[Alignment] Use llvm::Align in MachineFunction and TargetLowering - fixes mir parsing
[llvm-complete.git] / lib / Target / ARM / ARMConstantIslandPass.cpp
blob9d3e820f96ce85334cf164d5d03e554f20c63b48
1 //===- ARMConstantIslandPass.cpp - ARM constant islands -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a pass that splits the constant pool up into 'islands'
10 // which are scattered through-out the function. This is required due to the
11 // limited pc-relative displacements that ARM has.
13 //===----------------------------------------------------------------------===//
15 #include "ARM.h"
16 #include "ARMBaseInstrInfo.h"
17 #include "ARMBasicBlockInfo.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMSubtarget.h"
20 #include "MCTargetDesc/ARMBaseInfo.h"
21 #include "Thumb2InstrInfo.h"
22 #include "Utils/ARMBaseInfo.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/CodeGen/LivePhysRegs.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineConstantPool.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineFunctionPass.h"
34 #include "llvm/CodeGen/MachineInstr.h"
35 #include "llvm/CodeGen/MachineJumpTableInfo.h"
36 #include "llvm/CodeGen/MachineOperand.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/Config/llvm-config.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/MC/MCInstrDesc.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Compiler.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/Format.h"
48 #include "llvm/Support/MathExtras.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <cstdint>
53 #include <iterator>
54 #include <utility>
55 #include <vector>
57 using namespace llvm;
59 #define DEBUG_TYPE "arm-cp-islands"
61 #define ARM_CP_ISLANDS_OPT_NAME \
62 "ARM constant island placement and branch shortening pass"
63 STATISTIC(NumCPEs, "Number of constpool entries");
64 STATISTIC(NumSplit, "Number of uncond branches inserted");
65 STATISTIC(NumCBrFixed, "Number of cond branches fixed");
66 STATISTIC(NumUBrFixed, "Number of uncond branches fixed");
67 STATISTIC(NumTBs, "Number of table branches generated");
68 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk");
69 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk");
70 STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed");
71 STATISTIC(NumJTMoved, "Number of jump table destination blocks moved");
72 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted");
74 static cl::opt<bool>
75 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true),
76 cl::desc("Adjust basic block layout to better use TB[BH]"));
78 static cl::opt<unsigned>
79 CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden, cl::init(30),
80 cl::desc("The max number of iteration for converge"));
82 static cl::opt<bool> SynthesizeThumb1TBB(
83 "arm-synthesize-thumb-1-tbb", cl::Hidden, cl::init(true),
84 cl::desc("Use compressed jump tables in Thumb-1 by synthesizing an "
85 "equivalent to the TBB/TBH instructions"));
87 namespace {
89 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
90 /// requires constant pool entries to be scattered among the instructions
91 /// inside a function. To do this, it completely ignores the normal LLVM
92 /// constant pool; instead, it places constants wherever it feels like with
93 /// special instructions.
94 ///
95 /// The terminology used in this pass includes:
96 /// Islands - Clumps of constants placed in the function.
97 /// Water - Potential places where an island could be formed.
98 /// CPE - A constant pool entry that has been placed somewhere, which
99 /// tracks a list of users.
100 class ARMConstantIslands : public MachineFunctionPass {
101 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr;
103 /// WaterList - A sorted list of basic blocks where islands could be placed
104 /// (i.e. blocks that don't fall through to the following block, due
105 /// to a return, unreachable, or unconditional branch).
106 std::vector<MachineBasicBlock*> WaterList;
108 /// NewWaterList - The subset of WaterList that was created since the
109 /// previous iteration by inserting unconditional branches.
110 SmallSet<MachineBasicBlock*, 4> NewWaterList;
112 using water_iterator = std::vector<MachineBasicBlock *>::iterator;
114 /// CPUser - One user of a constant pool, keeping the machine instruction
115 /// pointer, the constant pool being referenced, and the max displacement
116 /// allowed from the instruction to the CP. The HighWaterMark records the
117 /// highest basic block where a new CPEntry can be placed. To ensure this
118 /// pass terminates, the CP entries are initially placed at the end of the
119 /// function and then move monotonically to lower addresses. The
120 /// exception to this rule is when the current CP entry for a particular
121 /// CPUser is out of range, but there is another CP entry for the same
122 /// constant value in range. We want to use the existing in-range CP
123 /// entry, but if it later moves out of range, the search for new water
124 /// should resume where it left off. The HighWaterMark is used to record
125 /// that point.
126 struct CPUser {
127 MachineInstr *MI;
128 MachineInstr *CPEMI;
129 MachineBasicBlock *HighWaterMark;
130 unsigned MaxDisp;
131 bool NegOk;
132 bool IsSoImm;
133 bool KnownAlignment = false;
135 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
136 bool neg, bool soimm)
137 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) {
138 HighWaterMark = CPEMI->getParent();
141 /// getMaxDisp - Returns the maximum displacement supported by MI.
142 /// Correct for unknown alignment.
143 /// Conservatively subtract 2 bytes to handle weird alignment effects.
144 unsigned getMaxDisp() const {
145 return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2;
149 /// CPUsers - Keep track of all of the machine instructions that use various
150 /// constant pools and their max displacement.
151 std::vector<CPUser> CPUsers;
153 /// CPEntry - One per constant pool entry, keeping the machine instruction
154 /// pointer, the constpool index, and the number of CPUser's which
155 /// reference this entry.
156 struct CPEntry {
157 MachineInstr *CPEMI;
158 unsigned CPI;
159 unsigned RefCount;
161 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
162 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
165 /// CPEntries - Keep track of all of the constant pool entry machine
166 /// instructions. For each original constpool index (i.e. those that existed
167 /// upon entry to this pass), it keeps a vector of entries. Original
168 /// elements are cloned as we go along; the clones are put in the vector of
169 /// the original element, but have distinct CPIs.
171 /// The first half of CPEntries contains generic constants, the second half
172 /// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up
173 /// which vector it will be in here.
174 std::vector<std::vector<CPEntry>> CPEntries;
176 /// Maps a JT index to the offset in CPEntries containing copies of that
177 /// table. The equivalent map for a CONSTPOOL_ENTRY is the identity.
178 DenseMap<int, int> JumpTableEntryIndices;
180 /// Maps a JT index to the LEA that actually uses the index to calculate its
181 /// base address.
182 DenseMap<int, int> JumpTableUserIndices;
184 /// ImmBranch - One per immediate branch, keeping the machine instruction
185 /// pointer, conditional or unconditional, the max displacement,
186 /// and (if isCond is true) the corresponding unconditional branch
187 /// opcode.
188 struct ImmBranch {
189 MachineInstr *MI;
190 unsigned MaxDisp : 31;
191 bool isCond : 1;
192 unsigned UncondBr;
194 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, unsigned ubr)
195 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
198 /// ImmBranches - Keep track of all the immediate branch instructions.
199 std::vector<ImmBranch> ImmBranches;
201 /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
202 SmallVector<MachineInstr*, 4> PushPopMIs;
204 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
205 SmallVector<MachineInstr*, 4> T2JumpTables;
207 /// HasFarJump - True if any far jump instruction has been emitted during
208 /// the branch fix up pass.
209 bool HasFarJump;
211 MachineFunction *MF;
212 MachineConstantPool *MCP;
213 const ARMBaseInstrInfo *TII;
214 const ARMSubtarget *STI;
215 ARMFunctionInfo *AFI;
216 bool isThumb;
217 bool isThumb1;
218 bool isThumb2;
219 bool isPositionIndependentOrROPI;
221 public:
222 static char ID;
224 ARMConstantIslands() : MachineFunctionPass(ID) {}
226 bool runOnMachineFunction(MachineFunction &MF) override;
228 MachineFunctionProperties getRequiredProperties() const override {
229 return MachineFunctionProperties().set(
230 MachineFunctionProperties::Property::NoVRegs);
233 StringRef getPassName() const override {
234 return ARM_CP_ISLANDS_OPT_NAME;
237 private:
238 void doInitialConstPlacement(std::vector<MachineInstr *> &CPEMIs);
239 void doInitialJumpTablePlacement(std::vector<MachineInstr *> &CPEMIs);
240 bool BBHasFallthrough(MachineBasicBlock *MBB);
241 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
242 unsigned getCPELogAlign(const MachineInstr *CPEMI);
243 void scanFunctionJumpTables();
244 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
245 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI);
246 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
247 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
248 unsigned getCombinedIndex(const MachineInstr *CPEMI);
249 int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
250 bool findAvailableWater(CPUser&U, unsigned UserOffset,
251 water_iterator &WaterIter, bool CloserWater);
252 void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
253 MachineBasicBlock *&NewMBB);
254 bool handleConstantPoolUser(unsigned CPUserIndex, bool CloserWater);
255 void removeDeadCPEMI(MachineInstr *CPEMI);
256 bool removeUnusedCPEntries();
257 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
258 MachineInstr *CPEMI, unsigned Disp, bool NegOk,
259 bool DoDump = false);
260 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
261 CPUser &U, unsigned &Growth);
262 bool fixupImmediateBr(ImmBranch &Br);
263 bool fixupConditionalBr(ImmBranch &Br);
264 bool fixupUnconditionalBr(ImmBranch &Br);
265 bool undoLRSpillRestore();
266 bool optimizeThumb2Instructions();
267 bool optimizeThumb2Branches();
268 bool reorderThumb2JumpTables();
269 bool preserveBaseRegister(MachineInstr *JumpMI, MachineInstr *LEAMI,
270 unsigned &DeadSize, bool &CanDeleteLEA,
271 bool &BaseRegKill);
272 bool optimizeThumb2JumpTables();
273 MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB,
274 MachineBasicBlock *JTBB);
276 unsigned getUserOffset(CPUser&) const;
277 void dumpBBs();
278 void verify();
280 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
281 unsigned Disp, bool NegativeOK, bool IsSoImm = false);
282 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
283 const CPUser &U) {
284 return isOffsetInRange(UserOffset, TrialOffset,
285 U.getMaxDisp(), U.NegOk, U.IsSoImm);
289 } // end anonymous namespace
291 char ARMConstantIslands::ID = 0;
293 /// verify - check BBOffsets, BBSizes, alignment of islands
294 void ARMConstantIslands::verify() {
295 #ifndef NDEBUG
296 BBInfoVector &BBInfo = BBUtils->getBBInfo();
297 assert(std::is_sorted(MF->begin(), MF->end(),
298 [&BBInfo](const MachineBasicBlock &LHS,
299 const MachineBasicBlock &RHS) {
300 return BBInfo[LHS.getNumber()].postOffset() <
301 BBInfo[RHS.getNumber()].postOffset();
302 }));
303 LLVM_DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n");
304 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
305 CPUser &U = CPUsers[i];
306 unsigned UserOffset = getUserOffset(U);
307 // Verify offset using the real max displacement without the safety
308 // adjustment.
