Inliner pass header file was moved.
[llvm-complete.git] / lib / CodeGen / SelectionDAG / DAGCombiner.cpp
blobd4b633259d25f10044769f79ee8af320a2c4578d
1 //===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file was developed by Nate Begeman and is distributed under the
6 // University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
11 // both before and after the DAG is legalized.
13 // FIXME: Missing folds
14 // sdiv, udiv, srem, urem (X, const) where X is an integer can be expanded into
15 // a sequence of multiplies, shifts, and adds. This should be controlled by
16 // some kind of hint from the target that int div is expensive.
17 // various folds of mulh[s,u] by constants such as -1, powers of 2, etc.
19 // FIXME: select C, pow2, pow2 -> something smart
20 // FIXME: trunc(select X, Y, Z) -> select X, trunc(Y), trunc(Z)
21 // FIXME: Dead stores -> nuke
22 // FIXME: shr X, (and Y,31) -> shr X, Y (TRICKY!)
23 // FIXME: mul (x, const) -> shifts + adds
24 // FIXME: undef values
25 // FIXME: divide by zero is currently left unfolded. do we want to turn this
26 // into an undef?
27 // FIXME: select ne (select cc, 1, 0), 0, true, false -> select cc, true, false
28 //
29 //===----------------------------------------------------------------------===//
31 #define DEBUG_TYPE "dagcombine"
32 #include "llvm/CodeGen/SelectionDAG.h"
33 #include "llvm/Analysis/AliasAnalysis.h"
34 #include "llvm/Target/TargetData.h"
35 #include "llvm/Target/TargetLowering.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include "llvm/Target/TargetOptions.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/Statistic.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/MathExtras.h"
44 #include <algorithm>
45 using namespace llvm;
47 STATISTIC(NodesCombined , "Number of dag nodes combined");
48 STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
49 STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
51 namespace {
52 #ifndef NDEBUG
53 static cl::opt<bool>
54 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
55 cl::desc("Pop up a window to show dags before the first "
56 "dag combine pass"));
57 static cl::opt<bool>
58 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
59 cl::desc("Pop up a window to show dags before the second "
60 "dag combine pass"));
61 #else
62 static const bool ViewDAGCombine1 = false;
63 static const bool ViewDAGCombine2 = false;
64 #endif
66 static cl::opt<bool>
67 CombinerAA("combiner-alias-analysis", cl::Hidden,
68 cl::desc("Turn on alias analysis during testing"));
70 static cl::opt<bool>
71 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
72 cl::desc("Include global information in alias analysis"));
74 //------------------------------ DAGCombiner ---------------------------------//
76 class VISIBILITY_HIDDEN DAGCombiner {
77 SelectionDAG &DAG;
78 TargetLowering &TLI;
79 bool AfterLegalize;
81 // Worklist of all of the nodes that need to be simplified.
82 std::vector<SDNode*> WorkList;
84 // AA - Used for DAG load/store alias analysis.
85 AliasAnalysis &AA;
87 /// AddUsersToWorkList - When an instruction is simplified, add all users of
88 /// the instruction to the work lists because they might get more simplified
89 /// now.
90 ///
91 void AddUsersToWorkList(SDNode *N) {
92 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
93 UI != UE; ++UI)
94 AddToWorkList(*UI);
97 /// removeFromWorkList - remove all instances of N from the worklist.
98 ///
99 void removeFromWorkList(SDNode *N) {
100 WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N),
101 WorkList.end());
104 public:
105 /// AddToWorkList - Add to the work list making sure it's instance is at the
106 /// the back (next to be processed.)
107 void AddToWorkList(SDNode *N) {
108 removeFromWorkList(N);
109 WorkList.push_back(N);
112 SDOperand CombineTo(SDNode *N, const SDOperand *To, unsigned NumTo,
113 bool AddTo = true) {
114 assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
115 ++NodesCombined;
116 DOUT << "\nReplacing.1 "; DEBUG(N->dump(&DAG));
117 DOUT << "\nWith: "; DEBUG(To[0].Val->dump(&DAG));
118 DOUT << " and " << NumTo-1 << " other values\n";
119 std::vector<SDNode*> NowDead;
120 DAG.ReplaceAllUsesWith(N, To, &NowDead);
122 if (AddTo) {
123 // Push the new nodes and any users onto the worklist
124 for (unsigned i = 0, e = NumTo; i != e; ++i) {
125 AddToWorkList(To[i].Val);
126 AddUsersToWorkList(To[i].Val);
130 // Nodes can be reintroduced into the worklist. Make sure we do not
131 // process a node that has been replaced.
132 removeFromWorkList(N);
133 for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
134 removeFromWorkList(NowDead[i]);
136 // Finally, since the node is now dead, remove it from the graph.
137 DAG.DeleteNode(N);
138 return SDOperand(N, 0);
141 SDOperand CombineTo(SDNode *N, SDOperand Res, bool AddTo = true) {
142 return CombineTo(N, &Res, 1, AddTo);
145 SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1,
146 bool AddTo = true) {
147 SDOperand To[] = { Res0, Res1 };
148 return CombineTo(N, To, 2, AddTo);
150 private:
152 /// SimplifyDemandedBits - Check the specified integer node value to see if
153 /// it can be simplified or if things it uses can be simplified by bit
154 /// propagation. If so, return true.
155 bool SimplifyDemandedBits(SDOperand Op) {
156 TargetLowering::TargetLoweringOpt TLO(DAG);
157 uint64_t KnownZero, KnownOne;
158 uint64_t Demanded = MVT::getIntVTBitMask(Op.getValueType());
159 if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
160 return false;
162 // Revisit the node.
163 AddToWorkList(Op.Val);
165 // Replace the old value with the new one.
166 ++NodesCombined;
167 DOUT << "\nReplacing.2 "; DEBUG(TLO.Old.Val->dump(&DAG));
168 DOUT << "\nWith: "; DEBUG(TLO.New.Val->dump(&DAG));
169 DOUT << '\n';
171 std::vector<SDNode*> NowDead;
172 DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, NowDead);
174 // Push the new node and any (possibly new) users onto the worklist.
175 AddToWorkList(TLO.New.Val);
176 AddUsersToWorkList(TLO.New.Val);
178 // Nodes can end up on the worklist more than once. Make sure we do
179 // not process a node that has been replaced.
180 for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
181 removeFromWorkList(NowDead[i]);
183 // Finally, if the node is now dead, remove it from the graph. The node
184 // may not be dead if the replacement process recursively simplified to
185 // something else needing this node.
186 if (TLO.Old.Val->use_empty()) {
187 removeFromWorkList(TLO.Old.Val);
189 // If the operands of this node are only used by the node, they will now
190 // be dead. Make sure to visit them first to delete dead nodes early.
191 for (unsigned i = 0, e = TLO.Old.Val->getNumOperands(); i != e; ++i)
192 if (TLO.Old.Val->getOperand(i).Val->hasOneUse())
193 AddToWorkList(TLO.Old.Val->getOperand(i).Val);
195 DAG.DeleteNode(TLO.Old.Val);
197 return true;
200 bool CombineToPreIndexedLoadStore(SDNode *N);
201 bool CombineToPostIndexedLoadStore(SDNode *N);
204 /// visit - call the node-specific routine that knows how to fold each
205 /// particular type of node.
206 SDOperand visit(SDNode *N);
208 // Visitation implementation - Implement dag node combining for different
209 // node types. The semantics are as follows:
210 // Return Value:
211 // SDOperand.Val == 0 - No change was made
212 // SDOperand.Val == N - N was replaced, is dead, and is already handled.
213 // otherwise - N should be replaced by the returned Operand.
215 SDOperand visitTokenFactor(SDNode *N);
216 SDOperand visitADD(SDNode *N);
217 SDOperand visitSUB(SDNode *N);
218 SDOperand visitADDC(SDNode *N);
219 SDOperand visitADDE(SDNode *N);
220 SDOperand visitMUL(SDNode *N);
221 SDOperand visitSDIV(SDNode *N);
222 SDOperand visitUDIV(SDNode *N);
223 SDOperand visitSREM(SDNode *N);
224 SDOperand visitUREM(SDNode *N);
225 SDOperand visitMULHU(SDNode *N);
226 SDOperand visitMULHS(SDNode *N);
227 SDOperand visitAND(SDNode *N);
228 SDOperand visitOR(SDNode *N);
229 SDOperand visitXOR(SDNode *N);
230 SDOperand visitVBinOp(SDNode *N, ISD::NodeType IntOp, ISD::NodeType FPOp);
231 SDOperand visitSHL(SDNode *N);
232 SDOperand visitSRA(SDNode *N);
233 SDOperand visitSRL(SDNode *N);
234 SDOperand visitCTLZ(SDNode *N);
235 SDOperand visitCTTZ(SDNode *N);
236 SDOperand visitCTPOP(SDNode *N);
237 SDOperand visitSELECT(SDNode *N);
238 SDOperand visitSELECT_CC(SDNode *N);
239 SDOperand visitSETCC(SDNode *N);
240 SDOperand visitSIGN_EXTEND(SDNode *N);
241 SDOperand visitZERO_EXTEND(SDNode *N);
242 SDOperand visitANY_EXTEND(SDNode *N);
243 SDOperand visitSIGN_EXTEND_INREG(SDNode *N);
244 SDOperand visitTRUNCATE(SDNode *N);
245 SDOperand visitBIT_CONVERT(SDNode *N);
246 SDOperand visitVBIT_CONVERT(SDNode *N);
247 SDOperand visitFADD(SDNode *N);
248 SDOperand visitFSUB(SDNode *N);
249 SDOperand visitFMUL(SDNode *N);
250 SDOperand visitFDIV(SDNode *N);
251 SDOperand visitFREM(SDNode *N);
252 SDOperand visitFCOPYSIGN(SDNode *N);
253 SDOperand visitSINT_TO_FP(SDNode *N);
254 SDOperand visitUINT_TO_FP(SDNode *N);
255 SDOperand visitFP_TO_SINT(SDNode *N);
256 SDOperand visitFP_TO_UINT(SDNode *N);
257 SDOperand visitFP_ROUND(SDNode *N);
258 SDOperand visitFP_ROUND_INREG(SDNode *N);
259 SDOperand visitFP_EXTEND(SDNode *N);
260 SDOperand visitFNEG(SDNode *N);
261 SDOperand visitFABS(SDNode *N);
262 SDOperand visitBRCOND(SDNode *N);
263 SDOperand visitBR_CC(SDNode *N);
264 SDOperand visitLOAD(SDNode *N);
265 SDOperand visitSTORE(SDNode *N);
266 SDOperand visitINSERT_VECTOR_ELT(SDNode *N);
267 SDOperand visitVINSERT_VECTOR_ELT(SDNode *N);
268 SDOperand visitVBUILD_VECTOR(SDNode *N);
269 SDOperand visitVECTOR_SHUFFLE(SDNode *N);
270 SDOperand visitVVECTOR_SHUFFLE(SDNode *N);
272 SDOperand XformToShuffleWithZero(SDNode *N);
273 SDOperand ReassociateOps(unsigned Opc, SDOperand LHS, SDOperand RHS);
275 bool SimplifySelectOps(SDNode *SELECT, SDOperand LHS, SDOperand RHS);
276 SDOperand SimplifyBinOpWithSameOpcodeHands(SDNode *N);
277 SDOperand SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2);
278 SDOperand SimplifySelectCC(SDOperand N0, SDOperand N1, SDOperand N2,
279 SDOperand N3, ISD::CondCode CC,
280 bool NotExtCompare = false);
281 SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
282 ISD::CondCode Cond, bool foldBooleans = true);
283 SDOperand ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(SDNode *, MVT::ValueType);
284 SDOperand BuildSDIV(SDNode *N);
285 SDOperand BuildUDIV(SDNode *N);
286 SDNode *MatchRotate(SDOperand LHS, SDOperand RHS);
287 SDOperand ReduceLoadWidth(SDNode *N);
289 /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
290 /// looking for aliasing nodes and adding them to the Aliases vector.
291 void GatherAllAliases(SDNode *N, SDOperand OriginalChain,
292 SmallVector<SDOperand, 8> &Aliases);
294 /// isAlias - Return true if there is any possibility that the two addresses
295 /// overlap.
296 bool isAlias(SDOperand Ptr1, int64_t Size1,
297 const Value *SrcValue1, int SrcValueOffset1,
298 SDOperand Ptr2, int64_t Size2,
299 const Value *SrcValue2, int SrcValueOffset2);
301 /// FindAliasInfo - Extracts the relevant alias information from the memory
302 /// node. Returns true if the operand was a load.
303 bool FindAliasInfo(SDNode *N,
304 SDOperand &Ptr, int64_t &Size,
305 const Value *&SrcValue, int &SrcValueOffset);
307 /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
308 /// looking for a better chain (aliasing node.)
309 SDOperand FindBetterChain(SDNode *N, SDOperand Chain);
311 public:
312 DAGCombiner(SelectionDAG &D, AliasAnalysis &A)
313 : DAG(D),
314 TLI(D.getTargetLoweringInfo()),
315 AfterLegalize(false),
316 AA(A) {}
318 /// Run - runs the dag combiner on all nodes in the work list
319 void Run(bool RunningAfterLegalize);
323 //===----------------------------------------------------------------------===//
324 // TargetLowering::DAGCombinerInfo implementation
325 //===----------------------------------------------------------------------===//
327 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
328 ((DAGCombiner*)DC)->AddToWorkList(N);
331 SDOperand TargetLowering::DAGCombinerInfo::
332 CombineTo(SDNode *N, const std::vector<SDOperand> &To) {
333 return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size());
336 SDOperand TargetLowering::DAGCombinerInfo::
337 CombineTo(SDNode *N, SDOperand Res) {
338 return ((DAGCombiner*)DC)->CombineTo(N, Res);
342 SDOperand TargetLowering::DAGCombinerInfo::
343 CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1) {
344 return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1);
348 //===----------------------------------------------------------------------===//
349 // Helper Functions
350 //===----------------------------------------------------------------------===//
352 /// isNegatibleForFree - Return 1 if we can compute the negated form of the
353 /// specified expression for the same cost as the expression itself, or 2 if we
354 /// can compute the negated form more cheaply than the expression itself.
355 static char isNegatibleForFree(SDOperand Op, unsigned Depth = 0) {
356 // fneg is removable even if it has multiple uses.
357 if (Op.getOpcode() == ISD::FNEG) return 2;
359 // Don't allow anything with multiple uses.
360 if (!Op.hasOneUse()) return 0;
362 // Don't recurse exponentially.
363 if (Depth > 6) return 0;
365 switch (Op.getOpcode()) {
366 default: return false;
367 case ISD::ConstantFP:
368 return 1;
369 case ISD::FADD:
370 // FIXME: determine better conditions for this xform.
371 if (!UnsafeFPMath) return 0;
373 // -(A+B) -> -A - B
374 if (char V = isNegatibleForFree(Op.getOperand(0), Depth+1))
375 return V;
376 // -(A+B) -> -B - A
377 return isNegatibleForFree(Op.getOperand(1), Depth+1);
378 case ISD::FSUB:
379 // We can't turn -(A-B) into B-A when we honor signed zeros.
380 if (!UnsafeFPMath) return 0;
382 // -(A-B) -> B-A
383 return 1;
385 case ISD::FMUL:
386 case ISD::FDIV:
387 if (HonorSignDependentRoundingFPMath()) return 0;
389 // -(X*Y) -> (-X * Y) or (X*-Y)
390 if (char V = isNegatibleForFree(Op.getOperand(0), Depth+1))
391 return V;
393 return isNegatibleForFree(Op.getOperand(1), Depth+1);
395 case ISD::FP_EXTEND:
396 case ISD::FP_ROUND:
397 case ISD::FSIN:
398 return isNegatibleForFree(Op.getOperand(0), Depth+1);
402 /// GetNegatedExpression - If isNegatibleForFree returns true, this function
403 /// returns the newly negated expression.
404 static SDOperand GetNegatedExpression(SDOperand Op, SelectionDAG &DAG,
405 unsigned Depth = 0) {
406 // fneg is removable even if it has multiple uses.
407 if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
409 // Don't allow anything with multiple uses.
410 assert(Op.hasOneUse() && "Unknown reuse!");
412 assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
413 switch (Op.getOpcode()) {
414 default: assert(0 && "Unknown code");
415 case ISD::ConstantFP:
416 return DAG.getConstantFP(-cast<ConstantFPSDNode>(Op)->getValue(),
417 Op.getValueType());
418 case ISD::FADD:
419 // FIXME: determine better conditions for this xform.
420 assert(UnsafeFPMath);
422 // -(A+B) -> -A - B
423 if (isNegatibleForFree(Op.getOperand(0), Depth+1))
424 return DAG.getNode(ISD::FSUB, Op.getValueType(),
425 GetNegatedExpression(Op.getOperand(0), DAG, Depth+1),
426 Op.getOperand(1));
427 // -(A+B) -> -B - A
428 return DAG.getNode(ISD::FSUB, Op.getValueType(),
429 GetNegatedExpression(Op.getOperand(1), DAG, Depth+1),
430 Op.getOperand(0));
431 case ISD::FSUB:
432 // We can't turn -(A-B) into B-A when we honor signed zeros.
433 assert(UnsafeFPMath);
435 // -(A-B) -> B-A
436 return DAG.getNode(ISD::FSUB, Op.getValueType(), Op.getOperand(1),
437 Op.getOperand(0));
439 case ISD::FMUL:
440 case ISD::FDIV:
441 assert(!HonorSignDependentRoundingFPMath());
443 // -(X*Y) -> -X * Y
444 if (isNegatibleForFree(Op.getOperand(0), Depth+1))
445 return DAG.getNode(Op.getOpcode(), Op.getValueType(),
446 GetNegatedExpression(Op.getOperand(0), DAG, Depth+1),
447 Op.getOperand(1));
449 // -(X*Y) -> X * -Y
450 return DAG.getNode(Op.getOpcode(), Op.getValueType(),
451 Op.getOperand(0),
452 GetNegatedExpression(Op.getOperand(1), DAG, Depth+1));
454 case ISD::FP_EXTEND:
455 case ISD::FP_ROUND:
456 case ISD::FSIN:
457 return DAG.getNode(Op.getOpcode(), Op.getValueType(),
458 GetNegatedExpression(Op.getOperand(0), DAG, Depth+1));
463 // isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
464 // that selects between the values 1 and 0, making it equivalent to a setcc.
465 // Also, set the incoming LHS, RHS, and CC references to the appropriate
466 // nodes based on the type of node we are checking. This simplifies life a
467 // bit for the callers.
468 static bool isSetCCEquivalent(SDOperand N, SDOperand &LHS, SDOperand &RHS,
469 SDOperand &CC) {
470 if (N.getOpcode() == ISD::SETCC) {
471 LHS = N.getOperand(0);
472 RHS = N.getOperand(1);
473 CC = N.getOperand(2);
474 return true;
476 if (N.getOpcode() == ISD::SELECT_CC &&
477 N.getOperand(2).getOpcode() == ISD::Constant &&
478 N.getOperand(3).getOpcode() == ISD::Constant &&
479 cast<ConstantSDNode>(N.getOperand(2))->getValue() == 1 &&
480 cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
481 LHS = N.getOperand(0);
482 RHS = N.getOperand(1);
483 CC = N.getOperand(4);
484 return true;
486 return false;
489 // isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
490 // one use. If this is true, it allows the users to invert the operation for
491 // free when it is profitable to do so.
492 static bool isOneUseSetCC(SDOperand N) {
493 SDOperand N0, N1, N2;
494 if (isSetCCEquivalent(N, N0, N1, N2) && N.Val->hasOneUse())
495 return true;
496 return false;
499 SDOperand DAGCombiner::ReassociateOps(unsigned Opc, SDOperand N0, SDOperand N1){
500 MVT::ValueType VT = N0.getValueType();
501 // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
502 // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
503 if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
504 if (isa<ConstantSDNode>(N1)) {
505 SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(1), N1);
506 AddToWorkList(OpNode.Val);
507 return DAG.getNode(Opc, VT, OpNode, N0.getOperand(0));
508 } else if (N0.hasOneUse()) {
509 SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(0), N1);
510 AddToWorkList(OpNode.Val);
511 return DAG.getNode(Opc, VT, OpNode, N0.getOperand(1));
514 // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
515 // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
516 if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
517 if (isa<ConstantSDNode>(N0)) {
518 SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(1), N0);
519 AddToWorkList(OpNode.Val);
520 return DAG.getNode(Opc, VT, OpNode, N1.getOperand(0));
521 } else if (N1.hasOneUse()) {
522 SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(0), N0);
523 AddToWorkList(OpNode.Val);
524 return DAG.getNode(Opc, VT, OpNode, N1.getOperand(1));
527 return SDOperand();
530 //===----------------------------------------------------------------------===//
531 // Main DAG Combiner implementation
532 //===----------------------------------------------------------------------===//
534 void DAGCombiner::Run(bool RunningAfterLegalize) {
535 // set the instance variable, so that the various visit routines may use it.
536 AfterLegalize = RunningAfterLegalize;
538 // Add all the dag nodes to the worklist.
539 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
540 E = DAG.allnodes_end(); I != E; ++I)
541 WorkList.push_back(I);
543 // Create a dummy node (which is not added to allnodes), that adds a reference
544 // to the root node, preventing it from being deleted, and tracking any
545 // changes of the root.
546 HandleSDNode Dummy(DAG.getRoot());
548 // The root of the dag may dangle to deleted nodes until the dag combiner is
549 // done. Set it to null to avoid confusion.
550 DAG.setRoot(SDOperand());
552 /// DagCombineInfo - Expose the DAG combiner to the target combiner impls.
553 TargetLowering::DAGCombinerInfo
554 DagCombineInfo(DAG, !RunningAfterLegalize, false, this);
556 // while the worklist isn't empty, inspect the node on the end of it and
557 // try and combine it.
558 while (!WorkList.empty()) {
559 SDNode *N = WorkList.back();
560 WorkList.pop_back();
562 // If N has no uses, it is dead. Make sure to revisit all N's operands once
563 // N is deleted from the DAG, since they too may now be dead or may have a
564 // reduced number of uses, allowing other xforms.
565 if (N->use_empty() && N != &Dummy) {
566 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
567 AddToWorkList(N->getOperand(i).Val);
569 DAG.DeleteNode(N);
570 continue;
573 SDOperand RV = visit(N);
575 // If nothing happened, try a target-specific DAG combine.
576 if (RV.Val == 0) {
577 assert(N->getOpcode() != ISD::DELETED_NODE &&
578 "Node was deleted but visit returned NULL!");
579 if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
580 TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode()))
581 RV = TLI.PerformDAGCombine(N, DagCombineInfo);
584 if (RV.Val) {
585 ++NodesCombined;
586 // If we get back the same node we passed in, rather than a new node or
587 // zero, we know that the node must have defined multiple values and
588 // CombineTo was used. Since CombineTo takes care of the worklist
589 // mechanics for us, we have no work to do in this case.
