1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
11 //===----------------------------------------------------------------------===//
13 #include "RuntimeDyldELF.h"
14 #include "RuntimeDyldCheckerImpl.h"
15 #include "Targets/RuntimeDyldELFMips.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/BinaryFormat/ELF.h"
20 #include "llvm/Object/ELFObjectFile.h"
21 #include "llvm/Object/ObjectFile.h"
22 #include "llvm/Support/Endian.h"
23 #include "llvm/Support/MemoryBuffer.h"
26 using namespace llvm::object
;
27 using namespace llvm::support::endian
;
29 #define DEBUG_TYPE "dyld"
31 static void or32le(void *P
, int32_t V
) { write32le(P
, read32le(P
) | V
); }
33 static void or32AArch64Imm(void *L
, uint64_t Imm
) {
34 or32le(L
, (Imm
& 0xFFF) << 10);
37 template <class T
> static void write(bool isBE
, void *P
, T V
) {
38 isBE
? write
<T
, support::big
>(P
, V
) : write
<T
, support::little
>(P
, V
);
41 static void write32AArch64Addr(void *L
, uint64_t Imm
) {
42 uint32_t ImmLo
= (Imm
& 0x3) << 29;
43 uint32_t ImmHi
= (Imm
& 0x1FFFFC) << 3;
44 uint64_t Mask
= (0x3 << 29) | (0x1FFFFC << 3);
45 write32le(L
, (read32le(L
) & ~Mask
) | ImmLo
| ImmHi
);
48 // Return the bits [Start, End] from Val shifted Start bits.
49 // For instance, getBits(0xF0, 4, 8) returns 0xF.
50 static uint64_t getBits(uint64_t Val
, int Start
, int End
) {
51 uint64_t Mask
= ((uint64_t)1 << (End
+ 1 - Start
)) - 1;
52 return (Val
>> Start
) & Mask
;
57 template <class ELFT
> class DyldELFObject
: public ELFObjectFile
<ELFT
> {
58 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT
)
60 typedef Elf_Shdr_Impl
<ELFT
> Elf_Shdr
;
61 typedef Elf_Sym_Impl
<ELFT
> Elf_Sym
;
62 typedef Elf_Rel_Impl
<ELFT
, false> Elf_Rel
;
63 typedef Elf_Rel_Impl
<ELFT
, true> Elf_Rela
;
65 typedef Elf_Ehdr_Impl
<ELFT
> Elf_Ehdr
;
67 typedef typename
ELFT::uint addr_type
;
69 DyldELFObject(ELFObjectFile
<ELFT
> &&Obj
);
72 static Expected
<std::unique_ptr
<DyldELFObject
>>
73 create(MemoryBufferRef Wrapper
);
75 void updateSectionAddress(const SectionRef
&Sec
, uint64_t Addr
);
77 void updateSymbolAddress(const SymbolRef
&SymRef
, uint64_t Addr
);
79 // Methods for type inquiry through isa, cast and dyn_cast
80 static bool classof(const Binary
*v
) {
81 return (isa
<ELFObjectFile
<ELFT
>>(v
) &&
82 classof(cast
<ELFObjectFile
<ELFT
>>(v
)));
84 static bool classof(const ELFObjectFile
<ELFT
> *v
) {
85 return v
->isDyldType();
91 // The MemoryBuffer passed into this constructor is just a wrapper around the
92 // actual memory. Ultimately, the Binary parent class will take ownership of
93 // this MemoryBuffer object but not the underlying memory.
95 DyldELFObject
<ELFT
>::DyldELFObject(ELFObjectFile
<ELFT
> &&Obj
)
96 : ELFObjectFile
<ELFT
>(std::move(Obj
)) {
97 this->isDyldELFObject
= true;
100 template <class ELFT
>
101 Expected
<std::unique_ptr
<DyldELFObject
<ELFT
>>>
102 DyldELFObject
<ELFT
>::create(MemoryBufferRef Wrapper
) {
103 auto Obj
= ELFObjectFile
<ELFT
>::create(Wrapper
);
104 if (auto E
= Obj
.takeError())
106 std::unique_ptr
<DyldELFObject
<ELFT
>> Ret(
107 new DyldELFObject
<ELFT
>(std::move(*Obj
)));
108 return std::move(Ret
);
111 template <class ELFT
>
112 void DyldELFObject
<ELFT
>::updateSectionAddress(const SectionRef
&Sec
,
114 DataRefImpl ShdrRef
= Sec
.getRawDataRefImpl();
116 const_cast<Elf_Shdr
*>(reinterpret_cast<const Elf_Shdr
*>(ShdrRef
.p
));
118 // This assumes the address passed in matches the target address bitness
119 // The template-based type cast handles everything else.
120 shdr
->sh_addr
= static_cast<addr_type
>(Addr
);
123 template <class ELFT
>
124 void DyldELFObject
<ELFT
>::updateSymbolAddress(const SymbolRef
&SymRef
,
127 Elf_Sym
*sym
= const_cast<Elf_Sym
*>(
128 ELFObjectFile
<ELFT
>::getSymbol(SymRef
.getRawDataRefImpl()));
130 // This assumes the address passed in matches the target address bitness
131 // The template-based type cast handles everything else.
132 sym
->st_value
= static_cast<addr_type
>(Addr
);
135 class LoadedELFObjectInfo final
136 : public LoadedObjectInfoHelper
<LoadedELFObjectInfo
,
137 RuntimeDyld::LoadedObjectInfo
> {
139 LoadedELFObjectInfo(RuntimeDyldImpl
&RTDyld
, ObjSectionToIDMap ObjSecToIDMap
)
140 : LoadedObjectInfoHelper(RTDyld
, std::move(ObjSecToIDMap
)) {}
142 OwningBinary
<ObjectFile
>
143 getObjectForDebug(const ObjectFile
&Obj
) const override
;
146 template <typename ELFT
>
147 static Expected
<std::unique_ptr
<DyldELFObject
<ELFT
>>>
148 createRTDyldELFObject(MemoryBufferRef Buffer
, const ObjectFile
&SourceObject
,
149 const LoadedELFObjectInfo
&L
) {
150 typedef typename
ELFT::Shdr Elf_Shdr
;
151 typedef typename
ELFT::uint addr_type
;
153 Expected
<std::unique_ptr
<DyldELFObject
<ELFT
>>> ObjOrErr
=
154 DyldELFObject
<ELFT
>::create(Buffer
);
155 if (Error E
= ObjOrErr
.takeError())
158 std::unique_ptr
<DyldELFObject
<ELFT
>> Obj
= std::move(*ObjOrErr
);
160 // Iterate over all sections in the object.
161 auto SI
= SourceObject
.section_begin();
162 for (const auto &Sec
: Obj
->sections()) {
163 Expected
<StringRef
> NameOrErr
= Sec
.getName();
165 consumeError(NameOrErr
.takeError());
169 if (*NameOrErr
!= "") {
170 DataRefImpl ShdrRef
= Sec
.getRawDataRefImpl();
171 Elf_Shdr
*shdr
= const_cast<Elf_Shdr
*>(
172 reinterpret_cast<const Elf_Shdr
*>(ShdrRef
.p
));
174 if (uint64_t SecLoadAddr
= L
.getSectionLoadAddress(*SI
)) {
175 // This assumes that the address passed in matches the target address
176 // bitness. The template-based type cast handles everything else.