309 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk,
310 /* DoDump = */ true)) {
311 LLVM_DEBUG(dbgs() << "OK\n");
312 continue;
314 LLVM_DEBUG(dbgs() << "Out of range.\n");
315 dumpBBs();
316 LLVM_DEBUG(MF->dump());
317 llvm_unreachable("Constant pool entry out of range!");
319 #endif
322 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
323 /// print block size and offset information - debugging
324 LLVM_DUMP_METHOD void ARMConstantIslands::dumpBBs() {
325 BBInfoVector &BBInfo = BBUtils->getBBInfo();
326 LLVM_DEBUG({
327 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
328 const BasicBlockInfo &BBI = BBInfo[J];
329 dbgs() << format("%08x %bb.%u\t", BBI.Offset, J)
330 << " kb=" << unsigned(BBI.KnownBits)
331 << " ua=" << unsigned(BBI.Unalign)
332 << " pa=" << unsigned(BBI.PostAlign)
333 << format(" size=%#x\n", BBInfo[J].Size);
337 #endif
339 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) {
340 MF = &mf;
341 MCP = mf.getConstantPool();
342 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(mf));
344 LLVM_DEBUG(dbgs() << "***** ARMConstantIslands: "
345 << MCP->getConstants().size() << " CP entries, aligned to "
346 << MCP->getConstantPoolAlignment() << " bytes *****\n");
348 STI = &static_cast<const ARMSubtarget &>(MF->getSubtarget());
349 TII = STI->getInstrInfo();
350 isPositionIndependentOrROPI =
351 STI->getTargetLowering()->isPositionIndependent() || STI->isROPI();
352 AFI = MF->getInfo<ARMFunctionInfo>();
354 isThumb = AFI->isThumbFunction();
355 isThumb1 = AFI->isThumb1OnlyFunction();
356 isThumb2 = AFI->isThumb2Function();
358 HasFarJump = false;
359 bool GenerateTBB = isThumb2 || (isThumb1 && SynthesizeThumb1TBB);
361 // Renumber all of the machine basic blocks in the function, guaranteeing that
362 // the numbers agree with the position of the block in the function.
363 MF->RenumberBlocks();
365 // Try to reorder and otherwise adjust the block layout to make good use
366 // of the TB[BH] instructions.
367 bool MadeChange = false;
368 if (GenerateTBB && AdjustJumpTableBlocks) {
369 scanFunctionJumpTables();
370 MadeChange |= reorderThumb2JumpTables();
371 // Data is out of date, so clear it. It'll be re-computed later.
372 T2JumpTables.clear();
373 // Blocks may have shifted around. Keep the numbering up to date.
374 MF->RenumberBlocks();
377 // Perform the initial placement of the constant pool entries. To start with,
378 // we put them all at the end of the function.
379 std::vector<MachineInstr*> CPEMIs;
380 if (!MCP->isEmpty())
381 doInitialConstPlacement(CPEMIs);
383 if (MF->getJumpTableInfo())
384 doInitialJumpTablePlacement(CPEMIs);
386 /// The next UID to take is the first unused one.
387 AFI->initPICLabelUId(CPEMIs.size());
389 // Do the initial scan of the function, building up information about the
390 // sizes of each block, the location of all the water, and finding all of the
391 // constant pool users.
392 initializeFunctionInfo(CPEMIs);
393 CPEMIs.clear();
394 LLVM_DEBUG(dumpBBs());
396 // Functions with jump tables need an alignment of 4 because they use the ADR
397 // instruction, which aligns the PC to 4 bytes before adding an offset.
398 if (!T2JumpTables.empty())
399 MF->ensureAlignment(llvm::Align(4));
401 /// Remove dead constant pool entries.
402 MadeChange |= removeUnusedCPEntries();
404 // Iteratively place constant pool entries and fix up branches until there
405 // is no change.
406 unsigned NoCPIters = 0, NoBRIters = 0;
407 while (true) {
408 LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
409 bool CPChange = false;
410 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
411 // For most inputs, it converges in no more than 5 iterations.
412 // If it doesn't end in 10, the input may have huge BB or many CPEs.
413 // In this case, we will try different heuristics.
414 CPChange |= handleConstantPoolUser(i, NoCPIters >= CPMaxIteration / 2);
415 if (CPChange && ++NoCPIters > CPMaxIteration)
416 report_fatal_error("Constant Island pass failed to converge!");
417 LLVM_DEBUG(dumpBBs());
419 // Clear NewWaterList now. If we split a block for branches, it should
420 // appear as "new water" for the next iteration of constant pool placement.
421 NewWaterList.clear();
423 LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
424 bool BRChange = false;
425 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
426 BRChange |= fixupImmediateBr(ImmBranches[i]);
427 if (BRChange && ++NoBRIters > 30)
428 report_fatal_error("Branch Fix Up pass failed to converge!");
429 LLVM_DEBUG(dumpBBs());
431 if (!CPChange && !BRChange)
432 break;
433 MadeChange = true;
436 // Shrink 32-bit Thumb2 load and store instructions.
437 if (isThumb2 && !STI->prefers32BitThumb())
438 MadeChange |= optimizeThumb2Instructions();
440 // Shrink 32-bit branch instructions.
441 if (isThumb && STI->hasV8MBaselineOps())
442 MadeChange |= optimizeThumb2Branches();
444 // Optimize jump tables using TBB / TBH.
445 if (GenerateTBB && !STI->genExecuteOnly())
446 MadeChange |= optimizeThumb2JumpTables();
448 // After a while, this might be made debug-only, but it is not expensive.
449 verify();
451 // If LR has been forced spilled and no far jump (i.e. BL) has been issued,
452 // undo the spill / restore of LR if possible.
453 if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump())
454 MadeChange |= undoLRSpillRestore();
456 // Save the mapping between original and cloned constpool entries.
457 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
458 for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) {
459 const CPEntry & CPE = CPEntries[i][j];
460 if (CPE.CPEMI && CPE.CPEMI->getOperand(1).isCPI())
461 AFI->recordCPEClone(i, CPE.CPI);
465 LLVM_DEBUG(dbgs() << '\n'; dumpBBs());
467 BBUtils->clear();
468 WaterList.clear();
469 CPUsers.clear();
470 CPEntries.clear();
471 JumpTableEntryIndices.clear();
472 JumpTableUserIndices.clear();
473 ImmBranches.clear();
474 PushPopMIs.clear();
475 T2JumpTables.clear();
477 return MadeChange;
480 /// Perform the initial placement of the regular constant pool entries.
481 /// To start with, we put them all at the end of the function.
482 void
483 ARMConstantIslands::doInitialConstPlacement(std::vector<MachineInstr*> &CPEMIs) {
484 // Create the basic block to hold the CPE's.
485 MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
486 MF->push_back(BB);
488 // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
489 unsigned MaxLogAlign = Log2_32(MCP->getConstantPoolAlignment());
491 // Mark the basic block as required by the const-pool.
492 BB->setLogAlignment(MaxLogAlign);
494 // The function needs to be as aligned as the basic blocks. The linker may
495 // move functions around based on their alignment.
496 MF->ensureAlignment(BB->getAlignment());
498 // Order the entries in BB by descending alignment. That ensures correct
499 // alignment of all entries as long as BB is sufficiently aligned. Keep
500 // track of the insertion point for each alignment. We are going to bucket
501 // sort the entries as they are created.
502 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxLogAlign + 1,
503 BB->end());
505 // Add all of the constants from the constant pool to the end block, use an
506 // identity mapping of CPI's to CPE's.
507 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
509 const DataLayout &TD = MF->getDataLayout();
510 for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
511 unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
512 unsigned Align = CPs[i].getAlignment();
513 assert(isPowerOf2_32(Align) && "Invalid alignment");
514 // Verify that all constant pool entries are a multiple of their alignment.
515 // If not, we would have to pad them out so that instructions stay aligned.
516 assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
518 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
519 unsigned LogAlign = Log2_32(Align);
520 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
521 MachineInstr *CPEMI =
522 BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
523 .addImm(i).addConstantPoolIndex(i).addImm(Size);
524 CPEMIs.push_back(CPEMI);
526 // Ensure that future entries with higher alignment get inserted before
527 // CPEMI. This is bucket sort with iterators.
528 for (unsigned a = LogAlign + 1; a <= MaxLogAlign; ++a)
529 if (InsPoint[a] == InsAt)
530 InsPoint[a] = CPEMI;
532 // Add a new CPEntry, but no corresponding CPUser yet.
533 CPEntries.emplace_back(1, CPEntry(CPEMI, i));
534 ++NumCPEs;
535 LLVM_DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
536 << Size << ", align = " << Align << '\n');
538 LLVM_DEBUG(BB->dump());
541 /// Do initial placement of the jump tables. Because Thumb2's TBB and TBH
542 /// instructions can be made more efficient if the jump table immediately
543 /// follows the instruction, it's best to place them immediately next to their
544 /// jumps to begin with. In almost all cases they'll never be moved from that
545 /// position.
546 void ARMConstantIslands::doInitialJumpTablePlacement(
547 std::vector<MachineInstr *> &CPEMIs) {
548 unsigned i = CPEntries.size();
549 auto MJTI = MF->getJumpTableInfo();
550 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
552 MachineBasicBlock *LastCorrectlyNumberedBB = nullptr;
553 for (MachineBasicBlock &MBB : *MF) {
554 auto MI = MBB.getLastNonDebugInstr();
555 if (MI == MBB.end())
556 continue;
558 unsigned JTOpcode;
559 switch (MI->getOpcode()) {
560 default:
561 continue;
562 case ARM::BR_JTadd:
563 case ARM::BR_JTr:
564 case ARM::tBR_JTr:
565 case ARM::BR_JTm_i12:
566 case ARM::BR_JTm_rs:
567 JTOpcode = ARM::JUMPTABLE_ADDRS;
568 break;
569 case ARM::t2BR_JT:
570 JTOpcode = ARM::JUMPTABLE_INSTS;
571 break;
572 case ARM::tTBB_JT:
573 case ARM::t2TBB_JT:
574 JTOpcode = ARM::JUMPTABLE_TBB;
575 break;
576 case ARM::tTBH_JT:
577 case ARM::t2TBH_JT:
578 JTOpcode = ARM::JUMPTABLE_TBH;
579 break;
582 unsigned NumOps = MI->getDesc().getNumOperands();
583 MachineOperand JTOp =
584 MI->getOperand(NumOps - (MI->isPredicable() ? 2 : 1));
585 unsigned JTI = JTOp.getIndex();
586 unsigned Size = JT[JTI].MBBs.size() * sizeof(uint32_t);
587 MachineBasicBlock *JumpTableBB = MF->CreateMachineBasicBlock();
588 MF->insert(std::next(MachineFunction::iterator(MBB)), JumpTableBB);
589 MachineInstr *CPEMI = BuildMI(*JumpTableBB, JumpTableBB->begin(),
590 DebugLoc(), TII->get(JTOpcode))
591 .addImm(i++)
592 .addJumpTableIndex(JTI)
593 .addImm(Size);
594 CPEMIs.push_back(CPEMI);
595 CPEntries.emplace_back(1, CPEntry(CPEMI, JTI));
596 JumpTableEntryIndices.insert(std::make_pair(JTI, CPEntries.size() - 1));
597 if (!LastCorrectlyNumberedBB)
598 LastCorrectlyNumberedBB = &MBB;
601 // If we did anything then we need to renumber the subsequent blocks.
602 if (LastCorrectlyNumberedBB)
603 MF->RenumberBlocks(LastCorrectlyNumberedBB);
606 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
607 /// into the block immediately after it.
608 bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) {
609 // Get the next machine basic block in the function.
610 MachineFunction::iterator MBBI = MBB->getIterator();
611 // Can't fall off end of function.
612 if (std::next(MBBI) == MBB->getParent()->end())
613 return false;
615 MachineBasicBlock *NextBB = &*std::next(MBBI);
616 if (!MBB->isSuccessor(NextBB))
617 return false;
619 // Try to analyze the end of the block. A potential fallthrough may already
620 // have an unconditional branch for whatever reason.
