
);
1296 DecompGEP1
.StructOffset
= DecompGEP1
.OtherOffset
= APInt(MaxPointerSize
, 0);
1297 DecompGEP2
.StructOffset
= DecompGEP2
.OtherOffset
= APInt(MaxPointerSize
, 0);
1299 bool GEP1MaxLookupReached
=
1300 DecomposeGEPExpression(GEP1
, DecompGEP1
, DL
, &AC
, DT
);
1301 bool GEP2MaxLookupReached
=
1302 DecomposeGEPExpression(V2
, DecompGEP2
, DL
, &AC
, DT
);
1304 APInt GEP1BaseOffset
= DecompGEP1
.StructOffset
+ DecompGEP1
.OtherOffset
;
1305 APInt GEP2BaseOffset
= DecompGEP2
.StructOffset
+ DecompGEP2
.OtherOffset
;
1307 assert(DecompGEP1
.Base
== UnderlyingV1
&& DecompGEP2
.Base
== UnderlyingV2
&&
1308 "DecomposeGEPExpression returned a result different from "
1309 "GetUnderlyingObject");
1311 // If the GEP's offset relative to its base is such that the base would
1312 // fall below the start of the object underlying V2, then the GEP and V2
1314 if (!GEP1MaxLookupReached
&& !GEP2MaxLookupReached
&&
1315 isGEPBaseAtNegativeOffset(GEP1
, DecompGEP1
, DecompGEP2
, V2Size
))
1317 // If we have two gep instructions with must-alias or not-alias'ing base
1318 // pointers, figure out if the indexes to the GEP tell us anything about the
1320 if (const GEPOperator
*GEP2
= dyn_cast
<GEPOperator
>(V2
)) {
1321 // Check for the GEP base being at a negative offset, this time in the other
1323 if (!GEP1MaxLookupReached
&& !GEP2MaxLookupReached
&&
1324 isGEPBaseAtNegativeOffset(GEP2
, DecompGEP2
, DecompGEP1
, V1Size
))
1326 // Do the base pointers alias?
1327 AliasResult BaseAlias
=
1328 aliasCheck(UnderlyingV1
, LocationSize::unknown(), AAMDNodes(),
1329 UnderlyingV2
, LocationSize::unknown(), AAMDNodes(), AAQI
);
1331 // Check for geps of non-aliasing underlying pointers where the offsets are
1333 if ((BaseAlias
== MayAlias
) && V1Size
== V2Size
) {
1334 // Do the base pointers alias assuming type and size.
1335 AliasResult PreciseBaseAlias
= aliasCheck(
1336 UnderlyingV1
, V1Size
, V1AAInfo
, UnderlyingV2
, V2Size
, V2AAInfo
, AAQI
);
1337 if (PreciseBaseAlias
== NoAlias
) {
1338 // See if the computed offset from the common pointer tells us about the
1339 // relation of the resulting pointer.
1340 // If the max search depth is reached the result is undefined
1341 if (GEP2MaxLookupReached
|| GEP1MaxLookupReached
)
1345 if (GEP1BaseOffset
== GEP2BaseOffset
&&
1346 DecompGEP1
.VarIndices
== DecompGEP2
.VarIndices
)
1351 // If we get a No or May, then return it immediately, no amount of analysis
1352 // will improve this situation.
1353 if (BaseAlias
!= MustAlias
) {
1354 assert(BaseAlias
== NoAlias
|| BaseAlias
== MayAlias
);
1358 // Otherwise, we have a MustAlias. Since the base pointers alias each other
1359 // exactly, see if the computed offset from the common pointer tells us
1360 // about the relation of the resulting pointer.
1361 // If we know the two GEPs are based off of the exact same pointer (and not
1362 // just the same underlying object), see if that tells us anything about
1363 // the resulting pointers.
1364 if (GEP1
->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
1365 GEP2
->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
1366 GEP1
->getPointerOperandType() == GEP2
->getPointerOperandType()) {
1367 AliasResult R
= aliasSameBasePointerGEPs(GEP1
, V1Size
, GEP2
, V2Size
, DL
);
1368 // If we couldn't find anything interesting, don't abandon just yet.
1373 // If the max search depth is reached, the result is undefined
1374 if (GEP2MaxLookupReached
|| GEP1MaxLookupReached
)
1377 // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1378 // symbolic difference.
1379 GEP1BaseOffset
-= GEP2BaseOffset
;
1380 GetIndexDifference(DecompGEP1
.VarIndices
, DecompGEP2
.VarIndices
);
1383 // Check to see if these two pointers are related by the getelementptr
1384 // instruction. If one pointer is a GEP with a non-zero index of the other
1385 // pointer, we know they cannot alias.