177 shdr
->sh_addr
= static_cast<addr_type
>(SecLoadAddr
);
183 return std::move(Obj
);
186 static OwningBinary
<ObjectFile
>
187 createELFDebugObject(const ObjectFile
&Obj
, const LoadedELFObjectInfo
&L
) {
188 assert(Obj
.isELF() && "Not an ELF object file.");
190 std::unique_ptr
<MemoryBuffer
> Buffer
=
191 MemoryBuffer::getMemBufferCopy(Obj
.getData(), Obj
.getFileName());
193 Expected
<std::unique_ptr
<ObjectFile
>> DebugObj(nullptr);
194 handleAllErrors(DebugObj
.takeError());
195 if (Obj
.getBytesInAddress() == 4 && Obj
.isLittleEndian())
197 createRTDyldELFObject
<ELF32LE
>(Buffer
->getMemBufferRef(), Obj
, L
);
198 else if (Obj
.getBytesInAddress() == 4 && !Obj
.isLittleEndian())
200 createRTDyldELFObject
<ELF32BE
>(Buffer
->getMemBufferRef(), Obj
, L
);
201 else if (Obj
.getBytesInAddress() == 8 && !Obj
.isLittleEndian())
203 createRTDyldELFObject
<ELF64BE
>(Buffer
->getMemBufferRef(), Obj
, L
);
204 else if (Obj
.getBytesInAddress() == 8 && Obj
.isLittleEndian())
206 createRTDyldELFObject
<ELF64LE
>(Buffer
->getMemBufferRef(), Obj
, L
);
208 llvm_unreachable("Unexpected ELF format");
210 handleAllErrors(DebugObj
.takeError());
211 return OwningBinary
<ObjectFile
>(std::move(*DebugObj
), std::move(Buffer
));
214 OwningBinary
<ObjectFile
>
215 LoadedELFObjectInfo::getObjectForDebug(const ObjectFile
&Obj
) const {
216 return createELFDebugObject(Obj
, *this);
219 } // anonymous namespace
223 RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager
&MemMgr
,
224 JITSymbolResolver
&Resolver
)
225 : RuntimeDyldImpl(MemMgr
, Resolver
), GOTSectionID(0), CurrentGOTIndex(0) {}
226 RuntimeDyldELF::~RuntimeDyldELF() {}
228 void RuntimeDyldELF::registerEHFrames() {
229 for (int i
= 0, e
= UnregisteredEHFrameSections
.size(); i
!= e
; ++i
) {
230 SID EHFrameSID
= UnregisteredEHFrameSections
[i
];
231 uint8_t *EHFrameAddr
= Sections
[EHFrameSID
].getAddress();
232 uint64_t EHFrameLoadAddr
= Sections
[EHFrameSID
].getLoadAddress();
233 size_t EHFrameSize
= Sections
[EHFrameSID
].getSize();
234 MemMgr
.registerEHFrames(EHFrameAddr
, EHFrameLoadAddr
, EHFrameSize
);
236 UnregisteredEHFrameSections
.clear();
239 std::unique_ptr
<RuntimeDyldELF
>
240 llvm::RuntimeDyldELF::create(Triple::ArchType Arch
,
241 RuntimeDyld::MemoryManager
&MemMgr
,
242 JITSymbolResolver
&Resolver
) {
245 return std::make_unique
<RuntimeDyldELF
>(MemMgr
, Resolver
);
249 case Triple::mips64el
:
250 return std::make_unique
<RuntimeDyldELFMips
>(MemMgr
, Resolver
);
254 std::unique_ptr
<RuntimeDyld::LoadedObjectInfo
>
255 RuntimeDyldELF::loadObject(const object::ObjectFile
&O
) {
256 if (auto ObjSectionToIDOrErr
= loadObjectImpl(O
))
257 return std::make_unique
<LoadedELFObjectInfo
>(*this, *ObjSectionToIDOrErr
);
260 raw_string_ostream
ErrStream(ErrorStr
);
261 logAllUnhandledErrors(ObjSectionToIDOrErr
.takeError(), ErrStream
);
266 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry
&Section
,
267 uint64_t Offset
, uint64_t Value
,
268 uint32_t Type
, int64_t Addend
,
269 uint64_t SymOffset
) {
272 llvm_unreachable("Relocation type not implemented yet!");
274 case ELF::R_X86_64_NONE
:
276 case ELF::R_X86_64_64
: {
277 support::ulittle64_t::ref(Section
.getAddressWithOffset(Offset
)) =
279 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value
+ Addend
)) << " at "
280 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
283 case ELF::R_X86_64_32
:
284 case ELF::R_X86_64_32S
: {
286 assert((Type
== ELF::R_X86_64_32
&& (Value
<= UINT32_MAX
)) ||
287 (Type
== ELF::R_X86_64_32S
&&
288 ((int64_t)Value
<= INT32_MAX
&& (int64_t)Value
>= INT32_MIN
)));
289 uint32_t TruncatedAddr
= (Value
& 0xFFFFFFFF);
290 support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
)) =
292 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr
) << " at "
293 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
296 case ELF::R_X86_64_PC8
: {
297 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
298 int64_t RealOffset
= Value
+ Addend
- FinalAddress
;
299 assert(isInt
<8>(RealOffset
));
300 int8_t TruncOffset
= (RealOffset
& 0xFF);
301 Section
.getAddress()[Offset
] = TruncOffset
;
304 case ELF::R_X86_64_PC32
: {
305 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
306 int64_t RealOffset
= Value
+ Addend
- FinalAddress
;
307 assert(isInt
<32>(RealOffset
));
308 int32_t TruncOffset
= (RealOffset
& 0xFFFFFFFF);
309 support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
)) =
313 case ELF::R_X86_64_PC64
: {
314 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
315 int64_t RealOffset
= Value
+ Addend
- FinalAddress
;
316 support::ulittle64_t::ref(Section
.getAddressWithOffset(Offset
)) =
318 LLVM_DEBUG(dbgs() << "Writing " << format("%p", RealOffset
) << " at "
319 << format("%p\n", FinalAddress
));
322 case ELF::R_X86_64_GOTOFF64
: {
323 // Compute Value - GOTBase.
324 uint64_t GOTBase
= 0;
325 for (const auto &Section
: Sections
) {
326 if (Section
.getName() == ".got") {
327 GOTBase
= Section
.getLoadAddressWithOffset(0);
331 assert(GOTBase
!= 0 && "missing GOT");
332 int64_t GOTOffset
= Value
- GOTBase
+ Addend
;
333 support::ulittle64_t::ref(Section
.getAddressWithOffset(Offset
)) = GOTOffset
;
339 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry
&Section
,
340 uint64_t Offset
, uint32_t Value
,
341 uint32_t Type
, int32_t Addend
) {
343 case ELF::R_386_32
: {
344 support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
)) =
348 // Handle R_386_PLT32 like R_386_PC32 since it should be able to
349 // reach any 32 bit address.
350 case ELF::R_386_PLT32
:
351 case ELF::R_386_PC32
: {
352 uint32_t FinalAddress
=
353 Section
.getLoadAddressWithOffset(Offset
) & 0xFFFFFFFF;
354 uint32_t RealOffset
= Value
+ Addend
- FinalAddress
;
355 support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
)) =
360 // There are other relocation types, but it appears these are the
361 // only ones currently used by the LLVM ELF object writer
362 llvm_unreachable("Relocation type not implemented yet!");
367 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry
&Section
,
368 uint64_t Offset
, uint64_t Value
,
369 uint32_t Type
, int64_t Addend
) {
370 uint32_t *TargetPtr
=
371 reinterpret_cast<uint32_t *>(Section
.getAddressWithOffset(Offset
));
372 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
373 // Data should use target endian. Code should always use little endian.
374 bool isBE
= Arch
== Triple::aarch64_be
;
376 LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
377 << format("%llx", Section
.getAddressWithOffset(Offset
))
378 << " FinalAddress: 0x" << format("%llx", FinalAddress
)
379 << " Value: 0x" << format("%llx", Value
) << " Type: 0x"
380 << format("%x", Type
) << " Addend: 0x"
381 << format("%llx", Addend
) << "\n");
385 llvm_unreachable("Relocation type not implemented yet!");
387 case ELF::R_AARCH64_ABS16
: {
388 uint64_t Result
= Value
+ Addend
;
389 assert(static_cast<int64_t>(Result
) >= INT16_MIN
&& Result
< UINT16_MAX
);
390 write(isBE
, TargetPtr
, static_cast<uint16_t>(Result
& 0xffffU
));
393 case ELF::R_AARCH64_ABS32
: {
394 uint64_t Result
= Value
+ Addend
;
395 assert(static_cast<int64_t>(Result
) >= INT32_MIN
&& Result
< UINT32_MAX
);
396 write(isBE
, TargetPtr
, static_cast<uint32_t>(Result
& 0xffffffffU
));
399 case ELF::R_AARCH64_ABS64
:
400 write(isBE
, TargetPtr
, Value
+ Addend
);
402 case ELF::R_AARCH64_PREL32
: {
403 uint64_t Result
= Value
+ Addend
- FinalAddress
;
404 assert(static_cast<int64_t>(Result
) >= INT32_MIN
&&
405 static_cast<int64_t>(Result
) <= UINT32_MAX
);
406 write(isBE
, TargetPtr
, static_cast<uint32_t>(Result
& 0xffffffffU
));
409 case ELF::R_AARCH64_PREL64
:
410 write(isBE
, TargetPtr
, Value
+ Addend
- FinalAddress
);
412 case ELF::R_AARCH64_CALL26
: // fallthrough
413 case ELF::R_AARCH64_JUMP26
: {
414 // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
416 uint64_t BranchImm
= Value
+ Addend
- FinalAddress
;
418 // "Check that -2^27 <= result < 2^27".
419 assert(isInt
<28>(BranchImm
));
420 or32le(TargetPtr
, (BranchImm
& 0x0FFFFFFC) >> 2);
423 case ELF::R_AARCH64_MOVW_UABS_G3
:
424 or32le(TargetPtr
, ((Value
+ Addend
) & 0xFFFF000000000000) >> 43);
426 case ELF::R_AARCH64_MOVW_UABS_G2_NC
:
427 or32le(TargetPtr
, ((Value
+ Addend
) & 0xFFFF00000000) >> 27);
429 case ELF::R_AARCH64_MOVW_UABS_G1_NC
:
430 or32le(TargetPtr
, ((Value
+ Addend
) & 0xFFFF0000) >> 11);
432 case ELF::R_AARCH64_MOVW_UABS_G0_NC
:
433 or32le(TargetPtr
, ((Value
+ Addend
) & 0xFFFF) << 5);
435 case ELF::R_AARCH64_ADR_PREL_PG_HI21
: {
436 // Operation: Page(S+A) - Page(P)
438 ((Value
+ Addend
) & ~0xfffULL
) - (FinalAddress
& ~0xfffULL
);
440 // Check that -2^32 <= X < 2^32
441 assert(isInt
<33>(Result
) && "overflow check failed for relocation");
443 // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
444 // from bits 32:12 of X.
445 write32AArch64Addr(TargetPtr
, Result
>> 12);
448 case ELF::R_AARCH64_ADD_ABS_LO12_NC
:
450 // Immediate goes in bits 21:10 of LD/ST instruction, taken
451 // from bits 11:0 of X
452 or32AArch64Imm(TargetPtr
, Value
+ Addend
);
454 case ELF::R_AARCH64_LDST8_ABS_LO12_NC
:
456 // Immediate goes in bits 21:10 of LD/ST instruction, taken
457 // from bits 11:0 of X
458 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 0, 11));
460 case ELF::R_AARCH64_LDST16_ABS_LO12_NC
:
462 // Immediate goes in bits 21:10 of LD/ST instruction, taken
463 // from bits 11:1 of X
464 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 1, 11));
466 case ELF::R_AARCH64_LDST32_ABS_LO12_NC
:
468 // Immediate goes in bits 21:10 of LD/ST instruction, taken
469 // from bits 11:2 of X
470 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 2, 11));
472 case ELF::R_AARCH64_LDST64_ABS_LO12_NC
:
474 // Immediate goes in bits 21:10 of LD/ST instruction, taken
475 // from bits 11:3 of X
476 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 3, 11));
478 case ELF::R_AARCH64_LDST128_ABS_LO12_NC
:
480 // Immediate goes in bits 21:10 of LD/ST instruction, taken
481 // from bits 11:4 of X
482 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 4, 11));
487 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry
&Section
,
488 uint64_t Offset
, uint32_t Value
,
489 uint32_t Type
, int32_t Addend
) {
490 // TODO: Add Thumb relocations.
