Inliner pass header file was moved.
[llvm-complete.git] / lib / Analysis / ScalarEvolutionExpander.cpp
blob3e590d68f55eadebe090935570f560dd9b5649ba
1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution expander,
11 // which is used to generate the code corresponding to a given scalar evolution
12 // expression.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Analysis/ScalarEvolutionExpander.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 using namespace llvm;
20 /// InsertCastOfTo - Insert a cast of V to the specified type, doing what
21 /// we can to share the casts.
22 Value *SCEVExpander::InsertCastOfTo(Instruction::CastOps opcode, Value *V,
23 const Type *Ty) {
24 // FIXME: keep track of the cast instruction.
25 if (Constant *C = dyn_cast<Constant>(V))
26 return ConstantExpr::getCast(opcode, C, Ty);
28 if (Argument *A = dyn_cast<Argument>(V)) {
29 // Check to see if there is already a cast!
30 for (Value::use_iterator UI = A->use_begin(), E = A->use_end();
31 UI != E; ++UI) {
32 if ((*UI)->getType() == Ty)
33 if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI))) {
34 // If the cast isn't the first instruction of the function, move it.
35 if (BasicBlock::iterator(CI) !=
36 A->getParent()->getEntryBlock().begin()) {
37 CI->moveBefore(A->getParent()->getEntryBlock().begin());
39 return CI;
42 return CastInst::create(opcode, V, Ty, V->getName(),
43 A->getParent()->getEntryBlock().begin());
46 Instruction *I = cast<Instruction>(V);
48 // Check to see if there is already a cast. If there is, use it.
49 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
50 UI != E; ++UI) {
51 if ((*UI)->getType() == Ty)
52 if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI))) {
53 BasicBlock::iterator It = I; ++It;
54 if (isa<InvokeInst>(I))
55 It = cast<InvokeInst>(I)->getNormalDest()->begin();
56 while (isa<PHINode>(It)) ++It;
57 if (It != BasicBlock::iterator(CI)) {
58 // Splice the cast immediately after the operand in question.
59 CI->moveBefore(It);
61 return CI;
64 BasicBlock::iterator IP = I; ++IP;
65 if (InvokeInst *II = dyn_cast<InvokeInst>(I))
66 IP = II->getNormalDest()->begin();
67 while (isa<PHINode>(IP)) ++IP;
68 return CastInst::create(opcode, V, Ty, V->getName(), IP);
71 /// InsertBinop - Insert the specified binary operator, doing a small amount
72 /// of work to avoid inserting an obviously redundant operation.
73 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, Value *LHS,
74 Value *RHS, Instruction *&InsertPt) {
75 // Fold a binop with constant operands.
76 if (Constant *CLHS = dyn_cast<Constant>(LHS))
77 if (Constant *CRHS = dyn_cast<Constant>(RHS))
78 return ConstantExpr::get(Opcode, CLHS, CRHS);
80 // Do a quick scan to see if we have this binop nearby. If so, reuse it.
81 unsigned ScanLimit = 6;
82 for (BasicBlock::iterator IP = InsertPt, E = InsertPt->getParent()->begin();
83 ScanLimit; --IP, --ScanLimit) {
84 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(IP))
85 if (BinOp->getOpcode() == Opcode && BinOp->getOperand(0) == LHS &&
86 BinOp->getOperand(1) == RHS) {
87 // If we found the instruction *at* the insert point, insert later
88 // instructions after it.
89 if (BinOp == InsertPt)
90 InsertPt = ++IP;
91 return BinOp;
93 if (IP == E) break;
96 // If we don't have
97 return BinaryOperator::create(Opcode, LHS, RHS, "tmp.", InsertPt);
100 Value *SCEVExpander::visitMulExpr(SCEVMulExpr *S) {
101 int FirstOp = 0; // Set if we should emit a subtract.
102 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(0)))
103 if (SC->getValue()->isAllOnesValue())
104 FirstOp = 1;
106 int i = S->getNumOperands()-2;
107 Value *V = expand(S->getOperand(i+1));
109 // Emit a bunch of multiply instructions
110 for (; i >= FirstOp; --i)
111 V = InsertBinop(Instruction::Mul, V, expand(S->getOperand(i)),
112 InsertPt);
113 // -1 * ... ---> 0 - ...