1387 // If both accesses are unknown size, we can't do anything useful here.
1388 if (V1Size
== LocationSize::unknown() && V2Size
== LocationSize::unknown())
1391 AliasResult R
= aliasCheck(UnderlyingV1
, LocationSize::unknown(),
1392 AAMDNodes(), V2
, LocationSize::unknown(),
1393 V2AAInfo
, AAQI
, nullptr, UnderlyingV2
);
1394 if (R
!= MustAlias
) {
1395 // If V2 may alias GEP base pointer, conservatively returns MayAlias.
1396 // If V2 is known not to alias GEP base pointer, then the two values
1397 // cannot alias per GEP semantics: "Any memory access must be done through
1398 // a pointer value associated with an address range of the memory access,
1399 // otherwise the behavior is undefined.".
1400 assert(R
== NoAlias
|| R
== MayAlias
);
1404 // If the max search depth is reached the result is undefined
1405 if (GEP1MaxLookupReached
)
1409 // In the two GEP Case, if there is no difference in the offsets of the
1410 // computed pointers, the resultant pointers are a must alias. This
1411 // happens when we have two lexically identical GEP's (for example).
1413 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
1414 // must aliases the GEP, the end result is a must alias also.
1415 if (GEP1BaseOffset
== 0 && DecompGEP1
.VarIndices
.empty())
1418 // If there is a constant difference between the pointers, but the difference
1419 // is less than the size of the associated memory object, then we know
1420 // that the objects are partially overlapping. If the difference is
1421 // greater, we know they do not overlap.
1422 if (GEP1BaseOffset
!= 0 && DecompGEP1
.VarIndices
.empty()) {
1423 if (GEP1BaseOffset
.sge(0)) {
1424 if (V2Size
!= LocationSize::unknown()) {
1425 if (GEP1BaseOffset
.ult(V2Size
.getValue()))
1426 return PartialAlias
;
1430 // We have the situation where:
1433 // ---------------->|
1434 // |-->V1Size |-------> V2Size
1436 // We need to know that V2Size is not unknown, otherwise we might have
1437 // stripped a gep with negative index ('gep <ptr>, -1, ...).
1438 if (V1Size
!= LocationSize::unknown() &&
1439 V2Size
!= LocationSize::unknown()) {
1440 if ((-GEP1BaseOffset
).ult(V1Size
.getValue()))
1441 return PartialAlias
;
1447 if (!DecompGEP1
.VarIndices
.empty()) {
1448 APInt
Modulo(MaxPointerSize
, 0);
1449 bool AllPositive
= true;
1450 for (unsigned i
= 0, e
= DecompGEP1
.VarIndices
.size(); i
!= e
; ++i
) {
1452 // Try to distinguish something like &A[i][1] against &A[42][0].
1453 // Grab the least significant bit set in any of the scales. We
1454 // don't need std::abs here (even if the scale's negative) as we'll
1455 // be ^'ing Modulo with itself later.
1456 Modulo
|= DecompGEP1
.VarIndices
[i
].Scale
;
1459 // If the Value could change between cycles, then any reasoning about
1460 // the Value this cycle may not hold in the next cycle. We'll just
1461 // give up if we can't determine conditions that hold for every cycle:
1462 const Value
*V
= DecompGEP1
.VarIndices
[i
].V
;
1464 KnownBits Known
= computeKnownBits(V
, DL
, 0, &AC
, nullptr, DT
);
1465 bool SignKnownZero
= Known
.isNonNegative();
1466 bool SignKnownOne
= Known
.isNegative();
1468 // Zero-extension widens the variable, and so forces the sign
1470 bool IsZExt
= DecompGEP1
.VarIndices
[i
].ZExtBits
> 0 || isa
<ZExtInst
>(V
);
1471 SignKnownZero
|= IsZExt
;
1472 SignKnownOne
&= !IsZExt
;
1474 // If the variable begins with a zero then we know it's
1475 // positive, regardless of whether the value is signed or
1477 APInt Scale
= DecompGEP1
.VarIndices
[i
].Scale
;
1479 (SignKnownZero
&& Scale
.sge(0)) || (SignKnownOne
&& Scale
.slt(0));
1483 Modulo
= Modulo
^ (Modulo
& (Modulo
- 1));
1485 // We can compute the difference between the two addresses
1486 // mod Modulo. Check whether that difference guarantees that the
1487 // two locations do not alias.