491 uint32_t *TargetPtr
=
492 reinterpret_cast<uint32_t *>(Section
.getAddressWithOffset(Offset
));
493 uint32_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
) & 0xFFFFFFFF;
496 LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
497 << Section
.getAddressWithOffset(Offset
)
498 << " FinalAddress: " << format("%p", FinalAddress
)
499 << " Value: " << format("%x", Value
)
500 << " Type: " << format("%x", Type
)
501 << " Addend: " << format("%x", Addend
) << "\n");
505 llvm_unreachable("Not implemented relocation type!");
507 case ELF::R_ARM_NONE
:
509 // Write a 31bit signed offset
510 case ELF::R_ARM_PREL31
:
511 support::ulittle32_t::ref
{TargetPtr
} =
512 (support::ulittle32_t::ref
{TargetPtr
} & 0x80000000) |
513 ((Value
- FinalAddress
) & ~0x80000000);
515 case ELF::R_ARM_TARGET1
:
516 case ELF::R_ARM_ABS32
:
517 support::ulittle32_t::ref
{TargetPtr
} = Value
;
519 // Write first 16 bit of 32 bit value to the mov instruction.
520 // Last 4 bit should be shifted.
521 case ELF::R_ARM_MOVW_ABS_NC
:
522 case ELF::R_ARM_MOVT_ABS
:
523 if (Type
== ELF::R_ARM_MOVW_ABS_NC
)
524 Value
= Value
& 0xFFFF;
525 else if (Type
== ELF::R_ARM_MOVT_ABS
)
526 Value
= (Value
>> 16) & 0xFFFF;
527 support::ulittle32_t::ref
{TargetPtr
} =
528 (support::ulittle32_t::ref
{TargetPtr
} & ~0x000F0FFF) | (Value
& 0xFFF) |
529 (((Value
>> 12) & 0xF) << 16);
531 // Write 24 bit relative value to the branch instruction.
532 case ELF::R_ARM_PC24
: // Fall through.
533 case ELF::R_ARM_CALL
: // Fall through.
534 case ELF::R_ARM_JUMP24
:
535 int32_t RelValue
= static_cast<int32_t>(Value
- FinalAddress
- 8);
536 RelValue
= (RelValue
& 0x03FFFFFC) >> 2;
537 assert((support::ulittle32_t::ref
{TargetPtr
} & 0xFFFFFF) == 0xFFFFFE);
538 support::ulittle32_t::ref
{TargetPtr
} =
539 (support::ulittle32_t::ref
{TargetPtr
} & 0xFF000000) | RelValue
;
544 void RuntimeDyldELF::setMipsABI(const ObjectFile
&Obj
) {
545 if (Arch
== Triple::UnknownArch
||
546 !StringRef(Triple::getArchTypePrefix(Arch
)).equals("mips")) {
547 IsMipsO32ABI
= false;
548 IsMipsN32ABI
= false;
549 IsMipsN64ABI
= false;
552 if (auto *E
= dyn_cast
<ELFObjectFileBase
>(&Obj
)) {
553 unsigned AbiVariant
= E
->getPlatformFlags();
554 IsMipsO32ABI
= AbiVariant
& ELF::EF_MIPS_ABI_O32
;
555 IsMipsN32ABI
= AbiVariant
& ELF::EF_MIPS_ABI2
;
557 IsMipsN64ABI
= Obj
.getFileFormatName().equals("ELF64-mips");
560 // Return the .TOC. section and offset.
561 Error
RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase
&Obj
,
562 ObjSectionToIDMap
&LocalSections
,
563 RelocationValueRef
&Rel
) {
564 // Set a default SectionID in case we do not find a TOC section below.
565 // This may happen for references to TOC base base (sym@toc, .odp
566 // relocation) without a .toc directive. In this case just use the
567 // first section (which is usually the .odp) since the code won't
568 // reference the .toc base directly.
569 Rel
.SymbolName
= nullptr;
572 // The TOC consists of sections .got, .toc, .tocbss, .plt in that
573 // order. The TOC starts where the first of these sections starts.
574 for (auto &Section
: Obj
.sections()) {
575 Expected
<StringRef
> NameOrErr
= Section
.getName();
577 return NameOrErr
.takeError();
578 StringRef SectionName
= *NameOrErr
;
580 if (SectionName
== ".got"
581 || SectionName
== ".toc"
582 || SectionName
== ".tocbss"
583 || SectionName
== ".plt") {
584 if (auto SectionIDOrErr
=
585 findOrEmitSection(Obj
, Section
, false, LocalSections
))
586 Rel
.SectionID
= *SectionIDOrErr
;
588 return SectionIDOrErr
.takeError();
593 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
594 // thus permitting a full 64 Kbytes segment.
597 return Error::success();
600 // Returns the sections and offset associated with the ODP entry referenced
602 Error
RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase
&Obj
,
603 ObjSectionToIDMap
&LocalSections
,
604 RelocationValueRef
&Rel
) {
605 // Get the ELF symbol value (st_value) to compare with Relocation offset in
607 for (section_iterator si
= Obj
.section_begin(), se
= Obj
.section_end();
609 section_iterator RelSecI
= si
->getRelocatedSection();
610 if (RelSecI
== Obj
.section_end())
613 Expected
<StringRef
> NameOrErr
= RelSecI
->getName();
615 return NameOrErr
.takeError();
616 StringRef RelSectionName
= *NameOrErr
;
618 if (RelSectionName
!= ".opd")
621 for (elf_relocation_iterator i
= si
->relocation_begin(),
622 e
= si
->relocation_end();
624 // The R_PPC64_ADDR64 relocation indicates the first field
626 uint64_t TypeFunc
= i
->getType();
627 if (TypeFunc
!= ELF::R_PPC64_ADDR64
) {
632 uint64_t TargetSymbolOffset
= i
->getOffset();
633 symbol_iterator TargetSymbol
= i
->getSymbol();
635 if (auto AddendOrErr
= i
->getAddend())
636 Addend
= *AddendOrErr
;
638 return AddendOrErr
.takeError();
644 // Just check if following relocation is a R_PPC64_TOC
645 uint64_t TypeTOC
= i
->getType();
646 if (TypeTOC
!= ELF::R_PPC64_TOC
)
649 // Finally compares the Symbol value and the target symbol offset
650 // to check if this .opd entry refers to the symbol the relocation
652 if (Rel
.Addend
!= (int64_t)TargetSymbolOffset
)
655 section_iterator TSI
= Obj
.section_end();
656 if (auto TSIOrErr
= TargetSymbol
->getSection())
659 return TSIOrErr
.takeError();
660 assert(TSI
!= Obj
.section_end() && "TSI should refer to a valid section");
662 bool IsCode
= TSI
->isText();
663 if (auto SectionIDOrErr
= findOrEmitSection(Obj
, *TSI
, IsCode
,
665 Rel
.SectionID
= *SectionIDOrErr
;
667 return SectionIDOrErr
.takeError();
668 Rel
.Addend
= (intptr_t)Addend
;
669 return Error::success();
672 llvm_unreachable("Attempting to get address of ODP entry!");
675 // Relocation masks following the #lo(value), #hi(value), #ha(value),
676 // #higher(value), #highera(value), #highest(value), and #highesta(value)
677 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
680 static inline uint16_t applyPPClo(uint64_t value
) { return value
& 0xffff; }
682 static inline uint16_t applyPPChi(uint64_t value
) {
683 return (value
>> 16) & 0xffff;
686 static inline uint16_t applyPPCha (uint64_t value
) {
687 return ((value
+ 0x8000) >> 16) & 0xffff;
690 static inline uint16_t applyPPChigher(uint64_t value
) {
691 return (value
>> 32) & 0xffff;
694 static inline uint16_t applyPPChighera (uint64_t value
) {
695 return ((value
+ 0x8000) >> 32) & 0xffff;
698 static inline uint16_t applyPPChighest(uint64_t value
) {
699 return (value
>> 48) & 0xffff;
702 static inline uint16_t applyPPChighesta (uint64_t value
) {
703 return ((value
+ 0x8000) >> 48) & 0xffff;
706 void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry
&Section
,
707 uint64_t Offset
, uint64_t Value
,
708 uint32_t Type
, int64_t Addend
) {
709 uint8_t *LocalAddress
= Section
.getAddressWithOffset(Offset
);
712 llvm_unreachable("Relocation type not implemented yet!");
714 case ELF::R_PPC_ADDR16_LO
:
715 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
));
717 case ELF::R_PPC_ADDR16_HI
:
718 writeInt16BE(LocalAddress
, applyPPChi(Value
+ Addend
));
720 case ELF::R_PPC_ADDR16_HA
:
721 writeInt16BE(LocalAddress
, applyPPCha(Value
+ Addend
));
726 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry
&Section
,
727 uint64_t Offset
, uint64_t Value
,
728 uint32_t Type
, int64_t Addend
) {
729 uint8_t *LocalAddress
= Section
.getAddressWithOffset(Offset
);
732 llvm_unreachable("Relocation type not implemented yet!");
734 case ELF::R_PPC64_ADDR16
:
735 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
));
737 case ELF::R_PPC64_ADDR16_DS
:
738 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
) & ~3);
740 case ELF::R_PPC64_ADDR16_LO
:
741 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
));
743 case ELF::R_PPC64_ADDR16_LO_DS
:
744 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
) & ~3);
746 case ELF::R_PPC64_ADDR16_HI
:
747 case ELF::R_PPC64_ADDR16_HIGH
:
748 writeInt16BE(LocalAddress
, applyPPChi(Value
+ Addend
));
750 case ELF::R_PPC64_ADDR16_HA
:
751 case ELF::R_PPC64_ADDR16_HIGHA
:
752 writeInt16BE(LocalAddress
, applyPPCha(Value
+ Addend
));
754 case ELF::R_PPC64_ADDR16_HIGHER
:
755 writeInt16BE(LocalAddress
, applyPPChigher(Value
+ Addend
));
757 case ELF::R_PPC64_ADDR16_HIGHERA
:
758 writeInt16BE(LocalAddress
, applyPPChighera(Value
+ Addend
));
760 case ELF::R_PPC64_ADDR16_HIGHEST
:
761 writeInt16BE(LocalAddress
, applyPPChighest(Value
+ Addend
));
763 case ELF::R_PPC64_ADDR16_HIGHESTA
:
764 writeInt16BE(LocalAddress
, applyPPChighesta(Value
+ Addend
));
766 case ELF::R_PPC64_ADDR14
: {
767 assert(((Value
+ Addend
) & 3) == 0);
768 // Preserve the AA/LK bits in the branch instruction
769 uint8_t aalk
= *(LocalAddress
+ 3);
770 writeInt16BE(LocalAddress
+ 2, (aalk
& 3) | ((Value
+ Addend
) & 0xfffc));
772 case ELF::R_PPC64_REL16_LO
: {
773 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
774 uint64_t Delta
= Value
- FinalAddress
+ Addend
;
775 writeInt16BE(LocalAddress
, applyPPClo(Delta
));
777 case ELF::R_PPC64_REL16_HI
: {
778 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
779 uint64_t Delta
= Value
- FinalAddress
+ Addend
;
780 writeInt16BE(LocalAddress
, applyPPChi(Delta
));
782 case ELF::R_PPC64_REL16_HA
: {
783 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
784 uint64_t Delta
= Value
- FinalAddress
+ Addend
;
785 writeInt16BE(LocalAddress
, applyPPCha(Delta
));
787 case ELF::R_PPC64_ADDR32
: {
788 int64_t Result
= static_cast<int64_t>(Value
+ Addend
);
789 if (SignExtend64
<32>(Result
) != Result
)
790 llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
791 writeInt32BE(LocalAddress
, Result
);
793 case ELF::R_PPC64_REL24
: {
794 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
795 int64_t delta
= static_cast<int64_t>(Value
- FinalAddress
+ Addend
);
796 if (SignExtend64
<26>(delta
) != delta
)
797 llvm_unreachable("Relocation R_PPC64_REL24 overflow");
798 // We preserve bits other than LI field, i.e. PO and AA/LK fields.
