[yaml2obj/obj2yaml] - Do not trigger llvm_unreachable when dumping/parsing relocation...
[llvm-complete.git] / lib / ExecutionEngine / RuntimeDyld / RuntimeDyldELF.cpp
blob8de3f7ef46740d2695723f22d21722469ea2d26f
1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
11 //===----------------------------------------------------------------------===//
13 #include "RuntimeDyldELF.h"
14 #include "RuntimeDyldCheckerImpl.h"
15 #include "Targets/RuntimeDyldELFMips.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/BinaryFormat/ELF.h"
20 #include "llvm/Object/ELFObjectFile.h"
21 #include "llvm/Object/ObjectFile.h"
22 #include "llvm/Support/Endian.h"
23 #include "llvm/Support/MemoryBuffer.h"
25 using namespace llvm;
26 using namespace llvm::object;
27 using namespace llvm::support::endian;
29 #define DEBUG_TYPE "dyld"
31 static void or32le(void *P, int32_t V) { write32le(P, read32le(P) | V); }
33 static void or32AArch64Imm(void *L, uint64_t Imm) {
34 or32le(L, (Imm & 0xFFF) << 10);
37 template <class T> static void write(bool isBE, void *P, T V) {
38 isBE ? write<T, support::big>(P, V) : write<T, support::little>(P, V);
41 static void write32AArch64Addr(void *L, uint64_t Imm) {
42 uint32_t ImmLo = (Imm & 0x3) << 29;
43 uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
44 uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
45 write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
48 // Return the bits [Start, End] from Val shifted Start bits.
49 // For instance, getBits(0xF0, 4, 8) returns 0xF.
50 static uint64_t getBits(uint64_t Val, int Start, int End) {
51 uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1;
52 return (Val >> Start) & Mask;
55 namespace {
57 template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
58 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
60 typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
61 typedef Elf_Sym_Impl<ELFT> Elf_Sym;
62 typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
63 typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
65 typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
67 typedef typename ELFT::uint addr_type;
69 DyldELFObject(ELFObjectFile<ELFT> &&Obj);
71 public:
72 static Expected<std::unique_ptr<DyldELFObject>>
73 create(MemoryBufferRef Wrapper);
75 void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
77 void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
79 // Methods for type inquiry through isa, cast and dyn_cast
80 static bool classof(const Binary *v) {
81 return (isa<ELFObjectFile<ELFT>>(v) &&
82 classof(cast<ELFObjectFile<ELFT>>(v)));
84 static bool classof(const ELFObjectFile<ELFT> *v) {
85 return v->isDyldType();
91 // The MemoryBuffer passed into this constructor is just a wrapper around the
92 // actual memory. Ultimately, the Binary parent class will take ownership of
93 // this MemoryBuffer object but not the underlying memory.
94 template <class ELFT>
95 DyldELFObject<ELFT>::DyldELFObject(ELFObjectFile<ELFT> &&Obj)
96 : ELFObjectFile<ELFT>(std::move(Obj)) {
97 this->isDyldELFObject = true;
100 template <class ELFT>
101 Expected<std::unique_ptr<DyldELFObject<ELFT>>>
102 DyldELFObject<ELFT>::create(MemoryBufferRef Wrapper) {
103 auto Obj = ELFObjectFile<ELFT>::create(Wrapper);
104 if (auto E = Obj.takeError())
105 return std::move(E);
106 std::unique_ptr<DyldELFObject<ELFT>> Ret(
107 new DyldELFObject<ELFT>(std::move(*Obj)));
108 return std::move(Ret);
111 template <class ELFT>
112 void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
113 uint64_t Addr) {
114 DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
115 Elf_Shdr *shdr =
116 const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
118 // This assumes the address passed in matches the target address bitness
119 // The template-based type cast handles everything else.
120 shdr->sh_addr = static_cast<addr_type>(Addr);
123 template <class ELFT>
124 void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
125 uint64_t Addr) {
127 Elf_Sym *sym = const_cast<Elf_Sym *>(
128 ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
130 // This assumes the address passed in matches the target address bitness
131 // The template-based type cast handles everything else.
132 sym->st_value = static_cast<addr_type>(Addr);
135 class LoadedELFObjectInfo final
136 : public LoadedObjectInfoHelper<LoadedELFObjectInfo,
137 RuntimeDyld::LoadedObjectInfo> {
138 public:
139 LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
140 : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {}
142 OwningBinary<ObjectFile>
143 getObjectForDebug(const ObjectFile &Obj) const override;
146 template <typename ELFT>
147 static Expected<std::unique_ptr<DyldELFObject<ELFT>>>
148 createRTDyldELFObject(MemoryBufferRef Buffer, const ObjectFile &SourceObject,
149 const LoadedELFObjectInfo &L) {
150 typedef typename ELFT::Shdr Elf_Shdr;
151 typedef typename ELFT::uint addr_type;
153 Expected<std::unique_ptr<DyldELFObject<ELFT>>> ObjOrErr =
154 DyldELFObject<ELFT>::create(Buffer);
155 if (Error E = ObjOrErr.takeError())
156 return std::move(E);
158 std::unique_ptr<DyldELFObject<ELFT>> Obj = std::move(*ObjOrErr);
160 // Iterate over all sections in the object.
161 auto SI = SourceObject.section_begin();
162 for (const auto &Sec : Obj->sections()) {
163 Expected<StringRef> NameOrErr = Sec.getName();
164 if (!NameOrErr) {
165 consumeError(NameOrErr.takeError());
166 continue;
169 if (*NameOrErr != "") {
170 DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
171 Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
172 reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
174 if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) {
175 // This assumes that the address passed in matches the target address
176 // bitness. The template-based type cast handles everything else.
177 shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
180 ++SI;
183 return std::move(Obj);
186 static OwningBinary<ObjectFile>
187 createELFDebugObject(const ObjectFile &Obj, const LoadedELFObjectInfo &L) {
188 assert(Obj.isELF() && "Not an ELF object file.");
190 std::unique_ptr<MemoryBuffer> Buffer =
191 MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
193 Expected<std::unique_ptr<ObjectFile>> DebugObj(nullptr);
194 handleAllErrors(DebugObj.takeError());
195 if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian())
196 DebugObj =
197 createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L);
198 else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian())
199 DebugObj =
200 createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L);
201 else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian())
202 DebugObj =
203 createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L);
204 else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian())
205 DebugObj =
206 createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L);
207 else
208 llvm_unreachable("Unexpected ELF format");
210 handleAllErrors(DebugObj.takeError());
211 return OwningBinary<ObjectFile>(std::move(*DebugObj), std::move(Buffer));
214 OwningBinary<ObjectFile>
215 LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
216 return createELFDebugObject(Obj, *this);
219 } // anonymous namespace
221 namespace llvm {
223 RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
224 JITSymbolResolver &Resolver)
225 : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
226 RuntimeDyldELF::~RuntimeDyldELF() {}
228 void RuntimeDyldELF::registerEHFrames() {
229 for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
230 SID EHFrameSID = UnregisteredEHFrameSections[i];
231 uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
232 uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
233 size_t EHFrameSize = Sections[EHFrameSID].getSize();
234 MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
236 UnregisteredEHFrameSections.clear();
239 std::unique_ptr<RuntimeDyldELF>
240 llvm::RuntimeDyldELF::create(Triple::ArchType Arch,
241 RuntimeDyld::MemoryManager &MemMgr,
242 JITSymbolResolver &Resolver) {
243 switch (Arch) {
244 default:
245 return std::make_unique<RuntimeDyldELF>(MemMgr, Resolver);
246 case Triple::mips:
247 case Triple::mipsel:
248 case Triple::mips64:
249 case Triple::mips64el:
250 return std::make_unique<RuntimeDyldELFMips>(MemMgr, Resolver);
254 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
255 RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
256 if (auto ObjSectionToIDOrErr = loadObjectImpl(O))
257 return std::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr);
258 else {
259 HasError = true;
260 raw_string_ostream ErrStream(ErrorStr);
261 logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream);
262 return nullptr;
266 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
267 uint64_t Offset, uint64_t Value,
268 uint32_t Type, int64_t Addend,
269 uint64_t SymOffset) {
270 switch (Type) {
271 default:
272 llvm_unreachable("Relocation type not implemented yet!");
273 break;
274 case ELF::R_X86_64_NONE:
275 break;
276 case ELF::R_X86_64_64: {
277 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
278 Value + Addend;
279 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
280 << format("%p\n", Section.getAddressWithOffset(Offset)));
281 break;
283 case ELF::R_X86_64_32:
284 case ELF::R_X86_64_32S: {
285 Value += Addend;
286 assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
287 (Type == ELF::R_X86_64_32S &&
288 ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
289 uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
290 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
291 TruncatedAddr;
292 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
293 << format("%p\n", Section.getAddressWithOffset(Offset)));
294 break;
296 case ELF::R_X86_64_PC8: {
297 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
298 int64_t RealOffset = Value + Addend - FinalAddress;
299 assert(isInt<8>(RealOffset));
300 int8_t TruncOffset = (RealOffset & 0xFF);
301 Section.getAddress()[Offset] = TruncOffset;
302 break;
304 case ELF::R_X86_64_PC32: {
305 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
306 int64_t RealOffset = Value + Addend - FinalAddress;
307 assert(isInt<32>(RealOffset));
308 int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
309 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
310 TruncOffset;
311 break;
313 case ELF::R_X86_64_PC64: {
314 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
315 int64_t RealOffset = Value + Addend - FinalAddress;
316 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
317 RealOffset;
318 LLVM_DEBUG(dbgs() << "Writing " << format("%p", RealOffset) << " at "
319 << format("%p\n", FinalAddress));
320 break;
322 case ELF::R_X86_64_GOTOFF64: {
323 // Compute Value - GOTBase.
