1 //===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by Nate Begeman and is distributed under the
6 // University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
11 // both before and after the DAG is legalized.
13 // FIXME: Missing folds
14 // sdiv, udiv, srem, urem (X, const) where X is an integer can be expanded into
15 // a sequence of multiplies, shifts, and adds. This should be controlled by
16 // some kind of hint from the target that int div is expensive.
17 // various folds of mulh[s,u] by constants such as -1, powers of 2, etc.
19 // FIXME: select C, pow2, pow2 -> something smart
20 // FIXME: trunc(select X, Y, Z) -> select X, trunc(Y), trunc(Z)
21 // FIXME: Dead stores -> nuke
22 // FIXME: shr X, (and Y,31) -> shr X, Y (TRICKY!)
23 // FIXME: mul (x, const) -> shifts + adds
24 // FIXME: undef values
25 // FIXME: divide by zero is currently left unfolded. do we want to turn this
27 // FIXME: select ne (select cc, 1, 0), 0, true, false -> select cc, true, false
29 //===----------------------------------------------------------------------===//
31 #define DEBUG_TYPE "dagcombine"
32 #include "llvm/CodeGen/SelectionDAG.h"
33 #include "llvm/Analysis/AliasAnalysis.h"
34 #include "llvm/Target/TargetData.h"
35 #include "llvm/Target/TargetLowering.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include "llvm/Target/TargetOptions.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/Statistic.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/MathExtras.h"
47 STATISTIC(NodesCombined
, "Number of dag nodes combined");
48 STATISTIC(PreIndexedNodes
, "Number of pre-indexed nodes created");
49 STATISTIC(PostIndexedNodes
, "Number of post-indexed nodes created");
54 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden
,
55 cl::desc("Pop up a window to show dags before the first "
58 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden
,
59 cl::desc("Pop up a window to show dags before the second "
62 static const bool ViewDAGCombine1
= false;
63 static const bool ViewDAGCombine2
= false;
67 CombinerAA("combiner-alias-analysis", cl::Hidden
,
68 cl::desc("Turn on alias analysis during testing"));
71 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden
,
72 cl::desc("Include global information in alias analysis"));
74 //------------------------------ DAGCombiner ---------------------------------//
76 class VISIBILITY_HIDDEN DAGCombiner
{
81 // Worklist of all of the nodes that need to be simplified.
82 std::vector
<SDNode
*> WorkList
;
84 // AA - Used for DAG load/store alias analysis.
87 /// AddUsersToWorkList - When an instruction is simplified, add all users of
88 /// the instruction to the work lists because they might get more simplified
91 void AddUsersToWorkList(SDNode
*N
) {
92 for (SDNode::use_iterator UI
= N
->use_begin(), UE
= N
->use_end();
97 /// removeFromWorkList - remove all instances of N from the worklist.
99 void removeFromWorkList(SDNode
*N
) {
100 WorkList
.erase(std::remove(WorkList
.begin(), WorkList
.end(), N
),
105 /// AddToWorkList - Add to the work list making sure it's instance is at the
106 /// the back (next to be processed.)
107 void AddToWorkList(SDNode
*N
) {
108 removeFromWorkList(N
);
109 WorkList
.push_back(N
);
112 SDOperand
CombineTo(SDNode
*N
, const SDOperand
*To
, unsigned NumTo
,
114 assert(N
->getNumValues() == NumTo
&& "Broken CombineTo call!");
116 DOUT
<< "\nReplacing.1 "; DEBUG(N
->dump(&DAG
));
117 DOUT
<< "\nWith: "; DEBUG(To
[0].Val
->dump(&DAG
));
118 DOUT
<< " and " << NumTo
-1 << " other values\n";
119 std::vector
<SDNode
*> NowDead
;
120 DAG
.ReplaceAllUsesWith(N
, To
, &NowDead
);
123 // Push the new nodes and any users onto the worklist
124 for (unsigned i
= 0, e
= NumTo
; i
!= e
; ++i
) {
125 AddToWorkList(To
[i
].Val
);
126 AddUsersToWorkList(To
[i
].Val
);
130 // Nodes can be reintroduced into the worklist. Make sure we do not
131 // process a node that has been replaced.
132 removeFromWorkList(N
);
133 for (unsigned i
= 0, e
= NowDead
.size(); i
!= e
; ++i
)
134 removeFromWorkList(NowDead
[i
]);
136 // Finally, since the node is now dead, remove it from the graph.
138 return SDOperand(N
, 0);
141 SDOperand
CombineTo(SDNode
*N
, SDOperand Res
, bool AddTo
= true) {
142 return CombineTo(N
, &Res
, 1, AddTo
);
145 SDOperand
CombineTo(SDNode
*N
, SDOperand Res0
, SDOperand Res1
,
147 SDOperand To
[] = { Res0
, Res1
};
148 return CombineTo(N
, To
, 2, AddTo
);
152 /// SimplifyDemandedBits - Check the specified integer node value to see if
153 /// it can be simplified or if things it uses can be simplified by bit
154 /// propagation. If so, return true.
155 bool SimplifyDemandedBits(SDOperand Op
) {
156 TargetLowering::TargetLoweringOpt
TLO(DAG
);
157 uint64_t KnownZero
, KnownOne
;
158 uint64_t Demanded
= MVT::getIntVTBitMask(Op
.getValueType());
159 if (!TLI
.SimplifyDemandedBits(Op
, Demanded
, KnownZero
, KnownOne
, TLO
))
163 AddToWorkList(Op
.Val
);
165 // Replace the old value with the new one.
167 DOUT
<< "\nReplacing.2 "; DEBUG(TLO
.Old
.Val
->dump(&DAG
));
168 DOUT
<< "\nWith: "; DEBUG(TLO
.New
.Val
->dump(&DAG
));
171 std::vector
<SDNode
*> NowDead
;
172 DAG
.ReplaceAllUsesOfValueWith(TLO
.Old
, TLO
.New
, NowDead
);
174 // Push the new node and any (possibly new) users onto the worklist.
175 AddToWorkList(TLO
.New
.Val
);
176 AddUsersToWorkList(TLO
.New
.Val
);
178 // Nodes can end up on the worklist more than once. Make sure we do
179 // not process a node that has been replaced.
180 for (unsigned i
= 0, e
= NowDead
.size(); i
!= e
; ++i
)
181 removeFromWorkList(NowDead
[i
]);
183 // Finally, if the node is now dead, remove it from the graph. The node
184 // may not be dead if the replacement process recursively simplified to
185 // something else needing this node.
186 if (TLO
.Old
.Val
->use_empty()) {
187 removeFromWorkList(TLO
.Old
.Val
);
189 // If the operands of this node are only used by the node, they will now
190 // be dead. Make sure to visit them first to delete dead nodes early.
191 for (unsigned i
= 0, e
= TLO
.Old
.Val
->getNumOperands(); i
!= e
; ++i
)
192 if (TLO
.Old
.Val
->getOperand(i
).Val
->hasOneUse())
193 AddToWorkList(TLO
.Old
.Val
->getOperand(i
).Val
);
195 DAG
.DeleteNode(TLO
.Old
.Val
);
200 bool CombineToPreIndexedLoadStore(SDNode
*N
);
201 bool CombineToPostIndexedLoadStore(SDNode
*N
);
204 /// visit - call the node-specific routine that knows how to fold each
205 /// particular type of node.
206 SDOperand
visit(SDNode
*N
);
208 // Visitation implementation - Implement dag node combining for different
209 // node types. The semantics are as follows:
211 // SDOperand.Val == 0 - No change was made
212 // SDOperand.Val == N - N was replaced, is dead, and is already handled.
213 // otherwise - N should be replaced by the returned Operand.
215 SDOperand
visitTokenFactor(SDNode
*N
);
216 SDOperand
visitADD(SDNode
*N
);
217 SDOperand
visitSUB(SDNode
*N
);
218 SDOperand
visitADDC(SDNode
*N
);
219 SDOperand
visitADDE(SDNode
*N
);
220 SDOperand
visitMUL(SDNode
*N
);
221 SDOperand
visitSDIV(SDNode
*N
);
222 SDOperand
visitUDIV(SDNode
*N
);
223 SDOperand
visitSREM(SDNode
*N
);
224 SDOperand
visitUREM(SDNode
*N
);
225 SDOperand
visitMULHU(SDNode
*N
);
226 SDOperand
visitMULHS(SDNode
*N
);
227 SDOperand
visitAND(SDNode
*N
);
228 SDOperand
visitOR(SDNode
*N
);
229 SDOperand
visitXOR(SDNode
*N
);
230 SDOperand
visitVBinOp(SDNode
*N
, ISD::NodeType IntOp
, ISD::NodeType FPOp
);
231 SDOperand
visitSHL(SDNode
*N
);
232 SDOperand
visitSRA(SDNode
*N
);
233 SDOperand
visitSRL(SDNode
*N
);
234 SDOperand
visitCTLZ(SDNode
*N
);
235 SDOperand
visitCTTZ(SDNode
*N
);
236 SDOperand
visitCTPOP(SDNode
*N
);
237 SDOperand
visitSELECT(SDNode
*N
);
238 SDOperand
visitSELECT_CC(SDNode
*N
);
239 SDOperand
visitSETCC(SDNode
*N
);
240 SDOperand
visitSIGN_EXTEND(SDNode
*N
);
241 SDOperand
visitZERO_EXTEND(SDNode
*N
);
242 SDOperand
visitANY_EXTEND(SDNode
*N
);
243 SDOperand
visitSIGN_EXTEND_INREG(SDNode
*N
);
244 SDOperand
visitTRUNCATE(SDNode
*N
);
245 SDOperand
visitBIT_CONVERT(SDNode
*N
);
246 SDOperand
visitVBIT_CONVERT(SDNode
*N
);
247 SDOperand
visitFADD(SDNode
*N
);
248 SDOperand
visitFSUB(SDNode
*N
);
249 SDOperand
visitFMUL(SDNode
*N
);
250 SDOperand
visitFDIV(SDNode
*N
);
251 SDOperand
visitFREM(SDNode
*N
);
252 SDOperand
visitFCOPYSIGN(SDNode
*N
);
253 SDOperand
visitSINT_TO_FP(SDNode
*N
);
254 SDOperand
visitUINT_TO_FP(SDNode
*N
);
255 SDOperand
visitFP_TO_SINT(SDNode
*N
);
256 SDOperand
visitFP_TO_UINT(SDNode
*N
);
257 SDOperand
visitFP_ROUND(SDNode
*N
);
258 SDOperand
visitFP_ROUND_INREG(SDNode
*N
);
259 SDOperand
visitFP_EXTEND(SDNode
*N
);
260 SDOperand
visitFNEG(SDNode
*N
);
261 SDOperand
visitFABS(SDNode
*N
);
262 SDOperand
visitBRCOND(SDNode
*N
);
263 SDOperand
visitBR_CC(SDNode
*N
);
264 SDOperand
visitLOAD(SDNode
*N
);
265 SDOperand
visitSTORE(SDNode
*N
);
266 SDOperand
visitINSERT_VECTOR_ELT(SDNode
*N
);
267 SDOperand
visitVINSERT_VECTOR_ELT(SDNode
*N
);
268 SDOperand
visitVBUILD_VECTOR(SDNode
*N
);
269 SDOperand
visitVECTOR_SHUFFLE(SDNode
*N
);
270 SDOperand
visitVVECTOR_SHUFFLE(SDNode
*N
);
272 SDOperand
XformToShuffleWithZero(SDNode
*N
);
273 SDOperand
ReassociateOps(unsigned Opc
, SDOperand LHS
, SDOperand RHS
);
275 bool SimplifySelectOps(SDNode
*SELECT
, SDOperand LHS
, SDOperand RHS
);
276 SDOperand
SimplifyBinOpWithSameOpcodeHands(SDNode
*N
);
277 SDOperand
SimplifySelect(SDOperand N0
, SDOperand N1
, SDOperand N2
);
278 SDOperand
SimplifySelectCC(SDOperand N0
, SDOperand N1
, SDOperand N2
,
279 SDOperand N3
, ISD::CondCode CC
,
280 bool NotExtCompare
= false);
281 SDOperand
SimplifySetCC(MVT::ValueType VT
, SDOperand N0
, SDOperand N1
,
282 ISD::CondCode Cond
, bool foldBooleans
= true);
283 SDOperand
ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(SDNode
*, MVT::ValueType
);
284 SDOperand
BuildSDIV(SDNode
*N
);
285 SDOperand
BuildUDIV(SDNode
*N
);
286 SDNode
*MatchRotate(SDOperand LHS
, SDOperand RHS
);
287 SDOperand
ReduceLoadWidth(SDNode
*N
);
289 /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
290 /// looking for aliasing nodes and adding them to the Aliases vector.
291 void GatherAllAliases(SDNode
*N
, SDOperand OriginalChain
,
292 SmallVector
<SDOperand
, 8> &Aliases
);
294 /// isAlias - Return true if there is any possibility that the two addresses
296 bool isAlias(SDOperand Ptr1
, int64_t Size1
,
297 const Value
*SrcValue1
, int SrcValueOffset1
,
298 SDOperand Ptr2
, int64_t Size2
,
299 const Value
*SrcValue2
, int SrcValueOffset2
);
301 /// FindAliasInfo - Extracts the relevant alias information from the memory
302 /// node. Returns true if the operand was a load.
303 bool FindAliasInfo(SDNode
*N
,
304 SDOperand
&Ptr
, int64_t &Size
,
305 const Value
*&SrcValue
, int &SrcValueOffset
);
307 /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
308 /// looking for a better chain (aliasing node.)
309 SDOperand
FindBetterChain(SDNode
*N
, SDOperand Chain
);
312 DAGCombiner(SelectionDAG
&D
, AliasAnalysis
&A
)
314 TLI(D
.getTargetLoweringInfo()),
315 AfterLegalize(false),
318 /// Run - runs the dag combiner on all nodes in the work list
319 void Run(bool RunningAfterLegalize
);
323 //===----------------------------------------------------------------------===//
324 // TargetLowering::DAGCombinerInfo implementation
325 //===----------------------------------------------------------------------===//
327 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode
*N
) {
328 ((DAGCombiner
*)DC
)->AddToWorkList(N
);
331 SDOperand
TargetLowering::DAGCombinerInfo::
332 CombineTo(SDNode
*N
, const std::vector
<SDOperand
> &To
) {
333 return ((DAGCombiner
*)DC
)->CombineTo(N
, &To
[0], To
.size());
336 SDOperand
TargetLowering::DAGCombinerInfo::
337 CombineTo(SDNode
*N
, SDOperand Res
) {
338 return ((DAGCombiner
*)DC
)->CombineTo(N
, Res
);
342 SDOperand
TargetLowering::DAGCombinerInfo::
343 CombineTo(SDNode
*N
, SDOperand Res0
, SDOperand Res1
) {
344 return ((DAGCombiner
*)DC
)->CombineTo(N
, Res0
, Res1
);
348 //===----------------------------------------------------------------------===//
350 //===----------------------------------------------------------------------===//
352 /// isNegatibleForFree - Return 1 if we can compute the negated form of the
353 /// specified expression for the same cost as the expression itself, or 2 if we
354 /// can compute the negated form more cheaply than the expression itself.
355 static char isNegatibleForFree(SDOperand Op
, unsigned Depth
= 0) {
356 // fneg is removable even if it has multiple uses.
357 if (Op
.getOpcode() == ISD::FNEG
) return 2;
359 // Don't allow anything with multiple uses.
360 if (!Op
.hasOneUse()) return 0;
362 // Don't recurse exponentially.
363 if (Depth
> 6) return 0;
365 switch (Op
.getOpcode()) {
366 default: return false;
367 case ISD::ConstantFP
:
370 // FIXME: determine better conditions for this xform.
371 if (!UnsafeFPMath
) return 0;
374 if (char V
= isNegatibleForFree(Op
.getOperand(0), Depth
+1))
377 return isNegatibleForFree(Op
.getOperand(1), Depth
+1);
379 // We can't turn -(A-B) into B-A when we honor signed zeros.
380 if (!UnsafeFPMath
) return 0;
387 if (HonorSignDependentRoundingFPMath()) return 0;
389 // -(X*Y) -> (-X * Y) or (X*-Y)
390 if (char V
= isNegatibleForFree(Op
.getOperand(0), Depth
+1))
393 return isNegatibleForFree(Op
.getOperand(1), Depth
+1);
398 return isNegatibleForFree(Op
.getOperand(0), Depth
+1);
402 /// GetNegatedExpression - If isNegatibleForFree returns true, this function
403 /// returns the newly negated expression.
404 static SDOperand
GetNegatedExpression(SDOperand Op
, SelectionDAG
&DAG
,
405 unsigned Depth
= 0) {
406 // fneg is removable even if it has multiple uses.
407 if (Op
.getOpcode() == ISD::FNEG
) return Op
.getOperand(0);
409 // Don't allow anything with multiple uses.
410 assert(Op
.hasOneUse() && "Unknown reuse!");
412 assert(Depth
<= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
413 switch (Op
.getOpcode()) {
414 default: assert(0 && "Unknown code");
415 case ISD::ConstantFP
:
416 return DAG
.getConstantFP(-cast
<ConstantFPSDNode
>(Op
)->getValue(),
419 // FIXME: determine better conditions for this xform.
420 assert(UnsafeFPMath
);
423 if (isNegatibleForFree(Op
.getOperand(0), Depth
+1))
424 return DAG
.getNode(ISD::FSUB
, Op
.getValueType(),
425 GetNegatedExpression(Op
.getOperand(0), DAG
, Depth
+1),
428 return DAG
.getNode(ISD::FSUB
, Op
.getValueType(),
429 GetNegatedExpression(Op
.getOperand(1), DAG
, Depth
+1),
432 // We can't turn -(A-B) into B-A when we honor signed zeros.
433 assert(UnsafeFPMath
);
436 return DAG
.getNode(ISD::FSUB
, Op
.getValueType(), Op
.getOperand(1),
441 assert(!HonorSignDependentRoundingFPMath());
444 if (isNegatibleForFree(Op
.getOperand(0), Depth
+1))
445 return DAG
.getNode(Op
.getOpcode(), Op
.getValueType(),
446 GetNegatedExpression(Op
.getOperand(0), DAG
, Depth
+1),
450 return DAG
.getNode(Op
.getOpcode(), Op
.getValueType(),
452 GetNegatedExpression(Op
.getOperand(1), DAG
, Depth
+1));
457 return DAG
.getNode(Op
.getOpcode(), Op
.getValueType(),
458 GetNegatedExpression(Op
.getOperand(0), DAG
, Depth
+1));
463 // isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
464 // that selects between the values 1 and 0, making it equivalent to a setcc.
465 // Also, set the incoming LHS, RHS, and CC references to the appropriate
466 // nodes based on the type of node we are checking. This simplifies life a
467 // bit for the callers.
468 static bool isSetCCEquivalent(SDOperand N
, SDOperand
&LHS
, SDOperand
&RHS
,
470 if (N
.getOpcode() == ISD::SETCC
) {
471 LHS
= N
.getOperand(0);
472 RHS
= N
.getOperand(1);
473 CC
= N
.getOperand(2);
476 if (N
.getOpcode() == ISD::SELECT_CC
&&
477 N
.getOperand(2).getOpcode() == ISD::Constant
&&
478 N
.getOperand(3).getOpcode() == ISD::Constant
&&
479 cast
<ConstantSDNode
>(N
.getOperand(2))->getValue() == 1 &&
480 cast
<ConstantSDNode
>(N
.getOperand(3))->isNullValue()) {
481 LHS
= N
.getOperand(0);
482 RHS
= N
.getOperand(1);
483 CC
= N
.getOperand(4);
489 // isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
490 // one use. If this is true, it allows the users to invert the operation for
491 // free when it is profitable to do so.
492 static bool isOneUseSetCC(SDOperand N
) {
493 SDOperand N0
, N1
, N2
;
494 if (isSetCCEquivalent(N
, N0
, N1
, N2
) && N
.Val
->hasOneUse())
499 SDOperand
DAGCombiner::ReassociateOps(unsigned Opc
, SDOperand N0
, SDOperand N1
){
500 MVT::ValueType VT
= N0
.getValueType();
501 // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
502 // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
503 if (N0
.getOpcode() == Opc
&& isa
<ConstantSDNode
>(N0
.getOperand(1))) {
504 if (isa
<ConstantSDNode
>(N1
)) {
505 SDOperand OpNode
= DAG
.getNode(Opc
, VT
, N0
.getOperand(1), N1
);
506 AddToWorkList(OpNode
.Val
);
507 return DAG
.getNode(Opc
, VT
, OpNode
, N0
.getOperand(0));
508 } else if (N0
.hasOneUse()) {
509 SDOperand OpNode
= DAG
.getNode(Opc
, VT
, N0
.getOperand(0), N1
);
510 AddToWorkList(OpNode
.Val
);
511 return DAG
.getNode(Opc
, VT
, OpNode
, N0
.getOperand(1));
514 // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
515 // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
516 if (N1
.getOpcode() == Opc
&& isa
<ConstantSDNode
>(N1
.getOperand(1))) {
517 if (isa
<ConstantSDNode
>(N0
)) {
518 SDOperand OpNode
= DAG
.getNode(Opc
, VT
, N1
.getOperand(1), N0
);
519 AddToWorkList(OpNode
.Val
);
520 return DAG
.getNode(Opc
, VT
, OpNode
, N1
.getOperand(0));
521 } else if (N1
.hasOneUse()) {
522 SDOperand OpNode
= DAG
.getNode(Opc
, VT
, N1
.getOperand(0), N0
);
523 AddToWorkList(OpNode
.Val
);
524 return DAG
.getNode(Opc
, VT
, OpNode
, N1
.getOperand(1));
530 //===----------------------------------------------------------------------===//
531 // Main DAG Combiner implementation
532 //===----------------------------------------------------------------------===//
534 void DAGCombiner::Run(bool RunningAfterLegalize
) {
535 // set the instance variable, so that the various visit routines may use it.
536 AfterLegalize
= RunningAfterLegalize
;
538 // Add all the dag nodes to the worklist.
539 for (SelectionDAG::allnodes_iterator I
= DAG
.allnodes_begin(),
540 E
= DAG
.allnodes_end(); I
!= E
; ++I
)
541 WorkList
.push_back(I
);
543 // Create a dummy node (which is not added to allnodes), that adds a reference
544 // to the root node, preventing it from being deleted, and tracking any
545 // changes of the root.
546 HandleSDNode
Dummy(DAG
.getRoot());
548 // The root of the dag may dangle to deleted nodes until the dag combiner is
549 // done. Set it to null to avoid confusion.
550 DAG
.setRoot(SDOperand());
552 /// DagCombineInfo - Expose the DAG combiner to the target combiner impls.
553 TargetLowering::DAGCombinerInfo
554 DagCombineInfo(DAG
, !RunningAfterLegalize
, false, this);
556 // while the worklist isn't empty, inspect the node on the end of it and
557 // try and combine it.
558 while (!WorkList
.empty()) {
559 SDNode
*N
= WorkList
.back();
562 // If N has no uses, it is dead. Make sure to revisit all N's operands once
563 // N is deleted from the DAG, since they too may now be dead or may have a
564 // reduced number of uses, allowing other xforms.
565 if (N
->use_empty() && N
!= &Dummy
) {
566 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
567 AddToWorkList(N
->getOperand(i
).Val
);
573 SDOperand RV
= visit(N
);
575 // If nothing happened, try a target-specific DAG combine.
577 assert(N
->getOpcode() != ISD::DELETED_NODE
&&
578 "Node was deleted but visit returned NULL!");
579 if (N
->getOpcode() >= ISD::BUILTIN_OP_END
||
580 TLI
.hasTargetDAGCombine((ISD::NodeType
)N
->getOpcode()))
581 RV
= TLI
.PerformDAGCombine(N
, DagCombineInfo
);
586 // If we get back the same node we passed in, rather than a new node or
587 // zero, we know that the node must have defined multiple values and
588 // CombineTo was used. Since CombineTo takes care of the worklist
589 // mechanics for us, we have no work to do in this case.
591 assert(N
->getOpcode() != ISD::DELETED_NODE
&&
592 RV
.Val
->getOpcode() != ISD::DELETED_NODE
&&
593 "Node was deleted but visit returned new node!");
595 DOUT
<< "\nReplacing.3 "; DEBUG(N
->dump(&DAG
));
596 DOUT
<< "\nWith: "; DEBUG(RV
.Val
->dump(&DAG
));
598 std::vector
<SDNode
*> NowDead
;
599 if (N
->getNumValues() == RV
.Val
->getNumValues())
600 DAG
.ReplaceAllUsesWith(N
, RV
.Val
, &NowDead
);
602 assert(N
->getValueType(0) == RV
.getValueType() && "Type mismatch");
604 DAG
.ReplaceAllUsesWith(N
, &OpV
, &NowDead
);
607 // Push the new node and any users onto the worklist
608 AddToWorkList(RV
.Val
);
609 AddUsersToWorkList(RV
.Val
);
611 // Nodes can be reintroduced into the worklist. Make sure we do not
612 // process a node that has been replaced.
613 removeFromWorkList(N
);
614 for (unsigned i
= 0, e
= NowDead
.size(); i
!= e
; ++i
)
615 removeFromWorkList(NowDead
[i
]);
617 // Finally, since the node is now dead, remove it from the graph.
623 // If the root changed (e.g. it was a dead load, update the root).