799 uint32_t Inst
= readBytesUnaligned(LocalAddress
, 4);
800 writeInt32BE(LocalAddress
, (Inst
& 0xFC000003) | (delta
& 0x03FFFFFC));
802 case ELF::R_PPC64_REL32
: {
803 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
804 int64_t delta
= static_cast<int64_t>(Value
- FinalAddress
+ Addend
);
805 if (SignExtend64
<32>(delta
) != delta
)
806 llvm_unreachable("Relocation R_PPC64_REL32 overflow");
807 writeInt32BE(LocalAddress
, delta
);
809 case ELF::R_PPC64_REL64
: {
810 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
811 uint64_t Delta
= Value
- FinalAddress
+ Addend
;
812 writeInt64BE(LocalAddress
, Delta
);
814 case ELF::R_PPC64_ADDR64
:
815 writeInt64BE(LocalAddress
, Value
+ Addend
);
820 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry
&Section
,
821 uint64_t Offset
, uint64_t Value
,
822 uint32_t Type
, int64_t Addend
) {
823 uint8_t *LocalAddress
= Section
.getAddressWithOffset(Offset
);
826 llvm_unreachable("Relocation type not implemented yet!");
828 case ELF::R_390_PC16DBL
:
829 case ELF::R_390_PLT16DBL
: {
830 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
831 assert(int16_t(Delta
/ 2) * 2 == Delta
&& "R_390_PC16DBL overflow");
832 writeInt16BE(LocalAddress
, Delta
/ 2);
835 case ELF::R_390_PC32DBL
:
836 case ELF::R_390_PLT32DBL
: {
837 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
838 assert(int32_t(Delta
/ 2) * 2 == Delta
&& "R_390_PC32DBL overflow");
839 writeInt32BE(LocalAddress
, Delta
/ 2);
842 case ELF::R_390_PC16
: {
843 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
844 assert(int16_t(Delta
) == Delta
&& "R_390_PC16 overflow");
845 writeInt16BE(LocalAddress
, Delta
);
848 case ELF::R_390_PC32
: {
849 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
850 assert(int32_t(Delta
) == Delta
&& "R_390_PC32 overflow");
851 writeInt32BE(LocalAddress
, Delta
);
854 case ELF::R_390_PC64
: {
855 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
856 writeInt64BE(LocalAddress
, Delta
);
860 *LocalAddress
= (uint8_t)(Value
+ Addend
);
863 writeInt16BE(LocalAddress
, Value
+ Addend
);
866 writeInt32BE(LocalAddress
, Value
+ Addend
);
869 writeInt64BE(LocalAddress
, Value
+ Addend
);
874 void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry
&Section
,
875 uint64_t Offset
, uint64_t Value
,
876 uint32_t Type
, int64_t Addend
) {
877 bool isBE
= Arch
== Triple::bpfeb
;
881 llvm_unreachable("Relocation type not implemented yet!");
883 case ELF::R_BPF_NONE
:
885 case ELF::R_BPF_64_64
: {
886 write(isBE
, Section
.getAddressWithOffset(Offset
), Value
+ Addend
);
887 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value
+ Addend
)) << " at "
888 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
891 case ELF::R_BPF_64_32
: {
893 assert(Value
<= UINT32_MAX
);
894 write(isBE
, Section
.getAddressWithOffset(Offset
), static_cast<uint32_t>(Value
));
895 LLVM_DEBUG(dbgs() << "Writing " << format("%p", Value
) << " at "
896 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
902 // The target location for the relocation is described by RE.SectionID and
903 // RE.Offset. RE.SectionID can be used to find the SectionEntry. Each
904 // SectionEntry has three members describing its location.
905 // SectionEntry::Address is the address at which the section has been loaded
906 // into memory in the current (host) process. SectionEntry::LoadAddress is the
907 // address that the section will have in the target process.
908 // SectionEntry::ObjAddress is the address of the bits for this section in the
909 // original emitted object image (also in the current address space).
911 // Relocations will be applied as if the section were loaded at
912 // SectionEntry::LoadAddress, but they will be applied at an address based
913 // on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to
914 // Target memory contents if they are required for value calculations.
916 // The Value parameter here is the load address of the symbol for the
917 // relocation to be applied. For relocations which refer to symbols in the
918 // current object Value will be the LoadAddress of the section in which
919 // the symbol resides (RE.Addend provides additional information about the
920 // symbol location). For external symbols, Value will be the address of the
921 // symbol in the target address space.
922 void RuntimeDyldELF::resolveRelocation(const RelocationEntry
&RE
,
924 const SectionEntry
&Section
= Sections
[RE
.SectionID
];
925 return resolveRelocation(Section
, RE
.Offset
, Value
, RE
.RelType
, RE
.Addend
,
926 RE
.SymOffset
, RE
.SectionID
);
929 void RuntimeDyldELF::resolveRelocation(const SectionEntry
&Section
,
930 uint64_t Offset
, uint64_t Value
,
931 uint32_t Type
, int64_t Addend
,
932 uint64_t SymOffset
, SID SectionID
) {
935 resolveX86_64Relocation(Section
, Offset
, Value
, Type
, Addend
, SymOffset
);
938 resolveX86Relocation(Section
, Offset
, (uint32_t)(Value
& 0xffffffffL
), Type
,
939 (uint32_t)(Addend
& 0xffffffffL
));
941 case Triple::aarch64
:
942 case Triple::aarch64_be
:
943 resolveAArch64Relocation(Section
, Offset
, Value
, Type
, Addend
);
945 case Triple::arm
: // Fall through.
948 case Triple::thumbeb
:
949 resolveARMRelocation(Section
, Offset
, (uint32_t)(Value
& 0xffffffffL
), Type
,
950 (uint32_t)(Addend
& 0xffffffffL
));
953 resolvePPC32Relocation(Section
, Offset
, Value
, Type
, Addend
);
955 case Triple::ppc64
: // Fall through.
956 case Triple::ppc64le
:
957 resolvePPC64Relocation(Section
, Offset
, Value
, Type
, Addend
);
959 case Triple::systemz
:
960 resolveSystemZRelocation(Section
, Offset
, Value
, Type
, Addend
);
964 resolveBPFRelocation(Section
, Offset
, Value
, Type
, Addend
);
967 llvm_unreachable("Unsupported CPU type!");
971 void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID
, uint64_t Offset
) const {
972 return (void *)(Sections
[SectionID
].getObjAddress() + Offset
);
975 void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID
, uint64_t Offset
, unsigned RelType
, RelocationValueRef Value
) {
976 RelocationEntry
RE(SectionID
, Offset
, RelType
, Value
.Addend
, Value
.Offset
);
977 if (Value
.SymbolName
)
978 addRelocationForSymbol(RE
, Value
.SymbolName
);
980 addRelocationForSection(RE
, Value
.SectionID
);
983 uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType
,
984 bool IsLocal
) const {
986 case ELF::R_MICROMIPS_GOT16
:
988 return ELF::R_MICROMIPS_LO16
;
990 case ELF::R_MICROMIPS_HI16
:
991 return ELF::R_MICROMIPS_LO16
;
992 case ELF::R_MIPS_GOT16
:
994 return ELF::R_MIPS_LO16
;
996 case ELF::R_MIPS_HI16
:
997 return ELF::R_MIPS_LO16
;
998 case ELF::R_MIPS_PCHI16
:
999 return ELF::R_MIPS_PCLO16
;
1003 return ELF::R_MIPS_NONE
;
1006 // Sometimes we don't need to create thunk for a branch.
1007 // This typically happens when branch target is located
1008 // in the same object file. In such case target is either
1009 // a weak symbol or symbol in a different executable section.
1010 // This function checks if branch target is located in the
1011 // same object file and if distance between source and target
1012 // fits R_AARCH64_CALL26 relocation. If both conditions are
1013 // met, it emits direct jump to the target and returns true.
1014 // Otherwise false is returned and thunk is created.
1015 bool RuntimeDyldELF::resolveAArch64ShortBranch(
1016 unsigned SectionID
, relocation_iterator RelI
,
1017 const RelocationValueRef
&Value
) {
1019 if (Value
.SymbolName
) {
1020 auto Loc
= GlobalSymbolTable
.find(Value
.SymbolName
);
1022 // Don't create direct branch for external symbols.
1023 if (Loc
== GlobalSymbolTable
.end())
1026 const auto &SymInfo
= Loc
->second
;
1028 uint64_t(Sections
[SymInfo
.getSectionID()].getLoadAddressWithOffset(
1029 SymInfo
.getOffset()));
1031 Address
= uint64_t(Sections
[Value
.SectionID
].getLoadAddress());
1033 uint64_t Offset
= RelI
->getOffset();
1034 uint64_t SourceAddress
= Sections
[SectionID
].getLoadAddressWithOffset(Offset
);
1036 // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
1037 // If distance between source and target is out of range then we should
1039 if (!isInt
<28>(Address
+ Value
.Addend
- SourceAddress
))
1042 resolveRelocation(Sections
[SectionID
], Offset
, Address
, RelI
->getType(),
1048 void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID
,
1049 const RelocationValueRef
&Value
,
1050 relocation_iterator RelI
,
1053 LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
1054 SectionEntry
&Section
= Sections
[SectionID
];
1056 uint64_t Offset
= RelI
->getOffset();
1057 unsigned RelType
= RelI
->getType();
1058 // Look for an existing stub.