324 uint64_t GOTBase = 0;
325 for (const auto &Section : Sections) {
326 if (Section.getName() == ".got") {
327 GOTBase = Section.getLoadAddressWithOffset(0);
328 break;
331 assert(GOTBase != 0 && "missing GOT");
332 int64_t GOTOffset = Value - GOTBase + Addend;
333 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = GOTOffset;
334 break;
339 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
340 uint64_t Offset, uint32_t Value,
341 uint32_t Type, int32_t Addend) {
342 switch (Type) {
343 case ELF::R_386_32: {
344 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
345 Value + Addend;
346 break;
348 // Handle R_386_PLT32 like R_386_PC32 since it should be able to
349 // reach any 32 bit address.
350 case ELF::R_386_PLT32:
351 case ELF::R_386_PC32: {
352 uint32_t FinalAddress =
353 Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
354 uint32_t RealOffset = Value + Addend - FinalAddress;
355 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
356 RealOffset;
357 break;
359 default:
360 // There are other relocation types, but it appears these are the
361 // only ones currently used by the LLVM ELF object writer
362 llvm_unreachable("Relocation type not implemented yet!");
363 break;
367 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
368 uint64_t Offset, uint64_t Value,
369 uint32_t Type, int64_t Addend) {
370 uint32_t *TargetPtr =
371 reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
372 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
373 // Data should use target endian. Code should always use little endian.
374 bool isBE = Arch == Triple::aarch64_be;
376 LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
377 << format("%llx", Section.getAddressWithOffset(Offset))
378 << " FinalAddress: 0x" << format("%llx", FinalAddress)
379 << " Value: 0x" << format("%llx", Value) << " Type: 0x"
380 << format("%x", Type) << " Addend: 0x"
381 << format("%llx", Addend) << "\n");
383 switch (Type) {
384 default:
385 llvm_unreachable("Relocation type not implemented yet!");
386 break;
387 case ELF::R_AARCH64_ABS16: {
388 uint64_t Result = Value + Addend;
389 assert(static_cast<int64_t>(Result) >= INT16_MIN && Result < UINT16_MAX);
390 write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU));
391 break;
393 case ELF::R_AARCH64_ABS32: {
394 uint64_t Result = Value + Addend;
395 assert(static_cast<int64_t>(Result) >= INT32_MIN && Result < UINT32_MAX);
396 write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
397 break;
399 case ELF::R_AARCH64_ABS64:
400 write(isBE, TargetPtr, Value + Addend);
401 break;
402 case ELF::R_AARCH64_PREL32: {
403 uint64_t Result = Value + Addend - FinalAddress;
404 assert(static_cast<int64_t>(Result) >= INT32_MIN &&
405 static_cast<int64_t>(Result) <= UINT32_MAX);
406 write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
407 break;
409 case ELF::R_AARCH64_PREL64:
410 write(isBE, TargetPtr, Value + Addend - FinalAddress);
411 break;
412 case ELF::R_AARCH64_CALL26: // fallthrough
413 case ELF::R_AARCH64_JUMP26: {
414 // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
415 // calculation.
416 uint64_t BranchImm = Value + Addend - FinalAddress;
418 // "Check that -2^27 <= result < 2^27".
419 assert(isInt<28>(BranchImm));
420 or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) >> 2);
421 break;
423 case ELF::R_AARCH64_MOVW_UABS_G3:
424 or32le(TargetPtr, ((Value + Addend) & 0xFFFF000000000000) >> 43);
425 break;
426 case ELF::R_AARCH64_MOVW_UABS_G2_NC:
427 or32le(TargetPtr, ((Value + Addend) & 0xFFFF00000000) >> 27);
428 break;
429 case ELF::R_AARCH64_MOVW_UABS_G1_NC:
430 or32le(TargetPtr, ((Value + Addend) & 0xFFFF0000) >> 11);
431 break;
432 case ELF::R_AARCH64_MOVW_UABS_G0_NC:
433 or32le(TargetPtr, ((Value + Addend) & 0xFFFF) << 5);
434 break;
435 case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
436 // Operation: Page(S+A) - Page(P)
437 uint64_t Result =
438 ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
440 // Check that -2^32 <= X < 2^32
441 assert(isInt<33>(Result) && "overflow check failed for relocation");
443 // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
444 // from bits 32:12 of X.
445 write32AArch64Addr(TargetPtr, Result >> 12);
446 break;
448 case ELF::R_AARCH64_ADD_ABS_LO12_NC:
449 // Operation: S + A
450 // Immediate goes in bits 21:10 of LD/ST instruction, taken
451 // from bits 11:0 of X
452 or32AArch64Imm(TargetPtr, Value + Addend);
453 break;
454 case ELF::R_AARCH64_LDST8_ABS_LO12_NC:
455 // Operation: S + A
456 // Immediate goes in bits 21:10 of LD/ST instruction, taken
457 // from bits 11:0 of X
458 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 0, 11));
459 break;
460 case ELF::R_AARCH64_LDST16_ABS_LO12_NC:
461 // Operation: S + A
462 // Immediate goes in bits 21:10 of LD/ST instruction, taken
463 // from bits 11:1 of X
464 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 1, 11));
465 break;
466 case ELF::R_AARCH64_LDST32_ABS_LO12_NC:
467 // Operation: S + A
468 // Immediate goes in bits 21:10 of LD/ST instruction, taken
469 // from bits 11:2 of X
470 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 2, 11));
471 break;
472 case ELF::R_AARCH64_LDST64_ABS_LO12_NC:
473 // Operation: S + A
474 // Immediate goes in bits 21:10 of LD/ST instruction, taken
475 // from bits 11:3 of X
476 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 3, 11));
477 break;
478 case ELF::R_AARCH64_LDST128_ABS_LO12_NC:
479 // Operation: S + A
480 // Immediate goes in bits 21:10 of LD/ST instruction, taken
481 // from bits 11:4 of X
482 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 4, 11));
483 break;
487 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
488 uint64_t Offset, uint32_t Value,
489 uint32_t Type, int32_t Addend) {
490 // TODO: Add Thumb relocations.
491 uint32_t *TargetPtr =
492 reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
493 uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
494 Value += Addend;
496 LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
497 << Section.getAddressWithOffset(Offset)
498 << " FinalAddress: " << format("%p", FinalAddress)
499 << " Value: " << format("%x", Value)
500 << " Type: " << format("%x", Type)
501 << " Addend: " << format("%x", Addend) << "\n");
503 switch (Type) {
504 default:
505 llvm_unreachable("Not implemented relocation type!");
507 case ELF::R_ARM_NONE:
508 break;
509 // Write a 31bit signed offset
510 case ELF::R_ARM_PREL31:
511 support::ulittle32_t::ref{TargetPtr} =
512 (support::ulittle32_t::ref{TargetPtr} & 0x80000000) |
513 ((Value - FinalAddress) & ~0x80000000);
514 break;
515 case ELF::R_ARM_TARGET1:
516 case ELF::R_ARM_ABS32:
517 support::ulittle32_t::ref{TargetPtr} = Value;
518 break;
519 // Write first 16 bit of 32 bit value to the mov instruction.
520 // Last 4 bit should be shifted.
521 case ELF::R_ARM_MOVW_ABS_NC:
522 case ELF::R_ARM_MOVT_ABS:
523 if (Type == ELF::R_ARM_MOVW_ABS_NC)
524 Value = Value & 0xFFFF;
525 else if (Type == ELF::R_ARM_MOVT_ABS)
526 Value = (Value >> 16) & 0xFFFF;
527 support::ulittle32_t::ref{TargetPtr} =
528 (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) |
529 (((Value >> 12) & 0xF) << 16);
530 break;
531 // Write 24 bit relative value to the branch instruction.