624 DAG
.setRoot(Dummy
.getValue());
627 SDOperand
DAGCombiner::visit(SDNode
*N
) {
628 switch(N
->getOpcode()) {
630 case ISD::TokenFactor
: return visitTokenFactor(N
);
631 case ISD::ADD
: return visitADD(N
);
632 case ISD::SUB
: return visitSUB(N
);
633 case ISD::ADDC
: return visitADDC(N
);
634 case ISD::ADDE
: return visitADDE(N
);
635 case ISD::MUL
: return visitMUL(N
);
636 case ISD::SDIV
: return visitSDIV(N
);
637 case ISD::UDIV
: return visitUDIV(N
);
638 case ISD::SREM
: return visitSREM(N
);
639 case ISD::UREM
: return visitUREM(N
);
640 case ISD::MULHU
: return visitMULHU(N
);
641 case ISD::MULHS
: return visitMULHS(N
);
642 case ISD::AND
: return visitAND(N
);
643 case ISD::OR
: return visitOR(N
);
644 case ISD::XOR
: return visitXOR(N
);
645 case ISD::SHL
: return visitSHL(N
);
646 case ISD::SRA
: return visitSRA(N
);
647 case ISD::SRL
: return visitSRL(N
);
648 case ISD::CTLZ
: return visitCTLZ(N
);
649 case ISD::CTTZ
: return visitCTTZ(N
);
650 case ISD::CTPOP
: return visitCTPOP(N
);
651 case ISD::SELECT
: return visitSELECT(N
);
652 case ISD::SELECT_CC
: return visitSELECT_CC(N
);
653 case ISD::SETCC
: return visitSETCC(N
);
654 case ISD::SIGN_EXTEND
: return visitSIGN_EXTEND(N
);
655 case ISD::ZERO_EXTEND
: return visitZERO_EXTEND(N
);
656 case ISD::ANY_EXTEND
: return visitANY_EXTEND(N
);
657 case ISD::SIGN_EXTEND_INREG
: return visitSIGN_EXTEND_INREG(N
);
658 case ISD::TRUNCATE
: return visitTRUNCATE(N
);
659 case ISD::BIT_CONVERT
: return visitBIT_CONVERT(N
);
660 case ISD::VBIT_CONVERT
: return visitVBIT_CONVERT(N
);
661 case ISD::FADD
: return visitFADD(N
);
662 case ISD::FSUB
: return visitFSUB(N
);
663 case ISD::FMUL
: return visitFMUL(N
);
664 case ISD::FDIV
: return visitFDIV(N
);
665 case ISD::FREM
: return visitFREM(N
);
666 case ISD::FCOPYSIGN
: return visitFCOPYSIGN(N
);
667 case ISD::SINT_TO_FP
: return visitSINT_TO_FP(N
);
668 case ISD::UINT_TO_FP
: return visitUINT_TO_FP(N
);
669 case ISD::FP_TO_SINT
: return visitFP_TO_SINT(N
);
670 case ISD::FP_TO_UINT
: return visitFP_TO_UINT(N
);
671 case ISD::FP_ROUND
: return visitFP_ROUND(N
);
672 case ISD::FP_ROUND_INREG
: return visitFP_ROUND_INREG(N
);
673 case ISD::FP_EXTEND
: return visitFP_EXTEND(N
);
674 case ISD::FNEG
: return visitFNEG(N
);
675 case ISD::FABS
: return visitFABS(N
);
676 case ISD::BRCOND
: return visitBRCOND(N
);
677 case ISD::BR_CC
: return visitBR_CC(N
);
678 case ISD::LOAD
: return visitLOAD(N
);
679 case ISD::STORE
: return visitSTORE(N
);
680 case ISD::INSERT_VECTOR_ELT
: return visitINSERT_VECTOR_ELT(N
);
681 case ISD::VINSERT_VECTOR_ELT
: return visitVINSERT_VECTOR_ELT(N
);
682 case ISD::VBUILD_VECTOR
: return visitVBUILD_VECTOR(N
);
683 case ISD::VECTOR_SHUFFLE
: return visitVECTOR_SHUFFLE(N
);
684 case ISD::VVECTOR_SHUFFLE
: return visitVVECTOR_SHUFFLE(N
);
685 case ISD::VADD
: return visitVBinOp(N
, ISD::ADD
, ISD::FADD
);
686 case ISD::VSUB
: return visitVBinOp(N
, ISD::SUB
, ISD::FSUB
);
687 case ISD::VMUL
: return visitVBinOp(N
, ISD::MUL
, ISD::FMUL
);
688 case ISD::VSDIV
: return visitVBinOp(N
, ISD::SDIV
, ISD::FDIV
);
689 case ISD::VUDIV
: return visitVBinOp(N
, ISD::UDIV
, ISD::UDIV
);
690 case ISD::VAND
: return visitVBinOp(N
, ISD::AND
, ISD::AND
);
691 case ISD::VOR
: return visitVBinOp(N
, ISD::OR
, ISD::OR
);
692 case ISD::VXOR
: return visitVBinOp(N
, ISD::XOR
, ISD::XOR
);
697 /// getInputChainForNode - Given a node, return its input chain if it has one,
698 /// otherwise return a null sd operand.
699 static SDOperand
getInputChainForNode(SDNode
*N
) {
700 if (unsigned NumOps
= N
->getNumOperands()) {
701 if (N
->getOperand(0).getValueType() == MVT::Other
)
702 return N
->getOperand(0);
703 else if (N
->getOperand(NumOps
-1).getValueType() == MVT::Other
)
704 return N
->getOperand(NumOps
-1);
705 for (unsigned i
= 1; i
< NumOps
-1; ++i
)
706 if (N
->getOperand(i
).getValueType() == MVT::Other
)
707 return N
->getOperand(i
);
709 return SDOperand(0, 0);
712 SDOperand
DAGCombiner::visitTokenFactor(SDNode
*N
) {
713 // If N has two operands, where one has an input chain equal to the other,
714 // the 'other' chain is redundant.
715 if (N
->getNumOperands() == 2) {
716 if (getInputChainForNode(N
->getOperand(0).Val
) == N
->getOperand(1))
717 return N
->getOperand(0);
718 if (getInputChainForNode(N
->getOperand(1).Val
) == N
->getOperand(0))
719 return N
->getOperand(1);
722 SmallVector
<SDNode
*, 8> TFs
; // List of token factors to visit.
723 SmallVector
<SDOperand
, 8> Ops
; // Ops for replacing token factor.
724 SmallPtrSet
<SDNode
*, 16> SeenOps
;
725 bool Changed
= false; // If we should replace this token factor.
727 // Start out with this token factor.
730 // Iterate through token factors. The TFs grows when new token factors are
732 for (unsigned i
= 0; i
< TFs
.size(); ++i
) {
735 // Check each of the operands.
736 for (unsigned i
= 0, ie
= TF
->getNumOperands(); i
!= ie
; ++i
) {
737 SDOperand Op
= TF
->getOperand(i
);
739 switch (Op
.getOpcode()) {
740 case ISD::EntryToken
:
741 // Entry tokens don't need to be added to the list. They are
746 case ISD::TokenFactor
:
747 if ((CombinerAA
|| Op
.hasOneUse()) &&
748 std::find(TFs
.begin(), TFs
.end(), Op
.Val
) == TFs
.end()) {
749 // Queue up for processing.
750 TFs
.push_back(Op
.Val
);
751 // Clean up in case the token factor is removed.
752 AddToWorkList(Op
.Val
);
759 // Only add if it isn't already in the list.
760 if (SeenOps
.insert(Op
.Val
))
771 // If we've change things around then replace token factor.
773 if (Ops
.size() == 0) {
774 // The entry token is the only possible outcome.
775 Result
= DAG
.getEntryNode();
777 // New and improved token factor.
778 Result
= DAG
.getNode(ISD::TokenFactor
, MVT::Other
, &Ops
[0], Ops
.size());
781 // Don't add users to work list.
782 return CombineTo(N
, Result
, false);
789 SDOperand
combineShlAddConstant(SDOperand N0
, SDOperand N1
, SelectionDAG
&DAG
) {
790 MVT::ValueType VT
= N0
.getValueType();
791 SDOperand N00
= N0
.getOperand(0);
792 SDOperand N01
= N0
.getOperand(1);
793 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N01
);
794 if (N01C
&& N00
.getOpcode() == ISD::ADD
&& N00
.Val
->hasOneUse() &&
795 isa
<ConstantSDNode
>(N00
.getOperand(1))) {
796 N0
= DAG
.getNode(ISD::ADD
, VT
,
797 DAG
.getNode(ISD::SHL
, VT
, N00
.getOperand(0), N01
),
798 DAG
.getNode(ISD::SHL
, VT
, N00
.getOperand(1), N01
));
799 return DAG
.getNode(ISD::ADD
, VT
, N0
, N1
);
804 SDOperand
DAGCombiner::visitADD(SDNode
*N
) {
805 SDOperand N0
= N
->getOperand(0);
806 SDOperand N1
= N
->getOperand(1);
807 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
808 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
809 MVT::ValueType VT
= N0
.getValueType();
811 // fold (add c1, c2) -> c1+c2
813 return DAG
.getNode(ISD::ADD
, VT
, N0
, N1
);
814 // canonicalize constant to RHS
816 return DAG
.getNode(ISD::ADD
, VT
, N1
, N0
);
817 // fold (add x, 0) -> x
818 if (N1C
&& N1C
->isNullValue())
820 // fold ((c1-A)+c2) -> (c1+c2)-A
821 if (N1C
&& N0
.getOpcode() == ISD::SUB
)
822 if (ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(0)))
823 return DAG
.getNode(ISD::SUB
, VT
,
824 DAG
.getConstant(N1C
->getValue()+N0C
->getValue(), VT
),
827 SDOperand RADD
= ReassociateOps(ISD::ADD
, N0
, N1
);
830 // fold ((0-A) + B) -> B-A
831 if (N0
.getOpcode() == ISD::SUB
&& isa
<ConstantSDNode
>(N0
.getOperand(0)) &&
832 cast
<ConstantSDNode
>(N0
.getOperand(0))->isNullValue())
833 return DAG
.getNode(ISD::SUB
, VT
, N1
, N0
.getOperand(1));
834 // fold (A + (0-B)) -> A-B
835 if (N1
.getOpcode() == ISD::SUB
&& isa
<ConstantSDNode
>(N1
.getOperand(0)) &&
836 cast
<ConstantSDNode
>(N1
.getOperand(0))->isNullValue())
837 return DAG
.getNode(ISD::SUB
, VT
, N0
, N1
.getOperand(1));
838 // fold (A+(B-A)) -> B
839 if (N1
.getOpcode() == ISD::SUB
&& N0
== N1
.getOperand(1))
840 return N1
.getOperand(0);
842 if (!MVT::isVector(VT
) && SimplifyDemandedBits(SDOperand(N
, 0)))
843 return SDOperand(N
, 0);
845 // fold (a+b) -> (a|b) iff a and b share no bits.
846 if (MVT::isInteger(VT
) && !MVT::isVector(VT
)) {
847 uint64_t LHSZero
, LHSOne
;
848 uint64_t RHSZero
, RHSOne
;
849 uint64_t Mask
= MVT::getIntVTBitMask(VT
);
850 TLI
.ComputeMaskedBits(N0
, Mask
, LHSZero
, LHSOne
);
852 TLI
.ComputeMaskedBits(N1
, Mask
, RHSZero
, RHSOne
);
854 // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
855 // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
856 if ((RHSZero
& (~LHSZero
& Mask
)) == (~LHSZero
& Mask
) ||
857 (LHSZero
& (~RHSZero
& Mask
)) == (~RHSZero
& Mask
))
858 return DAG
.getNode(ISD::OR
, VT
, N0
, N1
);
862 // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
863 if (N0
.getOpcode() == ISD::SHL
&& N0
.Val
->hasOneUse()) {
864 SDOperand Result
= combineShlAddConstant(N0
, N1
, DAG
);
865 if (Result
.Val
) return Result
;
867 if (N1
.getOpcode() == ISD::SHL
&& N1
.Val
->hasOneUse()) {
868 SDOperand Result
= combineShlAddConstant(N1
, N0
, DAG
);
869 if (Result
.Val
) return Result
;
875 SDOperand
DAGCombiner::visitADDC(SDNode
*N
) {
876 SDOperand N0
= N
->getOperand(0);
877 SDOperand N1
= N
->getOperand(1);
878 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
879 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
880 MVT::ValueType VT
= N0
.getValueType();
882 // If the flag result is dead, turn this into an ADD.
883 if (N
->hasNUsesOfValue(0, 1))
884 return CombineTo(N
, DAG
.getNode(ISD::ADD
, VT
, N1
, N0
),
885 DAG
.getNode(ISD::CARRY_FALSE
, MVT::Flag
));
887 // canonicalize constant to RHS.
889 SDOperand Ops
[] = { N1
, N0
};
890 return DAG
.getNode(ISD::ADDC
, N
->getVTList(), Ops
, 2);
893 // fold (addc x, 0) -> x + no carry out
894 if (N1C
&& N1C
->isNullValue())
895 return CombineTo(N
, N0
, DAG
.getNode(ISD::CARRY_FALSE
, MVT::Flag
));
897 // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
898 uint64_t LHSZero
, LHSOne
;
899 uint64_t RHSZero
, RHSOne
;
900 uint64_t Mask
= MVT::getIntVTBitMask(VT
);
901 TLI
.ComputeMaskedBits(N0
, Mask
, LHSZero
, LHSOne
);
903 TLI
.ComputeMaskedBits(N1
, Mask
, RHSZero
, RHSOne
);
905 // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
906 // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
907 if ((RHSZero
& (~LHSZero
& Mask
)) == (~LHSZero
& Mask
) ||
908 (LHSZero
& (~RHSZero
& Mask
)) == (~RHSZero
& Mask
))
909 return CombineTo(N
, DAG
.getNode(ISD::OR
, VT
, N0
, N1
),
910 DAG
.getNode(ISD::CARRY_FALSE
, MVT::Flag
));
916 SDOperand
DAGCombiner::visitADDE(SDNode
*N
) {
917 SDOperand N0
= N
->getOperand(0);
918 SDOperand N1
= N
->getOperand(1);
919 SDOperand CarryIn
= N
->getOperand(2);
920 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
921 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
922 //MVT::ValueType VT = N0.getValueType();
924 // canonicalize constant to RHS
926 SDOperand Ops
[] = { N1
, N0
, CarryIn
};
927 return DAG
.getNode(ISD::ADDE
, N
->getVTList(), Ops
, 3);
930 // fold (adde x, y, false) -> (addc x, y)
931 if (CarryIn
.getOpcode() == ISD::CARRY_FALSE
) {
932 SDOperand Ops
[] = { N1
, N0
};
933 return DAG
.getNode(ISD::ADDC
, N
->getVTList(), Ops
, 2);
941 SDOperand
DAGCombiner::visitSUB(SDNode
*N
) {
942 SDOperand N0
= N
->getOperand(0);
943 SDOperand N1
= N
->getOperand(1);
944 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
.Val
);
945 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.Val
);
946 MVT::ValueType VT
= N0
.getValueType();
948 // fold (sub x, x) -> 0
950 return DAG
.getConstant(0, N
->getValueType(0));
951 // fold (sub c1, c2) -> c1-c2
953 return DAG
.getNode(ISD::SUB
, VT
, N0
, N1
);
954 // fold (sub x, c) -> (add x, -c)
956 return DAG
.getNode(ISD::ADD
, VT
, N0
, DAG
.getConstant(-N1C
->getValue(), VT
));
958 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(0) == N1
)
959 return N0
.getOperand(1);
961 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(1) == N1
)
962 return N0
.getOperand(0);
966 SDOperand
DAGCombiner::visitMUL(SDNode
*N
) {
967 SDOperand N0
= N
->getOperand(0);
968 SDOperand N1
= N
->getOperand(1);
969 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
970 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
971 MVT::ValueType VT
= N0
.getValueType();
973 // fold (mul c1, c2) -> c1*c2
975 return DAG
.getNode(ISD::MUL
, VT
, N0
, N1
);
976 // canonicalize constant to RHS
978 return DAG
.getNode(ISD::MUL
, VT
, N1
, N0
);
979 // fold (mul x, 0) -> 0
980 if (N1C
&& N1C
->isNullValue())
982 // fold (mul x, -1) -> 0-x
983 if (N1C
&& N1C
->isAllOnesValue())
984 return DAG
.getNode(ISD::SUB
, VT
, DAG
.getConstant(0, VT
), N0
);
985 // fold (mul x, (1 << c)) -> x << c
986 if (N1C
&& isPowerOf2_64(N1C
->getValue()))
987 return DAG
.getNode(ISD::SHL
, VT
, N0
,
988 DAG
.getConstant(Log2_64(N1C
->getValue()),
989 TLI
.getShiftAmountTy()));
990 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
991 if (N1C
&& isPowerOf2_64(-N1C
->getSignExtended())) {
992 // FIXME: If the input is something that is easily negated (e.g. a
993 // single-use add), we should put the negate there.
994 return DAG
.getNode(ISD::SUB
, VT
, DAG
.getConstant(0, VT
),
995 DAG
.getNode(ISD::SHL
, VT
, N0
,
996 DAG
.getConstant(Log2_64(-N1C
->getSignExtended()),
997 TLI
.getShiftAmountTy())));
1000 // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1001 if (N1C
&& N0
.getOpcode() == ISD::SHL
&&
1002 isa
<ConstantSDNode
>(N0
.getOperand(1))) {
1003 SDOperand C3
= DAG
.getNode(ISD::SHL
, VT
, N1
, N0
.getOperand(1));
1004 AddToWorkList(C3
.Val
);
1005 return DAG
.getNode(ISD::MUL
, VT
, N0
.getOperand(0), C3
);
1008 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1011 SDOperand
Sh(0,0), Y(0,0);
1012 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
1013 if (N0
.getOpcode() == ISD::SHL
&& isa
<ConstantSDNode
>(N0
.getOperand(1)) &&
1014 N0
.Val
->hasOneUse()) {
1016 } else if (N1
.getOpcode() == ISD::SHL
&&
1017 isa
<ConstantSDNode
>(N1
.getOperand(1)) && N1
.Val
->hasOneUse()) {
1021 SDOperand Mul
= DAG
.getNode(ISD::MUL
, VT
, Sh
.getOperand(0), Y
);
1022 return DAG
.getNode(ISD::SHL
, VT
, Mul
, Sh
.getOperand(1));
1025 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1026 if (N1C
&& N0
.getOpcode() == ISD::ADD
&& N0
.Val
->hasOneUse() &&
1027 isa
<ConstantSDNode
>(N0
.getOperand(1))) {
1028 return DAG
.getNode(ISD::ADD
, VT
,
1029 DAG
.getNode(ISD::MUL
, VT
, N0
.getOperand(0), N1
),
1030 DAG
.getNode(ISD::MUL
, VT
, N0
.getOperand(1), N1
));
1034 SDOperand RMUL
= ReassociateOps(ISD::MUL
, N0
, N1
);
1040 SDOperand
DAGCombiner::visitSDIV(SDNode
*N
) {
1041 SDOperand N0
= N
->getOperand(0);
1042 SDOperand N1
= N
->getOperand(1);
1043 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
.Val
);
1044 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.Val
);
1045 MVT::ValueType VT
= N
->getValueType(0);
1047 // fold (sdiv c1, c2) -> c1/c2
1048 if (N0C
&& N1C
&& !N1C
->isNullValue())
1049 return DAG
.getNode(ISD::SDIV
, VT
, N0
, N1
);
1050 // fold (sdiv X, 1) -> X
1051 if (N1C
&& N1C
->getSignExtended() == 1LL)
1053 // fold (sdiv X, -1) -> 0-X
1054 if (N1C
&& N1C
->isAllOnesValue())
1055 return DAG
.getNode(ISD::SUB
, VT
, DAG
.getConstant(0, VT
), N0
);
1056 // If we know the sign bits of both operands are zero, strength reduce to a
1057 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
1058 uint64_t SignBit
= 1ULL << (MVT::getSizeInBits(VT
)-1);
1059 if (TLI
.MaskedValueIsZero(N1
, SignBit
) &&
1060 TLI
.MaskedValueIsZero(N0
, SignBit
))
1061 return DAG
.getNode(ISD::UDIV
, N1
.getValueType(), N0
, N1
);
1062 // fold (sdiv X, pow2) -> simple ops after legalize
1063 if (N1C
&& N1C
->getValue() && !TLI
.isIntDivCheap() &&
1064 (isPowerOf2_64(N1C
->getSignExtended()) ||
1065 isPowerOf2_64(-N1C
->getSignExtended()))) {
1066 // If dividing by powers of two is cheap, then don't perform the following
1068 if (TLI
.isPow2DivCheap())
1070 int64_t pow2
= N1C
->getSignExtended();
1071 int64_t abs2
= pow2
> 0 ? pow2
: -pow2
;
1072 unsigned lg2
= Log2_64(abs2
);
1073 // Splat the sign bit into the register
1074 SDOperand SGN
= DAG
.getNode(ISD::SRA
, VT
, N0
,
1075 DAG
.getConstant(MVT::getSizeInBits(VT
)-1,
1076 TLI
.getShiftAmountTy()));
1077 AddToWorkList(SGN
.Val
);
1078 // Add (N0 < 0) ? abs2 - 1 : 0;
1079 SDOperand SRL
= DAG
.getNode(ISD::SRL
, VT
, SGN
,
1080 DAG
.getConstant(MVT::getSizeInBits(VT
)-lg2
,
1081 TLI
.getShiftAmountTy()));
1082 SDOperand ADD
= DAG
.getNode(ISD::ADD
, VT
, N0
, SRL
);
1083 AddToWorkList(SRL
.Val
);
1084 AddToWorkList(ADD
.Val
); // Divide by pow2
1085 SDOperand SRA
= DAG
.getNode(ISD::SRA
, VT
, ADD
,
1086 DAG
.getConstant(lg2
, TLI
.getShiftAmountTy()));
1087 // If we're dividing by a positive value, we're done. Otherwise, we must
1088 // negate the result.
1091 AddToWorkList(SRA
.Val
);
1092 return DAG
.getNode(ISD::SUB
, VT
, DAG
.getConstant(0, VT
), SRA
);
1094 // if integer divide is expensive and we satisfy the requirements, emit an
1095 // alternate sequence.
1096 if (N1C
&& (N1C
->getSignExtended() < -1 || N1C
->getSignExtended() > 1) &&
1097 !TLI
.isIntDivCheap()) {
1098 SDOperand Op
= BuildSDIV(N
);
1099 if (Op
.Val
) return Op
;
1104 SDOperand
DAGCombiner::visitUDIV(SDNode
*N
) {
1105 SDOperand N0
= N
->getOperand(0);
1106 SDOperand N1
= N
->getOperand(1);
1107 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
.Val
);
1108 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.Val
);
1109 MVT::ValueType VT
= N
->getValueType(0);
1111 // fold (udiv c1, c2) -> c1/c2
1112 if (N0C
&& N1C
&& !N1C
->isNullValue())
1113 return DAG
.getNode(ISD::UDIV
, VT
, N0
, N1
);
1114 // fold (udiv x, (1 << c)) -> x >>u c
1115 if (N1C
&& isPowerOf2_64(N1C
->getValue()))
1116 return DAG
.getNode(ISD::SRL
, VT
, N0
,
1117 DAG
.getConstant(Log2_64(N1C
->getValue()),
1118 TLI
.getShiftAmountTy()));
1119 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1120 if (N1
.getOpcode() == ISD::SHL
) {
1121 if (ConstantSDNode
*SHC
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(0))) {
1122 if (isPowerOf2_64(SHC
->getValue())) {
1123 MVT::ValueType ADDVT
= N1
.getOperand(1).getValueType();
1124 SDOperand Add
= DAG
.getNode(ISD::ADD
, ADDVT
, N1
.getOperand(1),
1125 DAG
.getConstant(Log2_64(SHC
->getValue()),
1127 AddToWorkList(Add
.Val
);
1128 return DAG
.getNode(ISD::SRL
, VT
, N0
, Add
);
1132 // fold (udiv x, c) -> alternate
1133 if (N1C
&& N1C
->getValue() && !TLI
.isIntDivCheap()) {
1134 SDOperand Op
= BuildUDIV(N
);
1135 if (Op
.Val
) return Op
;
1140 SDOperand
DAGCombiner::visitSREM(SDNode
*N
) {
1141 SDOperand N0
= N
->getOperand(0);
1142 SDOperand N1
= N
->getOperand(1);
1143 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1144 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1145 MVT::ValueType VT
= N
->getValueType(0);
1147 // fold (srem c1, c2) -> c1%c2
1148 if (N0C
&& N1C
&& !N1C
->isNullValue())
1149 return DAG
.getNode(ISD::SREM
, VT
, N0
, N1
);
1150 // If we know the sign bits of both operands are zero, strength reduce to a
1151 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
1152 uint64_t SignBit
= 1ULL << (MVT::getSizeInBits(VT
)-1);
1153 if (TLI
.MaskedValueIsZero(N1
, SignBit
) &&
1154 TLI
.MaskedValueIsZero(N0
, SignBit
))
1155 return DAG
.getNode(ISD::UREM
, VT
, N0
, N1
);
1157 // Unconditionally lower X%C -> X-X/C*C. This allows the X/C logic to hack on
1158 // the remainder operation.
1159 if (N1C
&& !N1C
->isNullValue()) {
1160 SDOperand Div
= DAG
.getNode(ISD::SDIV
, VT
, N0
, N1
);
1161 SDOperand Mul
= DAG
.getNode(ISD::MUL
, VT
, Div
, N1
);
1162 SDOperand Sub
= DAG
.getNode(ISD::SUB
, VT
, N0
, Mul
);
1163 AddToWorkList(Div
.Val
);
1164 AddToWorkList(Mul
.Val
);
1171 SDOperand
DAGCombiner::visitUREM(SDNode
*N
) {
1172 SDOperand N0
= N
->getOperand(0);
1173 SDOperand N1
= N
->getOperand(1);
1174 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1175 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1176 MVT::ValueType VT
= N
->getValueType(0);
1178 // fold (urem c1, c2) -> c1%c2
1179 if (N0C
&& N1C
&& !N1C
->isNullValue())
1180 return DAG
.getNode(ISD::UREM
, VT
, N0
, N1
);
1181 // fold (urem x, pow2) -> (and x, pow2-1)
1182 if (N1C
&& !N1C
->isNullValue() && isPowerOf2_64(N1C
->getValue()))
1183 return DAG
.getNode(ISD::AND
, VT
, N0
, DAG
.getConstant(N1C
->getValue()-1,VT
));
1184 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
1185 if (N1
.getOpcode() == ISD::SHL
) {
1186 if (ConstantSDNode
*SHC
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(0))) {
1187 if (isPowerOf2_64(SHC
->getValue())) {
1188 SDOperand Add
= DAG
.getNode(ISD::ADD
, VT
, N1
,DAG
.getConstant(~0ULL,VT
));
1189 AddToWorkList(Add
.Val
);
1190 return DAG
.getNode(ISD::AND
, VT
, N0
, Add
);
1195 // Unconditionally lower X%C -> X-X/C*C. This allows the X/C logic to hack on
1196 // the remainder operation.
1197 if (N1C
&& !N1C
->isNullValue()) {
1198 SDOperand Div
= DAG
.getNode(ISD::UDIV
, VT
, N0
, N1
);
1199 SDOperand Mul
= DAG
.getNode(ISD::MUL
, VT
, Div
, N1
);
1200 SDOperand Sub
= DAG
.getNode(ISD::SUB
, VT
, N0
, Mul
);
1201 AddToWorkList(Div
.Val
);
1202 AddToWorkList(Mul
.Val
);
1209 SDOperand
DAGCombiner::visitMULHS(SDNode
*N
) {
1210 SDOperand N0
= N
->getOperand(0);
1211 SDOperand N1
= N
->getOperand(1);
1212 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1214 // fold (mulhs x, 0) -> 0
1215 if (N1C
&& N1C
->isNullValue())
1217 // fold (mulhs x, 1) -> (sra x, size(x)-1)
1218 if (N1C
&& N1C
->getValue() == 1)
1219 return DAG
.getNode(ISD::SRA
, N0
.getValueType(), N0
,
1220 DAG
.getConstant(MVT::getSizeInBits(N0
.getValueType())-1,
1221 TLI
.getShiftAmountTy()));
1225 SDOperand
DAGCombiner::visitMULHU(SDNode
*N
) {
1226 SDOperand N0
= N
->getOperand(0);
1227 SDOperand N1
= N
->getOperand(1);
1228 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1230 // fold (mulhu x, 0) -> 0
1231 if (N1C
&& N1C
->isNullValue())
1233 // fold (mulhu x, 1) -> 0
1234 if (N1C
&& N1C
->getValue() == 1)
1235 return DAG
.getConstant(0, N0
.getValueType());
1239 /// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
1240 /// two operands of the same opcode, try to simplify it.
