1 //===- llvm/Value.h - Definition of the Value class -------------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file declares the Value class.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_IR_VALUE_H
15 #define LLVM_IR_VALUE_H
17 #include "llvm-c/Types.h"
18 #include "llvm/ADT/iterator_range.h"
19 #include "llvm/IR/Use.h"
20 #include "llvm/Support/CBindingWrapping.h"
21 #include "llvm/Support/Casting.h"
33 class ConstantAggregate
;
38 class GlobalIndirectSymbol
;
46 class ModuleSlotTracker
;
48 template<typename ValueTy
> class StringMapEntry
;
54 using ValueName
= StringMapEntry
<Value
*>;
56 //===----------------------------------------------------------------------===//
58 //===----------------------------------------------------------------------===//
60 /// LLVM Value Representation
62 /// This is a very important LLVM class. It is the base class of all values
63 /// computed by a program that may be used as operands to other values. Value is
64 /// the super class of other important classes such as Instruction and Function.
65 /// All Values have a Type. Type is not a subclass of Value. Some values can
66 /// have a name and they belong to some Module. Setting the name on the Value
67 /// automatically updates the module's symbol table.
69 /// Every value has a "use list" that keeps track of which other Values are
70 /// using this Value. A Value can also have an arbitrary number of ValueHandle
71 /// objects that watch it and listen to RAUW and Destroy events. See
72 /// llvm/IR/ValueHandle.h for details.
74 // The least-significant bit of the first word of Value *must* be zero:
75 // http://www.llvm.org/docs/ProgrammersManual.html#the-waymarking-algorithm
79 friend class ValueAsMetadata
; // Allow access to IsUsedByMD.
80 friend class ValueHandleBase
;
82 const unsigned char SubclassID
; // Subclass identifier (for isa/dyn_cast)
83 unsigned char HasValueHandle
: 1; // Has a ValueHandle pointing to this?
86 /// Hold subclass data that can be dropped.
88 /// This member is similar to SubclassData, however it is for holding
89 /// information which may be used to aid optimization, but which may be
90 /// cleared to zero without affecting conservative interpretation.
91 unsigned char SubclassOptionalData
: 7;
94 /// Hold arbitrary subclass data.
96 /// This member is defined by this class, but is not used for anything.
97 /// Subclasses can use it to hold whatever state they find useful. This
98 /// field is initialized to zero by the ctor.
99 unsigned short SubclassData
;
102 /// The number of operands in the subclass.
104 /// This member is defined by this class, but not used for anything.
105 /// Subclasses can use it to store their number of operands, if they have
108 /// This is stored here to save space in User on 64-bit hosts. Since most
109 /// instances of Value have operands, 32-bit hosts aren't significantly
112 /// Note, this should *NOT* be used directly by any class other than User.
113 /// User uses this value to find the Use list.
114 enum : unsigned { NumUserOperandsBits
= 28 };
115 unsigned NumUserOperands
: NumUserOperandsBits
;
117 // Use the same type as the bitfield above so that MSVC will pack them.
118 unsigned IsUsedByMD
: 1;
119 unsigned HasName
: 1;
120 unsigned HasHungOffUses
: 1;
121 unsigned HasDescriptor
: 1;
124 template <typename UseT
> // UseT == 'Use' or 'const Use'
125 class use_iterator_impl
126 : public std::iterator
<std::forward_iterator_tag
, UseT
*> {
131 explicit use_iterator_impl(UseT
*u
) : U(u
) {}
134 use_iterator_impl() : U() {}
136 bool operator==(const use_iterator_impl
&x
) const { return U
== x
.U
; }
137 bool operator!=(const use_iterator_impl
&x
) const { return !operator==(x
); }
139 use_iterator_impl
&operator++() { // Preincrement
140 assert(U
&& "Cannot increment end iterator!");
145 use_iterator_impl
operator++(int) { // Postincrement
151 UseT
&operator*() const {
152 assert(U
&& "Cannot dereference end iterator!");
156 UseT
*operator->() const { return &operator*(); }
158 operator use_iterator_impl
<const UseT
>() const {
159 return use_iterator_impl
<const UseT
>(U
);
163 template <typename UserTy
> // UserTy == 'User' or 'const User'
164 class user_iterator_impl
165 : public std::iterator
<std::forward_iterator_tag
, UserTy
*> {
166 use_iterator_impl
<Use
> UI
;
167 explicit user_iterator_impl(Use
*U
) : UI(U
) {}
171 user_iterator_impl() = default;
173 bool operator==(const user_iterator_impl
&x
) const { return UI
== x
.UI
; }
174 bool operator!=(const user_iterator_impl
&x
) const { return !operator==(x
); }
176 /// Returns true if this iterator is equal to user_end() on the value.