532 case ELF::R_ARM_PC24: // Fall through.
533 case ELF::R_ARM_CALL: // Fall through.
534 case ELF::R_ARM_JUMP24:
535 int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
536 RelValue = (RelValue & 0x03FFFFFC) >> 2;
537 assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE);
538 support::ulittle32_t::ref{TargetPtr} =
539 (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue;
540 break;
544 void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
545 if (Arch == Triple::UnknownArch ||
546 !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) {
547 IsMipsO32ABI = false;
548 IsMipsN32ABI = false;
549 IsMipsN64ABI = false;
550 return;
552 if (auto *E = dyn_cast<ELFObjectFileBase>(&Obj)) {
553 unsigned AbiVariant = E->getPlatformFlags();
554 IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
555 IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2;
557 IsMipsN64ABI = Obj.getFileFormatName().equals("ELF64-mips");
560 // Return the .TOC. section and offset.
561 Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
562 ObjSectionToIDMap &LocalSections,
563 RelocationValueRef &Rel) {
564 // Set a default SectionID in case we do not find a TOC section below.
565 // This may happen for references to TOC base base (sym@toc, .odp
566 // relocation) without a .toc directive. In this case just use the
567 // first section (which is usually the .odp) since the code won't
568 // reference the .toc base directly.
569 Rel.SymbolName = nullptr;
570 Rel.SectionID = 0;
572 // The TOC consists of sections .got, .toc, .tocbss, .plt in that
573 // order. The TOC starts where the first of these sections starts.
574 for (auto &Section : Obj.sections()) {
575 Expected<StringRef> NameOrErr = Section.getName();
576 if (!NameOrErr)
577 return NameOrErr.takeError();
578 StringRef SectionName = *NameOrErr;
580 if (SectionName == ".got"
581 || SectionName == ".toc"
582 || SectionName == ".tocbss"
583 || SectionName == ".plt") {
584 if (auto SectionIDOrErr =
585 findOrEmitSection(Obj, Section, false, LocalSections))
586 Rel.SectionID = *SectionIDOrErr;
587 else
588 return SectionIDOrErr.takeError();
589 break;
593 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
594 // thus permitting a full 64 Kbytes segment.
595 Rel.Addend = 0x8000;
597 return Error::success();
600 // Returns the sections and offset associated with the ODP entry referenced
601 // by Symbol.
602 Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
603 ObjSectionToIDMap &LocalSections,
604 RelocationValueRef &Rel) {
605 // Get the ELF symbol value (st_value) to compare with Relocation offset in
606 // .opd entries
607 for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
608 si != se; ++si) {
609 section_iterator RelSecI = si->getRelocatedSection();
610 if (RelSecI == Obj.section_end())
611 continue;
613 Expected<StringRef> NameOrErr = RelSecI->getName();
614 if (!NameOrErr)
615 return NameOrErr.takeError();
616 StringRef RelSectionName = *NameOrErr;
618 if (RelSectionName != ".opd")
619 continue;
621 for (elf_relocation_iterator i = si->relocation_begin(),
622 e = si->relocation_end();
623 i != e;) {
624 // The R_PPC64_ADDR64 relocation indicates the first field
625 // of a .opd entry
626 uint64_t TypeFunc = i->getType();
627 if (TypeFunc != ELF::R_PPC64_ADDR64) {
628 ++i;
629 continue;
632 uint64_t TargetSymbolOffset = i->getOffset();
633 symbol_iterator TargetSymbol = i->getSymbol();
634 int64_t Addend;
635 if (auto AddendOrErr = i->getAddend())
636 Addend = *AddendOrErr;
637 else
638 return AddendOrErr.takeError();
640 ++i;
641 if (i == e)
642 break;
644 // Just check if following relocation is a R_PPC64_TOC
645 uint64_t TypeTOC = i->getType();
646 if (TypeTOC != ELF::R_PPC64_TOC)
647 continue;
649 // Finally compares the Symbol value and the target symbol offset
650 // to check if this .opd entry refers to the symbol the relocation
651 // points to.
652 if (Rel.Addend != (int64_t)TargetSymbolOffset)
653 continue;
655 section_iterator TSI = Obj.section_end();
656 if (auto TSIOrErr = TargetSymbol->getSection())
657 TSI = *TSIOrErr;
658 else
659 return TSIOrErr.takeError();
660 assert(TSI != Obj.section_end() && "TSI should refer to a valid section");
662 bool IsCode = TSI->isText();
663 if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode,
664 LocalSections))
665 Rel.SectionID = *SectionIDOrErr;
666 else
667 return SectionIDOrErr.takeError();
668 Rel.Addend = (intptr_t)Addend;
669 return Error::success();
672 llvm_unreachable("Attempting to get address of ODP entry!");
675 // Relocation masks following the #lo(value), #hi(value), #ha(value),
676 // #higher(value), #highera(value), #highest(value), and #highesta(value)
677 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
678 // document.
680 static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
682 static inline uint16_t applyPPChi(uint64_t value) {
683 return (value >> 16) & 0xffff;
686 static inline uint16_t applyPPCha (uint64_t value) {
687 return ((value + 0x8000) >> 16) & 0xffff;
690 static inline uint16_t applyPPChigher(uint64_t value) {
691 return (value >> 32) & 0xffff;
694 static inline uint16_t applyPPChighera (uint64_t value) {
695 return ((value + 0x8000) >> 32) & 0xffff;
698 static inline uint16_t applyPPChighest(uint64_t value) {
699 return (value >> 48) & 0xffff;
702 static inline uint16_t applyPPChighesta (uint64_t value) {
703 return ((value + 0x8000) >> 48) & 0xffff;
706 void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section,
707 uint64_t Offset, uint64_t Value,
708 uint32_t Type, int64_t Addend) {
709 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
710 switch (Type) {
711 default:
712 llvm_unreachable("Relocation type not implemented yet!");
713 break;
714 case ELF::R_PPC_ADDR16_LO:
715 writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
716 break;
717 case ELF::R_PPC_ADDR16_HI:
718 writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
719 break;
720 case ELF::R_PPC_ADDR16_HA:
721 writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
722 break;
726 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
727 uint64_t Offset, uint64_t Value,
728 uint32_t Type, int64_t Addend) {
729 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
730 switch (Type) {
731 default:
732 llvm_unreachable("Relocation type not implemented yet!");
733 break;
734 case ELF::R_PPC64_ADDR16:
735 writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
736 break;
737 case ELF::R_PPC64_ADDR16_DS:
738 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
739 break;
740 case ELF::R_PPC64_ADDR16_LO:
741 writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
742 break;
743 case ELF::R_PPC64_ADDR16_LO_DS:
744 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
745 break;
746 case ELF::R_PPC64_ADDR16_HI:
747 case ELF::R_PPC64_ADDR16_HIGH:
748 writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
749 break;
750 case ELF::R_PPC64_ADDR16_HA:
751 case ELF::R_PPC64_ADDR16_HIGHA:
752 writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
753 break;
754 case ELF::R_PPC64_ADDR16_HIGHER:
755 writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
756 break;
757 case ELF::R_PPC64_ADDR16_HIGHERA:
758 writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
759 break;
760 case ELF::R_PPC64_ADDR16_HIGHEST:
761 writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
762 break;
763 case ELF::R_PPC64_ADDR16_HIGHESTA:
764 writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
765 break;
766 case ELF::R_PPC64_ADDR14: {
767 assert(((Value + Addend) & 3) == 0);
768 // Preserve the AA/LK bits in the branch instruction
769 uint8_t aalk = *(LocalAddress + 3);
770 writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
771 } break;
772 case ELF::R_PPC64_REL16_LO: {
773 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
774 uint64_t Delta = Value - FinalAddress + Addend;
775 writeInt16BE(LocalAddress, applyPPClo(Delta));
776 } break;
777 case ELF::R_PPC64_REL16_HI: {
778 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
779 uint64_t Delta = Value - FinalAddress + Addend;
780 writeInt16BE(LocalAddress, applyPPChi(Delta));
781 } break;
782 case ELF::R_PPC64_REL16_HA: {
783 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
784 uint64_t Delta = Value - FinalAddress + Addend;
785 writeInt16BE(LocalAddress, applyPPCha(Delta));
786 } break;
787 case ELF::R_PPC64_ADDR32: {
788 int64_t Result = static_cast<int64_t>(Value + Addend);
789 if (SignExtend64<32>(Result) != Result)
790 llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
791 writeInt32BE(LocalAddress, Result);
792 } break;
793 case ELF::R_PPC64_REL24: {
794 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
795 int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
796 if (SignExtend64<26>(delta) != delta)
797 llvm_unreachable("Relocation R_PPC64_REL24 overflow");
798 // We preserve bits other than LI field, i.e. PO and AA/LK fields.