1241 SDOperand
DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode
*N
) {
1242 SDOperand N0
= N
->getOperand(0), N1
= N
->getOperand(1);
1243 MVT::ValueType VT
= N0
.getValueType();
1244 assert(N0
.getOpcode() == N1
.getOpcode() && "Bad input!");
1246 // For each of OP in AND/OR/XOR:
1247 // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
1248 // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
1249 // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
1250 // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y))
1251 if ((N0
.getOpcode() == ISD::ZERO_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
||
1252 N0
.getOpcode() == ISD::SIGN_EXTEND
|| N0
.getOpcode() == ISD::TRUNCATE
) &&
1253 N0
.getOperand(0).getValueType() == N1
.getOperand(0).getValueType()) {
1254 SDOperand ORNode
= DAG
.getNode(N
->getOpcode(),
1255 N0
.getOperand(0).getValueType(),
1256 N0
.getOperand(0), N1
.getOperand(0));
1257 AddToWorkList(ORNode
.Val
);
1258 return DAG
.getNode(N0
.getOpcode(), VT
, ORNode
);
1261 // For each of OP in SHL/SRL/SRA/AND...
1262 // fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
1263 // fold (or (OP x, z), (OP y, z)) -> (OP (or x, y), z)
1264 // fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
1265 if ((N0
.getOpcode() == ISD::SHL
|| N0
.getOpcode() == ISD::SRL
||
1266 N0
.getOpcode() == ISD::SRA
|| N0
.getOpcode() == ISD::AND
) &&
1267 N0
.getOperand(1) == N1
.getOperand(1)) {
1268 SDOperand ORNode
= DAG
.getNode(N
->getOpcode(),
1269 N0
.getOperand(0).getValueType(),
1270 N0
.getOperand(0), N1
.getOperand(0));
1271 AddToWorkList(ORNode
.Val
);
1272 return DAG
.getNode(N0
.getOpcode(), VT
, ORNode
, N0
.getOperand(1));
1278 SDOperand
DAGCombiner::visitAND(SDNode
*N
) {
1279 SDOperand N0
= N
->getOperand(0);
1280 SDOperand N1
= N
->getOperand(1);
1281 SDOperand LL
, LR
, RL
, RR
, CC0
, CC1
;
1282 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1283 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1284 MVT::ValueType VT
= N1
.getValueType();
1286 // fold (and c1, c2) -> c1&c2
1288 return DAG
.getNode(ISD::AND
, VT
, N0
, N1
);
1289 // canonicalize constant to RHS
1291 return DAG
.getNode(ISD::AND
, VT
, N1
, N0
);
1292 // fold (and x, -1) -> x
1293 if (N1C
&& N1C
->isAllOnesValue())
1295 // if (and x, c) is known to be zero, return 0
1296 if (N1C
&& TLI
.MaskedValueIsZero(SDOperand(N
, 0), MVT::getIntVTBitMask(VT
)))
1297 return DAG
.getConstant(0, VT
);
1299 SDOperand RAND
= ReassociateOps(ISD::AND
, N0
, N1
);
1302 // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF
1303 if (N1C
&& N0
.getOpcode() == ISD::OR
)
1304 if (ConstantSDNode
*ORI
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1)))
1305 if ((ORI
->getValue() & N1C
->getValue()) == N1C
->getValue())
1307 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
1308 if (N1C
&& N0
.getOpcode() == ISD::ANY_EXTEND
) {
1309 unsigned InMask
= MVT::getIntVTBitMask(N0
.getOperand(0).getValueType());
1310 if (TLI
.MaskedValueIsZero(N0
.getOperand(0),
1311 ~N1C
->getValue() & InMask
)) {
1312 SDOperand Zext
= DAG
.getNode(ISD::ZERO_EXTEND
, N0
.getValueType(),
1315 // Replace uses of the AND with uses of the Zero extend node.
1318 // We actually want to replace all uses of the any_extend with the
1319 // zero_extend, to avoid duplicating things. This will later cause this
1320 // AND to be folded.
1321 CombineTo(N0
.Val
, Zext
);
1322 return SDOperand(N
, 0); // Return N so it doesn't get rechecked!
1325 // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
1326 if (isSetCCEquivalent(N0
, LL
, LR
, CC0
) && isSetCCEquivalent(N1
, RL
, RR
, CC1
)){
1327 ISD::CondCode Op0
= cast
<CondCodeSDNode
>(CC0
)->get();
1328 ISD::CondCode Op1
= cast
<CondCodeSDNode
>(CC1
)->get();
1330 if (LR
== RR
&& isa
<ConstantSDNode
>(LR
) && Op0
== Op1
&&
1331 MVT::isInteger(LL
.getValueType())) {
1332 // fold (X == 0) & (Y == 0) -> (X|Y == 0)
1333 if (cast
<ConstantSDNode
>(LR
)->getValue() == 0 && Op1
== ISD::SETEQ
) {
1334 SDOperand ORNode
= DAG
.getNode(ISD::OR
, LR
.getValueType(), LL
, RL
);
1335 AddToWorkList(ORNode
.Val
);
1336 return DAG
.getSetCC(VT
, ORNode
, LR
, Op1
);
1338 // fold (X == -1) & (Y == -1) -> (X&Y == -1)
1339 if (cast
<ConstantSDNode
>(LR
)->isAllOnesValue() && Op1
== ISD::SETEQ
) {
1340 SDOperand ANDNode
= DAG
.getNode(ISD::AND
, LR
.getValueType(), LL
, RL
);
1341 AddToWorkList(ANDNode
.Val
);
1342 return DAG
.getSetCC(VT
, ANDNode
, LR
, Op1
);
1344 // fold (X > -1) & (Y > -1) -> (X|Y > -1)
1345 if (cast
<ConstantSDNode
>(LR
)->isAllOnesValue() && Op1
== ISD::SETGT
) {
1346 SDOperand ORNode
= DAG
.getNode(ISD::OR
, LR
.getValueType(), LL
, RL
);
1347 AddToWorkList(ORNode
.Val
);
1348 return DAG
.getSetCC(VT
, ORNode
, LR
, Op1
);
1351 // canonicalize equivalent to ll == rl
1352 if (LL
== RR
&& LR
== RL
) {
1353 Op1
= ISD::getSetCCSwappedOperands(Op1
);
1356 if (LL
== RL
&& LR
== RR
) {
1357 bool isInteger
= MVT::isInteger(LL
.getValueType());
1358 ISD::CondCode Result
= ISD::getSetCCAndOperation(Op0
, Op1
, isInteger
);
1359 if (Result
!= ISD::SETCC_INVALID
)
1360 return DAG
.getSetCC(N0
.getValueType(), LL
, LR
, Result
);
1364 // Simplify: and (op x...), (op y...) -> (op (and x, y))
1365 if (N0
.getOpcode() == N1
.getOpcode()) {
1366 SDOperand Tmp
= SimplifyBinOpWithSameOpcodeHands(N
);
1367 if (Tmp
.Val
) return Tmp
;
1370 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
1371 // fold (and (sra)) -> (and (srl)) when possible.
1372 if (!MVT::isVector(VT
) &&
1373 SimplifyDemandedBits(SDOperand(N
, 0)))
1374 return SDOperand(N
, 0);
1375 // fold (zext_inreg (extload x)) -> (zextload x)
1376 if (ISD::isEXTLoad(N0
.Val
) && ISD::isUNINDEXEDLoad(N0
.Val
)) {
1377 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
1378 MVT::ValueType EVT
= LN0
->getLoadedVT();
1379 // If we zero all the possible extended bits, then we can turn this into
1380 // a zextload if we are running before legalize or the operation is legal.
1381 if (TLI
.MaskedValueIsZero(N1
, ~0ULL << MVT::getSizeInBits(EVT
)) &&
1382 (!AfterLegalize
|| TLI
.isLoadXLegal(ISD::ZEXTLOAD
, EVT
))) {
1383 SDOperand ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, VT
, LN0
->getChain(),
1384 LN0
->getBasePtr(), LN0
->getSrcValue(),
1385 LN0
->getSrcValueOffset(), EVT
,
1387 LN0
->getAlignment());
1389 CombineTo(N0
.Val
, ExtLoad
, ExtLoad
.getValue(1));
1390 return SDOperand(N
, 0); // Return N so it doesn't get rechecked!
1393 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
1394 if (ISD::isSEXTLoad(N0
.Val
) && ISD::isUNINDEXEDLoad(N0
.Val
) &&
1396 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
1397 MVT::ValueType EVT
= LN0
->getLoadedVT();
1398 // If we zero all the possible extended bits, then we can turn this into
1399 // a zextload if we are running before legalize or the operation is legal.
1400 if (TLI
.MaskedValueIsZero(N1
, ~0ULL << MVT::getSizeInBits(EVT
)) &&
1401 (!AfterLegalize
|| TLI
.isLoadXLegal(ISD::ZEXTLOAD
, EVT
))) {
1402 SDOperand ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, VT
, LN0
->getChain(),
1403 LN0
->getBasePtr(), LN0
->getSrcValue(),
1404 LN0
->getSrcValueOffset(), EVT
,
1406 LN0
->getAlignment());
1408 CombineTo(N0
.Val
, ExtLoad
, ExtLoad
.getValue(1));
1409 return SDOperand(N
, 0); // Return N so it doesn't get rechecked!
1413 // fold (and (load x), 255) -> (zextload x, i8)
1414 // fold (and (extload x, i16), 255) -> (zextload x, i8)
1415 if (N1C
&& N0
.getOpcode() == ISD::LOAD
) {
1416 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
1417 if (LN0
->getExtensionType() != ISD::SEXTLOAD
&&
1418 LN0
->getAddressingMode() == ISD::UNINDEXED
&&
1420 MVT::ValueType EVT
, LoadedVT
;
1421 if (N1C
->getValue() == 255)
1423 else if (N1C
->getValue() == 65535)
1425 else if (N1C
->getValue() == ~0U)
1430 LoadedVT
= LN0
->getLoadedVT();
1431 if (EVT
!= MVT::Other
&& LoadedVT
> EVT
&&
1432 (!AfterLegalize
|| TLI
.isLoadXLegal(ISD::ZEXTLOAD
, EVT
))) {
1433 MVT::ValueType PtrType
= N0
.getOperand(1).getValueType();
1434 // For big endian targets, we need to add an offset to the pointer to
1435 // load the correct bytes. For little endian systems, we merely need to
1436 // read fewer bytes from the same pointer.
1438 (MVT::getSizeInBits(LoadedVT
) - MVT::getSizeInBits(EVT
)) / 8;
1439 SDOperand NewPtr
= LN0
->getBasePtr();
1440 if (!TLI
.isLittleEndian())
1441 NewPtr
= DAG
.getNode(ISD::ADD
, PtrType
, NewPtr
,
1442 DAG
.getConstant(PtrOff
, PtrType
));
1443 AddToWorkList(NewPtr
.Val
);
1445 DAG
.getExtLoad(ISD::ZEXTLOAD
, VT
, LN0
->getChain(), NewPtr
,
1446 LN0
->getSrcValue(), LN0
->getSrcValueOffset(), EVT
,
1447 LN0
->isVolatile(), LN0
->getAlignment());
1449 CombineTo(N0
.Val
, Load
, Load
.getValue(1));
1450 return SDOperand(N
, 0); // Return N so it doesn't get rechecked!
1458 SDOperand
DAGCombiner::visitOR(SDNode
*N
) {
1459 SDOperand N0
= N
->getOperand(0);
1460 SDOperand N1
= N
->getOperand(1);
1461 SDOperand LL
, LR
, RL
, RR
, CC0
, CC1
;
1462 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1463 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1464 MVT::ValueType VT
= N1
.getValueType();
1465 unsigned OpSizeInBits
= MVT::getSizeInBits(VT
);
1467 // fold (or c1, c2) -> c1|c2
1469 return DAG
.getNode(ISD::OR
, VT
, N0
, N1
);
1470 // canonicalize constant to RHS
1472 return DAG
.getNode(ISD::OR
, VT
, N1
, N0
);
1473 // fold (or x, 0) -> x
1474 if (N1C
&& N1C
->isNullValue())
1476 // fold (or x, -1) -> -1
1477 if (N1C
&& N1C
->isAllOnesValue())
1479 // fold (or x, c) -> c iff (x & ~c) == 0
1481 TLI
.MaskedValueIsZero(N0
,~N1C
->getValue() & (~0ULL>>(64-OpSizeInBits
))))
1484 SDOperand ROR
= ReassociateOps(ISD::OR
, N0
, N1
);
1487 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
1488 if (N1C
&& N0
.getOpcode() == ISD::AND
&& N0
.Val
->hasOneUse() &&
1489 isa
<ConstantSDNode
>(N0
.getOperand(1))) {
1490 ConstantSDNode
*C1
= cast
<ConstantSDNode
>(N0
.getOperand(1));
1491 return DAG
.getNode(ISD::AND
, VT
, DAG
.getNode(ISD::OR
, VT
, N0
.getOperand(0),
1493 DAG
.getConstant(N1C
->getValue() | C1
->getValue(), VT
));
1495 // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
1496 if (isSetCCEquivalent(N0
, LL
, LR
, CC0
) && isSetCCEquivalent(N1
, RL
, RR
, CC1
)){
1497 ISD::CondCode Op0
= cast
<CondCodeSDNode
>(CC0
)->get();
1498 ISD::CondCode Op1
= cast
<CondCodeSDNode
>(CC1
)->get();
1500 if (LR
== RR
&& isa
<ConstantSDNode
>(LR
) && Op0
== Op1
&&
1501 MVT::isInteger(LL
.getValueType())) {
1502 // fold (X != 0) | (Y != 0) -> (X|Y != 0)
1503 // fold (X < 0) | (Y < 0) -> (X|Y < 0)
1504 if (cast
<ConstantSDNode
>(LR
)->getValue() == 0 &&
1505 (Op1
== ISD::SETNE
|| Op1
== ISD::SETLT
)) {
1506 SDOperand ORNode
= DAG
.getNode(ISD::OR
, LR
.getValueType(), LL
, RL
);
1507 AddToWorkList(ORNode
.Val
);
1508 return DAG
.getSetCC(VT
, ORNode
, LR
, Op1
);
1510 // fold (X != -1) | (Y != -1) -> (X&Y != -1)
1511 // fold (X > -1) | (Y > -1) -> (X&Y > -1)
1512 if (cast
<ConstantSDNode
>(LR
)->isAllOnesValue() &&
1513 (Op1
== ISD::SETNE
|| Op1
== ISD::SETGT
)) {
1514 SDOperand ANDNode
= DAG
.getNode(ISD::AND
, LR
.getValueType(), LL
, RL
);
1515 AddToWorkList(ANDNode
.Val
);
1516 return DAG
.getSetCC(VT
, ANDNode
, LR
, Op1
);
1519 // canonicalize equivalent to ll == rl
1520 if (LL
== RR
&& LR
== RL
) {
1521 Op1
= ISD::getSetCCSwappedOperands(Op1
);
1524 if (LL
== RL
&& LR
== RR
) {
1525 bool isInteger
= MVT::isInteger(LL
.getValueType());
1526 ISD::CondCode Result
= ISD::getSetCCOrOperation(Op0
, Op1
, isInteger
);
1527 if (Result
!= ISD::SETCC_INVALID
)
1528 return DAG
.getSetCC(N0
.getValueType(), LL
, LR
, Result
);
1532 // Simplify: or (op x...), (op y...) -> (op (or x, y))
1533 if (N0
.getOpcode() == N1
.getOpcode()) {
1534 SDOperand Tmp
= SimplifyBinOpWithSameOpcodeHands(N
);
1535 if (Tmp
.Val
) return Tmp
;
1538 // (X & C1) | (Y & C2) -> (X|Y) & C3 if possible.
1539 if (N0
.getOpcode() == ISD::AND
&&
1540 N1
.getOpcode() == ISD::AND
&&
1541 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
1542 N1
.getOperand(1).getOpcode() == ISD::Constant
&&
1543 // Don't increase # computations.
1544 (N0
.Val
->hasOneUse() || N1
.Val
->hasOneUse())) {
1545 // We can only do this xform if we know that bits from X that are set in C2
1546 // but not in C1 are already zero. Likewise for Y.
1547 uint64_t LHSMask
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getValue();
1548 uint64_t RHSMask
= cast
<ConstantSDNode
>(N1
.getOperand(1))->getValue();
1550 if (TLI
.MaskedValueIsZero(N0
.getOperand(0), RHSMask
&~LHSMask
) &&
1551 TLI
.MaskedValueIsZero(N1
.getOperand(0), LHSMask
&~RHSMask
)) {
1552 SDOperand X
=DAG
.getNode(ISD::OR
, VT
, N0
.getOperand(0), N1
.getOperand(0));
1553 return DAG
.getNode(ISD::AND
, VT
, X
, DAG
.getConstant(LHSMask
|RHSMask
, VT
));
1558 // See if this is some rotate idiom.
1559 if (SDNode
*Rot
= MatchRotate(N0
, N1
))
1560 return SDOperand(Rot
, 0);
1566 /// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
1567 static bool MatchRotateHalf(SDOperand Op
, SDOperand
&Shift
, SDOperand
&Mask
) {
1568 if (Op
.getOpcode() == ISD::AND
) {
1569 if (isa
<ConstantSDNode
>(Op
.getOperand(1))) {
1570 Mask
= Op
.getOperand(1);
1571 Op
= Op
.getOperand(0);
1577 if (Op
.getOpcode() == ISD::SRL
|| Op
.getOpcode() == ISD::SHL
) {
1585 // MatchRotate - Handle an 'or' of two operands. If this is one of the many
1586 // idioms for rotate, and if the target supports rotation instructions, generate
1588 SDNode
*DAGCombiner::MatchRotate(SDOperand LHS
, SDOperand RHS
) {
1589 // Must be a legal type. Expanded an promoted things won't work with rotates.
1590 MVT::ValueType VT
= LHS
.getValueType();
1591 if (!TLI
.isTypeLegal(VT
)) return 0;
1593 // The target must have at least one rotate flavor.
1594 bool HasROTL
= TLI
.isOperationLegal(ISD::ROTL
, VT
);
1595 bool HasROTR
= TLI
.isOperationLegal(ISD::ROTR
, VT
);
1596 if (!HasROTL
&& !HasROTR
) return 0;
1598 // Match "(X shl/srl V1) & V2" where V2 may not be present.
1599 SDOperand LHSShift
; // The shift.
1600 SDOperand LHSMask
; // AND value if any.
1601 if (!MatchRotateHalf(LHS
, LHSShift
, LHSMask
))
1602 return 0; // Not part of a rotate.
1604 SDOperand RHSShift
; // The shift.
1605 SDOperand RHSMask
; // AND value if any.
1606 if (!MatchRotateHalf(RHS
, RHSShift
, RHSMask
))
1607 return 0; // Not part of a rotate.
1609 if (LHSShift
.getOperand(0) != RHSShift
.getOperand(0))
1610 return 0; // Not shifting the same value.
1612 if (LHSShift
.getOpcode() == RHSShift
.getOpcode())
1613 return 0; // Shifts must disagree.
1615 // Canonicalize shl to left side in a shl/srl pair.
1616 if (RHSShift
.getOpcode() == ISD::SHL
) {
1617 std::swap(LHS
, RHS
);
1618 std::swap(LHSShift
, RHSShift
);
1619 std::swap(LHSMask
, RHSMask
);
1622 unsigned OpSizeInBits
= MVT::getSizeInBits(VT
);
1623 SDOperand LHSShiftArg
= LHSShift
.getOperand(0);
1624 SDOperand LHSShiftAmt
= LHSShift
.getOperand(1);
1625 SDOperand RHSShiftAmt
= RHSShift
.getOperand(1);
1627 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
1628 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
1629 if (LHSShiftAmt
.getOpcode() == ISD::Constant
&&
1630 RHSShiftAmt
.getOpcode() == ISD::Constant
) {
1631 uint64_t LShVal
= cast
<ConstantSDNode
>(LHSShiftAmt
)->getValue();
1632 uint64_t RShVal
= cast
<ConstantSDNode
>(RHSShiftAmt
)->getValue();
1633 if ((LShVal
+ RShVal
) != OpSizeInBits
)
1638 Rot
= DAG
.getNode(ISD::ROTL
, VT
, LHSShiftArg
, LHSShiftAmt
);
1640 Rot
= DAG
.getNode(ISD::ROTR
, VT
, LHSShiftArg
, RHSShiftAmt
);
1642 // If there is an AND of either shifted operand, apply it to the result.
1643 if (LHSMask
.Val
|| RHSMask
.Val
) {
1644 uint64_t Mask
= MVT::getIntVTBitMask(VT
);
1647 uint64_t RHSBits
= (1ULL << LShVal
)-1;
1648 Mask
&= cast
<ConstantSDNode
>(LHSMask
)->getValue() | RHSBits
;
1651 uint64_t LHSBits
= ~((1ULL << (OpSizeInBits
-RShVal
))-1);
1652 Mask
&= cast
<ConstantSDNode
>(RHSMask
)->getValue() | LHSBits
;
1655 Rot
= DAG
.getNode(ISD::AND
, VT
, Rot
, DAG
.getConstant(Mask
, VT
));
1661 // If there is a mask here, and we have a variable shift, we can't be sure
1662 // that we're masking out the right stuff.
1663 if (LHSMask
.Val
|| RHSMask
.Val
)
1666 // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
1667 // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
1668 if (RHSShiftAmt
.getOpcode() == ISD::SUB
&&
1669 LHSShiftAmt
== RHSShiftAmt
.getOperand(1)) {
1670 if (ConstantSDNode
*SUBC
=
1671 dyn_cast
<ConstantSDNode
>(RHSShiftAmt
.getOperand(0))) {
1672 if (SUBC
->getValue() == OpSizeInBits
)
1674 return DAG
.getNode(ISD::ROTL
, VT
, LHSShiftArg
, LHSShiftAmt
).Val
;
1676 return DAG
.getNode(ISD::ROTR
, VT
, LHSShiftArg
, RHSShiftAmt
).Val
;
1680 // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
1681 // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
1682 if (LHSShiftAmt
.getOpcode() == ISD::SUB
&&
1683 RHSShiftAmt
== LHSShiftAmt
.getOperand(1)) {
1684 if (ConstantSDNode
*SUBC
=
1685 dyn_cast
<ConstantSDNode
>(LHSShiftAmt
.getOperand(0))) {
1686 if (SUBC
->getValue() == OpSizeInBits
)
1688 return DAG
.getNode(ISD::ROTL
, VT
, LHSShiftArg
, LHSShiftAmt
).Val
;
1690 return DAG
.getNode(ISD::ROTR
, VT
, LHSShiftArg
, RHSShiftAmt
).Val
;
1694 // Look for sign/zext/any-extended cases:
1695 if ((LHSShiftAmt
.getOpcode() == ISD::SIGN_EXTEND
1696 || LHSShiftAmt
.getOpcode() == ISD::ZERO_EXTEND
1697 || LHSShiftAmt
.getOpcode() == ISD::ANY_EXTEND
) &&
1698 (RHSShiftAmt
.getOpcode() == ISD::SIGN_EXTEND
1699 || RHSShiftAmt
.getOpcode() == ISD::ZERO_EXTEND
1700 || RHSShiftAmt
.getOpcode() == ISD::ANY_EXTEND
)) {
1701 SDOperand LExtOp0
= LHSShiftAmt
.getOperand(0);
1702 SDOperand RExtOp0
= RHSShiftAmt
.getOperand(0);
1703 if (RExtOp0
.getOpcode() == ISD::SUB
&&
1704 RExtOp0
.getOperand(1) == LExtOp0
) {
1705 // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
1707 // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
1708 // (rotl x, (sub 32, y))
1709 if (ConstantSDNode
*SUBC
= cast
<ConstantSDNode
>(RExtOp0
.getOperand(0))) {
1710 if (SUBC
->getValue() == OpSizeInBits
) {
1712 return DAG
.getNode(ISD::ROTL
, VT
, LHSShiftArg
, LHSShiftAmt
).Val
;
1714 return DAG
.getNode(ISD::ROTR
, VT
, LHSShiftArg
, RHSShiftAmt
).Val
;
1717 } else if (LExtOp0
.getOpcode() == ISD::SUB
&&
1718 RExtOp0
== LExtOp0
.getOperand(1)) {
1719 // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) ->
1721 // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) ->
1722 // (rotr x, (sub 32, y))
1723 if (ConstantSDNode
*SUBC
= cast
<ConstantSDNode
>(LExtOp0
.getOperand(0))) {
1724 if (SUBC
->getValue() == OpSizeInBits
) {
1726 return DAG
.getNode(ISD::ROTL
, VT
, LHSShiftArg
, RHSShiftAmt
).Val
;
1728 return DAG
.getNode(ISD::ROTL
, VT
, LHSShiftArg
, LHSShiftAmt
).Val
;
1738 SDOperand
DAGCombiner::visitXOR(SDNode
*N
) {
1739 SDOperand N0
= N
->getOperand(0);
1740 SDOperand N1
= N
->getOperand(1);
1741 SDOperand LHS
, RHS
, CC
;
1742 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1743 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1744 MVT::ValueType VT
= N0
.getValueType();
1746 // fold (xor c1, c2) -> c1^c2
1748 return DAG
.getNode(ISD::XOR
, VT
, N0
, N1
);
1749 // canonicalize constant to RHS
1751 return DAG
.getNode(ISD::XOR
, VT
, N1
, N0
);
1752 // fold (xor x, 0) -> x
1753 if (N1C
&& N1C
->isNullValue())
1756 SDOperand RXOR
= ReassociateOps(ISD::XOR
, N0
, N1
);
1759 // fold !(x cc y) -> (x !cc y)
1760 if (N1C
&& N1C
->getValue() == 1 && isSetCCEquivalent(N0
, LHS
, RHS
, CC
)) {
1761 bool isInt
= MVT::isInteger(LHS
.getValueType());
1762 ISD::CondCode NotCC
= ISD::getSetCCInverse(cast
<CondCodeSDNode
>(CC
)->get(),
1764 if (N0
.getOpcode() == ISD::SETCC
)
1765 return DAG
.getSetCC(VT
, LHS
, RHS
, NotCC
);
1766 if (N0
.getOpcode() == ISD::SELECT_CC
)
1767 return DAG
.getSelectCC(LHS
, RHS
, N0
.getOperand(2),N0
.getOperand(3),NotCC
);
1768 assert(0 && "Unhandled SetCC Equivalent!");
1771 // fold !(x or y) -> (!x and !y) iff x or y are setcc
1772 if (N1C
&& N1C
->getValue() == 1 && VT
== MVT::i1
&&
1773 (N0
.getOpcode() == ISD::OR
|| N0
.getOpcode() == ISD::AND
)) {
1774 SDOperand LHS
= N0
.getOperand(0), RHS
= N0
.getOperand(1);
1775 if (isOneUseSetCC(RHS
) || isOneUseSetCC(LHS
)) {
1776 unsigned NewOpcode
= N0
.getOpcode() == ISD::AND
? ISD::OR
: ISD::AND
;
1777 LHS
= DAG
.getNode(ISD::XOR
, VT
, LHS
, N1
); // RHS = ~LHS
1778 RHS
= DAG
.getNode(ISD::XOR
, VT
, RHS
, N1
); // RHS = ~RHS
1779 AddToWorkList(LHS
.Val
); AddToWorkList(RHS
.Val
);
1780 return DAG
.getNode(NewOpcode
, VT
, LHS
, RHS
);
1783 // fold !(x or y) -> (!x and !y) iff x or y are constants
1784 if (N1C
&& N1C
->isAllOnesValue() &&
1785 (N0
.getOpcode() == ISD::OR
|| N0
.getOpcode() == ISD::AND
)) {
1786 SDOperand LHS
= N0
.getOperand(0), RHS
= N0
.getOperand(1);
1787 if (isa
<ConstantSDNode
>(RHS
) || isa
<ConstantSDNode
>(LHS
)) {
1788 unsigned NewOpcode
= N0
.getOpcode() == ISD::AND
? ISD::OR
: ISD::AND
;
1789 LHS
= DAG
.getNode(ISD::XOR
, VT
, LHS
, N1
); // RHS = ~LHS
1790 RHS
= DAG
.getNode(ISD::XOR
, VT
, RHS
, N1
); // RHS = ~RHS
1791 AddToWorkList(LHS
.Val
); AddToWorkList(RHS
.Val
);
1792 return DAG
.getNode(NewOpcode
, VT
, LHS
, RHS
);
1795 // fold (xor (xor x, c1), c2) -> (xor x, c1^c2)
1796 if (N1C
&& N0
.getOpcode() == ISD::XOR
) {
1797 ConstantSDNode
*N00C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(0));
1798 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
1800 return DAG
.getNode(ISD::XOR
, VT
, N0
.getOperand(1),
1801 DAG
.getConstant(N1C
->getValue()^N00C
->getValue(), VT
));
1803 return DAG
.getNode(ISD::XOR
, VT
, N0
.getOperand(0),
1804 DAG
.getConstant(N1C
->getValue()^N01C
->getValue(), VT
));
1806 // fold (xor x, x) -> 0
1808 if (!MVT::isVector(VT
)) {
1809 return DAG
.getConstant(0, VT
);
1810 } else if (!AfterLegalize
|| TLI
.isOperationLegal(ISD::BUILD_VECTOR
, VT
)) {
1811 // Produce a vector of zeros.