177 bool atEnd() const { return *this == user_iterator_impl(); }
179 user_iterator_impl
&operator++() { // Preincrement
184 user_iterator_impl
operator++(int) { // Postincrement
190 // Retrieve a pointer to the current User.
191 UserTy
*operator*() const {
192 return UI
->getUser();
195 UserTy
*operator->() const { return operator*(); }
197 operator user_iterator_impl
<const UserTy
>() const {
198 return user_iterator_impl
<const UserTy
>(*UI
);
201 Use
&getUse() const { return *UI
; }
205 Value(Type
*Ty
, unsigned scid
);
207 /// Value's destructor should be virtual by design, but that would require
208 /// that Value and all of its subclasses have a vtable that effectively
209 /// duplicates the information in the value ID. As a size optimization, the
210 /// destructor has been protected, and the caller should manually call
212 ~Value(); // Use deleteValue() to delete a generic Value.
215 Value(const Value
&) = delete;
216 Value
&operator=(const Value
&) = delete;
218 /// Delete a pointer to a generic Value.
221 /// Support for debugging, callable in GDB: V->dump()
224 /// Implement operator<< on Value.
226 void print(raw_ostream
&O
, bool IsForDebug
= false) const;
227 void print(raw_ostream
&O
, ModuleSlotTracker
&MST
,
228 bool IsForDebug
= false) const;
231 /// Print the name of this Value out to the specified raw_ostream.
233 /// This is useful when you just want to print 'int %reg126', not the
234 /// instruction that generated it. If you specify a Module for context, then
235 /// even constanst get pretty-printed; for example, the type of a null
236 /// pointer is printed symbolically.
238 void printAsOperand(raw_ostream
&O
, bool PrintType
= true,
239 const Module
*M
= nullptr) const;
240 void printAsOperand(raw_ostream
&O
, bool PrintType
,
241 ModuleSlotTracker
&MST
) const;
244 /// All values are typed, get the type of this value.
245 Type
*getType() const { return VTy
; }
247 /// All values hold a context through their type.
248 LLVMContext
&getContext() const;
250 // All values can potentially be named.
251 bool hasName() const { return HasName
; }
252 ValueName
*getValueName() const;
253 void setValueName(ValueName
*VN
);
256 void destroyValueName();
257 enum class ReplaceMetadataUses
{ No
, Yes
};
258 void doRAUW(Value
*New
, ReplaceMetadataUses
);
259 void setNameImpl(const Twine
&Name
);
262 /// Return a constant reference to the value's name.
264 /// This guaranteed to return the same reference as long as the value is not
265 /// modified. If the value has a name, this does a hashtable lookup, so it's
267 StringRef
getName() const;
269 /// Change the name of the value.
271 /// Choose a new unique name if the provided name is taken.
273 /// \param Name The new name; or "" if the value's name should be removed.
274 void setName(const Twine
&Name
);
276 /// Transfer the name from V to this value.
278 /// After taking V's name, sets V's name to empty.
280 /// \note It is an error to call V->takeName(V).
281 void takeName(Value
*V
);
283 /// Change all uses of this to point to a new Value.