1488 APInt ModOffset
= GEP1BaseOffset
& (Modulo
- 1);
1489 if (V1Size
!= LocationSize::unknown() &&
1490 V2Size
!= LocationSize::unknown() && ModOffset
.uge(V2Size
.getValue()) &&
1491 (Modulo
- ModOffset
).uge(V1Size
.getValue()))
1494 // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
1495 // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
1496 // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
1497 if (AllPositive
&& GEP1BaseOffset
.sgt(0) &&
1498 V2Size
!= LocationSize::unknown() &&
1499 GEP1BaseOffset
.uge(V2Size
.getValue()))
1502 if (constantOffsetHeuristic(DecompGEP1
.VarIndices
, V1Size
, V2Size
,
1503 GEP1BaseOffset
, &AC
, DT
))
1507 // Statically, we can see that the base objects are the same, but the
1508 // pointers have dynamic offsets which we can't resolve. And none of our
1509 // little tricks above worked.
1513 static AliasResult
MergeAliasResults(AliasResult A
, AliasResult B
) {
1514 // If the results agree, take it.
1517 // A mix of PartialAlias and MustAlias is PartialAlias.
1518 if ((A
== PartialAlias
&& B
== MustAlias
) ||
1519 (B
== PartialAlias
&& A
== MustAlias
))
1520 return PartialAlias
;
1521 // Otherwise, we don't know anything.
1525 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1526 /// against another.
1528 BasicAAResult::aliasSelect(const SelectInst
*SI
, LocationSize SISize
,
1529 const AAMDNodes
&SIAAInfo
, const Value
*V2
,
1530 LocationSize V2Size
, const AAMDNodes
&V2AAInfo
,
1531 const Value
*UnderV2
, AAQueryInfo
&AAQI
) {
1532 // If the values are Selects with the same condition, we can do a more precise
1533 // check: just check for aliases between the values on corresponding arms.
1534 if (const SelectInst
*SI2
= dyn_cast
<SelectInst
>(V2
))
1535 if (SI
->getCondition() == SI2
->getCondition()) {
1537 aliasCheck(SI
->getTrueValue(), SISize
, SIAAInfo
, SI2
->getTrueValue(),
1538 V2Size
, V2AAInfo
, AAQI
);
1539 if (Alias
== MayAlias
)
1541 AliasResult ThisAlias
=
1542 aliasCheck(SI
->getFalseValue(), SISize
, SIAAInfo
,
1543 SI2
->getFalseValue(), V2Size
, V2AAInfo
, AAQI
);
1544 return MergeAliasResults(ThisAlias
, Alias
);
1547 // If both arms of the Select node NoAlias or MustAlias V2, then returns
1548 // NoAlias / MustAlias. Otherwise, returns MayAlias.
1549 AliasResult Alias
= aliasCheck(V2
, V2Size
, V2AAInfo
, SI
->getTrueValue(),
1550 SISize
, SIAAInfo
, AAQI
, UnderV2
);
1551 if (Alias
== MayAlias
)
1554 AliasResult ThisAlias
= aliasCheck(V2
, V2Size
, V2AAInfo
, SI
->getFalseValue(),
1555 SISize
, SIAAInfo
, AAQI
, UnderV2
);
1556 return MergeAliasResults(ThisAlias
, Alias
);
1559 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1561 AliasResult
BasicAAResult::aliasPHI(const PHINode
*PN
, LocationSize PNSize
,
1562 const AAMDNodes
&PNAAInfo
, const Value
*V2
,
1563 LocationSize V2Size
,
1564 const AAMDNodes
&V2AAInfo
,
1565 const Value
*UnderV2
, AAQueryInfo
&AAQI
) {
1566 // Track phi nodes we have visited. We use this information when we determine
1567 // value equivalence.
1568 VisitedPhiBBs
.insert(PN
->getParent());
1570 // If the values are PHIs in the same block, we can do a more precise
1571 // as well as efficient check: just check for aliases between the values
1572 // on corresponding edges.
1573 if (const PHINode
*PN2
= dyn_cast
<PHINode
>(V2
))
1574 if (PN2
->getParent() == PN
->getParent()) {
1575 AAQueryInfo::LocPair
Locs(MemoryLocation(PN
, PNSize
, PNAAInfo
),
1576 MemoryLocation(V2
, V2Size
, V2AAInfo
));
1578 std::swap(Locs
.first
, Locs
.second
);
1579 // Analyse the PHIs' inputs under the assumption that the PHIs are
1581 // If the PHIs are May/MustAlias there must be (recursively) an input
1582 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
1583 // there must be an operation on the PHIs within the PHIs' value cycle
1584 // that causes a MayAlias.