1812 SDOperand El
= DAG
.getConstant(0, MVT::getVectorElementType(VT
));
1813 std::vector
<SDOperand
> Ops(MVT::getVectorNumElements(VT
), El
);
1814 return DAG
.getNode(ISD::BUILD_VECTOR
, VT
, &Ops
[0], Ops
.size());
1818 // Simplify: xor (op x...), (op y...) -> (op (xor x, y))
1819 if (N0
.getOpcode() == N1
.getOpcode()) {
1820 SDOperand Tmp
= SimplifyBinOpWithSameOpcodeHands(N
);
1821 if (Tmp
.Val
) return Tmp
;
1824 // Simplify the expression using non-local knowledge.
1825 if (!MVT::isVector(VT
) &&
1826 SimplifyDemandedBits(SDOperand(N
, 0)))
1827 return SDOperand(N
, 0);
1832 SDOperand
DAGCombiner::visitSHL(SDNode
*N
) {
1833 SDOperand N0
= N
->getOperand(0);
1834 SDOperand N1
= N
->getOperand(1);
1835 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1836 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1837 MVT::ValueType VT
= N0
.getValueType();
1838 unsigned OpSizeInBits
= MVT::getSizeInBits(VT
);
1840 // fold (shl c1, c2) -> c1<<c2
1842 return DAG
.getNode(ISD::SHL
, VT
, N0
, N1
);
1843 // fold (shl 0, x) -> 0
1844 if (N0C
&& N0C
->isNullValue())
1846 // fold (shl x, c >= size(x)) -> undef
1847 if (N1C
&& N1C
->getValue() >= OpSizeInBits
)
1848 return DAG
.getNode(ISD::UNDEF
, VT
);
1849 // fold (shl x, 0) -> x
1850 if (N1C
&& N1C
->isNullValue())
1852 // if (shl x, c) is known to be zero, return 0
1853 if (TLI
.MaskedValueIsZero(SDOperand(N
, 0), MVT::getIntVTBitMask(VT
)))
1854 return DAG
.getConstant(0, VT
);
1855 if (N1C
&& SimplifyDemandedBits(SDOperand(N
, 0)))
1856 return SDOperand(N
, 0);
1857 // fold (shl (shl x, c1), c2) -> 0 or (shl x, c1+c2)
1858 if (N1C
&& N0
.getOpcode() == ISD::SHL
&&
1859 N0
.getOperand(1).getOpcode() == ISD::Constant
) {
1860 uint64_t c1
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getValue();
1861 uint64_t c2
= N1C
->getValue();
1862 if (c1
+ c2
> OpSizeInBits
)
1863 return DAG
.getConstant(0, VT
);
1864 return DAG
.getNode(ISD::SHL
, VT
, N0
.getOperand(0),
1865 DAG
.getConstant(c1
+ c2
, N1
.getValueType()));
1867 // fold (shl (srl x, c1), c2) -> (shl (and x, -1 << c1), c2-c1) or
1868 // (srl (and x, -1 << c1), c1-c2)
1869 if (N1C
&& N0
.getOpcode() == ISD::SRL
&&
1870 N0
.getOperand(1).getOpcode() == ISD::Constant
) {
1871 uint64_t c1
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getValue();
1872 uint64_t c2
= N1C
->getValue();
1873 SDOperand Mask
= DAG
.getNode(ISD::AND
, VT
, N0
.getOperand(0),
1874 DAG
.getConstant(~0ULL << c1
, VT
));
1876 return DAG
.getNode(ISD::SHL
, VT
, Mask
,
1877 DAG
.getConstant(c2
-c1
, N1
.getValueType()));
1879 return DAG
.getNode(ISD::SRL
, VT
, Mask
,
1880 DAG
.getConstant(c1
-c2
, N1
.getValueType()));
1882 // fold (shl (sra x, c1), c1) -> (and x, -1 << c1)
1883 if (N1C
&& N0
.getOpcode() == ISD::SRA
&& N1
== N0
.getOperand(1))
1884 return DAG
.getNode(ISD::AND
, VT
, N0
.getOperand(0),
1885 DAG
.getConstant(~0ULL << N1C
->getValue(), VT
));
1889 SDOperand
DAGCombiner::visitSRA(SDNode
*N
) {
1890 SDOperand N0
= N
->getOperand(0);
1891 SDOperand N1
= N
->getOperand(1);
1892 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1893 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1894 MVT::ValueType VT
= N0
.getValueType();
1896 // fold (sra c1, c2) -> c1>>c2
1898 return DAG
.getNode(ISD::SRA
, VT
, N0
, N1
);
1899 // fold (sra 0, x) -> 0
1900 if (N0C
&& N0C
->isNullValue())
1902 // fold (sra -1, x) -> -1
1903 if (N0C
&& N0C
->isAllOnesValue())
1905 // fold (sra x, c >= size(x)) -> undef
1906 if (N1C
&& N1C
->getValue() >= MVT::getSizeInBits(VT
))
1907 return DAG
.getNode(ISD::UNDEF
, VT
);
1908 // fold (sra x, 0) -> x
1909 if (N1C
&& N1C
->isNullValue())
1911 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
1913 if (N1C
&& N0
.getOpcode() == ISD::SHL
&& N1
== N0
.getOperand(1)) {
1914 unsigned LowBits
= MVT::getSizeInBits(VT
) - (unsigned)N1C
->getValue();
1917 default: EVT
= MVT::Other
; break;
1918 case 1: EVT
= MVT::i1
; break;
1919 case 8: EVT
= MVT::i8
; break;
1920 case 16: EVT
= MVT::i16
; break;
1921 case 32: EVT
= MVT::i32
; break;
1923 if (EVT
> MVT::Other
&& TLI
.isOperationLegal(ISD::SIGN_EXTEND_INREG
, EVT
))
1924 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, VT
, N0
.getOperand(0),
1925 DAG
.getValueType(EVT
));
1928 // fold (sra (sra x, c1), c2) -> (sra x, c1+c2)
1929 if (N1C
&& N0
.getOpcode() == ISD::SRA
) {
1930 if (ConstantSDNode
*C1
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
1931 unsigned Sum
= N1C
->getValue() + C1
->getValue();
1932 if (Sum
>= MVT::getSizeInBits(VT
)) Sum
= MVT::getSizeInBits(VT
)-1;
1933 return DAG
.getNode(ISD::SRA
, VT
, N0
.getOperand(0),
1934 DAG
.getConstant(Sum
, N1C
->getValueType(0)));
1938 // Simplify, based on bits shifted out of the LHS.
1939 if (N1C
&& SimplifyDemandedBits(SDOperand(N
, 0)))
1940 return SDOperand(N
, 0);
1943 // If the sign bit is known to be zero, switch this to a SRL.
1944 if (TLI
.MaskedValueIsZero(N0
, MVT::getIntVTSignBit(VT
)))
1945 return DAG
.getNode(ISD::SRL
, VT
, N0
, N1
);
1949 SDOperand
DAGCombiner::visitSRL(SDNode
*N
) {
1950 SDOperand N0
= N
->getOperand(0);
1951 SDOperand N1
= N
->getOperand(1);
1952 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1953 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1954 MVT::ValueType VT
= N0
.getValueType();
1955 unsigned OpSizeInBits
= MVT::getSizeInBits(VT
);
1957 // fold (srl c1, c2) -> c1 >>u c2
1959 return DAG
.getNode(ISD::SRL
, VT
, N0
, N1
);
1960 // fold (srl 0, x) -> 0
1961 if (N0C
&& N0C
->isNullValue())
1963 // fold (srl x, c >= size(x)) -> undef
1964 if (N1C
&& N1C
->getValue() >= OpSizeInBits
)
1965 return DAG
.getNode(ISD::UNDEF
, VT
);
1966 // fold (srl x, 0) -> x
1967 if (N1C
&& N1C
->isNullValue())
1969 // if (srl x, c) is known to be zero, return 0
1970 if (N1C
&& TLI
.MaskedValueIsZero(SDOperand(N
, 0), ~0ULL >> (64-OpSizeInBits
)))
1971 return DAG
.getConstant(0, VT
);
1973 // fold (srl (srl x, c1), c2) -> 0 or (srl x, c1+c2)
1974 if (N1C
&& N0
.getOpcode() == ISD::SRL
&&
1975 N0
.getOperand(1).getOpcode() == ISD::Constant
) {
1976 uint64_t c1
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getValue();
1977 uint64_t c2
= N1C
->getValue();
1978 if (c1
+ c2
> OpSizeInBits
)
1979 return DAG
.getConstant(0, VT
);
1980 return DAG
.getNode(ISD::SRL
, VT
, N0
.getOperand(0),
1981 DAG
.getConstant(c1
+ c2
, N1
.getValueType()));
1984 // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
1985 if (N1C
&& N0
.getOpcode() == ISD::ANY_EXTEND
) {
1986 // Shifting in all undef bits?
1987 MVT::ValueType SmallVT
= N0
.getOperand(0).getValueType();
1988 if (N1C
->getValue() >= MVT::getSizeInBits(SmallVT
))
1989 return DAG
.getNode(ISD::UNDEF
, VT
);
1991 SDOperand SmallShift
= DAG
.getNode(ISD::SRL
, SmallVT
, N0
.getOperand(0), N1
);
1992 AddToWorkList(SmallShift
.Val
);
1993 return DAG
.getNode(ISD::ANY_EXTEND
, VT
, SmallShift
);
1996 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
1997 // bit, which is unmodified by sra.
1998 if (N1C
&& N1C
->getValue()+1 == MVT::getSizeInBits(VT
)) {
1999 if (N0
.getOpcode() == ISD::SRA
)
2000 return DAG
.getNode(ISD::SRL
, VT
, N0
.getOperand(0), N1
);
2003 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit).
2004 if (N1C
&& N0
.getOpcode() == ISD::CTLZ
&&
2005 N1C
->getValue() == Log2_32(MVT::getSizeInBits(VT
))) {
2006 uint64_t KnownZero
, KnownOne
, Mask
= MVT::getIntVTBitMask(VT
);
2007 TLI
.ComputeMaskedBits(N0
.getOperand(0), Mask
, KnownZero
, KnownOne
);
2009 // If any of the input bits are KnownOne, then the input couldn't be all
2010 // zeros, thus the result of the srl will always be zero.
2011 if (KnownOne
) return DAG
.getConstant(0, VT
);
2013 // If all of the bits input the to ctlz node are known to be zero, then
2014 // the result of the ctlz is "32" and the result of the shift is one.
2015 uint64_t UnknownBits
= ~KnownZero
& Mask
;
2016 if (UnknownBits
== 0) return DAG
.getConstant(1, VT
);
2018 // Otherwise, check to see if there is exactly one bit input to the ctlz.
2019 if ((UnknownBits
& (UnknownBits
-1)) == 0) {
2020 // Okay, we know that only that the single bit specified by UnknownBits
2021 // could be set on input to the CTLZ node. If this bit is set, the SRL
2022 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
2023 // to an SRL,XOR pair, which is likely to simplify more.
2024 unsigned ShAmt
= CountTrailingZeros_64(UnknownBits
);
2025 SDOperand Op
= N0
.getOperand(0);
2027 Op
= DAG
.getNode(ISD::SRL
, VT
, Op
,
2028 DAG
.getConstant(ShAmt
, TLI
.getShiftAmountTy()));
2029 AddToWorkList(Op
.Val
);
2031 return DAG
.getNode(ISD::XOR
, VT
, Op
, DAG
.getConstant(1, VT
));
2035 // fold operands of srl based on knowledge that the low bits are not
2037 if (N1C
&& SimplifyDemandedBits(SDOperand(N
, 0)))
2038 return SDOperand(N
, 0);
2043 SDOperand
DAGCombiner::visitCTLZ(SDNode
*N
) {
2044 SDOperand N0
= N
->getOperand(0);
2045 MVT::ValueType VT
= N
->getValueType(0);
2047 // fold (ctlz c1) -> c2
2048 if (isa
<ConstantSDNode
>(N0
))
2049 return DAG
.getNode(ISD::CTLZ
, VT
, N0
);
2053 SDOperand
DAGCombiner::visitCTTZ(SDNode
*N
) {
2054 SDOperand N0
= N
->getOperand(0);
2055 MVT::ValueType VT
= N
->getValueType(0);
2057 // fold (cttz c1) -> c2
2058 if (isa
<ConstantSDNode
>(N0
))
2059 return DAG
.getNode(ISD::CTTZ
, VT
, N0
);
2063 SDOperand
DAGCombiner::visitCTPOP(SDNode
*N
) {
2064 SDOperand N0
= N
->getOperand(0);
2065 MVT::ValueType VT
= N
->getValueType(0);
2067 // fold (ctpop c1) -> c2
2068 if (isa
<ConstantSDNode
>(N0
))
2069 return DAG
.getNode(ISD::CTPOP
, VT
, N0
);
2073 SDOperand
DAGCombiner::visitSELECT(SDNode
*N
) {
2074 SDOperand N0
= N
->getOperand(0);
2075 SDOperand N1
= N
->getOperand(1);
2076 SDOperand N2
= N
->getOperand(2);
2077 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2078 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2079 ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
);
2080 MVT::ValueType VT
= N
->getValueType(0);
2082 // fold select C, X, X -> X
2085 // fold select true, X, Y -> X
2086 if (N0C
&& !N0C
->isNullValue())
2088 // fold select false, X, Y -> Y
2089 if (N0C
&& N0C
->isNullValue())
2091 // fold select C, 1, X -> C | X
2092 if (MVT::i1
== VT
&& N1C
&& N1C
->getValue() == 1)
2093 return DAG
.getNode(ISD::OR
, VT
, N0
, N2
);
2094 // fold select C, 0, X -> ~C & X
2095 // FIXME: this should check for C type == X type, not i1?
2096 if (MVT::i1
== VT
&& N1C
&& N1C
->isNullValue()) {
2097 SDOperand XORNode
= DAG
.getNode(ISD::XOR
, VT
, N0
, DAG
.getConstant(1, VT
));
2098 AddToWorkList(XORNode
.Val
);
2099 return DAG
.getNode(ISD::AND
, VT
, XORNode
, N2
);
2101 // fold select C, X, 1 -> ~C | X
2102 if (MVT::i1
== VT
&& N2C
&& N2C
->getValue() == 1) {
2103 SDOperand XORNode
= DAG
.getNode(ISD::XOR
, VT
, N0
, DAG
.getConstant(1, VT
));
2104 AddToWorkList(XORNode
.Val
);
2105 return DAG
.getNode(ISD::OR
, VT
, XORNode
, N1
);
2107 // fold select C, X, 0 -> C & X
2108 // FIXME: this should check for C type == X type, not i1?
2109 if (MVT::i1
== VT
&& N2C
&& N2C
->isNullValue())
2110 return DAG
.getNode(ISD::AND
, VT
, N0
, N1
);
2111 // fold X ? X : Y --> X ? 1 : Y --> X | Y
2112 if (MVT::i1
== VT
&& N0
== N1
)
2113 return DAG
.getNode(ISD::OR
, VT
, N0
, N2
);
2114 // fold X ? Y : X --> X ? Y : 0 --> X & Y
2115 if (MVT::i1
== VT
&& N0
== N2
)
2116 return DAG
.getNode(ISD::AND
, VT
, N0
, N1
);
2118 // If we can fold this based on the true/false value, do so.
2119 if (SimplifySelectOps(N
, N1
, N2
))
2120 return SDOperand(N
, 0); // Don't revisit N.
2122 // fold selects based on a setcc into other things, such as min/max/abs
2123 if (N0
.getOpcode() == ISD::SETCC
)
2125 // Check against MVT::Other for SELECT_CC, which is a workaround for targets
2126 // having to say they don't support SELECT_CC on every type the DAG knows
2127 // about, since there is no way to mark an opcode illegal at all value types
2128 if (TLI
.isOperationLegal(ISD::SELECT_CC
, MVT::Other
))
2129 return DAG
.getNode(ISD::SELECT_CC
, VT
, N0
.getOperand(0), N0
.getOperand(1),
2130 N1
, N2
, N0
.getOperand(2));
2132 return SimplifySelect(N0
, N1
, N2
);
2136 SDOperand
DAGCombiner::visitSELECT_CC(SDNode
*N
) {
2137 SDOperand N0
= N
->getOperand(0);
2138 SDOperand N1
= N
->getOperand(1);
2139 SDOperand N2
= N
->getOperand(2);
2140 SDOperand N3
= N
->getOperand(3);
2141 SDOperand N4
= N
->getOperand(4);
2142 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N4
)->get();
2144 // fold select_cc lhs, rhs, x, x, cc -> x
2148 // Determine if the condition we're dealing with is constant
2149 SDOperand SCC
= SimplifySetCC(TLI
.getSetCCResultTy(), N0
, N1
, CC
, false);
2150 if (SCC
.Val
) AddToWorkList(SCC
.Val
);
2152 if (ConstantSDNode
*SCCC
= dyn_cast_or_null
<ConstantSDNode
>(SCC
.Val
)) {
2153 if (SCCC
->getValue())
2154 return N2
; // cond always true -> true val
2156 return N3
; // cond always false -> false val
2159 // Fold to a simpler select_cc
2160 if (SCC
.Val
&& SCC
.getOpcode() == ISD::SETCC
)
2161 return DAG
.getNode(ISD::SELECT_CC
, N2
.getValueType(),
2162 SCC
.getOperand(0), SCC
.getOperand(1), N2
, N3
,
2165 // If we can fold this based on the true/false value, do so.
2166 if (SimplifySelectOps(N
, N2
, N3
))
2167 return SDOperand(N
, 0); // Don't revisit N.
2169 // fold select_cc into other things, such as min/max/abs
2170 return SimplifySelectCC(N0
, N1
, N2
, N3
, CC
);
2173 SDOperand
DAGCombiner::visitSETCC(SDNode
*N
) {
2174 return SimplifySetCC(N
->getValueType(0), N
->getOperand(0), N
->getOperand(1),
2175 cast
<CondCodeSDNode
>(N
->getOperand(2))->get());
2178 SDOperand
DAGCombiner::visitSIGN_EXTEND(SDNode
*N
) {
2179 SDOperand N0
= N
->getOperand(0);
2180 MVT::ValueType VT
= N
->getValueType(0);
2182 // fold (sext c1) -> c1
2183 if (isa
<ConstantSDNode
>(N0
))
2184 return DAG
.getNode(ISD::SIGN_EXTEND
, VT
, N0
);
2186 // fold (sext (sext x)) -> (sext x)
2187 // fold (sext (aext x)) -> (sext x)
2188 if (N0
.getOpcode() == ISD::SIGN_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
)
2189 return DAG
.getNode(ISD::SIGN_EXTEND
, VT
, N0
.getOperand(0));
2191 // fold (sext (truncate (load x))) -> (sext (smaller load x))
2192 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
2193 if (N0
.getOpcode() == ISD::TRUNCATE
) {
2194 SDOperand NarrowLoad
= ReduceLoadWidth(N0
.Val
);
2195 if (NarrowLoad
.Val
) {
2196 if (NarrowLoad
.Val
!= N0
.Val
)
2197 CombineTo(N0
.Val
, NarrowLoad
);
2198 return DAG
.getNode(ISD::SIGN_EXTEND
, VT
, NarrowLoad
);
2202 // See if the value being truncated is already sign extended. If so, just
2203 // eliminate the trunc/sext pair.
2204 if (N0
.getOpcode() == ISD::TRUNCATE
) {
2205 SDOperand Op
= N0
.getOperand(0);
2206 unsigned OpBits
= MVT::getSizeInBits(Op
.getValueType());
2207 unsigned MidBits
= MVT::getSizeInBits(N0
.getValueType());
2208 unsigned DestBits
= MVT::getSizeInBits(VT
);
2209 unsigned NumSignBits
= TLI
.ComputeNumSignBits(Op
);
2211 if (OpBits
== DestBits
) {
2212 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
2213 // bits, it is already ready.
2214 if (NumSignBits
> DestBits
-MidBits
)
2216 } else if (OpBits
< DestBits
) {
2217 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
2218 // bits, just sext from i32.
2219 if (NumSignBits
> OpBits
-MidBits
)
2220 return DAG
.getNode(ISD::SIGN_EXTEND
, VT
, Op
);
2222 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
2223 // bits, just truncate to i32.
2224 if (NumSignBits
> OpBits
-MidBits
)
2225 return DAG
.getNode(ISD::TRUNCATE
, VT
, Op
);
2228 // fold (sext (truncate x)) -> (sextinreg x).
2229 if (!AfterLegalize
|| TLI
.isOperationLegal(ISD::SIGN_EXTEND_INREG
,
2230 N0
.getValueType())) {
2231 if (Op
.getValueType() < VT
)
2232 Op
= DAG
.getNode(ISD::ANY_EXTEND
, VT
, Op
);
2233 else if (Op
.getValueType() > VT
)
2234 Op
= DAG
.getNode(ISD::TRUNCATE
, VT
, Op
);
2235 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, VT
, Op
,
2236 DAG
.getValueType(N0
.getValueType()));
2240 // fold (sext (load x)) -> (sext (truncate (sextload x)))
2241 if (ISD::isNON_EXTLoad(N0
.Val
) && N0
.hasOneUse() &&
2242 (!AfterLegalize
||TLI
.isLoadXLegal(ISD::SEXTLOAD
, N0
.getValueType()))){
2243 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
2244 SDOperand ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, VT
, LN0
->getChain(),
2245 LN0
->getBasePtr(), LN0
->getSrcValue(),
2246 LN0
->getSrcValueOffset(),
2249 CombineTo(N
, ExtLoad
);
2250 CombineTo(N0
.Val
, DAG
.getNode(ISD::TRUNCATE
, N0
.getValueType(), ExtLoad
),
2251 ExtLoad
.getValue(1));
2252 return SDOperand(N
, 0); // Return N so it doesn't get rechecked!
2255 // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
2256 // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
2257 if ((ISD::isSEXTLoad(N0
.Val
) || ISD::isEXTLoad(N0
.Val
)) &&
2258 ISD::isUNINDEXEDLoad(N0
.Val
) && N0
.hasOneUse()) {
2259 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
2260 MVT::ValueType EVT
= LN0
->getLoadedVT();
2261 if (!AfterLegalize
|| TLI
.isLoadXLegal(ISD::SEXTLOAD
, EVT
)) {
2262 SDOperand ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, VT
, LN0
->getChain(),
2263 LN0
->getBasePtr(), LN0
->getSrcValue(),
2264 LN0
->getSrcValueOffset(), EVT
,
2266 LN0
->getAlignment());
2267 CombineTo(N
, ExtLoad
);
2268 CombineTo(N0
.Val
, DAG
.getNode(ISD::TRUNCATE
, N0
.getValueType(), ExtLoad
),
2269 ExtLoad
.getValue(1));
2270 return SDOperand(N
, 0); // Return N so it doesn't get rechecked!
2274 // sext(setcc x,y,cc) -> select_cc x, y, -1, 0, cc
2275 if (N0
.getOpcode() == ISD::SETCC
) {
2277 SimplifySelectCC(N0
.getOperand(0), N0
.getOperand(1),
2278 DAG
.getConstant(~0ULL, VT
), DAG
.getConstant(0, VT
),
2279 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get(), true);
2280 if (SCC
.Val
) return SCC
;
2286 SDOperand
DAGCombiner::visitZERO_EXTEND(SDNode
*N
) {
2287 SDOperand N0
= N
->getOperand(0);
2288 MVT::ValueType VT
= N
->getValueType(0);
2290 // fold (zext c1) -> c1
2291 if (isa
<ConstantSDNode
>(N0
))
2292 return DAG
.getNode(ISD::ZERO_EXTEND
, VT
, N0
);
2293 // fold (zext (zext x)) -> (zext x)
2294 // fold (zext (aext x)) -> (zext x)
2295 if (N0
.getOpcode() == ISD::ZERO_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
)
2296 return DAG
.getNode(ISD::ZERO_EXTEND
, VT
, N0
.getOperand(0));
2298 // fold (zext (truncate (load x))) -> (zext (smaller load x))
2299 // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
2300 if (N0
.getOpcode() == ISD::TRUNCATE
) {
2301 SDOperand NarrowLoad
= ReduceLoadWidth(N0
.Val
);
2302 if (NarrowLoad
.Val
) {
2303 if (NarrowLoad
.Val
!= N0
.Val
)
2304 CombineTo(N0
.Val
, NarrowLoad
);
2305 return DAG
.getNode(ISD::ZERO_EXTEND
, VT
, NarrowLoad
);
2309 // fold (zext (truncate x)) -> (and x, mask)
2310 if (N0
.getOpcode() == ISD::TRUNCATE
&&
2311 (!AfterLegalize
|| TLI
.isOperationLegal(ISD::AND
, VT
))) {
2312 SDOperand Op
= N0
.getOperand(0);
2313 if (Op
.getValueType() < VT
) {
2314 Op
= DAG
.getNode(ISD::ANY_EXTEND
, VT
, Op
);
2315 } else if (Op
.getValueType() > VT
) {
2316 Op
= DAG
.getNode(ISD::TRUNCATE
, VT
, Op
);
2318 return DAG
.getZeroExtendInReg(Op
, N0
.getValueType());
2321 // fold (zext (and (trunc x), cst)) -> (and x, cst).