590 if (RV.Val != N) {
591 assert(N->getOpcode() != ISD::DELETED_NODE &&
592 RV.Val->getOpcode() != ISD::DELETED_NODE &&
593 "Node was deleted but visit returned new node!");
595 DOUT << "\nReplacing.3 "; DEBUG(N->dump(&DAG));
596 DOUT << "\nWith: "; DEBUG(RV.Val->dump(&DAG));
597 DOUT << '\n';
598 std::vector<SDNode*> NowDead;
599 if (N->getNumValues() == RV.Val->getNumValues())
600 DAG.ReplaceAllUsesWith(N, RV.Val, &NowDead);
601 else {
602 assert(N->getValueType(0) == RV.getValueType() && "Type mismatch");
603 SDOperand OpV = RV;
604 DAG.ReplaceAllUsesWith(N, &OpV, &NowDead);
607 // Push the new node and any users onto the worklist
608 AddToWorkList(RV.Val);
609 AddUsersToWorkList(RV.Val);
611 // Nodes can be reintroduced into the worklist. Make sure we do not
612 // process a node that has been replaced.
613 removeFromWorkList(N);
614 for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
615 removeFromWorkList(NowDead[i]);
617 // Finally, since the node is now dead, remove it from the graph.
618 DAG.DeleteNode(N);
623 // If the root changed (e.g. it was a dead load, update the root).
624 DAG.setRoot(Dummy.getValue());
627 SDOperand DAGCombiner::visit(SDNode *N) {
628 switch(N->getOpcode()) {
629 default: break;
630 case ISD::TokenFactor: return visitTokenFactor(N);
631 case ISD::ADD: return visitADD(N);
632 case ISD::SUB: return visitSUB(N);
633 case ISD::ADDC: return visitADDC(N);
634 case ISD::ADDE: return visitADDE(N);
635 case ISD::MUL: return visitMUL(N);
636 case ISD::SDIV: return visitSDIV(N);
637 case ISD::UDIV: return visitUDIV(N);
638 case ISD::SREM: return visitSREM(N);
639 case ISD::UREM: return visitUREM(N);
640 case ISD::MULHU: return visitMULHU(N);
641 case ISD::MULHS: return visitMULHS(N);
642 case ISD::AND: return visitAND(N);
643 case ISD::OR: return visitOR(N);
644 case ISD::XOR: return visitXOR(N);
645 case ISD::SHL: return visitSHL(N);
646 case ISD::SRA: return visitSRA(N);
647 case ISD::SRL: return visitSRL(N);
648 case ISD::CTLZ: return visitCTLZ(N);
649 case ISD::CTTZ: return visitCTTZ(N);
650 case ISD::CTPOP: return visitCTPOP(N);
651 case ISD::SELECT: return visitSELECT(N);
652 case ISD::SELECT_CC: return visitSELECT_CC(N);
653 case ISD::SETCC: return visitSETCC(N);
654 case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N);
655 case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N);
656 case ISD::ANY_EXTEND: return visitANY_EXTEND(N);
657 case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N);
658 case ISD::TRUNCATE: return visitTRUNCATE(N);
659 case ISD::BIT_CONVERT: return visitBIT_CONVERT(N);
660 case ISD::VBIT_CONVERT: return visitVBIT_CONVERT(N);
661 case ISD::FADD: return visitFADD(N);
662 case ISD::FSUB: return visitFSUB(N);
663 case ISD::FMUL: return visitFMUL(N);
664 case ISD::FDIV: return visitFDIV(N);
665 case ISD::FREM: return visitFREM(N);
666 case ISD::FCOPYSIGN: return visitFCOPYSIGN(N);
667 case ISD::SINT_TO_FP: return visitSINT_TO_FP(N);
668 case ISD::UINT_TO_FP: return visitUINT_TO_FP(N);
669 case ISD::FP_TO_SINT: return visitFP_TO_SINT(N);
670 case ISD::FP_TO_UINT: return visitFP_TO_UINT(N);
671 case ISD::FP_ROUND: return visitFP_ROUND(N);
672 case ISD::FP_ROUND_INREG: return visitFP_ROUND_INREG(N);
673 case ISD::FP_EXTEND: return visitFP_EXTEND(N);
674 case ISD::FNEG: return visitFNEG(N);
675 case ISD::FABS: return visitFABS(N);
676 case ISD::BRCOND: return visitBRCOND(N);
677 case ISD::BR_CC: return visitBR_CC(N);
678 case ISD::LOAD: return visitLOAD(N);
679 case ISD::STORE: return visitSTORE(N);
680 case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N);
681 case ISD::VINSERT_VECTOR_ELT: return visitVINSERT_VECTOR_ELT(N);
682 case ISD::VBUILD_VECTOR: return visitVBUILD_VECTOR(N);
683 case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N);
684 case ISD::VVECTOR_SHUFFLE: return visitVVECTOR_SHUFFLE(N);
685 case ISD::VADD: return visitVBinOp(N, ISD::ADD , ISD::FADD);
686 case ISD::VSUB: return visitVBinOp(N, ISD::SUB , ISD::FSUB);
687 case ISD::VMUL: return visitVBinOp(N, ISD::MUL , ISD::FMUL);
688 case ISD::VSDIV: return visitVBinOp(N, ISD::SDIV, ISD::FDIV);
689 case ISD::VUDIV: return visitVBinOp(N, ISD::UDIV, ISD::UDIV);
690 case ISD::VAND: return visitVBinOp(N, ISD::AND , ISD::AND);
691 case ISD::VOR: return visitVBinOp(N, ISD::OR , ISD::OR);
692 case ISD::VXOR: return visitVBinOp(N, ISD::XOR , ISD::XOR);
694 return SDOperand();
697 /// getInputChainForNode - Given a node, return its input chain if it has one,
698 /// otherwise return a null sd operand.
699 static SDOperand getInputChainForNode(SDNode *N) {
700 if (unsigned NumOps = N->getNumOperands()) {
701 if (N->getOperand(0).getValueType() == MVT::Other)
702 return N->getOperand(0);
703 else if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
704 return N->getOperand(NumOps-1);
705 for (unsigned i = 1; i < NumOps-1; ++i)
706 if (N->getOperand(i).getValueType() == MVT::Other)
707 return N->getOperand(i);
709 return SDOperand(0, 0);
712 SDOperand DAGCombiner::visitTokenFactor(SDNode *N) {
713 // If N has two operands, where one has an input chain equal to the other,
714 // the 'other' chain is redundant.
715 if (N->getNumOperands() == 2) {
716 if (getInputChainForNode(N->getOperand(0).Val) == N->getOperand(1))
717 return N->getOperand(0);
718 if (getInputChainForNode(N->getOperand(1).Val) == N->getOperand(0))
719 return N->getOperand(1);
722 SmallVector<SDNode *, 8> TFs; // List of token factors to visit.
723 SmallVector<SDOperand, 8> Ops; // Ops for replacing token factor.
724 SmallPtrSet<SDNode*, 16> SeenOps;
725 bool Changed = false; // If we should replace this token factor.
727 // Start out with this token factor.
728 TFs.push_back(N);
730 // Iterate through token factors. The TFs grows when new token factors are
731 // encountered.
732 for (unsigned i = 0; i < TFs.size(); ++i) {
733 SDNode *TF = TFs[i];
735 // Check each of the operands.
736 for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
737 SDOperand Op = TF->getOperand(i);
739 switch (Op.getOpcode()) {
740 case ISD::EntryToken:
741 // Entry tokens don't need to be added to the list. They are
742 // rededundant.
743 Changed = true;
744 break;
746 case ISD::TokenFactor:
747 if ((CombinerAA || Op.hasOneUse()) &&
748 std::find(TFs.begin(), TFs.end(), Op.Val) == TFs.end()) {
749 // Queue up for processing.
750 TFs.push_back(Op.Val);
751 // Clean up in case the token factor is removed.
752 AddToWorkList(Op.Val);
753 Changed = true;
754 break;
756 // Fall thru
758 default:
759 // Only add if it isn't already in the list.
760 if (SeenOps.insert(Op.Val))
761 Ops.push_back(Op);
762 else
763 Changed = true;
764 break;
769 SDOperand Result;
771 // If we've change things around then replace token factor.
772 if (Changed) {
773 if (Ops.size() == 0) {
774 // The entry token is the only possible outcome.
775 Result = DAG.getEntryNode();
776 } else {
777 // New and improved token factor.
778 Result = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0], Ops.size());
781 // Don't add users to work list.
782 return CombineTo(N, Result, false);
785 return Result;
788 static
789 SDOperand combineShlAddConstant(SDOperand N0, SDOperand N1, SelectionDAG &DAG) {
790 MVT::ValueType VT = N0.getValueType();
791 SDOperand N00 = N0.getOperand(0);
792 SDOperand N01 = N0.getOperand(1);
793 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
794 if (N01C && N00.getOpcode() == ISD::ADD && N00.Val->hasOneUse() &&
795 isa<ConstantSDNode>(N00.getOperand(1))) {
796 N0 = DAG.getNode(ISD::ADD, VT,
797 DAG.getNode(ISD::SHL, VT, N00.getOperand(0), N01),
798 DAG.getNode(ISD::SHL, VT, N00.getOperand(1), N01));
799 return DAG.getNode(ISD::ADD, VT, N0, N1);
801 return SDOperand();
804 SDOperand DAGCombiner::visitADD(SDNode *N) {
805 SDOperand N0 = N->getOperand(0);
806 SDOperand N1 = N->getOperand(1);
807 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
808 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
809 MVT::ValueType VT = N0.getValueType();
811 // fold (add c1, c2) -> c1+c2
812 if (N0C && N1C)
813 return DAG.getNode(ISD::ADD, VT, N0, N1);
814 // canonicalize constant to RHS
815 if (N0C && !N1C)
816 return DAG.getNode(ISD::ADD, VT, N1, N0);
817 // fold (add x, 0) -> x
818 if (N1C && N1C->isNullValue())
819 return N0;
820 // fold ((c1-A)+c2) -> (c1+c2)-A
821 if (N1C && N0.getOpcode() == ISD::SUB)
822 if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
823 return DAG.getNode(ISD::SUB, VT,
824 DAG.getConstant(N1C->getValue()+N0C->getValue(), VT),
825 N0.getOperand(1));
826 // reassociate add
827 SDOperand RADD = ReassociateOps(ISD::ADD, N0, N1);
828 if (RADD.Val != 0)
829 return RADD;
830 // fold ((0-A) + B) -> B-A
831 if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
832 cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
833 return DAG.getNode(ISD::SUB, VT, N1, N0.getOperand(1));
834 // fold (A + (0-B)) -> A-B
835 if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
836 cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
837 return DAG.getNode(ISD::SUB, VT, N0, N1.getOperand(1));
838 // fold (A+(B-A)) -> B
839 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
840 return N1.getOperand(0);
842 if (!MVT::isVector(VT) && SimplifyDemandedBits(SDOperand(N, 0)))
843 return SDOperand(N, 0);
845 // fold (a+b) -> (a|b) iff a and b share no bits.
846 if (MVT::isInteger(VT) && !MVT::isVector(VT)) {
847 uint64_t LHSZero, LHSOne;
848 uint64_t RHSZero, RHSOne;
849 uint64_t Mask = MVT::getIntVTBitMask(VT);
850 TLI.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
851 if (LHSZero) {
852 TLI.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
854 // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
855 // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
856 if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
857 (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
858 return DAG.getNode(ISD::OR, VT, N0, N1);
862 // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
863 if (N0.getOpcode() == ISD::SHL && N0.Val->hasOneUse()) {
864 SDOperand Result = combineShlAddConstant(N0, N1, DAG);
865 if (Result.Val) return Result;
867 if (N1.getOpcode() == ISD::SHL && N1.Val->hasOneUse()) {
868 SDOperand Result = combineShlAddConstant(N1, N0, DAG);
869 if (Result.Val) return Result;
872 return SDOperand();
875 SDOperand DAGCombiner::visitADDC(SDNode *N) {
876 SDOperand N0 = N->getOperand(0);
877 SDOperand N1 = N->getOperand(1);
878 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
879 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
880 MVT::ValueType VT = N0.getValueType();
882 // If the flag result is dead, turn this into an ADD.
883 if (N->hasNUsesOfValue(0, 1))
884 return CombineTo(N, DAG.getNode(ISD::ADD, VT, N1, N0),
885 DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
887 // canonicalize constant to RHS.
888 if (N0C && !N1C) {
889 SDOperand Ops[] = { N1, N0 };
890 return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2);
893 // fold (addc x, 0) -> x + no carry out
894 if (N1C && N1C->isNullValue())
895 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
897 // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
898 uint64_t LHSZero, LHSOne;
899 uint64_t RHSZero, RHSOne;
900 uint64_t Mask = MVT::getIntVTBitMask(VT);
901 TLI.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
902 if (LHSZero) {
903 TLI.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
905 // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
906 // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
907 if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
908 (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
909 return CombineTo(N, DAG.getNode(ISD::OR, VT, N0, N1),
910 DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
913 return SDOperand();
916 SDOperand DAGCombiner::visitADDE(SDNode *N) {
917 SDOperand N0 = N->getOperand(0);
918 SDOperand N1 = N->getOperand(1);
919 SDOperand CarryIn = N->getOperand(2);
920 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
921 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
922 //MVT::ValueType VT = N0.getValueType();
924 // canonicalize constant to RHS
925 if (N0C && !N1C) {
926 SDOperand Ops[] = { N1, N0, CarryIn };
927 return DAG.getNode(ISD::ADDE, N->getVTList(), Ops, 3);
930 // fold (adde x, y, false) -> (addc x, y)
931 if (CarryIn.getOpcode() == ISD::CARRY_FALSE) {
932 SDOperand Ops[] = { N1, N0 };
933 return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2);
936 return SDOperand();
941 SDOperand DAGCombiner::visitSUB(SDNode *N) {
942 SDOperand N0 = N->getOperand(0);
943 SDOperand N1 = N->getOperand(1);
944 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
945 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
946 MVT::ValueType VT = N0.getValueType();
948 // fold (sub x, x) -> 0
949 if (N0 == N1)
950 return DAG.getConstant(0, N->getValueType(0));
951 // fold (sub c1, c2) -> c1-c2
952 if (N0C && N1C)
953 return DAG.getNode(ISD::SUB, VT, N0, N1);
954 // fold (sub x, c) -> (add x, -c)
955 if (N1C)
956 return DAG.getNode(ISD::ADD, VT, N0, DAG.getConstant(-N1C->getValue(), VT));
957 // fold (A+B)-A -> B
958 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
959 return N0.getOperand(1);
960 // fold (A+B)-B -> A
961 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
962 return N0.getOperand(0);
963 return SDOperand();
966 SDOperand DAGCombiner::visitMUL(SDNode *N) {
967 SDOperand N0 = N->getOperand(0);
968 SDOperand N1 = N->getOperand(1);
969 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
970 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
971 MVT::ValueType VT = N0.getValueType();
973 // fold (mul c1, c2) -> c1*c2
974 if (N0C && N1C)
975 return DAG.getNode(ISD::MUL, VT, N0, N1);
976 // canonicalize constant to RHS
977 if (N0C && !N1C)
978 return DAG.getNode(ISD::MUL, VT, N1, N0);
979 // fold (mul x, 0) -> 0
980 if (N1C && N1C->isNullValue())
981 return N1;
982 // fold (mul x, -1) -> 0-x
983 if (N1C && N1C->isAllOnesValue())
984 return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
985 // fold (mul x, (1 << c)) -> x << c
986 if (N1C && isPowerOf2_64(N1C->getValue()))
987 return DAG.getNode(ISD::SHL, VT, N0,
988 DAG.getConstant(Log2_64(N1C->getValue()),
989 TLI.getShiftAmountTy()));
990 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
991 if (N1C && isPowerOf2_64(-N1C->getSignExtended())) {
992 // FIXME: If the input is something that is easily negated (e.g. a
993 // single-use add), we should put the negate there.
994 return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT),
995 DAG.getNode(ISD::SHL, VT, N0,
996 DAG.getConstant(Log2_64(-N1C->getSignExtended()),
997 TLI.getShiftAmountTy())));
1000 // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1001 if (N1C && N0.getOpcode() == ISD::SHL &&
1002 isa<ConstantSDNode>(N0.getOperand(1))) {
1003 SDOperand C3 = DAG.getNode(ISD::SHL, VT, N1, N0.getOperand(1));
1004 AddToWorkList(C3.Val);
1005 return DAG.getNode(ISD::MUL, VT, N0.getOperand(0), C3);
1008 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1009 // use.
1011 SDOperand Sh(0,0), Y(0,0);
1012 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
1013 if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
1014 N0.Val->hasOneUse()) {
1015 Sh = N0; Y = N1;
1016 } else if (N1.getOpcode() == ISD::SHL &&
1017 isa<ConstantSDNode>(N1.getOperand(1)) && N1.Val->hasOneUse()) {
1018 Sh = N1; Y = N0;
1020 if (Sh.Val) {
1021 SDOperand Mul = DAG.getNode(ISD::MUL, VT, Sh.getOperand(0), Y);
1022 return DAG.getNode(ISD::SHL, VT, Mul, Sh.getOperand(1));
1025 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1026 if (N1C && N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse() &&
1027 isa<ConstantSDNode>(N0.getOperand(1))) {
1028 return DAG.getNode(ISD::ADD, VT,
1029 DAG.getNode(ISD::MUL, VT, N0.getOperand(0), N1),
1030 DAG.getNode(ISD::MUL, VT, N0.getOperand(1), N1));
1033 // reassociate mul
1034 SDOperand RMUL = ReassociateOps(ISD::MUL, N0, N1);
1035 if (RMUL.Val != 0)
1036 return RMUL;
1037 return SDOperand();
1040 SDOperand DAGCombiner::visitSDIV(SDNode *N) {
1041 SDOperand N0 = N->getOperand(0);
1042 SDOperand N1 = N->getOperand(1);
1043 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1044 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1045 MVT::ValueType VT = N->getValueType(0);
1047 // fold (sdiv c1, c2) -> c1/c2
1048 if (N0C && N1C && !N1C->isNullValue())
1049 return DAG.getNode(ISD::SDIV, VT, N0, N1);
1050 // fold (sdiv X, 1) -> X
1051 if (N1C && N1C->getSignExtended() == 1LL)
1052 return N0;
1053 // fold (sdiv X, -1) -> 0-X
1054 if (N1C && N1C->isAllOnesValue())
1055 return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
1056 // If we know the sign bits of both operands are zero, strength reduce to a
1057 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
1058 uint64_t SignBit = 1ULL << (MVT::getSizeInBits(VT)-1);
1059 if (TLI.MaskedValueIsZero(N1, SignBit) &&
1060 TLI.MaskedValueIsZero(N0, SignBit))
1061 return DAG.getNode(ISD::UDIV, N1.getValueType(), N0, N1);
1062 // fold (sdiv X, pow2) -> simple ops after legalize
1063 if (N1C && N1C->getValue() && !TLI.isIntDivCheap() &&
1064 (isPowerOf2_64(N1C->getSignExtended()) ||
1065 isPowerOf2_64(-N1C->getSignExtended()))) {
1066 // If dividing by powers of two is cheap, then don't perform the following
1067 // fold.
1068 if (TLI.isPow2DivCheap())
1069 return SDOperand();
1070 int64_t pow2 = N1C->getSignExtended();
1071 int64_t abs2 = pow2 > 0 ? pow2 : -pow2;
1072 unsigned lg2 = Log2_64(abs2);
1073 // Splat the sign bit into the register
1074 SDOperand SGN = DAG.getNode(ISD::SRA, VT, N0,
1075 DAG.getConstant(MVT::getSizeInBits(VT)-1,
1076 TLI.getShiftAmountTy()));
1077 AddToWorkList(SGN.Val);
1078 // Add (N0 < 0) ? abs2 - 1 : 0;
1079 SDOperand SRL = DAG.getNode(ISD::SRL, VT, SGN,
1080 DAG.getConstant(MVT::getSizeInBits(VT)-lg2,
1081 TLI.getShiftAmountTy()));
1082 SDOperand ADD = DAG.getNode(ISD::ADD, VT, N0, SRL);
1083 AddToWorkList(SRL.Val);
1084 AddToWorkList(ADD.Val); // Divide by pow2
1085 SDOperand SRA = DAG.getNode(ISD::SRA, VT, ADD,
1086 DAG.getConstant(lg2, TLI.getShiftAmountTy()));
1087 // If we're dividing by a positive value, we're done. Otherwise, we must
1088 // negate the result.
1089 if (pow2 > 0)
1090 return SRA;
1091 AddToWorkList(SRA.Val);
1092 return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), SRA);
1094 // if integer divide is expensive and we satisfy the requirements, emit an
1095 // alternate sequence.
1096 if (N1C && (N1C->getSignExtended() < -1 || N1C->getSignExtended() > 1) &&
1097 !TLI.isIntDivCheap()) {
1098 SDOperand Op = BuildSDIV(N);
1099 if (Op.Val) return Op;
1101 return SDOperand();
1104 SDOperand DAGCombiner::visitUDIV(SDNode *N) {
1105 SDOperand N0 = N->getOperand(0);
1106 SDOperand N1 = N->getOperand(1);
1107 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1108 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1109 MVT::ValueType VT = N->getValueType(0);
1111 // fold (udiv c1, c2) -> c1/c2
1112 if (N0C && N1C && !N1C->isNullValue())
1113 return DAG.getNode(ISD::UDIV, VT, N0, N1);
1114 // fold (udiv x, (1 << c)) -> x >>u c
1115 if (N1C && isPowerOf2_64(N1C->getValue()))
1116 return DAG.getNode(ISD::SRL, VT, N0,
1117 DAG.getConstant(Log2_64(N1C->getValue()),
1118 TLI.getShiftAmountTy()));
1119 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1120 if (N1.getOpcode() == ISD::SHL) {
1121 if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1122 if (isPowerOf2_64(SHC->getValue())) {
1123 MVT::ValueType ADDVT = N1.getOperand(1).getValueType();
1124 SDOperand Add = DAG.getNode(ISD::ADD, ADDVT, N1.getOperand(1),
1125 DAG.getConstant(Log2_64(SHC->getValue()),
1126 ADDVT));
1127 AddToWorkList(Add.Val);
1128 return DAG.getNode(ISD::SRL, VT, N0, Add);
1132 // fold (udiv x, c) -> alternate
1133 if (N1C && N1C->getValue() && !TLI.isIntDivCheap()) {
1134 SDOperand Op = BuildUDIV(N);
1135 if (Op.Val) return Op;
1137 return SDOperand();
1140 SDOperand DAGCombiner::visitSREM(SDNode *N) {
1141 SDOperand N0 = N->getOperand(0);
1142 SDOperand N1 = N->getOperand(1);
1143 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1144 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1145 MVT::ValueType VT = N->getValueType(0);
1147 // fold (srem c1, c2) -> c1%c2
1148 if (N0C && N1C && !N1C->isNullValue())
1149 return DAG.getNode(ISD::SREM, VT, N0, N1);
1150 // If we know the sign bits of both operands are zero, strength reduce to a
1151 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
1152 uint64_t SignBit = 1ULL << (MVT::getSizeInBits(VT)-1);
1153 if (TLI.MaskedValueIsZero(N1, SignBit) &&
1154 TLI.MaskedValueIsZero(N0, SignBit))
1155 return DAG.getNode(ISD::UREM, VT, N0, N1);
1157 // Unconditionally lower X%C -> X-X/C*C. This allows the X/C logic to hack on
1158 // the remainder operation.