285 /// Go through the uses list for this definition and make each use point to
286 /// "V" instead of "this". After this completes, 'this's use list is
287 /// guaranteed to be empty.
288 void replaceAllUsesWith(Value
*V
);
290 /// Change non-metadata uses of this to point to a new Value.
292 /// Go through the uses list for this definition and make each use point to
293 /// "V" instead of "this". This function skips metadata entries in the list.
294 void replaceNonMetadataUsesWith(Value
*V
);
296 /// replaceUsesOutsideBlock - Go through the uses list for this definition and
297 /// make each use point to "V" instead of "this" when the use is outside the
298 /// block. 'This's use list is expected to have at least one element.
299 /// Unlike replaceAllUsesWith this function does not support basic block
300 /// values or constant users.
301 void replaceUsesOutsideBlock(Value
*V
, BasicBlock
*BB
);
303 //----------------------------------------------------------------------
304 // Methods for handling the chain of uses of this Value.
306 // Materializing a function can introduce new uses, so these methods come in
308 // The methods that start with materialized_ check the uses that are
309 // currently known given which functions are materialized. Be very careful
310 // when using them since you might not get all uses.
311 // The methods that don't start with materialized_ assert that modules is
312 // fully materialized.
313 void assertModuleIsMaterializedImpl() const;
314 // This indirection exists so we can keep assertModuleIsMaterializedImpl()
315 // around in release builds of Value.cpp to be linked with other code built
316 // in debug mode. But this avoids calling it in any of the release built code.
317 void assertModuleIsMaterialized() const {
319 assertModuleIsMaterializedImpl();
323 bool use_empty() const {
324 assertModuleIsMaterialized();
325 return UseList
== nullptr;
328 bool materialized_use_empty() const {
329 return UseList
== nullptr;
332 using use_iterator
= use_iterator_impl
<Use
>;
333 using const_use_iterator
= use_iterator_impl
<const Use
>;
335 use_iterator
materialized_use_begin() { return use_iterator(UseList
); }
336 const_use_iterator
materialized_use_begin() const {
337 return const_use_iterator(UseList
);
339 use_iterator
use_begin() {
340 assertModuleIsMaterialized();
341 return materialized_use_begin();
343 const_use_iterator
use_begin() const {
344 assertModuleIsMaterialized();
345 return materialized_use_begin();
347 use_iterator
use_end() { return use_iterator(); }
348 const_use_iterator
use_end() const { return const_use_iterator(); }
349 iterator_range
<use_iterator
> materialized_uses() {
350 return make_range(materialized_use_begin(), use_end());
352 iterator_range
<const_use_iterator
> materialized_uses() const {
353 return make_range(materialized_use_begin(), use_end());
355 iterator_range
<use_iterator
> uses() {
356 assertModuleIsMaterialized();
357 return materialized_uses();
359 iterator_range
<const_use_iterator
> uses() const {
360 assertModuleIsMaterialized();
361 return materialized_uses();
364 bool user_empty() const {
365 assertModuleIsMaterialized();
366 return UseList
== nullptr;
369 using user_iterator
= user_iterator_impl
<User
>;
370 using const_user_iterator
= user_iterator_impl
<const User
>;
372 user_iterator
materialized_user_begin() { return user_iterator(UseList
); }
373 const_user_iterator
materialized_user_begin() const {
374 return const_user_iterator(UseList
);
376 user_iterator
user_begin() {
377 assertModuleIsMaterialized();
378 return materialized_user_begin();
380 const_user_iterator
user_begin() const {
381 assertModuleIsMaterialized();
382 return materialized_user_begin();
384 user_iterator
user_end() { return user_iterator(); }
385 const_user_iterator
user_end() const { return const_user_iterator(); }
387 assertModuleIsMaterialized();
388 return *materialized_user_begin();
390 const User
*user_back() const {
391 assertModuleIsMaterialized();
392 return *materialized_user_begin();
394 iterator_range
<user_iterator
> materialized_users() {
395 return make_range(materialized_user_begin(), user_end());
397 iterator_range
<const_user_iterator
> materialized_users() const {
398 return make_range(materialized_user_begin(), user_end());
400 iterator_range
<user_iterator
> users() {
401 assertModuleIsMaterialized();
402 return materialized_users();
404 iterator_range
<const_user_iterator
> users() const {
405 assertModuleIsMaterialized();
406 return materialized_users();
409 /// Return true if there is exactly one user of this value.