1059 StubMap::const_iterator i
= Stubs
.find(Value
);
1060 if (i
!= Stubs
.end()) {
1061 resolveRelocation(Section
, Offset
,
1062 (uint64_t)Section
.getAddressWithOffset(i
->second
),
1064 LLVM_DEBUG(dbgs() << " Stub function found\n");
1065 } else if (!resolveAArch64ShortBranch(SectionID
, RelI
, Value
)) {
1066 // Create a new stub function.
1067 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1068 Stubs
[Value
] = Section
.getStubOffset();
1069 uint8_t *StubTargetAddr
= createStubFunction(
1070 Section
.getAddressWithOffset(Section
.getStubOffset()));
1072 RelocationEntry
REmovz_g3(SectionID
, StubTargetAddr
- Section
.getAddress(),
1073 ELF::R_AARCH64_MOVW_UABS_G3
, Value
.Addend
);
1074 RelocationEntry
REmovk_g2(SectionID
,
1075 StubTargetAddr
- Section
.getAddress() + 4,
1076 ELF::R_AARCH64_MOVW_UABS_G2_NC
, Value
.Addend
);
1077 RelocationEntry
REmovk_g1(SectionID
,
1078 StubTargetAddr
- Section
.getAddress() + 8,
1079 ELF::R_AARCH64_MOVW_UABS_G1_NC
, Value
.Addend
);
1080 RelocationEntry
REmovk_g0(SectionID
,
1081 StubTargetAddr
- Section
.getAddress() + 12,
1082 ELF::R_AARCH64_MOVW_UABS_G0_NC
, Value
.Addend
);
1084 if (Value
.SymbolName
) {
1085 addRelocationForSymbol(REmovz_g3
, Value
.SymbolName
);
1086 addRelocationForSymbol(REmovk_g2
, Value
.SymbolName
);
1087 addRelocationForSymbol(REmovk_g1
, Value
.SymbolName
);
1088 addRelocationForSymbol(REmovk_g0
, Value
.SymbolName
);
1090 addRelocationForSection(REmovz_g3
, Value
.SectionID
);
1091 addRelocationForSection(REmovk_g2
, Value
.SectionID
);
1092 addRelocationForSection(REmovk_g1
, Value
.SectionID
);
1093 addRelocationForSection(REmovk_g0
, Value
.SectionID
);
1095 resolveRelocation(Section
, Offset
,
1096 reinterpret_cast<uint64_t>(Section
.getAddressWithOffset(
1097 Section
.getStubOffset())),
1099 Section
.advanceStubOffset(getMaxStubSize());
1103 Expected
<relocation_iterator
>
1104 RuntimeDyldELF::processRelocationRef(
1105 unsigned SectionID
, relocation_iterator RelI
, const ObjectFile
&O
,
1106 ObjSectionToIDMap
&ObjSectionToID
, StubMap
&Stubs
) {
1107 const auto &Obj
= cast
<ELFObjectFileBase
>(O
);
1108 uint64_t RelType
= RelI
->getType();
1110 if (Expected
<int64_t> AddendOrErr
= ELFRelocationRef(*RelI
).getAddend())
1111 Addend
= *AddendOrErr
;
1113 consumeError(AddendOrErr
.takeError());
1114 elf_symbol_iterator Symbol
= RelI
->getSymbol();
1116 // Obtain the symbol name which is referenced in the relocation
1117 StringRef TargetName
;
1118 if (Symbol
!= Obj
.symbol_end()) {
1119 if (auto TargetNameOrErr
= Symbol
->getName())
1120 TargetName
= *TargetNameOrErr
;
1122 return TargetNameOrErr
.takeError();
1124 LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType
<< " Addend: " << Addend
1125 << " TargetName: " << TargetName
<< "\n");
1126 RelocationValueRef Value
;
1127 // First search for the symbol in the local symbol table
1128 SymbolRef::Type SymType
= SymbolRef::ST_Unknown
;
1130 // Search for the symbol in the global symbol table
1131 RTDyldSymbolTable::const_iterator gsi
= GlobalSymbolTable
.end();
1132 if (Symbol
!= Obj
.symbol_end()) {
1133 gsi
= GlobalSymbolTable
.find(TargetName
.data());
1134 Expected
<SymbolRef::Type
> SymTypeOrErr
= Symbol
->getType();
1135 if (!SymTypeOrErr
) {
1137 raw_string_ostream
OS(Buf
);
1138 logAllUnhandledErrors(SymTypeOrErr
.takeError(), OS
);
1140 report_fatal_error(Buf
);
1142 SymType
= *SymTypeOrErr
;
1144 if (gsi
!= GlobalSymbolTable
.end()) {
1145 const auto &SymInfo
= gsi
->second
;
1146 Value
.SectionID
= SymInfo
.getSectionID();
1147 Value
.Offset
= SymInfo
.getOffset();
1148 Value
.Addend
= SymInfo
.getOffset() + Addend
;
1151 case SymbolRef::ST_Debug
: {
1152 // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
1153 // and can be changed by another developers. Maybe best way is add
1154 // a new symbol type ST_Section to SymbolRef and use it.
1155 auto SectionOrErr
= Symbol
->getSection();
1156 if (!SectionOrErr
) {
1158 raw_string_ostream
OS(Buf
);
1159 logAllUnhandledErrors(SectionOrErr
.takeError(), OS
);
1161 report_fatal_error(Buf
);
1163 section_iterator si
= *SectionOrErr
;
1164 if (si
== Obj
.section_end())
1165 llvm_unreachable("Symbol section not found, bad object file format!");
1166 LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n");
1167 bool isCode
= si
->isText();
1168 if (auto SectionIDOrErr
= findOrEmitSection(Obj
, (*si
), isCode
,
1170 Value
.SectionID
= *SectionIDOrErr
;
1172 return SectionIDOrErr
.takeError();
1173 Value
.Addend
= Addend
;
1176 case SymbolRef::ST_Data
:
1177 case SymbolRef::ST_Function
:
1178 case SymbolRef::ST_Unknown
: {
1179 Value
.SymbolName
= TargetName
.data();
1180 Value
.Addend
= Addend
;
1182 // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1183 // will manifest here as a NULL symbol name.
1184 // We can set this as a valid (but empty) symbol name, and rely
1185 // on addRelocationForSymbol to handle this.
1186 if (!Value
.SymbolName
)
1187 Value
.SymbolName
= "";
1191 llvm_unreachable("Unresolved symbol type!");
1196 uint64_t Offset
= RelI
->getOffset();
1198 LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID
<< " Offset: " << Offset
1200 if ((Arch
== Triple::aarch64
|| Arch
== Triple::aarch64_be
)) {
1201 if (RelType
== ELF::R_AARCH64_CALL26
|| RelType
== ELF::R_AARCH64_JUMP26
) {
1202 resolveAArch64Branch(SectionID
, Value
, RelI
, Stubs
);
1203 } else if (RelType
== ELF::R_AARCH64_ADR_GOT_PAGE
) {
1204 // Craete new GOT entry or find existing one. If GOT entry is
1205 // to be created, then we also emit ABS64 relocation for it.
1206 uint64_t GOTOffset
= findOrAllocGOTEntry(Value
, ELF::R_AARCH64_ABS64
);
1207 resolveGOTOffsetRelocation(SectionID
, Offset
, GOTOffset
+ Addend
,
1208 ELF::R_AARCH64_ADR_PREL_PG_HI21
);
1210 } else if (RelType
== ELF::R_AARCH64_LD64_GOT_LO12_NC
) {
1211 uint64_t GOTOffset
= findOrAllocGOTEntry(Value
, ELF::R_AARCH64_ABS64
);
1212 resolveGOTOffsetRelocation(SectionID
, Offset
, GOTOffset
+ Addend
,
1213 ELF::R_AARCH64_LDST64_ABS_LO12_NC
);
1215 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1217 } else if (Arch
== Triple::arm
) {
1218 if (RelType
== ELF::R_ARM_PC24
|| RelType
== ELF::R_ARM_CALL
||
1219 RelType
== ELF::R_ARM_JUMP24
) {
1220 // This is an ARM branch relocation, need to use a stub function.
1221 LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
1222 SectionEntry
&Section
= Sections
[SectionID
];
1224 // Look for an existing stub.
1225 StubMap::const_iterator i
= Stubs
.find(Value
);
1226 if (i
!= Stubs
.end()) {
1229 reinterpret_cast<uint64_t>(Section
.getAddressWithOffset(i
->second
)),
1231 LLVM_DEBUG(dbgs() << " Stub function found\n");
1233 // Create a new stub function.
1234 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1235 Stubs
[Value
] = Section
.getStubOffset();
1236 uint8_t *StubTargetAddr
= createStubFunction(
1237 Section
.getAddressWithOffset(Section
.getStubOffset()));
1238 RelocationEntry
RE(SectionID
, StubTargetAddr
- Section
.getAddress(),
1239 ELF::R_ARM_ABS32
, Value
.Addend
);
1240 if (Value
.SymbolName
)
1241 addRelocationForSymbol(RE
, Value
.SymbolName
);
1243 addRelocationForSection(RE
, Value
.SectionID
);
1245 resolveRelocation(Section
, Offset
, reinterpret_cast<uint64_t>(
1246 Section
.getAddressWithOffset(
1247 Section
.getStubOffset())),
1249 Section
.advanceStubOffset(getMaxStubSize());
1252 uint32_t *Placeholder
=
1253 reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID
, Offset
));
1254 if (RelType
== ELF::R_ARM_PREL31
|| RelType
== ELF::R_ARM_TARGET1
||
1255 RelType
== ELF::R_ARM_ABS32
) {
1256 Value
.Addend
+= *Placeholder
;
1257 } else if (RelType
== ELF::R_ARM_MOVW_ABS_NC
|| RelType
== ELF::R_ARM_MOVT_ABS
) {
1258 // See ELF for ARM documentation
1259 Value
.Addend
+= (int16_t)((*Placeholder
& 0xFFF) | (((*Placeholder
>> 16) & 0xF) << 12));
1261 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1263 } else if (IsMipsO32ABI
) {
1264 uint8_t *Placeholder
= reinterpret_cast<uint8_t *>(
1265 computePlaceholderAddress(SectionID
, Offset
));
1266 uint32_t Opcode
= readBytesUnaligned(Placeholder
, 4);
1267 if (RelType
== ELF::R_MIPS_26
) {
1268 // This is an Mips branch relocation, need to use a stub function.