1159 if (N1C && !N1C->isNullValue()) {
1160 SDOperand Div = DAG.getNode(ISD::SDIV, VT, N0, N1);
1161 SDOperand Mul = DAG.getNode(ISD::MUL, VT, Div, N1);
1162 SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul);
1163 AddToWorkList(Div.Val);
1164 AddToWorkList(Mul.Val);
1165 return Sub;
1168 return SDOperand();
1171 SDOperand DAGCombiner::visitUREM(SDNode *N) {
1172 SDOperand N0 = N->getOperand(0);
1173 SDOperand N1 = N->getOperand(1);
1174 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1175 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1176 MVT::ValueType VT = N->getValueType(0);
1178 // fold (urem c1, c2) -> c1%c2
1179 if (N0C && N1C && !N1C->isNullValue())
1180 return DAG.getNode(ISD::UREM, VT, N0, N1);
1181 // fold (urem x, pow2) -> (and x, pow2-1)
1182 if (N1C && !N1C->isNullValue() && isPowerOf2_64(N1C->getValue()))
1183 return DAG.getNode(ISD::AND, VT, N0, DAG.getConstant(N1C->getValue()-1,VT));
1184 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
1185 if (N1.getOpcode() == ISD::SHL) {
1186 if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1187 if (isPowerOf2_64(SHC->getValue())) {
1188 SDOperand Add = DAG.getNode(ISD::ADD, VT, N1,DAG.getConstant(~0ULL,VT));
1189 AddToWorkList(Add.Val);
1190 return DAG.getNode(ISD::AND, VT, N0, Add);
1195 // Unconditionally lower X%C -> X-X/C*C. This allows the X/C logic to hack on
1196 // the remainder operation.
1197 if (N1C && !N1C->isNullValue()) {
1198 SDOperand Div = DAG.getNode(ISD::UDIV, VT, N0, N1);
1199 SDOperand Mul = DAG.getNode(ISD::MUL, VT, Div, N1);
1200 SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul);
1201 AddToWorkList(Div.Val);
1202 AddToWorkList(Mul.Val);
1203 return Sub;
1206 return SDOperand();
1209 SDOperand DAGCombiner::visitMULHS(SDNode *N) {
1210 SDOperand N0 = N->getOperand(0);
1211 SDOperand N1 = N->getOperand(1);
1212 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1214 // fold (mulhs x, 0) -> 0
1215 if (N1C && N1C->isNullValue())
1216 return N1;
1217 // fold (mulhs x, 1) -> (sra x, size(x)-1)
1218 if (N1C && N1C->getValue() == 1)
1219 return DAG.getNode(ISD::SRA, N0.getValueType(), N0,
1220 DAG.getConstant(MVT::getSizeInBits(N0.getValueType())-1,
1221 TLI.getShiftAmountTy()));
1222 return SDOperand();
1225 SDOperand DAGCombiner::visitMULHU(SDNode *N) {
1226 SDOperand N0 = N->getOperand(0);
1227 SDOperand N1 = N->getOperand(1);
1228 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1230 // fold (mulhu x, 0) -> 0
1231 if (N1C && N1C->isNullValue())
1232 return N1;
1233 // fold (mulhu x, 1) -> 0
1234 if (N1C && N1C->getValue() == 1)
1235 return DAG.getConstant(0, N0.getValueType());
1236 return SDOperand();
1239 /// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
1240 /// two operands of the same opcode, try to simplify it.
1241 SDOperand DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
1242 SDOperand N0 = N->getOperand(0), N1 = N->getOperand(1);
1243 MVT::ValueType VT = N0.getValueType();
1244 assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
1246 // For each of OP in AND/OR/XOR:
1247 // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
1248 // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
1249 // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
1250 // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y))
1251 if ((N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND||
1252 N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::TRUNCATE) &&
1253 N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) {
1254 SDOperand ORNode = DAG.getNode(N->getOpcode(),
1255 N0.getOperand(0).getValueType(),
1256 N0.getOperand(0), N1.getOperand(0));
1257 AddToWorkList(ORNode.Val);
1258 return DAG.getNode(N0.getOpcode(), VT, ORNode);
1261 // For each of OP in SHL/SRL/SRA/AND...
1262 // fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
1263 // fold (or (OP x, z), (OP y, z)) -> (OP (or x, y), z)
1264 // fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
1265 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
1266 N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
1267 N0.getOperand(1) == N1.getOperand(1)) {
1268 SDOperand ORNode = DAG.getNode(N->getOpcode(),
1269 N0.getOperand(0).getValueType(),
1270 N0.getOperand(0), N1.getOperand(0));
1271 AddToWorkList(ORNode.Val);
1272 return DAG.getNode(N0.getOpcode(), VT, ORNode, N0.getOperand(1));
1275 return SDOperand();
1278 SDOperand DAGCombiner::visitAND(SDNode *N) {
1279 SDOperand N0 = N->getOperand(0);
1280 SDOperand N1 = N->getOperand(1);
1281 SDOperand LL, LR, RL, RR, CC0, CC1;
1282 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1283 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1284 MVT::ValueType VT = N1.getValueType();
1286 // fold (and c1, c2) -> c1&c2
1287 if (N0C && N1C)
1288 return DAG.getNode(ISD::AND, VT, N0, N1);
1289 // canonicalize constant to RHS
1290 if (N0C && !N1C)
1291 return DAG.getNode(ISD::AND, VT, N1, N0);
1292 // fold (and x, -1) -> x
1293 if (N1C && N1C->isAllOnesValue())
1294 return N0;
1295 // if (and x, c) is known to be zero, return 0
1296 if (N1C && TLI.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT)))
1297 return DAG.getConstant(0, VT);
1298 // reassociate and
1299 SDOperand RAND = ReassociateOps(ISD::AND, N0, N1);
1300 if (RAND.Val != 0)
1301 return RAND;
1302 // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF
1303 if (N1C && N0.getOpcode() == ISD::OR)
1304 if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
1305 if ((ORI->getValue() & N1C->getValue()) == N1C->getValue())
1306 return N1;
1307 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
1308 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
1309 unsigned InMask = MVT::getIntVTBitMask(N0.getOperand(0).getValueType());
1310 if (TLI.MaskedValueIsZero(N0.getOperand(0),
1311 ~N1C->getValue() & InMask)) {
1312 SDOperand Zext = DAG.getNode(ISD::ZERO_EXTEND, N0.getValueType(),
1313 N0.getOperand(0));
1315 // Replace uses of the AND with uses of the Zero extend node.
1316 CombineTo(N, Zext);
1318 // We actually want to replace all uses of the any_extend with the
1319 // zero_extend, to avoid duplicating things. This will later cause this
1320 // AND to be folded.
1321 CombineTo(N0.Val, Zext);
1322 return SDOperand(N, 0); // Return N so it doesn't get rechecked!
1325 // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
1326 if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1327 ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1328 ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1330 if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1331 MVT::isInteger(LL.getValueType())) {
1332 // fold (X == 0) & (Y == 0) -> (X|Y == 0)
1333 if (cast<ConstantSDNode>(LR)->getValue() == 0 && Op1 == ISD::SETEQ) {
1334 SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1335 AddToWorkList(ORNode.Val);
1336 return DAG.getSetCC(VT, ORNode, LR, Op1);
1338 // fold (X == -1) & (Y == -1) -> (X&Y == -1)
1339 if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
1340 SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1341 AddToWorkList(ANDNode.Val);
1342 return DAG.getSetCC(VT, ANDNode, LR, Op1);
1344 // fold (X > -1) & (Y > -1) -> (X|Y > -1)
1345 if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
1346 SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1347 AddToWorkList(ORNode.Val);
1348 return DAG.getSetCC(VT, ORNode, LR, Op1);
1351 // canonicalize equivalent to ll == rl
1352 if (LL == RR && LR == RL) {
1353 Op1 = ISD::getSetCCSwappedOperands(Op1);
1354 std::swap(RL, RR);
1356 if (LL == RL && LR == RR) {
1357 bool isInteger = MVT::isInteger(LL.getValueType());
1358 ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
1359 if (Result != ISD::SETCC_INVALID)
1360 return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1364 // Simplify: and (op x...), (op y...) -> (op (and x, y))
1365 if (N0.getOpcode() == N1.getOpcode()) {
1366 SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1367 if (Tmp.Val) return Tmp;
1370 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
1371 // fold (and (sra)) -> (and (srl)) when possible.
1372 if (!MVT::isVector(VT) &&
1373 SimplifyDemandedBits(SDOperand(N, 0)))
1374 return SDOperand(N, 0);
1375 // fold (zext_inreg (extload x)) -> (zextload x)
1376 if (ISD::isEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val)) {
1377 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1378 MVT::ValueType EVT = LN0->getLoadedVT();
1379 // If we zero all the possible extended bits, then we can turn this into
1380 // a zextload if we are running before legalize or the operation is legal.
1381 if (TLI.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) &&
1382 (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1383 SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
1384 LN0->getBasePtr(), LN0->getSrcValue(),
1385 LN0->getSrcValueOffset(), EVT,
1386 LN0->isVolatile(),
1387 LN0->getAlignment());
1388 AddToWorkList(N);
1389 CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1390 return SDOperand(N, 0); // Return N so it doesn't get rechecked!
1393 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
1394 if (ISD::isSEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
1395 N0.hasOneUse()) {
1396 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1397 MVT::ValueType EVT = LN0->getLoadedVT();
1398 // If we zero all the possible extended bits, then we can turn this into
1399 // a zextload if we are running before legalize or the operation is legal.
1400 if (TLI.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) &&
1401 (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1402 SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
1403 LN0->getBasePtr(), LN0->getSrcValue(),
1404 LN0->getSrcValueOffset(), EVT,
1405 LN0->isVolatile(),
1406 LN0->getAlignment());
1407 AddToWorkList(N);
1408 CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1409 return SDOperand(N, 0); // Return N so it doesn't get rechecked!
1413 // fold (and (load x), 255) -> (zextload x, i8)
1414 // fold (and (extload x, i16), 255) -> (zextload x, i8)
1415 if (N1C && N0.getOpcode() == ISD::LOAD) {
1416 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1417 if (LN0->getExtensionType() != ISD::SEXTLOAD &&
1418 LN0->getAddressingMode() == ISD::UNINDEXED &&
1419 N0.hasOneUse()) {
1420 MVT::ValueType EVT, LoadedVT;
1421 if (N1C->getValue() == 255)
1422 EVT = MVT::i8;
1423 else if (N1C->getValue() == 65535)
1424 EVT = MVT::i16;
1425 else if (N1C->getValue() == ~0U)
1426 EVT = MVT::i32;
1427 else
1428 EVT = MVT::Other;
1430 LoadedVT = LN0->getLoadedVT();
1431 if (EVT != MVT::Other && LoadedVT > EVT &&
1432 (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1433 MVT::ValueType PtrType = N0.getOperand(1).getValueType();
1434 // For big endian targets, we need to add an offset to the pointer to
1435 // load the correct bytes. For little endian systems, we merely need to
1436 // read fewer bytes from the same pointer.
1437 unsigned PtrOff =
1438 (MVT::getSizeInBits(LoadedVT) - MVT::getSizeInBits(EVT)) / 8;
1439 SDOperand NewPtr = LN0->getBasePtr();
1440 if (!TLI.isLittleEndian())
1441 NewPtr = DAG.getNode(ISD::ADD, PtrType, NewPtr,
1442 DAG.getConstant(PtrOff, PtrType));
1443 AddToWorkList(NewPtr.Val);
1444 SDOperand Load =
1445 DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(), NewPtr,
1446 LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT,
1447 LN0->isVolatile(), LN0->getAlignment());
1448 AddToWorkList(N);
1449 CombineTo(N0.Val, Load, Load.getValue(1));
1450 return SDOperand(N, 0); // Return N so it doesn't get rechecked!
1455 return SDOperand();
1458 SDOperand DAGCombiner::visitOR(SDNode *N) {
1459 SDOperand N0 = N->getOperand(0);
1460 SDOperand N1 = N->getOperand(1);
1461 SDOperand LL, LR, RL, RR, CC0, CC1;
1462 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1463 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1464 MVT::ValueType VT = N1.getValueType();
1465 unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1467 // fold (or c1, c2) -> c1|c2
1468 if (N0C && N1C)
1469 return DAG.getNode(ISD::OR, VT, N0, N1);
1470 // canonicalize constant to RHS
1471 if (N0C && !N1C)
1472 return DAG.getNode(ISD::OR, VT, N1, N0);
1473 // fold (or x, 0) -> x
1474 if (N1C && N1C->isNullValue())
1475 return N0;
1476 // fold (or x, -1) -> -1
1477 if (N1C && N1C->isAllOnesValue())
1478 return N1;
1479 // fold (or x, c) -> c iff (x & ~c) == 0
1480 if (N1C &&
1481 TLI.MaskedValueIsZero(N0,~N1C->getValue() & (~0ULL>>(64-OpSizeInBits))))
1482 return N1;
1483 // reassociate or
1484 SDOperand ROR = ReassociateOps(ISD::OR, N0, N1);
1485 if (ROR.Val != 0)
1486 return ROR;
1487 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
1488 if (N1C && N0.getOpcode() == ISD::AND && N0.Val->hasOneUse() &&
1489 isa<ConstantSDNode>(N0.getOperand(1))) {
1490 ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
1491 return DAG.getNode(ISD::AND, VT, DAG.getNode(ISD::OR, VT, N0.getOperand(0),
1492 N1),
1493 DAG.getConstant(N1C->getValue() | C1->getValue(), VT));
1495 // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
1496 if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1497 ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1498 ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1500 if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1501 MVT::isInteger(LL.getValueType())) {
1502 // fold (X != 0) | (Y != 0) -> (X|Y != 0)
1503 // fold (X < 0) | (Y < 0) -> (X|Y < 0)
1504 if (cast<ConstantSDNode>(LR)->getValue() == 0 &&
1505 (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
1506 SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1507 AddToWorkList(ORNode.Val);
1508 return DAG.getSetCC(VT, ORNode, LR, Op1);
1510 // fold (X != -1) | (Y != -1) -> (X&Y != -1)
1511 // fold (X > -1) | (Y > -1) -> (X&Y > -1)
1512 if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
1513 (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
1514 SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1515 AddToWorkList(ANDNode.Val);
1516 return DAG.getSetCC(VT, ANDNode, LR, Op1);
1519 // canonicalize equivalent to ll == rl
1520 if (LL == RR && LR == RL) {
1521 Op1 = ISD::getSetCCSwappedOperands(Op1);
1522 std::swap(RL, RR);
1524 if (LL == RL && LR == RR) {
1525 bool isInteger = MVT::isInteger(LL.getValueType());
1526 ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
1527 if (Result != ISD::SETCC_INVALID)
1528 return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1532 // Simplify: or (op x...), (op y...) -> (op (or x, y))
1533 if (N0.getOpcode() == N1.getOpcode()) {
1534 SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1535 if (Tmp.Val) return Tmp;
1538 // (X & C1) | (Y & C2) -> (X|Y) & C3 if possible.
1539 if (N0.getOpcode() == ISD::AND &&
1540 N1.getOpcode() == ISD::AND &&
1541 N0.getOperand(1).getOpcode() == ISD::Constant &&
1542 N1.getOperand(1).getOpcode() == ISD::Constant &&
1543 // Don't increase # computations.
1544 (N0.Val->hasOneUse() || N1.Val->hasOneUse())) {
1545 // We can only do this xform if we know that bits from X that are set in C2
1546 // but not in C1 are already zero. Likewise for Y.
1547 uint64_t LHSMask = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1548 uint64_t RHSMask = cast<ConstantSDNode>(N1.getOperand(1))->getValue();
1550 if (TLI.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
1551 TLI.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
1552 SDOperand X =DAG.getNode(ISD::OR, VT, N0.getOperand(0), N1.getOperand(0));
1553 return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(LHSMask|RHSMask, VT));
1558 // See if this is some rotate idiom.
1559 if (SDNode *Rot = MatchRotate(N0, N1))
1560 return SDOperand(Rot, 0);
1562 return SDOperand();
1566 /// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
1567 static bool MatchRotateHalf(SDOperand Op, SDOperand &Shift, SDOperand &Mask) {
1568 if (Op.getOpcode() == ISD::AND) {
1569 if (isa<ConstantSDNode>(Op.getOperand(1))) {
1570 Mask = Op.getOperand(1);
1571 Op = Op.getOperand(0);
1572 } else {
1573 return false;
1577 if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
1578 Shift = Op;
1579 return true;
1581 return false;
1585 // MatchRotate - Handle an 'or' of two operands. If this is one of the many
1586 // idioms for rotate, and if the target supports rotation instructions, generate
1587 // a rot[lr].
1588 SDNode *DAGCombiner::MatchRotate(SDOperand LHS, SDOperand RHS) {
1589 // Must be a legal type. Expanded an promoted things won't work with rotates.
1590 MVT::ValueType VT = LHS.getValueType();
1591 if (!TLI.isTypeLegal(VT)) return 0;
1593 // The target must have at least one rotate flavor.
1594 bool HasROTL = TLI.isOperationLegal(ISD::ROTL, VT);
1595 bool HasROTR = TLI.isOperationLegal(ISD::ROTR, VT);
1596 if (!HasROTL && !HasROTR) return 0;
1598 // Match "(X shl/srl V1) & V2" where V2 may not be present.
1599 SDOperand LHSShift; // The shift.
1600 SDOperand LHSMask; // AND value if any.
1601 if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
1602 return 0; // Not part of a rotate.
1604 SDOperand RHSShift; // The shift.
1605 SDOperand RHSMask; // AND value if any.
1606 if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
1607 return 0; // Not part of a rotate.
1609 if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
1610 return 0; // Not shifting the same value.
1612 if (LHSShift.getOpcode() == RHSShift.getOpcode())
1613 return 0; // Shifts must disagree.
1615 // Canonicalize shl to left side in a shl/srl pair.
1616 if (RHSShift.getOpcode() == ISD::SHL) {
1617 std::swap(LHS, RHS);
1618 std::swap(LHSShift, RHSShift);
1619 std::swap(LHSMask , RHSMask );
1622 unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1623 SDOperand LHSShiftArg = LHSShift.getOperand(0);
1624 SDOperand LHSShiftAmt = LHSShift.getOperand(1);
1625 SDOperand RHSShiftAmt = RHSShift.getOperand(1);
1627 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
1628 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
1629 if (LHSShiftAmt.getOpcode() == ISD::Constant &&
1630 RHSShiftAmt.getOpcode() == ISD::Constant) {
1631 uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getValue();
1632 uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getValue();
1633 if ((LShVal + RShVal) != OpSizeInBits)
1634 return 0;
1636 SDOperand Rot;
1637 if (HasROTL)
1638 Rot = DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt);
1639 else
1640 Rot = DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt);
1642 // If there is an AND of either shifted operand, apply it to the result.
1643 if (LHSMask.Val || RHSMask.Val) {
1644 uint64_t Mask = MVT::getIntVTBitMask(VT);
1646 if (LHSMask.Val) {
1647 uint64_t RHSBits = (1ULL << LShVal)-1;
1648 Mask &= cast<ConstantSDNode>(LHSMask)->getValue() | RHSBits;
1650 if (RHSMask.Val) {
1651 uint64_t LHSBits = ~((1ULL << (OpSizeInBits-RShVal))-1);
1652 Mask &= cast<ConstantSDNode>(RHSMask)->getValue() | LHSBits;
1655 Rot = DAG.getNode(ISD::AND, VT, Rot, DAG.getConstant(Mask, VT));
1658 return Rot.Val;
1661 // If there is a mask here, and we have a variable shift, we can't be sure
1662 // that we're masking out the right stuff.
1663 if (LHSMask.Val || RHSMask.Val)
1664 return 0;
1666 // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
1667 // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
1668 if (RHSShiftAmt.getOpcode() == ISD::SUB &&
1669 LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
1670 if (ConstantSDNode *SUBC =
1671 dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
1672 if (SUBC->getValue() == OpSizeInBits)
1673 if (HasROTL)
1674 return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
1675 else
1676 return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
1680 // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
1681 // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
1682 if (LHSShiftAmt.getOpcode() == ISD::SUB &&
1683 RHSShiftAmt == LHSShiftAmt.getOperand(1)) {
1684 if (ConstantSDNode *SUBC =
1685 dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) {
1686 if (SUBC->getValue() == OpSizeInBits)
1687 if (HasROTL)
1688 return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
1689 else
1690 return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
1694 // Look for sign/zext/any-extended cases:
1695 if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
1696 || LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
1697 || LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND) &&
1698 (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
1699 || RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
1700 || RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND)) {
1701 SDOperand LExtOp0 = LHSShiftAmt.getOperand(0);
1702 SDOperand RExtOp0 = RHSShiftAmt.getOperand(0);
1703 if (RExtOp0.getOpcode() == ISD::SUB &&
1704 RExtOp0.getOperand(1) == LExtOp0) {
1705 // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
1706 // (rotr x, y)
1707 // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
1708 // (rotl x, (sub 32, y))
1709 if (ConstantSDNode *SUBC = cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
1710 if (SUBC->getValue() == OpSizeInBits) {
1711 if (HasROTL)
1712 return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
1713 else
1714 return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
1717 } else if (LExtOp0.getOpcode() == ISD::SUB &&
1718 RExtOp0 == LExtOp0.getOperand(1)) {
1719 // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) ->
1720 // (rotl x, y)
1721 // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) ->
1722 // (rotr x, (sub 32, y))
1723 if (ConstantSDNode *SUBC = cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
1724 if (SUBC->getValue() == OpSizeInBits) {
1725 if (HasROTL)
1726 return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, RHSShiftAmt).Val;
1727 else
1728 return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
1734 return 0;
1738 SDOperand DAGCombiner::visitXOR(SDNode *N) {
1739 SDOperand N0 = N->getOperand(0);
1740 SDOperand N1 = N->getOperand(1);
1741 SDOperand LHS, RHS, CC;
1742 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1743 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1744 MVT::ValueType VT = N0.getValueType();
1746 // fold (xor c1, c2) -> c1^c2
1747 if (N0C && N1C)
1748 return DAG.getNode(ISD::XOR, VT, N0, N1);
1749 // canonicalize constant to RHS
1750 if (N0C && !N1C)
1751 return DAG.getNode(ISD::XOR, VT, N1, N0);
1752 // fold (xor x, 0) -> x
1753 if (N1C && N1C->isNullValue())
1754 return N0;
1755 // reassociate xor
1756 SDOperand RXOR = ReassociateOps(ISD::XOR, N0, N1);
1757 if (RXOR.Val != 0)
1758 return RXOR;
1759 // fold !(x cc y) -> (x !cc y)
1760 if (N1C && N1C->getValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
1761 bool isInt = MVT::isInteger(LHS.getValueType());
1762 ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
1763 isInt);
1764 if (N0.getOpcode() == ISD::SETCC)
1765 return DAG.getSetCC(VT, LHS, RHS, NotCC);
1766 if (N0.getOpcode() == ISD::SELECT_CC)
1767 return DAG.getSelectCC(LHS, RHS, N0.getOperand(2),N0.getOperand(3),NotCC);
1768 assert(0 && "Unhandled SetCC Equivalent!");
1769 abort();
1771 // fold !(x or y) -> (!x and !y) iff x or y are setcc
1772 if (N1C && N1C->getValue() == 1 && VT == MVT::i1 &&
1773 (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
1774 SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
1775 if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
1776 unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
1777 LHS = DAG.getNode(ISD::XOR, VT, LHS, N1); // RHS = ~LHS
1778 RHS = DAG.getNode(ISD::XOR, VT, RHS, N1); // RHS = ~RHS
1779 AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
1780 return DAG.getNode(NewOpcode, VT, LHS, RHS);
1783 // fold !(x or y) -> (!x and !y) iff x or y are constants
1784 if (N1C && N1C->isAllOnesValue() &&
1785 (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
1786 SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
1787 if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
1788 unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
1789 LHS = DAG.getNode(ISD::XOR, VT, LHS, N1); // RHS = ~LHS
1790 RHS = DAG.getNode(ISD::XOR, VT, RHS, N1); // RHS = ~RHS
1791 AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
1792 return DAG.getNode(NewOpcode, VT, LHS, RHS);
1795 // fold (xor (xor x, c1), c2) -> (xor x, c1^c2)
1796 if (N1C && N0.getOpcode() == ISD::XOR) {
1797 ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
1798 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
1799 if (N00C)
1800 return DAG.getNode(ISD::XOR, VT, N0.getOperand(1),
1801 DAG.getConstant(N1C->getValue()^N00C->getValue(), VT));
1802 if (N01C)
1803 return DAG.getNode(ISD::XOR, VT, N0.getOperand(0),
1804 DAG.getConstant(N1C->getValue()^N01C->getValue(), VT));
1806 // fold (xor x, x) -> 0
1807 if (N0 == N1) {
1808 if (!MVT::isVector(VT)) {
1809 return DAG.getConstant(0, VT);
1810 } else if (!AfterLegalize || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
1811 // Produce a vector of zeros.