621 MachineBasicBlock *TBB, *FBB;
622 SmallVector<MachineOperand, 4> Cond;
623 bool TooDifficult = TII->analyzeBranch(*MBB, TBB, FBB, Cond);
624 return TooDifficult || FBB == nullptr;
627 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
628 /// look up the corresponding CPEntry.
629 ARMConstantIslands::CPEntry *
630 ARMConstantIslands::findConstPoolEntry(unsigned CPI,
631 const MachineInstr *CPEMI) {
632 std::vector<CPEntry> &CPEs = CPEntries[CPI];
633 // Number of entries per constpool index should be small, just do a
634 // linear search.
635 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
636 if (CPEs[i].CPEMI == CPEMI)
637 return &CPEs[i];
639 return nullptr;
642 /// getCPELogAlign - Returns the required alignment of the constant pool entry
643 /// represented by CPEMI. Alignment is measured in log2(bytes) units.
644 unsigned ARMConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) {
645 switch (CPEMI->getOpcode()) {
646 case ARM::CONSTPOOL_ENTRY:
647 break;
648 case ARM::JUMPTABLE_TBB:
649 return isThumb1 ? 2 : 0;
650 case ARM::JUMPTABLE_TBH:
651 return isThumb1 ? 2 : 1;
652 case ARM::JUMPTABLE_INSTS:
653 return 1;
654 case ARM::JUMPTABLE_ADDRS:
655 return 2;
656 default:
657 llvm_unreachable("unknown constpool entry kind");
660 unsigned CPI = getCombinedIndex(CPEMI);
661 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
662 unsigned Align = MCP->getConstants()[CPI].getAlignment();
663 assert(isPowerOf2_32(Align) && "Invalid CPE alignment");
664 return Log2_32(Align);
667 /// scanFunctionJumpTables - Do a scan of the function, building up
668 /// information about the sizes of each block and the locations of all
669 /// the jump tables.
670 void ARMConstantIslands::scanFunctionJumpTables() {
671 for (MachineBasicBlock &MBB : *MF) {
672 for (MachineInstr &I : MBB)
673 if (I.isBranch() &&
674 (I.getOpcode() == ARM::t2BR_JT || I.getOpcode() == ARM::tBR_JTr))
675 T2JumpTables.push_back(&I);
679 /// initializeFunctionInfo - Do the initial scan of the function, building up
680 /// information about the sizes of each block, the location of all the water,
681 /// and finding all of the constant pool users.
682 void ARMConstantIslands::
683 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
685 BBUtils->computeAllBlockSizes();
686 BBInfoVector &BBInfo = BBUtils->getBBInfo();
687 // The known bits of the entry block offset are determined by the function
688 // alignment.
689 BBInfo.front().KnownBits = Log2(MF->getAlignment());
691 // Compute block offsets and known bits.
692 BBUtils->adjustBBOffsetsAfter(&MF->front());
694 // Now go back through the instructions and build up our data structures.
695 for (MachineBasicBlock &MBB : *MF) {
696 // If this block doesn't fall through into the next MBB, then this is
697 // 'water' that a constant pool island could be placed.
698 if (!BBHasFallthrough(&MBB))
699 WaterList.push_back(&MBB);
701 for (MachineInstr &I : MBB) {
702 if (I.isDebugInstr())
703 continue;
705 unsigned Opc = I.getOpcode();
706 if (I.isBranch()) {
707 bool isCond = false;
708 unsigned Bits = 0;
709 unsigned Scale = 1;
710 int UOpc = Opc;
711 switch (Opc) {
712 default:
713 continue; // Ignore other JT branches
714 case ARM::t2BR_JT:
715 case ARM::tBR_JTr:
716 T2JumpTables.push_back(&I);
717 continue; // Does not get an entry in ImmBranches
718 case ARM::Bcc:
719 isCond = true;
720 UOpc = ARM::B;
721 LLVM_FALLTHROUGH;
722 case ARM::B:
723 Bits = 24;
724 Scale = 4;
725 break;
726 case ARM::tBcc:
727 isCond = true;
728 UOpc = ARM::tB;
729 Bits = 8;
730 Scale = 2;
731 break;
732 case ARM::tB:
733 Bits = 11;
734 Scale = 2;
735 break;
736 case ARM::t2Bcc:
737 isCond = true;
738 UOpc = ARM::t2B;
739 Bits = 20;
740 Scale = 2;
741 break;
742 case ARM::t2B:
743 Bits = 24;
744 Scale = 2;
745 break;
748 // Record this immediate branch.
749 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
750 ImmBranches.push_back(ImmBranch(&I, MaxOffs, isCond, UOpc));
753 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
754 PushPopMIs.push_back(&I);
756 if (Opc == ARM::CONSTPOOL_ENTRY || Opc == ARM::JUMPTABLE_ADDRS ||
757 Opc == ARM::JUMPTABLE_INSTS || Opc == ARM::JUMPTABLE_TBB ||
758 Opc == ARM::JUMPTABLE_TBH)
759 continue;
761 // Scan the instructions for constant pool operands.
762 for (unsigned op = 0, e = I.getNumOperands(); op != e; ++op)
763 if (I.getOperand(op).isCPI() || I.getOperand(op).isJTI()) {
764 // We found one. The addressing mode tells us the max displacement
765 // from the PC that this instruction permits.
767 // Basic size info comes from the TSFlags field.
768 unsigned Bits = 0;
769 unsigned Scale = 1;
770 bool NegOk = false;
771 bool IsSoImm = false;
773 switch (Opc) {
774 default:
775 llvm_unreachable("Unknown addressing mode for CP reference!");
777 // Taking the address of a CP entry.
778 case ARM::LEApcrel:
779 case ARM::LEApcrelJT:
780 // This takes a SoImm, which is 8 bit immediate rotated. We'll
781 // pretend the maximum offset is 255 * 4. Since each instruction
782 // 4 byte wide, this is always correct. We'll check for other
783 // displacements that fits in a SoImm as well.
784 Bits = 8;
785 Scale = 4;
786 NegOk = true;
787 IsSoImm = true;
788 break;
789 case ARM::t2LEApcrel:
790 case ARM::t2LEApcrelJT:
791 Bits = 12;
792 NegOk = true;
793 break;
794 case ARM::tLEApcrel:
795 case ARM::tLEApcrelJT:
796 Bits = 8;
797 Scale = 4;
798 break;
800 case ARM::LDRBi12:
801 case ARM::LDRi12:
802 case ARM::LDRcp:
803 case ARM::t2LDRpci:
804 case ARM::t2LDRHpci:
805 case ARM::t2LDRBpci:
806 Bits = 12; // +-offset_12
807 NegOk = true;
808 break;
810 case ARM::tLDRpci:
811 Bits = 8;
812 Scale = 4; // +(offset_8*4)
813 break;
815 case ARM::VLDRD:
816 case ARM::VLDRS:
817 Bits = 8;
818 Scale = 4; // +-(offset_8*4)
819 NegOk = true;
820 break;
821 case ARM::VLDRH:
822 Bits = 8;
823 Scale = 2; // +-(offset_8*2)
824 NegOk = true;
825 break;
828 // Remember that this is a user of a CP entry.
829 unsigned CPI = I.getOperand(op).getIndex();
830 if (I.getOperand(op).isJTI()) {
831 JumpTableUserIndices.insert(std::make_pair(CPI, CPUsers.size()));
832 CPI = JumpTableEntryIndices[CPI];
835 MachineInstr *CPEMI = CPEMIs[CPI];
836 unsigned MaxOffs = ((1 << Bits)-1) * Scale;
837 CPUsers.push_back(CPUser(&I, CPEMI, MaxOffs, NegOk, IsSoImm));
839 // Increment corresponding CPEntry reference count.
840 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
841 assert(CPE && "Cannot find a corresponding CPEntry!");
842 CPE->RefCount++;
844 // Instructions can only use one CP entry, don't bother scanning the
845 // rest of the operands.
846 break;
852 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
853 /// ID.
854 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
855 const MachineBasicBlock *RHS) {
856 return LHS->getNumber() < RHS->getNumber();
859 /// updateForInsertedWaterBlock - When a block is newly inserted into the
860 /// machine function, it upsets all of the block numbers. Renumber the blocks
861 /// and update the arrays that parallel this numbering.
862 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
863 // Renumber the MBB's to keep them consecutive.
864 NewBB->getParent()->RenumberBlocks(NewBB);
866 // Insert an entry into BBInfo to align it properly with the (newly
867 // renumbered) block numbers.
868 BBUtils->insert(NewBB->getNumber(), BasicBlockInfo());
870 // Next, update WaterList. Specifically, we need to add NewMBB as having
871 // available water after it.
872 water_iterator IP = llvm::lower_bound(WaterList, NewBB, CompareMBBNumbers);
873 WaterList.insert(IP, NewBB);
876 /// Split the basic block containing MI into two blocks, which are joined by
877 /// an unconditional branch. Update data structures and renumber blocks to
878 /// account for this change and returns the newly created block.
879 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) {
880 MachineBasicBlock *OrigBB = MI->getParent();
882 // Collect liveness information at MI.
883 LivePhysRegs LRs(*MF->getSubtarget().getRegisterInfo());
884 LRs.addLiveOuts(*OrigBB);
885 auto LivenessEnd = ++MachineBasicBlock::iterator(MI).getReverse();
886 for (MachineInstr &LiveMI : make_range(OrigBB->rbegin(), LivenessEnd))
887 LRs.stepBackward(LiveMI);
889 // Create a new MBB for the code after the OrigBB.
890 MachineBasicBlock *NewBB =
891 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
892 MachineFunction::iterator MBBI = ++OrigBB->getIterator();
893 MF->insert(MBBI, NewBB);
895 // Splice the instructions starting with MI over to NewBB.
896 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
898 // Add an unconditional branch from OrigBB to NewBB.
899 // Note the new unconditional branch is not being recorded.
900 // There doesn't seem to be meaningful DebugInfo available; this doesn't
901 // correspond to anything in the source.
902 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
903 if (!isThumb)
904 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB);
905 else
906 BuildMI(OrigBB, DebugLoc(), TII->get(Opc))
907 .addMBB(NewBB)
908 .add(predOps(ARMCC::AL));
909 ++NumSplit;
911 // Update the CFG. All succs of OrigBB are now succs of NewBB.
912 NewBB->transferSuccessors(OrigBB);
914 // OrigBB branches to NewBB.
915 OrigBB->addSuccessor(NewBB);
917 // Update live-in information in the new block.
918 MachineRegisterInfo &MRI = MF->getRegInfo();
919 for (MCPhysReg L : LRs)
920 if (!MRI.isReserved(L))
921 NewBB->addLiveIn(L);
923 // Update internal data structures to account for the newly inserted MBB.
924 // This is almost the same as updateForInsertedWaterBlock, except that
925 // the Water goes after OrigBB, not NewBB.
926 MF->RenumberBlocks(NewBB);
928 // Insert an entry into BBInfo to align it properly with the (newly
929 // renumbered) block numbers.
930 BBUtils->insert(NewBB->getNumber(), BasicBlockInfo());
932 // Next, update WaterList. Specifically, we need to add OrigMBB as having
933 // available water after it (but not if it's already there, which happens
934 // when splitting before a conditional branch that is followed by an
935 // unconditional branch - in that case we want to insert NewBB).