799 uint32_t Inst = readBytesUnaligned(LocalAddress, 4);
800 writeInt32BE(LocalAddress, (Inst & 0xFC000003) | (delta & 0x03FFFFFC));
801 } break;
802 case ELF::R_PPC64_REL32: {
803 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
804 int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
805 if (SignExtend64<32>(delta) != delta)
806 llvm_unreachable("Relocation R_PPC64_REL32 overflow");
807 writeInt32BE(LocalAddress, delta);
808 } break;
809 case ELF::R_PPC64_REL64: {
810 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
811 uint64_t Delta = Value - FinalAddress + Addend;
812 writeInt64BE(LocalAddress, Delta);
813 } break;
814 case ELF::R_PPC64_ADDR64:
815 writeInt64BE(LocalAddress, Value + Addend);
816 break;
820 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
821 uint64_t Offset, uint64_t Value,
822 uint32_t Type, int64_t Addend) {
823 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
824 switch (Type) {
825 default:
826 llvm_unreachable("Relocation type not implemented yet!");
827 break;
828 case ELF::R_390_PC16DBL:
829 case ELF::R_390_PLT16DBL: {
830 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
831 assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
832 writeInt16BE(LocalAddress, Delta / 2);
833 break;
835 case ELF::R_390_PC32DBL:
836 case ELF::R_390_PLT32DBL: {
837 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
838 assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
839 writeInt32BE(LocalAddress, Delta / 2);
840 break;
842 case ELF::R_390_PC16: {
843 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
844 assert(int16_t(Delta) == Delta && "R_390_PC16 overflow");
845 writeInt16BE(LocalAddress, Delta);
846 break;
848 case ELF::R_390_PC32: {
849 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
850 assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
851 writeInt32BE(LocalAddress, Delta);
852 break;
854 case ELF::R_390_PC64: {
855 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
856 writeInt64BE(LocalAddress, Delta);
857 break;
859 case ELF::R_390_8:
860 *LocalAddress = (uint8_t)(Value + Addend);
861 break;
862 case ELF::R_390_16:
863 writeInt16BE(LocalAddress, Value + Addend);
864 break;
865 case ELF::R_390_32:
866 writeInt32BE(LocalAddress, Value + Addend);
867 break;
868 case ELF::R_390_64:
869 writeInt64BE(LocalAddress, Value + Addend);
870 break;
874 void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry &Section,
875 uint64_t Offset, uint64_t Value,
876 uint32_t Type, int64_t Addend) {
877 bool isBE = Arch == Triple::bpfeb;
879 switch (Type) {
880 default:
881 llvm_unreachable("Relocation type not implemented yet!");
882 break;
883 case ELF::R_BPF_NONE:
884 break;
885 case ELF::R_BPF_64_64: {
886 write(isBE, Section.getAddressWithOffset(Offset), Value + Addend);
887 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
888 << format("%p\n", Section.getAddressWithOffset(Offset)));
889 break;
891 case ELF::R_BPF_64_32: {
892 Value += Addend;
893 assert(Value <= UINT32_MAX);
894 write(isBE, Section.getAddressWithOffset(Offset), static_cast<uint32_t>(Value));
895 LLVM_DEBUG(dbgs() << "Writing " << format("%p", Value) << " at "
896 << format("%p\n", Section.getAddressWithOffset(Offset)));
897 break;
902 // The target location for the relocation is described by RE.SectionID and
903 // RE.Offset. RE.SectionID can be used to find the SectionEntry. Each
904 // SectionEntry has three members describing its location.
905 // SectionEntry::Address is the address at which the section has been loaded
906 // into memory in the current (host) process. SectionEntry::LoadAddress is the
907 // address that the section will have in the target process.
908 // SectionEntry::ObjAddress is the address of the bits for this section in the
909 // original emitted object image (also in the current address space).
911 // Relocations will be applied as if the section were loaded at
912 // SectionEntry::LoadAddress, but they will be applied at an address based
913 // on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to
914 // Target memory contents if they are required for value calculations.
916 // The Value parameter here is the load address of the symbol for the
917 // relocation to be applied. For relocations which refer to symbols in the
918 // current object Value will be the LoadAddress of the section in which
919 // the symbol resides (RE.Addend provides additional information about the
920 // symbol location). For external symbols, Value will be the address of the
921 // symbol in the target address space.
922 void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
923 uint64_t Value) {
924 const SectionEntry &Section = Sections[RE.SectionID];
925 return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
926 RE.SymOffset, RE.SectionID);
929 void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
930 uint64_t Offset, uint64_t Value,
931 uint32_t Type, int64_t Addend,
932 uint64_t SymOffset, SID SectionID) {
933 switch (Arch) {
934 case Triple::x86_64:
935 resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
936 break;
937 case Triple::x86:
938 resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
939 (uint32_t)(Addend & 0xffffffffL));
940 break;
941 case Triple::aarch64:
942 case Triple::aarch64_be:
943 resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
944 break;
945 case Triple::arm: // Fall through.
946 case Triple::armeb:
947 case Triple::thumb:
948 case Triple::thumbeb:
949 resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
950 (uint32_t)(Addend & 0xffffffffL));
951 break;
952 case Triple::ppc:
953 resolvePPC32Relocation(Section, Offset, Value, Type, Addend);
954 break;
955 case Triple::ppc64: // Fall through.
956 case Triple::ppc64le:
957 resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
958 break;
959 case Triple::systemz:
960 resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
961 break;
962 case Triple::bpfel:
963 case Triple::bpfeb:
964 resolveBPFRelocation(Section, Offset, Value, Type, Addend);
965 break;
966 default:
967 llvm_unreachable("Unsupported CPU type!");
971 void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const {
972 return (void *)(Sections[SectionID].getObjAddress() + Offset);
975 void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
976 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
977 if (Value.SymbolName)
978 addRelocationForSymbol(RE, Value.SymbolName);
979 else
980 addRelocationForSection(RE, Value.SectionID);
983 uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType,
984 bool IsLocal) const {
985 switch (RelType) {
986 case ELF::R_MICROMIPS_GOT16:
987 if (IsLocal)
988 return ELF::R_MICROMIPS_LO16;
989 break;
990 case ELF::R_MICROMIPS_HI16:
991 return ELF::R_MICROMIPS_LO16;
992 case ELF::R_MIPS_GOT16:
993 if (IsLocal)
994 return ELF::R_MIPS_LO16;
995 break;
996 case ELF::R_MIPS_HI16:
997 return ELF::R_MIPS_LO16;
998 case ELF::R_MIPS_PCHI16:
999 return ELF::R_MIPS_PCLO16;
1000 default:
1001 break;
1003 return ELF::R_MIPS_NONE;
1006 // Sometimes we don't need to create thunk for a branch.
1007 // This typically happens when branch target is located
1008 // in the same object file. In such case target is either
1009 // a weak symbol or symbol in a different executable section.
1010 // This function checks if branch target is located in the
1011 // same object file and if distance between source and target
1012 // fits R_AARCH64_CALL26 relocation. If both conditions are
1013 // met, it emits direct jump to the target and returns true.
1014 // Otherwise false is returned and thunk is created.
1015 bool RuntimeDyldELF::resolveAArch64ShortBranch(
1016 unsigned SectionID, relocation_iterator RelI,
1017 const RelocationValueRef &Value) {
1018 uint64_t Address;
1019 if (Value.SymbolName) {
1020 auto Loc = GlobalSymbolTable.find(Value.SymbolName);
1022 // Don't create direct branch for external symbols.
1023 if (Loc == GlobalSymbolTable.end())
1024 return false;
1026 const auto &SymInfo = Loc->second;
1027 Address =
1028 uint64_t(Sections[SymInfo.getSectionID()].getLoadAddressWithOffset(
1029 SymInfo.getOffset()));
1030 } else {
1031 Address = uint64_t(Sections[Value.SectionID].getLoadAddress());
1033 uint64_t Offset = RelI->getOffset();
1034 uint64_t SourceAddress = Sections[SectionID].getLoadAddressWithOffset(Offset);
1036 // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
1037 // If distance between source and target is out of range then we should
1038 // create thunk.
1039 if (!isInt<28>(Address + Value.Addend - SourceAddress))
1040 return false;
1042 resolveRelocation(Sections[SectionID], Offset, Address, RelI->getType(),
1043 Value.Addend);
1045 return true;
1048 void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID,
1049 const RelocationValueRef &Value,
1050 relocation_iterator RelI,
1051 StubMap &Stubs) {
1053 LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
1054 SectionEntry &Section = Sections[SectionID];
1056 uint64_t Offset = RelI->getOffset();
1057 unsigned RelType = RelI->getType();
1058 // Look for an existing stub.