1812 SDOperand El = DAG.getConstant(0, MVT::getVectorElementType(VT));
1813 std::vector<SDOperand> Ops(MVT::getVectorNumElements(VT), El);
1814 return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
1818 // Simplify: xor (op x...), (op y...) -> (op (xor x, y))
1819 if (N0.getOpcode() == N1.getOpcode()) {
1820 SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1821 if (Tmp.Val) return Tmp;
1824 // Simplify the expression using non-local knowledge.
1825 if (!MVT::isVector(VT) &&
1826 SimplifyDemandedBits(SDOperand(N, 0)))
1827 return SDOperand(N, 0);
1829 return SDOperand();
1832 SDOperand DAGCombiner::visitSHL(SDNode *N) {
1833 SDOperand N0 = N->getOperand(0);
1834 SDOperand N1 = N->getOperand(1);
1835 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1836 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1837 MVT::ValueType VT = N0.getValueType();
1838 unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1840 // fold (shl c1, c2) -> c1<<c2
1841 if (N0C && N1C)
1842 return DAG.getNode(ISD::SHL, VT, N0, N1);
1843 // fold (shl 0, x) -> 0
1844 if (N0C && N0C->isNullValue())
1845 return N0;
1846 // fold (shl x, c >= size(x)) -> undef
1847 if (N1C && N1C->getValue() >= OpSizeInBits)
1848 return DAG.getNode(ISD::UNDEF, VT);
1849 // fold (shl x, 0) -> x
1850 if (N1C && N1C->isNullValue())
1851 return N0;
1852 // if (shl x, c) is known to be zero, return 0
1853 if (TLI.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT)))
1854 return DAG.getConstant(0, VT);
1855 if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
1856 return SDOperand(N, 0);
1857 // fold (shl (shl x, c1), c2) -> 0 or (shl x, c1+c2)
1858 if (N1C && N0.getOpcode() == ISD::SHL &&
1859 N0.getOperand(1).getOpcode() == ISD::Constant) {
1860 uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1861 uint64_t c2 = N1C->getValue();
1862 if (c1 + c2 > OpSizeInBits)
1863 return DAG.getConstant(0, VT);
1864 return DAG.getNode(ISD::SHL, VT, N0.getOperand(0),
1865 DAG.getConstant(c1 + c2, N1.getValueType()));
1867 // fold (shl (srl x, c1), c2) -> (shl (and x, -1 << c1), c2-c1) or
1868 // (srl (and x, -1 << c1), c1-c2)
1869 if (N1C && N0.getOpcode() == ISD::SRL &&
1870 N0.getOperand(1).getOpcode() == ISD::Constant) {
1871 uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1872 uint64_t c2 = N1C->getValue();
1873 SDOperand Mask = DAG.getNode(ISD::AND, VT, N0.getOperand(0),
1874 DAG.getConstant(~0ULL << c1, VT));
1875 if (c2 > c1)
1876 return DAG.getNode(ISD::SHL, VT, Mask,
1877 DAG.getConstant(c2-c1, N1.getValueType()));
1878 else
1879 return DAG.getNode(ISD::SRL, VT, Mask,
1880 DAG.getConstant(c1-c2, N1.getValueType()));
1882 // fold (shl (sra x, c1), c1) -> (and x, -1 << c1)
1883 if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1))
1884 return DAG.getNode(ISD::AND, VT, N0.getOperand(0),
1885 DAG.getConstant(~0ULL << N1C->getValue(), VT));
1886 return SDOperand();
1889 SDOperand DAGCombiner::visitSRA(SDNode *N) {
1890 SDOperand N0 = N->getOperand(0);
1891 SDOperand N1 = N->getOperand(1);
1892 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1893 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1894 MVT::ValueType VT = N0.getValueType();
1896 // fold (sra c1, c2) -> c1>>c2
1897 if (N0C && N1C)
1898 return DAG.getNode(ISD::SRA, VT, N0, N1);
1899 // fold (sra 0, x) -> 0
1900 if (N0C && N0C->isNullValue())
1901 return N0;
1902 // fold (sra -1, x) -> -1
1903 if (N0C && N0C->isAllOnesValue())
1904 return N0;
1905 // fold (sra x, c >= size(x)) -> undef
1906 if (N1C && N1C->getValue() >= MVT::getSizeInBits(VT))
1907 return DAG.getNode(ISD::UNDEF, VT);
1908 // fold (sra x, 0) -> x
1909 if (N1C && N1C->isNullValue())
1910 return N0;
1911 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
1912 // sext_inreg.
1913 if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
1914 unsigned LowBits = MVT::getSizeInBits(VT) - (unsigned)N1C->getValue();
1915 MVT::ValueType EVT;
1916 switch (LowBits) {
1917 default: EVT = MVT::Other; break;
1918 case 1: EVT = MVT::i1; break;
1919 case 8: EVT = MVT::i8; break;
1920 case 16: EVT = MVT::i16; break;
1921 case 32: EVT = MVT::i32; break;
1923 if (EVT > MVT::Other && TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, EVT))
1924 return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0),
1925 DAG.getValueType(EVT));
1928 // fold (sra (sra x, c1), c2) -> (sra x, c1+c2)
1929 if (N1C && N0.getOpcode() == ISD::SRA) {
1930 if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1931 unsigned Sum = N1C->getValue() + C1->getValue();
1932 if (Sum >= MVT::getSizeInBits(VT)) Sum = MVT::getSizeInBits(VT)-1;
1933 return DAG.getNode(ISD::SRA, VT, N0.getOperand(0),
1934 DAG.getConstant(Sum, N1C->getValueType(0)));
1938 // Simplify, based on bits shifted out of the LHS.
1939 if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
1940 return SDOperand(N, 0);
1943 // If the sign bit is known to be zero, switch this to a SRL.
1944 if (TLI.MaskedValueIsZero(N0, MVT::getIntVTSignBit(VT)))
1945 return DAG.getNode(ISD::SRL, VT, N0, N1);
1946 return SDOperand();
1949 SDOperand DAGCombiner::visitSRL(SDNode *N) {
1950 SDOperand N0 = N->getOperand(0);
1951 SDOperand N1 = N->getOperand(1);
1952 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1953 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1954 MVT::ValueType VT = N0.getValueType();
1955 unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1957 // fold (srl c1, c2) -> c1 >>u c2
1958 if (N0C && N1C)
1959 return DAG.getNode(ISD::SRL, VT, N0, N1);
1960 // fold (srl 0, x) -> 0
1961 if (N0C && N0C->isNullValue())
1962 return N0;
1963 // fold (srl x, c >= size(x)) -> undef
1964 if (N1C && N1C->getValue() >= OpSizeInBits)
1965 return DAG.getNode(ISD::UNDEF, VT);
1966 // fold (srl x, 0) -> x
1967 if (N1C && N1C->isNullValue())
1968 return N0;
1969 // if (srl x, c) is known to be zero, return 0
1970 if (N1C && TLI.MaskedValueIsZero(SDOperand(N, 0), ~0ULL >> (64-OpSizeInBits)))
1971 return DAG.getConstant(0, VT);
1973 // fold (srl (srl x, c1), c2) -> 0 or (srl x, c1+c2)
1974 if (N1C && N0.getOpcode() == ISD::SRL &&
1975 N0.getOperand(1).getOpcode() == ISD::Constant) {
1976 uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1977 uint64_t c2 = N1C->getValue();
1978 if (c1 + c2 > OpSizeInBits)
1979 return DAG.getConstant(0, VT);
1980 return DAG.getNode(ISD::SRL, VT, N0.getOperand(0),
1981 DAG.getConstant(c1 + c2, N1.getValueType()));
1984 // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
1985 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
1986 // Shifting in all undef bits?
1987 MVT::ValueType SmallVT = N0.getOperand(0).getValueType();
1988 if (N1C->getValue() >= MVT::getSizeInBits(SmallVT))
1989 return DAG.getNode(ISD::UNDEF, VT);
1991 SDOperand SmallShift = DAG.getNode(ISD::SRL, SmallVT, N0.getOperand(0), N1);
1992 AddToWorkList(SmallShift.Val);
1993 return DAG.getNode(ISD::ANY_EXTEND, VT, SmallShift);
1996 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
1997 // bit, which is unmodified by sra.
1998 if (N1C && N1C->getValue()+1 == MVT::getSizeInBits(VT)) {
1999 if (N0.getOpcode() == ISD::SRA)
2000 return DAG.getNode(ISD::SRL, VT, N0.getOperand(0), N1);
2003 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit).
2004 if (N1C && N0.getOpcode() == ISD::CTLZ &&
2005 N1C->getValue() == Log2_32(MVT::getSizeInBits(VT))) {
2006 uint64_t KnownZero, KnownOne, Mask = MVT::getIntVTBitMask(VT);
2007 TLI.ComputeMaskedBits(N0.getOperand(0), Mask, KnownZero, KnownOne);
2009 // If any of the input bits are KnownOne, then the input couldn't be all
2010 // zeros, thus the result of the srl will always be zero.
2011 if (KnownOne) return DAG.getConstant(0, VT);
2013 // If all of the bits input the to ctlz node are known to be zero, then
2014 // the result of the ctlz is "32" and the result of the shift is one.
2015 uint64_t UnknownBits = ~KnownZero & Mask;
2016 if (UnknownBits == 0) return DAG.getConstant(1, VT);
2018 // Otherwise, check to see if there is exactly one bit input to the ctlz.
2019 if ((UnknownBits & (UnknownBits-1)) == 0) {
2020 // Okay, we know that only that the single bit specified by UnknownBits
2021 // could be set on input to the CTLZ node. If this bit is set, the SRL
2022 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
2023 // to an SRL,XOR pair, which is likely to simplify more.
2024 unsigned ShAmt = CountTrailingZeros_64(UnknownBits);
2025 SDOperand Op = N0.getOperand(0);
2026 if (ShAmt) {
2027 Op = DAG.getNode(ISD::SRL, VT, Op,
2028 DAG.getConstant(ShAmt, TLI.getShiftAmountTy()));
2029 AddToWorkList(Op.Val);
2031 return DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(1, VT));
2035 // fold operands of srl based on knowledge that the low bits are not
2036 // demanded.
2037 if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2038 return SDOperand(N, 0);
2040 return SDOperand();
2043 SDOperand DAGCombiner::visitCTLZ(SDNode *N) {
2044 SDOperand N0 = N->getOperand(0);
2045 MVT::ValueType VT = N->getValueType(0);
2047 // fold (ctlz c1) -> c2
2048 if (isa<ConstantSDNode>(N0))
2049 return DAG.getNode(ISD::CTLZ, VT, N0);
2050 return SDOperand();
2053 SDOperand DAGCombiner::visitCTTZ(SDNode *N) {
2054 SDOperand N0 = N->getOperand(0);
2055 MVT::ValueType VT = N->getValueType(0);
2057 // fold (cttz c1) -> c2
2058 if (isa<ConstantSDNode>(N0))
2059 return DAG.getNode(ISD::CTTZ, VT, N0);
2060 return SDOperand();
2063 SDOperand DAGCombiner::visitCTPOP(SDNode *N) {
2064 SDOperand N0 = N->getOperand(0);
2065 MVT::ValueType VT = N->getValueType(0);
2067 // fold (ctpop c1) -> c2
2068 if (isa<ConstantSDNode>(N0))
2069 return DAG.getNode(ISD::CTPOP, VT, N0);
2070 return SDOperand();
2073 SDOperand DAGCombiner::visitSELECT(SDNode *N) {
2074 SDOperand N0 = N->getOperand(0);
2075 SDOperand N1 = N->getOperand(1);
2076 SDOperand N2 = N->getOperand(2);
2077 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2078 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2079 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
2080 MVT::ValueType VT = N->getValueType(0);
2082 // fold select C, X, X -> X
2083 if (N1 == N2)
2084 return N1;
2085 // fold select true, X, Y -> X
2086 if (N0C && !N0C->isNullValue())
2087 return N1;
2088 // fold select false, X, Y -> Y
2089 if (N0C && N0C->isNullValue())
2090 return N2;
2091 // fold select C, 1, X -> C | X
2092 if (MVT::i1 == VT && N1C && N1C->getValue() == 1)
2093 return DAG.getNode(ISD::OR, VT, N0, N2);
2094 // fold select C, 0, X -> ~C & X
2095 // FIXME: this should check for C type == X type, not i1?
2096 if (MVT::i1 == VT && N1C && N1C->isNullValue()) {
2097 SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
2098 AddToWorkList(XORNode.Val);
2099 return DAG.getNode(ISD::AND, VT, XORNode, N2);
2101 // fold select C, X, 1 -> ~C | X
2102 if (MVT::i1 == VT && N2C && N2C->getValue() == 1) {
2103 SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
2104 AddToWorkList(XORNode.Val);
2105 return DAG.getNode(ISD::OR, VT, XORNode, N1);
2107 // fold select C, X, 0 -> C & X
2108 // FIXME: this should check for C type == X type, not i1?
2109 if (MVT::i1 == VT && N2C && N2C->isNullValue())
2110 return DAG.getNode(ISD::AND, VT, N0, N1);
2111 // fold X ? X : Y --> X ? 1 : Y --> X | Y
2112 if (MVT::i1 == VT && N0 == N1)
2113 return DAG.getNode(ISD::OR, VT, N0, N2);
2114 // fold X ? Y : X --> X ? Y : 0 --> X & Y
2115 if (MVT::i1 == VT && N0 == N2)
2116 return DAG.getNode(ISD::AND, VT, N0, N1);
2118 // If we can fold this based on the true/false value, do so.
2119 if (SimplifySelectOps(N, N1, N2))
2120 return SDOperand(N, 0); // Don't revisit N.
2122 // fold selects based on a setcc into other things, such as min/max/abs
2123 if (N0.getOpcode() == ISD::SETCC)
2124 // FIXME:
2125 // Check against MVT::Other for SELECT_CC, which is a workaround for targets
2126 // having to say they don't support SELECT_CC on every type the DAG knows
2127 // about, since there is no way to mark an opcode illegal at all value types
2128 if (TLI.isOperationLegal(ISD::SELECT_CC, MVT::Other))
2129 return DAG.getNode(ISD::SELECT_CC, VT, N0.getOperand(0), N0.getOperand(1),
2130 N1, N2, N0.getOperand(2));
2131 else
2132 return SimplifySelect(N0, N1, N2);
2133 return SDOperand();
2136 SDOperand DAGCombiner::visitSELECT_CC(SDNode *N) {
2137 SDOperand N0 = N->getOperand(0);
2138 SDOperand N1 = N->getOperand(1);
2139 SDOperand N2 = N->getOperand(2);
2140 SDOperand N3 = N->getOperand(3);
2141 SDOperand N4 = N->getOperand(4);
2142 ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
2144 // fold select_cc lhs, rhs, x, x, cc -> x
2145 if (N2 == N3)
2146 return N2;
2148 // Determine if the condition we're dealing with is constant
2149 SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false);
2150 if (SCC.Val) AddToWorkList(SCC.Val);
2152 if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val)) {
2153 if (SCCC->getValue())
2154 return N2; // cond always true -> true val
2155 else
2156 return N3; // cond always false -> false val
2159 // Fold to a simpler select_cc
2160 if (SCC.Val && SCC.getOpcode() == ISD::SETCC)
2161 return DAG.getNode(ISD::SELECT_CC, N2.getValueType(),
2162 SCC.getOperand(0), SCC.getOperand(1), N2, N3,
2163 SCC.getOperand(2));
2165 // If we can fold this based on the true/false value, do so.
2166 if (SimplifySelectOps(N, N2, N3))
2167 return SDOperand(N, 0); // Don't revisit N.
2169 // fold select_cc into other things, such as min/max/abs
2170 return SimplifySelectCC(N0, N1, N2, N3, CC);
2173 SDOperand DAGCombiner::visitSETCC(SDNode *N) {
2174 return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
2175 cast<CondCodeSDNode>(N->getOperand(2))->get());
2178 SDOperand DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
2179 SDOperand N0 = N->getOperand(0);
2180 MVT::ValueType VT = N->getValueType(0);
2182 // fold (sext c1) -> c1
2183 if (isa<ConstantSDNode>(N0))
2184 return DAG.getNode(ISD::SIGN_EXTEND, VT, N0);
2186 // fold (sext (sext x)) -> (sext x)
2187 // fold (sext (aext x)) -> (sext x)
2188 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
2189 return DAG.getNode(ISD::SIGN_EXTEND, VT, N0.getOperand(0));
2191 // fold (sext (truncate (load x))) -> (sext (smaller load x))
2192 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
2193 if (N0.getOpcode() == ISD::TRUNCATE) {
2194 SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2195 if (NarrowLoad.Val) {
2196 if (NarrowLoad.Val != N0.Val)
2197 CombineTo(N0.Val, NarrowLoad);
2198 return DAG.getNode(ISD::SIGN_EXTEND, VT, NarrowLoad);
2202 // See if the value being truncated is already sign extended. If so, just
2203 // eliminate the trunc/sext pair.
2204 if (N0.getOpcode() == ISD::TRUNCATE) {
2205 SDOperand Op = N0.getOperand(0);
2206 unsigned OpBits = MVT::getSizeInBits(Op.getValueType());
2207 unsigned MidBits = MVT::getSizeInBits(N0.getValueType());
2208 unsigned DestBits = MVT::getSizeInBits(VT);
2209 unsigned NumSignBits = TLI.ComputeNumSignBits(Op);
2211 if (OpBits == DestBits) {
2212 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
2213 // bits, it is already ready.
2214 if (NumSignBits > DestBits-MidBits)
2215 return Op;
2216 } else if (OpBits < DestBits) {
2217 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
2218 // bits, just sext from i32.
2219 if (NumSignBits > OpBits-MidBits)
2220 return DAG.getNode(ISD::SIGN_EXTEND, VT, Op);
2221 } else {
2222 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
2223 // bits, just truncate to i32.
2224 if (NumSignBits > OpBits-MidBits)
2225 return DAG.getNode(ISD::TRUNCATE, VT, Op);
2228 // fold (sext (truncate x)) -> (sextinreg x).
2229 if (!AfterLegalize || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
2230 N0.getValueType())) {
2231 if (Op.getValueType() < VT)
2232 Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op);
2233 else if (Op.getValueType() > VT)
2234 Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2235 return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, Op,
2236 DAG.getValueType(N0.getValueType()));
2240 // fold (sext (load x)) -> (sext (truncate (sextload x)))
2241 if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
2242 (!AfterLegalize||TLI.isLoadXLegal(ISD::SEXTLOAD, N0.getValueType()))){
2243 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2244 SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2245 LN0->getBasePtr(), LN0->getSrcValue(),
2246 LN0->getSrcValueOffset(),
2247 N0.getValueType(),
2248 LN0->isVolatile());
2249 CombineTo(N, ExtLoad);
2250 CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2251 ExtLoad.getValue(1));
2252 return SDOperand(N, 0); // Return N so it doesn't get rechecked!
2255 // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
2256 // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
2257 if ((ISD::isSEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) &&
2258 ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
2259 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2260 MVT::ValueType EVT = LN0->getLoadedVT();
2261 if (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT)) {
2262 SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2263 LN0->getBasePtr(), LN0->getSrcValue(),
2264 LN0->getSrcValueOffset(), EVT,
2265 LN0->isVolatile(),
2266 LN0->getAlignment());
2267 CombineTo(N, ExtLoad);
2268 CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2269 ExtLoad.getValue(1));
2270 return SDOperand(N, 0); // Return N so it doesn't get rechecked!
2274 // sext(setcc x,y,cc) -> select_cc x, y, -1, 0, cc
2275 if (N0.getOpcode() == ISD::SETCC) {
2276 SDOperand SCC =
2277 SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
2278 DAG.getConstant(~0ULL, VT), DAG.getConstant(0, VT),
2279 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
2280 if (SCC.Val) return SCC;
2283 return SDOperand();
2286 SDOperand DAGCombiner::visitZERO_EXTEND(SDNode *N) {
2287 SDOperand N0 = N->getOperand(0);
2288 MVT::ValueType VT = N->getValueType(0);
2290 // fold (zext c1) -> c1
2291 if (isa<ConstantSDNode>(N0))
2292 return DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
2293 // fold (zext (zext x)) -> (zext x)
2294 // fold (zext (aext x)) -> (zext x)
2295 if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
2296 return DAG.getNode(ISD::ZERO_EXTEND, VT, N0.getOperand(0));
2298 // fold (zext (truncate (load x))) -> (zext (smaller load x))
2299 // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
2300 if (N0.getOpcode() == ISD::TRUNCATE) {
2301 SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2302 if (NarrowLoad.Val) {
2303 if (NarrowLoad.Val != N0.Val)
2304 CombineTo(N0.Val, NarrowLoad);
2305 return DAG.getNode(ISD::ZERO_EXTEND, VT, NarrowLoad);
2309 // fold (zext (truncate x)) -> (and x, mask)
2310 if (N0.getOpcode() == ISD::TRUNCATE &&
2311 (!AfterLegalize || TLI.isOperationLegal(ISD::AND, VT))) {
2312 SDOperand Op = N0.getOperand(0);
2313 if (Op.getValueType() < VT) {
2314 Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op);
2315 } else if (Op.getValueType() > VT) {
2316 Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2318 return DAG.getZeroExtendInReg(Op, N0.getValueType());
2321 // fold (zext (and (trunc x), cst)) -> (and x, cst).