1269 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1270 SectionEntry
&Section
= Sections
[SectionID
];
1272 // Extract the addend from the instruction.
1273 // We shift up by two since the Value will be down shifted again
1274 // when applying the relocation.
1275 uint32_t Addend
= (Opcode
& 0x03ffffff) << 2;
1277 Value
.Addend
+= Addend
;
1279 // Look up for existing stub.
1280 StubMap::const_iterator i
= Stubs
.find(Value
);
1281 if (i
!= Stubs
.end()) {
1282 RelocationEntry
RE(SectionID
, Offset
, RelType
, i
->second
);
1283 addRelocationForSection(RE
, SectionID
);
1284 LLVM_DEBUG(dbgs() << " Stub function found\n");
1286 // Create a new stub function.
1287 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1288 Stubs
[Value
] = Section
.getStubOffset();
1290 unsigned AbiVariant
= Obj
.getPlatformFlags();
1292 uint8_t *StubTargetAddr
= createStubFunction(
1293 Section
.getAddressWithOffset(Section
.getStubOffset()), AbiVariant
);
1295 // Creating Hi and Lo relocations for the filled stub instructions.
1296 RelocationEntry
REHi(SectionID
, StubTargetAddr
- Section
.getAddress(),
1297 ELF::R_MIPS_HI16
, Value
.Addend
);
1298 RelocationEntry
RELo(SectionID
,
1299 StubTargetAddr
- Section
.getAddress() + 4,
1300 ELF::R_MIPS_LO16
, Value
.Addend
);
1302 if (Value
.SymbolName
) {
1303 addRelocationForSymbol(REHi
, Value
.SymbolName
);
1304 addRelocationForSymbol(RELo
, Value
.SymbolName
);
1306 addRelocationForSection(REHi
, Value
.SectionID
);
1307 addRelocationForSection(RELo
, Value
.SectionID
);
1310 RelocationEntry
RE(SectionID
, Offset
, RelType
, Section
.getStubOffset());
1311 addRelocationForSection(RE
, SectionID
);
1312 Section
.advanceStubOffset(getMaxStubSize());
1314 } else if (RelType
== ELF::R_MIPS_HI16
|| RelType
== ELF::R_MIPS_PCHI16
) {
1315 int64_t Addend
= (Opcode
& 0x0000ffff) << 16;
1316 RelocationEntry
RE(SectionID
, Offset
, RelType
, Addend
);
1317 PendingRelocs
.push_back(std::make_pair(Value
, RE
));
1318 } else if (RelType
== ELF::R_MIPS_LO16
|| RelType
== ELF::R_MIPS_PCLO16
) {
1319 int64_t Addend
= Value
.Addend
+ SignExtend32
<16>(Opcode
& 0x0000ffff);
1320 for (auto I
= PendingRelocs
.begin(); I
!= PendingRelocs
.end();) {
1321 const RelocationValueRef
&MatchingValue
= I
->first
;
1322 RelocationEntry
&Reloc
= I
->second
;
1323 if (MatchingValue
== Value
&&
1324 RelType
== getMatchingLoRelocation(Reloc
.RelType
) &&
1325 SectionID
== Reloc
.SectionID
) {
1326 Reloc
.Addend
+= Addend
;
1327 if (Value
.SymbolName
)
1328 addRelocationForSymbol(Reloc
, Value
.SymbolName
);
1330 addRelocationForSection(Reloc
, Value
.SectionID
);
1331 I
= PendingRelocs
.erase(I
);
1335 RelocationEntry
RE(SectionID
, Offset
, RelType
, Addend
);
1336 if (Value
.SymbolName
)
1337 addRelocationForSymbol(RE
, Value
.SymbolName
);
1339 addRelocationForSection(RE
, Value
.SectionID
);
1341 if (RelType
== ELF::R_MIPS_32
)
1342 Value
.Addend
+= Opcode
;
1343 else if (RelType
== ELF::R_MIPS_PC16
)
1344 Value
.Addend
+= SignExtend32
<18>((Opcode
& 0x0000ffff) << 2);
1345 else if (RelType
== ELF::R_MIPS_PC19_S2
)
1346 Value
.Addend
+= SignExtend32
<21>((Opcode
& 0x0007ffff) << 2);
1347 else if (RelType
== ELF::R_MIPS_PC21_S2
)
1348 Value
.Addend
+= SignExtend32
<23>((Opcode
& 0x001fffff) << 2);
1349 else if (RelType
== ELF::R_MIPS_PC26_S2
)
1350 Value
.Addend
+= SignExtend32
<28>((Opcode
& 0x03ffffff) << 2);
1351 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1353 } else if (IsMipsN32ABI
|| IsMipsN64ABI
) {
1354 uint32_t r_type
= RelType
& 0xff;
1355 RelocationEntry
RE(SectionID
, Offset
, RelType
, Value
.Addend
);
1356 if (r_type
== ELF::R_MIPS_CALL16
|| r_type
== ELF::R_MIPS_GOT_PAGE
1357 || r_type
== ELF::R_MIPS_GOT_DISP
) {
1358 StringMap
<uint64_t>::iterator i
= GOTSymbolOffsets
.find(TargetName
);
1359 if (i
!= GOTSymbolOffsets
.end())
1360 RE
.SymOffset
= i
->second
;
1362 RE
.SymOffset
= allocateGOTEntries(1);
1363 GOTSymbolOffsets
[TargetName
] = RE
.SymOffset
;
1365 if (Value
.SymbolName
)
1366 addRelocationForSymbol(RE
, Value
.SymbolName
);
1368 addRelocationForSection(RE
, Value
.SectionID
);
1369 } else if (RelType
== ELF::R_MIPS_26
) {
1370 // This is an Mips branch relocation, need to use a stub function.
1371 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1372 SectionEntry
&Section
= Sections
[SectionID
];
1374 // Look up for existing stub.
1375 StubMap::const_iterator i
= Stubs
.find(Value
);
1376 if (i
!= Stubs
.end()) {
1377 RelocationEntry
RE(SectionID
, Offset
, RelType
, i
->second
);
1378 addRelocationForSection(RE
, SectionID
);
1379 LLVM_DEBUG(dbgs() << " Stub function found\n");
1381 // Create a new stub function.
1382 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1383 Stubs
[Value
] = Section
.getStubOffset();
1385 unsigned AbiVariant
= Obj
.getPlatformFlags();
1387 uint8_t *StubTargetAddr
= createStubFunction(
1388 Section
.getAddressWithOffset(Section
.getStubOffset()), AbiVariant
);
1391 // Creating Hi and Lo relocations for the filled stub instructions.
1392 RelocationEntry
REHi(SectionID
, StubTargetAddr
- Section
.getAddress(),
1393 ELF::R_MIPS_HI16
, Value
.Addend
);
1394 RelocationEntry
RELo(SectionID
,
1395 StubTargetAddr
- Section
.getAddress() + 4,
1396 ELF::R_MIPS_LO16
, Value
.Addend
);
1397 if (Value
.SymbolName
) {
1398 addRelocationForSymbol(REHi
, Value
.SymbolName
);
1399 addRelocationForSymbol(RELo
, Value
.SymbolName
);
1401 addRelocationForSection(REHi
, Value
.SectionID
);
1402 addRelocationForSection(RELo
, Value
.SectionID
);
1405 // Creating Highest, Higher, Hi and Lo relocations for the filled stub
1407 RelocationEntry
REHighest(SectionID
,
1408 StubTargetAddr
- Section
.getAddress(),
1409 ELF::R_MIPS_HIGHEST
, Value
.Addend
);
1410 RelocationEntry
REHigher(SectionID
,
1411 StubTargetAddr
- Section
.getAddress() + 4,
1412 ELF::R_MIPS_HIGHER
, Value
.Addend
);
1413 RelocationEntry
REHi(SectionID
,
1414 StubTargetAddr
- Section
.getAddress() + 12,
1415 ELF::R_MIPS_HI16
, Value
.Addend
);
1416 RelocationEntry
RELo(SectionID
,
1417 StubTargetAddr
- Section
.getAddress() + 20,
1418 ELF::R_MIPS_LO16
, Value
.Addend
);
1419 if (Value
.SymbolName
) {
1420 addRelocationForSymbol(REHighest
, Value
.SymbolName
);
1421 addRelocationForSymbol(REHigher
, Value
.SymbolName
);
1422 addRelocationForSymbol(REHi
, Value
.SymbolName
);
1423 addRelocationForSymbol(RELo
, Value
.SymbolName
);
1425 addRelocationForSection(REHighest
, Value
.SectionID
);
1426 addRelocationForSection(REHigher
, Value
.SectionID
);
1427 addRelocationForSection(REHi
, Value
.SectionID
);
1428 addRelocationForSection(RELo
, Value
.SectionID
);
1431 RelocationEntry
RE(SectionID
, Offset
, RelType
, Section
.getStubOffset());
1432 addRelocationForSection(RE
, SectionID
);
1433 Section
.advanceStubOffset(getMaxStubSize());
1436 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1439 } else if (Arch
== Triple::ppc64
|| Arch
== Triple::ppc64le
) {
1440 if (RelType
== ELF::R_PPC64_REL24
) {
1441 // Determine ABI variant in use for this object.
1442 unsigned AbiVariant
= Obj
.getPlatformFlags();
1443 AbiVariant
&= ELF::EF_PPC64_ABI
;
1444 // A PPC branch relocation will need a stub function if the target is
1445 // an external symbol (either Value.SymbolName is set, or SymType is
1446 // Symbol::ST_Unknown) or if the target address is not within the
1447 // signed 24-bits branch address.