1585 // Pretend the phis do not alias.
1586 AliasResult Alias
= NoAlias
;
1587 AliasResult OrigAliasResult
;
1589 // Limited lifetime iterator invalidated by the aliasCheck call below.
1590 auto CacheIt
= AAQI
.AliasCache
.find(Locs
);
1591 assert((CacheIt
!= AAQI
.AliasCache
.end()) &&
1592 "There must exist an entry for the phi node");
1593 OrigAliasResult
= CacheIt
->second
;
1594 CacheIt
->second
= NoAlias
;
1597 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
1598 AliasResult ThisAlias
=
1599 aliasCheck(PN
->getIncomingValue(i
), PNSize
, PNAAInfo
,
1600 PN2
->getIncomingValueForBlock(PN
->getIncomingBlock(i
)),
1601 V2Size
, V2AAInfo
, AAQI
);
1602 Alias
= MergeAliasResults(ThisAlias
, Alias
);
1603 if (Alias
== MayAlias
)
1607 // Reset if speculation failed.
1608 if (Alias
!= NoAlias
) {
1610 AAQI
.AliasCache
.insert(std::make_pair(Locs
, OrigAliasResult
));
1611 assert(!Pair
.second
&& "Entry must have existed");
1612 Pair
.first
->second
= OrigAliasResult
;
1617 SmallVector
<Value
*, 4> V1Srcs
;
1618 bool isRecursive
= false;
1620 // If we have PhiValues then use it to get the underlying phi values.
1621 const PhiValues::ValueSet
&PhiValueSet
= PV
->getValuesForPhi(PN
);
1622 // If we have more phi values than the search depth then return MayAlias
1623 // conservatively to avoid compile time explosion. The worst possible case
1624 // is if both sides are PHI nodes. In which case, this is O(m x n) time
1625 // where 'm' and 'n' are the number of PHI sources.
1626 if (PhiValueSet
.size() > MaxLookupSearchDepth
)
1628 // Add the values to V1Srcs
1629 for (Value
*PV1
: PhiValueSet
) {
1630 if (EnableRecPhiAnalysis
) {
1631 if (GEPOperator
*PV1GEP
= dyn_cast
<GEPOperator
>(PV1
)) {
1632 // Check whether the incoming value is a GEP that advances the pointer
1633 // result of this PHI node (e.g. in a loop). If this is the case, we
1634 // would recurse and always get a MayAlias. Handle this case specially
1636 if (PV1GEP
->getPointerOperand() == PN
&& PV1GEP
->getNumIndices() == 1 &&
1637 isa
<ConstantInt
>(PV1GEP
->idx_begin())) {
1643 V1Srcs
.push_back(PV1
);
1646 // If we don't have PhiInfo then just look at the operands of the phi itself
1647 // FIXME: Remove this once we can guarantee that we have PhiInfo always
1648 SmallPtrSet
<Value
*, 4> UniqueSrc
;
1649 for (Value
*PV1
: PN
->incoming_values()) {
1650 if (isa
<PHINode
>(PV1
))
1651 // If any of the source itself is a PHI, return MayAlias conservatively
1652 // to avoid compile time explosion. The worst possible case is if both
1653 // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1654 // and 'n' are the number of PHI sources.
1657 if (EnableRecPhiAnalysis
)
1658 if (GEPOperator
*PV1GEP
= dyn_cast
<GEPOperator
>(PV1
)) {
1659 // Check whether the incoming value is a GEP that advances the pointer
1660 // result of this PHI node (e.g. in a loop). If this is the case, we
1661 // would recurse and always get a MayAlias. Handle this case specially
1663 if (PV1GEP
->getPointerOperand() == PN
&& PV1GEP
->getNumIndices() == 1 &&
1664 isa
<ConstantInt
>(PV1GEP
->idx_begin())) {
1670 if (UniqueSrc
.insert(PV1
).second
)
1671 V1Srcs
.push_back(PV1
);
1675 // If V1Srcs is empty then that means that the phi has no underlying non-phi
1676 // value. This should only be possible in blocks unreachable from the entry
1677 // block, but return MayAlias just in case.
1681 // If this PHI node is recursive, set the size of the accessed memory to
1682 // unknown to represent all the possible values the GEP could advance the
1685 PNSize
= LocationSize::unknown();
1687 AliasResult Alias
= aliasCheck(V2
, V2Size
, V2AAInfo
, V1Srcs
[0], PNSize
,
1688 PNAAInfo
, AAQI
, UnderV2
);
1690 // Early exit if the check of the first PHI source against V2 is MayAlias.