2322 if (N0.getOpcode() == ISD::AND &&
2323 N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
2324 N0.getOperand(1).getOpcode() == ISD::Constant) {
2325 SDOperand X = N0.getOperand(0).getOperand(0);
2326 if (X.getValueType() < VT) {
2327 X = DAG.getNode(ISD::ANY_EXTEND, VT, X);
2328 } else if (X.getValueType() > VT) {
2329 X = DAG.getNode(ISD::TRUNCATE, VT, X);
2331 uint64_t Mask = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2332 return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT));
2335 // fold (zext (load x)) -> (zext (truncate (zextload x)))
2336 if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
2337 (!AfterLegalize||TLI.isLoadXLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
2338 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2339 SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
2340 LN0->getBasePtr(), LN0->getSrcValue(),
2341 LN0->getSrcValueOffset(),
2342 N0.getValueType(),
2343 LN0->isVolatile(),
2344 LN0->getAlignment());
2345 CombineTo(N, ExtLoad);
2346 CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2347 ExtLoad.getValue(1));
2348 return SDOperand(N, 0); // Return N so it doesn't get rechecked!
2351 // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
2352 // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
2353 if ((ISD::isZEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) &&
2354 ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
2355 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2356 MVT::ValueType EVT = LN0->getLoadedVT();
2357 SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
2358 LN0->getBasePtr(), LN0->getSrcValue(),
2359 LN0->getSrcValueOffset(), EVT,
2360 LN0->isVolatile(),
2361 LN0->getAlignment());
2362 CombineTo(N, ExtLoad);
2363 CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2364 ExtLoad.getValue(1));
2365 return SDOperand(N, 0); // Return N so it doesn't get rechecked!
2368 // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
2369 if (N0.getOpcode() == ISD::SETCC) {
2370 SDOperand SCC =
2371 SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
2372 DAG.getConstant(1, VT), DAG.getConstant(0, VT),
2373 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
2374 if (SCC.Val) return SCC;
2377 return SDOperand();
2380 SDOperand DAGCombiner::visitANY_EXTEND(SDNode *N) {
2381 SDOperand N0 = N->getOperand(0);
2382 MVT::ValueType VT = N->getValueType(0);
2384 // fold (aext c1) -> c1
2385 if (isa<ConstantSDNode>(N0))
2386 return DAG.getNode(ISD::ANY_EXTEND, VT, N0);
2387 // fold (aext (aext x)) -> (aext x)
2388 // fold (aext (zext x)) -> (zext x)
2389 // fold (aext (sext x)) -> (sext x)
2390 if (N0.getOpcode() == ISD::ANY_EXTEND ||
2391 N0.getOpcode() == ISD::ZERO_EXTEND ||
2392 N0.getOpcode() == ISD::SIGN_EXTEND)
2393 return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
2395 // fold (aext (truncate (load x))) -> (aext (smaller load x))
2396 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
2397 if (N0.getOpcode() == ISD::TRUNCATE) {
2398 SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2399 if (NarrowLoad.Val) {
2400 if (NarrowLoad.Val != N0.Val)
2401 CombineTo(N0.Val, NarrowLoad);
2402 return DAG.getNode(ISD::ANY_EXTEND, VT, NarrowLoad);
2406 // fold (aext (truncate x))
2407 if (N0.getOpcode() == ISD::TRUNCATE) {
2408 SDOperand TruncOp = N0.getOperand(0);
2409 if (TruncOp.getValueType() == VT)
2410 return TruncOp; // x iff x size == zext size.
2411 if (TruncOp.getValueType() > VT)
2412 return DAG.getNode(ISD::TRUNCATE, VT, TruncOp);
2413 return DAG.getNode(ISD::ANY_EXTEND, VT, TruncOp);
2416 // fold (aext (and (trunc x), cst)) -> (and x, cst).
2417 if (N0.getOpcode() == ISD::AND &&
2418 N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
2419 N0.getOperand(1).getOpcode() == ISD::Constant) {
2420 SDOperand X = N0.getOperand(0).getOperand(0);
2421 if (X.getValueType() < VT) {
2422 X = DAG.getNode(ISD::ANY_EXTEND, VT, X);
2423 } else if (X.getValueType() > VT) {
2424 X = DAG.getNode(ISD::TRUNCATE, VT, X);
2426 uint64_t Mask = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2427 return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT));
2430 // fold (aext (load x)) -> (aext (truncate (extload x)))
2431 if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
2432 (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
2433 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2434 SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
2435 LN0->getBasePtr(), LN0->getSrcValue(),
2436 LN0->getSrcValueOffset(),
2437 N0.getValueType(),
2438 LN0->isVolatile(),
2439 LN0->getAlignment());
2440 CombineTo(N, ExtLoad);
2441 CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2442 ExtLoad.getValue(1));
2443 return SDOperand(N, 0); // Return N so it doesn't get rechecked!
2446 // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
2447 // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
2448 // fold (aext ( extload x)) -> (aext (truncate (extload x)))
2449 if (N0.getOpcode() == ISD::LOAD &&
2450 !ISD::isNON_EXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
2451 N0.hasOneUse()) {
2452 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2453 MVT::ValueType EVT = LN0->getLoadedVT();
2454 SDOperand ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), VT,
2455 LN0->getChain(), LN0->getBasePtr(),
2456 LN0->getSrcValue(),
2457 LN0->getSrcValueOffset(), EVT,
2458 LN0->isVolatile(),
2459 LN0->getAlignment());
2460 CombineTo(N, ExtLoad);
2461 CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2462 ExtLoad.getValue(1));
2463 return SDOperand(N, 0); // Return N so it doesn't get rechecked!
2466 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
2467 if (N0.getOpcode() == ISD::SETCC) {
2468 SDOperand SCC =
2469 SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
2470 DAG.getConstant(1, VT), DAG.getConstant(0, VT),
2471 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
2472 if (SCC.Val)
2473 return SCC;
2476 return SDOperand();
2479 /// ReduceLoadWidth - If the result of a wider load is shifted to right of N
2480 /// bits and then truncated to a narrower type and where N is a multiple
2481 /// of number of bits of the narrower type, transform it to a narrower load
2482 /// from address + N / num of bits of new type. If the result is to be
2483 /// extended, also fold the extension to form a extending load.
2484 SDOperand DAGCombiner::ReduceLoadWidth(SDNode *N) {
2485 unsigned Opc = N->getOpcode();
2486 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
2487 SDOperand N0 = N->getOperand(0);
2488 MVT::ValueType VT = N->getValueType(0);
2489 MVT::ValueType EVT = N->getValueType(0);
2491 // Special case: SIGN_EXTEND_INREG is basically truncating to EVT then
2492 // extended to VT.
2493 if (Opc == ISD::SIGN_EXTEND_INREG) {
2494 ExtType = ISD::SEXTLOAD;
2495 EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
2496 if (AfterLegalize && !TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))
2497 return SDOperand();
2500 unsigned EVTBits = MVT::getSizeInBits(EVT);
2501 unsigned ShAmt = 0;
2502 bool CombineSRL = false;
2503 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
2504 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2505 ShAmt = N01->getValue();
2506 // Is the shift amount a multiple of size of VT?
2507 if ((ShAmt & (EVTBits-1)) == 0) {
2508 N0 = N0.getOperand(0);
2509 if (MVT::getSizeInBits(N0.getValueType()) <= EVTBits)
2510 return SDOperand();
2511 CombineSRL = true;
2516 if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
2517 // Do not allow folding to i1 here. i1 is implicitly stored in memory in
2518 // zero extended form: by shrinking the load, we lose track of the fact
2519 // that it is already zero extended.
2520 // FIXME: This should be reevaluated.
2521 VT != MVT::i1) {
2522 assert(MVT::getSizeInBits(N0.getValueType()) > EVTBits &&
2523 "Cannot truncate to larger type!");
2524 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2525 MVT::ValueType PtrType = N0.getOperand(1).getValueType();
2526 // For big endian targets, we need to adjust the offset to the pointer to
2527 // load the correct bytes.
2528 if (!TLI.isLittleEndian())
2529 ShAmt = MVT::getSizeInBits(N0.getValueType()) - ShAmt - EVTBits;
2530 uint64_t PtrOff = ShAmt / 8;
2531 SDOperand NewPtr = DAG.getNode(ISD::ADD, PtrType, LN0->getBasePtr(),
2532 DAG.getConstant(PtrOff, PtrType));
2533 AddToWorkList(NewPtr.Val);
2534 SDOperand Load = (ExtType == ISD::NON_EXTLOAD)
2535 ? DAG.getLoad(VT, LN0->getChain(), NewPtr,
2536 LN0->getSrcValue(), LN0->getSrcValueOffset(),
2537 LN0->isVolatile(), LN0->getAlignment())
2538 : DAG.getExtLoad(ExtType, VT, LN0->getChain(), NewPtr,
2539 LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT,
2540 LN0->isVolatile(), LN0->getAlignment());
2541 AddToWorkList(N);
2542 if (CombineSRL) {
2543 std::vector<SDNode*> NowDead;
2544 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1), NowDead);
2545 CombineTo(N->getOperand(0).Val, Load);
2546 } else
2547 CombineTo(N0.Val, Load, Load.getValue(1));
2548 if (ShAmt) {
2549 if (Opc == ISD::SIGN_EXTEND_INREG)
2550 return DAG.getNode(Opc, VT, Load, N->getOperand(1));
2551 else
2552 return DAG.getNode(Opc, VT, Load);
2554 return SDOperand(N, 0); // Return N so it doesn't get rechecked!
2557 return SDOperand();
2561 SDOperand DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
2562 SDOperand N0 = N->getOperand(0);
2563 SDOperand N1 = N->getOperand(1);
2564 MVT::ValueType VT = N->getValueType(0);
2565 MVT::ValueType EVT = cast<VTSDNode>(N1)->getVT();
2566 unsigned EVTBits = MVT::getSizeInBits(EVT);
2568 // fold (sext_in_reg c1) -> c1
2569 if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
2570 return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0, N1);
2572 // If the input is already sign extended, just drop the extension.
2573 if (TLI.ComputeNumSignBits(N0) >= MVT::getSizeInBits(VT)-EVTBits+1)
2574 return N0;
2576 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
2577 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2578 EVT < cast<VTSDNode>(N0.getOperand(1))->getVT()) {
2579 return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), N1);
2582 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
2583 if (TLI.MaskedValueIsZero(N0, 1ULL << (EVTBits-1)))
2584 return DAG.getZeroExtendInReg(N0, EVT);
2586 // fold operands of sext_in_reg based on knowledge that the top bits are not
2587 // demanded.
2588 if (SimplifyDemandedBits(SDOperand(N, 0)))
2589 return SDOperand(N, 0);
2591 // fold (sext_in_reg (load x)) -> (smaller sextload x)
2592 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
2593 SDOperand NarrowLoad = ReduceLoadWidth(N);
2594 if (NarrowLoad.Val)
2595 return NarrowLoad;
2597 // fold (sext_in_reg (srl X, 24), i8) -> sra X, 24
2598 // fold (sext_in_reg (srl X, 23), i8) -> sra X, 23 iff possible.
2599 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
2600 if (N0.getOpcode() == ISD::SRL) {
2601 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
2602 if (ShAmt->getValue()+EVTBits <= MVT::getSizeInBits(VT)) {
2603 // We can turn this into an SRA iff the input to the SRL is already sign
2604 // extended enough.
2605 unsigned InSignBits = TLI.ComputeNumSignBits(N0.getOperand(0));
2606 if (MVT::getSizeInBits(VT)-(ShAmt->getValue()+EVTBits) < InSignBits)
2607 return DAG.getNode(ISD::SRA, VT, N0.getOperand(0), N0.getOperand(1));
2611 // fold (sext_inreg (extload x)) -> (sextload x)
2612 if (ISD::isEXTLoad(N0.Val) &&
2613 ISD::isUNINDEXEDLoad(N0.Val) &&
2614 EVT == cast<LoadSDNode>(N0)->getLoadedVT() &&
2615 (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
2616 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2617 SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2618 LN0->getBasePtr(), LN0->getSrcValue(),
2619 LN0->getSrcValueOffset(), EVT,
2620 LN0->isVolatile(),
2621 LN0->getAlignment());
2622 CombineTo(N, ExtLoad);
2623 CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
2624 return SDOperand(N, 0); // Return N so it doesn't get rechecked!
2626 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
2627 if (ISD::isZEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
2628 N0.hasOneUse() &&
2629 EVT == cast<LoadSDNode>(N0)->getLoadedVT() &&
2630 (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
2631 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2632 SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2633 LN0->getBasePtr(), LN0->getSrcValue(),
2634 LN0->getSrcValueOffset(), EVT,
2635 LN0->isVolatile(),
2636 LN0->getAlignment());
2637 CombineTo(N, ExtLoad);
2638 CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
2639 return SDOperand(N, 0); // Return N so it doesn't get rechecked!
2641 return SDOperand();
2644 SDOperand DAGCombiner::visitTRUNCATE(SDNode *N) {
2645 SDOperand N0 = N->getOperand(0);
2646 MVT::ValueType VT = N->getValueType(0);
2648 // noop truncate
2649 if (N0.getValueType() == N->getValueType(0))
2650 return N0;
2651 // fold (truncate c1) -> c1
2652 if (isa<ConstantSDNode>(N0))
2653 return DAG.getNode(ISD::TRUNCATE, VT, N0);
2654 // fold (truncate (truncate x)) -> (truncate x)
2655 if (N0.getOpcode() == ISD::TRUNCATE)
2656 return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
2657 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
2658 if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND||
2659 N0.getOpcode() == ISD::ANY_EXTEND) {
2660 if (N0.getOperand(0).getValueType() < VT)
2661 // if the source is smaller than the dest, we still need an extend
2662 return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
2663 else if (N0.getOperand(0).getValueType() > VT)
2664 // if the source is larger than the dest, than we just need the truncate
2665 return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
2666 else
2667 // if the source and dest are the same type, we can drop both the extend
2668 // and the truncate
2669 return N0.getOperand(0);
2672 // fold (truncate (load x)) -> (smaller load x)
2673 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
2674 return ReduceLoadWidth(N);
2677 SDOperand DAGCombiner::visitBIT_CONVERT(SDNode *N) {
2678 SDOperand N0 = N->getOperand(0);
2679 MVT::ValueType VT = N->getValueType(0);
2681 // If the input is a constant, let getNode() fold it.
2682 if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
2683 SDOperand Res = DAG.getNode(ISD::BIT_CONVERT, VT, N0);
2684 if (Res.Val != N) return Res;
2687 if (N0.getOpcode() == ISD::BIT_CONVERT) // conv(conv(x,t1),t2) -> conv(x,t2)
2688 return DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
2690 // fold (conv (load x)) -> (load (conv*)x)
2691 // If the resultant load doesn't need a higher alignment than the original!
2692 if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
2693 ISD::isUNINDEXEDLoad(N0.Val) &&
2694 TLI.isOperationLegal(ISD::LOAD, VT)) {
2695 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2696 unsigned Align = TLI.getTargetMachine().getTargetData()->
2697 getABITypeAlignment(MVT::getTypeForValueType(VT));
2698 unsigned OrigAlign = LN0->getAlignment();
2699 if (Align <= OrigAlign) {
2700 SDOperand Load = DAG.getLoad(VT, LN0->getChain(), LN0->getBasePtr(),
2701 LN0->getSrcValue(), LN0->getSrcValueOffset(),
2702 LN0->isVolatile(), LN0->getAlignment());
2703 AddToWorkList(N);
2704 CombineTo(N0.Val, DAG.getNode(ISD::BIT_CONVERT, N0.getValueType(), Load),
2705 Load.getValue(1));
2706 return Load;
2710 return SDOperand();
2713 SDOperand DAGCombiner::visitVBIT_CONVERT(SDNode *N) {
2714 SDOperand N0 = N->getOperand(0);
2715 MVT::ValueType VT = N->getValueType(0);
2717 // If the input is a VBUILD_VECTOR with all constant elements, fold this now.
2718 // First check to see if this is all constant.
2719 if (N0.getOpcode() == ISD::VBUILD_VECTOR && N0.Val->hasOneUse() &&
2720 VT == MVT::Vector) {
2721 bool isSimple = true;
2722 for (unsigned i = 0, e = N0.getNumOperands()-2; i != e; ++i)
2723 if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
2724 N0.getOperand(i).getOpcode() != ISD::Constant &&
2725 N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
2726 isSimple = false;
2727 break;
2730 MVT::ValueType DestEltVT = cast<VTSDNode>(N->getOperand(2))->getVT();
2731 if (isSimple && !MVT::isVector(DestEltVT)) {
2732 return ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(N0.Val, DestEltVT);
2736 return SDOperand();
2739 /// ConstantFoldVBIT_CONVERTofVBUILD_VECTOR - We know that BV is a vbuild_vector
2740 /// node with Constant, ConstantFP or Undef operands. DstEltVT indicates the
2741 /// destination element value type.
2742 SDOperand DAGCombiner::
2743 ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(SDNode *BV, MVT::ValueType DstEltVT) {
2744 MVT::ValueType SrcEltVT = BV->getOperand(0).getValueType();
2746 // If this is already the right type, we're done.
2747 if (SrcEltVT == DstEltVT) return SDOperand(BV, 0);
2749 unsigned SrcBitSize = MVT::getSizeInBits(SrcEltVT);
2750 unsigned DstBitSize = MVT::getSizeInBits(DstEltVT);
2752 // If this is a conversion of N elements of one type to N elements of another
2753 // type, convert each element. This handles FP<->INT cases.
2754 if (SrcBitSize == DstBitSize) {
2755 SmallVector<SDOperand, 8> Ops;
2756 for (unsigned i = 0, e = BV->getNumOperands()-2; i != e; ++i) {
2757 Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, DstEltVT, BV->getOperand(i)));
2758 AddToWorkList(Ops.back().Val);
2760 Ops.push_back(*(BV->op_end()-2)); // Add num elements.
2761 Ops.push_back(DAG.getValueType(DstEltVT));
2762 return DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
2765 // Otherwise, we're growing or shrinking the elements. To avoid having to
2766 // handle annoying details of growing/shrinking FP values, we convert them to
2767 // int first.
2768 if (MVT::isFloatingPoint(SrcEltVT)) {
2769 // Convert the input float vector to a int vector where the elements are the
2770 // same sizes.
2771 assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
2772 MVT::ValueType IntVT = SrcEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
2773 BV = ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(BV, IntVT).Val;
2774 SrcEltVT = IntVT;
2777 // Now we know the input is an integer vector. If the output is a FP type,
2778 // convert to integer first, then to FP of the right size.
2779 if (MVT::isFloatingPoint(DstEltVT)) {
2780 assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
2781 MVT::ValueType TmpVT = DstEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
2782 SDNode *Tmp = ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(BV, TmpVT).Val;
2784 // Next, convert to FP elements of the same size.
2785 return ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(Tmp, DstEltVT);
2788 // Okay, we know the src/dst types are both integers of differing types.
2789 // Handling growing first.
2790 assert(MVT::isInteger(SrcEltVT) && MVT::isInteger(DstEltVT));
2791 if (SrcBitSize < DstBitSize) {
2792 unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
2794 SmallVector<SDOperand, 8> Ops;
2795 for (unsigned i = 0, e = BV->getNumOperands()-2; i != e;
2796 i += NumInputsPerOutput) {
2797 bool isLE = TLI.isLittleEndian();
2798 uint64_t NewBits = 0;
2799 bool EltIsUndef = true;
2800 for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
2801 // Shift the previously computed bits over.
2802 NewBits <<= SrcBitSize;
2803 SDOperand Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
2804 if (Op.getOpcode() == ISD::UNDEF) continue;
2805 EltIsUndef = false;
2807 NewBits |= cast<ConstantSDNode>(Op)->getValue();
2810 if (EltIsUndef)
2811 Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
2812 else
2813 Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
2816 Ops.push_back(DAG.getConstant(Ops.size(), MVT::i32)); // Add num elements.
2817 Ops.push_back(DAG.getValueType(DstEltVT)); // Add element size.
2818 return DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
2821 // Finally, this must be the case where we are shrinking elements: each input
2822 // turns into multiple outputs.
2823 unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
2824 SmallVector<SDOperand, 8> Ops;
2825 for (unsigned i = 0, e = BV->getNumOperands()-2; i != e; ++i) {
2826 if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
2827 for (unsigned j = 0; j != NumOutputsPerInput; ++j)
2828 Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
2829 continue;
2831 uint64_t OpVal = cast<ConstantSDNode>(BV->getOperand(i))->getValue();
2833 for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
2834 unsigned ThisVal = OpVal & ((1ULL << DstBitSize)-1);
2835 OpVal >>= DstBitSize;
2836 Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
2839 // For big endian targets, swap the order of the pieces of each element.
2840 if (!TLI.isLittleEndian())
2841 std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
2843 Ops.push_back(DAG.getConstant(Ops.size(), MVT::i32)); // Add num elements.
2844 Ops.push_back(DAG.getValueType(DstEltVT)); // Add element size.
2845 return DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
2850 SDOperand DAGCombiner::visitFADD(SDNode *N) {
2851 SDOperand N0 = N->getOperand(0);
2852 SDOperand N1 = N->getOperand(1);
2853 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2854 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2855 MVT::ValueType VT = N->getValueType(0);
2857 // fold (fadd c1, c2) -> c1+c2
2858 if (N0CFP && N1CFP)
2859 return DAG.getNode(ISD::FADD, VT, N0, N1);
2860 // canonicalize constant to RHS
2861 if (N0CFP && !N1CFP)
2862 return DAG.getNode(ISD::FADD, VT, N1, N0);
2863 // fold (A + (-B)) -> A-B
2864 if (isNegatibleForFree(N1) == 2)
2865 return DAG.getNode(ISD::FSUB, VT, N0, GetNegatedExpression(N1, DAG));
2866 // fold ((-A) + B) -> B-A
2867 if (isNegatibleForFree(N0) == 2)
2868 return DAG.getNode(ISD::FSUB, VT, N1, GetNegatedExpression(N0, DAG));
2870 // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
2871 if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FADD &&
2872 N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
2873 return DAG.getNode(ISD::FADD, VT, N0.getOperand(0),
2874 DAG.getNode(ISD::FADD, VT, N0.getOperand(1), N1));
2876 return SDOperand();
2879 SDOperand DAGCombiner::visitFSUB(SDNode *N) {
2880 SDOperand N0 = N->getOperand(0);
2881 SDOperand N1 = N->getOperand(1);
2882 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2883 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2884 MVT::ValueType VT = N->getValueType(0);
2886 // fold (fsub c1, c2) -> c1-c2
2887 if (N0CFP && N1CFP)
2888 return DAG.getNode(ISD::FSUB, VT, N0, N1);
2889 // fold (A-(-B)) -> A+B
2890 if (isNegatibleForFree(N1))
2891 return DAG.getNode(ISD::FADD, VT, N0, GetNegatedExpression(N1, DAG));
2893 return SDOperand();
2896 SDOperand DAGCombiner::visitFMUL(SDNode *N) {
2897 SDOperand N0 = N->getOperand(0);
2898 SDOperand N1 = N->getOperand(1);
2899 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2900 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2901 MVT::ValueType VT = N->getValueType(0);
2903 // fold (fmul c1, c2) -> c1*c2
2904 if (N0CFP && N1CFP)
2905 return DAG.getNode(ISD::FMUL, VT, N0, N1);
2906 // canonicalize constant to RHS
2907 if (N0CFP && !N1CFP)
2908 return DAG.getNode(ISD::FMUL, VT, N1, N0);
2909 // fold (fmul X, 2.0) -> (fadd X, X)
2910 if (N1CFP && N1CFP->isExactlyValue(+2.0))
2911 return DAG.getNode(ISD::FADD, VT, N0, N0);
2912 // fold (fmul X, -1.0) -> (fneg X)
2913 if (N1CFP && N1CFP->isExactlyValue(-1.0))
2914 return DAG.getNode(ISD::FNEG, VT, N0);
2916 // -X * -Y -> X*Y
2917 if (char LHSNeg = isNegatibleForFree(N0)) {
2918 if (char RHSNeg = isNegatibleForFree(N1)) {
2919 // Both can be negated for free, check to see if at least one is cheaper
2920 // negated.
