[llvm-objcopy] - Reimplement strip-dwo-groups.test to stop using the precompiled...
[llvm-complete.git] / lib / Analysis / CFG.cpp
blob18b83d6838cc94d985115a828432d52e59c28947
1 //===-- CFG.cpp - BasicBlock analysis --------------------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions performs analyses on basic blocks, and instructions
10 // contained within basic blocks.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/CFG.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/IR/Dominators.h"
20 using namespace llvm;
22 /// FindFunctionBackedges - Analyze the specified function to find all of the
23 /// loop backedges in the function and return them. This is a relatively cheap
24 /// (compared to computing dominators and loop info) analysis.
25 ///
26 /// The output is added to Result, as pairs of <from,to> edge info.
27 void llvm::FindFunctionBackedges(const Function &F,
28 SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
29 const BasicBlock *BB = &F.getEntryBlock();
30 if (succ_empty(BB))
31 return;
33 SmallPtrSet<const BasicBlock*, 8> Visited;
34 SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack;
35 SmallPtrSet<const BasicBlock*, 8> InStack;
37 Visited.insert(BB);
38 VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
39 InStack.insert(BB);
40 do {
41 std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back();
42 const BasicBlock *ParentBB = Top.first;
43 succ_const_iterator &I = Top.second;
45 bool FoundNew = false;
46 while (I != succ_end(ParentBB)) {
47 BB = *I++;
48 if (Visited.insert(BB).second) {
49 FoundNew = true;
50 break;
52 // Successor is in VisitStack, it's a back edge.
53 if (InStack.count(BB))
54 Result.push_back(std::make_pair(ParentBB, BB));
57 if (FoundNew) {
58 // Go down one level if there is a unvisited successor.
59 InStack.insert(BB);
60 VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
61 } else {
62 // Go up one level.
63 InStack.erase(VisitStack.pop_back_val().first);
65 } while (!VisitStack.empty());
68 /// GetSuccessorNumber - Search for the specified successor of basic block BB
69 /// and return its position in the terminator instruction's list of
70 /// successors. It is an error to call this with a block that is not a
71 /// successor.
72 unsigned llvm::GetSuccessorNumber(const BasicBlock *BB,
73 const BasicBlock *Succ) {
74 const Instruction *Term = BB->getTerminator();
75 #ifndef NDEBUG
76 unsigned e = Term->getNumSuccessors();
77 #endif
78 for (unsigned i = 0; ; ++i) {
79 assert(i != e && "Didn't find edge?");
80 if (Term->getSuccessor(i) == Succ)
81 return i;
85 /// isCriticalEdge - Return true if the specified edge is a critical edge.
86 /// Critical edges are edges from a block with multiple successors to a block
87 /// with multiple predecessors.
88 bool llvm::isCriticalEdge(const Instruction *TI, unsigned SuccNum,
89 bool AllowIdenticalEdges) {
90 assert(TI->isTerminator() && "Must be a terminator to have successors!");
91 assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
92 if (TI->getNumSuccessors() == 1) return false;
94 const BasicBlock *Dest = TI->getSuccessor(SuccNum);
95 const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest);
97 // If there is more than one predecessor, this is a critical edge...
98 assert(I != E && "No preds, but we have an edge to the block?");
99 const BasicBlock *FirstPred = *I;
100 ++I; // Skip one edge due to the incoming arc from TI.
101 if (!AllowIdenticalEdges)
102 return I != E;
104 // If AllowIdenticalEdges is true, then we allow this edge to be considered
105 // non-critical iff all preds come from TI's block.
106 for (; I != E; ++I)
107 if (*I != FirstPred)
108 return true;
109 return false;
112 // LoopInfo contains a mapping from basic block to the innermost loop. Find
113 // the outermost loop in the loop nest that contains BB.
114 static const Loop *getOutermostLoop(const LoopInfo *LI, const BasicBlock *BB) {
115 const Loop *L = LI->getLoopFor(BB);
116 if (L) {
117 while (const Loop *Parent = L->getParentLoop())
118 L = Parent;
120 return L;
123 bool llvm::isPotentiallyReachableFromMany(
124 SmallVectorImpl<BasicBlock *> &Worklist, BasicBlock *StopBB,
125 const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
126 const LoopInfo *LI) {
127 // When the stop block is unreachable, it's dominated from everywhere,
128 // regardless of whether there's a path between the two blocks.
129 if (DT && !DT->isReachableFromEntry(StopBB))
130 DT = nullptr;
132 // We can't skip directly from a block that dominates the stop block if the
133 // exclusion block is potentially in between.
134 if (ExclusionSet && !ExclusionSet->empty())
135 DT = nullptr;
137 // Normally any block in a loop is reachable from any other block in a loop,
138 // however excluded blocks might partition the body of a loop to make that
139 // untrue.