2322 if (N0
.getOpcode() == ISD::AND
&&
2323 N0
.getOperand(0).getOpcode() == ISD::TRUNCATE
&&
2324 N0
.getOperand(1).getOpcode() == ISD::Constant
) {
2325 SDOperand X
= N0
.getOperand(0).getOperand(0);
2326 if (X
.getValueType() < VT
) {
2327 X
= DAG
.getNode(ISD::ANY_EXTEND
, VT
, X
);
2328 } else if (X
.getValueType() > VT
) {
2329 X
= DAG
.getNode(ISD::TRUNCATE
, VT
, X
);
2331 uint64_t Mask
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getValue();
2332 return DAG
.getNode(ISD::AND
, VT
, X
, DAG
.getConstant(Mask
, VT
));
2335 // fold (zext (load x)) -> (zext (truncate (zextload x)))
2336 if (ISD::isNON_EXTLoad(N0
.Val
) && N0
.hasOneUse() &&
2337 (!AfterLegalize
||TLI
.isLoadXLegal(ISD::ZEXTLOAD
, N0
.getValueType()))) {
2338 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
2339 SDOperand ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, VT
, LN0
->getChain(),
2340 LN0
->getBasePtr(), LN0
->getSrcValue(),
2341 LN0
->getSrcValueOffset(),
2344 LN0
->getAlignment());
2345 CombineTo(N
, ExtLoad
);
2346 CombineTo(N0
.Val
, DAG
.getNode(ISD::TRUNCATE
, N0
.getValueType(), ExtLoad
),
2347 ExtLoad
.getValue(1));
2348 return SDOperand(N
, 0); // Return N so it doesn't get rechecked!
2351 // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
2352 // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
2353 if ((ISD::isZEXTLoad(N0
.Val
) || ISD::isEXTLoad(N0
.Val
)) &&
2354 ISD::isUNINDEXEDLoad(N0
.Val
) && N0
.hasOneUse()) {
2355 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
2356 MVT::ValueType EVT
= LN0
->getLoadedVT();
2357 SDOperand ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, VT
, LN0
->getChain(),
2358 LN0
->getBasePtr(), LN0
->getSrcValue(),
2359 LN0
->getSrcValueOffset(), EVT
,
2361 LN0
->getAlignment());
2362 CombineTo(N
, ExtLoad
);
2363 CombineTo(N0
.Val
, DAG
.getNode(ISD::TRUNCATE
, N0
.getValueType(), ExtLoad
),
2364 ExtLoad
.getValue(1));
2365 return SDOperand(N
, 0); // Return N so it doesn't get rechecked!
2368 // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
2369 if (N0
.getOpcode() == ISD::SETCC
) {
2371 SimplifySelectCC(N0
.getOperand(0), N0
.getOperand(1),
2372 DAG
.getConstant(1, VT
), DAG
.getConstant(0, VT
),
2373 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get(), true);
2374 if (SCC
.Val
) return SCC
;
2380 SDOperand
DAGCombiner::visitANY_EXTEND(SDNode
*N
) {
2381 SDOperand N0
= N
->getOperand(0);
2382 MVT::ValueType VT
= N
->getValueType(0);
2384 // fold (aext c1) -> c1
2385 if (isa
<ConstantSDNode
>(N0
))
2386 return DAG
.getNode(ISD::ANY_EXTEND
, VT
, N0
);
2387 // fold (aext (aext x)) -> (aext x)
2388 // fold (aext (zext x)) -> (zext x)
2389 // fold (aext (sext x)) -> (sext x)
2390 if (N0
.getOpcode() == ISD::ANY_EXTEND
||
2391 N0
.getOpcode() == ISD::ZERO_EXTEND
||
2392 N0
.getOpcode() == ISD::SIGN_EXTEND
)
2393 return DAG
.getNode(N0
.getOpcode(), VT
, N0
.getOperand(0));
2395 // fold (aext (truncate (load x))) -> (aext (smaller load x))
2396 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
2397 if (N0
.getOpcode() == ISD::TRUNCATE
) {
2398 SDOperand NarrowLoad
= ReduceLoadWidth(N0
.Val
);
2399 if (NarrowLoad
.Val
) {
2400 if (NarrowLoad
.Val
!= N0
.Val
)
2401 CombineTo(N0
.Val
, NarrowLoad
);
2402 return DAG
.getNode(ISD::ANY_EXTEND
, VT
, NarrowLoad
);
2406 // fold (aext (truncate x))
2407 if (N0
.getOpcode() == ISD::TRUNCATE
) {
2408 SDOperand TruncOp
= N0
.getOperand(0);
2409 if (TruncOp
.getValueType() == VT
)
2410 return TruncOp
; // x iff x size == zext size.
2411 if (TruncOp
.getValueType() > VT
)
2412 return DAG
.getNode(ISD::TRUNCATE
, VT
, TruncOp
);
2413 return DAG
.getNode(ISD::ANY_EXTEND
, VT
, TruncOp
);
2416 // fold (aext (and (trunc x), cst)) -> (and x, cst).
2417 if (N0
.getOpcode() == ISD::AND
&&
2418 N0
.getOperand(0).getOpcode() == ISD::TRUNCATE
&&
2419 N0
.getOperand(1).getOpcode() == ISD::Constant
) {
2420 SDOperand X
= N0
.getOperand(0).getOperand(0);
2421 if (X
.getValueType() < VT
) {
2422 X
= DAG
.getNode(ISD::ANY_EXTEND
, VT
, X
);
2423 } else if (X
.getValueType() > VT
) {
2424 X
= DAG
.getNode(ISD::TRUNCATE
, VT
, X
);
2426 uint64_t Mask
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getValue();
2427 return DAG
.getNode(ISD::AND
, VT
, X
, DAG
.getConstant(Mask
, VT
));
2430 // fold (aext (load x)) -> (aext (truncate (extload x)))
2431 if (ISD::isNON_EXTLoad(N0
.Val
) && N0
.hasOneUse() &&
2432 (!AfterLegalize
||TLI
.isLoadXLegal(ISD::EXTLOAD
, N0
.getValueType()))) {
2433 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
2434 SDOperand ExtLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, VT
, LN0
->getChain(),
2435 LN0
->getBasePtr(), LN0
->getSrcValue(),
2436 LN0
->getSrcValueOffset(),
2439 LN0
->getAlignment());
2440 CombineTo(N
, ExtLoad
);
2441 CombineTo(N0
.Val
, DAG
.getNode(ISD::TRUNCATE
, N0
.getValueType(), ExtLoad
),
2442 ExtLoad
.getValue(1));
2443 return SDOperand(N
, 0); // Return N so it doesn't get rechecked!
2446 // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
2447 // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
2448 // fold (aext ( extload x)) -> (aext (truncate (extload x)))
2449 if (N0
.getOpcode() == ISD::LOAD
&&
2450 !ISD::isNON_EXTLoad(N0
.Val
) && ISD::isUNINDEXEDLoad(N0
.Val
) &&
2452 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
2453 MVT::ValueType EVT
= LN0
->getLoadedVT();
2454 SDOperand ExtLoad
= DAG
.getExtLoad(LN0
->getExtensionType(), VT
,
2455 LN0
->getChain(), LN0
->getBasePtr(),
2457 LN0
->getSrcValueOffset(), EVT
,
2459 LN0
->getAlignment());
2460 CombineTo(N
, ExtLoad
);
2461 CombineTo(N0
.Val
, DAG
.getNode(ISD::TRUNCATE
, N0
.getValueType(), ExtLoad
),
2462 ExtLoad
.getValue(1));
2463 return SDOperand(N
, 0); // Return N so it doesn't get rechecked!
2466 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
2467 if (N0
.getOpcode() == ISD::SETCC
) {
2469 SimplifySelectCC(N0
.getOperand(0), N0
.getOperand(1),
2470 DAG
.getConstant(1, VT
), DAG
.getConstant(0, VT
),
2471 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get(), true);
2479 /// ReduceLoadWidth - If the result of a wider load is shifted to right of N
2480 /// bits and then truncated to a narrower type and where N is a multiple
2481 /// of number of bits of the narrower type, transform it to a narrower load
2482 /// from address + N / num of bits of new type. If the result is to be
2483 /// extended, also fold the extension to form a extending load.
2484 SDOperand
DAGCombiner::ReduceLoadWidth(SDNode
*N
) {
2485 unsigned Opc
= N
->getOpcode();
2486 ISD::LoadExtType ExtType
= ISD::NON_EXTLOAD
;
2487 SDOperand N0
= N
->getOperand(0);
2488 MVT::ValueType VT
= N
->getValueType(0);
2489 MVT::ValueType EVT
= N
->getValueType(0);
2491 // Special case: SIGN_EXTEND_INREG is basically truncating to EVT then
2493 if (Opc
== ISD::SIGN_EXTEND_INREG
) {
2494 ExtType
= ISD::SEXTLOAD
;
2495 EVT
= cast
<VTSDNode
>(N
->getOperand(1))->getVT();
2496 if (AfterLegalize
&& !TLI
.isLoadXLegal(ISD::SEXTLOAD
, EVT
))
2500 unsigned EVTBits
= MVT::getSizeInBits(EVT
);
2502 bool CombineSRL
= false;
2503 if (N0
.getOpcode() == ISD::SRL
&& N0
.hasOneUse()) {
2504 if (ConstantSDNode
*N01
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
2505 ShAmt
= N01
->getValue();
2506 // Is the shift amount a multiple of size of VT?
2507 if ((ShAmt
& (EVTBits
-1)) == 0) {
2508 N0
= N0
.getOperand(0);
2509 if (MVT::getSizeInBits(N0
.getValueType()) <= EVTBits
)
2516 if (ISD::isNON_EXTLoad(N0
.Val
) && N0
.hasOneUse() &&
2517 // Do not allow folding to i1 here. i1 is implicitly stored in memory in
2518 // zero extended form: by shrinking the load, we lose track of the fact
2519 // that it is already zero extended.
2520 // FIXME: This should be reevaluated.
2522 assert(MVT::getSizeInBits(N0
.getValueType()) > EVTBits
&&
2523 "Cannot truncate to larger type!");
2524 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
2525 MVT::ValueType PtrType
= N0
.getOperand(1).getValueType();
2526 // For big endian targets, we need to adjust the offset to the pointer to
2527 // load the correct bytes.
2528 if (!TLI
.isLittleEndian())
2529 ShAmt
= MVT::getSizeInBits(N0
.getValueType()) - ShAmt
- EVTBits
;
2530 uint64_t PtrOff
= ShAmt
/ 8;
2531 SDOperand NewPtr
= DAG
.getNode(ISD::ADD
, PtrType
, LN0
->getBasePtr(),
2532 DAG
.getConstant(PtrOff
, PtrType
));
2533 AddToWorkList(NewPtr
.Val
);
2534 SDOperand Load
= (ExtType
== ISD::NON_EXTLOAD
)
2535 ? DAG
.getLoad(VT
, LN0
->getChain(), NewPtr
,
2536 LN0
->getSrcValue(), LN0
->getSrcValueOffset(),
2537 LN0
->isVolatile(), LN0
->getAlignment())
2538 : DAG
.getExtLoad(ExtType
, VT
, LN0
->getChain(), NewPtr
,
2539 LN0
->getSrcValue(), LN0
->getSrcValueOffset(), EVT
,
2540 LN0
->isVolatile(), LN0
->getAlignment());
2543 std::vector
<SDNode
*> NowDead
;
2544 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), Load
.getValue(1), NowDead
);
2545 CombineTo(N
->getOperand(0).Val
, Load
);
2547 CombineTo(N0
.Val
, Load
, Load
.getValue(1));
2549 if (Opc
== ISD::SIGN_EXTEND_INREG
)
2550 return DAG
.getNode(Opc
, VT
, Load
, N
->getOperand(1));
2552 return DAG
.getNode(Opc
, VT
, Load
);
2554 return SDOperand(N
, 0); // Return N so it doesn't get rechecked!
2561 SDOperand
DAGCombiner::visitSIGN_EXTEND_INREG(SDNode
*N
) {
2562 SDOperand N0
= N
->getOperand(0);
2563 SDOperand N1
= N
->getOperand(1);
2564 MVT::ValueType VT
= N
->getValueType(0);
2565 MVT::ValueType EVT
= cast
<VTSDNode
>(N1
)->getVT();
2566 unsigned EVTBits
= MVT::getSizeInBits(EVT
);
2568 // fold (sext_in_reg c1) -> c1
2569 if (isa
<ConstantSDNode
>(N0
) || N0
.getOpcode() == ISD::UNDEF
)
2570 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, VT
, N0
, N1
);
2572 // If the input is already sign extended, just drop the extension.
2573 if (TLI
.ComputeNumSignBits(N0
) >= MVT::getSizeInBits(VT
)-EVTBits
+1)
2576 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
2577 if (N0
.getOpcode() == ISD::SIGN_EXTEND_INREG
&&
2578 EVT
< cast
<VTSDNode
>(N0
.getOperand(1))->getVT()) {
2579 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, VT
, N0
.getOperand(0), N1
);
2582 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
2583 if (TLI
.MaskedValueIsZero(N0
, 1ULL << (EVTBits
-1)))
2584 return DAG
.getZeroExtendInReg(N0
, EVT
);
2586 // fold operands of sext_in_reg based on knowledge that the top bits are not
2588 if (SimplifyDemandedBits(SDOperand(N
, 0)))
2589 return SDOperand(N
, 0);
2591 // fold (sext_in_reg (load x)) -> (smaller sextload x)
2592 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
2593 SDOperand NarrowLoad
= ReduceLoadWidth(N
);
2597 // fold (sext_in_reg (srl X, 24), i8) -> sra X, 24
2598 // fold (sext_in_reg (srl X, 23), i8) -> sra X, 23 iff possible.
2599 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
2600 if (N0
.getOpcode() == ISD::SRL
) {
2601 if (ConstantSDNode
*ShAmt
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1)))
2602 if (ShAmt
->getValue()+EVTBits
<= MVT::getSizeInBits(VT
)) {
2603 // We can turn this into an SRA iff the input to the SRL is already sign
2605 unsigned InSignBits
= TLI
.ComputeNumSignBits(N0
.getOperand(0));
2606 if (MVT::getSizeInBits(VT
)-(ShAmt
->getValue()+EVTBits
) < InSignBits
)
2607 return DAG
.getNode(ISD::SRA
, VT
, N0
.getOperand(0), N0
.getOperand(1));
2611 // fold (sext_inreg (extload x)) -> (sextload x)
2612 if (ISD::isEXTLoad(N0
.Val
) &&
2613 ISD::isUNINDEXEDLoad(N0
.Val
) &&
2614 EVT
== cast
<LoadSDNode
>(N0
)->getLoadedVT() &&
2615 (!AfterLegalize
|| TLI
.isLoadXLegal(ISD::SEXTLOAD
, EVT
))) {
2616 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
2617 SDOperand ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, VT
, LN0
->getChain(),
2618 LN0
->getBasePtr(), LN0
->getSrcValue(),
2619 LN0
->getSrcValueOffset(), EVT
,
2621 LN0
->getAlignment());
2622 CombineTo(N
, ExtLoad
);
2623 CombineTo(N0
.Val
, ExtLoad
, ExtLoad
.getValue(1));
2624 return SDOperand(N
, 0); // Return N so it doesn't get rechecked!
2626 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
2627 if (ISD::isZEXTLoad(N0
.Val
) && ISD::isUNINDEXEDLoad(N0
.Val
) &&
2629 EVT
== cast
<LoadSDNode
>(N0
)->getLoadedVT() &&
2630 (!AfterLegalize
|| TLI
.isLoadXLegal(ISD::SEXTLOAD
, EVT
))) {
2631 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
2632 SDOperand ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, VT
, LN0
->getChain(),
2633 LN0
->getBasePtr(), LN0
->getSrcValue(),
2634 LN0
->getSrcValueOffset(), EVT
,
2636 LN0
->getAlignment());
2637 CombineTo(N
, ExtLoad
);
2638 CombineTo(N0
.Val
, ExtLoad
, ExtLoad
.getValue(1));
2639 return SDOperand(N
, 0); // Return N so it doesn't get rechecked!
2644 SDOperand
DAGCombiner::visitTRUNCATE(SDNode
*N
) {
2645 SDOperand N0
= N
->getOperand(0);
2646 MVT::ValueType VT
= N
->getValueType(0);
2649 if (N0
.getValueType() == N
->getValueType(0))
2651 // fold (truncate c1) -> c1
2652 if (isa
<ConstantSDNode
>(N0
))
2653 return DAG
.getNode(ISD::TRUNCATE
, VT
, N0
);
2654 // fold (truncate (truncate x)) -> (truncate x)
2655 if (N0
.getOpcode() == ISD::TRUNCATE
)
2656 return DAG
.getNode(ISD::TRUNCATE
, VT
, N0
.getOperand(0));
2657 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
2658 if (N0
.getOpcode() == ISD::ZERO_EXTEND
|| N0
.getOpcode() == ISD::SIGN_EXTEND
||
2659 N0
.getOpcode() == ISD::ANY_EXTEND
) {
2660 if (N0
.getOperand(0).getValueType() < VT
)
2661 // if the source is smaller than the dest, we still need an extend
2662 return DAG
.getNode(N0
.getOpcode(), VT
, N0
.getOperand(0));
2663 else if (N0
.getOperand(0).getValueType() > VT
)
2664 // if the source is larger than the dest, than we just need the truncate
2665 return DAG
.getNode(ISD::TRUNCATE
, VT
, N0
.getOperand(0));
2667 // if the source and dest are the same type, we can drop both the extend
2669 return N0
.getOperand(0);
2672 // fold (truncate (load x)) -> (smaller load x)
2673 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
2674 return ReduceLoadWidth(N
);
2677 SDOperand
DAGCombiner::visitBIT_CONVERT(SDNode
*N
) {
2678 SDOperand N0
= N
->getOperand(0);
2679 MVT::ValueType VT
= N
->getValueType(0);
2681 // If the input is a constant, let getNode() fold it.
2682 if (isa
<ConstantSDNode
>(N0
) || isa
<ConstantFPSDNode
>(N0
)) {
2683 SDOperand Res
= DAG
.getNode(ISD::BIT_CONVERT
, VT
, N0
);
2684 if (Res
.Val
!= N
) return Res
;
2687 if (N0
.getOpcode() == ISD::BIT_CONVERT
) // conv(conv(x,t1),t2) -> conv(x,t2)
2688 return DAG
.getNode(ISD::BIT_CONVERT
, VT
, N0
.getOperand(0));
2690 // fold (conv (load x)) -> (load (conv*)x)
2691 // If the resultant load doesn't need a higher alignment than the original!
2692 if (ISD::isNON_EXTLoad(N0
.Val
) && N0
.hasOneUse() &&
2693 ISD::isUNINDEXEDLoad(N0
.Val
) &&
2694 TLI
.isOperationLegal(ISD::LOAD
, VT
)) {
2695 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
2696 unsigned Align
= TLI
.getTargetMachine().getTargetData()->
2697 getABITypeAlignment(MVT::getTypeForValueType(VT
));
2698 unsigned OrigAlign
= LN0
->getAlignment();
2699 if (Align
<= OrigAlign
) {
2700 SDOperand Load
= DAG
.getLoad(VT
, LN0
->getChain(), LN0
->getBasePtr(),
2701 LN0
->getSrcValue(), LN0
->getSrcValueOffset(),
2702 LN0
->isVolatile(), LN0
->getAlignment());
2704 CombineTo(N0
.Val
, DAG
.getNode(ISD::BIT_CONVERT
, N0
.getValueType(), Load
),
2713 SDOperand
DAGCombiner::visitVBIT_CONVERT(SDNode
*N
) {
2714 SDOperand N0
= N
->getOperand(0);
2715 MVT::ValueType VT
= N
->getValueType(0);
2717 // If the input is a VBUILD_VECTOR with all constant elements, fold this now.
2718 // First check to see if this is all constant.
2719 if (N0
.getOpcode() == ISD::VBUILD_VECTOR
&& N0
.Val
->hasOneUse() &&
2720 VT
== MVT::Vector
) {
2721 bool isSimple
= true;
2722 for (unsigned i
= 0, e
= N0
.getNumOperands()-2; i
!= e
; ++i
)
2723 if (N0
.getOperand(i
).getOpcode() != ISD::UNDEF
&&
2724 N0
.getOperand(i
).getOpcode() != ISD::Constant
&&
2725 N0
.getOperand(i
).getOpcode() != ISD::ConstantFP
) {
2730 MVT::ValueType DestEltVT
= cast
<VTSDNode
>(N
->getOperand(2))->getVT();
2731 if (isSimple
&& !MVT::isVector(DestEltVT
)) {
2732 return ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(N0
.Val
, DestEltVT
);
2739 /// ConstantFoldVBIT_CONVERTofVBUILD_VECTOR - We know that BV is a vbuild_vector
2740 /// node with Constant, ConstantFP or Undef operands. DstEltVT indicates the
2741 /// destination element value type.
2742 SDOperand
DAGCombiner::
2743 ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(SDNode
*BV
, MVT::ValueType DstEltVT
) {
2744 MVT::ValueType SrcEltVT
= BV
->getOperand(0).getValueType();
2746 // If this is already the right type, we're done.
2747 if (SrcEltVT
== DstEltVT
) return SDOperand(BV
, 0);
2749 unsigned SrcBitSize
= MVT::getSizeInBits(SrcEltVT
);
2750 unsigned DstBitSize
= MVT::getSizeInBits(DstEltVT
);
2752 // If this is a conversion of N elements of one type to N elements of another
2753 // type, convert each element. This handles FP<->INT cases.
2754 if (SrcBitSize
== DstBitSize
) {
2755 SmallVector
<SDOperand
, 8> Ops
;
2756 for (unsigned i
= 0, e
= BV
->getNumOperands()-2; i
!= e
; ++i
) {
2757 Ops
.push_back(DAG
.getNode(ISD::BIT_CONVERT
, DstEltVT
, BV
->getOperand(i
)));
2758 AddToWorkList(Ops
.back().Val
);
2760 Ops
.push_back(*(BV
->op_end()-2)); // Add num elements.
2761 Ops
.push_back(DAG
.getValueType(DstEltVT
));
2762 return DAG
.getNode(ISD::VBUILD_VECTOR
, MVT::Vector
, &Ops
[0], Ops
.size());
2765 // Otherwise, we're growing or shrinking the elements. To avoid having to
2766 // handle annoying details of growing/shrinking FP values, we convert them to
2768 if (MVT::isFloatingPoint(SrcEltVT
)) {
2769 // Convert the input float vector to a int vector where the elements are the
2771 assert((SrcEltVT
== MVT::f32
|| SrcEltVT
== MVT::f64
) && "Unknown FP VT!");
2772 MVT::ValueType IntVT
= SrcEltVT
== MVT::f32
? MVT::i32
: MVT::i64
;
2773 BV
= ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(BV
, IntVT
).Val
;
2777 // Now we know the input is an integer vector. If the output is a FP type,
2778 // convert to integer first, then to FP of the right size.
2779 if (MVT::isFloatingPoint(DstEltVT
)) {
2780 assert((DstEltVT
== MVT::f32
|| DstEltVT
== MVT::f64
) && "Unknown FP VT!");
2781 MVT::ValueType TmpVT
= DstEltVT
== MVT::f32
? MVT::i32
: MVT::i64
;
2782 SDNode
*Tmp
= ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(BV
, TmpVT
).Val
;
2784 // Next, convert to FP elements of the same size.
2785 return ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(Tmp
, DstEltVT
);
2788 // Okay, we know the src/dst types are both integers of differing types.
2789 // Handling growing first.
2790 assert(MVT::isInteger(SrcEltVT
) && MVT::isInteger(DstEltVT
));
2791 if (SrcBitSize
< DstBitSize
) {
2792 unsigned NumInputsPerOutput
= DstBitSize
/SrcBitSize
;
2794 SmallVector
<SDOperand
, 8> Ops
;
2795 for (unsigned i
= 0, e
= BV
->getNumOperands()-2; i
!= e
;
2796 i
+= NumInputsPerOutput
) {
2797 bool isLE
= TLI
.isLittleEndian();
2798 uint64_t NewBits
= 0;
2799 bool EltIsUndef
= true;
2800 for (unsigned j
= 0; j
!= NumInputsPerOutput
; ++j
) {
2801 // Shift the previously computed bits over.
2802 NewBits
<<= SrcBitSize
;
2803 SDOperand Op
= BV
->getOperand(i
+ (isLE
? (NumInputsPerOutput
-j
-1) : j
));
2804 if (Op
.getOpcode() == ISD::UNDEF
) continue;
2807 NewBits
|= cast
<ConstantSDNode
>(Op
)->getValue();
2811 Ops
.push_back(DAG
.getNode(ISD::UNDEF
, DstEltVT
));
2813 Ops
.push_back(DAG
.getConstant(NewBits
, DstEltVT
));
2816 Ops
.push_back(DAG
.getConstant(Ops
.size(), MVT::i32
)); // Add num elements.
2817 Ops
.push_back(DAG
.getValueType(DstEltVT
)); // Add element size.
2818 return DAG
.getNode(ISD::VBUILD_VECTOR
, MVT::Vector
, &Ops
[0], Ops
.size());
2821 // Finally, this must be the case where we are shrinking elements: each input
2822 // turns into multiple outputs.
2823 unsigned NumOutputsPerInput
= SrcBitSize
/DstBitSize
;
2824 SmallVector
<SDOperand
, 8> Ops
;
2825 for (unsigned i
= 0, e
= BV
->getNumOperands()-2; i
!= e
; ++i
) {
2826 if (BV
->getOperand(i
).getOpcode() == ISD::UNDEF
) {
2827 for (unsigned j
= 0; j
!= NumOutputsPerInput
; ++j
)
2828 Ops
.push_back(DAG
.getNode(ISD::UNDEF
, DstEltVT
));
2831 uint64_t OpVal
= cast
<ConstantSDNode
>(BV
->getOperand(i
))->getValue();
2833 for (unsigned j
= 0; j
!= NumOutputsPerInput
; ++j
) {
2834 unsigned ThisVal
= OpVal
& ((1ULL << DstBitSize
)-1);
2835 OpVal
>>= DstBitSize
;
2836 Ops
.push_back(DAG
.getConstant(ThisVal
, DstEltVT
));
2839 // For big endian targets, swap the order of the pieces of each element.