1059 StubMap::const_iterator i = Stubs.find(Value);
1060 if (i != Stubs.end()) {
1061 resolveRelocation(Section, Offset,
1062 (uint64_t)Section.getAddressWithOffset(i->second),
1063 RelType, 0);
1064 LLVM_DEBUG(dbgs() << " Stub function found\n");
1065 } else if (!resolveAArch64ShortBranch(SectionID, RelI, Value)) {
1066 // Create a new stub function.
1067 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1068 Stubs[Value] = Section.getStubOffset();
1069 uint8_t *StubTargetAddr = createStubFunction(
1070 Section.getAddressWithOffset(Section.getStubOffset()));
1072 RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.getAddress(),
1073 ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
1074 RelocationEntry REmovk_g2(SectionID,
1075 StubTargetAddr - Section.getAddress() + 4,
1076 ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
1077 RelocationEntry REmovk_g1(SectionID,
1078 StubTargetAddr - Section.getAddress() + 8,
1079 ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
1080 RelocationEntry REmovk_g0(SectionID,
1081 StubTargetAddr - Section.getAddress() + 12,
1082 ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
1084 if (Value.SymbolName) {
1085 addRelocationForSymbol(REmovz_g3, Value.SymbolName);
1086 addRelocationForSymbol(REmovk_g2, Value.SymbolName);
1087 addRelocationForSymbol(REmovk_g1, Value.SymbolName);
1088 addRelocationForSymbol(REmovk_g0, Value.SymbolName);
1089 } else {
1090 addRelocationForSection(REmovz_g3, Value.SectionID);
1091 addRelocationForSection(REmovk_g2, Value.SectionID);
1092 addRelocationForSection(REmovk_g1, Value.SectionID);
1093 addRelocationForSection(REmovk_g0, Value.SectionID);
1095 resolveRelocation(Section, Offset,
1096 reinterpret_cast<uint64_t>(Section.getAddressWithOffset(
1097 Section.getStubOffset())),
1098 RelType, 0);
1099 Section.advanceStubOffset(getMaxStubSize());
1103 Expected<relocation_iterator>
1104 RuntimeDyldELF::processRelocationRef(
1105 unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
1106 ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
1107 const auto &Obj = cast<ELFObjectFileBase>(O);
1108 uint64_t RelType = RelI->getType();
1109 int64_t Addend = 0;
1110 if (Expected<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend())
1111 Addend = *AddendOrErr;
1112 else
1113 consumeError(AddendOrErr.takeError());
1114 elf_symbol_iterator Symbol = RelI->getSymbol();
1116 // Obtain the symbol name which is referenced in the relocation
1117 StringRef TargetName;
1118 if (Symbol != Obj.symbol_end()) {
1119 if (auto TargetNameOrErr = Symbol->getName())
1120 TargetName = *TargetNameOrErr;
1121 else
1122 return TargetNameOrErr.takeError();
1124 LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
1125 << " TargetName: " << TargetName << "\n");
1126 RelocationValueRef Value;
1127 // First search for the symbol in the local symbol table
1128 SymbolRef::Type SymType = SymbolRef::ST_Unknown;
1130 // Search for the symbol in the global symbol table
1131 RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
1132 if (Symbol != Obj.symbol_end()) {
1133 gsi = GlobalSymbolTable.find(TargetName.data());
1134 Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType();
1135 if (!SymTypeOrErr) {
1136 std::string Buf;
1137 raw_string_ostream OS(Buf);
1138 logAllUnhandledErrors(SymTypeOrErr.takeError(), OS);
1139 OS.flush();
1140 report_fatal_error(Buf);
1142 SymType = *SymTypeOrErr;
1144 if (gsi != GlobalSymbolTable.end()) {
1145 const auto &SymInfo = gsi->second;
1146 Value.SectionID = SymInfo.getSectionID();
1147 Value.Offset = SymInfo.getOffset();
1148 Value.Addend = SymInfo.getOffset() + Addend;
1149 } else {
1150 switch (SymType) {
1151 case SymbolRef::ST_Debug: {
1152 // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
1153 // and can be changed by another developers. Maybe best way is add
1154 // a new symbol type ST_Section to SymbolRef and use it.
1155 auto SectionOrErr = Symbol->getSection();
1156 if (!SectionOrErr) {
1157 std::string Buf;
1158 raw_string_ostream OS(Buf);
1159 logAllUnhandledErrors(SectionOrErr.takeError(), OS);
1160 OS.flush();
1161 report_fatal_error(Buf);
1163 section_iterator si = *SectionOrErr;
1164 if (si == Obj.section_end())
1165 llvm_unreachable("Symbol section not found, bad object file format!");
1166 LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n");
1167 bool isCode = si->isText();
1168 if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode,
1169 ObjSectionToID))
1170 Value.SectionID = *SectionIDOrErr;
1171 else
1172 return SectionIDOrErr.takeError();
1173 Value.Addend = Addend;
1174 break;
1176 case SymbolRef::ST_Data:
1177 case SymbolRef::ST_Function:
1178 case SymbolRef::ST_Unknown: {
1179 Value.SymbolName = TargetName.data();
1180 Value.Addend = Addend;
1182 // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1183 // will manifest here as a NULL symbol name.
1184 // We can set this as a valid (but empty) symbol name, and rely
1185 // on addRelocationForSymbol to handle this.
1186 if (!Value.SymbolName)
1187 Value.SymbolName = "";
1188 break;
1190 default:
1191 llvm_unreachable("Unresolved symbol type!");
1192 break;
1196 uint64_t Offset = RelI->getOffset();
1198 LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
1199 << "\n");
1200 if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be)) {
1201 if (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26) {
1202 resolveAArch64Branch(SectionID, Value, RelI, Stubs);
1203 } else if (RelType == ELF::R_AARCH64_ADR_GOT_PAGE) {
1204 // Craete new GOT entry or find existing one. If GOT entry is
1205 // to be created, then we also emit ABS64 relocation for it.
1206 uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1207 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1208 ELF::R_AARCH64_ADR_PREL_PG_HI21);
1210 } else if (RelType == ELF::R_AARCH64_LD64_GOT_LO12_NC) {
1211 uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1212 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1213 ELF::R_AARCH64_LDST64_ABS_LO12_NC);
1214 } else {
1215 processSimpleRelocation(SectionID, Offset, RelType, Value);
1217 } else if (Arch == Triple::arm) {
1218 if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
1219 RelType == ELF::R_ARM_JUMP24) {
1220 // This is an ARM branch relocation, need to use a stub function.
1221 LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
1222 SectionEntry &Section = Sections[SectionID];
1224 // Look for an existing stub.
1225 StubMap::const_iterator i = Stubs.find(Value);
1226 if (i != Stubs.end()) {
1227 resolveRelocation(
1228 Section, Offset,
1229 reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)),
1230 RelType, 0);
1231 LLVM_DEBUG(dbgs() << " Stub function found\n");
1232 } else {
1233 // Create a new stub function.
1234 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1235 Stubs[Value] = Section.getStubOffset();
1236 uint8_t *StubTargetAddr = createStubFunction(
1237 Section.getAddressWithOffset(Section.getStubOffset()));
1238 RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1239 ELF::R_ARM_ABS32, Value.Addend);
1240 if (Value.SymbolName)
1241 addRelocationForSymbol(RE, Value.SymbolName);
1242 else
1243 addRelocationForSection(RE, Value.SectionID);
1245 resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1246 Section.getAddressWithOffset(
1247 Section.getStubOffset())),
1248 RelType, 0);
1249 Section.advanceStubOffset(getMaxStubSize());
1251 } else {
1252 uint32_t *Placeholder =
1253 reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
1254 if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
1255 RelType == ELF::R_ARM_ABS32) {
1256 Value.Addend += *Placeholder;
1257 } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
1258 // See ELF for ARM documentation
1259 Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
1261 processSimpleRelocation(SectionID, Offset, RelType, Value);
1263 } else if (IsMipsO32ABI) {
1264 uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
1265 computePlaceholderAddress(SectionID, Offset));
1266 uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
1267 if (RelType == ELF::R_MIPS_26) {
1268 // This is an Mips branch relocation, need to use a stub function.
1269 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1270 SectionEntry &Section = Sections[SectionID];
1272 // Extract the addend from the instruction.
1273 // We shift up by two since the Value will be down shifted again
1274 // when applying the relocation.
1275 uint32_t Addend = (Opcode & 0x03ffffff) << 2;
1277 Value.Addend += Addend;
1279 // Look up for existing stub.