411 /// This is specialized because it is a common request and does not require
412 /// traversing the whole use list.
413 bool hasOneUse() const {
414 const_use_iterator I
= use_begin(), E
= use_end();
415 if (I
== E
) return false;
419 /// Return true if this Value has exactly N users.
420 bool hasNUses(unsigned N
) const;
422 /// Return true if this value has N users or more.
424 /// This is logically equivalent to getNumUses() >= N.
425 bool hasNUsesOrMore(unsigned N
) const;
427 /// Check if this value is used in the specified basic block.
428 bool isUsedInBasicBlock(const BasicBlock
*BB
) const;
430 /// This method computes the number of uses of this Value.
432 /// This is a linear time operation. Use hasOneUse, hasNUses, or
433 /// hasNUsesOrMore to check for specific values.
434 unsigned getNumUses() const;
436 /// This method should only be used by the Use class.
437 void addUse(Use
&U
) { U
.addToList(&UseList
); }
439 /// Concrete subclass of this.
441 /// An enumeration for keeping track of the concrete subclass of Value that
442 /// is actually instantiated. Values of this enumeration are kept in the
443 /// Value classes SubclassID field. They are used for concrete type
446 #define HANDLE_VALUE(Name) Name##Val,
447 #include "llvm/IR/Value.def"
450 #define HANDLE_CONSTANT_MARKER(Marker, Constant) Marker = Constant##Val,
451 #include "llvm/IR/Value.def"
454 /// Return an ID for the concrete type of this object.
456 /// This is used to implement the classof checks. This should not be used
457 /// for any other purpose, as the values may change as LLVM evolves. Also,
458 /// note that for instructions, the Instruction's opcode is added to
459 /// InstructionVal. So this means three things:
460 /// # there is no value with code InstructionVal (no opcode==0).
461 /// # there are more possible values for the value type than in ValueTy enum.
462 /// # the InstructionVal enumerator must be the highest valued enumerator in
463 /// the ValueTy enum.
464 unsigned getValueID() const {
468 /// Return the raw optional flags value contained in this value.
470 /// This should only be used when testing two Values for equivalence.
471 unsigned getRawSubclassOptionalData() const {
472 return SubclassOptionalData
;
475 /// Clear the optional flags contained in this value.
476 void clearSubclassOptionalData() {
477 SubclassOptionalData
= 0;
480 /// Check the optional flags for equality.
481 bool hasSameSubclassOptionalData(const Value
*V
) const {
482 return SubclassOptionalData
== V
->SubclassOptionalData
;
485 /// Return true if there is a value handle associated with this value.
486 bool hasValueHandle() const { return HasValueHandle
; }
488 /// Return true if there is metadata referencing this value.
489 bool isUsedByMetadata() const { return IsUsedByMD
; }
491 /// Return true if this value is a swifterror value.
493 /// swifterror values can be either a function argument or an alloca with a
494 /// swifterror attribute.
495 bool isSwiftError() const;
497 /// Strip off pointer casts, all-zero GEPs, and aliases.
499 /// Returns the original uncasted value. If this is called on a non-pointer
500 /// value, it returns 'this'.
501 const Value
*stripPointerCasts() const;
502 Value
*stripPointerCasts() {
503 return const_cast<Value
*>(
504 static_cast<const Value
*>(this)->stripPointerCasts());
507 /// Strip off pointer casts, all-zero GEPs, aliases and invariant group
510 /// Returns the original uncasted value. If this is called on a non-pointer
511 /// value, it returns 'this'. This function should be used only in
513 const Value
*stripPointerCastsAndInvariantGroups() const;
514 Value
*stripPointerCastsAndInvariantGroups() {
515 return const_cast<Value
*>(
516 static_cast<const Value
*>(this)->stripPointerCastsAndInvariantGroups());
519 /// Strip off pointer casts and all-zero GEPs.