936 water_iterator IP = llvm::lower_bound(WaterList, OrigBB, CompareMBBNumbers);
937 MachineBasicBlock* WaterBB = *IP;
938 if (WaterBB == OrigBB)
939 WaterList.insert(std::next(IP), NewBB);
940 else
941 WaterList.insert(IP, OrigBB);
942 NewWaterList.insert(OrigBB);
944 // Figure out how large the OrigBB is. As the first half of the original
945 // block, it cannot contain a tablejump. The size includes
946 // the new jump we added. (It should be possible to do this without
947 // recounting everything, but it's very confusing, and this is rarely
948 // executed.)
949 BBUtils->computeBlockSize(OrigBB);
951 // Figure out how large the NewMBB is. As the second half of the original
952 // block, it may contain a tablejump.
953 BBUtils->computeBlockSize(NewBB);
955 // All BBOffsets following these blocks must be modified.
956 BBUtils->adjustBBOffsetsAfter(OrigBB);
958 return NewBB;
961 /// getUserOffset - Compute the offset of U.MI as seen by the hardware
962 /// displacement computation. Update U.KnownAlignment to match its current
963 /// basic block location.
964 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const {
965 unsigned UserOffset = BBUtils->getOffsetOf(U.MI);
967 SmallVectorImpl<BasicBlockInfo> &BBInfo = BBUtils->getBBInfo();
968 const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()];
969 unsigned KnownBits = BBI.internalKnownBits();
971 // The value read from PC is offset from the actual instruction address.
972 UserOffset += (isThumb ? 4 : 8);
974 // Because of inline assembly, we may not know the alignment (mod 4) of U.MI.
975 // Make sure U.getMaxDisp() returns a constrained range.
976 U.KnownAlignment = (KnownBits >= 2);
978 // On Thumb, offsets==2 mod 4 are rounded down by the hardware for
979 // purposes of the displacement computation; compensate for that here.
980 // For unknown alignments, getMaxDisp() constrains the range instead.
981 if (isThumb && U.KnownAlignment)
982 UserOffset &= ~3u;
984 return UserOffset;
987 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
988 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
989 /// constant pool entry).
990 /// UserOffset is computed by getUserOffset above to include PC adjustments. If
991 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be
992 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that.
993 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset,
994 unsigned TrialOffset, unsigned MaxDisp,
995 bool NegativeOK, bool IsSoImm) {
996 if (UserOffset <= TrialOffset) {
997 // User before the Trial.
998 if (TrialOffset - UserOffset <= MaxDisp)
999 return true;
1000 // FIXME: Make use full range of soimm values.
1001 } else if (NegativeOK) {
1002 if (UserOffset - TrialOffset <= MaxDisp)
1003 return true;
1004 // FIXME: Make use full range of soimm values.
1006 return false;
1009 /// isWaterInRange - Returns true if a CPE placed after the specified
1010 /// Water (a basic block) will be in range for the specific MI.
1012 /// Compute how much the function will grow by inserting a CPE after Water.
1013 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset,
1014 MachineBasicBlock* Water, CPUser &U,
1015 unsigned &Growth) {
1016 BBInfoVector &BBInfo = BBUtils->getBBInfo();
1017 unsigned CPELogAlign = getCPELogAlign(U.CPEMI);
1018 unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign);
1019 unsigned NextBlockOffset, NextBlockLogAlignment;
1020 MachineFunction::const_iterator NextBlock = Water->getIterator();
1021 if (++NextBlock == MF->end()) {
1022 NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
1023 NextBlockLogAlignment = 0;
1024 } else {
1025 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
1026 NextBlockLogAlignment = NextBlock->getLogAlignment();
1028 unsigned Size = U.CPEMI->getOperand(2).getImm();
1029 unsigned CPEEnd = CPEOffset + Size;
1031 // The CPE may be able to hide in the alignment padding before the next
1032 // block. It may also cause more padding to be required if it is more aligned
1033 // that the next block.
1034 if (CPEEnd > NextBlockOffset) {
1035 Growth = CPEEnd - NextBlockOffset;
1036 // Compute the padding that would go at the end of the CPE to align the next
1037 // block.
1038 Growth += OffsetToAlignment(CPEEnd, 1ULL << NextBlockLogAlignment);
1040 // If the CPE is to be inserted before the instruction, that will raise
1041 // the offset of the instruction. Also account for unknown alignment padding
1042 // in blocks between CPE and the user.
1043 if (CPEOffset < UserOffset)
1044 UserOffset +=
1045 Growth + UnknownPadding(Log2(MF->getAlignment()), CPELogAlign);
1046 } else
1047 // CPE fits in existing padding.
1048 Growth = 0;
1050 return isOffsetInRange(UserOffset, CPEOffset, U);
1053 /// isCPEntryInRange - Returns true if the distance between specific MI and
1054 /// specific ConstPool entry instruction can fit in MI's displacement field.
1055 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
1056 MachineInstr *CPEMI, unsigned MaxDisp,
1057 bool NegOk, bool DoDump) {
1058 unsigned CPEOffset = BBUtils->getOffsetOf(CPEMI);
1060 if (DoDump) {
1061 LLVM_DEBUG({
1062 BBInfoVector &BBInfo = BBUtils->getBBInfo();
1063 unsigned Block = MI->getParent()->getNumber();
1064 const BasicBlockInfo &BBI = BBInfo[Block];
1065 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
1066 << " max delta=" << MaxDisp
1067 << format(" insn address=%#x", UserOffset) << " in "
1068 << printMBBReference(*MI->getParent()) << ": "
1069 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
1070 << format("CPE address=%#x offset=%+d: ", CPEOffset,
1071 int(CPEOffset - UserOffset));
1075 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
1078 #ifndef NDEBUG
1079 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
1080 /// unconditionally branches to its only successor.
1081 static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
1082 if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
1083 return false;
1085 MachineBasicBlock *Succ = *MBB->succ_begin();
1086 MachineBasicBlock *Pred = *MBB->pred_begin();
1087 MachineInstr *PredMI = &Pred->back();
1088 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB
1089 || PredMI->getOpcode() == ARM::t2B)
1090 return PredMI->getOperand(0).getMBB() == Succ;
1091 return false;
1093 #endif // NDEBUG
1095 /// decrementCPEReferenceCount - find the constant pool entry with index CPI
1096 /// and instruction CPEMI, and decrement its refcount. If the refcount
1097 /// becomes 0 remove the entry and instruction. Returns true if we removed
1098 /// the entry, false if we didn't.
1099 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI,
1100 MachineInstr *CPEMI) {
1101 // Find the old entry. Eliminate it if it is no longer used.
1102 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
1103 assert(CPE && "Unexpected!");
1104 if (--CPE->RefCount == 0) {
1105 removeDeadCPEMI(CPEMI);
1106 CPE->CPEMI = nullptr;
1107 --NumCPEs;
1108 return true;
1110 return false;
1113 unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr *CPEMI) {
1114 if (CPEMI->getOperand(1).isCPI())
1115 return CPEMI->getOperand(1).getIndex();
1117 return JumpTableEntryIndices[CPEMI->getOperand(1).getIndex()];
1120 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1121 /// if not, see if an in-range clone of the CPE is in range, and if so,
1122 /// change the data structures so the user references the clone. Returns:
1123 /// 0 = no existing entry found
1124 /// 1 = entry found, and there were no code insertions or deletions
1125 /// 2 = entry found, and there were code insertions or deletions
1126 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) {
1127 MachineInstr *UserMI = U.MI;
1128 MachineInstr *CPEMI = U.CPEMI;
1130 // Check to see if the CPE is already in-range.
1131 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
1132 true)) {
1133 LLVM_DEBUG(dbgs() << "In range\n");
1134 return 1;
1137 // No. Look for previously created clones of the CPE that are in range.
1138 unsigned CPI = getCombinedIndex(CPEMI);
1139 std::vector<CPEntry> &CPEs = CPEntries[CPI];
1140 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1141 // We already tried this one
1142 if (CPEs[i].CPEMI == CPEMI)
1143 continue;
1144 // Removing CPEs can leave empty entries, skip
1145 if (CPEs[i].CPEMI == nullptr)
1146 continue;
1147 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
1148 U.NegOk)) {
1149 LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1150 << CPEs[i].CPI << "\n");
1151 // Point the CPUser node to the replacement
1152 U.CPEMI = CPEs[i].CPEMI;
1153 // Change the CPI in the instruction operand to refer to the clone.
1154 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1155 if (UserMI->getOperand(j).isCPI()) {
1156 UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1157 break;
1159 // Adjust the refcount of the clone...
1160 CPEs[i].RefCount++;
1161 // ...and the original. If we didn't remove the old entry, none of the
1162 // addresses changed, so we don't need another pass.
1163 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1166 return 0;
1169 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1170 /// the specific unconditional branch instruction.
1171 static inline unsigned getUnconditionalBrDisp(int Opc) {
1172 switch (Opc) {
1173 case ARM::tB:
1174 return ((1<<10)-1)*2;
1175 case ARM::t2B:
1176 return ((1<<23)-1)*2;
1177 default:
1178 break;
1181 return ((1<<23)-1)*4;
1184 /// findAvailableWater - Look for an existing entry in the WaterList in which
1185 /// we can place the CPE referenced from U so it's within range of U's MI.
1186 /// Returns true if found, false if not. If it returns true, WaterIter
1187 /// is set to the WaterList entry. For Thumb, prefer water that will not
1188 /// introduce padding to water that will. To ensure that this pass
1189 /// terminates, the CPE location for a particular CPUser is only allowed to
1190 /// move to a lower address, so search backward from the end of the list and
1191 /// prefer the first water that is in range.
1192 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
1193 water_iterator &WaterIter,
1194 bool CloserWater) {
1195 if (WaterList.empty())
1196 return false;
1198 unsigned BestGrowth = ~0u;
1199 // The nearest water without splitting the UserBB is right after it.
1200 // If the distance is still large (we have a big BB), then we need to split it
1201 // if we don't converge after certain iterations. This helps the following
1202 // situation to converge:
1203 // BB0:
1204 // Big BB
1205 // BB1:
1206 // Constant Pool
1207 // When a CP access is out of range, BB0 may be used as water. However,
1208 // inserting islands between BB0 and BB1 makes other accesses out of range.
1209 MachineBasicBlock *UserBB = U.MI->getParent();
1210 BBInfoVector &BBInfo = BBUtils->getBBInfo();
1211 unsigned MinNoSplitDisp =
1212 BBInfo[UserBB->getNumber()].postOffset(getCPELogAlign(U.CPEMI));
1213 if (CloserWater && MinNoSplitDisp > U.getMaxDisp() / 2)
1214 return false;
1215 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
1216 --IP) {
1217 MachineBasicBlock* WaterBB = *IP;
1218 // Check if water is in range and is either at a lower address than the
1219 // current "high water mark" or a new water block that was created since
1220 // the previous iteration by inserting an unconditional branch. In the
1221 // latter case, we want to allow resetting the high water mark back to
1222 // this new water since we haven't seen it before. Inserting branches
1223 // should be relatively uncommon and when it does happen, we want to be
1224 // sure to take advantage of it for all the CPEs near that block, so that
1225 // we don't insert more branches than necessary.
1226 // When CloserWater is true, we try to find the lowest address after (or
1227 // equal to) user MI's BB no matter of padding growth.
1228 unsigned Growth;
1229 if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
1230 (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1231 NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) &&
1232 Growth < BestGrowth) {
1233 // This is the least amount of required padding seen so far.
1234 BestGrowth = Growth;
1235 WaterIter = IP;
1236 LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB)
1237 << " Growth=" << Growth << '\n');
1239 if (CloserWater && WaterBB == U.MI->getParent())
1240 return true;
1241 // Keep looking unless it is perfect and we're not looking for the lowest
1242 // possible address.