1280 StubMap::const_iterator i = Stubs.find(Value);
1281 if (i != Stubs.end()) {
1282 RelocationEntry RE(SectionID, Offset, RelType, i->second);
1283 addRelocationForSection(RE, SectionID);
1284 LLVM_DEBUG(dbgs() << " Stub function found\n");
1285 } else {
1286 // Create a new stub function.
1287 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1288 Stubs[Value] = Section.getStubOffset();
1290 unsigned AbiVariant = Obj.getPlatformFlags();
1292 uint8_t *StubTargetAddr = createStubFunction(
1293 Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1295 // Creating Hi and Lo relocations for the filled stub instructions.
1296 RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1297 ELF::R_MIPS_HI16, Value.Addend);
1298 RelocationEntry RELo(SectionID,
1299 StubTargetAddr - Section.getAddress() + 4,
1300 ELF::R_MIPS_LO16, Value.Addend);
1302 if (Value.SymbolName) {
1303 addRelocationForSymbol(REHi, Value.SymbolName);
1304 addRelocationForSymbol(RELo, Value.SymbolName);
1305 } else {
1306 addRelocationForSection(REHi, Value.SectionID);
1307 addRelocationForSection(RELo, Value.SectionID);
1310 RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1311 addRelocationForSection(RE, SectionID);
1312 Section.advanceStubOffset(getMaxStubSize());
1314 } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) {
1315 int64_t Addend = (Opcode & 0x0000ffff) << 16;
1316 RelocationEntry RE(SectionID, Offset, RelType, Addend);
1317 PendingRelocs.push_back(std::make_pair(Value, RE));
1318 } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) {
1319 int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff);
1320 for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) {
1321 const RelocationValueRef &MatchingValue = I->first;
1322 RelocationEntry &Reloc = I->second;
1323 if (MatchingValue == Value &&
1324 RelType == getMatchingLoRelocation(Reloc.RelType) &&
1325 SectionID == Reloc.SectionID) {
1326 Reloc.Addend += Addend;
1327 if (Value.SymbolName)
1328 addRelocationForSymbol(Reloc, Value.SymbolName);
1329 else
1330 addRelocationForSection(Reloc, Value.SectionID);
1331 I = PendingRelocs.erase(I);
1332 } else
1333 ++I;
1335 RelocationEntry RE(SectionID, Offset, RelType, Addend);
1336 if (Value.SymbolName)
1337 addRelocationForSymbol(RE, Value.SymbolName);
1338 else
1339 addRelocationForSection(RE, Value.SectionID);
1340 } else {
1341 if (RelType == ELF::R_MIPS_32)
1342 Value.Addend += Opcode;
1343 else if (RelType == ELF::R_MIPS_PC16)
1344 Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2);
1345 else if (RelType == ELF::R_MIPS_PC19_S2)
1346 Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2);
1347 else if (RelType == ELF::R_MIPS_PC21_S2)
1348 Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2);
1349 else if (RelType == ELF::R_MIPS_PC26_S2)
1350 Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2);
1351 processSimpleRelocation(SectionID, Offset, RelType, Value);
1353 } else if (IsMipsN32ABI || IsMipsN64ABI) {
1354 uint32_t r_type = RelType & 0xff;
1355 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1356 if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
1357 || r_type == ELF::R_MIPS_GOT_DISP) {
1358 StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName);
1359 if (i != GOTSymbolOffsets.end())
1360 RE.SymOffset = i->second;
1361 else {
1362 RE.SymOffset = allocateGOTEntries(1);
1363 GOTSymbolOffsets[TargetName] = RE.SymOffset;
1365 if (Value.SymbolName)
1366 addRelocationForSymbol(RE, Value.SymbolName);
1367 else
1368 addRelocationForSection(RE, Value.SectionID);
1369 } else if (RelType == ELF::R_MIPS_26) {
1370 // This is an Mips branch relocation, need to use a stub function.
1371 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1372 SectionEntry &Section = Sections[SectionID];
1374 // Look up for existing stub.
1375 StubMap::const_iterator i = Stubs.find(Value);
1376 if (i != Stubs.end()) {
1377 RelocationEntry RE(SectionID, Offset, RelType, i->second);
1378 addRelocationForSection(RE, SectionID);
1379 LLVM_DEBUG(dbgs() << " Stub function found\n");
1380 } else {
1381 // Create a new stub function.
1382 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1383 Stubs[Value] = Section.getStubOffset();
1385 unsigned AbiVariant = Obj.getPlatformFlags();
1387 uint8_t *StubTargetAddr = createStubFunction(
1388 Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1390 if (IsMipsN32ABI) {
1391 // Creating Hi and Lo relocations for the filled stub instructions.
1392 RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1393 ELF::R_MIPS_HI16, Value.Addend);
1394 RelocationEntry RELo(SectionID,
1395 StubTargetAddr - Section.getAddress() + 4,
1396 ELF::R_MIPS_LO16, Value.Addend);
1397 if (Value.SymbolName) {
1398 addRelocationForSymbol(REHi, Value.SymbolName);
1399 addRelocationForSymbol(RELo, Value.SymbolName);
1400 } else {
1401 addRelocationForSection(REHi, Value.SectionID);
1402 addRelocationForSection(RELo, Value.SectionID);
1404 } else {
1405 // Creating Highest, Higher, Hi and Lo relocations for the filled stub
1406 // instructions.
1407 RelocationEntry REHighest(SectionID,
1408 StubTargetAddr - Section.getAddress(),
1409 ELF::R_MIPS_HIGHEST, Value.Addend);
1410 RelocationEntry REHigher(SectionID,
1411 StubTargetAddr - Section.getAddress() + 4,
1412 ELF::R_MIPS_HIGHER, Value.Addend);
1413 RelocationEntry REHi(SectionID,
1414 StubTargetAddr - Section.getAddress() + 12,
1415 ELF::R_MIPS_HI16, Value.Addend);
1416 RelocationEntry RELo(SectionID,
1417 StubTargetAddr - Section.getAddress() + 20,
1418 ELF::R_MIPS_LO16, Value.Addend);
1419 if (Value.SymbolName) {
1420 addRelocationForSymbol(REHighest, Value.SymbolName);
1421 addRelocationForSymbol(REHigher, Value.SymbolName);
1422 addRelocationForSymbol(REHi, Value.SymbolName);
1423 addRelocationForSymbol(RELo, Value.SymbolName);
1424 } else {
1425 addRelocationForSection(REHighest, Value.SectionID);
1426 addRelocationForSection(REHigher, Value.SectionID);
1427 addRelocationForSection(REHi, Value.SectionID);
1428 addRelocationForSection(RELo, Value.SectionID);
1431 RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1432 addRelocationForSection(RE, SectionID);
1433 Section.advanceStubOffset(getMaxStubSize());
1435 } else {
1436 processSimpleRelocation(SectionID, Offset, RelType, Value);
1439 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1440 if (RelType == ELF::R_PPC64_REL24) {
1441 // Determine ABI variant in use for this object.
1442 unsigned AbiVariant = Obj.getPlatformFlags();
1443 AbiVariant &= ELF::EF_PPC64_ABI;
1444 // A PPC branch relocation will need a stub function if the target is
1445 // an external symbol (either Value.SymbolName is set, or SymType is
1446 // Symbol::ST_Unknown) or if the target address is not within the
1447 // signed 24-bits branch address.
1448 SectionEntry &Section = Sections[SectionID];
1449 uint8_t *Target = Section.getAddressWithOffset(Offset);
1450 bool RangeOverflow = false;
1451 bool IsExtern = Value.SymbolName || SymType == SymbolRef::ST_Unknown;
1452 if (!IsExtern) {
1453 if (AbiVariant != 2) {
1454 // In the ELFv1 ABI, a function call may point to the .opd entry,
1455 // so the final symbol value is calculated based on the relocation
1456 // values in the .opd section.
1457 if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value))
1458 return std::move(Err);
1459 } else {
1460 // In the ELFv2 ABI, a function symbol may provide a local entry
1461 // point, which must be used for direct calls.
1462 if (Value.SectionID == SectionID){
1463 uint8_t SymOther = Symbol->getOther();
1464 Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
1467 uint8_t *RelocTarget =
1468 Sections[Value.SectionID].getAddressWithOffset(Value.Addend);
1469 int64_t delta = static_cast<int64_t>(Target - RelocTarget);
1470 // If it is within 26-bits branch range, just set the branch target
1471 if (SignExtend64<26>(delta) != delta) {
1472 RangeOverflow = true;
1473 } else if ((AbiVariant != 2) ||
1474 (AbiVariant == 2 && Value.SectionID == SectionID)) {
1475 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1476 addRelocationForSection(RE, Value.SectionID);
1479 if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID) ||
1480 RangeOverflow) {
1481 // It is an external symbol (either Value.SymbolName is set, or
1482 // SymType is SymbolRef::ST_Unknown) or out of range.