521 /// Returns the original uncasted value. If this is called on a non-pointer
522 /// value, it returns 'this'.
523 const Value
*stripPointerCastsNoFollowAliases() const;
524 Value
*stripPointerCastsNoFollowAliases() {
525 return const_cast<Value
*>(
526 static_cast<const Value
*>(this)->stripPointerCastsNoFollowAliases());
529 /// Strip off pointer casts and all-constant inbounds GEPs.
531 /// Returns the original pointer value. If this is called on a non-pointer
532 /// value, it returns 'this'.
533 const Value
*stripInBoundsConstantOffsets() const;
534 Value
*stripInBoundsConstantOffsets() {
535 return const_cast<Value
*>(
536 static_cast<const Value
*>(this)->stripInBoundsConstantOffsets());
539 /// Accumulate offsets from \a stripInBoundsConstantOffsets().
541 /// Stores the resulting constant offset stripped into the APInt provided.
542 /// The provided APInt will be extended or truncated as needed to be the
543 /// correct bitwidth for an offset of this pointer type.
545 /// If this is called on a non-pointer value, it returns 'this'.
546 const Value
*stripAndAccumulateInBoundsConstantOffsets(const DataLayout
&DL
,
547 APInt
&Offset
) const;
548 Value
*stripAndAccumulateInBoundsConstantOffsets(const DataLayout
&DL
,
550 return const_cast<Value
*>(static_cast<const Value
*>(this)
551 ->stripAndAccumulateInBoundsConstantOffsets(DL
, Offset
));
554 /// Strip off pointer casts and inbounds GEPs.
556 /// Returns the original pointer value. If this is called on a non-pointer
557 /// value, it returns 'this'.
558 const Value
*stripInBoundsOffsets() const;
559 Value
*stripInBoundsOffsets() {
560 return const_cast<Value
*>(
561 static_cast<const Value
*>(this)->stripInBoundsOffsets());
564 /// Returns the number of bytes known to be dereferenceable for the
567 /// If CanBeNull is set by this function the pointer can either be null or be
568 /// dereferenceable up to the returned number of bytes.
569 uint64_t getPointerDereferenceableBytes(const DataLayout
&DL
,
570 bool &CanBeNull
) const;
572 /// Returns an alignment of the pointer value.
574 /// Returns an alignment which is either specified explicitly, e.g. via
575 /// align attribute of a function argument, or guaranteed by DataLayout.
576 unsigned getPointerAlignment(const DataLayout
&DL
) const;
578 /// Translate PHI node to its predecessor from the given basic block.
580 /// If this value is a PHI node with CurBB as its parent, return the value in
581 /// the PHI node corresponding to PredBB. If not, return ourself. This is
582 /// useful if you want to know the value something has in a predecessor
584 const Value
*DoPHITranslation(const BasicBlock
*CurBB
,
585 const BasicBlock
*PredBB
) const;
586 Value
*DoPHITranslation(const BasicBlock
*CurBB
, const BasicBlock
*PredBB
) {
587 return const_cast<Value
*>(
588 static_cast<const Value
*>(this)->DoPHITranslation(CurBB
, PredBB
));
591 /// The maximum alignment for instructions.
593 /// This is the greatest alignment value supported by load, store, and alloca
594 /// instructions, and global values.
595 static const unsigned MaxAlignmentExponent
= 29;
596 static const unsigned MaximumAlignment
= 1u << MaxAlignmentExponent
;
598 /// Mutate the type of this Value to be of the specified type.
600 /// Note that this is an extremely dangerous operation which can create
601 /// completely invalid IR very easily. It is strongly recommended that you
602 /// recreate IR objects with the right types instead of mutating them in
604 void mutateType(Type
*Ty
) {
608 /// Sort the use-list.