2840 if (!TLI
.isLittleEndian())
2841 std::reverse(Ops
.end()-NumOutputsPerInput
, Ops
.end());
2843 Ops
.push_back(DAG
.getConstant(Ops
.size(), MVT::i32
)); // Add num elements.
2844 Ops
.push_back(DAG
.getValueType(DstEltVT
)); // Add element size.
2845 return DAG
.getNode(ISD::VBUILD_VECTOR
, MVT::Vector
, &Ops
[0], Ops
.size());
2850 SDOperand
DAGCombiner::visitFADD(SDNode
*N
) {
2851 SDOperand N0
= N
->getOperand(0);
2852 SDOperand N1
= N
->getOperand(1);
2853 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
2854 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
2855 MVT::ValueType VT
= N
->getValueType(0);
2857 // fold (fadd c1, c2) -> c1+c2
2859 return DAG
.getNode(ISD::FADD
, VT
, N0
, N1
);
2860 // canonicalize constant to RHS
2861 if (N0CFP
&& !N1CFP
)
2862 return DAG
.getNode(ISD::FADD
, VT
, N1
, N0
);
2863 // fold (A + (-B)) -> A-B
2864 if (isNegatibleForFree(N1
) == 2)
2865 return DAG
.getNode(ISD::FSUB
, VT
, N0
, GetNegatedExpression(N1
, DAG
));
2866 // fold ((-A) + B) -> B-A
2867 if (isNegatibleForFree(N0
) == 2)
2868 return DAG
.getNode(ISD::FSUB
, VT
, N1
, GetNegatedExpression(N0
, DAG
));
2870 // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
2871 if (UnsafeFPMath
&& N1CFP
&& N0
.getOpcode() == ISD::FADD
&&
2872 N0
.Val
->hasOneUse() && isa
<ConstantFPSDNode
>(N0
.getOperand(1)))
2873 return DAG
.getNode(ISD::FADD
, VT
, N0
.getOperand(0),
2874 DAG
.getNode(ISD::FADD
, VT
, N0
.getOperand(1), N1
));
2879 SDOperand
DAGCombiner::visitFSUB(SDNode
*N
) {
2880 SDOperand N0
= N
->getOperand(0);
2881 SDOperand N1
= N
->getOperand(1);
2882 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
2883 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
2884 MVT::ValueType VT
= N
->getValueType(0);
2886 // fold (fsub c1, c2) -> c1-c2
2888 return DAG
.getNode(ISD::FSUB
, VT
, N0
, N1
);
2889 // fold (A-(-B)) -> A+B
2890 if (isNegatibleForFree(N1
))
2891 return DAG
.getNode(ISD::FADD
, VT
, N0
, GetNegatedExpression(N1
, DAG
));
2896 SDOperand
DAGCombiner::visitFMUL(SDNode
*N
) {
2897 SDOperand N0
= N
->getOperand(0);
2898 SDOperand N1
= N
->getOperand(1);
2899 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
2900 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
2901 MVT::ValueType VT
= N
->getValueType(0);
2903 // fold (fmul c1, c2) -> c1*c2
2905 return DAG
.getNode(ISD::FMUL
, VT
, N0
, N1
);
2906 // canonicalize constant to RHS
2907 if (N0CFP
&& !N1CFP
)
2908 return DAG
.getNode(ISD::FMUL
, VT
, N1
, N0
);
2909 // fold (fmul X, 2.0) -> (fadd X, X)
2910 if (N1CFP
&& N1CFP
->isExactlyValue(+2.0))
2911 return DAG
.getNode(ISD::FADD
, VT
, N0
, N0
);
2912 // fold (fmul X, -1.0) -> (fneg X)
2913 if (N1CFP
&& N1CFP
->isExactlyValue(-1.0))
2914 return DAG
.getNode(ISD::FNEG
, VT
, N0
);
2917 if (char LHSNeg
= isNegatibleForFree(N0
)) {
2918 if (char RHSNeg
= isNegatibleForFree(N1
)) {
2919 // Both can be negated for free, check to see if at least one is cheaper
2921 if (LHSNeg
== 2 || RHSNeg
== 2)
2922 return DAG
.getNode(ISD::FMUL
, VT
, GetNegatedExpression(N0
, DAG
),
2923 GetNegatedExpression(N1
, DAG
));
2927 // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
2928 if (UnsafeFPMath
&& N1CFP
&& N0
.getOpcode() == ISD::FMUL
&&
2929 N0
.Val
->hasOneUse() && isa
<ConstantFPSDNode
>(N0
.getOperand(1)))
2930 return DAG
.getNode(ISD::FMUL
, VT
, N0
.getOperand(0),
2931 DAG
.getNode(ISD::FMUL
, VT
, N0
.getOperand(1), N1
));
2936 SDOperand
DAGCombiner::visitFDIV(SDNode
*N
) {
2937 SDOperand N0
= N
->getOperand(0);
2938 SDOperand N1
= N
->getOperand(1);
2939 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
2940 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
2941 MVT::ValueType VT
= N
->getValueType(0);
2943 // fold (fdiv c1, c2) -> c1/c2
2945 return DAG
.getNode(ISD::FDIV
, VT
, N0
, N1
);
2949 if (char LHSNeg
= isNegatibleForFree(N0
)) {
2950 if (char RHSNeg
= isNegatibleForFree(N1
)) {
2951 // Both can be negated for free, check to see if at least one is cheaper
2953 if (LHSNeg
== 2 || RHSNeg
== 2)
2954 return DAG
.getNode(ISD::FDIV
, VT
, GetNegatedExpression(N0
, DAG
),
2955 GetNegatedExpression(N1
, DAG
));
2962 SDOperand
DAGCombiner::visitFREM(SDNode
*N
) {
2963 SDOperand N0
= N
->getOperand(0);
2964 SDOperand N1
= N
->getOperand(1);
2965 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
2966 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
2967 MVT::ValueType VT
= N
->getValueType(0);
2969 // fold (frem c1, c2) -> fmod(c1,c2)
2971 return DAG
.getNode(ISD::FREM
, VT
, N0
, N1
);
2975 SDOperand
DAGCombiner::visitFCOPYSIGN(SDNode
*N
) {
2976 SDOperand N0
= N
->getOperand(0);
2977 SDOperand N1
= N
->getOperand(1);
2978 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
2979 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
2980 MVT::ValueType VT
= N
->getValueType(0);
2982 if (N0CFP
&& N1CFP
) // Constant fold
2983 return DAG
.getNode(ISD::FCOPYSIGN
, VT
, N0
, N1
);
2986 // copysign(x, c1) -> fabs(x) iff ispos(c1)
2987 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
2992 u
.d
= N1CFP
->getValue();
2994 return DAG
.getNode(ISD::FABS
, VT
, N0
);
2996 return DAG
.getNode(ISD::FNEG
, VT
, DAG
.getNode(ISD::FABS
, VT
, N0
));
2999 // copysign(fabs(x), y) -> copysign(x, y)
3000 // copysign(fneg(x), y) -> copysign(x, y)
3001 // copysign(copysign(x,z), y) -> copysign(x, y)
3002 if (N0
.getOpcode() == ISD::FABS
|| N0
.getOpcode() == ISD::FNEG
||
3003 N0
.getOpcode() == ISD::FCOPYSIGN
)
3004 return DAG
.getNode(ISD::FCOPYSIGN
, VT
, N0
.getOperand(0), N1
);
3006 // copysign(x, abs(y)) -> abs(x)
3007 if (N1
.getOpcode() == ISD::FABS
)
3008 return DAG
.getNode(ISD::FABS
, VT
, N0
);
3010 // copysign(x, copysign(y,z)) -> copysign(x, z)
3011 if (N1
.getOpcode() == ISD::FCOPYSIGN
)
3012 return DAG
.getNode(ISD::FCOPYSIGN
, VT
, N0
, N1
.getOperand(1));
3014 // copysign(x, fp_extend(y)) -> copysign(x, y)
3015 // copysign(x, fp_round(y)) -> copysign(x, y)
3016 if (N1
.getOpcode() == ISD::FP_EXTEND
|| N1
.getOpcode() == ISD::FP_ROUND
)
3017 return DAG
.getNode(ISD::FCOPYSIGN
, VT
, N0
, N1
.getOperand(0));
3024 SDOperand
DAGCombiner::visitSINT_TO_FP(SDNode
*N
) {
3025 SDOperand N0
= N
->getOperand(0);
3026 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
3027 MVT::ValueType VT
= N
->getValueType(0);
3029 // fold (sint_to_fp c1) -> c1fp
3031 return DAG
.getNode(ISD::SINT_TO_FP
, VT
, N0
);
3035 SDOperand
DAGCombiner::visitUINT_TO_FP(SDNode
*N
) {
3036 SDOperand N0
= N
->getOperand(0);
3037 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
3038 MVT::ValueType VT
= N
->getValueType(0);
3040 // fold (uint_to_fp c1) -> c1fp
3042 return DAG
.getNode(ISD::UINT_TO_FP
, VT
, N0
);
3046 SDOperand
DAGCombiner::visitFP_TO_SINT(SDNode
*N
) {
3047 SDOperand N0
= N
->getOperand(0);
3048 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
3049 MVT::ValueType VT
= N
->getValueType(0);
3051 // fold (fp_to_sint c1fp) -> c1
3053 return DAG
.getNode(ISD::FP_TO_SINT
, VT
, N0
);
3057 SDOperand
DAGCombiner::visitFP_TO_UINT(SDNode
*N
) {
3058 SDOperand N0
= N
->getOperand(0);
3059 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
3060 MVT::ValueType VT
= N
->getValueType(0);
3062 // fold (fp_to_uint c1fp) -> c1
3064 return DAG
.getNode(ISD::FP_TO_UINT
, VT
, N0
);
3068 SDOperand
DAGCombiner::visitFP_ROUND(SDNode
*N
) {
3069 SDOperand N0
= N
->getOperand(0);
3070 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
3071 MVT::ValueType VT
= N
->getValueType(0);
3073 // fold (fp_round c1fp) -> c1fp
3075 return DAG
.getNode(ISD::FP_ROUND
, VT
, N0
);
3077 // fold (fp_round (fp_extend x)) -> x
3078 if (N0
.getOpcode() == ISD::FP_EXTEND
&& VT
== N0
.getOperand(0).getValueType())
3079 return N0
.getOperand(0);
3081 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
3082 if (N0
.getOpcode() == ISD::FCOPYSIGN
&& N0
.Val
->hasOneUse()) {
3083 SDOperand Tmp
= DAG
.getNode(ISD::FP_ROUND
, VT
, N0
.getOperand(0));
3084 AddToWorkList(Tmp
.Val
);
3085 return DAG
.getNode(ISD::FCOPYSIGN
, VT
, Tmp
, N0
.getOperand(1));
3091 SDOperand
DAGCombiner::visitFP_ROUND_INREG(SDNode
*N
) {
3092 SDOperand N0
= N
->getOperand(0);
3093 MVT::ValueType VT
= N
->getValueType(0);
3094 MVT::ValueType EVT
= cast
<VTSDNode
>(N
->getOperand(1))->getVT();
3095 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
3097 // fold (fp_round_inreg c1fp) -> c1fp
3099 SDOperand Round
= DAG
.getConstantFP(N0CFP
->getValue(), EVT
);
3100 return DAG
.getNode(ISD::FP_EXTEND
, VT
, Round
);
3105 SDOperand
DAGCombiner::visitFP_EXTEND(SDNode
*N
) {
3106 SDOperand N0
= N
->getOperand(0);
3107 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
3108 MVT::ValueType VT
= N
->getValueType(0);
3110 // fold (fp_extend c1fp) -> c1fp
3112 return DAG
.getNode(ISD::FP_EXTEND
, VT
, N0
);
3114 // fold (fpext (load x)) -> (fpext (fpround (extload x)))
3115 if (ISD::isNON_EXTLoad(N0
.Val
) && N0
.hasOneUse() &&
3116 (!AfterLegalize
||TLI
.isLoadXLegal(ISD::EXTLOAD
, N0
.getValueType()))) {
3117 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3118 SDOperand ExtLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, VT
, LN0
->getChain(),
3119 LN0
->getBasePtr(), LN0
->getSrcValue(),
3120 LN0
->getSrcValueOffset(),
3123 LN0
->getAlignment());
3124 CombineTo(N
, ExtLoad
);
3125 CombineTo(N0
.Val
, DAG
.getNode(ISD::FP_ROUND
, N0
.getValueType(), ExtLoad
),
3126 ExtLoad
.getValue(1));
3127 return SDOperand(N
, 0); // Return N so it doesn't get rechecked!
3134 SDOperand
DAGCombiner::visitFNEG(SDNode
*N
) {
3135 SDOperand N0
= N
->getOperand(0);
3136 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
3137 MVT::ValueType VT
= N
->getValueType(0);
3139 // fold (fneg c1) -> -c1
3141 return DAG
.getNode(ISD::FNEG
, VT
, N0
);
3142 // fold (fneg (sub x, y)) -> (sub y, x)
3143 if (N0
.getOpcode() == ISD::SUB
)
3144 return DAG
.getNode(ISD::SUB
, VT
, N0
.getOperand(1), N0
.getOperand(0));
3145 // fold (fneg (fneg x)) -> x
3146 if (N0
.getOpcode() == ISD::FNEG
)
3147 return N0
.getOperand(0);
3151 SDOperand
DAGCombiner::visitFABS(SDNode
*N
) {
3152 SDOperand N0
= N
->getOperand(0);
3153 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
3154 MVT::ValueType VT
= N
->getValueType(0);
3156 // fold (fabs c1) -> fabs(c1)
3158 return DAG
.getNode(ISD::FABS
, VT
, N0
);
3159 // fold (fabs (fabs x)) -> (fabs x)
3160 if (N0
.getOpcode() == ISD::FABS
)
3161 return N
->getOperand(0);
3162 // fold (fabs (fneg x)) -> (fabs x)
3163 // fold (fabs (fcopysign x, y)) -> (fabs x)
3164 if (N0
.getOpcode() == ISD::FNEG
|| N0
.getOpcode() == ISD::FCOPYSIGN
)
3165 return DAG
.getNode(ISD::FABS
, VT
, N0
.getOperand(0));
3170 SDOperand
DAGCombiner::visitBRCOND(SDNode
*N
) {
3171 SDOperand Chain
= N
->getOperand(0);
3172 SDOperand N1
= N
->getOperand(1);
3173 SDOperand N2
= N
->getOperand(2);
3174 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
3176 // never taken branch, fold to chain
3177 if (N1C
&& N1C
->isNullValue())
3179 // unconditional branch
3180 if (N1C
&& N1C
->getValue() == 1)
3181 return DAG
.getNode(ISD::BR
, MVT::Other
, Chain
, N2
);
3182 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
3184 if (N1
.getOpcode() == ISD::SETCC
&&
3185 TLI
.isOperationLegal(ISD::BR_CC
, MVT::Other
)) {
3186 return DAG
.getNode(ISD::BR_CC
, MVT::Other
, Chain
, N1
.getOperand(2),
3187 N1
.getOperand(0), N1
.getOperand(1), N2
);
3192 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
3194 SDOperand
DAGCombiner::visitBR_CC(SDNode
*N
) {
3195 CondCodeSDNode
*CC
= cast
<CondCodeSDNode
>(N
->getOperand(1));
3196 SDOperand CondLHS
= N
->getOperand(2), CondRHS
= N
->getOperand(3);
3198 // Use SimplifySetCC to simplify SETCC's.
3199 SDOperand Simp
= SimplifySetCC(MVT::i1
, CondLHS
, CondRHS
, CC
->get(), false);
3200 if (Simp
.Val
) AddToWorkList(Simp
.Val
);
3202 ConstantSDNode
*SCCC
= dyn_cast_or_null
<ConstantSDNode
>(Simp
.Val
);
3204 // fold br_cc true, dest -> br dest (unconditional branch)
3205 if (SCCC
&& SCCC
->getValue())
3206 return DAG
.getNode(ISD::BR
, MVT::Other
, N
->getOperand(0),
3208 // fold br_cc false, dest -> unconditional fall through
3209 if (SCCC
&& SCCC
->isNullValue())
3210 return N
->getOperand(0);
3212 // fold to a simpler setcc
3213 if (Simp
.Val
&& Simp
.getOpcode() == ISD::SETCC
)
3214 return DAG
.getNode(ISD::BR_CC
, MVT::Other
, N
->getOperand(0),
3215 Simp
.getOperand(2), Simp
.getOperand(0),
3216 Simp
.getOperand(1), N
->getOperand(4));
3221 /// CombineToPreIndexedLoadStore - Try turning a load / store and a
3222 /// pre-indexed load / store when the base pointer is a add or subtract
3223 /// and it has other uses besides the load / store. After the
3224 /// transformation, the new indexed load / store has effectively folded
3225 /// the add / subtract in and all of its other uses are redirected to the
3226 /// new load / store.
3227 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode
*N
) {
3234 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
3235 if (LD
->getAddressingMode() != ISD::UNINDEXED
)
3237 VT
= LD
->getLoadedVT();
3238 if (!TLI
.isIndexedLoadLegal(ISD::PRE_INC
, VT
) &&
3239 !TLI
.isIndexedLoadLegal(ISD::PRE_DEC
, VT
))
3241 Ptr
= LD
->getBasePtr();
3242 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
3243 if (ST
->getAddressingMode() != ISD::UNINDEXED
)
3245 VT
= ST
->getStoredVT();
3246 if (!TLI
.isIndexedStoreLegal(ISD::PRE_INC
, VT
) &&
3247 !TLI
.isIndexedStoreLegal(ISD::PRE_DEC
, VT
))
3249 Ptr
= ST
->getBasePtr();
3254 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
3255 // out. There is no reason to make this a preinc/predec.
3256 if ((Ptr
.getOpcode() != ISD::ADD
&& Ptr
.getOpcode() != ISD::SUB
) ||
3257 Ptr
.Val
->hasOneUse())
3260 // Ask the target to do addressing mode selection.
3263 ISD::MemIndexedMode AM
= ISD::UNINDEXED
;
3264 if (!TLI
.getPreIndexedAddressParts(N
, BasePtr
, Offset
, AM
, DAG
))
3266 // Don't create a indexed load / store with zero offset.
3267 if (isa
<ConstantSDNode
>(Offset
) &&
3268 cast
<ConstantSDNode
>(Offset
)->getValue() == 0)
3271 // Try turning it into a pre-indexed load / store except when:
3272 // 1) The new base ptr is a frame index.
3273 // 2) If N is a store and the new base ptr is either the same as or is a
3274 // predecessor of the value being stored.
3275 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
3276 // that would create a cycle.
3277 // 4) All uses are load / store ops that use it as old base ptr.
3279 // Check #1. Preinc'ing a frame index would require copying the stack pointer
3280 // (plus the implicit offset) to a register to preinc anyway.
3281 if (isa
<FrameIndexSDNode
>(BasePtr
))
3286 SDOperand Val
= cast
<StoreSDNode
>(N
)->getValue();
3287 if (Val
== BasePtr
|| BasePtr
.Val
->isPredecessor(Val
.Val
))
3291 // Now check for #3 and #4.
3292 bool RealUse
= false;
3293 for (SDNode::use_iterator I
= Ptr
.Val
->use_begin(),
3294 E
= Ptr
.Val
->use_end(); I
!= E
; ++I
) {
3298 if (Use
->isPredecessor(N
))
3301 if (!((Use
->getOpcode() == ISD::LOAD
&&
3302 cast
<LoadSDNode
>(Use
)->getBasePtr() == Ptr
) ||
3303 (Use
->getOpcode() == ISD::STORE
) &&
3304 cast
<StoreSDNode
>(Use
)->getBasePtr() == Ptr
))
3312 Result
= DAG
.getIndexedLoad(SDOperand(N
,0), BasePtr
, Offset
, AM
);
3314 Result
= DAG
.getIndexedStore(SDOperand(N
,0), BasePtr
, Offset
, AM
);
3317 DOUT
<< "\nReplacing.4 "; DEBUG(N
->dump(&DAG
));
3318 DOUT
<< "\nWith: "; DEBUG(Result
.Val
->dump(&DAG
));
3320 std::vector
<SDNode
*> NowDead
;
3322 DAG
.ReplaceAllUsesOfValueWith(SDOperand(N
, 0), Result
.getValue(0),
3324 DAG
.ReplaceAllUsesOfValueWith(SDOperand(N
, 1), Result
.getValue(2),
3327 DAG
.ReplaceAllUsesOfValueWith(SDOperand(N
, 0), Result
.getValue(1),
3331 // Nodes can end up on the worklist more than once. Make sure we do
3332 // not process a node that has been replaced.
3333 for (unsigned i
= 0, e
= NowDead
.size(); i
!= e
; ++i
)
3334 removeFromWorkList(NowDead
[i
]);
3335 // Finally, since the node is now dead, remove it from the graph.
3338 // Replace the uses of Ptr with uses of the updated base value.
3339 DAG
.ReplaceAllUsesOfValueWith(Ptr
, Result
.getValue(isLoad
? 1 : 0),
3341 removeFromWorkList(Ptr
.Val
);
3342 for (unsigned i
= 0, e
= NowDead
.size(); i
!= e
; ++i
)
3343 removeFromWorkList(NowDead
[i
]);
3344 DAG
.DeleteNode(Ptr
.Val
);
3349 /// CombineToPostIndexedLoadStore - Try combine a load / store with a
3350 /// add / sub of the base pointer node into a post-indexed load / store.
3351 /// The transformation folded the add / subtract into the new indexed
3352 /// load / store effectively and all of its uses are redirected to the
3353 /// new load / store.
3354 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode
*N
) {
3361 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
3362 if (LD
->getAddressingMode() != ISD::UNINDEXED
)
3364 VT
= LD
->getLoadedVT();
3365 if (!TLI
.isIndexedLoadLegal(ISD::POST_INC
, VT
) &&
3366 !TLI
.isIndexedLoadLegal(ISD::POST_DEC
, VT
))
3368 Ptr
= LD
->getBasePtr();
3369 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
3370 if (ST
->getAddressingMode() != ISD::UNINDEXED
)
3372 VT
= ST
->getStoredVT();
3373 if (!TLI
.isIndexedStoreLegal(ISD::POST_INC
, VT
) &&
3374 !TLI
.isIndexedStoreLegal(ISD::POST_DEC
, VT
))
3376 Ptr
= ST
->getBasePtr();
3381 if (Ptr
.Val
->hasOneUse())
3384 for (SDNode::use_iterator I
= Ptr
.Val
->use_begin(),
3385 E
= Ptr
.Val
->use_end(); I
!= E
; ++I
) {
3388 (Op
->getOpcode() != ISD::ADD
&& Op
->getOpcode() != ISD::SUB
))
3393 ISD::MemIndexedMode AM
= ISD::UNINDEXED
;
3394 if (TLI
.getPostIndexedAddressParts(N
, Op
, BasePtr
, Offset
, AM
, DAG
)) {
3396 std::swap(BasePtr
, Offset
);
3399 // Don't create a indexed load / store with zero offset.
3400 if (isa
<ConstantSDNode
>(Offset
) &&
3401 cast
<ConstantSDNode
>(Offset
)->getValue() == 0)
3404 // Try turning it into a post-indexed load / store except when
3405 // 1) All uses are load / store ops that use it as base ptr.
3406 // 2) Op must be independent of N, i.e. Op is neither a predecessor
3407 // nor a successor of N. Otherwise, if Op is folded that would
3411 bool TryNext
= false;
3412 for (SDNode::use_iterator II
= BasePtr
.Val
->use_begin(),
3413 EE
= BasePtr
.Val
->use_end(); II
!= EE
; ++II
) {
3418 // If all the uses are load / store addresses, then don't do the
3420 if (Use
->getOpcode() == ISD::ADD
|| Use
->getOpcode() == ISD::SUB
){
3421 bool RealUse
= false;
3422 for (SDNode::use_iterator III
= Use
->use_begin(),
3423 EEE
= Use
->use_end(); III
!= EEE
; ++III
) {
3424 SDNode
*UseUse
= *III
;
3425 if (!((UseUse
->getOpcode() == ISD::LOAD
&&
3426 cast
<LoadSDNode
>(UseUse
)->getBasePtr().Val
== Use
) ||
3427 (UseUse
->getOpcode() == ISD::STORE
) &&
3428 cast
<StoreSDNode
>(UseUse
)->getBasePtr().Val
== Use
))
3442 if (!Op
->isPredecessor(N
) && !N
->isPredecessor(Op
)) {
3443 SDOperand Result
= isLoad
3444 ? DAG
.getIndexedLoad(SDOperand(N
,0), BasePtr
, Offset
, AM
)
3445 : DAG
.getIndexedStore(SDOperand(N
,0), BasePtr
, Offset
, AM
);
3448 DOUT
<< "\nReplacing.5 "; DEBUG(N
->dump(&DAG
));
3449 DOUT
<< "\nWith: "; DEBUG(Result
.Val
->dump(&DAG
));
3451 std::vector
<SDNode
*> NowDead
;
3453 DAG
.ReplaceAllUsesOfValueWith(SDOperand(N
, 0), Result
.getValue(0),
3455 DAG
.ReplaceAllUsesOfValueWith(SDOperand(N
, 1), Result
.getValue(2),
3458 DAG
.ReplaceAllUsesOfValueWith(SDOperand(N
, 0), Result
.getValue(1),
3462 // Nodes can end up on the worklist more than once. Make sure we do
3463 // not process a node that has been replaced.
3464 for (unsigned i
= 0, e
= NowDead
.size(); i
!= e
; ++i
)
3465 removeFromWorkList(NowDead
[i
]);
3466 // Finally, since the node is now dead, remove it from the graph.
3469 // Replace the uses of Use with uses of the updated base value.
3470 DAG
.ReplaceAllUsesOfValueWith(SDOperand(Op
, 0),
3471 Result
.getValue(isLoad
? 1 : 0),
3473 removeFromWorkList(Op
);
3474 for (unsigned i
= 0, e
= NowDead
.size(); i
!= e
; ++i
)
3475 removeFromWorkList(NowDead
[i
]);
3486 SDOperand
DAGCombiner::visitLOAD(SDNode
*N
) {
3487 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
3488 SDOperand Chain
= LD
->getChain();
3489 SDOperand Ptr
= LD
->getBasePtr();
3491 // If load is not volatile and there are no uses of the loaded value (and
3492 // the updated indexed value in case of indexed loads), change uses of the
3493 // chain value into uses of the chain input (i.e. delete the dead load).