114 if (FirstOp == 1)
115 V = InsertBinop(Instruction::Sub, Constant::getNullValue(V->getType()), V,
116 InsertPt);
117 return V;
120 Value *SCEVExpander::visitAddRecExpr(SCEVAddRecExpr *S) {
121 const Type *Ty = S->getType();
122 const Loop *L = S->getLoop();
123 // We cannot yet do fp recurrences, e.g. the xform of {X,+,F} --> X+{0,+,F}
124 assert(Ty->isInteger() && "Cannot expand fp recurrences yet!");
126 // {X,+,F} --> X + {0,+,F}
127 if (!isa<SCEVConstant>(S->getStart()) ||
128 !cast<SCEVConstant>(S->getStart())->getValue()->isZero()) {
129 Value *Start = expand(S->getStart());
130 std::vector<SCEVHandle> NewOps(S->op_begin(), S->op_end());
131 NewOps[0] = SCEVUnknown::getIntegerSCEV(0, Ty);
132 Value *Rest = expand(SCEVAddRecExpr::get(NewOps, L));
134 // FIXME: look for an existing add to use.
135 return InsertBinop(Instruction::Add, Rest, Start, InsertPt);
138 // {0,+,1} --> Insert a canonical induction variable into the loop!
139 if (S->getNumOperands() == 2 &&
140 S->getOperand(1) == SCEVUnknown::getIntegerSCEV(1, Ty)) {
141 // Create and insert the PHI node for the induction variable in the
142 // specified loop.
143 BasicBlock *Header = L->getHeader();
144 PHINode *PN = new PHINode(Ty, "indvar", Header->begin());
145 PN->addIncoming(Constant::getNullValue(Ty), L->getLoopPreheader());
147 pred_iterator HPI = pred_begin(Header);
148 assert(HPI != pred_end(Header) && "Loop with zero preds???");
149 if (!L->contains(*HPI)) ++HPI;
150 assert(HPI != pred_end(Header) && L->contains(*HPI) &&
151 "No backedge in loop?");
153 // Insert a unit add instruction right before the terminator corresponding
154 // to the back-edge.
155 Constant *One = ConstantInt::get(Ty, 1);
156 Instruction *Add = BinaryOperator::createAdd(PN, One, "indvar.next",
157 (*HPI)->getTerminator());
159 pred_iterator PI = pred_begin(Header);
160 if (*PI == L->getLoopPreheader())
161 ++PI;
162 PN->addIncoming(Add, *PI);
163 return PN;
166 // Get the canonical induction variable I for this loop.
167 Value *I = getOrInsertCanonicalInductionVariable(L, Ty);
169 // If this is a simple linear addrec, emit it now as a special case.
170 if (S->getNumOperands() == 2) { // {0,+,F} --> i*F
171 Value *F = expand(S->getOperand(1));
173 // IF the step is by one, just return the inserted IV.
174 if (ConstantInt *CI = dyn_cast<ConstantInt>(F))
175 if (CI->getValue() == 1)
176 return I;
178 // If the insert point is directly inside of the loop, emit the multiply at
179 // the insert point. Otherwise, L is a loop that is a parent of the insert
180 // point loop. If we can, move the multiply to the outer most loop that it
181 // is safe to be in.
182 Instruction *MulInsertPt = InsertPt;
183 Loop *InsertPtLoop = LI.getLoopFor(MulInsertPt->getParent());
184 if (InsertPtLoop != L && InsertPtLoop &&
185 L->contains(InsertPtLoop->getHeader())) {
186 while (InsertPtLoop != L) {
187 // If we cannot hoist the multiply out of this loop, don't.
188 if (!InsertPtLoop->isLoopInvariant(F)) break;
190 // Otherwise, move the insert point to the preheader of the loop.
191 MulInsertPt = InsertPtLoop->getLoopPreheader()->getTerminator();
192 InsertPtLoop = InsertPtLoop->getParentLoop();
196 return InsertBinop(Instruction::Mul, I, F, MulInsertPt);
199 // If this is a chain of recurrences, turn it into a closed form, using the
200 // folders, then expandCodeFor the closed form. This allows the folders to
201 // simplify the expression without having to build a bunch of special code
202 // into this folder.
203 SCEVHandle IH = SCEVUnknown::get(I); // Get I as a "symbolic" SCEV.
205 SCEVHandle V = S->evaluateAtIteration(IH);
206 //cerr << "Evaluated: " << *this << "\n to: " << *V << "\n";
208 return expand(V);