610 /// Sorts the Value's use-list by Cmp using a stable mergesort. Cmp is
611 /// expected to compare two \a Use references.
612 template <class Compare
> void sortUseList(Compare Cmp
);
614 /// Reverse the use-list.
615 void reverseUseList();
618 /// Merge two lists together.
620 /// Merges \c L and \c R using \c Cmp. To enable stable sorts, always pushes
621 /// "equal" items from L before items from R.
623 /// \return the first element in the list.
625 /// \note Completely ignores \a Use::Prev (doesn't read, doesn't update).
626 template <class Compare
>
627 static Use
*mergeUseLists(Use
*L
, Use
*R
, Compare Cmp
) {
629 Use
**Next
= &Merged
;
655 unsigned short getSubclassDataFromValue() const { return SubclassData
; }
656 void setValueSubclassData(unsigned short D
) { SubclassData
= D
; }
659 struct ValueDeleter
{ void operator()(Value
*V
) { V
->deleteValue(); } };
661 /// Use this instead of std::unique_ptr<Value> or std::unique_ptr<Instruction>.
662 /// Those don't work because Value and Instruction's destructors are protected,
663 /// aren't virtual, and won't destroy the complete object.
664 using unique_value
= std::unique_ptr
<Value
, ValueDeleter
>;
666 inline raw_ostream
&operator<<(raw_ostream
&OS
, const Value
&V
) {
671 void Use::set(Value
*V
) {
672 if (Val
) removeFromList();
674 if (V
) V
->addUse(*this);
677 Value
*Use::operator=(Value
*RHS
) {
682 const Use
&Use::operator=(const Use
&RHS
) {
687 template <class Compare
> void Value::sortUseList(Compare Cmp
) {
688 if (!UseList
|| !UseList
->Next
)
689 // No need to sort 0 or 1 uses.
692 // Note: this function completely ignores Prev pointers until the end when
693 // they're fixed en masse.
695 // Create a binomial vector of sorted lists, visiting uses one at a time and
696 // merging lists as necessary.
697 const unsigned MaxSlots
= 32;
698 Use
*Slots
[MaxSlots
];
700 // Collect the first use, turning it into a single-item list.
701 Use
*Next
= UseList
->Next
;
702 UseList
->Next
= nullptr;
703 unsigned NumSlots
= 1;
706 // Collect all but the last use.
709 Next
= Current
->Next
;
711 // Turn Current into a single-item list.
712 Current
->Next
= nullptr;
714 // Save Current in the first available slot, merging on collisions.
716 for (I
= 0; I
< NumSlots
; ++I
) {
720 // Merge two lists, doubling the size of Current and emptying slot I.
722 // Since the uses in Slots[I] originally preceded those in Current, send
723 // Slots[I] in as the left parameter to maintain a stable sort.
724 Current
= mergeUseLists(Slots
[I
], Current
, Cmp
);
727 // Check if this is a new slot.
730 assert(NumSlots
<= MaxSlots
&& "Use list bigger than 2^32");
733 // Found an open slot.
737 // Merge all the lists together.
738 assert(Next
&& "Expected one more Use");
739 assert(!Next
->Next
&& "Expected only one Use");
741 for (unsigned I
= 0; I
< NumSlots
; ++I
)
743 // Since the uses in Slots[I] originally preceded those in UseList, send
744 // Slots[I] in as the left parameter to maintain a stable sort.
745 UseList
= mergeUseLists(Slots
[I
], UseList
, Cmp
);
747 // Fix the Prev pointers.
748 for (Use
*I
= UseList
, **Prev
= &UseList
; I
; I
= I
->Next
) {
754 // isa - Provide some specializations of isa so that we don't have to include
755 // the subtype header files to test to see if the value is a subclass...