1691 // Other results are not possible.
1692 if (Alias
== MayAlias
)
1695 // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1696 // NoAlias / MustAlias. Otherwise, returns MayAlias.
1697 for (unsigned i
= 1, e
= V1Srcs
.size(); i
!= e
; ++i
) {
1698 Value
*V
= V1Srcs
[i
];
1700 AliasResult ThisAlias
=
1701 aliasCheck(V2
, V2Size
, V2AAInfo
, V
, PNSize
, PNAAInfo
, AAQI
, UnderV2
);
1702 Alias
= MergeAliasResults(ThisAlias
, Alias
);
1703 if (Alias
== MayAlias
)
1710 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1711 /// array references.
1712 AliasResult
BasicAAResult::aliasCheck(const Value
*V1
, LocationSize V1Size
,
1713 AAMDNodes V1AAInfo
, const Value
*V2
,
1714 LocationSize V2Size
, AAMDNodes V2AAInfo
,
1715 AAQueryInfo
&AAQI
, const Value
*O1
,
1717 // If either of the memory references is empty, it doesn't matter what the
1718 // pointer values are.
1719 if (V1Size
.isZero() || V2Size
.isZero())
1722 // Strip off any casts if they exist.
1723 V1
= V1
->stripPointerCastsAndInvariantGroups();
1724 V2
= V2
->stripPointerCastsAndInvariantGroups();
1726 // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1727 // value for undef that aliases nothing in the program.
1728 if (isa
<UndefValue
>(V1
) || isa
<UndefValue
>(V2
))
1731 // Are we checking for alias of the same value?
1732 // Because we look 'through' phi nodes, we could look at "Value" pointers from
1733 // different iterations. We must therefore make sure that this is not the
1734 // case. The function isValueEqualInPotentialCycles ensures that this cannot
1735 // happen by looking at the visited phi nodes and making sure they cannot
1737 if (isValueEqualInPotentialCycles(V1
, V2
))
1740 if (!V1
->getType()->isPointerTy() || !V2
->getType()->isPointerTy())
1741 return NoAlias
; // Scalars cannot alias each other
1743 // Figure out what objects these things are pointing to if we can.
1745 O1
= GetUnderlyingObject(V1
, DL
, MaxLookupSearchDepth
);
1748 O2
= GetUnderlyingObject(V2
, DL
, MaxLookupSearchDepth
);
1750 // Null values in the default address space don't point to any object, so they
1751 // don't alias any other pointer.
1752 if (const ConstantPointerNull
*CPN
= dyn_cast
<ConstantPointerNull
>(O1
))
1753 if (!NullPointerIsDefined(&F
, CPN
->getType()->getAddressSpace()))
1755 if (const ConstantPointerNull
*CPN
= dyn_cast
<ConstantPointerNull
>(O2
))
1756 if (!NullPointerIsDefined(&F
, CPN
->getType()->getAddressSpace()))
1760 // If V1/V2 point to two different objects, we know that we have no alias.
1761 if (isIdentifiedObject(O1
) && isIdentifiedObject(O2
))
1764 // Constant pointers can't alias with non-const isIdentifiedObject objects.
1765 if ((isa
<Constant
>(O1
) && isIdentifiedObject(O2
) && !isa
<Constant
>(O2
)) ||
1766 (isa
<Constant
>(O2
) && isIdentifiedObject(O1
) && !isa
<Constant
>(O1
)))
1769 // Function arguments can't alias with things that are known to be
1770 // unambigously identified at the function level.
1771 if ((isa
<Argument
>(O1
) && isIdentifiedFunctionLocal(O2
)) ||
1772 (isa
<Argument
>(O2
) && isIdentifiedFunctionLocal(O1
)))
1775 // If one pointer is the result of a call/invoke or load and the other is a
1776 // non-escaping local object within the same function, then we know the
1777 // object couldn't escape to a point where the call could return it.
1779 // Note that if the pointers are in different functions, there are a
1780 // variety of complications. A call with a nocapture argument may still
1781 // temporary store the nocapture argument's value in a temporary memory
1782 // location if that memory location doesn't escape. Or it may pass a
1783 // nocapture value to other functions as long as they don't capture it.
1784 if (isEscapeSource(O1
) &&
1785 isNonEscapingLocalObject(O2
, &AAQI
.IsCapturedCache
))
1787 if (isEscapeSource(O2
) &&
1788 isNonEscapingLocalObject(O1
, &AAQI
.IsCapturedCache
))
1792 // If the size of one access is larger than the entire object on the other
1793 // side, then we know such behavior is undefined and can assume no alias.