2921 if (LHSNeg == 2 || RHSNeg == 2)
2922 return DAG.getNode(ISD::FMUL, VT, GetNegatedExpression(N0, DAG),
2923 GetNegatedExpression(N1, DAG));
2927 // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
2928 if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FMUL &&
2929 N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
2930 return DAG.getNode(ISD::FMUL, VT, N0.getOperand(0),
2931 DAG.getNode(ISD::FMUL, VT, N0.getOperand(1), N1));
2933 return SDOperand();
2936 SDOperand DAGCombiner::visitFDIV(SDNode *N) {
2937 SDOperand N0 = N->getOperand(0);
2938 SDOperand N1 = N->getOperand(1);
2939 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2940 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2941 MVT::ValueType VT = N->getValueType(0);
2943 // fold (fdiv c1, c2) -> c1/c2
2944 if (N0CFP && N1CFP)
2945 return DAG.getNode(ISD::FDIV, VT, N0, N1);
2948 // -X / -Y -> X*Y
2949 if (char LHSNeg = isNegatibleForFree(N0)) {
2950 if (char RHSNeg = isNegatibleForFree(N1)) {
2951 // Both can be negated for free, check to see if at least one is cheaper
2952 // negated.
2953 if (LHSNeg == 2 || RHSNeg == 2)
2954 return DAG.getNode(ISD::FDIV, VT, GetNegatedExpression(N0, DAG),
2955 GetNegatedExpression(N1, DAG));
2959 return SDOperand();
2962 SDOperand DAGCombiner::visitFREM(SDNode *N) {
2963 SDOperand N0 = N->getOperand(0);
2964 SDOperand N1 = N->getOperand(1);
2965 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2966 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2967 MVT::ValueType VT = N->getValueType(0);
2969 // fold (frem c1, c2) -> fmod(c1,c2)
2970 if (N0CFP && N1CFP)
2971 return DAG.getNode(ISD::FREM, VT, N0, N1);
2972 return SDOperand();
2975 SDOperand DAGCombiner::visitFCOPYSIGN(SDNode *N) {
2976 SDOperand N0 = N->getOperand(0);
2977 SDOperand N1 = N->getOperand(1);
2978 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2979 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2980 MVT::ValueType VT = N->getValueType(0);
2982 if (N0CFP && N1CFP) // Constant fold
2983 return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1);
2985 if (N1CFP) {
2986 // copysign(x, c1) -> fabs(x) iff ispos(c1)
2987 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
2988 union {
2989 double d;
2990 int64_t i;
2991 } u;
2992 u.d = N1CFP->getValue();
2993 if (u.i >= 0)
2994 return DAG.getNode(ISD::FABS, VT, N0);
2995 else
2996 return DAG.getNode(ISD::FNEG, VT, DAG.getNode(ISD::FABS, VT, N0));
2999 // copysign(fabs(x), y) -> copysign(x, y)
3000 // copysign(fneg(x), y) -> copysign(x, y)
3001 // copysign(copysign(x,z), y) -> copysign(x, y)
3002 if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
3003 N0.getOpcode() == ISD::FCOPYSIGN)
3004 return DAG.getNode(ISD::FCOPYSIGN, VT, N0.getOperand(0), N1);
3006 // copysign(x, abs(y)) -> abs(x)
3007 if (N1.getOpcode() == ISD::FABS)
3008 return DAG.getNode(ISD::FABS, VT, N0);
3010 // copysign(x, copysign(y,z)) -> copysign(x, z)
3011 if (N1.getOpcode() == ISD::FCOPYSIGN)
3012 return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(1));
3014 // copysign(x, fp_extend(y)) -> copysign(x, y)
3015 // copysign(x, fp_round(y)) -> copysign(x, y)
3016 if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
3017 return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(0));
3019 return SDOperand();
3024 SDOperand DAGCombiner::visitSINT_TO_FP(SDNode *N) {
3025 SDOperand N0 = N->getOperand(0);
3026 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3027 MVT::ValueType VT = N->getValueType(0);
3029 // fold (sint_to_fp c1) -> c1fp
3030 if (N0C)
3031 return DAG.getNode(ISD::SINT_TO_FP, VT, N0);
3032 return SDOperand();
3035 SDOperand DAGCombiner::visitUINT_TO_FP(SDNode *N) {
3036 SDOperand N0 = N->getOperand(0);
3037 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3038 MVT::ValueType VT = N->getValueType(0);
3040 // fold (uint_to_fp c1) -> c1fp
3041 if (N0C)
3042 return DAG.getNode(ISD::UINT_TO_FP, VT, N0);
3043 return SDOperand();
3046 SDOperand DAGCombiner::visitFP_TO_SINT(SDNode *N) {
3047 SDOperand N0 = N->getOperand(0);
3048 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3049 MVT::ValueType VT = N->getValueType(0);
3051 // fold (fp_to_sint c1fp) -> c1
3052 if (N0CFP)
3053 return DAG.getNode(ISD::FP_TO_SINT, VT, N0);
3054 return SDOperand();
3057 SDOperand DAGCombiner::visitFP_TO_UINT(SDNode *N) {
3058 SDOperand N0 = N->getOperand(0);
3059 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3060 MVT::ValueType VT = N->getValueType(0);
3062 // fold (fp_to_uint c1fp) -> c1
3063 if (N0CFP)
3064 return DAG.getNode(ISD::FP_TO_UINT, VT, N0);
3065 return SDOperand();
3068 SDOperand DAGCombiner::visitFP_ROUND(SDNode *N) {
3069 SDOperand N0 = N->getOperand(0);
3070 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3071 MVT::ValueType VT = N->getValueType(0);
3073 // fold (fp_round c1fp) -> c1fp
3074 if (N0CFP)
3075 return DAG.getNode(ISD::FP_ROUND, VT, N0);
3077 // fold (fp_round (fp_extend x)) -> x
3078 if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
3079 return N0.getOperand(0);
3081 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
3082 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.Val->hasOneUse()) {
3083 SDOperand Tmp = DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0));
3084 AddToWorkList(Tmp.Val);
3085 return DAG.getNode(ISD::FCOPYSIGN, VT, Tmp, N0.getOperand(1));
3088 return SDOperand();
3091 SDOperand DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
3092 SDOperand N0 = N->getOperand(0);
3093 MVT::ValueType VT = N->getValueType(0);
3094 MVT::ValueType EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
3095 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3097 // fold (fp_round_inreg c1fp) -> c1fp
3098 if (N0CFP) {
3099 SDOperand Round = DAG.getConstantFP(N0CFP->getValue(), EVT);
3100 return DAG.getNode(ISD::FP_EXTEND, VT, Round);
3102 return SDOperand();
3105 SDOperand DAGCombiner::visitFP_EXTEND(SDNode *N) {
3106 SDOperand N0 = N->getOperand(0);
3107 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3108 MVT::ValueType VT = N->getValueType(0);
3110 // fold (fp_extend c1fp) -> c1fp
3111 if (N0CFP)
3112 return DAG.getNode(ISD::FP_EXTEND, VT, N0);
3114 // fold (fpext (load x)) -> (fpext (fpround (extload x)))
3115 if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
3116 (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
3117 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3118 SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
3119 LN0->getBasePtr(), LN0->getSrcValue(),
3120 LN0->getSrcValueOffset(),
3121 N0.getValueType(),
3122 LN0->isVolatile(),
3123 LN0->getAlignment());
3124 CombineTo(N, ExtLoad);
3125 CombineTo(N0.Val, DAG.getNode(ISD::FP_ROUND, N0.getValueType(), ExtLoad),
3126 ExtLoad.getValue(1));
3127 return SDOperand(N, 0); // Return N so it doesn't get rechecked!
3131 return SDOperand();
3134 SDOperand DAGCombiner::visitFNEG(SDNode *N) {
3135 SDOperand N0 = N->getOperand(0);
3136 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3137 MVT::ValueType VT = N->getValueType(0);
3139 // fold (fneg c1) -> -c1
3140 if (N0CFP)
3141 return DAG.getNode(ISD::FNEG, VT, N0);
3142 // fold (fneg (sub x, y)) -> (sub y, x)
3143 if (N0.getOpcode() == ISD::SUB)
3144 return DAG.getNode(ISD::SUB, VT, N0.getOperand(1), N0.getOperand(0));
3145 // fold (fneg (fneg x)) -> x
3146 if (N0.getOpcode() == ISD::FNEG)
3147 return N0.getOperand(0);
3148 return SDOperand();
3151 SDOperand DAGCombiner::visitFABS(SDNode *N) {
3152 SDOperand N0 = N->getOperand(0);
3153 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3154 MVT::ValueType VT = N->getValueType(0);
3156 // fold (fabs c1) -> fabs(c1)
3157 if (N0CFP)
3158 return DAG.getNode(ISD::FABS, VT, N0);
3159 // fold (fabs (fabs x)) -> (fabs x)
3160 if (N0.getOpcode() == ISD::FABS)
3161 return N->getOperand(0);
3162 // fold (fabs (fneg x)) -> (fabs x)
3163 // fold (fabs (fcopysign x, y)) -> (fabs x)
3164 if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
3165 return DAG.getNode(ISD::FABS, VT, N0.getOperand(0));
3167 return SDOperand();
3170 SDOperand DAGCombiner::visitBRCOND(SDNode *N) {
3171 SDOperand Chain = N->getOperand(0);
3172 SDOperand N1 = N->getOperand(1);
3173 SDOperand N2 = N->getOperand(2);
3174 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3176 // never taken branch, fold to chain
3177 if (N1C && N1C->isNullValue())
3178 return Chain;
3179 // unconditional branch
3180 if (N1C && N1C->getValue() == 1)
3181 return DAG.getNode(ISD::BR, MVT::Other, Chain, N2);
3182 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
3183 // on the target.
3184 if (N1.getOpcode() == ISD::SETCC &&
3185 TLI.isOperationLegal(ISD::BR_CC, MVT::Other)) {
3186 return DAG.getNode(ISD::BR_CC, MVT::Other, Chain, N1.getOperand(2),
3187 N1.getOperand(0), N1.getOperand(1), N2);
3189 return SDOperand();
3192 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
3194 SDOperand DAGCombiner::visitBR_CC(SDNode *N) {
3195 CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
3196 SDOperand CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
3198 // Use SimplifySetCC to simplify SETCC's.
3199 SDOperand Simp = SimplifySetCC(MVT::i1, CondLHS, CondRHS, CC->get(), false);
3200 if (Simp.Val) AddToWorkList(Simp.Val);
3202 ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(Simp.Val);
3204 // fold br_cc true, dest -> br dest (unconditional branch)
3205 if (SCCC && SCCC->getValue())
3206 return DAG.getNode(ISD::BR, MVT::Other, N->getOperand(0),
3207 N->getOperand(4));
3208 // fold br_cc false, dest -> unconditional fall through
3209 if (SCCC && SCCC->isNullValue())
3210 return N->getOperand(0);
3212 // fold to a simpler setcc
3213 if (Simp.Val && Simp.getOpcode() == ISD::SETCC)
3214 return DAG.getNode(ISD::BR_CC, MVT::Other, N->getOperand(0),
3215 Simp.getOperand(2), Simp.getOperand(0),
3216 Simp.getOperand(1), N->getOperand(4));
3217 return SDOperand();
3221 /// CombineToPreIndexedLoadStore - Try turning a load / store and a
3222 /// pre-indexed load / store when the base pointer is a add or subtract
3223 /// and it has other uses besides the load / store. After the
3224 /// transformation, the new indexed load / store has effectively folded
3225 /// the add / subtract in and all of its other uses are redirected to the
3226 /// new load / store.
3227 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
3228 if (!AfterLegalize)
3229 return false;
3231 bool isLoad = true;
3232 SDOperand Ptr;
3233 MVT::ValueType VT;
3234 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
3235 if (LD->getAddressingMode() != ISD::UNINDEXED)
3236 return false;
3237 VT = LD->getLoadedVT();
3238 if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
3239 !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
3240 return false;
3241 Ptr = LD->getBasePtr();
3242 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
3243 if (ST->getAddressingMode() != ISD::UNINDEXED)
3244 return false;
3245 VT = ST->getStoredVT();
3246 if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
3247 !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
3248 return false;
3249 Ptr = ST->getBasePtr();
3250 isLoad = false;
3251 } else
3252 return false;
3254 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
3255 // out. There is no reason to make this a preinc/predec.
3256 if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
3257 Ptr.Val->hasOneUse())
3258 return false;
3260 // Ask the target to do addressing mode selection.
3261 SDOperand BasePtr;
3262 SDOperand Offset;
3263 ISD::MemIndexedMode AM = ISD::UNINDEXED;
3264 if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
3265 return false;
3266 // Don't create a indexed load / store with zero offset.
3267 if (isa<ConstantSDNode>(Offset) &&
3268 cast<ConstantSDNode>(Offset)->getValue() == 0)
3269 return false;
3271 // Try turning it into a pre-indexed load / store except when:
3272 // 1) The new base ptr is a frame index.
3273 // 2) If N is a store and the new base ptr is either the same as or is a
3274 // predecessor of the value being stored.
3275 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
3276 // that would create a cycle.
3277 // 4) All uses are load / store ops that use it as old base ptr.
3279 // Check #1. Preinc'ing a frame index would require copying the stack pointer
3280 // (plus the implicit offset) to a register to preinc anyway.
3281 if (isa<FrameIndexSDNode>(BasePtr))
3282 return false;
3284 // Check #2.
3285 if (!isLoad) {
3286 SDOperand Val = cast<StoreSDNode>(N)->getValue();
3287 if (Val == BasePtr || BasePtr.Val->isPredecessor(Val.Val))
3288 return false;
3291 // Now check for #3 and #4.
3292 bool RealUse = false;
3293 for (SDNode::use_iterator I = Ptr.Val->use_begin(),
3294 E = Ptr.Val->use_end(); I != E; ++I) {
3295 SDNode *Use = *I;
3296 if (Use == N)
3297 continue;
3298 if (Use->isPredecessor(N))
3299 return false;
3301 if (!((Use->getOpcode() == ISD::LOAD &&
3302 cast<LoadSDNode>(Use)->getBasePtr() == Ptr) ||
3303 (Use->getOpcode() == ISD::STORE) &&
3304 cast<StoreSDNode>(Use)->getBasePtr() == Ptr))
3305 RealUse = true;
3307 if (!RealUse)
3308 return false;
3310 SDOperand Result;
3311 if (isLoad)
3312 Result = DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM);
3313 else
3314 Result = DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM);
3315 ++PreIndexedNodes;
3316 ++NodesCombined;
3317 DOUT << "\nReplacing.4 "; DEBUG(N->dump(&DAG));
3318 DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG));
3319 DOUT << '\n';
3320 std::vector<SDNode*> NowDead;
3321 if (isLoad) {
3322 DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0),
3323 NowDead);
3324 DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2),
3325 NowDead);
3326 } else {
3327 DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1),
3328 NowDead);
3331 // Nodes can end up on the worklist more than once. Make sure we do
3332 // not process a node that has been replaced.
3333 for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
3334 removeFromWorkList(NowDead[i]);
3335 // Finally, since the node is now dead, remove it from the graph.
3336 DAG.DeleteNode(N);
3338 // Replace the uses of Ptr with uses of the updated base value.
3339 DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0),
3340 NowDead);
3341 removeFromWorkList(Ptr.Val);
3342 for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
3343 removeFromWorkList(NowDead[i]);
3344 DAG.DeleteNode(Ptr.Val);
3346 return true;
3349 /// CombineToPostIndexedLoadStore - Try combine a load / store with a
3350 /// add / sub of the base pointer node into a post-indexed load / store.
3351 /// The transformation folded the add / subtract into the new indexed
3352 /// load / store effectively and all of its uses are redirected to the
3353 /// new load / store.
3354 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
3355 if (!AfterLegalize)
3356 return false;
3358 bool isLoad = true;
3359 SDOperand Ptr;
3360 MVT::ValueType VT;
3361 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
3362 if (LD->getAddressingMode() != ISD::UNINDEXED)
3363 return false;
3364 VT = LD->getLoadedVT();
3365 if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
3366 !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
3367 return false;
3368 Ptr = LD->getBasePtr();
3369 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
3370 if (ST->getAddressingMode() != ISD::UNINDEXED)
3371 return false;
3372 VT = ST->getStoredVT();
3373 if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
3374 !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
3375 return false;
3376 Ptr = ST->getBasePtr();
3377 isLoad = false;
3378 } else
3379 return false;
3381 if (Ptr.Val->hasOneUse())
3382 return false;
3384 for (SDNode::use_iterator I = Ptr.Val->use_begin(),
3385 E = Ptr.Val->use_end(); I != E; ++I) {
3386 SDNode *Op = *I;
3387 if (Op == N ||
3388 (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
3389 continue;
3391 SDOperand BasePtr;
3392 SDOperand Offset;
3393 ISD::MemIndexedMode AM = ISD::UNINDEXED;
3394 if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
3395 if (Ptr == Offset)
3396 std::swap(BasePtr, Offset);
3397 if (Ptr != BasePtr)
3398 continue;
3399 // Don't create a indexed load / store with zero offset.
3400 if (isa<ConstantSDNode>(Offset) &&
3401 cast<ConstantSDNode>(Offset)->getValue() == 0)
3402 continue;
3404 // Try turning it into a post-indexed load / store except when
3405 // 1) All uses are load / store ops that use it as base ptr.
3406 // 2) Op must be independent of N, i.e. Op is neither a predecessor
3407 // nor a successor of N. Otherwise, if Op is folded that would
3408 // create a cycle.
3410 // Check for #1.
3411 bool TryNext = false;
3412 for (SDNode::use_iterator II = BasePtr.Val->use_begin(),
3413 EE = BasePtr.Val->use_end(); II != EE; ++II) {
3414 SDNode *Use = *II;
3415 if (Use == Ptr.Val)
3416 continue;
3418 // If all the uses are load / store addresses, then don't do the
3419 // transformation.
3420 if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
3421 bool RealUse = false;
3422 for (SDNode::use_iterator III = Use->use_begin(),
3423 EEE = Use->use_end(); III != EEE; ++III) {
3424 SDNode *UseUse = *III;
3425 if (!((UseUse->getOpcode() == ISD::LOAD &&
3426 cast<LoadSDNode>(UseUse)->getBasePtr().Val == Use) ||
3427 (UseUse->getOpcode() == ISD::STORE) &&
3428 cast<StoreSDNode>(UseUse)->getBasePtr().Val == Use))
3429 RealUse = true;
3432 if (!RealUse) {
3433 TryNext = true;
3434 break;
3438 if (TryNext)
3439 continue;
3441 // Check for #2
3442 if (!Op->isPredecessor(N) && !N->isPredecessor(Op)) {
3443 SDOperand Result = isLoad
3444 ? DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM)
3445 : DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM);
3446 ++PostIndexedNodes;
3447 ++NodesCombined;
3448 DOUT << "\nReplacing.5 "; DEBUG(N->dump(&DAG));
3449 DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG));
3450 DOUT << '\n';
3451 std::vector<SDNode*> NowDead;
3452 if (isLoad) {
3453 DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0),
3454 NowDead);
3455 DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2),
3456 NowDead);
3457 } else {
3458 DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1),
3459 NowDead);
3462 // Nodes can end up on the worklist more than once. Make sure we do
3463 // not process a node that has been replaced.
3464 for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
3465 removeFromWorkList(NowDead[i]);
3466 // Finally, since the node is now dead, remove it from the graph.
3467 DAG.DeleteNode(N);
3469 // Replace the uses of Use with uses of the updated base value.
3470 DAG.ReplaceAllUsesOfValueWith(SDOperand(Op, 0),
3471 Result.getValue(isLoad ? 1 : 0),
3472 NowDead);
3473 removeFromWorkList(Op);
3474 for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
3475 removeFromWorkList(NowDead[i]);
3476 DAG.DeleteNode(Op);
3478 return true;
3482 return false;
3486 SDOperand DAGCombiner::visitLOAD(SDNode *N) {
3487 LoadSDNode *LD = cast<LoadSDNode>(N);
3488 SDOperand Chain = LD->getChain();
3489 SDOperand Ptr = LD->getBasePtr();
3491 // If load is not volatile and there are no uses of the loaded value (and
3492 // the updated indexed value in case of indexed loads), change uses of the
3493 // chain value into uses of the chain input (i.e. delete the dead load).
3494 if (!LD->isVolatile()) {
3495 if (N->getValueType(1) == MVT::Other) {
3496 // Unindexed loads.
3497 if (N->hasNUsesOfValue(0, 0))
3498 return CombineTo(N, DAG.getNode(ISD::UNDEF, N->getValueType(0)), Chain);
3499 } else {
3500 // Indexed loads.
3501 assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
3502 if (N->hasNUsesOfValue(0, 0) && N->hasNUsesOfValue(0, 1)) {
3503 SDOperand Undef0 = DAG.getNode(ISD::UNDEF, N->getValueType(0));
3504 SDOperand Undef1 = DAG.getNode(ISD::UNDEF, N->getValueType(1));
3505 SDOperand To[] = { Undef0, Undef1, Chain };
3506 return CombineTo(N, To, 3);
3511 // If this load is directly stored, replace the load value with the stored
3512 // value.
3513 // TODO: Handle store large -> read small portion.
3514 // TODO: Handle TRUNCSTORE/LOADEXT
3515 if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
3516 if (ISD::isNON_TRUNCStore(Chain.Val)) {
3517 StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
3518 if (PrevST->getBasePtr() == Ptr &&
3519 PrevST->getValue().getValueType() == N->getValueType(0))
3520 return CombineTo(N, Chain.getOperand(1), Chain);
3524 if (CombinerAA) {
3525 // Walk up chain skipping non-aliasing memory nodes.
3526 SDOperand BetterChain = FindBetterChain(N, Chain);
3528 // If there is a better chain.
3529 if (Chain != BetterChain) {
3530 SDOperand ReplLoad;
3532 // Replace the chain to void dependency.
3533 if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
3534 ReplLoad = DAG.getLoad(N->getValueType(0), BetterChain, Ptr,
3535 LD->getSrcValue(), LD->getSrcValueOffset(),
3536 LD->isVolatile(), LD->getAlignment());
3537 } else {
3538 ReplLoad = DAG.getExtLoad(LD->getExtensionType(),
3539 LD->getValueType(0),
3540 BetterChain, Ptr, LD->getSrcValue(),
3541 LD->getSrcValueOffset(),
3542 LD->getLoadedVT(),
3543 LD->isVolatile(),
3544 LD->getAlignment());
3547 // Create token factor to keep old chain connected.