757 template <> struct isa_impl
<Constant
, Value
> {
758 static inline bool doit(const Value
&Val
) {
759 static_assert(Value::ConstantFirstVal
== 0, "Val.getValueID() >= Value::ConstantFirstVal");
760 return Val
.getValueID() <= Value::ConstantLastVal
;
764 template <> struct isa_impl
<ConstantData
, Value
> {
765 static inline bool doit(const Value
&Val
) {
766 return Val
.getValueID() >= Value::ConstantDataFirstVal
&&
767 Val
.getValueID() <= Value::ConstantDataLastVal
;
771 template <> struct isa_impl
<ConstantAggregate
, Value
> {
772 static inline bool doit(const Value
&Val
) {
773 return Val
.getValueID() >= Value::ConstantAggregateFirstVal
&&
774 Val
.getValueID() <= Value::ConstantAggregateLastVal
;
778 template <> struct isa_impl
<Argument
, Value
> {
779 static inline bool doit (const Value
&Val
) {
780 return Val
.getValueID() == Value::ArgumentVal
;
784 template <> struct isa_impl
<InlineAsm
, Value
> {
785 static inline bool doit(const Value
&Val
) {
786 return Val
.getValueID() == Value::InlineAsmVal
;
790 template <> struct isa_impl
<Instruction
, Value
> {
791 static inline bool doit(const Value
&Val
) {
792 return Val
.getValueID() >= Value::InstructionVal
;
796 template <> struct isa_impl
<BasicBlock
, Value
> {
797 static inline bool doit(const Value
&Val
) {
798 return Val
.getValueID() == Value::BasicBlockVal
;
802 template <> struct isa_impl
<Function
, Value
> {
803 static inline bool doit(const Value
&Val
) {
804 return Val
.getValueID() == Value::FunctionVal
;
808 template <> struct isa_impl
<GlobalVariable
, Value
> {
809 static inline bool doit(const Value
&Val
) {
810 return Val
.getValueID() == Value::GlobalVariableVal
;
814 template <> struct isa_impl
<GlobalAlias
, Value
> {
815 static inline bool doit(const Value
&Val
) {
816 return Val
.getValueID() == Value::GlobalAliasVal
;
820 template <> struct isa_impl
<GlobalIFunc
, Value
> {
821 static inline bool doit(const Value
&Val
) {
822 return Val
.getValueID() == Value::GlobalIFuncVal
;
826 template <> struct isa_impl
<GlobalIndirectSymbol
, Value
> {
827 static inline bool doit(const Value
&Val
) {
828 return isa
<GlobalAlias
>(Val
) || isa
<GlobalIFunc
>(Val
);
832 template <> struct isa_impl
<GlobalValue
, Value
> {
833 static inline bool doit(const Value
&Val
) {
834 return isa
<GlobalObject
>(Val
) || isa
<GlobalIndirectSymbol
>(Val
);
838 template <> struct isa_impl
<GlobalObject
, Value
> {
839 static inline bool doit(const Value
&Val
) {
840 return isa
<GlobalVariable
>(Val
) || isa
<Function
>(Val
);
844 // Create wrappers for C Binding types (see CBindingWrapping.h).
845 DEFINE_ISA_CONVERSION_FUNCTIONS(Value
, LLVMValueRef
)
847 // Specialized opaque value conversions.
848 inline Value
**unwrap(LLVMValueRef
*Vals
) {
849 return reinterpret_cast<Value
**>(Vals
);
853 inline T
**unwrap(LLVMValueRef
*Vals
, unsigned Length
) {
855 for (LLVMValueRef
*I
= Vals
, *E
= Vals
+ Length
; I
!= E
; ++I
)
856 unwrap
<T
>(*I
); // For side effect of calling assert on invalid usage.
859 return reinterpret_cast<T
**>(Vals
);
862 inline LLVMValueRef
*wrap(const Value
**Vals
) {
863 return reinterpret_cast<LLVMValueRef
*>(const_cast<Value
**>(Vals
));
866 } // end namespace llvm
868 #endif // LLVM_IR_VALUE_H