1794 bool NullIsValidLocation
= NullPointerIsDefined(&F
);
1795 if ((V1Size
.isPrecise() && isObjectSmallerThan(O2
, V1Size
.getValue(), DL
, TLI
,
1796 NullIsValidLocation
)) ||
1797 (V2Size
.isPrecise() && isObjectSmallerThan(O1
, V2Size
.getValue(), DL
, TLI
,
1798 NullIsValidLocation
)))
1801 // Check the cache before climbing up use-def chains. This also terminates
1802 // otherwise infinitely recursive queries.
1803 AAQueryInfo::LocPair
Locs(MemoryLocation(V1
, V1Size
, V1AAInfo
),
1804 MemoryLocation(V2
, V2Size
, V2AAInfo
));
1806 std::swap(Locs
.first
, Locs
.second
);
1807 std::pair
<AAQueryInfo::AliasCacheT::iterator
, bool> Pair
=
1808 AAQI
.AliasCache
.try_emplace(Locs
, MayAlias
);
1810 return Pair
.first
->second
;
1812 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1813 // GEP can't simplify, we don't even look at the PHI cases.
1814 if (!isa
<GEPOperator
>(V1
) && isa
<GEPOperator
>(V2
)) {
1816 std::swap(V1Size
, V2Size
);
1818 std::swap(V1AAInfo
, V2AAInfo
);
1820 if (const GEPOperator
*GV1
= dyn_cast
<GEPOperator
>(V1
)) {
1821 AliasResult Result
=
1822 aliasGEP(GV1
, V1Size
, V1AAInfo
, V2
, V2Size
, V2AAInfo
, O1
, O2
, AAQI
);
1823 if (Result
!= MayAlias
) {
1824 auto ItInsPair
= AAQI
.AliasCache
.insert(std::make_pair(Locs
, Result
));
1825 assert(!ItInsPair
.second
&& "Entry must have existed");
1826 ItInsPair
.first
->second
= Result
;
1831 if (isa
<PHINode
>(V2
) && !isa
<PHINode
>(V1
)) {
1834 std::swap(V1Size
, V2Size
);
1835 std::swap(V1AAInfo
, V2AAInfo
);
1837 if (const PHINode
*PN
= dyn_cast
<PHINode
>(V1
)) {
1838 AliasResult Result
=
1839 aliasPHI(PN
, V1Size
, V1AAInfo
, V2
, V2Size
, V2AAInfo
, O2
, AAQI
);
1840 if (Result
!= MayAlias
) {
1841 Pair
= AAQI
.AliasCache
.try_emplace(Locs
, Result
);
1842 assert(!Pair
.second
&& "Entry must have existed");
1843 return Pair
.first
->second
= Result
;
1847 if (isa
<SelectInst
>(V2
) && !isa
<SelectInst
>(V1
)) {
1850 std::swap(V1Size
, V2Size
);
1851 std::swap(V1AAInfo
, V2AAInfo
);
1853 if (const SelectInst
*S1
= dyn_cast
<SelectInst
>(V1
)) {
1854 AliasResult Result
=
1855 aliasSelect(S1
, V1Size
, V1AAInfo
, V2
, V2Size
, V2AAInfo
, O2
, AAQI
);
1856 if (Result
!= MayAlias
) {
1857 Pair
= AAQI
.AliasCache
.try_emplace(Locs
, Result
);
1858 assert(!Pair
.second
&& "Entry must have existed");
1859 return Pair
.first
->second
= Result
;
1863 // If both pointers are pointing into the same object and one of them
1864 // accesses the entire object, then the accesses must overlap in some way.
1866 if (V1Size
.isPrecise() && V2Size
.isPrecise() &&
1867 (isObjectSize(O1
, V1Size
.getValue(), DL
, TLI
, NullIsValidLocation
) ||
1868 isObjectSize(O2
, V2Size
.getValue(), DL
, TLI
, NullIsValidLocation
))) {
1869 Pair
= AAQI
.AliasCache
.try_emplace(Locs
, PartialAlias
);
1870 assert(!Pair
.second
&& "Entry must have existed");
1871 return Pair
.first
->second
= PartialAlias
;
1874 // Recurse back into the best AA results we have, potentially with refined
1875 // memory locations. We have already ensured that BasicAA has a MayAlias
1876 // cache result for these, so any recursion back into BasicAA won't loop.