1243 if (!CloserWater && BestGrowth == 0)
1244 return true;
1246 if (IP == B)
1247 break;
1249 return BestGrowth != ~0u;
1252 /// createNewWater - No existing WaterList entry will work for
1253 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the
1254 /// block is used if in range, and the conditional branch munged so control
1255 /// flow is correct. Otherwise the block is split to create a hole with an
1256 /// unconditional branch around it. In either case NewMBB is set to a
1257 /// block following which the new island can be inserted (the WaterList
1258 /// is not adjusted).
1259 void ARMConstantIslands::createNewWater(unsigned CPUserIndex,
1260 unsigned UserOffset,
1261 MachineBasicBlock *&NewMBB) {
1262 CPUser &U = CPUsers[CPUserIndex];
1263 MachineInstr *UserMI = U.MI;
1264 MachineInstr *CPEMI = U.CPEMI;
1265 unsigned CPELogAlign = getCPELogAlign(CPEMI);
1266 MachineBasicBlock *UserMBB = UserMI->getParent();
1267 BBInfoVector &BBInfo = BBUtils->getBBInfo();
1268 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
1270 // If the block does not end in an unconditional branch already, and if the
1271 // end of the block is within range, make new water there. (The addition
1272 // below is for the unconditional branch we will be adding: 4 bytes on ARM +
1273 // Thumb2, 2 on Thumb1.
1274 if (BBHasFallthrough(UserMBB)) {
1275 // Size of branch to insert.
1276 unsigned Delta = isThumb1 ? 2 : 4;
1277 // Compute the offset where the CPE will begin.
1278 unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta;
1280 if (isOffsetInRange(UserOffset, CPEOffset, U)) {
1281 LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB)
1282 << format(", expected CPE offset %#x\n", CPEOffset));
1283 NewMBB = &*++UserMBB->getIterator();
1284 // Add an unconditional branch from UserMBB to fallthrough block. Record
1285 // it for branch lengthening; this new branch will not get out of range,
1286 // but if the preceding conditional branch is out of range, the targets
1287 // will be exchanged, and the altered branch may be out of range, so the
1288 // machinery has to know about it.
1289 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
1290 if (!isThumb)
1291 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1292 else
1293 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr))
1294 .addMBB(NewMBB)
1295 .add(predOps(ARMCC::AL));
1296 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1297 ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1298 MaxDisp, false, UncondBr));
1299 BBUtils->computeBlockSize(UserMBB);
1300 BBUtils->adjustBBOffsetsAfter(UserMBB);
1301 return;
1305 // What a big block. Find a place within the block to split it. This is a
1306 // little tricky on Thumb1 since instructions are 2 bytes and constant pool
1307 // entries are 4 bytes: if instruction I references island CPE, and
1308 // instruction I+1 references CPE', it will not work well to put CPE as far
1309 // forward as possible, since then CPE' cannot immediately follow it (that
1310 // location is 2 bytes farther away from I+1 than CPE was from I) and we'd
1311 // need to create a new island. So, we make a first guess, then walk through
1312 // the instructions between the one currently being looked at and the
1313 // possible insertion point, and make sure any other instructions that
1314 // reference CPEs will be able to use the same island area; if not, we back
1315 // up the insertion point.
1317 // Try to split the block so it's fully aligned. Compute the latest split
1318 // point where we can add a 4-byte branch instruction, and then align to
1319 // LogAlign which is the largest possible alignment in the function.
1320 unsigned LogAlign = Log2(MF->getAlignment());
1321 assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry");
1322 unsigned KnownBits = UserBBI.internalKnownBits();
1323 unsigned UPad = UnknownPadding(LogAlign, KnownBits);
1324 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad;
1325 LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x",
1326 BaseInsertOffset));
1328 // The 4 in the following is for the unconditional branch we'll be inserting
1329 // (allows for long branch on Thumb1). Alignment of the island is handled
1330 // inside isOffsetInRange.
1331 BaseInsertOffset -= 4;
1333 LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
1334 << " la=" << LogAlign << " kb=" << KnownBits
1335 << " up=" << UPad << '\n');
1337 // This could point off the end of the block if we've already got constant
1338 // pool entries following this block; only the last one is in the water list.
1339 // Back past any possible branches (allow for a conditional and a maximally
1340 // long unconditional).
1341 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
1342 // Ensure BaseInsertOffset is larger than the offset of the instruction
1343 // following UserMI so that the loop which searches for the split point
1344 // iterates at least once.
1345 BaseInsertOffset =
1346 std::max(UserBBI.postOffset() - UPad - 8,
1347 UserOffset + TII->getInstSizeInBytes(*UserMI) + 1);
1348 // If the CP is referenced(ie, UserOffset) is in first four instructions
1349 // after IT, this recalculated BaseInsertOffset could be in the middle of
1350 // an IT block. If it is, change the BaseInsertOffset to just after the
1351 // IT block. This still make the CP Entry is in range becuase of the
1352 // following reasons.
1353 // 1. The initial BaseseInsertOffset calculated is (UserOffset +
1354 // U.getMaxDisp() - UPad).
1355 // 2. An IT block is only at most 4 instructions plus the "it" itself (18
1356 // bytes).
1357 // 3. All the relevant instructions support much larger Maximum
1358 // displacement.
1359 MachineBasicBlock::iterator I = UserMI;
1360 ++I;
1361 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI),
1362 PredReg = 0;
1363 I->getOpcode() != ARM::t2IT &&
1364 getITInstrPredicate(*I, PredReg) != ARMCC::AL;
1365 Offset += TII->getInstSizeInBytes(*I), I = std::next(I)) {
1366 BaseInsertOffset =
1367 std::max(BaseInsertOffset, Offset + TII->getInstSizeInBytes(*I) + 1);
1368 assert(I != UserMBB->end() && "Fell off end of block");
1370 LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
1372 unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad +
1373 CPEMI->getOperand(2).getImm();
1374 MachineBasicBlock::iterator MI = UserMI;
1375 ++MI;
1376 unsigned CPUIndex = CPUserIndex+1;
1377 unsigned NumCPUsers = CPUsers.size();
1378 MachineInstr *LastIT = nullptr;
1379 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI);
1380 Offset < BaseInsertOffset;
1381 Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) {
1382 assert(MI != UserMBB->end() && "Fell off end of block");
1383 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == &*MI) {
1384 CPUser &U = CPUsers[CPUIndex];
1385 if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
1386 // Shift intertion point by one unit of alignment so it is within reach.
1387 BaseInsertOffset -= 1u << LogAlign;
1388 EndInsertOffset -= 1u << LogAlign;
1390 // This is overly conservative, as we don't account for CPEMIs being
1391 // reused within the block, but it doesn't matter much. Also assume CPEs
1392 // are added in order with alignment padding. We may eventually be able
1393 // to pack the aligned CPEs better.
1394 EndInsertOffset += U.CPEMI->getOperand(2).getImm();
1395 CPUIndex++;
1398 // Remember the last IT instruction.
1399 if (MI->getOpcode() == ARM::t2IT)
1400 LastIT = &*MI;
1403 --MI;
1405 // Avoid splitting an IT block.
1406 if (LastIT) {
1407 unsigned PredReg = 0;
1408 ARMCC::CondCodes CC = getITInstrPredicate(*MI, PredReg);
1409 if (CC != ARMCC::AL)
1410 MI = LastIT;
1413 // Avoid splitting a MOVW+MOVT pair with a relocation on Windows.
1414 // On Windows, this instruction pair is covered by one single
1415 // IMAGE_REL_ARM_MOV32T relocation which covers both instructions. If a
1416 // constant island is injected inbetween them, the relocation will clobber
1417 // the instruction and fail to update the MOVT instruction.
1418 // (These instructions are bundled up until right before the ConstantIslands
1419 // pass.)
1420 if (STI->isTargetWindows() && isThumb && MI->getOpcode() == ARM::t2MOVTi16 &&
1421 (MI->getOperand(2).getTargetFlags() & ARMII::MO_OPTION_MASK) ==
1422 ARMII::MO_HI16) {
1423 --MI;
1424 assert(MI->getOpcode() == ARM::t2MOVi16 &&
1425 (MI->getOperand(1).getTargetFlags() & ARMII::MO_OPTION_MASK) ==
1426 ARMII::MO_LO16);
1429 // We really must not split an IT block.
1430 #ifndef NDEBUG
1431 unsigned PredReg;
1432 assert(!isThumb || getITInstrPredicate(*MI, PredReg) == ARMCC::AL);
1433 #endif
1434 NewMBB = splitBlockBeforeInstr(&*MI);
1437 /// handleConstantPoolUser - Analyze the specified user, checking to see if it
1438 /// is out-of-range. If so, pick up the constant pool value and move it some
1439 /// place in-range. Return true if we changed any addresses (thus must run
1440 /// another pass of branch lengthening), false otherwise.
1441 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex,
1442 bool CloserWater) {
1443 CPUser &U = CPUsers[CPUserIndex];
1444 MachineInstr *UserMI = U.MI;
1445 MachineInstr *CPEMI = U.CPEMI;
1446 unsigned CPI = getCombinedIndex(CPEMI);
1447 unsigned Size = CPEMI->getOperand(2).getImm();
1448 // Compute this only once, it's expensive.
1449 unsigned UserOffset = getUserOffset(U);
1451 // See if the current entry is within range, or there is a clone of it
1452 // in range.
1453 int result = findInRangeCPEntry(U, UserOffset);
1454 if (result==1) return false;
1455 else if (result==2) return true;
1457 // No existing clone of this CPE is within range.
1458 // We will be generating a new clone. Get a UID for it.
1459 unsigned ID = AFI->createPICLabelUId();
1461 // Look for water where we can place this CPE.
1462 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
1463 MachineBasicBlock *NewMBB;
1464 water_iterator IP;
1465 if (findAvailableWater(U, UserOffset, IP, CloserWater)) {
1466 LLVM_DEBUG(dbgs() << "Found water in range\n");
1467 MachineBasicBlock *WaterBB = *IP;
1469 // If the original WaterList entry was "new water" on this iteration,
1470 // propagate that to the new island. This is just keeping NewWaterList
1471 // updated to match the WaterList, which will be updated below.
1472 if (NewWaterList.erase(WaterBB))
1473 NewWaterList.insert(NewIsland);
1475 // The new CPE goes before the following block (NewMBB).
1476 NewMBB = &*++WaterBB->getIterator();
1477 } else {
1478 // No water found.
1479 LLVM_DEBUG(dbgs() << "No water found\n");
1480 createNewWater(CPUserIndex, UserOffset, NewMBB);
1482 // splitBlockBeforeInstr adds to WaterList, which is important when it is
1483 // called while handling branches so that the water will be seen on the
1484 // next iteration for constant pools, but in this context, we don't want
1485 // it. Check for this so it will be removed from the WaterList.
1486 // Also remove any entry from NewWaterList.
1487 MachineBasicBlock *WaterBB = &*--NewMBB->getIterator();
1488 IP = find(WaterList, WaterBB);
1489 if (IP != WaterList.end())
1490 NewWaterList.erase(WaterBB);
1492 // We are adding new water. Update NewWaterList.
1493 NewWaterList.insert(NewIsland);
1495 // Always align the new block because CP entries can be smaller than 4
1496 // bytes. Be careful not to decrease the existing alignment, e.g. NewMBB may
1497 // be an already aligned constant pool block.