1483 StubMap::const_iterator i = Stubs.find(Value);
1484 if (i != Stubs.end()) {
1485 // Symbol function stub already created, just relocate to it
1486 resolveRelocation(Section, Offset,
1487 reinterpret_cast<uint64_t>(
1488 Section.getAddressWithOffset(i->second)),
1489 RelType, 0);
1490 LLVM_DEBUG(dbgs() << " Stub function found\n");
1491 } else {
1492 // Create a new stub function.
1493 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1494 Stubs[Value] = Section.getStubOffset();
1495 uint8_t *StubTargetAddr = createStubFunction(
1496 Section.getAddressWithOffset(Section.getStubOffset()),
1497 AbiVariant);
1498 RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1499 ELF::R_PPC64_ADDR64, Value.Addend);
1501 // Generates the 64-bits address loads as exemplified in section
1502 // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to
1503 // apply to the low part of the instructions, so we have to update
1504 // the offset according to the target endianness.
1505 uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress();
1506 if (!IsTargetLittleEndian)
1507 StubRelocOffset += 2;
1509 RelocationEntry REhst(SectionID, StubRelocOffset + 0,
1510 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
1511 RelocationEntry REhr(SectionID, StubRelocOffset + 4,
1512 ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
1513 RelocationEntry REh(SectionID, StubRelocOffset + 12,
1514 ELF::R_PPC64_ADDR16_HI, Value.Addend);
1515 RelocationEntry REl(SectionID, StubRelocOffset + 16,
1516 ELF::R_PPC64_ADDR16_LO, Value.Addend);
1518 if (Value.SymbolName) {
1519 addRelocationForSymbol(REhst, Value.SymbolName);
1520 addRelocationForSymbol(REhr, Value.SymbolName);
1521 addRelocationForSymbol(REh, Value.SymbolName);
1522 addRelocationForSymbol(REl, Value.SymbolName);
1523 } else {
1524 addRelocationForSection(REhst, Value.SectionID);
1525 addRelocationForSection(REhr, Value.SectionID);
1526 addRelocationForSection(REh, Value.SectionID);
1527 addRelocationForSection(REl, Value.SectionID);
1530 resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1531 Section.getAddressWithOffset(
1532 Section.getStubOffset())),
1533 RelType, 0);
1534 Section.advanceStubOffset(getMaxStubSize());
1536 if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID)) {
1537 // Restore the TOC for external calls
1538 if (AbiVariant == 2)
1539 writeInt32BE(Target + 4, 0xE8410018); // ld r2,24(r1)
1540 else
1541 writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
1544 } else if (RelType == ELF::R_PPC64_TOC16 ||
1545 RelType == ELF::R_PPC64_TOC16_DS ||
1546 RelType == ELF::R_PPC64_TOC16_LO ||
1547 RelType == ELF::R_PPC64_TOC16_LO_DS ||
1548 RelType == ELF::R_PPC64_TOC16_HI ||
1549 RelType == ELF::R_PPC64_TOC16_HA) {
1550 // These relocations are supposed to subtract the TOC address from
1551 // the final value. This does not fit cleanly into the RuntimeDyld
1552 // scheme, since there may be *two* sections involved in determining
1553 // the relocation value (the section of the symbol referred to by the
1554 // relocation, and the TOC section associated with the current module).
1556 // Fortunately, these relocations are currently only ever generated
1557 // referring to symbols that themselves reside in the TOC, which means
1558 // that the two sections are actually the same. Thus they cancel out
1559 // and we can immediately resolve the relocation right now.
1560 switch (RelType) {
1561 case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
1562 case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
1563 case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
1564 case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
1565 case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
1566 case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
1567 default: llvm_unreachable("Wrong relocation type.");
1570 RelocationValueRef TOCValue;
1571 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue))
1572 return std::move(Err);
1573 if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
1574 llvm_unreachable("Unsupported TOC relocation.");
1575 Value.Addend -= TOCValue.Addend;
1576 resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
1577 } else {
1578 // There are two ways to refer to the TOC address directly: either
1579 // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
1580 // ignored), or via any relocation that refers to the magic ".TOC."
1581 // symbols (in which case the addend is respected).
1582 if (RelType == ELF::R_PPC64_TOC) {
1583 RelType = ELF::R_PPC64_ADDR64;
1584 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1585 return std::move(Err);
1586 } else if (TargetName == ".TOC.") {
1587 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1588 return std::move(Err);
1589 Value.Addend += Addend;
1592 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1594 if (Value.SymbolName)
1595 addRelocationForSymbol(RE, Value.SymbolName);
1596 else
1597 addRelocationForSection(RE, Value.SectionID);
1599 } else if (Arch == Triple::systemz &&
1600 (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
1601 // Create function stubs for both PLT and GOT references, regardless of
1602 // whether the GOT reference is to data or code. The stub contains the
1603 // full address of the symbol, as needed by GOT references, and the
1604 // executable part only adds an overhead of 8 bytes.
1606 // We could try to conserve space by allocating the code and data
1607 // parts of the stub separately. However, as things stand, we allocate
1608 // a stub for every relocation, so using a GOT in JIT code should be
1609 // no less space efficient than using an explicit constant pool.
1610 LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
1611 SectionEntry &Section = Sections[SectionID];
1613 // Look for an existing stub.
1614 StubMap::const_iterator i = Stubs.find(Value);
1615 uintptr_t StubAddress;
1616 if (i != Stubs.end()) {
1617 StubAddress = uintptr_t(Section.getAddressWithOffset(i->second));
1618 LLVM_DEBUG(dbgs() << " Stub function found\n");
1619 } else {
1620 // Create a new stub function.
1621 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1623 uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1624 uintptr_t StubAlignment = getStubAlignment();
1625 StubAddress =
1626 (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
1627 -StubAlignment;
1628 unsigned StubOffset = StubAddress - BaseAddress;
1630 Stubs[Value] = StubOffset;
1631 createStubFunction((uint8_t *)StubAddress);
1632 RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
1633 Value.Offset);
1634 if (Value.SymbolName)
1635 addRelocationForSymbol(RE, Value.SymbolName);
1636 else
1637 addRelocationForSection(RE, Value.SectionID);
1638 Section.advanceStubOffset(getMaxStubSize());
1641 if (RelType == ELF::R_390_GOTENT)
1642 resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
1643 Addend);
1644 else
1645 resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
1646 } else if (Arch == Triple::x86_64) {
1647 if (RelType == ELF::R_X86_64_PLT32) {
1648 // The way the PLT relocations normally work is that the linker allocates
1649 // the
1650 // PLT and this relocation makes a PC-relative call into the PLT. The PLT
1651 // entry will then jump to an address provided by the GOT. On first call,
1652 // the
1653 // GOT address will point back into PLT code that resolves the symbol. After
1654 // the first call, the GOT entry points to the actual function.
1656 // For local functions we're ignoring all of that here and just replacing
1657 // the PLT32 relocation type with PC32, which will translate the relocation
1658 // into a PC-relative call directly to the function. For external symbols we
1659 // can't be sure the function will be within 2^32 bytes of the call site, so
1660 // we need to create a stub, which calls into the GOT. This case is
1661 // equivalent to the usual PLT implementation except that we use the stub
1662 // mechanism in RuntimeDyld (which puts stubs at the end of the section)
1663 // rather than allocating a PLT section.
1664 if (Value.SymbolName) {
1665 // This is a call to an external function.
1666 // Look for an existing stub.
1667 SectionEntry &Section = Sections[SectionID];
1668 StubMap::const_iterator i = Stubs.find(Value);
1669 uintptr_t StubAddress;
1670 if (i != Stubs.end()) {
1671 StubAddress = uintptr_t(Section.getAddress()) + i->second;
1672 LLVM_DEBUG(dbgs() << " Stub function found\n");
1673 } else {
1674 // Create a new stub function (equivalent to a PLT entry).
1675 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1677 uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1678 uintptr_t StubAlignment = getStubAlignment();
1679 StubAddress =
1680 (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
1681 -StubAlignment;
1682 unsigned StubOffset = StubAddress - BaseAddress;
1683 Stubs[Value] = StubOffset;
1684 createStubFunction((uint8_t *)StubAddress);
1686 // Bump our stub offset counter
1687 Section.advanceStubOffset(getMaxStubSize());
1689 // Allocate a GOT Entry
1690 uint64_t GOTOffset = allocateGOTEntries(1);
1692 // The load of the GOT address has an addend of -4
1693 resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4,
1694 ELF::R_X86_64_PC32);
1696 // Fill in the value of the symbol we're targeting into the GOT
1697 addRelocationForSymbol(
1698 computeGOTOffsetRE(GOTOffset, 0, ELF::R_X86_64_64),
1699 Value.SymbolName);
1702 // Make the target call a call into the stub table.