3548 SDOperand Token = DAG.getNode(ISD::TokenFactor, MVT::Other,
3549 Chain, ReplLoad.getValue(1));
3551 // Replace uses with load result and token factor. Don't add users
3552 // to work list.
3553 return CombineTo(N, ReplLoad.getValue(0), Token, false);
3557 // Try transforming N to an indexed load.
3558 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
3559 return SDOperand(N, 0);
3561 return SDOperand();
3564 SDOperand DAGCombiner::visitSTORE(SDNode *N) {
3565 StoreSDNode *ST = cast<StoreSDNode>(N);
3566 SDOperand Chain = ST->getChain();
3567 SDOperand Value = ST->getValue();
3568 SDOperand Ptr = ST->getBasePtr();
3570 // If this is a store of a bit convert, store the input value if the
3571 // resultant store does not need a higher alignment than the original.
3572 if (Value.getOpcode() == ISD::BIT_CONVERT && !ST->isTruncatingStore() &&
3573 ST->getAddressingMode() == ISD::UNINDEXED) {
3574 unsigned Align = ST->getAlignment();
3575 MVT::ValueType SVT = Value.getOperand(0).getValueType();
3576 unsigned OrigAlign = TLI.getTargetMachine().getTargetData()->
3577 getABITypeAlignment(MVT::getTypeForValueType(SVT));
3578 if (Align <= OrigAlign && TLI.isOperationLegal(ISD::STORE, SVT))
3579 return DAG.getStore(Chain, Value.getOperand(0), Ptr, ST->getSrcValue(),
3580 ST->getSrcValueOffset());
3583 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
3584 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
3585 if (Value.getOpcode() != ISD::TargetConstantFP) {
3586 SDOperand Tmp;
3587 switch (CFP->getValueType(0)) {
3588 default: assert(0 && "Unknown FP type");
3589 case MVT::f32:
3590 if (!AfterLegalize || TLI.isTypeLegal(MVT::i32)) {
3591 Tmp = DAG.getConstant(FloatToBits(CFP->getValue()), MVT::i32);
3592 return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
3593 ST->getSrcValueOffset());
3595 break;
3596 case MVT::f64:
3597 if (!AfterLegalize || TLI.isTypeLegal(MVT::i64)) {
3598 Tmp = DAG.getConstant(DoubleToBits(CFP->getValue()), MVT::i64);
3599 return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
3600 ST->getSrcValueOffset());
3601 } else if (TLI.isTypeLegal(MVT::i32)) {
3602 // Many FP stores are not make apparent until after legalize, e.g. for
3603 // argument passing. Since this is so common, custom legalize the
3604 // 64-bit integer store into two 32-bit stores.
3605 uint64_t Val = DoubleToBits(CFP->getValue());
3606 SDOperand Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
3607 SDOperand Hi = DAG.getConstant(Val >> 32, MVT::i32);
3608 if (!TLI.isLittleEndian()) std::swap(Lo, Hi);
3610 SDOperand St0 = DAG.getStore(Chain, Lo, Ptr, ST->getSrcValue(),
3611 ST->getSrcValueOffset());
3612 Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
3613 DAG.getConstant(4, Ptr.getValueType()));
3614 SDOperand St1 = DAG.getStore(Chain, Hi, Ptr, ST->getSrcValue(),
3615 ST->getSrcValueOffset()+4);
3616 return DAG.getNode(ISD::TokenFactor, MVT::Other, St0, St1);
3618 break;
3623 if (CombinerAA) {
3624 // Walk up chain skipping non-aliasing memory nodes.
3625 SDOperand BetterChain = FindBetterChain(N, Chain);
3627 // If there is a better chain.
3628 if (Chain != BetterChain) {
3629 // Replace the chain to avoid dependency.
3630 SDOperand ReplStore;
3631 if (ST->isTruncatingStore()) {
3632 ReplStore = DAG.getTruncStore(BetterChain, Value, Ptr,
3633 ST->getSrcValue(),ST->getSrcValueOffset(), ST->getStoredVT());
3634 } else {
3635 ReplStore = DAG.getStore(BetterChain, Value, Ptr,
3636 ST->getSrcValue(), ST->getSrcValueOffset());
3639 // Create token to keep both nodes around.
3640 SDOperand Token =
3641 DAG.getNode(ISD::TokenFactor, MVT::Other, Chain, ReplStore);
3643 // Don't add users to work list.
3644 return CombineTo(N, Token, false);
3648 // Try transforming N to an indexed store.
3649 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
3650 return SDOperand(N, 0);
3652 return SDOperand();
3655 SDOperand DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
3656 SDOperand InVec = N->getOperand(0);
3657 SDOperand InVal = N->getOperand(1);
3658 SDOperand EltNo = N->getOperand(2);
3660 // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new
3661 // vector with the inserted element.
3662 if (InVec.getOpcode() == ISD::BUILD_VECTOR && isa<ConstantSDNode>(EltNo)) {
3663 unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
3664 SmallVector<SDOperand, 8> Ops(InVec.Val->op_begin(), InVec.Val->op_end());
3665 if (Elt < Ops.size())
3666 Ops[Elt] = InVal;
3667 return DAG.getNode(ISD::BUILD_VECTOR, InVec.getValueType(),
3668 &Ops[0], Ops.size());
3671 return SDOperand();
3674 SDOperand DAGCombiner::visitVINSERT_VECTOR_ELT(SDNode *N) {
3675 SDOperand InVec = N->getOperand(0);
3676 SDOperand InVal = N->getOperand(1);
3677 SDOperand EltNo = N->getOperand(2);
3678 SDOperand NumElts = N->getOperand(3);
3679 SDOperand EltType = N->getOperand(4);
3681 // If the invec is a VBUILD_VECTOR and if EltNo is a constant, build a new
3682 // vector with the inserted element.
3683 if (InVec.getOpcode() == ISD::VBUILD_VECTOR && isa<ConstantSDNode>(EltNo)) {
3684 unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
3685 SmallVector<SDOperand, 8> Ops(InVec.Val->op_begin(), InVec.Val->op_end());
3686 if (Elt < Ops.size()-2)
3687 Ops[Elt] = InVal;
3688 return DAG.getNode(ISD::VBUILD_VECTOR, InVec.getValueType(),
3689 &Ops[0], Ops.size());
3692 return SDOperand();
3695 SDOperand DAGCombiner::visitVBUILD_VECTOR(SDNode *N) {
3696 unsigned NumInScalars = N->getNumOperands()-2;
3697 SDOperand NumElts = N->getOperand(NumInScalars);
3698 SDOperand EltType = N->getOperand(NumInScalars+1);
3700 // Check to see if this is a VBUILD_VECTOR of a bunch of VEXTRACT_VECTOR_ELT
3701 // operations. If so, and if the EXTRACT_ELT vector inputs come from at most
3702 // two distinct vectors, turn this into a shuffle node.
3703 SDOperand VecIn1, VecIn2;
3704 for (unsigned i = 0; i != NumInScalars; ++i) {
3705 // Ignore undef inputs.
3706 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
3708 // If this input is something other than a VEXTRACT_VECTOR_ELT with a
3709 // constant index, bail out.
3710 if (N->getOperand(i).getOpcode() != ISD::VEXTRACT_VECTOR_ELT ||
3711 !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
3712 VecIn1 = VecIn2 = SDOperand(0, 0);
3713 break;
3716 // If the input vector type disagrees with the result of the vbuild_vector,
3717 // we can't make a shuffle.
3718 SDOperand ExtractedFromVec = N->getOperand(i).getOperand(0);
3719 if (*(ExtractedFromVec.Val->op_end()-2) != NumElts ||
3720 *(ExtractedFromVec.Val->op_end()-1) != EltType) {
3721 VecIn1 = VecIn2 = SDOperand(0, 0);
3722 break;
3725 // Otherwise, remember this. We allow up to two distinct input vectors.
3726 if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
3727 continue;
3729 if (VecIn1.Val == 0) {
3730 VecIn1 = ExtractedFromVec;
3731 } else if (VecIn2.Val == 0) {
3732 VecIn2 = ExtractedFromVec;
3733 } else {
3734 // Too many inputs.
3735 VecIn1 = VecIn2 = SDOperand(0, 0);
3736 break;
3740 // If everything is good, we can make a shuffle operation.
3741 if (VecIn1.Val) {
3742 SmallVector<SDOperand, 8> BuildVecIndices;
3743 for (unsigned i = 0; i != NumInScalars; ++i) {
3744 if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
3745 BuildVecIndices.push_back(DAG.getNode(ISD::UNDEF, TLI.getPointerTy()));
3746 continue;
3749 SDOperand Extract = N->getOperand(i);
3751 // If extracting from the first vector, just use the index directly.
3752 if (Extract.getOperand(0) == VecIn1) {
3753 BuildVecIndices.push_back(Extract.getOperand(1));
3754 continue;
3757 // Otherwise, use InIdx + VecSize
3758 unsigned Idx = cast<ConstantSDNode>(Extract.getOperand(1))->getValue();
3759 BuildVecIndices.push_back(DAG.getConstant(Idx+NumInScalars,
3760 TLI.getPointerTy()));
3763 // Add count and size info.
3764 BuildVecIndices.push_back(NumElts);
3765 BuildVecIndices.push_back(DAG.getValueType(TLI.getPointerTy()));
3767 // Return the new VVECTOR_SHUFFLE node.
3768 SDOperand Ops[5];
3769 Ops[0] = VecIn1;
3770 if (VecIn2.Val) {
3771 Ops[1] = VecIn2;
3772 } else {
3773 // Use an undef vbuild_vector as input for the second operand.
3774 std::vector<SDOperand> UnOps(NumInScalars,
3775 DAG.getNode(ISD::UNDEF,
3776 cast<VTSDNode>(EltType)->getVT()));
3777 UnOps.push_back(NumElts);
3778 UnOps.push_back(EltType);
3779 Ops[1] = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
3780 &UnOps[0], UnOps.size());
3781 AddToWorkList(Ops[1].Val);
3783 Ops[2] = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
3784 &BuildVecIndices[0], BuildVecIndices.size());
3785 Ops[3] = NumElts;
3786 Ops[4] = EltType;
3787 return DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector, Ops, 5);
3790 return SDOperand();
3793 SDOperand DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
3794 SDOperand ShufMask = N->getOperand(2);
3795 unsigned NumElts = ShufMask.getNumOperands();
3797 // If the shuffle mask is an identity operation on the LHS, return the LHS.
3798 bool isIdentity = true;
3799 for (unsigned i = 0; i != NumElts; ++i) {
3800 if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
3801 cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i) {
3802 isIdentity = false;
3803 break;
3806 if (isIdentity) return N->getOperand(0);
3808 // If the shuffle mask is an identity operation on the RHS, return the RHS.
3809 isIdentity = true;
3810 for (unsigned i = 0; i != NumElts; ++i) {
3811 if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
3812 cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i+NumElts) {
3813 isIdentity = false;
3814 break;
3817 if (isIdentity) return N->getOperand(1);
3819 // Check if the shuffle is a unary shuffle, i.e. one of the vectors is not
3820 // needed at all.
3821 bool isUnary = true;
3822 bool isSplat = true;
3823 int VecNum = -1;
3824 unsigned BaseIdx = 0;
3825 for (unsigned i = 0; i != NumElts; ++i)
3826 if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF) {
3827 unsigned Idx = cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue();
3828 int V = (Idx < NumElts) ? 0 : 1;
3829 if (VecNum == -1) {
3830 VecNum = V;
3831 BaseIdx = Idx;
3832 } else {
3833 if (BaseIdx != Idx)
3834 isSplat = false;
3835 if (VecNum != V) {
3836 isUnary = false;
3837 break;
3842 SDOperand N0 = N->getOperand(0);
3843 SDOperand N1 = N->getOperand(1);
3844 // Normalize unary shuffle so the RHS is undef.
3845 if (isUnary && VecNum == 1)
3846 std::swap(N0, N1);
3848 // If it is a splat, check if the argument vector is a build_vector with
3849 // all scalar elements the same.
3850 if (isSplat) {
3851 SDNode *V = N0.Val;
3852 if (V->getOpcode() == ISD::BIT_CONVERT)
3853 V = V->getOperand(0).Val;
3854 if (V->getOpcode() == ISD::BUILD_VECTOR) {
3855 unsigned NumElems = V->getNumOperands()-2;
3856 if (NumElems > BaseIdx) {
3857 SDOperand Base;
3858 bool AllSame = true;
3859 for (unsigned i = 0; i != NumElems; ++i) {
3860 if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
3861 Base = V->getOperand(i);
3862 break;
3865 // Splat of <u, u, u, u>, return <u, u, u, u>
3866 if (!Base.Val)
3867 return N0;
3868 for (unsigned i = 0; i != NumElems; ++i) {
3869 if (V->getOperand(i).getOpcode() != ISD::UNDEF &&
3870 V->getOperand(i) != Base) {
3871 AllSame = false;
3872 break;
3875 // Splat of <x, x, x, x>, return <x, x, x, x>
3876 if (AllSame)
3877 return N0;
3882 // If it is a unary or the LHS and the RHS are the same node, turn the RHS
3883 // into an undef.
3884 if (isUnary || N0 == N1) {
3885 if (N0.getOpcode() == ISD::UNDEF)
3886 return DAG.getNode(ISD::UNDEF, N->getValueType(0));
3887 // Check the SHUFFLE mask, mapping any inputs from the 2nd operand into the
3888 // first operand.
3889 SmallVector<SDOperand, 8> MappedOps;
3890 for (unsigned i = 0, e = ShufMask.getNumOperands(); i != e; ++i) {
3891 if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF ||
3892 cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() < NumElts) {
3893 MappedOps.push_back(ShufMask.getOperand(i));
3894 } else {
3895 unsigned NewIdx =
3896 cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() - NumElts;
3897 MappedOps.push_back(DAG.getConstant(NewIdx, MVT::i32));
3900 ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMask.getValueType(),
3901 &MappedOps[0], MappedOps.size());
3902 AddToWorkList(ShufMask.Val);
3903 return DAG.getNode(ISD::VECTOR_SHUFFLE, N->getValueType(0),
3904 N0,
3905 DAG.getNode(ISD::UNDEF, N->getValueType(0)),
3906 ShufMask);
3909 return SDOperand();
3912 SDOperand DAGCombiner::visitVVECTOR_SHUFFLE(SDNode *N) {
3913 SDOperand ShufMask = N->getOperand(2);
3914 unsigned NumElts = ShufMask.getNumOperands()-2;
3916 // If the shuffle mask is an identity operation on the LHS, return the LHS.
3917 bool isIdentity = true;
3918 for (unsigned i = 0; i != NumElts; ++i) {
3919 if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
3920 cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i) {
3921 isIdentity = false;
3922 break;
3925 if (isIdentity) return N->getOperand(0);
3927 // If the shuffle mask is an identity operation on the RHS, return the RHS.
3928 isIdentity = true;
3929 for (unsigned i = 0; i != NumElts; ++i) {
3930 if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
3931 cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i+NumElts) {
3932 isIdentity = false;
3933 break;
3936 if (isIdentity) return N->getOperand(1);
3938 // Check if the shuffle is a unary shuffle, i.e. one of the vectors is not
3939 // needed at all.
3940 bool isUnary = true;
3941 bool isSplat = true;
3942 int VecNum = -1;
3943 unsigned BaseIdx = 0;
3944 for (unsigned i = 0; i != NumElts; ++i)
3945 if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF) {
3946 unsigned Idx = cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue();
3947 int V = (Idx < NumElts) ? 0 : 1;
3948 if (VecNum == -1) {
3949 VecNum = V;
3950 BaseIdx = Idx;
3951 } else {
3952 if (BaseIdx != Idx)
3953 isSplat = false;
3954 if (VecNum != V) {
3955 isUnary = false;
3956 break;
3961 SDOperand N0 = N->getOperand(0);
3962 SDOperand N1 = N->getOperand(1);
3963 // Normalize unary shuffle so the RHS is undef.
3964 if (isUnary && VecNum == 1)
3965 std::swap(N0, N1);
3967 // If it is a splat, check if the argument vector is a build_vector with
3968 // all scalar elements the same.
3969 if (isSplat) {
3970 SDNode *V = N0.Val;
3972 // If this is a vbit convert that changes the element type of the vector but
3973 // not the number of vector elements, look through it. Be careful not to
3974 // look though conversions that change things like v4f32 to v2f64.
3975 if (V->getOpcode() == ISD::VBIT_CONVERT) {
3976 SDOperand ConvInput = V->getOperand(0);
3977 if (ConvInput.getValueType() == MVT::Vector &&
3978 NumElts ==
3979 ConvInput.getConstantOperandVal(ConvInput.getNumOperands()-2))
3980 V = ConvInput.Val;
3983 if (V->getOpcode() == ISD::VBUILD_VECTOR) {
3984 unsigned NumElems = V->getNumOperands()-2;
3985 if (NumElems > BaseIdx) {
3986 SDOperand Base;
3987 bool AllSame = true;
3988 for (unsigned i = 0; i != NumElems; ++i) {
3989 if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
3990 Base = V->getOperand(i);
3991 break;
3994 // Splat of <u, u, u, u>, return <u, u, u, u>
3995 if (!Base.Val)
3996 return N0;
3997 for (unsigned i = 0; i != NumElems; ++i) {
3998 if (V->getOperand(i).getOpcode() != ISD::UNDEF &&
3999 V->getOperand(i) != Base) {
4000 AllSame = false;
4001 break;
4004 // Splat of <x, x, x, x>, return <x, x, x, x>
4005 if (AllSame)
4006 return N0;
4011 // If it is a unary or the LHS and the RHS are the same node, turn the RHS
4012 // into an undef.
4013 if (isUnary || N0 == N1) {
4014 // Check the SHUFFLE mask, mapping any inputs from the 2nd operand into the
4015 // first operand.
4016 SmallVector<SDOperand, 8> MappedOps;
4017 for (unsigned i = 0; i != NumElts; ++i) {
4018 if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF ||
4019 cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() < NumElts) {
4020 MappedOps.push_back(ShufMask.getOperand(i));
4021 } else {
4022 unsigned NewIdx =
4023 cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() - NumElts;
4024 MappedOps.push_back(DAG.getConstant(NewIdx, MVT::i32));
4027 // Add the type/#elts values.
4028 MappedOps.push_back(ShufMask.getOperand(NumElts));
4029 MappedOps.push_back(ShufMask.getOperand(NumElts+1));
4031 ShufMask = DAG.getNode(ISD::VBUILD_VECTOR, ShufMask.getValueType(),
4032 &MappedOps[0], MappedOps.size());
4033 AddToWorkList(ShufMask.Val);
4035 // Build the undef vector.
4036 SDOperand UDVal = DAG.getNode(ISD::UNDEF, MappedOps[0].getValueType());
4037 for (unsigned i = 0; i != NumElts; ++i)
4038 MappedOps[i] = UDVal;
4039 MappedOps[NumElts ] = *(N0.Val->op_end()-2);
4040 MappedOps[NumElts+1] = *(N0.Val->op_end()-1);
4041 UDVal = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
4042 &MappedOps[0], MappedOps.size());
4044 return DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector,
4045 N0, UDVal, ShufMask,
4046 MappedOps[NumElts], MappedOps[NumElts+1]);
4049 return SDOperand();
4052 /// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
4053 /// a VAND to a vector_shuffle with the destination vector and a zero vector.
4054 /// e.g. VAND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
4055 /// vector_shuffle V, Zero, <0, 4, 2, 4>
4056 SDOperand DAGCombiner::XformToShuffleWithZero(SDNode *N) {
4057 SDOperand LHS = N->getOperand(0);
4058 SDOperand RHS = N->getOperand(1);
4059 if (N->getOpcode() == ISD::VAND) {
4060 SDOperand DstVecSize = *(LHS.Val->op_end()-2);
4061 SDOperand DstVecEVT = *(LHS.Val->op_end()-1);
4062 if (RHS.getOpcode() == ISD::VBIT_CONVERT)
4063 RHS = RHS.getOperand(0);
4064 if (RHS.getOpcode() == ISD::VBUILD_VECTOR) {
4065 std::vector<SDOperand> IdxOps;
4066 unsigned NumOps = RHS.getNumOperands();
4067 unsigned NumElts = NumOps-2;
4068 MVT::ValueType EVT = cast<VTSDNode>(RHS.getOperand(NumOps-1))->getVT();
4069 for (unsigned i = 0; i != NumElts; ++i) {
4070 SDOperand Elt = RHS.getOperand(i);
4071 if (!isa<ConstantSDNode>(Elt))
4072 return SDOperand();
4073 else if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
4074 IdxOps.push_back(DAG.getConstant(i, EVT));
4075 else if (cast<ConstantSDNode>(Elt)->isNullValue())
4076 IdxOps.push_back(DAG.getConstant(NumElts, EVT));
4077 else
4078 return SDOperand();
4081 // Let's see if the target supports this vector_shuffle.
4082 if (!TLI.isVectorClearMaskLegal(IdxOps, EVT, DAG))
4083 return SDOperand();
4085 // Return the new VVECTOR_SHUFFLE node.
4086 SDOperand NumEltsNode = DAG.getConstant(NumElts, MVT::i32);
4087 SDOperand EVTNode = DAG.getValueType(EVT);
4088 std::vector<SDOperand> Ops;
4089 LHS = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, LHS, NumEltsNode,
4090 EVTNode);
4091 Ops.push_back(LHS);
4092 AddToWorkList(LHS.Val);
4093 std::vector<SDOperand> ZeroOps(NumElts, DAG.getConstant(0, EVT));
4094 ZeroOps.push_back(NumEltsNode);
4095 ZeroOps.push_back(EVTNode);
4096 Ops.push_back(DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
4097 &ZeroOps[0], ZeroOps.size()));
4098 IdxOps.push_back(NumEltsNode);
4099 IdxOps.push_back(EVTNode);
4100 Ops.push_back(DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
4101 &IdxOps[0], IdxOps.size()));
4102 Ops.push_back(NumEltsNode);
4103 Ops.push_back(EVTNode);
4104 SDOperand Result = DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector,
4105 &Ops[0], Ops.size());
4106 if (NumEltsNode != DstVecSize || EVTNode != DstVecEVT) {
4107 Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result,
4108 DstVecSize, DstVecEVT);
4110 return Result;
4113 return SDOperand();
4116 /// visitVBinOp - Visit a binary vector operation, like VADD. IntOp indicates
4117 /// the scalar operation of the vop if it is operating on an integer vector
4118 /// (e.g. ADD) and FPOp indicates the FP version (e.g. FADD).
4119 SDOperand DAGCombiner::visitVBinOp(SDNode *N, ISD::NodeType IntOp,
4120 ISD::NodeType FPOp) {
4121 MVT::ValueType EltType = cast<VTSDNode>(*(N->op_end()-1))->getVT();
4122 ISD::NodeType ScalarOp = MVT::isInteger(EltType) ? IntOp : FPOp;
4123 SDOperand LHS = N->getOperand(0);
4124 SDOperand RHS = N->getOperand(1);
4125 SDOperand Shuffle = XformToShuffleWithZero(N);
4126 if (Shuffle.Val) return Shuffle;
4128 // If the LHS and RHS are VBUILD_VECTOR nodes, see if we can constant fold
4129 // this operation.