1498 const unsigned LogAlign = isThumb ? 1 : 2;
1499 if (NewMBB->getLogAlignment() < LogAlign)
1500 NewMBB->setLogAlignment(LogAlign);
1502 // Remove the original WaterList entry; we want subsequent insertions in
1503 // this vicinity to go after the one we're about to insert. This
1504 // considerably reduces the number of times we have to move the same CPE
1505 // more than once and is also important to ensure the algorithm terminates.
1506 if (IP != WaterList.end())
1507 WaterList.erase(IP);
1509 // Okay, we know we can put an island before NewMBB now, do it!
1510 MF->insert(NewMBB->getIterator(), NewIsland);
1512 // Update internal data structures to account for the newly inserted MBB.
1513 updateForInsertedWaterBlock(NewIsland);
1515 // Now that we have an island to add the CPE to, clone the original CPE and
1516 // add it to the island.
1517 U.HighWaterMark = NewIsland;
1518 U.CPEMI = BuildMI(NewIsland, DebugLoc(), CPEMI->getDesc())
1519 .addImm(ID)
1520 .add(CPEMI->getOperand(1))
1521 .addImm(Size);
1522 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1523 ++NumCPEs;
1525 // Decrement the old entry, and remove it if refcount becomes 0.
1526 decrementCPEReferenceCount(CPI, CPEMI);
1528 // Mark the basic block as aligned as required by the const-pool entry.
1529 NewIsland->setLogAlignment(getCPELogAlign(U.CPEMI));
1531 // Increase the size of the island block to account for the new entry.
1532 BBUtils->adjustBBSize(NewIsland, Size);
1533 BBUtils->adjustBBOffsetsAfter(&*--NewIsland->getIterator());
1535 // Finally, change the CPI in the instruction operand to be ID.
1536 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1537 if (UserMI->getOperand(i).isCPI()) {
1538 UserMI->getOperand(i).setIndex(ID);
1539 break;
1542 LLVM_DEBUG(
1543 dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI
1544 << format(" offset=%#x\n",
1545 BBUtils->getBBInfo()[NewIsland->getNumber()].Offset));
1547 return true;
1550 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
1551 /// sizes and offsets of impacted basic blocks.
1552 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
1553 MachineBasicBlock *CPEBB = CPEMI->getParent();
1554 unsigned Size = CPEMI->getOperand(2).getImm();
1555 CPEMI->eraseFromParent();
1556 BBInfoVector &BBInfo = BBUtils->getBBInfo();
1557 BBUtils->adjustBBSize(CPEBB, -Size);
1558 // All succeeding offsets have the current size value added in, fix this.
1559 if (CPEBB->empty()) {
1560 BBInfo[CPEBB->getNumber()].Size = 0;
1562 // This block no longer needs to be aligned.
1563 CPEBB->setLogAlignment(0);
1564 } else
1565 // Entries are sorted by descending alignment, so realign from the front.
1566 CPEBB->setLogAlignment(getCPELogAlign(&*CPEBB->begin()));
1568 BBUtils->adjustBBOffsetsAfter(CPEBB);
1569 // An island has only one predecessor BB and one successor BB. Check if
1570 // this BB's predecessor jumps directly to this BB's successor. This
1571 // shouldn't happen currently.
1572 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1573 // FIXME: remove the empty blocks after all the work is done?
1576 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts
1577 /// are zero.
1578 bool ARMConstantIslands::removeUnusedCPEntries() {
1579 unsigned MadeChange = false;
1580 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1581 std::vector<CPEntry> &CPEs = CPEntries[i];
1582 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1583 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1584 removeDeadCPEMI(CPEs[j].CPEMI);
1585 CPEs[j].CPEMI = nullptr;
1586 MadeChange = true;
1590 return MadeChange;
1594 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far
1595 /// away to fit in its displacement field.
1596 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) {
1597 MachineInstr *MI = Br.MI;
1598 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1600 // Check to see if the DestBB is already in-range.
1601 if (BBUtils->isBBInRange(MI, DestBB, Br.MaxDisp))
1602 return false;
1604 if (!Br.isCond)
1605 return fixupUnconditionalBr(Br);
1606 return fixupConditionalBr(Br);
1609 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
1610 /// too far away to fit in its displacement field. If the LR register has been
1611 /// spilled in the epilogue, then we can use BL to implement a far jump.
1612 /// Otherwise, add an intermediate branch instruction to a branch.
1613 bool
1614 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
1615 MachineInstr *MI = Br.MI;
1616 MachineBasicBlock *MBB = MI->getParent();
1617 if (!isThumb1)
1618 llvm_unreachable("fixupUnconditionalBr is Thumb1 only!");
1620 if (!AFI->isLRSpilled())
1621 report_fatal_error("underestimated function size");
1623 // Use BL to implement far jump.
1624 Br.MaxDisp = (1 << 21) * 2;
1625 MI->setDesc(TII->get(ARM::tBfar));
1626 BBInfoVector &BBInfo = BBUtils->getBBInfo();
1627 BBInfo[MBB->getNumber()].Size += 2;
1628 BBUtils->adjustBBOffsetsAfter(MBB);
1629 HasFarJump = true;
1630 ++NumUBrFixed;
1632 LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI);
1634 return true;
1637 /// fixupConditionalBr - Fix up a conditional branch whose destination is too
1638 /// far away to fit in its displacement field. It is converted to an inverse
1639 /// conditional branch + an unconditional branch to the destination.
1640 bool
1641 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) {
1642 MachineInstr *MI = Br.MI;
1643 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1645 // Add an unconditional branch to the destination and invert the branch
1646 // condition to jump over it:
1647 // blt L1
1648 // =>
1649 // bge L2
1650 // b L1
1651 // L2:
1652 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm();
1653 CC = ARMCC::getOppositeCondition(CC);
1654 Register CCReg = MI->getOperand(2).getReg();
1656 // If the branch is at the end of its MBB and that has a fall-through block,
1657 // direct the updated conditional branch to the fall-through block. Otherwise,
1658 // split the MBB before the next instruction.
1659 MachineBasicBlock *MBB = MI->getParent();
1660 MachineInstr *BMI = &MBB->back();
1661 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1663 ++NumCBrFixed;
1664 if (BMI != MI) {
1665 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
1666 BMI->getOpcode() == Br.UncondBr) {
1667 // Last MI in the BB is an unconditional branch. Can we simply invert the
1668 // condition and swap destinations:
1669 // beq L1
1670 // b L2
1671 // =>
1672 // bne L2
1673 // b L1
1674 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
1675 if (BBUtils->isBBInRange(MI, NewDest, Br.MaxDisp)) {
1676 LLVM_DEBUG(
1677 dbgs() << " Invert Bcc condition and swap its destination with "
1678 << *BMI);
1679 BMI->getOperand(0).setMBB(DestBB);
1680 MI->getOperand(0).setMBB(NewDest);
1681 MI->getOperand(1).setImm(CC);
1682 return true;
1687 if (NeedSplit) {
1688 splitBlockBeforeInstr(MI);
1689 // No need for the branch to the next block. We're adding an unconditional
1690 // branch to the destination.
1691 int delta = TII->getInstSizeInBytes(MBB->back());
1692 BBUtils->adjustBBSize(MBB, -delta);
1693 MBB->back().eraseFromParent();
1695 // The conditional successor will be swapped between the BBs after this, so
1696 // update CFG.
1697 MBB->addSuccessor(DestBB);
1698 std::next(MBB->getIterator())->removeSuccessor(DestBB);
1700 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1702 MachineBasicBlock *NextBB = &*++MBB->getIterator();
1704 LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB)
1705 << " also invert condition and change dest. to "
1706 << printMBBReference(*NextBB) << "\n");
1708 // Insert a new conditional branch and a new unconditional branch.
1709 // Also update the ImmBranch as well as adding a new entry for the new branch.
1710 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode()))
1711 .addMBB(NextBB).addImm(CC).addReg(CCReg);
1712 Br.MI = &MBB->back();
1713 BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back()));
1714 if (isThumb)
1715 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr))
1716 .addMBB(DestBB)
1717 .add(predOps(ARMCC::AL));
1718 else
1719 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1720 BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back()));
1721 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1722 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1724 // Remove the old conditional branch. It may or may not still be in MBB.
1725 BBUtils->adjustBBSize(MI->getParent(), -TII->getInstSizeInBytes(*MI));
1726 MI->eraseFromParent();
1727 BBUtils->adjustBBOffsetsAfter(MBB);
1728 return true;
1731 /// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills
1732 /// LR / restores LR to pc. FIXME: This is done here because it's only possible
1733 /// to do this if tBfar is not used.
1734 bool ARMConstantIslands::undoLRSpillRestore() {
1735 bool MadeChange = false;
1736 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) {
1737 MachineInstr *MI = PushPopMIs[i];
1738 // First two operands are predicates.
1739 if (MI->getOpcode() == ARM::tPOP_RET &&
1740 MI->getOperand(2).getReg() == ARM::PC &&
1741 MI->getNumExplicitOperands() == 3) {
1742 // Create the new insn and copy the predicate from the old.
1743 BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET))
1744 .add(MI->getOperand(0))
1745 .add(MI->getOperand(1));
1746 MI->eraseFromParent();
1747 MadeChange = true;
1748 } else if (MI->getOpcode() == ARM::tPUSH &&
1749 MI->getOperand(2).getReg() == ARM::LR &&
1750 MI->getNumExplicitOperands() == 3) {
1751 // Just remove the push.
1752 MI->eraseFromParent();
1753 MadeChange = true;
1756 return MadeChange;
1759 bool ARMConstantIslands::optimizeThumb2Instructions() {
1760 bool MadeChange = false;
1762 // Shrink ADR and LDR from constantpool.
1763 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
1764 CPUser &U = CPUsers[i];
1765 unsigned Opcode = U.MI->getOpcode();
1766 unsigned NewOpc = 0;
1767 unsigned Scale = 1;
1768 unsigned Bits = 0;
1769 switch (Opcode) {
1770 default: break;
1771 case ARM::t2LEApcrel:
1772 if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1773 NewOpc = ARM::tLEApcrel;
1774 Bits = 8;
1775 Scale = 4;
1777 break;
1778 case ARM::t2LDRpci:
1779 if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1780 NewOpc = ARM::tLDRpci;
1781 Bits = 8;
1782 Scale = 4;
1784 break;
1787 if (!NewOpc)
1788 continue;
1790 unsigned UserOffset = getUserOffset(U);
1791 unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
1793 // Be conservative with inline asm.
1794 if (!U.KnownAlignment)
1795 MaxOffs -= 2;
1797 // FIXME: Check if offset is multiple of scale if scale is not 4.
1798 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) {
1799 LLVM_DEBUG(dbgs() << "Shrink: " << *U.MI);
1800 U.MI->setDesc(TII->get(NewOpc));
1801 MachineBasicBlock *MBB = U.MI->getParent();
1802 BBUtils->adjustBBSize(MBB, -2);
1803 BBUtils->adjustBBOffsetsAfter(MBB);
1804 ++NumT2CPShrunk;
1805 MadeChange = true;
1809 return MadeChange;
1812 bool ARMConstantIslands::optimizeThumb2Branches() {
1813 bool MadeChange = false;
1815 // The order in which branches appear in ImmBranches is approximately their
1816 // order within the function body. By visiting later branches first, we reduce
1817 // the distance between earlier forward branches and their targets, making it
1818 // more likely that the cbn?z optimization, which can only apply to forward
1819 // branches, will succeed.