1448 SectionEntry
&Section
= Sections
[SectionID
];
1449 uint8_t *Target
= Section
.getAddressWithOffset(Offset
);
1450 bool RangeOverflow
= false;
1451 bool IsExtern
= Value
.SymbolName
|| SymType
== SymbolRef::ST_Unknown
;
1453 if (AbiVariant
!= 2) {
1454 // In the ELFv1 ABI, a function call may point to the .opd entry,
1455 // so the final symbol value is calculated based on the relocation
1456 // values in the .opd section.
1457 if (auto Err
= findOPDEntrySection(Obj
, ObjSectionToID
, Value
))
1458 return std::move(Err
);
1460 // In the ELFv2 ABI, a function symbol may provide a local entry
1461 // point, which must be used for direct calls.
1462 if (Value
.SectionID
== SectionID
){
1463 uint8_t SymOther
= Symbol
->getOther();
1464 Value
.Addend
+= ELF::decodePPC64LocalEntryOffset(SymOther
);
1467 uint8_t *RelocTarget
=
1468 Sections
[Value
.SectionID
].getAddressWithOffset(Value
.Addend
);
1469 int64_t delta
= static_cast<int64_t>(Target
- RelocTarget
);
1470 // If it is within 26-bits branch range, just set the branch target
1471 if (SignExtend64
<26>(delta
) != delta
) {
1472 RangeOverflow
= true;
1473 } else if ((AbiVariant
!= 2) ||
1474 (AbiVariant
== 2 && Value
.SectionID
== SectionID
)) {
1475 RelocationEntry
RE(SectionID
, Offset
, RelType
, Value
.Addend
);
1476 addRelocationForSection(RE
, Value
.SectionID
);
1479 if (IsExtern
|| (AbiVariant
== 2 && Value
.SectionID
!= SectionID
) ||
1481 // It is an external symbol (either Value.SymbolName is set, or
1482 // SymType is SymbolRef::ST_Unknown) or out of range.
1483 StubMap::const_iterator i
= Stubs
.find(Value
);
1484 if (i
!= Stubs
.end()) {
1485 // Symbol function stub already created, just relocate to it
1486 resolveRelocation(Section
, Offset
,
1487 reinterpret_cast<uint64_t>(
1488 Section
.getAddressWithOffset(i
->second
)),
1490 LLVM_DEBUG(dbgs() << " Stub function found\n");
1492 // Create a new stub function.
1493 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1494 Stubs
[Value
] = Section
.getStubOffset();
1495 uint8_t *StubTargetAddr
= createStubFunction(
1496 Section
.getAddressWithOffset(Section
.getStubOffset()),
1498 RelocationEntry
RE(SectionID
, StubTargetAddr
- Section
.getAddress(),
1499 ELF::R_PPC64_ADDR64
, Value
.Addend
);
1501 // Generates the 64-bits address loads as exemplified in section
1502 // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to
1503 // apply to the low part of the instructions, so we have to update
1504 // the offset according to the target endianness.
1505 uint64_t StubRelocOffset
= StubTargetAddr
- Section
.getAddress();
1506 if (!IsTargetLittleEndian
)
1507 StubRelocOffset
+= 2;
1509 RelocationEntry
REhst(SectionID
, StubRelocOffset
+ 0,
1510 ELF::R_PPC64_ADDR16_HIGHEST
, Value
.Addend
);
1511 RelocationEntry
REhr(SectionID
, StubRelocOffset
+ 4,
1512 ELF::R_PPC64_ADDR16_HIGHER
, Value
.Addend
);
1513 RelocationEntry
REh(SectionID
, StubRelocOffset
+ 12,
1514 ELF::R_PPC64_ADDR16_HI
, Value
.Addend
);
1515 RelocationEntry
REl(SectionID
, StubRelocOffset
+ 16,
1516 ELF::R_PPC64_ADDR16_LO
, Value
.Addend
);
1518 if (Value
.SymbolName
) {
1519 addRelocationForSymbol(REhst
, Value
.SymbolName
);
1520 addRelocationForSymbol(REhr
, Value
.SymbolName
);
1521 addRelocationForSymbol(REh
, Value
.SymbolName
);
1522 addRelocationForSymbol(REl
, Value
.SymbolName
);
1524 addRelocationForSection(REhst
, Value
.SectionID
);
1525 addRelocationForSection(REhr
, Value
.SectionID
);
1526 addRelocationForSection(REh
, Value
.SectionID
);
1527 addRelocationForSection(REl
, Value
.SectionID
);
1530 resolveRelocation(Section
, Offset
, reinterpret_cast<uint64_t>(
1531 Section
.getAddressWithOffset(
1532 Section
.getStubOffset())),
1534 Section
.advanceStubOffset(getMaxStubSize());
1536 if (IsExtern
|| (AbiVariant
== 2 && Value
.SectionID
!= SectionID
)) {
1537 // Restore the TOC for external calls
1538 if (AbiVariant
== 2)
1539 writeInt32BE(Target
+ 4, 0xE8410018); // ld r2,24(r1)
1541 writeInt32BE(Target
+ 4, 0xE8410028); // ld r2,40(r1)
1544 } else if (RelType
== ELF::R_PPC64_TOC16
||
1545 RelType
== ELF::R_PPC64_TOC16_DS
||
1546 RelType
== ELF::R_PPC64_TOC16_LO
||
1547 RelType
== ELF::R_PPC64_TOC16_LO_DS
||
1548 RelType
== ELF::R_PPC64_TOC16_HI
||
1549 RelType
== ELF::R_PPC64_TOC16_HA
) {
1550 // These relocations are supposed to subtract the TOC address from
1551 // the final value. This does not fit cleanly into the RuntimeDyld
1552 // scheme, since there may be *two* sections involved in determining
1553 // the relocation value (the section of the symbol referred to by the
1554 // relocation, and the TOC section associated with the current module).
1556 // Fortunately, these relocations are currently only ever generated
1557 // referring to symbols that themselves reside in the TOC, which means
1558 // that the two sections are actually the same. Thus they cancel out
1559 // and we can immediately resolve the relocation right now.
1561 case ELF::R_PPC64_TOC16
: RelType
= ELF::R_PPC64_ADDR16
; break;
1562 case ELF::R_PPC64_TOC16_DS
: RelType
= ELF::R_PPC64_ADDR16_DS
; break;
1563 case ELF::R_PPC64_TOC16_LO
: RelType
= ELF::R_PPC64_ADDR16_LO
; break;
1564 case ELF::R_PPC64_TOC16_LO_DS
: RelType
= ELF::R_PPC64_ADDR16_LO_DS
; break;
1565 case ELF::R_PPC64_TOC16_HI
: RelType
= ELF::R_PPC64_ADDR16_HI
; break;
1566 case ELF::R_PPC64_TOC16_HA
: RelType
= ELF::R_PPC64_ADDR16_HA
; break;
1567 default: llvm_unreachable("Wrong relocation type.");
1570 RelocationValueRef TOCValue
;
1571 if (auto Err
= findPPC64TOCSection(Obj
, ObjSectionToID
, TOCValue
))
1572 return std::move(Err
);
1573 if (Value
.SymbolName
|| Value
.SectionID
!= TOCValue
.SectionID
)
1574 llvm_unreachable("Unsupported TOC relocation.");
1575 Value
.Addend
-= TOCValue
.Addend
;
1576 resolveRelocation(Sections
[SectionID
], Offset
, Value
.Addend
, RelType
, 0);
1578 // There are two ways to refer to the TOC address directly: either
1579 // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
1580 // ignored), or via any relocation that refers to the magic ".TOC."
1581 // symbols (in which case the addend is respected).
1582 if (RelType
== ELF::R_PPC64_TOC
) {
1583 RelType
= ELF::R_PPC64_ADDR64
;
1584 if (auto Err
= findPPC64TOCSection(Obj
, ObjSectionToID
, Value
))
1585 return std::move(Err
);
1586 } else if (TargetName
== ".TOC.") {
1587 if (auto Err
= findPPC64TOCSection(Obj
, ObjSectionToID
, Value
))
1588 return std::move(Err
);
1589 Value
.Addend
+= Addend
;
1592 RelocationEntry
RE(SectionID
, Offset
, RelType
, Value
.Addend
);
1594 if (Value
.SymbolName
)
1595 addRelocationForSymbol(RE
, Value
.SymbolName
);
1597 addRelocationForSection(RE
, Value
.SectionID
);
1599 } else if (Arch
== Triple::systemz
&&
1600 (RelType
== ELF::R_390_PLT32DBL
|| RelType
== ELF::R_390_GOTENT
)) {
1601 // Create function stubs for both PLT and GOT references, regardless of
1602 // whether the GOT reference is to data or code. The stub contains the
1603 // full address of the symbol, as needed by GOT references, and the
1604 // executable part only adds an overhead of 8 bytes.
1606 // We could try to conserve space by allocating the code and data
1607 // parts of the stub separately. However, as things stand, we allocate
1608 // a stub for every relocation, so using a GOT in JIT code should be
1609 // no less space efficient than using an explicit constant pool.
1610 LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
1611 SectionEntry
&Section
= Sections
[SectionID
];
1613 // Look for an existing stub.
1614 StubMap::const_iterator i
= Stubs
.find(Value
);
1615 uintptr_t StubAddress
;
1616 if (i
!= Stubs
.end()) {
1617 StubAddress
= uintptr_t(Section
.getAddressWithOffset(i
->second
));
1618 LLVM_DEBUG(dbgs() << " Stub function found\n");
1620 // Create a new stub function.
1621 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1623 uintptr_t BaseAddress
= uintptr_t(Section
.getAddress());
1624 uintptr_t StubAlignment
= getStubAlignment();
1626 (BaseAddress
+ Section
.getStubOffset() + StubAlignment
- 1) &
1628 unsigned StubOffset
= StubAddress
- BaseAddress
;
1630 Stubs
[Value
] = StubOffset
;
1631 createStubFunction((uint8_t *)StubAddress
);
1632 RelocationEntry
RE(SectionID
, StubOffset
+ 8, ELF::R_390_64
,
1634 if (Value
.SymbolName
)
1635 addRelocationForSymbol(RE
, Value
.SymbolName
);
1637 addRelocationForSection(RE
, Value
.SectionID
);
1638 Section
.advanceStubOffset(getMaxStubSize());
1641 if (RelType
== ELF::R_390_GOTENT
)
1642 resolveRelocation(Section
, Offset
, StubAddress
+ 8, ELF::R_390_PC32DBL
,
1645 resolveRelocation(Section
, Offset
, StubAddress
, RelType
, Addend
);
1646 } else if (Arch
== Triple::x86_64
) {
1647 if (RelType
== ELF::R_X86_64_PLT32
) {
1648 // The way the PLT relocations normally work is that the linker allocates
1650 // PLT and this relocation makes a PC-relative call into the PLT. The PLT
1651 // entry will then jump to an address provided by the GOT. On first call,
1653 // GOT address will point back into PLT code that resolves the symbol. After
1654 // the first call, the GOT entry points to the actual function.