140 SmallPtrSet<const Loop *, 8> LoopsWithHoles;
141 if (LI && ExclusionSet) {
142 for (auto BB : *ExclusionSet) {
143 if (const Loop *L = getOutermostLoop(LI, BB))
144 LoopsWithHoles.insert(L);
148 const Loop *StopLoop = LI ? getOutermostLoop(LI, StopBB) : nullptr;
150 // Limit the number of blocks we visit. The goal is to avoid run-away compile
151 // times on large CFGs without hampering sensible code. Arbitrarily chosen.
152 unsigned Limit = 32;
153 SmallPtrSet<const BasicBlock*, 32> Visited;
154 do {
155 BasicBlock *BB = Worklist.pop_back_val();
156 if (!Visited.insert(BB).second)
157 continue;
158 if (BB == StopBB)
159 return true;
160 if (ExclusionSet && ExclusionSet->count(BB))
161 continue;
162 if (DT && DT->dominates(BB, StopBB))
163 return true;
165 const Loop *Outer = nullptr;
166 if (LI) {
167 Outer = getOutermostLoop(LI, BB);
168 // If we're in a loop with a hole, not all blocks in the loop are
169 // reachable from all other blocks. That implies we can't simply jump to
170 // the loop's exit blocks, as that exit might need to pass through an
171 // excluded block. Clear Outer so we process BB's successors.
172 if (LoopsWithHoles.count(Outer))
173 Outer = nullptr;
174 if (StopLoop && Outer == StopLoop)
175 return true;
178 if (!--Limit) {
179 // We haven't been able to prove it one way or the other. Conservatively
180 // answer true -- that there is potentially a path.
181 return true;
184 if (Outer) {
185 // All blocks in a single loop are reachable from all other blocks. From
186 // any of these blocks, we can skip directly to the exits of the loop,
187 // ignoring any other blocks inside the loop body.
188 Outer->getExitBlocks(Worklist);
189 } else {
190 Worklist.append(succ_begin(BB), succ_end(BB));
192 } while (!Worklist.empty());
194 // We have exhausted all possible paths and are certain that 'To' can not be
195 // reached from 'From'.
196 return false;
199 bool llvm::isPotentiallyReachable(const BasicBlock *A, const BasicBlock *B,
200 const DominatorTree *DT, const LoopInfo *LI) {
201 assert(A->getParent() == B->getParent() &&
202 "This analysis is function-local!");
204 SmallVector<BasicBlock*, 32> Worklist;
205 Worklist.push_back(const_cast<BasicBlock*>(A));
207 return isPotentiallyReachableFromMany(Worklist, const_cast<BasicBlock *>(B),
208 nullptr, DT, LI);
211 bool llvm::isPotentiallyReachable(
212 const Instruction *A, const Instruction *B,
213 const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
214 const LoopInfo *LI) {
215 assert(A->getParent()->getParent() == B->getParent()->getParent() &&
216 "This analysis is function-local!");
218 SmallVector<BasicBlock*, 32> Worklist;
220 if (A->getParent() == B->getParent()) {
221 // The same block case is special because it's the only time we're looking
222 // within a single block to see which instruction comes first. Once we
223 // start looking at multiple blocks, the first instruction of the block is
224 // reachable, so we only need to determine reachability between whole
225 // blocks.
226 BasicBlock *BB = const_cast<BasicBlock *>(A->getParent());
228 // If the block is in a loop then we can reach any instruction in the block
229 // from any other instruction in the block by going around a backedge.
230 if (LI && LI->getLoopFor(BB) != nullptr)
231 return true;
233 // Linear scan, start at 'A', see whether we hit 'B' or the end first.
234 for (BasicBlock::const_iterator I = A->getIterator(), E = BB->end(); I != E;
235 ++I) {
236 if (&*I == B)
237 return true;
240 // Can't be in a loop if it's the entry block -- the entry block may not
241 // have predecessors.
242 if (BB == &BB->getParent()->getEntryBlock())
243 return false;
245 // Otherwise, continue doing the normal per-BB CFG walk.
246 Worklist.append(succ_begin(BB), succ_end(BB));
248 if (Worklist.empty()) {
249 // We've proven that there's no path!
250 return false;
252 } else {
253 Worklist.push_back(const_cast<BasicBlock*>(A->getParent()));
256 if (DT) {
257 if (DT->isReachableFromEntry(A->getParent()) &&
258 !DT->isReachableFromEntry(B->getParent()))
259 return false;
260 if (!ExclusionSet || ExclusionSet->empty()) {
261 if (A->getParent() == &A->getParent()->getParent()->getEntryBlock() &&
262 DT->isReachableFromEntry(B->getParent()))
263 return true;
264 if (B->getParent() == &A->getParent()->getParent()->getEntryBlock() &&
265 DT->isReachableFromEntry(A->getParent()))
266 return false;
270 return isPotentiallyReachableFromMany(
271 Worklist, const_cast<BasicBlock *>(B->getParent()), ExclusionSet, DT, LI);