1820 for (unsigned i = ImmBranches.size(); i != 0; --i) {
1821 ImmBranch &Br = ImmBranches[i-1];
1822 unsigned Opcode = Br.MI->getOpcode();
1823 unsigned NewOpc = 0;
1824 unsigned Scale = 1;
1825 unsigned Bits = 0;
1826 switch (Opcode) {
1827 default: break;
1828 case ARM::t2B:
1829 NewOpc = ARM::tB;
1830 Bits = 11;
1831 Scale = 2;
1832 break;
1833 case ARM::t2Bcc:
1834 NewOpc = ARM::tBcc;
1835 Bits = 8;
1836 Scale = 2;
1837 break;
1839 if (NewOpc) {
1840 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
1841 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1842 if (BBUtils->isBBInRange(Br.MI, DestBB, MaxOffs)) {
1843 LLVM_DEBUG(dbgs() << "Shrink branch: " << *Br.MI);
1844 Br.MI->setDesc(TII->get(NewOpc));
1845 MachineBasicBlock *MBB = Br.MI->getParent();
1846 BBUtils->adjustBBSize(MBB, -2);
1847 BBUtils->adjustBBOffsetsAfter(MBB);
1848 ++NumT2BrShrunk;
1849 MadeChange = true;
1853 Opcode = Br.MI->getOpcode();
1854 if (Opcode != ARM::tBcc)
1855 continue;
1857 // If the conditional branch doesn't kill CPSR, then CPSR can be liveout
1858 // so this transformation is not safe.
1859 if (!Br.MI->killsRegister(ARM::CPSR))
1860 continue;
1862 NewOpc = 0;
1863 unsigned PredReg = 0;
1864 ARMCC::CondCodes Pred = getInstrPredicate(*Br.MI, PredReg);
1865 if (Pred == ARMCC::EQ)
1866 NewOpc = ARM::tCBZ;
1867 else if (Pred == ARMCC::NE)
1868 NewOpc = ARM::tCBNZ;
1869 if (!NewOpc)
1870 continue;
1871 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1872 // Check if the distance is within 126. Subtract starting offset by 2
1873 // because the cmp will be eliminated.
1874 unsigned BrOffset = BBUtils->getOffsetOf(Br.MI) + 4 - 2;
1875 BBInfoVector &BBInfo = BBUtils->getBBInfo();
1876 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1877 if (BrOffset >= DestOffset || (DestOffset - BrOffset) > 126)
1878 continue;
1880 // Search backwards to find a tCMPi8
1881 auto *TRI = STI->getRegisterInfo();
1882 MachineInstr *CmpMI = findCMPToFoldIntoCBZ(Br.MI, TRI);
1883 if (!CmpMI || CmpMI->getOpcode() != ARM::tCMPi8)
1884 continue;
1886 Register Reg = CmpMI->getOperand(0).getReg();
1888 // Check for Kill flags on Reg. If they are present remove them and set kill
1889 // on the new CBZ.
1890 MachineBasicBlock::iterator KillMI = Br.MI;
1891 bool RegKilled = false;
1892 do {
1893 --KillMI;
1894 if (KillMI->killsRegister(Reg, TRI)) {
1895 KillMI->clearRegisterKills(Reg, TRI);
1896 RegKilled = true;
1897 break;
1899 } while (KillMI != CmpMI);
1901 // Create the new CBZ/CBNZ
1902 MachineBasicBlock *MBB = Br.MI->getParent();
1903 LLVM_DEBUG(dbgs() << "Fold: " << *CmpMI << " and: " << *Br.MI);
1904 MachineInstr *NewBR =
1905 BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(), TII->get(NewOpc))
1906 .addReg(Reg, getKillRegState(RegKilled))
1907 .addMBB(DestBB, Br.MI->getOperand(0).getTargetFlags());
1908 CmpMI->eraseFromParent();
1909 Br.MI->eraseFromParent();
1910 Br.MI = NewBR;
1911 BBInfo[MBB->getNumber()].Size -= 2;
1912 BBUtils->adjustBBOffsetsAfter(MBB);
1913 ++NumCBZ;
1914 MadeChange = true;
1917 return MadeChange;
1920 static bool isSimpleIndexCalc(MachineInstr &I, unsigned EntryReg,
1921 unsigned BaseReg) {
1922 if (I.getOpcode() != ARM::t2ADDrs)
1923 return false;
1925 if (I.getOperand(0).getReg() != EntryReg)
1926 return false;
1928 if (I.getOperand(1).getReg() != BaseReg)
1929 return false;
1931 // FIXME: what about CC and IdxReg?
1932 return true;
1935 /// While trying to form a TBB/TBH instruction, we may (if the table
1936 /// doesn't immediately follow the BR_JT) need access to the start of the
1937 /// jump-table. We know one instruction that produces such a register; this
1938 /// function works out whether that definition can be preserved to the BR_JT,
1939 /// possibly by removing an intervening addition (which is usually needed to
1940 /// calculate the actual entry to jump to).
1941 bool ARMConstantIslands::preserveBaseRegister(MachineInstr *JumpMI,
1942 MachineInstr *LEAMI,
1943 unsigned &DeadSize,
1944 bool &CanDeleteLEA,
1945 bool &BaseRegKill) {
1946 if (JumpMI->getParent() != LEAMI->getParent())
1947 return false;
1949 // Now we hope that we have at least these instructions in the basic block:
1950 // BaseReg = t2LEA ...
1951 // [...]
1952 // EntryReg = t2ADDrs BaseReg, ...
1953 // [...]
1954 // t2BR_JT EntryReg
1956 // We have to be very conservative about what we recognise here though. The
1957 // main perturbing factors to watch out for are:
1958 // + Spills at any point in the chain: not direct problems but we would
1959 // expect a blocking Def of the spilled register so in practice what we
1960 // can do is limited.
1961 // + EntryReg == BaseReg: this is the one situation we should allow a Def
1962 // of BaseReg, but only if the t2ADDrs can be removed.
1963 // + Some instruction other than t2ADDrs computing the entry. Not seen in
1964 // the wild, but we should be careful.
1965 Register EntryReg = JumpMI->getOperand(0).getReg();
1966 Register BaseReg = LEAMI->getOperand(0).getReg();
1968 CanDeleteLEA = true;
1969 BaseRegKill = false;
1970 MachineInstr *RemovableAdd = nullptr;
1971 MachineBasicBlock::iterator I(LEAMI);
1972 for (++I; &*I != JumpMI; ++I) {
1973 if (isSimpleIndexCalc(*I, EntryReg, BaseReg)) {
1974 RemovableAdd = &*I;
1975 break;
1978 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) {
1979 const MachineOperand &MO = I->getOperand(K);
1980 if (!MO.isReg() || !MO.getReg())
1981 continue;
1982 if (MO.isDef() && MO.getReg() == BaseReg)
1983 return false;
1984 if (MO.isUse() && MO.getReg() == BaseReg) {
1985 BaseRegKill = BaseRegKill || MO.isKill();
1986 CanDeleteLEA = false;
1991 if (!RemovableAdd)
1992 return true;
1994 // Check the add really is removable, and that nothing else in the block
1995 // clobbers BaseReg.
1996 for (++I; &*I != JumpMI; ++I) {
1997 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) {
1998 const MachineOperand &MO = I->getOperand(K);
1999 if (!MO.isReg() || !MO.getReg())
2000 continue;
2001 if (MO.isDef() && MO.getReg() == BaseReg)
2002 return false;
2003 if (MO.isUse() && MO.getReg() == EntryReg)
2004 RemovableAdd = nullptr;
2008 if (RemovableAdd) {
2009 RemovableAdd->eraseFromParent();
2010 DeadSize += isThumb2 ? 4 : 2;
2011 } else if (BaseReg == EntryReg) {
2012 // The add wasn't removable, but clobbered the base for the TBB. So we can't
2013 // preserve it.
2014 return false;
2017 // We reached the end of the block without seeing another definition of
2018 // BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be
2019 // used in the TBB/TBH if necessary.
2020 return true;
2023 /// Returns whether CPEMI is the first instruction in the block
2024 /// immediately following JTMI (assumed to be a TBB or TBH terminator). If so,
2025 /// we can switch the first register to PC and usually remove the address
2026 /// calculation that preceded it.
2027 static bool jumpTableFollowsTB(MachineInstr *JTMI, MachineInstr *CPEMI) {
2028 MachineFunction::iterator MBB = JTMI->getParent()->getIterator();
2029 MachineFunction *MF = MBB->getParent();
2030 ++MBB;
2032 return MBB != MF->end() && MBB->begin() != MBB->end() &&
2033 &*MBB->begin() == CPEMI;
2036 static void RemoveDeadAddBetweenLEAAndJT(MachineInstr *LEAMI,
2037 MachineInstr *JumpMI,
2038 unsigned &DeadSize) {
2039 // Remove a dead add between the LEA and JT, which used to compute EntryReg,
2040 // but the JT now uses PC. Finds the last ADD (if any) that def's EntryReg
2041 // and is not clobbered / used.
2042 MachineInstr *RemovableAdd = nullptr;
2043 Register EntryReg = JumpMI->getOperand(0).getReg();
2045 // Find the last ADD to set EntryReg
2046 MachineBasicBlock::iterator I(LEAMI);
2047 for (++I; &*I != JumpMI; ++I) {
2048 if (I->getOpcode() == ARM::t2ADDrs && I->getOperand(0).getReg() == EntryReg)
2049 RemovableAdd = &*I;
2052 if (!RemovableAdd)
2053 return;
2055 // Ensure EntryReg is not clobbered or used.
2056 MachineBasicBlock::iterator J(RemovableAdd);
2057 for (++J; &*J != JumpMI; ++J) {
2058 for (unsigned K = 0, E = J->getNumOperands(); K != E; ++K) {
2059 const MachineOperand &MO = J->getOperand(K);
2060 if (!MO.isReg() || !MO.getReg())
2061 continue;
2062 if (MO.isDef() && MO.getReg() == EntryReg)
2063 return;
2064 if (MO.isUse() && MO.getReg() == EntryReg)
2065 return;
2069 LLVM_DEBUG(dbgs() << "Removing Dead Add: " << *RemovableAdd);
2070 RemovableAdd->eraseFromParent();
2071 DeadSize += 4;
2074 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
2075 /// jumptables when it's possible.
2076 bool ARMConstantIslands::optimizeThumb2JumpTables() {
2077 bool MadeChange = false;
2079 // FIXME: After the tables are shrunk, can we get rid some of the
2080 // constantpool tables?
2081 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2082 if (!MJTI) return false;
2084 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2085 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
2086 MachineInstr *MI = T2JumpTables[i];
2087 const MCInstrDesc &MCID = MI->getDesc();
2088 unsigned NumOps = MCID.getNumOperands();
2089 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1);
2090 MachineOperand JTOP = MI->getOperand(JTOpIdx);
2091 unsigned JTI = JTOP.getIndex();
2092 assert(JTI < JT.size());
2094 bool ByteOk = true;
2095 bool HalfWordOk = true;
2096 unsigned JTOffset = BBUtils->getOffsetOf(MI) + 4;
2097 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2098 BBInfoVector &BBInfo = BBUtils->getBBInfo();
2099 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
2100 MachineBasicBlock *MBB = JTBBs[j];
2101 unsigned DstOffset = BBInfo[MBB->getNumber()].Offset;
2102 // Negative offset is not ok. FIXME: We should change BB layout to make
2103 // sure all the branches are forward.