1877 AliasResult Result
= getBestAAResults().alias(Locs
.first
, Locs
.second
, AAQI
);
1878 Pair
= AAQI
.AliasCache
.try_emplace(Locs
, Result
);
1879 assert(!Pair
.second
&& "Entry must have existed");
1880 return Pair
.first
->second
= Result
;
1883 /// Check whether two Values can be considered equivalent.
1885 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1886 /// they can not be part of a cycle in the value graph by looking at all
1887 /// visited phi nodes an making sure that the phis cannot reach the value. We
1888 /// have to do this because we are looking through phi nodes (That is we say
1889 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1890 bool BasicAAResult::isValueEqualInPotentialCycles(const Value
*V
,
1895 const Instruction
*Inst
= dyn_cast
<Instruction
>(V
);
1899 if (VisitedPhiBBs
.empty())
1902 if (VisitedPhiBBs
.size() > MaxNumPhiBBsValueReachabilityCheck
)
1905 // Make sure that the visited phis cannot reach the Value. This ensures that
1906 // the Values cannot come from different iterations of a potential cycle the
1907 // phi nodes could be involved in.
1908 for (auto *P
: VisitedPhiBBs
)
1909 if (isPotentiallyReachable(&P
->front(), Inst
, nullptr, DT
, LI
))
1915 /// Computes the symbolic difference between two de-composed GEPs.
1917 /// Dest and Src are the variable indices from two decomposed GetElementPtr
1918 /// instructions GEP1 and GEP2 which have common base pointers.
1919 void BasicAAResult::GetIndexDifference(
1920 SmallVectorImpl
<VariableGEPIndex
> &Dest
,
1921 const SmallVectorImpl
<VariableGEPIndex
> &Src
) {
1925 for (unsigned i
= 0, e
= Src
.size(); i
!= e
; ++i
) {
1926 const Value
*V
= Src
[i
].V
;
1927 unsigned ZExtBits
= Src
[i
].ZExtBits
, SExtBits
= Src
[i
].SExtBits
;
1928 APInt Scale
= Src
[i
].Scale
;
1930 // Find V in Dest. This is N^2, but pointer indices almost never have more
1931 // than a few variable indexes.
1932 for (unsigned j
= 0, e
= Dest
.size(); j
!= e
; ++j
) {
1933 if (!isValueEqualInPotentialCycles(Dest
[j
].V
, V
) ||
1934 Dest
[j
].ZExtBits
!= ZExtBits
|| Dest
[j
].SExtBits
!= SExtBits
)
1937 // If we found it, subtract off Scale V's from the entry in Dest. If it
1938 // goes to zero, remove the entry.
1939 if (Dest
[j
].Scale
!= Scale
)
1940 Dest
[j
].Scale
-= Scale
;
1942 Dest
.erase(Dest
.begin() + j
);
1947 // If we didn't consume this entry, add it to the end of the Dest list.
1949 VariableGEPIndex Entry
= {V
, ZExtBits
, SExtBits
, -Scale
};
1950 Dest
.push_back(Entry
);
1955 bool BasicAAResult::constantOffsetHeuristic(
1956 const SmallVectorImpl
<VariableGEPIndex
> &VarIndices
,
1957 LocationSize MaybeV1Size
, LocationSize MaybeV2Size
, APInt BaseOffset
,
1958 AssumptionCache
*AC
, DominatorTree
*DT
) {
1959 if (VarIndices
.size() != 2 || MaybeV1Size
== LocationSize::unknown() ||
1960 MaybeV2Size
== LocationSize::unknown())
1963 const uint64_t V1Size
= MaybeV1Size
.getValue();
1964 const uint64_t V2Size
= MaybeV2Size
.getValue();
1966 const VariableGEPIndex
&Var0
= VarIndices
[0], &Var1
= VarIndices
[1];
1968 if (Var0
.ZExtBits
!= Var1
.ZExtBits
|| Var0
.SExtBits
!= Var1
.SExtBits
||
1969 Var0
.Scale
!= -Var1
.Scale
)
1972 unsigned Width
= Var1
.V
->getType()->getIntegerBitWidth();
1974 // We'll strip off the Extensions of Var0 and Var1 and do another round
1975 // of GetLinearExpression decomposition. In the example above, if Var0
1976 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
1978 APInt
V0Scale(Width
, 0), V0Offset(Width
, 0), V1Scale(Width
, 0),
1980 bool NSW
= true, NUW
= true;
1981 unsigned V0ZExtBits
= 0, V0SExtBits
= 0, V1ZExtBits
= 0, V1SExtBits
= 0;
1982 const Value
*V0
= GetLinearExpression(Var0
.V
, V0Scale
, V0Offset
, V0ZExtBits
,
1983 V0SExtBits
, DL
, 0, AC
, DT
, NSW
, NUW
);
1986 const Value
*V1
= GetLinearExpression(Var1
.V
, V1Scale
, V1Offset
, V1ZExtBits
,
1987 V1SExtBits
, DL
, 0, AC
, DT
, NSW
, NUW
);
1989 if (V0Scale
!= V1Scale
|| V0ZExtBits
!= V1ZExtBits
||
1990 V0SExtBits
!= V1SExtBits
|| !isValueEqualInPotentialCycles(V0
, V1
))
1993 // We have a hit - Var0 and Var1 only differ by a constant offset!