1703 resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32,
1704 Addend);
1705 } else {
1706 RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend,
1707 Value.Offset);
1708 addRelocationForSection(RE, Value.SectionID);
1710 } else if (RelType == ELF::R_X86_64_GOTPCREL ||
1711 RelType == ELF::R_X86_64_GOTPCRELX ||
1712 RelType == ELF::R_X86_64_REX_GOTPCRELX) {
1713 uint64_t GOTOffset = allocateGOTEntries(1);
1714 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1715 ELF::R_X86_64_PC32);
1717 // Fill in the value of the symbol we're targeting into the GOT
1718 RelocationEntry RE =
1719 computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1720 if (Value.SymbolName)
1721 addRelocationForSymbol(RE, Value.SymbolName);
1722 else
1723 addRelocationForSection(RE, Value.SectionID);
1724 } else if (RelType == ELF::R_X86_64_GOT64) {
1725 // Fill in a 64-bit GOT offset.
1726 uint64_t GOTOffset = allocateGOTEntries(1);
1727 resolveRelocation(Sections[SectionID], Offset, GOTOffset,
1728 ELF::R_X86_64_64, 0);
1730 // Fill in the value of the symbol we're targeting into the GOT
1731 RelocationEntry RE =
1732 computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1733 if (Value.SymbolName)
1734 addRelocationForSymbol(RE, Value.SymbolName);
1735 else
1736 addRelocationForSection(RE, Value.SectionID);
1737 } else if (RelType == ELF::R_X86_64_GOTPC64) {
1738 // Materialize the address of the base of the GOT relative to the PC.
1739 // This doesn't create a GOT entry, but it does mean we need a GOT
1740 // section.
1741 (void)allocateGOTEntries(0);
1742 resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC64);
1743 } else if (RelType == ELF::R_X86_64_GOTOFF64) {
1744 // GOTOFF relocations ultimately require a section difference relocation.
1745 (void)allocateGOTEntries(0);
1746 processSimpleRelocation(SectionID, Offset, RelType, Value);
1747 } else if (RelType == ELF::R_X86_64_PC32) {
1748 Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1749 processSimpleRelocation(SectionID, Offset, RelType, Value);
1750 } else if (RelType == ELF::R_X86_64_PC64) {
1751 Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset));
1752 processSimpleRelocation(SectionID, Offset, RelType, Value);
1753 } else {
1754 processSimpleRelocation(SectionID, Offset, RelType, Value);
1756 } else {
1757 if (Arch == Triple::x86) {
1758 Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1760 processSimpleRelocation(SectionID, Offset, RelType, Value);
1762 return ++RelI;
1765 size_t RuntimeDyldELF::getGOTEntrySize() {
1766 // We don't use the GOT in all of these cases, but it's essentially free
1767 // to put them all here.
1768 size_t Result = 0;
1769 switch (Arch) {
1770 case Triple::x86_64:
1771 case Triple::aarch64:
1772 case Triple::aarch64_be:
1773 case Triple::ppc64:
1774 case Triple::ppc64le:
1775 case Triple::systemz:
1776 Result = sizeof(uint64_t);
1777 break;
1778 case Triple::x86:
1779 case Triple::arm:
1780 case Triple::thumb:
1781 Result = sizeof(uint32_t);
1782 break;
1783 case Triple::mips:
1784 case Triple::mipsel:
1785 case Triple::mips64:
1786 case Triple::mips64el:
1787 if (IsMipsO32ABI || IsMipsN32ABI)
1788 Result = sizeof(uint32_t);
1789 else if (IsMipsN64ABI)
1790 Result = sizeof(uint64_t);
1791 else
1792 llvm_unreachable("Mips ABI not handled");
1793 break;
1794 default:
1795 llvm_unreachable("Unsupported CPU type!");
1797 return Result;
1800 uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no) {
1801 if (GOTSectionID == 0) {
1802 GOTSectionID = Sections.size();
1803 // Reserve a section id. We'll allocate the section later
1804 // once we know the total size
1805 Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
1807 uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
1808 CurrentGOTIndex += no;
1809 return StartOffset;
1812 uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef &Value,
1813 unsigned GOTRelType) {
1814 auto E = GOTOffsetMap.insert({Value, 0});
1815 if (E.second) {
1816 uint64_t GOTOffset = allocateGOTEntries(1);
1818 // Create relocation for newly created GOT entry
1819 RelocationEntry RE =
1820 computeGOTOffsetRE(GOTOffset, Value.Offset, GOTRelType);
1821 if (Value.SymbolName)
1822 addRelocationForSymbol(RE, Value.SymbolName);
1823 else
1824 addRelocationForSection(RE, Value.SectionID);
1826 E.first->second = GOTOffset;
1829 return E.first->second;
1832 void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID,
1833 uint64_t Offset,
1834 uint64_t GOTOffset,
1835 uint32_t Type) {
1836 // Fill in the relative address of the GOT Entry into the stub
1837 RelocationEntry GOTRE(SectionID, Offset, Type, GOTOffset);
1838 addRelocationForSection(GOTRE, GOTSectionID);
1841 RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset,
1842 uint64_t SymbolOffset,
1843 uint32_t Type) {
1844 return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
1847 Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
1848 ObjSectionToIDMap &SectionMap) {
1849 if (IsMipsO32ABI)
1850 if (!PendingRelocs.empty())
1851 return make_error<RuntimeDyldError>("Can't find matching LO16 reloc");
1853 // If necessary, allocate the global offset table
1854 if (GOTSectionID != 0) {
1855 // Allocate memory for the section
1856 size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
1857 uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
1858 GOTSectionID, ".got", false);
1859 if (!Addr)
1860 return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!");
1862 Sections[GOTSectionID] =
1863 SectionEntry(".got", Addr, TotalSize, TotalSize, 0);
1865 // For now, initialize all GOT entries to zero. We'll fill them in as
1866 // needed when GOT-based relocations are applied.
1867 memset(Addr, 0, TotalSize);
1868 if (IsMipsN32ABI || IsMipsN64ABI) {
1869 // To correctly resolve Mips GOT relocations, we need a mapping from
1870 // object's sections to GOTs.
1871 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
1872 SI != SE; ++SI) {
1873 if (SI->relocation_begin() != SI->relocation_end()) {
1874 section_iterator RelocatedSection = SI->getRelocatedSection();
1875 ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
1876 assert (i != SectionMap.end());
1877 SectionToGOTMap[i->second] = GOTSectionID;
1880 GOTSymbolOffsets.clear();
1884 // Look for and record the EH frame section.
1885 ObjSectionToIDMap::iterator i, e;
1886 for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
1887 const SectionRef &Section = i->first;
1889 StringRef Name;
1890 Expected<StringRef> NameOrErr = Section.getName();
1891 if (NameOrErr)
1892 Name = *NameOrErr;
1893 else
1894 consumeError(NameOrErr.takeError());
1896 if (Name == ".eh_frame") {
1897 UnregisteredEHFrameSections.push_back(i->second);
1898 break;
1902 GOTSectionID = 0;
1903 CurrentGOTIndex = 0;
1905 return Error::success();
1908 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
1909 return Obj.isELF();
1912 bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef &R) const {
1913 unsigned RelTy = R.getType();
1914 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be)
1915 return RelTy == ELF::R_AARCH64_ADR_GOT_PAGE ||
1916 RelTy == ELF::R_AARCH64_LD64_GOT_LO12_NC;
1918 if (Arch == Triple::x86_64)
1919 return RelTy == ELF::R_X86_64_GOTPCREL ||
1920 RelTy == ELF::R_X86_64_GOTPCRELX ||
1921 RelTy == ELF::R_X86_64_GOT64 ||
1922 RelTy == ELF::R_X86_64_REX_GOTPCRELX;
1923 return false;
1926 bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const {
1927 if (Arch != Triple::x86_64)
1928 return true; // Conservative answer
1930 switch (R.getType()) {
1931 default:
1932 return true; // Conservative answer
1935 case ELF::R_X86_64_GOTPCREL:
1936 case ELF::R_X86_64_GOTPCRELX:
1937 case ELF::R_X86_64_REX_GOTPCRELX:
1938 case ELF::R_X86_64_GOTPC64:
1939 case ELF::R_X86_64_GOT64:
1940 case ELF::R_X86_64_GOTOFF64:
1941 case ELF::R_X86_64_PC32:
1942 case ELF::R_X86_64_PC64:
1943 case ELF::R_X86_64_64:
1944 // We know that these reloation types won't need a stub function. This list
1945 // can be extended as needed.
1946 return false;
1950 } // namespace llvm