2104 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2)
2105 ByteOk = false;
2106 unsigned TBHLimit = ((1<<16)-1)*2;
2107 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit)
2108 HalfWordOk = false;
2109 if (!ByteOk && !HalfWordOk)
2110 break;
2113 if (!ByteOk && !HalfWordOk)
2114 continue;
2116 CPUser &User = CPUsers[JumpTableUserIndices[JTI]];
2117 MachineBasicBlock *MBB = MI->getParent();
2118 if (!MI->getOperand(0).isKill()) // FIXME: needed now?
2119 continue;
2121 unsigned DeadSize = 0;
2122 bool CanDeleteLEA = false;
2123 bool BaseRegKill = false;
2125 unsigned IdxReg = ~0U;
2126 bool IdxRegKill = true;
2127 if (isThumb2) {
2128 IdxReg = MI->getOperand(1).getReg();
2129 IdxRegKill = MI->getOperand(1).isKill();
2131 bool PreservedBaseReg =
2132 preserveBaseRegister(MI, User.MI, DeadSize, CanDeleteLEA, BaseRegKill);
2133 if (!jumpTableFollowsTB(MI, User.CPEMI) && !PreservedBaseReg)
2134 continue;
2135 } else {
2136 // We're in thumb-1 mode, so we must have something like:
2137 // %idx = tLSLri %idx, 2
2138 // %base = tLEApcrelJT
2139 // %t = tLDRr %base, %idx
2140 Register BaseReg = User.MI->getOperand(0).getReg();
2142 if (User.MI->getIterator() == User.MI->getParent()->begin())
2143 continue;
2144 MachineInstr *Shift = User.MI->getPrevNode();
2145 if (Shift->getOpcode() != ARM::tLSLri ||
2146 Shift->getOperand(3).getImm() != 2 ||
2147 !Shift->getOperand(2).isKill())
2148 continue;
2149 IdxReg = Shift->getOperand(2).getReg();
2150 Register ShiftedIdxReg = Shift->getOperand(0).getReg();
2152 // It's important that IdxReg is live until the actual TBB/TBH. Most of
2153 // the range is checked later, but the LEA might still clobber it and not
2154 // actually get removed.
2155 if (BaseReg == IdxReg && !jumpTableFollowsTB(MI, User.CPEMI))
2156 continue;
2158 MachineInstr *Load = User.MI->getNextNode();
2159 if (Load->getOpcode() != ARM::tLDRr)
2160 continue;
2161 if (Load->getOperand(1).getReg() != BaseReg ||
2162 Load->getOperand(2).getReg() != ShiftedIdxReg ||
2163 !Load->getOperand(2).isKill())
2164 continue;
2166 // If we're in PIC mode, there should be another ADD following.
2167 auto *TRI = STI->getRegisterInfo();
2169 // %base cannot be redefined after the load as it will appear before
2170 // TBB/TBH like:
2171 // %base =
2172 // %base =
2173 // tBB %base, %idx
2174 if (registerDefinedBetween(BaseReg, Load->getNextNode(), MBB->end(), TRI))
2175 continue;
2177 if (isPositionIndependentOrROPI) {
2178 MachineInstr *Add = Load->getNextNode();
2179 if (Add->getOpcode() != ARM::tADDrr ||
2180 Add->getOperand(2).getReg() != BaseReg ||
2181 Add->getOperand(3).getReg() != Load->getOperand(0).getReg() ||
2182 !Add->getOperand(3).isKill())
2183 continue;
2184 if (Add->getOperand(0).getReg() != MI->getOperand(0).getReg())
2185 continue;
2186 if (registerDefinedBetween(IdxReg, Add->getNextNode(), MI, TRI))
2187 // IdxReg gets redefined in the middle of the sequence.
2188 continue;
2189 Add->eraseFromParent();
2190 DeadSize += 2;
2191 } else {
2192 if (Load->getOperand(0).getReg() != MI->getOperand(0).getReg())
2193 continue;
2194 if (registerDefinedBetween(IdxReg, Load->getNextNode(), MI, TRI))
2195 // IdxReg gets redefined in the middle of the sequence.
2196 continue;
2199 // Now safe to delete the load and lsl. The LEA will be removed later.
2200 CanDeleteLEA = true;
2201 Shift->eraseFromParent();
2202 Load->eraseFromParent();
2203 DeadSize += 4;
2206 LLVM_DEBUG(dbgs() << "Shrink JT: " << *MI);
2207 MachineInstr *CPEMI = User.CPEMI;
2208 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT;
2209 if (!isThumb2)
2210 Opc = ByteOk ? ARM::tTBB_JT : ARM::tTBH_JT;
2212 MachineBasicBlock::iterator MI_JT = MI;
2213 MachineInstr *NewJTMI =
2214 BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc))
2215 .addReg(User.MI->getOperand(0).getReg(),
2216 getKillRegState(BaseRegKill))
2217 .addReg(IdxReg, getKillRegState(IdxRegKill))
2218 .addJumpTableIndex(JTI, JTOP.getTargetFlags())
2219 .addImm(CPEMI->getOperand(0).getImm());
2220 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << ": " << *NewJTMI);
2222 unsigned JTOpc = ByteOk ? ARM::JUMPTABLE_TBB : ARM::JUMPTABLE_TBH;
2223 CPEMI->setDesc(TII->get(JTOpc));
2225 if (jumpTableFollowsTB(MI, User.CPEMI)) {
2226 NewJTMI->getOperand(0).setReg(ARM::PC);
2227 NewJTMI->getOperand(0).setIsKill(false);
2229 if (CanDeleteLEA) {
2230 if (isThumb2)
2231 RemoveDeadAddBetweenLEAAndJT(User.MI, MI, DeadSize);
2233 User.MI->eraseFromParent();
2234 DeadSize += isThumb2 ? 4 : 2;
2236 // The LEA was eliminated, the TBB instruction becomes the only new user
2237 // of the jump table.
2238 User.MI = NewJTMI;
2239 User.MaxDisp = 4;
2240 User.NegOk = false;
2241 User.IsSoImm = false;
2242 User.KnownAlignment = false;
2243 } else {
2244 // The LEA couldn't be eliminated, so we must add another CPUser to
2245 // record the TBB or TBH use.
2246 int CPEntryIdx = JumpTableEntryIndices[JTI];
2247 auto &CPEs = CPEntries[CPEntryIdx];
2248 auto Entry =
2249 find_if(CPEs, [&](CPEntry &E) { return E.CPEMI == User.CPEMI; });
2250 ++Entry->RefCount;
2251 CPUsers.emplace_back(CPUser(NewJTMI, User.CPEMI, 4, false, false));
2255 unsigned NewSize = TII->getInstSizeInBytes(*NewJTMI);
2256 unsigned OrigSize = TII->getInstSizeInBytes(*MI);
2257 MI->eraseFromParent();
2259 int Delta = OrigSize - NewSize + DeadSize;
2260 BBInfo[MBB->getNumber()].Size -= Delta;
2261 BBUtils->adjustBBOffsetsAfter(MBB);
2263 ++NumTBs;
2264 MadeChange = true;
2267 return MadeChange;
2270 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that
2271 /// jump tables always branch forwards, since that's what tbb and tbh need.
2272 bool ARMConstantIslands::reorderThumb2JumpTables() {
2273 bool MadeChange = false;
2275 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2276 if (!MJTI) return false;
2278 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2279 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
2280 MachineInstr *MI = T2JumpTables[i];
2281 const MCInstrDesc &MCID = MI->getDesc();
2282 unsigned NumOps = MCID.getNumOperands();
2283 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1);
2284 MachineOperand JTOP = MI->getOperand(JTOpIdx);
2285 unsigned JTI = JTOP.getIndex();
2286 assert(JTI < JT.size());
2288 // We prefer if target blocks for the jump table come after the jump
2289 // instruction so we can use TB[BH]. Loop through the target blocks
2290 // and try to adjust them such that that's true.
2291 int JTNumber = MI->getParent()->getNumber();
2292 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2293 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
2294 MachineBasicBlock *MBB = JTBBs[j];
2295 int DTNumber = MBB->getNumber();
2297 if (DTNumber < JTNumber) {
2298 // The destination precedes the switch. Try to move the block forward
2299 // so we have a positive offset.
2300 MachineBasicBlock *NewBB =
2301 adjustJTTargetBlockForward(MBB, MI->getParent());
2302 if (NewBB)
2303 MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB);
2304 MadeChange = true;
2309 return MadeChange;
2312 MachineBasicBlock *ARMConstantIslands::
2313 adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) {
2314 // If the destination block is terminated by an unconditional branch,
2315 // try to move it; otherwise, create a new block following the jump
2316 // table that branches back to the actual target. This is a very simple
2317 // heuristic. FIXME: We can definitely improve it.
2318 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
2319 SmallVector<MachineOperand, 4> Cond;
2320 SmallVector<MachineOperand, 4> CondPrior;
2321 MachineFunction::iterator BBi = BB->getIterator();
2322 MachineFunction::iterator OldPrior = std::prev(BBi);
2324 // If the block terminator isn't analyzable, don't try to move the block
2325 bool B = TII->analyzeBranch(*BB, TBB, FBB, Cond);
2327 // If the block ends in an unconditional branch, move it. The prior block
2328 // has to have an analyzable terminator for us to move this one. Be paranoid
2329 // and make sure we're not trying to move the entry block of the function.
2330 if (!B && Cond.empty() && BB != &MF->front() &&
2331 !TII->analyzeBranch(*OldPrior, TBB, FBB, CondPrior)) {
2332 BB->moveAfter(JTBB);
2333 OldPrior->updateTerminator();
2334 BB->updateTerminator();
2335 // Update numbering to account for the block being moved.
2336 MF->RenumberBlocks();
2337 ++NumJTMoved;
2338 return nullptr;
2341 // Create a new MBB for the code after the jump BB.
2342 MachineBasicBlock *NewBB =
2343 MF->CreateMachineBasicBlock(JTBB->getBasicBlock());
2344 MachineFunction::iterator MBBI = ++JTBB->getIterator();
2345 MF->insert(MBBI, NewBB);
2347 // Copy live-in information to new block.
2348 for (const MachineBasicBlock::RegisterMaskPair &RegMaskPair : BB->liveins())
2349 NewBB->addLiveIn(RegMaskPair);
2351 // Add an unconditional branch from NewBB to BB.
2352 // There doesn't seem to be meaningful DebugInfo available; this doesn't
2353 // correspond directly to anything in the source.
2354 if (isThumb2)
2355 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B))
2356 .addMBB(BB)
2357 .add(predOps(ARMCC::AL));
2358 else
2359 BuildMI(NewBB, DebugLoc(), TII->get(ARM::tB))
2360 .addMBB(BB)
2361 .add(predOps(ARMCC::AL));
2363 // Update internal data structures to account for the newly inserted MBB.
2364 MF->RenumberBlocks(NewBB);
2366 // Update the CFG.
2367 NewBB->addSuccessor(BB);
2368 JTBB->replaceSuccessor(BB, NewBB);
2370 ++NumJTInserted;
2371 return NewBB;
2374 /// createARMConstantIslandPass - returns an instance of the constpool
2375 /// island pass.
2376 FunctionPass *llvm::createARMConstantIslandPass() {
2377 return new ARMConstantIslands();
2380 INITIALIZE_PASS(ARMConstantIslands, "arm-cp-islands", ARM_CP_ISLANDS_OPT_NAME,
2381 false, false)