1995 // If we've been sext'ed then zext'd the maximum difference between Var0 and
1996 // Var1 is possible to calculate, but we're just interested in the absolute
1997 // minimum difference between the two. The minimum distance may occur due to
1998 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
1999 // the minimum distance between %i and %i + 5 is 3.
2000 APInt MinDiff
= V0Offset
- V1Offset
, Wrapped
= -MinDiff
;
2001 MinDiff
= APIntOps::umin(MinDiff
, Wrapped
);
2002 APInt MinDiffBytes
=
2003 MinDiff
.zextOrTrunc(Var0
.Scale
.getBitWidth()) * Var0
.Scale
.abs();
2005 // We can't definitely say whether GEP1 is before or after V2 due to wrapping
2006 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
2007 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
2008 // V2Size can fit in the MinDiffBytes gap.
2009 return MinDiffBytes
.uge(V1Size
+ BaseOffset
.abs()) &&
2010 MinDiffBytes
.uge(V2Size
+ BaseOffset
.abs());
2013 //===----------------------------------------------------------------------===//
2014 // BasicAliasAnalysis Pass
2015 //===----------------------------------------------------------------------===//
2017 AnalysisKey
BasicAA::Key
;
2019 BasicAAResult
BasicAA::run(Function
&F
, FunctionAnalysisManager
&AM
) {
2020 return BasicAAResult(F
.getParent()->getDataLayout(),
2022 AM
.getResult
<TargetLibraryAnalysis
>(F
),
2023 AM
.getResult
<AssumptionAnalysis
>(F
),
2024 &AM
.getResult
<DominatorTreeAnalysis
>(F
),
2025 AM
.getCachedResult
<LoopAnalysis
>(F
),
2026 AM
.getCachedResult
<PhiValuesAnalysis
>(F
));
2029 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID
) {
2030 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
2033 char BasicAAWrapperPass::ID
= 0;
2035 void BasicAAWrapperPass::anchor() {}
2037 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass
, "basicaa",
2038 "Basic Alias Analysis (stateless AA impl)", false, true)
2039 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
2040 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
2041 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
2042 INITIALIZE_PASS_END(BasicAAWrapperPass
, "basicaa",
2043 "Basic Alias Analysis (stateless AA impl)", false, true)
2045 FunctionPass
*llvm::createBasicAAWrapperPass() {
2046 return new BasicAAWrapperPass();
2049 bool BasicAAWrapperPass::runOnFunction(Function
&F
) {
2050 auto &ACT
= getAnalysis
<AssumptionCacheTracker
>();
2051 auto &TLIWP
= getAnalysis
<TargetLibraryInfoWrapperPass
>();
2052 auto &DTWP
= getAnalysis
<DominatorTreeWrapperPass
>();
2053 auto *LIWP
= getAnalysisIfAvailable
<LoopInfoWrapperPass
>();
2054 auto *PVWP
= getAnalysisIfAvailable
<PhiValuesWrapperPass
>();
2056 Result
.reset(new BasicAAResult(F
.getParent()->getDataLayout(), F
, TLIWP
.getTLI(),
2057 ACT
.getAssumptionCache(F
), &DTWP
.getDomTree(),
2058 LIWP
? &LIWP
->getLoopInfo() : nullptr,
2059 PVWP
? &PVWP
->getResult() : nullptr));
2064 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
2065 AU
.setPreservesAll();
2066 AU
.addRequired
<AssumptionCacheTracker
>();
2067 AU
.addRequired
<DominatorTreeWrapperPass
>();
2068 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
2069 AU
.addUsedIfAvailable
<PhiValuesWrapperPass
>();
2072 BasicAAResult
llvm::createLegacyPMBasicAAResult(Pass
&P
, Function
&F
) {
2073 return BasicAAResult(
2074 F
.getParent()->getDataLayout(),
2076 P
.getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(),
2077 P
.getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
));