4130 if (LHS.getOpcode() == ISD::VBUILD_VECTOR &&
4131 RHS.getOpcode() == ISD::VBUILD_VECTOR) {
4132 SmallVector<SDOperand, 8> Ops;
4133 for (unsigned i = 0, e = LHS.getNumOperands()-2; i != e; ++i) {
4134 SDOperand LHSOp = LHS.getOperand(i);
4135 SDOperand RHSOp = RHS.getOperand(i);
4136 // If these two elements can't be folded, bail out.
4137 if ((LHSOp.getOpcode() != ISD::UNDEF &&
4138 LHSOp.getOpcode() != ISD::Constant &&
4139 LHSOp.getOpcode() != ISD::ConstantFP) ||
4140 (RHSOp.getOpcode() != ISD::UNDEF &&
4141 RHSOp.getOpcode() != ISD::Constant &&
4142 RHSOp.getOpcode() != ISD::ConstantFP))
4143 break;
4144 // Can't fold divide by zero.
4145 if (N->getOpcode() == ISD::VSDIV || N->getOpcode() == ISD::VUDIV) {
4146 if ((RHSOp.getOpcode() == ISD::Constant &&
4147 cast<ConstantSDNode>(RHSOp.Val)->isNullValue()) ||
4148 (RHSOp.getOpcode() == ISD::ConstantFP &&
4149 !cast<ConstantFPSDNode>(RHSOp.Val)->getValue()))
4150 break;
4152 Ops.push_back(DAG.getNode(ScalarOp, EltType, LHSOp, RHSOp));
4153 AddToWorkList(Ops.back().Val);
4154 assert((Ops.back().getOpcode() == ISD::UNDEF ||
4155 Ops.back().getOpcode() == ISD::Constant ||
4156 Ops.back().getOpcode() == ISD::ConstantFP) &&
4157 "Scalar binop didn't fold!");
4160 if (Ops.size() == LHS.getNumOperands()-2) {
4161 Ops.push_back(*(LHS.Val->op_end()-2));
4162 Ops.push_back(*(LHS.Val->op_end()-1));
4163 return DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
4167 return SDOperand();
4170 SDOperand DAGCombiner::SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2){
4171 assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
4173 SDOperand SCC = SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), N1, N2,
4174 cast<CondCodeSDNode>(N0.getOperand(2))->get());
4175 // If we got a simplified select_cc node back from SimplifySelectCC, then
4176 // break it down into a new SETCC node, and a new SELECT node, and then return
4177 // the SELECT node, since we were called with a SELECT node.
4178 if (SCC.Val) {
4179 // Check to see if we got a select_cc back (to turn into setcc/select).
4180 // Otherwise, just return whatever node we got back, like fabs.
4181 if (SCC.getOpcode() == ISD::SELECT_CC) {
4182 SDOperand SETCC = DAG.getNode(ISD::SETCC, N0.getValueType(),
4183 SCC.getOperand(0), SCC.getOperand(1),
4184 SCC.getOperand(4));
4185 AddToWorkList(SETCC.Val);
4186 return DAG.getNode(ISD::SELECT, SCC.getValueType(), SCC.getOperand(2),
4187 SCC.getOperand(3), SETCC);
4189 return SCC;
4191 return SDOperand();
4194 /// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
4195 /// are the two values being selected between, see if we can simplify the
4196 /// select. Callers of this should assume that TheSelect is deleted if this
4197 /// returns true. As such, they should return the appropriate thing (e.g. the
4198 /// node) back to the top-level of the DAG combiner loop to avoid it being
4199 /// looked at.
4201 bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDOperand LHS,
4202 SDOperand RHS) {
4204 // If this is a select from two identical things, try to pull the operation
4205 // through the select.
4206 if (LHS.getOpcode() == RHS.getOpcode() && LHS.hasOneUse() && RHS.hasOneUse()){
4207 // If this is a load and the token chain is identical, replace the select
4208 // of two loads with a load through a select of the address to load from.
4209 // This triggers in things like "select bool X, 10.0, 123.0" after the FP
4210 // constants have been dropped into the constant pool.
4211 if (LHS.getOpcode() == ISD::LOAD &&
4212 // Token chains must be identical.
4213 LHS.getOperand(0) == RHS.getOperand(0)) {
4214 LoadSDNode *LLD = cast<LoadSDNode>(LHS);
4215 LoadSDNode *RLD = cast<LoadSDNode>(RHS);
4217 // If this is an EXTLOAD, the VT's must match.
4218 if (LLD->getLoadedVT() == RLD->getLoadedVT()) {
4219 // FIXME: this conflates two src values, discarding one. This is not
4220 // the right thing to do, but nothing uses srcvalues now. When they do,
4221 // turn SrcValue into a list of locations.
4222 SDOperand Addr;
4223 if (TheSelect->getOpcode() == ISD::SELECT) {
4224 // Check that the condition doesn't reach either load. If so, folding
4225 // this will induce a cycle into the DAG.
4226 if (!LLD->isPredecessor(TheSelect->getOperand(0).Val) &&
4227 !RLD->isPredecessor(TheSelect->getOperand(0).Val)) {
4228 Addr = DAG.getNode(ISD::SELECT, LLD->getBasePtr().getValueType(),
4229 TheSelect->getOperand(0), LLD->getBasePtr(),
4230 RLD->getBasePtr());
4232 } else {
4233 // Check that the condition doesn't reach either load. If so, folding
4234 // this will induce a cycle into the DAG.
4235 if (!LLD->isPredecessor(TheSelect->getOperand(0).Val) &&
4236 !RLD->isPredecessor(TheSelect->getOperand(0).Val) &&
4237 !LLD->isPredecessor(TheSelect->getOperand(1).Val) &&
4238 !RLD->isPredecessor(TheSelect->getOperand(1).Val)) {
4239 Addr = DAG.getNode(ISD::SELECT_CC, LLD->getBasePtr().getValueType(),
4240 TheSelect->getOperand(0),
4241 TheSelect->getOperand(1),
4242 LLD->getBasePtr(), RLD->getBasePtr(),
4243 TheSelect->getOperand(4));
4247 if (Addr.Val) {
4248 SDOperand Load;
4249 if (LLD->getExtensionType() == ISD::NON_EXTLOAD)
4250 Load = DAG.getLoad(TheSelect->getValueType(0), LLD->getChain(),
4251 Addr,LLD->getSrcValue(),
4252 LLD->getSrcValueOffset(),
4253 LLD->isVolatile(),
4254 LLD->getAlignment());
4255 else {
4256 Load = DAG.getExtLoad(LLD->getExtensionType(),
4257 TheSelect->getValueType(0),
4258 LLD->getChain(), Addr, LLD->getSrcValue(),
4259 LLD->getSrcValueOffset(),
4260 LLD->getLoadedVT(),
4261 LLD->isVolatile(),
4262 LLD->getAlignment());
4264 // Users of the select now use the result of the load.
4265 CombineTo(TheSelect, Load);
4267 // Users of the old loads now use the new load's chain. We know the
4268 // old-load value is dead now.
4269 CombineTo(LHS.Val, Load.getValue(0), Load.getValue(1));
4270 CombineTo(RHS.Val, Load.getValue(0), Load.getValue(1));
4271 return true;
4277 return false;
4280 SDOperand DAGCombiner::SimplifySelectCC(SDOperand N0, SDOperand N1,
4281 SDOperand N2, SDOperand N3,
4282 ISD::CondCode CC, bool NotExtCompare) {
4284 MVT::ValueType VT = N2.getValueType();
4285 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
4286 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
4287 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
4289 // Determine if the condition we're dealing with is constant
4290 SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false);
4291 if (SCC.Val) AddToWorkList(SCC.Val);
4292 ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val);
4294 // fold select_cc true, x, y -> x
4295 if (SCCC && SCCC->getValue())
4296 return N2;
4297 // fold select_cc false, x, y -> y
4298 if (SCCC && SCCC->getValue() == 0)
4299 return N3;
4301 // Check to see if we can simplify the select into an fabs node
4302 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
4303 // Allow either -0.0 or 0.0
4304 if (CFP->getValue() == 0.0) {
4305 // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
4306 if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
4307 N0 == N2 && N3.getOpcode() == ISD::FNEG &&
4308 N2 == N3.getOperand(0))
4309 return DAG.getNode(ISD::FABS, VT, N0);
4311 // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
4312 if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
4313 N0 == N3 && N2.getOpcode() == ISD::FNEG &&
4314 N2.getOperand(0) == N3)
4315 return DAG.getNode(ISD::FABS, VT, N3);
4319 // Check to see if we can perform the "gzip trick", transforming
4320 // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
4321 if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
4322 MVT::isInteger(N0.getValueType()) &&
4323 MVT::isInteger(N2.getValueType()) &&
4324 (N1C->isNullValue() || // (a < 0) ? b : 0
4325 (N1C->getValue() == 1 && N0 == N2))) { // (a < 1) ? a : 0
4326 MVT::ValueType XType = N0.getValueType();
4327 MVT::ValueType AType = N2.getValueType();
4328 if (XType >= AType) {
4329 // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
4330 // single-bit constant.
4331 if (N2C && ((N2C->getValue() & (N2C->getValue()-1)) == 0)) {
4332 unsigned ShCtV = Log2_64(N2C->getValue());
4333 ShCtV = MVT::getSizeInBits(XType)-ShCtV-1;
4334 SDOperand ShCt = DAG.getConstant(ShCtV, TLI.getShiftAmountTy());
4335 SDOperand Shift = DAG.getNode(ISD::SRL, XType, N0, ShCt);
4336 AddToWorkList(Shift.Val);
4337 if (XType > AType) {
4338 Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
4339 AddToWorkList(Shift.Val);
4341 return DAG.getNode(ISD::AND, AType, Shift, N2);
4343 SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
4344 DAG.getConstant(MVT::getSizeInBits(XType)-1,
4345 TLI.getShiftAmountTy()));
4346 AddToWorkList(Shift.Val);
4347 if (XType > AType) {
4348 Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
4349 AddToWorkList(Shift.Val);
4351 return DAG.getNode(ISD::AND, AType, Shift, N2);
4355 // fold select C, 16, 0 -> shl C, 4
4356 if (N2C && N3C && N3C->isNullValue() && isPowerOf2_64(N2C->getValue()) &&
4357 TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) {
4359 // If the caller doesn't want us to simplify this into a zext of a compare,
4360 // don't do it.
4361 if (NotExtCompare && N2C->getValue() == 1)
4362 return SDOperand();
4364 // Get a SetCC of the condition
4365 // FIXME: Should probably make sure that setcc is legal if we ever have a
4366 // target where it isn't.
4367 SDOperand Temp, SCC;
4368 // cast from setcc result type to select result type
4369 if (AfterLegalize) {
4370 SCC = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC);
4371 if (N2.getValueType() < SCC.getValueType())
4372 Temp = DAG.getZeroExtendInReg(SCC, N2.getValueType());
4373 else
4374 Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
4375 } else {
4376 SCC = DAG.getSetCC(MVT::i1, N0, N1, CC);
4377 Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
4379 AddToWorkList(SCC.Val);
4380 AddToWorkList(Temp.Val);
4382 if (N2C->getValue() == 1)
4383 return Temp;
4384 // shl setcc result by log2 n2c
4385 return DAG.getNode(ISD::SHL, N2.getValueType(), Temp,
4386 DAG.getConstant(Log2_64(N2C->getValue()),
4387 TLI.getShiftAmountTy()));
4390 // Check to see if this is the equivalent of setcc
4391 // FIXME: Turn all of these into setcc if setcc if setcc is legal
4392 // otherwise, go ahead with the folds.
4393 if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getValue() == 1ULL)) {
4394 MVT::ValueType XType = N0.getValueType();
4395 if (TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultTy())) {
4396 SDOperand Res = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC);
4397 if (Res.getValueType() != VT)
4398 Res = DAG.getNode(ISD::ZERO_EXTEND, VT, Res);
4399 return Res;
4402 // seteq X, 0 -> srl (ctlz X, log2(size(X)))
4403 if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
4404 TLI.isOperationLegal(ISD::CTLZ, XType)) {
4405 SDOperand Ctlz = DAG.getNode(ISD::CTLZ, XType, N0);
4406 return DAG.getNode(ISD::SRL, XType, Ctlz,
4407 DAG.getConstant(Log2_32(MVT::getSizeInBits(XType)),
4408 TLI.getShiftAmountTy()));
4410 // setgt X, 0 -> srl (and (-X, ~X), size(X)-1)
4411 if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
4412 SDOperand NegN0 = DAG.getNode(ISD::SUB, XType, DAG.getConstant(0, XType),
4413 N0);
4414 SDOperand NotN0 = DAG.getNode(ISD::XOR, XType, N0,
4415 DAG.getConstant(~0ULL, XType));
4416 return DAG.getNode(ISD::SRL, XType,
4417 DAG.getNode(ISD::AND, XType, NegN0, NotN0),
4418 DAG.getConstant(MVT::getSizeInBits(XType)-1,
4419 TLI.getShiftAmountTy()));
4421 // setgt X, -1 -> xor (srl (X, size(X)-1), 1)
4422 if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
4423 SDOperand Sign = DAG.getNode(ISD::SRL, XType, N0,
4424 DAG.getConstant(MVT::getSizeInBits(XType)-1,
4425 TLI.getShiftAmountTy()));
4426 return DAG.getNode(ISD::XOR, XType, Sign, DAG.getConstant(1, XType));
4430 // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
4431 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
4432 if (N1C && N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
4433 N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1) &&
4434 N2.getOperand(0) == N1 && MVT::isInteger(N0.getValueType())) {
4435 MVT::ValueType XType = N0.getValueType();
4436 SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
4437 DAG.getConstant(MVT::getSizeInBits(XType)-1,
4438 TLI.getShiftAmountTy()));
4439 SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
4440 AddToWorkList(Shift.Val);
4441 AddToWorkList(Add.Val);
4442 return DAG.getNode(ISD::XOR, XType, Add, Shift);
4444 // Check to see if this is an integer abs. select_cc setgt X, -1, X, -X ->
4445 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
4446 if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT &&
4447 N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) {
4448 if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0))) {
4449 MVT::ValueType XType = N0.getValueType();
4450 if (SubC->isNullValue() && MVT::isInteger(XType)) {
4451 SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
4452 DAG.getConstant(MVT::getSizeInBits(XType)-1,
4453 TLI.getShiftAmountTy()));
4454 SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
4455 AddToWorkList(Shift.Val);
4456 AddToWorkList(Add.Val);
4457 return DAG.getNode(ISD::XOR, XType, Add, Shift);
4462 return SDOperand();
4465 /// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
4466 SDOperand DAGCombiner::SimplifySetCC(MVT::ValueType VT, SDOperand N0,
4467 SDOperand N1, ISD::CondCode Cond,
4468 bool foldBooleans) {
4469 TargetLowering::DAGCombinerInfo
4470 DagCombineInfo(DAG, !AfterLegalize, false, this);
4471 return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo);
4474 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
4475 /// return a DAG expression to select that will generate the same value by
4476 /// multiplying by a magic number. See:
4477 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
4478 SDOperand DAGCombiner::BuildSDIV(SDNode *N) {
4479 std::vector<SDNode*> Built;
4480 SDOperand S = TLI.BuildSDIV(N, DAG, &Built);
4482 for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
4483 ii != ee; ++ii)
4484 AddToWorkList(*ii);
4485 return S;
4488 /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
4489 /// return a DAG expression to select that will generate the same value by
4490 /// multiplying by a magic number. See:
4491 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
4492 SDOperand DAGCombiner::BuildUDIV(SDNode *N) {
4493 std::vector<SDNode*> Built;
4494 SDOperand S = TLI.BuildUDIV(N, DAG, &Built);
4496 for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
4497 ii != ee; ++ii)
4498 AddToWorkList(*ii);
4499 return S;
4502 /// FindBaseOffset - Return true if base is known not to alias with anything
4503 /// but itself. Provides base object and offset as results.
4504 static bool FindBaseOffset(SDOperand Ptr, SDOperand &Base, int64_t &Offset) {
4505 // Assume it is a primitive operation.
4506 Base = Ptr; Offset = 0;
4508 // If it's an adding a simple constant then integrate the offset.
4509 if (Base.getOpcode() == ISD::ADD) {
4510 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
4511 Base = Base.getOperand(0);
4512 Offset += C->getValue();
4516 // If it's any of the following then it can't alias with anything but itself.
4517 return isa<FrameIndexSDNode>(Base) ||
4518 isa<ConstantPoolSDNode>(Base) ||
4519 isa<GlobalAddressSDNode>(Base);
4522 /// isAlias - Return true if there is any possibility that the two addresses
4523 /// overlap.
4524 bool DAGCombiner::isAlias(SDOperand Ptr1, int64_t Size1,
4525 const Value *SrcValue1, int SrcValueOffset1,
4526 SDOperand Ptr2, int64_t Size2,
4527 const Value *SrcValue2, int SrcValueOffset2)
4529 // If they are the same then they must be aliases.
4530 if (Ptr1 == Ptr2) return true;
4532 // Gather base node and offset information.
4533 SDOperand Base1, Base2;
4534 int64_t Offset1, Offset2;
4535 bool KnownBase1 = FindBaseOffset(Ptr1, Base1, Offset1);
4536 bool KnownBase2 = FindBaseOffset(Ptr2, Base2, Offset2);
4538 // If they have a same base address then...
4539 if (Base1 == Base2) {
4540 // Check to see if the addresses overlap.
4541 return!((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
4544 // If we know both bases then they can't alias.
4545 if (KnownBase1 && KnownBase2) return false;
4547 if (CombinerGlobalAA) {
4548 // Use alias analysis information.
4549 int Overlap1 = Size1 + SrcValueOffset1 + Offset1;
4550 int Overlap2 = Size2 + SrcValueOffset2 + Offset2;
4551 AliasAnalysis::AliasResult AAResult =
4552 AA.alias(SrcValue1, Overlap1, SrcValue2, Overlap2);
4553 if (AAResult == AliasAnalysis::NoAlias)
4554 return false;
4557 // Otherwise we have to assume they alias.
4558 return true;
4561 /// FindAliasInfo - Extracts the relevant alias information from the memory
4562 /// node. Returns true if the operand was a load.
4563 bool DAGCombiner::FindAliasInfo(SDNode *N,
4564 SDOperand &Ptr, int64_t &Size,
4565 const Value *&SrcValue, int &SrcValueOffset) {
4566 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
4567 Ptr = LD->getBasePtr();
4568 Size = MVT::getSizeInBits(LD->getLoadedVT()) >> 3;
4569 SrcValue = LD->getSrcValue();
4570 SrcValueOffset = LD->getSrcValueOffset();
4571 return true;
4572 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
4573 Ptr = ST->getBasePtr();
4574 Size = MVT::getSizeInBits(ST->getStoredVT()) >> 3;
4575 SrcValue = ST->getSrcValue();
4576 SrcValueOffset = ST->getSrcValueOffset();
4577 } else {
4578 assert(0 && "FindAliasInfo expected a memory operand");
4581 return false;
4584 /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
4585 /// looking for aliasing nodes and adding them to the Aliases vector.
4586 void DAGCombiner::GatherAllAliases(SDNode *N, SDOperand OriginalChain,
4587 SmallVector<SDOperand, 8> &Aliases) {
4588 SmallVector<SDOperand, 8> Chains; // List of chains to visit.
4589 std::set<SDNode *> Visited; // Visited node set.
4591 // Get alias information for node.
4592 SDOperand Ptr;
4593 int64_t Size;
4594 const Value *SrcValue;
4595 int SrcValueOffset;
4596 bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset);
4598 // Starting off.
4599 Chains.push_back(OriginalChain);
4601 // Look at each chain and determine if it is an alias. If so, add it to the
4602 // aliases list. If not, then continue up the chain looking for the next
4603 // candidate.
4604 while (!Chains.empty()) {
4605 SDOperand Chain = Chains.back();
4606 Chains.pop_back();
4608 // Don't bother if we've been before.
4609 if (Visited.find(Chain.Val) != Visited.end()) continue;
4610 Visited.insert(Chain.Val);
4612 switch (Chain.getOpcode()) {
4613 case ISD::EntryToken:
4614 // Entry token is ideal chain operand, but handled in FindBetterChain.
4615 break;
4617 case ISD::LOAD:
4618 case ISD::STORE: {
4619 // Get alias information for Chain.
4620 SDOperand OpPtr;
4621 int64_t OpSize;
4622 const Value *OpSrcValue;
4623 int OpSrcValueOffset;
4624 bool IsOpLoad = FindAliasInfo(Chain.Val, OpPtr, OpSize,
4625 OpSrcValue, OpSrcValueOffset);
4627 // If chain is alias then stop here.
4628 if (!(IsLoad && IsOpLoad) &&
4629 isAlias(Ptr, Size, SrcValue, SrcValueOffset,
4630 OpPtr, OpSize, OpSrcValue, OpSrcValueOffset)) {
4631 Aliases.push_back(Chain);
4632 } else {
4633 // Look further up the chain.
4634 Chains.push_back(Chain.getOperand(0));
4635 // Clean up old chain.
4636 AddToWorkList(Chain.Val);
4638 break;
4641 case ISD::TokenFactor:
4642 // We have to check each of the operands of the token factor, so we queue
4643 // then up. Adding the operands to the queue (stack) in reverse order
4644 // maintains the original order and increases the likelihood that getNode
4645 // will find a matching token factor (CSE.)
4646 for (unsigned n = Chain.getNumOperands(); n;)
4647 Chains.push_back(Chain.getOperand(--n));
4648 // Eliminate the token factor if we can.
4649 AddToWorkList(Chain.Val);
4650 break;
4652 default:
4653 // For all other instructions we will just have to take what we can get.
4654 Aliases.push_back(Chain);
4655 break;
4660 /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
4661 /// for a better chain (aliasing node.)
4662 SDOperand DAGCombiner::FindBetterChain(SDNode *N, SDOperand OldChain) {
4663 SmallVector<SDOperand, 8> Aliases; // Ops for replacing token factor.
4665 // Accumulate all the aliases to this node.
4666 GatherAllAliases(N, OldChain, Aliases);
4668 if (Aliases.size() == 0) {
4669 // If no operands then chain to entry token.
4670 return DAG.getEntryNode();
4671 } else if (Aliases.size() == 1) {
4672 // If a single operand then chain to it. We don't need to revisit it.
4673 return Aliases[0];
4676 // Construct a custom tailored token factor.
4677 SDOperand NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other,
4678 &Aliases[0], Aliases.size());
4680 // Make sure the old chain gets cleaned up.
4681 if (NewChain != OldChain) AddToWorkList(OldChain.Val);
4683 return NewChain;
4686 // SelectionDAG::Combine - This is the entry point for the file.
4688 void SelectionDAG::Combine(bool RunningAfterLegalize, AliasAnalysis &AA) {
4689 if (!RunningAfterLegalize && ViewDAGCombine1)
4690 viewGraph();
4691 if (RunningAfterLegalize && ViewDAGCombine2)
4692 viewGraph();
4693 /// run - This is the main entry point to this class.
4695 DAGCombiner(*this, AA).Run(RunningAfterLegalize);