3494 if (!LD
->isVolatile()) {
3495 if (N
->getValueType(1) == MVT::Other
) {
3497 if (N
->hasNUsesOfValue(0, 0))
3498 return CombineTo(N
, DAG
.getNode(ISD::UNDEF
, N
->getValueType(0)), Chain
);
3501 assert(N
->getValueType(2) == MVT::Other
&& "Malformed indexed loads?");
3502 if (N
->hasNUsesOfValue(0, 0) && N
->hasNUsesOfValue(0, 1)) {
3503 SDOperand Undef0
= DAG
.getNode(ISD::UNDEF
, N
->getValueType(0));
3504 SDOperand Undef1
= DAG
.getNode(ISD::UNDEF
, N
->getValueType(1));
3505 SDOperand To
[] = { Undef0
, Undef1
, Chain
};
3506 return CombineTo(N
, To
, 3);
3511 // If this load is directly stored, replace the load value with the stored
3513 // TODO: Handle store large -> read small portion.
3514 // TODO: Handle TRUNCSTORE/LOADEXT
3515 if (LD
->getExtensionType() == ISD::NON_EXTLOAD
) {
3516 if (ISD::isNON_TRUNCStore(Chain
.Val
)) {
3517 StoreSDNode
*PrevST
= cast
<StoreSDNode
>(Chain
);
3518 if (PrevST
->getBasePtr() == Ptr
&&
3519 PrevST
->getValue().getValueType() == N
->getValueType(0))
3520 return CombineTo(N
, Chain
.getOperand(1), Chain
);
3525 // Walk up chain skipping non-aliasing memory nodes.
3526 SDOperand BetterChain
= FindBetterChain(N
, Chain
);
3528 // If there is a better chain.
3529 if (Chain
!= BetterChain
) {
3532 // Replace the chain to void dependency.
3533 if (LD
->getExtensionType() == ISD::NON_EXTLOAD
) {
3534 ReplLoad
= DAG
.getLoad(N
->getValueType(0), BetterChain
, Ptr
,
3535 LD
->getSrcValue(), LD
->getSrcValueOffset(),
3536 LD
->isVolatile(), LD
->getAlignment());
3538 ReplLoad
= DAG
.getExtLoad(LD
->getExtensionType(),
3539 LD
->getValueType(0),
3540 BetterChain
, Ptr
, LD
->getSrcValue(),
3541 LD
->getSrcValueOffset(),
3544 LD
->getAlignment());
3547 // Create token factor to keep old chain connected.
3548 SDOperand Token
= DAG
.getNode(ISD::TokenFactor
, MVT::Other
,
3549 Chain
, ReplLoad
.getValue(1));
3551 // Replace uses with load result and token factor. Don't add users
3553 return CombineTo(N
, ReplLoad
.getValue(0), Token
, false);
3557 // Try transforming N to an indexed load.
3558 if (CombineToPreIndexedLoadStore(N
) || CombineToPostIndexedLoadStore(N
))
3559 return SDOperand(N
, 0);
3564 SDOperand
DAGCombiner::visitSTORE(SDNode
*N
) {
3565 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
3566 SDOperand Chain
= ST
->getChain();
3567 SDOperand Value
= ST
->getValue();
3568 SDOperand Ptr
= ST
->getBasePtr();
3570 // If this is a store of a bit convert, store the input value if the
3571 // resultant store does not need a higher alignment than the original.
3572 if (Value
.getOpcode() == ISD::BIT_CONVERT
&& !ST
->isTruncatingStore() &&
3573 ST
->getAddressingMode() == ISD::UNINDEXED
) {
3574 unsigned Align
= ST
->getAlignment();
3575 MVT::ValueType SVT
= Value
.getOperand(0).getValueType();
3576 unsigned OrigAlign
= TLI
.getTargetMachine().getTargetData()->
3577 getABITypeAlignment(MVT::getTypeForValueType(SVT
));
3578 if (Align
<= OrigAlign
&& TLI
.isOperationLegal(ISD::STORE
, SVT
))
3579 return DAG
.getStore(Chain
, Value
.getOperand(0), Ptr
, ST
->getSrcValue(),
3580 ST
->getSrcValueOffset());
3583 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
3584 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(Value
)) {
3585 if (Value
.getOpcode() != ISD::TargetConstantFP
) {
3587 switch (CFP
->getValueType(0)) {
3588 default: assert(0 && "Unknown FP type");
3590 if (!AfterLegalize
|| TLI
.isTypeLegal(MVT::i32
)) {
3591 Tmp
= DAG
.getConstant(FloatToBits(CFP
->getValue()), MVT::i32
);
3592 return DAG
.getStore(Chain
, Tmp
, Ptr
, ST
->getSrcValue(),
3593 ST
->getSrcValueOffset());
3597 if (!AfterLegalize
|| TLI
.isTypeLegal(MVT::i64
)) {
3598 Tmp
= DAG
.getConstant(DoubleToBits(CFP
->getValue()), MVT::i64
);
3599 return DAG
.getStore(Chain
, Tmp
, Ptr
, ST
->getSrcValue(),
3600 ST
->getSrcValueOffset());
3601 } else if (TLI
.isTypeLegal(MVT::i32
)) {
3602 // Many FP stores are not make apparent until after legalize, e.g. for
3603 // argument passing. Since this is so common, custom legalize the
3604 // 64-bit integer store into two 32-bit stores.
3605 uint64_t Val
= DoubleToBits(CFP
->getValue());
3606 SDOperand Lo
= DAG
.getConstant(Val
& 0xFFFFFFFF, MVT::i32
);
3607 SDOperand Hi
= DAG
.getConstant(Val
>> 32, MVT::i32
);
3608 if (!TLI
.isLittleEndian()) std::swap(Lo
, Hi
);
3610 SDOperand St0
= DAG
.getStore(Chain
, Lo
, Ptr
, ST
->getSrcValue(),
3611 ST
->getSrcValueOffset());
3612 Ptr
= DAG
.getNode(ISD::ADD
, Ptr
.getValueType(), Ptr
,
3613 DAG
.getConstant(4, Ptr
.getValueType()));
3614 SDOperand St1
= DAG
.getStore(Chain
, Hi
, Ptr
, ST
->getSrcValue(),
3615 ST
->getSrcValueOffset()+4);
3616 return DAG
.getNode(ISD::TokenFactor
, MVT::Other
, St0
, St1
);
3624 // Walk up chain skipping non-aliasing memory nodes.
3625 SDOperand BetterChain
= FindBetterChain(N
, Chain
);
3627 // If there is a better chain.
3628 if (Chain
!= BetterChain
) {
3629 // Replace the chain to avoid dependency.
3630 SDOperand ReplStore
;
3631 if (ST
->isTruncatingStore()) {
3632 ReplStore
= DAG
.getTruncStore(BetterChain
, Value
, Ptr
,
3633 ST
->getSrcValue(),ST
->getSrcValueOffset(), ST
->getStoredVT());
3635 ReplStore
= DAG
.getStore(BetterChain
, Value
, Ptr
,
3636 ST
->getSrcValue(), ST
->getSrcValueOffset());
3639 // Create token to keep both nodes around.
3641 DAG
.getNode(ISD::TokenFactor
, MVT::Other
, Chain
, ReplStore
);
3643 // Don't add users to work list.
3644 return CombineTo(N
, Token
, false);
3648 // Try transforming N to an indexed store.
3649 if (CombineToPreIndexedLoadStore(N
) || CombineToPostIndexedLoadStore(N
))
3650 return SDOperand(N
, 0);
3655 SDOperand
DAGCombiner::visitINSERT_VECTOR_ELT(SDNode
*N
) {
3656 SDOperand InVec
= N
->getOperand(0);
3657 SDOperand InVal
= N
->getOperand(1);
3658 SDOperand EltNo
= N
->getOperand(2);
3660 // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new
3661 // vector with the inserted element.
3662 if (InVec
.getOpcode() == ISD::BUILD_VECTOR
&& isa
<ConstantSDNode
>(EltNo
)) {
3663 unsigned Elt
= cast
<ConstantSDNode
>(EltNo
)->getValue();
3664 SmallVector
<SDOperand
, 8> Ops(InVec
.Val
->op_begin(), InVec
.Val
->op_end());
3665 if (Elt
< Ops
.size())
3667 return DAG
.getNode(ISD::BUILD_VECTOR
, InVec
.getValueType(),
3668 &Ops
[0], Ops
.size());
3674 SDOperand
DAGCombiner::visitVINSERT_VECTOR_ELT(SDNode
*N
) {
3675 SDOperand InVec
= N
->getOperand(0);
3676 SDOperand InVal
= N
->getOperand(1);
3677 SDOperand EltNo
= N
->getOperand(2);
3678 SDOperand NumElts
= N
->getOperand(3);
3679 SDOperand EltType
= N
->getOperand(4);
3681 // If the invec is a VBUILD_VECTOR and if EltNo is a constant, build a new
3682 // vector with the inserted element.
3683 if (InVec
.getOpcode() == ISD::VBUILD_VECTOR
&& isa
<ConstantSDNode
>(EltNo
)) {
3684 unsigned Elt
= cast
<ConstantSDNode
>(EltNo
)->getValue();
3685 SmallVector
<SDOperand
, 8> Ops(InVec
.Val
->op_begin(), InVec
.Val
->op_end());
3686 if (Elt
< Ops
.size()-2)
3688 return DAG
.getNode(ISD::VBUILD_VECTOR
, InVec
.getValueType(),
3689 &Ops
[0], Ops
.size());
3695 SDOperand
DAGCombiner::visitVBUILD_VECTOR(SDNode
*N
) {
3696 unsigned NumInScalars
= N
->getNumOperands()-2;
3697 SDOperand NumElts
= N
->getOperand(NumInScalars
);
3698 SDOperand EltType
= N
->getOperand(NumInScalars
+1);
3700 // Check to see if this is a VBUILD_VECTOR of a bunch of VEXTRACT_VECTOR_ELT
3701 // operations. If so, and if the EXTRACT_ELT vector inputs come from at most
3702 // two distinct vectors, turn this into a shuffle node.
3703 SDOperand VecIn1
, VecIn2
;
3704 for (unsigned i
= 0; i
!= NumInScalars
; ++i
) {
3705 // Ignore undef inputs.
3706 if (N
->getOperand(i
).getOpcode() == ISD::UNDEF
) continue;
3708 // If this input is something other than a VEXTRACT_VECTOR_ELT with a
3709 // constant index, bail out.
3710 if (N
->getOperand(i
).getOpcode() != ISD::VEXTRACT_VECTOR_ELT
||
3711 !isa
<ConstantSDNode
>(N
->getOperand(i
).getOperand(1))) {
3712 VecIn1
= VecIn2
= SDOperand(0, 0);
3716 // If the input vector type disagrees with the result of the vbuild_vector,
3717 // we can't make a shuffle.
3718 SDOperand ExtractedFromVec
= N
->getOperand(i
).getOperand(0);
3719 if (*(ExtractedFromVec
.Val
->op_end()-2) != NumElts
||
3720 *(ExtractedFromVec
.Val
->op_end()-1) != EltType
) {
3721 VecIn1
= VecIn2
= SDOperand(0, 0);
3725 // Otherwise, remember this. We allow up to two distinct input vectors.
3726 if (ExtractedFromVec
== VecIn1
|| ExtractedFromVec
== VecIn2
)
3729 if (VecIn1
.Val
== 0) {
3730 VecIn1
= ExtractedFromVec
;
3731 } else if (VecIn2
.Val
== 0) {
3732 VecIn2
= ExtractedFromVec
;
3735 VecIn1
= VecIn2
= SDOperand(0, 0);
3740 // If everything is good, we can make a shuffle operation.
3742 SmallVector
<SDOperand
, 8> BuildVecIndices
;
3743 for (unsigned i
= 0; i
!= NumInScalars
; ++i
) {
3744 if (N
->getOperand(i
).getOpcode() == ISD::UNDEF
) {
3745 BuildVecIndices
.push_back(DAG
.getNode(ISD::UNDEF
, TLI
.getPointerTy()));
3749 SDOperand Extract
= N
->getOperand(i
);
3751 // If extracting from the first vector, just use the index directly.
3752 if (Extract
.getOperand(0) == VecIn1
) {
3753 BuildVecIndices
.push_back(Extract
.getOperand(1));
3757 // Otherwise, use InIdx + VecSize
3758 unsigned Idx
= cast
<ConstantSDNode
>(Extract
.getOperand(1))->getValue();
3759 BuildVecIndices
.push_back(DAG
.getConstant(Idx
+NumInScalars
,
3760 TLI
.getPointerTy()));
3763 // Add count and size info.
3764 BuildVecIndices
.push_back(NumElts
);
3765 BuildVecIndices
.push_back(DAG
.getValueType(TLI
.getPointerTy()));
3767 // Return the new VVECTOR_SHUFFLE node.
3773 // Use an undef vbuild_vector as input for the second operand.
3774 std::vector
<SDOperand
> UnOps(NumInScalars
,
3775 DAG
.getNode(ISD::UNDEF
,
3776 cast
<VTSDNode
>(EltType
)->getVT()));
3777 UnOps
.push_back(NumElts
);
3778 UnOps
.push_back(EltType
);
3779 Ops
[1] = DAG
.getNode(ISD::VBUILD_VECTOR
, MVT::Vector
,
3780 &UnOps
[0], UnOps
.size());
3781 AddToWorkList(Ops
[1].Val
);
3783 Ops
[2] = DAG
.getNode(ISD::VBUILD_VECTOR
, MVT::Vector
,
3784 &BuildVecIndices
[0], BuildVecIndices
.size());
3787 return DAG
.getNode(ISD::VVECTOR_SHUFFLE
, MVT::Vector
, Ops
, 5);
3793 SDOperand
DAGCombiner::visitVECTOR_SHUFFLE(SDNode
*N
) {
3794 SDOperand ShufMask
= N
->getOperand(2);
3795 unsigned NumElts
= ShufMask
.getNumOperands();
3797 // If the shuffle mask is an identity operation on the LHS, return the LHS.
3798 bool isIdentity
= true;
3799 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
3800 if (ShufMask
.getOperand(i
).getOpcode() != ISD::UNDEF
&&
3801 cast
<ConstantSDNode
>(ShufMask
.getOperand(i
))->getValue() != i
) {
3806 if (isIdentity
) return N
->getOperand(0);
3808 // If the shuffle mask is an identity operation on the RHS, return the RHS.
3810 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
3811 if (ShufMask
.getOperand(i
).getOpcode() != ISD::UNDEF
&&
3812 cast
<ConstantSDNode
>(ShufMask
.getOperand(i
))->getValue() != i
+NumElts
) {
3817 if (isIdentity
) return N
->getOperand(1);
3819 // Check if the shuffle is a unary shuffle, i.e. one of the vectors is not
3821 bool isUnary
= true;
3822 bool isSplat
= true;
3824 unsigned BaseIdx
= 0;
3825 for (unsigned i
= 0; i
!= NumElts
; ++i
)
3826 if (ShufMask
.getOperand(i
).getOpcode() != ISD::UNDEF
) {
3827 unsigned Idx
= cast
<ConstantSDNode
>(ShufMask
.getOperand(i
))->getValue();
3828 int V
= (Idx
< NumElts
) ? 0 : 1;
3842 SDOperand N0
= N
->getOperand(0);
3843 SDOperand N1
= N
->getOperand(1);
3844 // Normalize unary shuffle so the RHS is undef.
3845 if (isUnary
&& VecNum
== 1)
3848 // If it is a splat, check if the argument vector is a build_vector with
3849 // all scalar elements the same.
3852 if (V
->getOpcode() == ISD::BIT_CONVERT
)
3853 V
= V
->getOperand(0).Val
;
3854 if (V
->getOpcode() == ISD::BUILD_VECTOR
) {
3855 unsigned NumElems
= V
->getNumOperands()-2;
3856 if (NumElems
> BaseIdx
) {
3858 bool AllSame
= true;
3859 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
3860 if (V
->getOperand(i
).getOpcode() != ISD::UNDEF
) {
3861 Base
= V
->getOperand(i
);
3865 // Splat of <u, u, u, u>, return <u, u, u, u>
3868 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
3869 if (V
->getOperand(i
).getOpcode() != ISD::UNDEF
&&
3870 V
->getOperand(i
) != Base
) {
3875 // Splat of <x, x, x, x>, return <x, x, x, x>
3882 // If it is a unary or the LHS and the RHS are the same node, turn the RHS
3884 if (isUnary
|| N0
== N1
) {
3885 if (N0
.getOpcode() == ISD::UNDEF
)
3886 return DAG
.getNode(ISD::UNDEF
, N
->getValueType(0));
3887 // Check the SHUFFLE mask, mapping any inputs from the 2nd operand into the
3889 SmallVector
<SDOperand
, 8> MappedOps
;
3890 for (unsigned i
= 0, e
= ShufMask
.getNumOperands(); i
!= e
; ++i
) {
3891 if (ShufMask
.getOperand(i
).getOpcode() == ISD::UNDEF
||
3892 cast
<ConstantSDNode
>(ShufMask
.getOperand(i
))->getValue() < NumElts
) {
3893 MappedOps
.push_back(ShufMask
.getOperand(i
));
3896 cast
<ConstantSDNode
>(ShufMask
.getOperand(i
))->getValue() - NumElts
;
3897 MappedOps
.push_back(DAG
.getConstant(NewIdx
, MVT::i32
));
3900 ShufMask
= DAG
.getNode(ISD::BUILD_VECTOR
, ShufMask
.getValueType(),
3901 &MappedOps
[0], MappedOps
.size());
3902 AddToWorkList(ShufMask
.Val
);
3903 return DAG
.getNode(ISD::VECTOR_SHUFFLE
, N
->getValueType(0),
3905 DAG
.getNode(ISD::UNDEF
, N
->getValueType(0)),
3912 SDOperand
DAGCombiner::visitVVECTOR_SHUFFLE(SDNode
*N
) {
3913 SDOperand ShufMask
= N
->getOperand(2);
3914 unsigned NumElts
= ShufMask
.getNumOperands()-2;
3916 // If the shuffle mask is an identity operation on the LHS, return the LHS.
3917 bool isIdentity
= true;
3918 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
3919 if (ShufMask
.getOperand(i
).getOpcode() != ISD::UNDEF
&&
3920 cast
<ConstantSDNode
>(ShufMask
.getOperand(i
))->getValue() != i
) {
3925 if (isIdentity
) return N
->getOperand(0);
3927 // If the shuffle mask is an identity operation on the RHS, return the RHS.
3929 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
3930 if (ShufMask
.getOperand(i
).getOpcode() != ISD::UNDEF
&&
3931 cast
<ConstantSDNode
>(ShufMask
.getOperand(i
))->getValue() != i
+NumElts
) {
3936 if (isIdentity
) return N
->getOperand(1);
3938 // Check if the shuffle is a unary shuffle, i.e. one of the vectors is not
3940 bool isUnary
= true;
3941 bool isSplat
= true;
3943 unsigned BaseIdx
= 0;
3944 for (unsigned i
= 0; i
!= NumElts
; ++i
)
3945 if (ShufMask
.getOperand(i
).getOpcode() != ISD::UNDEF
) {
3946 unsigned Idx
= cast
<ConstantSDNode
>(ShufMask
.getOperand(i
))->getValue();
3947 int V
= (Idx
< NumElts
) ? 0 : 1;
3961 SDOperand N0
= N
->getOperand(0);
3962 SDOperand N1
= N
->getOperand(1);
3963 // Normalize unary shuffle so the RHS is undef.
3964 if (isUnary
&& VecNum
== 1)
3967 // If it is a splat, check if the argument vector is a build_vector with
3968 // all scalar elements the same.
3972 // If this is a vbit convert that changes the element type of the vector but
3973 // not the number of vector elements, look through it. Be careful not to
3974 // look though conversions that change things like v4f32 to v2f64.
3975 if (V
->getOpcode() == ISD::VBIT_CONVERT
) {
3976 SDOperand ConvInput
= V
->getOperand(0);
3977 if (ConvInput
.getValueType() == MVT::Vector
&&
3979 ConvInput
.getConstantOperandVal(ConvInput
.getNumOperands()-2))
3983 if (V
->getOpcode() == ISD::VBUILD_VECTOR
) {
3984 unsigned NumElems
= V
->getNumOperands()-2;
3985 if (NumElems
> BaseIdx
) {
3987 bool AllSame
= true;
3988 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
3989 if (V
->getOperand(i
).getOpcode() != ISD::UNDEF
) {
3990 Base
= V
->getOperand(i
);
3994 // Splat of <u, u, u, u>, return <u, u, u, u>
3997 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
3998 if (V
->getOperand(i
).getOpcode() != ISD::UNDEF
&&
3999 V
->getOperand(i
) != Base
) {
4004 // Splat of <x, x, x, x>, return <x, x, x, x>
4011 // If it is a unary or the LHS and the RHS are the same node, turn the RHS
4013 if (isUnary
|| N0
== N1
) {
4014 // Check the SHUFFLE mask, mapping any inputs from the 2nd operand into the
4016 SmallVector
<SDOperand
, 8> MappedOps
;
4017 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
4018 if (ShufMask
.getOperand(i
).getOpcode() == ISD::UNDEF
||
4019 cast
<ConstantSDNode
>(ShufMask
.getOperand(i
))->getValue() < NumElts
) {
4020 MappedOps
.push_back(ShufMask
.getOperand(i
));
4023 cast
<ConstantSDNode
>(ShufMask
.getOperand(i
))->getValue() - NumElts
;
4024 MappedOps
.push_back(DAG
.getConstant(NewIdx
, MVT::i32
));
4027 // Add the type/#elts values.
4028 MappedOps
.push_back(ShufMask
.getOperand(NumElts
));
4029 MappedOps
.push_back(ShufMask
.getOperand(NumElts
+1));
4031 ShufMask
= DAG
.getNode(ISD::VBUILD_VECTOR
, ShufMask
.getValueType(),
4032 &MappedOps
[0], MappedOps
.size());
4033 AddToWorkList(ShufMask
.Val
);
4035 // Build the undef vector.
4036 SDOperand UDVal
= DAG
.getNode(ISD::UNDEF
, MappedOps
[0].getValueType());
4037 for (unsigned i
= 0; i
!= NumElts
; ++i
)
4038 MappedOps
[i
] = UDVal
;
4039 MappedOps
[NumElts
] = *(N0
.Val
->op_end()-2);
4040 MappedOps
[NumElts
+1] = *(N0
.Val
->op_end()-1);
4041 UDVal
= DAG
.getNode(ISD::VBUILD_VECTOR
, MVT::Vector
,
4042 &MappedOps
[0], MappedOps
.size());
4044 return DAG
.getNode(ISD::VVECTOR_SHUFFLE
, MVT::Vector
,
4045 N0
, UDVal
, ShufMask
,
4046 MappedOps
[NumElts
], MappedOps
[NumElts
+1]);
4052 /// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
4053 /// a VAND to a vector_shuffle with the destination vector and a zero vector.
4054 /// e.g. VAND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
4055 /// vector_shuffle V, Zero, <0, 4, 2, 4>
4056 SDOperand
DAGCombiner::XformToShuffleWithZero(SDNode
*N
) {
4057 SDOperand LHS
= N
->getOperand(0);
4058 SDOperand RHS
= N
->getOperand(1);
4059 if (N
->getOpcode() == ISD::VAND
) {
4060 SDOperand DstVecSize
= *(LHS
.Val
->op_end()-2);
4061 SDOperand DstVecEVT
= *(LHS
.Val
->op_end()-1);
4062 if (RHS
.getOpcode() == ISD::VBIT_CONVERT
)
4063 RHS
= RHS
.getOperand(0);
4064 if (RHS
.getOpcode() == ISD::VBUILD_VECTOR
) {
4065 std::vector
<SDOperand
> IdxOps
;
4066 unsigned NumOps
= RHS
.getNumOperands();
4067 unsigned NumElts
= NumOps
-2;
4068 MVT::ValueType EVT
= cast
<VTSDNode
>(RHS
.getOperand(NumOps
-1))->getVT();
4069 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
4070 SDOperand Elt
= RHS
.getOperand(i
);
4071 if (!isa
<ConstantSDNode
>(Elt
))
4073 else if (cast
<ConstantSDNode
>(Elt
)->isAllOnesValue())
4074 IdxOps
.push_back(DAG
.getConstant(i
, EVT
));
4075 else if (cast
<ConstantSDNode
>(Elt
)->isNullValue())
4076 IdxOps
.push_back(DAG
.getConstant(NumElts
, EVT
));
4081 // Let's see if the target supports this vector_shuffle.
4082 if (!TLI
.isVectorClearMaskLegal(IdxOps
, EVT
, DAG
))
4085 // Return the new VVECTOR_SHUFFLE node.
4086 SDOperand NumEltsNode
= DAG
.getConstant(NumElts
, MVT::i32
);
4087 SDOperand EVTNode
= DAG
.getValueType(EVT
);
4088 std::vector
<SDOperand
> Ops
;
4089 LHS
= DAG
.getNode(ISD::VBIT_CONVERT
, MVT::Vector
, LHS
, NumEltsNode
,
4092 AddToWorkList(LHS
.Val
);
4093 std::vector
<SDOperand
> ZeroOps(NumElts
, DAG
.getConstant(0, EVT
));
4094 ZeroOps
.push_back(NumEltsNode
);
4095 ZeroOps
.push_back(EVTNode
);
4096 Ops
.push_back(DAG
.getNode(ISD::VBUILD_VECTOR
, MVT::Vector
,
4097 &ZeroOps
[0], ZeroOps
.size()));
4098 IdxOps
.push_back(NumEltsNode
);
4099 IdxOps
.push_back(EVTNode
);
4100 Ops
.push_back(DAG
.getNode(ISD::VBUILD_VECTOR
, MVT::Vector
,
4101 &IdxOps
[0], IdxOps
.size()));
4102 Ops
.push_back(NumEltsNode
);
4103 Ops
.push_back(EVTNode
);
4104 SDOperand Result
= DAG
.getNode(ISD::VVECTOR_SHUFFLE
, MVT::Vector
,
4105 &Ops
[0], Ops
.size());
4106 if (NumEltsNode
!= DstVecSize
|| EVTNode
!= DstVecEVT
) {
4107 Result
= DAG
.getNode(ISD::VBIT_CONVERT
, MVT::Vector
, Result
,
4108 DstVecSize
, DstVecEVT
);
4116 /// visitVBinOp - Visit a binary vector operation, like VADD. IntOp indicates
4117 /// the scalar operation of the vop if it is operating on an integer vector
4118 /// (e.g. ADD) and FPOp indicates the FP version (e.g. FADD).
4119 SDOperand
DAGCombiner::visitVBinOp(SDNode
*N
, ISD::NodeType IntOp
,
4120 ISD::NodeType FPOp
) {
4121 MVT::ValueType EltType
= cast
<VTSDNode
>(*(N
->op_end()-1))->getVT();
4122 ISD::NodeType ScalarOp
= MVT::isInteger(EltType
) ? IntOp
: FPOp
;
4123 SDOperand LHS
= N
->getOperand(0);
4124 SDOperand RHS
= N
->getOperand(1);
4125 SDOperand Shuffle
= XformToShuffleWithZero(N
);
4126 if (Shuffle
.Val
) return Shuffle
;
4128 // If the LHS and RHS are VBUILD_VECTOR nodes, see if we can constant fold
4130 if (LHS
.getOpcode() == ISD::VBUILD_VECTOR
&&
4131 RHS
.getOpcode() == ISD::VBUILD_VECTOR
) {
4132 SmallVector
<SDOperand
, 8> Ops
;
4133 for (unsigned i
= 0, e
= LHS
.getNumOperands()-2; i
!= e
; ++i
) {
4134 SDOperand LHSOp
= LHS
.getOperand(i
);
4135 SDOperand RHSOp
= RHS
.getOperand(i
);
4136 // If these two elements can't be folded, bail out.
4137 if ((LHSOp
.getOpcode() != ISD::UNDEF
&&
4138 LHSOp
.getOpcode() != ISD::Constant
&&
4139 LHSOp
.getOpcode() != ISD::ConstantFP
) ||
4140 (RHSOp
.getOpcode() != ISD::UNDEF
&&
4141 RHSOp
.getOpcode() != ISD::Constant
&&
4142 RHSOp
.getOpcode() != ISD::ConstantFP
))
4144 // Can't fold divide by zero.
4145 if (N
->getOpcode() == ISD::VSDIV
|| N
->getOpcode() == ISD::VUDIV
) {
4146 if ((RHSOp
.getOpcode() == ISD::Constant
&&
4147 cast
<ConstantSDNode
>(RHSOp
.Val
)->isNullValue()) ||
4148 (RHSOp
.getOpcode() == ISD::ConstantFP
&&
4149 !cast
<ConstantFPSDNode
>(RHSOp
.Val
)->getValue()))
4152 Ops
.push_back(DAG
.getNode(ScalarOp
, EltType
, LHSOp
, RHSOp
));
4153 AddToWorkList(Ops
.back().Val
);
4154 assert((Ops
.back().getOpcode() == ISD::UNDEF
||
4155 Ops
.back().getOpcode() == ISD::Constant
||
4156 Ops
.back().getOpcode() == ISD::ConstantFP
) &&
4157 "Scalar binop didn't fold!");
4160 if (Ops
.size() == LHS
.getNumOperands()-2) {
4161 Ops
.push_back(*(LHS
.Val
->op_end()-2));
4162 Ops
.push_back(*(LHS
.Val
->op_end()-1));
4163 return DAG
.getNode(ISD::VBUILD_VECTOR
, MVT::Vector
, &Ops
[0], Ops
.size());
4170 SDOperand
DAGCombiner::SimplifySelect(SDOperand N0
, SDOperand N1
, SDOperand N2
){
4171 assert(N0
.getOpcode() ==ISD::SETCC
&& "First argument must be a SetCC node!");
4173 SDOperand SCC
= SimplifySelectCC(N0
.getOperand(0), N0
.getOperand(1), N1
, N2
,
4174 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
4175 // If we got a simplified select_cc node back from SimplifySelectCC, then
4176 // break it down into a new SETCC node, and a new SELECT node, and then return
4177 // the SELECT node, since we were called with a SELECT node.
4179 // Check to see if we got a select_cc back (to turn into setcc/select).
4180 // Otherwise, just return whatever node we got back, like fabs.
4181 if (SCC
.getOpcode() == ISD::SELECT_CC
) {
4182 SDOperand SETCC
= DAG
.getNode(ISD::SETCC
, N0
.getValueType(),
4183 SCC
.getOperand(0), SCC
.getOperand(1),
4185 AddToWorkList(SETCC
.Val
);
4186 return DAG
.getNode(ISD::SELECT
, SCC
.getValueType(), SCC
.getOperand(2),
4187 SCC
.getOperand(3), SETCC
);
4194 /// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
4195 /// are the two values being selected between, see if we can simplify the
4196 /// select. Callers of this should assume that TheSelect is deleted if this
4197 /// returns true. As such, they should return the appropriate thing (e.g. the
4198 /// node) back to the top-level of the DAG combiner loop to avoid it being
4201 bool DAGCombiner::SimplifySelectOps(SDNode
*TheSelect
, SDOperand LHS
,
4204 // If this is a select from two identical things, try to pull the operation
4205 // through the select.
4206 if (LHS
.getOpcode() == RHS
.getOpcode() && LHS
.hasOneUse() && RHS
.hasOneUse()){
4207 // If this is a load and the token chain is identical, replace the select
4208 // of two loads with a load through a select of the address to load from.
4209 // This triggers in things like "select bool X, 10.0, 123.0" after the FP
4210 // constants have been dropped into the constant pool.
4211 if (LHS
.getOpcode() == ISD::LOAD
&&
4212 // Token chains must be identical.
4213 LHS
.getOperand(0) == RHS
.getOperand(0)) {
4214 LoadSDNode
*LLD
= cast
<LoadSDNode
>(LHS
);
4215 LoadSDNode
*RLD
= cast
<LoadSDNode
>(RHS
);
4217 // If this is an EXTLOAD, the VT's must match.
4218 if (LLD
->getLoadedVT() == RLD
->getLoadedVT()) {
4219 // FIXME: this conflates two src values, discarding one. This is not
4220 // the right thing to do, but nothing uses srcvalues now. When they do,
4221 // turn SrcValue into a list of locations.
4223 if (TheSelect
->getOpcode() == ISD::SELECT
) {
4224 // Check that the condition doesn't reach either load. If so, folding
4225 // this will induce a cycle into the DAG.
4226 if (!LLD
->isPredecessor(TheSelect
->getOperand(0).Val
) &&
4227 !RLD
->isPredecessor(TheSelect
->getOperand(0).Val
)) {
4228 Addr
= DAG
.getNode(ISD::SELECT
, LLD
->getBasePtr().getValueType(),
4229 TheSelect
->getOperand(0), LLD
->getBasePtr(),
4233 // Check that the condition doesn't reach either load. If so, folding
4234 // this will induce a cycle into the DAG.
4235 if (!LLD
->isPredecessor(TheSelect
->getOperand(0).Val
) &&
4236 !RLD
->isPredecessor(TheSelect
->getOperand(0).Val
) &&
4237 !LLD
->isPredecessor(TheSelect
->getOperand(1).Val
) &&
4238 !RLD
->isPredecessor(TheSelect
->getOperand(1).Val
)) {
4239 Addr
= DAG
.getNode(ISD::SELECT_CC
, LLD
->getBasePtr().getValueType(),
4240 TheSelect
->getOperand(0),
4241 TheSelect
->getOperand(1),
4242 LLD
->getBasePtr(), RLD
->getBasePtr(),
4243 TheSelect
->getOperand(4));
4249 if (LLD
->getExtensionType() == ISD::NON_EXTLOAD
)
4250 Load
= DAG
.getLoad(TheSelect
->getValueType(0), LLD
->getChain(),
4251 Addr
,LLD
->getSrcValue(),
4252 LLD
->getSrcValueOffset(),
4254 LLD
->getAlignment());
4256 Load
= DAG
.getExtLoad(LLD
->getExtensionType(),
4257 TheSelect
->getValueType(0),
4258 LLD
->getChain(), Addr
, LLD
->getSrcValue(),
4259 LLD
->getSrcValueOffset(),
4262 LLD
->getAlignment());
4264 // Users of the select now use the result of the load.
4265 CombineTo(TheSelect
, Load
);
4267 // Users of the old loads now use the new load's chain. We know the
4268 // old-load value is dead now.
4269 CombineTo(LHS
.Val
, Load
.getValue(0), Load
.getValue(1));
4270 CombineTo(RHS
.Val
, Load
.getValue(0), Load
.getValue(1));
4280 SDOperand
DAGCombiner::SimplifySelectCC(SDOperand N0
, SDOperand N1
,
4281 SDOperand N2
, SDOperand N3
,
4282 ISD::CondCode CC
, bool NotExtCompare
) {
4284 MVT::ValueType VT
= N2
.getValueType();
4285 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.Val
);
4286 ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
.Val
);
4287 ConstantSDNode
*N3C
= dyn_cast
<ConstantSDNode
>(N3
.Val
);
4289 // Determine if the condition we're dealing with is constant
4290 SDOperand SCC
= SimplifySetCC(TLI
.getSetCCResultTy(), N0
, N1
, CC
, false);
4291 if (SCC
.Val
) AddToWorkList(SCC
.Val
);
4292 ConstantSDNode
*SCCC
= dyn_cast_or_null
<ConstantSDNode
>(SCC
.Val
);
4294 // fold select_cc true, x, y -> x
4295 if (SCCC
&& SCCC
->getValue())
4297 // fold select_cc false, x, y -> y
4298 if (SCCC
&& SCCC
->getValue() == 0)
4301 // Check to see if we can simplify the select into an fabs node
4302 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N1
)) {
4303 // Allow either -0.0 or 0.0
4304 if (CFP
->getValue() == 0.0) {
4305 // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
4306 if ((CC
== ISD::SETGE
|| CC
== ISD::SETGT
) &&
4307 N0
== N2
&& N3
.getOpcode() == ISD::FNEG
&&
4308 N2
== N3
.getOperand(0))
4309 return DAG
.getNode(ISD::FABS
, VT
, N0
);
4311 // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
4312 if ((CC
== ISD::SETLT
|| CC
== ISD::SETLE
) &&
4313 N0
== N3
&& N2
.getOpcode() == ISD::FNEG
&&
4314 N2
.getOperand(0) == N3
)
4315 return DAG
.getNode(ISD::FABS
, VT
, N3
);
4319 // Check to see if we can perform the "gzip trick", transforming
4320 // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
4321 if (N1C
&& N3C
&& N3C
->isNullValue() && CC
== ISD::SETLT
&&
4322 MVT::isInteger(N0
.getValueType()) &&
4323 MVT::isInteger(N2
.getValueType()) &&
4324 (N1C
->isNullValue() || // (a < 0) ? b : 0
4325 (N1C
->getValue() == 1 && N0
== N2
))) { // (a < 1) ? a : 0
4326 MVT::ValueType XType
= N0
.getValueType();
4327 MVT::ValueType AType
= N2
.getValueType();
4328 if (XType
>= AType
) {
4329 // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
4330 // single-bit constant.
4331 if (N2C
&& ((N2C
->getValue() & (N2C
->getValue()-1)) == 0)) {
4332 unsigned ShCtV
= Log2_64(N2C
->getValue());
4333 ShCtV
= MVT::getSizeInBits(XType
)-ShCtV
-1;
4334 SDOperand ShCt
= DAG
.getConstant(ShCtV
, TLI
.getShiftAmountTy());
4335 SDOperand Shift
= DAG
.getNode(ISD::SRL
, XType
, N0
, ShCt
);
4336 AddToWorkList(Shift
.Val
);
4337 if (XType
> AType
) {
4338 Shift
= DAG
.getNode(ISD::TRUNCATE
, AType
, Shift
);
4339 AddToWorkList(Shift
.Val
);
4341 return DAG
.getNode(ISD::AND
, AType
, Shift
, N2
);
4343 SDOperand Shift
= DAG
.getNode(ISD::SRA
, XType
, N0
,
4344 DAG
.getConstant(MVT::getSizeInBits(XType
)-1,
4345 TLI
.getShiftAmountTy()));
4346 AddToWorkList(Shift
.Val
);
4347 if (XType
> AType
) {
4348 Shift
= DAG
.getNode(ISD::TRUNCATE
, AType
, Shift
);
4349 AddToWorkList(Shift
.Val
);
4351 return DAG
.getNode(ISD::AND
, AType
, Shift
, N2
);
4355 // fold select C, 16, 0 -> shl C, 4
4356 if (N2C
&& N3C
&& N3C
->isNullValue() && isPowerOf2_64(N2C
->getValue()) &&
4357 TLI
.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult
) {
4359 // If the caller doesn't want us to simplify this into a zext of a compare,
4361 if (NotExtCompare
&& N2C
->getValue() == 1)
4364 // Get a SetCC of the condition
4365 // FIXME: Should probably make sure that setcc is legal if we ever have a
4366 // target where it isn't.
4367 SDOperand Temp
, SCC
;
4368 // cast from setcc result type to select result type
4369 if (AfterLegalize
) {
4370 SCC
= DAG
.getSetCC(TLI
.getSetCCResultTy(), N0
, N1
, CC
);
4371 if (N2
.getValueType() < SCC
.getValueType())
4372 Temp
= DAG
.getZeroExtendInReg(SCC
, N2
.getValueType());
4374 Temp
= DAG
.getNode(ISD::ZERO_EXTEND
, N2
.getValueType(), SCC
);
4376 SCC
= DAG
.getSetCC(MVT::i1
, N0
, N1
, CC
);
4377 Temp
= DAG
.getNode(ISD::ZERO_EXTEND
, N2
.getValueType(), SCC
);
4379 AddToWorkList(SCC
.Val
);
4380 AddToWorkList(Temp
.Val
);
4382 if (N2C
->getValue() == 1)
4384 // shl setcc result by log2 n2c
4385 return DAG
.getNode(ISD::SHL
, N2
.getValueType(), Temp
,
4386 DAG
.getConstant(Log2_64(N2C
->getValue()),
4387 TLI
.getShiftAmountTy()));
4390 // Check to see if this is the equivalent of setcc
4391 // FIXME: Turn all of these into setcc if setcc if setcc is legal
4392 // otherwise, go ahead with the folds.
4393 if (0 && N3C
&& N3C
->isNullValue() && N2C
&& (N2C
->getValue() == 1ULL)) {
4394 MVT::ValueType XType
= N0
.getValueType();
4395 if (TLI
.isOperationLegal(ISD::SETCC
, TLI
.getSetCCResultTy())) {
4396 SDOperand Res
= DAG
.getSetCC(TLI
.getSetCCResultTy(), N0
, N1
, CC
);
4397 if (Res
.getValueType() != VT
)
4398 Res
= DAG
.getNode(ISD::ZERO_EXTEND
, VT
, Res
);
4402 // seteq X, 0 -> srl (ctlz X, log2(size(X)))
4403 if (N1C
&& N1C
->isNullValue() && CC
== ISD::SETEQ
&&
4404 TLI
.isOperationLegal(ISD::CTLZ
, XType
)) {
4405 SDOperand Ctlz
= DAG
.getNode(ISD::CTLZ
, XType
, N0
);
4406 return DAG
.getNode(ISD::SRL
, XType
, Ctlz
,
4407 DAG
.getConstant(Log2_32(MVT::getSizeInBits(XType
)),
4408 TLI
.getShiftAmountTy()));
4410 // setgt X, 0 -> srl (and (-X, ~X), size(X)-1)
4411 if (N1C
&& N1C
->isNullValue() && CC
== ISD::SETGT
) {
4412 SDOperand NegN0
= DAG
.getNode(ISD::SUB
, XType
, DAG
.getConstant(0, XType
),
4414 SDOperand NotN0
= DAG
.getNode(ISD::XOR
, XType
, N0
,
4415 DAG
.getConstant(~0ULL, XType
));
4416 return DAG
.getNode(ISD::SRL
, XType
,
4417 DAG
.getNode(ISD::AND
, XType
, NegN0
, NotN0
),
4418 DAG
.getConstant(MVT::getSizeInBits(XType
)-1,
4419 TLI
.getShiftAmountTy()));
4421 // setgt X, -1 -> xor (srl (X, size(X)-1), 1)
4422 if (N1C
&& N1C
->isAllOnesValue() && CC
== ISD::SETGT
) {
4423 SDOperand Sign
= DAG
.getNode(ISD::SRL
, XType
, N0
,
4424 DAG
.getConstant(MVT::getSizeInBits(XType
)-1,
4425 TLI
.getShiftAmountTy()));
4426 return DAG
.getNode(ISD::XOR
, XType
, Sign
, DAG
.getConstant(1, XType
));
4430 // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
4431 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
4432 if (N1C
&& N1C
->isNullValue() && (CC
== ISD::SETLT
|| CC
== ISD::SETLE
) &&
4433 N0
== N3
&& N2
.getOpcode() == ISD::SUB
&& N0
== N2
.getOperand(1) &&
4434 N2
.getOperand(0) == N1
&& MVT::isInteger(N0
.getValueType())) {
4435 MVT::ValueType XType
= N0
.getValueType();
4436 SDOperand Shift
= DAG
.getNode(ISD::SRA
, XType
, N0
,
4437 DAG
.getConstant(MVT::getSizeInBits(XType
)-1,
4438 TLI
.getShiftAmountTy()));
4439 SDOperand Add
= DAG
.getNode(ISD::ADD
, XType
, N0
, Shift
);
4440 AddToWorkList(Shift
.Val
);
4441 AddToWorkList(Add
.Val
);
4442 return DAG
.getNode(ISD::XOR
, XType
, Add
, Shift
);
4444 // Check to see if this is an integer abs. select_cc setgt X, -1, X, -X ->
4445 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
4446 if (N1C
&& N1C
->isAllOnesValue() && CC
== ISD::SETGT
&&
4447 N0
== N2
&& N3
.getOpcode() == ISD::SUB
&& N0
== N3
.getOperand(1)) {
4448 if (ConstantSDNode
*SubC
= dyn_cast
<ConstantSDNode
>(N3
.getOperand(0))) {
4449 MVT::ValueType XType
= N0
.getValueType();
4450 if (SubC
->isNullValue() && MVT::isInteger(XType
)) {
4451 SDOperand Shift
= DAG
.getNode(ISD::SRA
, XType
, N0
,
4452 DAG
.getConstant(MVT::getSizeInBits(XType
)-1,
4453 TLI
.getShiftAmountTy()));
4454 SDOperand Add
= DAG
.getNode(ISD::ADD
, XType
, N0
, Shift
);
4455 AddToWorkList(Shift
.Val
);
4456 AddToWorkList(Add
.Val
);
4457 return DAG
.getNode(ISD::XOR
, XType
, Add
, Shift
);
4465 /// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
4466 SDOperand
DAGCombiner::SimplifySetCC(MVT::ValueType VT
, SDOperand N0
,
4467 SDOperand N1
, ISD::CondCode Cond
,
4468 bool foldBooleans
) {
4469 TargetLowering::DAGCombinerInfo
4470 DagCombineInfo(DAG
, !AfterLegalize
, false, this);
4471 return TLI
.SimplifySetCC(VT
, N0
, N1
, Cond
, foldBooleans
, DagCombineInfo
);
4474 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
4475 /// return a DAG expression to select that will generate the same value by
4476 /// multiplying by a magic number. See:
4477 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
4478 SDOperand
DAGCombiner::BuildSDIV(SDNode
*N
) {
4479 std::vector
<SDNode
*> Built
;
4480 SDOperand S
= TLI
.BuildSDIV(N
, DAG
, &Built
);
4482 for (std::vector
<SDNode
*>::iterator ii
= Built
.begin(), ee
= Built
.end();
4488 /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
4489 /// return a DAG expression to select that will generate the same value by
4490 /// multiplying by a magic number. See:
4491 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
4492 SDOperand
DAGCombiner::BuildUDIV(SDNode
*N
) {
4493 std::vector
<SDNode
*> Built
;
4494 SDOperand S
= TLI
.BuildUDIV(N
, DAG
, &Built
);
4496 for (std::vector
<SDNode
*>::iterator ii
= Built
.begin(), ee
= Built
.end();
4502 /// FindBaseOffset - Return true if base is known not to alias with anything
4503 /// but itself. Provides base object and offset as results.
4504 static bool FindBaseOffset(SDOperand Ptr
, SDOperand
&Base
, int64_t &Offset
) {
4505 // Assume it is a primitive operation.
4506 Base
= Ptr
; Offset
= 0;
4508 // If it's an adding a simple constant then integrate the offset.
4509 if (Base
.getOpcode() == ISD::ADD
) {
4510 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Base
.getOperand(1))) {
4511 Base
= Base
.getOperand(0);
4512 Offset
+= C
->getValue();
4516 // If it's any of the following then it can't alias with anything but itself.
4517 return isa
<FrameIndexSDNode
>(Base
) ||
4518 isa
<ConstantPoolSDNode
>(Base
) ||
4519 isa
<GlobalAddressSDNode
>(Base
);
4522 /// isAlias - Return true if there is any possibility that the two addresses
4524 bool DAGCombiner::isAlias(SDOperand Ptr1
, int64_t Size1
,
4525 const Value
*SrcValue1
, int SrcValueOffset1
,
4526 SDOperand Ptr2
, int64_t Size2
,
4527 const Value
*SrcValue2
, int SrcValueOffset2
)
4529 // If they are the same then they must be aliases.
4530 if (Ptr1
== Ptr2
) return true;
4532 // Gather base node and offset information.
4533 SDOperand Base1
, Base2
;
4534 int64_t Offset1
, Offset2
;
4535 bool KnownBase1
= FindBaseOffset(Ptr1
, Base1
, Offset1
);
4536 bool KnownBase2
= FindBaseOffset(Ptr2
, Base2
, Offset2
);
4538 // If they have a same base address then...
4539 if (Base1
== Base2
) {
4540 // Check to see if the addresses overlap.
4541 return!((Offset1
+ Size1
) <= Offset2
|| (Offset2
+ Size2
) <= Offset1
);
4544 // If we know both bases then they can't alias.
4545 if (KnownBase1
&& KnownBase2
) return false;
4547 if (CombinerGlobalAA
) {
4548 // Use alias analysis information.
4549 int Overlap1
= Size1
+ SrcValueOffset1
+ Offset1
;
4550 int Overlap2
= Size2
+ SrcValueOffset2
+ Offset2
;
4551 AliasAnalysis::AliasResult AAResult
=
4552 AA
.alias(SrcValue1
, Overlap1
, SrcValue2
, Overlap2
);
4553 if (AAResult
== AliasAnalysis::NoAlias
)
4557 // Otherwise we have to assume they alias.
4561 /// FindAliasInfo - Extracts the relevant alias information from the memory
4562 /// node. Returns true if the operand was a load.
4563 bool DAGCombiner::FindAliasInfo(SDNode
*N
,
4564 SDOperand
&Ptr
, int64_t &Size
,
4565 const Value
*&SrcValue
, int &SrcValueOffset
) {
4566 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
4567 Ptr
= LD
->getBasePtr();
4568 Size
= MVT::getSizeInBits(LD
->getLoadedVT()) >> 3;
4569 SrcValue
= LD
->getSrcValue();
4570 SrcValueOffset
= LD
->getSrcValueOffset();
4572 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
4573 Ptr
= ST
->getBasePtr();
4574 Size
= MVT::getSizeInBits(ST
->getStoredVT()) >> 3;
4575 SrcValue
= ST
->getSrcValue();
4576 SrcValueOffset
= ST
->getSrcValueOffset();
4578 assert(0 && "FindAliasInfo expected a memory operand");
4584 /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
4585 /// looking for aliasing nodes and adding them to the Aliases vector.
4586 void DAGCombiner::GatherAllAliases(SDNode
*N
, SDOperand OriginalChain
,
4587 SmallVector
<SDOperand
, 8> &Aliases
) {
4588 SmallVector
<SDOperand
, 8> Chains
; // List of chains to visit.
4589 std::set
<SDNode
*> Visited
; // Visited node set.
4591 // Get alias information for node.
4594 const Value
*SrcValue
;
4596 bool IsLoad
= FindAliasInfo(N
, Ptr
, Size
, SrcValue
, SrcValueOffset
);
4599 Chains
.push_back(OriginalChain
);
4601 // Look at each chain and determine if it is an alias. If so, add it to the
4602 // aliases list. If not, then continue up the chain looking for the next
4604 while (!Chains
.empty()) {
4605 SDOperand Chain
= Chains
.back();
4608 // Don't bother if we've been before.
4609 if (Visited
.find(Chain
.Val
) != Visited
.end()) continue;
4610 Visited
.insert(Chain
.Val
);
4612 switch (Chain
.getOpcode()) {
4613 case ISD::EntryToken
:
4614 // Entry token is ideal chain operand, but handled in FindBetterChain.
4619 // Get alias information for Chain.
4622 const Value
*OpSrcValue
;
4623 int OpSrcValueOffset
;
4624 bool IsOpLoad
= FindAliasInfo(Chain
.Val
, OpPtr
, OpSize
,
4625 OpSrcValue
, OpSrcValueOffset
);
4627 // If chain is alias then stop here.
4628 if (!(IsLoad
&& IsOpLoad
) &&
4629 isAlias(Ptr
, Size
, SrcValue
, SrcValueOffset
,
4630 OpPtr
, OpSize
, OpSrcValue
, OpSrcValueOffset
)) {
4631 Aliases
.push_back(Chain
);
4633 // Look further up the chain.
4634 Chains
.push_back(Chain
.getOperand(0));
4635 // Clean up old chain.
4636 AddToWorkList(Chain
.Val
);
4641 case ISD::TokenFactor
:
4642 // We have to check each of the operands of the token factor, so we queue
4643 // then up. Adding the operands to the queue (stack) in reverse order
4644 // maintains the original order and increases the likelihood that getNode
4645 // will find a matching token factor (CSE.)
4646 for (unsigned n
= Chain
.getNumOperands(); n
;)
4647 Chains
.push_back(Chain
.getOperand(--n
));
4648 // Eliminate the token factor if we can.
4649 AddToWorkList(Chain
.Val
);
4653 // For all other instructions we will just have to take what we can get.
4654 Aliases
.push_back(Chain
);
4660 /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
4661 /// for a better chain (aliasing node.)
4662 SDOperand
DAGCombiner::FindBetterChain(SDNode
*N
, SDOperand OldChain
) {
4663 SmallVector
<SDOperand
, 8> Aliases
; // Ops for replacing token factor.
4665 // Accumulate all the aliases to this node.
4666 GatherAllAliases(N
, OldChain
, Aliases
);
4668 if (Aliases
.size() == 0) {
4669 // If no operands then chain to entry token.
4670 return DAG
.getEntryNode();
4671 } else if (Aliases
.size() == 1) {
4672 // If a single operand then chain to it. We don't need to revisit it.
4676 // Construct a custom tailored token factor.
4677 SDOperand NewChain
= DAG
.getNode(ISD::TokenFactor
, MVT::Other
,
4678 &Aliases
[0], Aliases
.size());
4680 // Make sure the old chain gets cleaned up.
4681 if (NewChain
!= OldChain
) AddToWorkList(OldChain
.Val
);
4686 // SelectionDAG::Combine - This is the entry point for the file.
4688 void SelectionDAG::Combine(bool RunningAfterLegalize
, AliasAnalysis
&AA
) {
4689 if (!RunningAfterLegalize
&& ViewDAGCombine1
)
4691 if (RunningAfterLegalize
&& ViewDAGCombine2
)
4693 /// run - This is the main entry point to this class.
4695 DAGCombiner(*this, AA
).Run(RunningAfterLegalize
);