1656 // For local functions we're ignoring all of that here and just replacing
1657 // the PLT32 relocation type with PC32, which will translate the relocation
1658 // into a PC-relative call directly to the function. For external symbols we
1659 // can't be sure the function will be within 2^32 bytes of the call site, so
1660 // we need to create a stub, which calls into the GOT. This case is
1661 // equivalent to the usual PLT implementation except that we use the stub
1662 // mechanism in RuntimeDyld (which puts stubs at the end of the section)
1663 // rather than allocating a PLT section.
1664 if (Value
.SymbolName
) {
1665 // This is a call to an external function.
1666 // Look for an existing stub.
1667 SectionEntry
&Section
= Sections
[SectionID
];
1668 StubMap::const_iterator i
= Stubs
.find(Value
);
1669 uintptr_t StubAddress
;
1670 if (i
!= Stubs
.end()) {
1671 StubAddress
= uintptr_t(Section
.getAddress()) + i
->second
;
1672 LLVM_DEBUG(dbgs() << " Stub function found\n");
1674 // Create a new stub function (equivalent to a PLT entry).
1675 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1677 uintptr_t BaseAddress
= uintptr_t(Section
.getAddress());
1678 uintptr_t StubAlignment
= getStubAlignment();
1680 (BaseAddress
+ Section
.getStubOffset() + StubAlignment
- 1) &
1682 unsigned StubOffset
= StubAddress
- BaseAddress
;
1683 Stubs
[Value
] = StubOffset
;
1684 createStubFunction((uint8_t *)StubAddress
);
1686 // Bump our stub offset counter
1687 Section
.advanceStubOffset(getMaxStubSize());
1689 // Allocate a GOT Entry
1690 uint64_t GOTOffset
= allocateGOTEntries(1);
1692 // The load of the GOT address has an addend of -4
1693 resolveGOTOffsetRelocation(SectionID
, StubOffset
+ 2, GOTOffset
- 4,
1694 ELF::R_X86_64_PC32
);
1696 // Fill in the value of the symbol we're targeting into the GOT
1697 addRelocationForSymbol(
1698 computeGOTOffsetRE(GOTOffset
, 0, ELF::R_X86_64_64
),
1702 // Make the target call a call into the stub table.
1703 resolveRelocation(Section
, Offset
, StubAddress
, ELF::R_X86_64_PC32
,
1706 RelocationEntry
RE(SectionID
, Offset
, ELF::R_X86_64_PC32
, Value
.Addend
,
1708 addRelocationForSection(RE
, Value
.SectionID
);
1710 } else if (RelType
== ELF::R_X86_64_GOTPCREL
||
1711 RelType
== ELF::R_X86_64_GOTPCRELX
||
1712 RelType
== ELF::R_X86_64_REX_GOTPCRELX
) {
1713 uint64_t GOTOffset
= allocateGOTEntries(1);
1714 resolveGOTOffsetRelocation(SectionID
, Offset
, GOTOffset
+ Addend
,
1715 ELF::R_X86_64_PC32
);
1717 // Fill in the value of the symbol we're targeting into the GOT
1718 RelocationEntry RE
=
1719 computeGOTOffsetRE(GOTOffset
, Value
.Offset
, ELF::R_X86_64_64
);
1720 if (Value
.SymbolName
)
1721 addRelocationForSymbol(RE
, Value
.SymbolName
);
1723 addRelocationForSection(RE
, Value
.SectionID
);
1724 } else if (RelType
== ELF::R_X86_64_GOT64
) {
1725 // Fill in a 64-bit GOT offset.
1726 uint64_t GOTOffset
= allocateGOTEntries(1);
1727 resolveRelocation(Sections
[SectionID
], Offset
, GOTOffset
,
1728 ELF::R_X86_64_64
, 0);
1730 // Fill in the value of the symbol we're targeting into the GOT
1731 RelocationEntry RE
=
1732 computeGOTOffsetRE(GOTOffset
, Value
.Offset
, ELF::R_X86_64_64
);
1733 if (Value
.SymbolName
)
1734 addRelocationForSymbol(RE
, Value
.SymbolName
);
1736 addRelocationForSection(RE
, Value
.SectionID
);
1737 } else if (RelType
== ELF::R_X86_64_GOTPC64
) {
1738 // Materialize the address of the base of the GOT relative to the PC.
1739 // This doesn't create a GOT entry, but it does mean we need a GOT
1741 (void)allocateGOTEntries(0);
1742 resolveGOTOffsetRelocation(SectionID
, Offset
, Addend
, ELF::R_X86_64_PC64
);
1743 } else if (RelType
== ELF::R_X86_64_GOTOFF64
) {
1744 // GOTOFF relocations ultimately require a section difference relocation.
1745 (void)allocateGOTEntries(0);
1746 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1747 } else if (RelType
== ELF::R_X86_64_PC32
) {
1748 Value
.Addend
+= support::ulittle32_t::ref(computePlaceholderAddress(SectionID
, Offset
));
1749 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1750 } else if (RelType
== ELF::R_X86_64_PC64
) {
1751 Value
.Addend
+= support::ulittle64_t::ref(computePlaceholderAddress(SectionID
, Offset
));
1752 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1754 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1757 if (Arch
== Triple::x86
) {
1758 Value
.Addend
+= support::ulittle32_t::ref(computePlaceholderAddress(SectionID
, Offset
));
1760 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1765 size_t RuntimeDyldELF::getGOTEntrySize() {
1766 // We don't use the GOT in all of these cases, but it's essentially free
1767 // to put them all here.
1770 case Triple::x86_64
:
1771 case Triple::aarch64
:
1772 case Triple::aarch64_be
:
1774 case Triple::ppc64le
:
1775 case Triple::systemz
:
1776 Result
= sizeof(uint64_t);
1781 Result
= sizeof(uint32_t);
1784 case Triple::mipsel
:
1785 case Triple::mips64
:
1786 case Triple::mips64el
:
1787 if (IsMipsO32ABI
|| IsMipsN32ABI
)
1788 Result
= sizeof(uint32_t);
1789 else if (IsMipsN64ABI
)
1790 Result
= sizeof(uint64_t);
1792 llvm_unreachable("Mips ABI not handled");
1795 llvm_unreachable("Unsupported CPU type!");
1800 uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no
) {
1801 if (GOTSectionID
== 0) {
1802 GOTSectionID
= Sections
.size();
1803 // Reserve a section id. We'll allocate the section later
1804 // once we know the total size
1805 Sections
.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
1807 uint64_t StartOffset
= CurrentGOTIndex
* getGOTEntrySize();
1808 CurrentGOTIndex
+= no
;
1812 uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef
&Value
,
1813 unsigned GOTRelType
) {
1814 auto E
= GOTOffsetMap
.insert({Value
, 0});
1816 uint64_t GOTOffset
= allocateGOTEntries(1);
1818 // Create relocation for newly created GOT entry
1819 RelocationEntry RE
=
1820 computeGOTOffsetRE(GOTOffset
, Value
.Offset
, GOTRelType
);
1821 if (Value
.SymbolName
)
1822 addRelocationForSymbol(RE
, Value
.SymbolName
);
1824 addRelocationForSection(RE
, Value
.SectionID
);
1826 E
.first
->second
= GOTOffset
;
1829 return E
.first
->second
;
1832 void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID
,
1836 // Fill in the relative address of the GOT Entry into the stub
1837 RelocationEntry
GOTRE(SectionID
, Offset
, Type
, GOTOffset
);
1838 addRelocationForSection(GOTRE
, GOTSectionID
);
1841 RelocationEntry
RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset
,
1842 uint64_t SymbolOffset
,
1844 return RelocationEntry(GOTSectionID
, GOTOffset
, Type
, SymbolOffset
);
1847 Error
RuntimeDyldELF::finalizeLoad(const ObjectFile
&Obj
,
1848 ObjSectionToIDMap
&SectionMap
) {
1850 if (!PendingRelocs
.empty())
1851 return make_error
<RuntimeDyldError
>("Can't find matching LO16 reloc");
1853 // If necessary, allocate the global offset table
1854 if (GOTSectionID
!= 0) {
1855 // Allocate memory for the section
1856 size_t TotalSize
= CurrentGOTIndex
* getGOTEntrySize();
1857 uint8_t *Addr
= MemMgr
.allocateDataSection(TotalSize
, getGOTEntrySize(),
1858 GOTSectionID
, ".got", false);
1860 return make_error
<RuntimeDyldError
>("Unable to allocate memory for GOT!");
1862 Sections
[GOTSectionID
] =
1863 SectionEntry(".got", Addr
, TotalSize
, TotalSize
, 0);
1865 // For now, initialize all GOT entries to zero. We'll fill them in as
1866 // needed when GOT-based relocations are applied.
1867 memset(Addr
, 0, TotalSize
);
1868 if (IsMipsN32ABI
|| IsMipsN64ABI
) {
1869 // To correctly resolve Mips GOT relocations, we need a mapping from
1870 // object's sections to GOTs.
1871 for (section_iterator SI
= Obj
.section_begin(), SE
= Obj
.section_end();
1873 if (SI
->relocation_begin() != SI
->relocation_end()) {
1874 section_iterator RelocatedSection
= SI
->getRelocatedSection();
1875 ObjSectionToIDMap::iterator i
= SectionMap
.find(*RelocatedSection
);
1876 assert (i
!= SectionMap
.end());
1877 SectionToGOTMap
[i
->second
] = GOTSectionID
;
1880 GOTSymbolOffsets
.clear();
1884 // Look for and record the EH frame section.
1885 ObjSectionToIDMap::iterator i
, e
;
1886 for (i
= SectionMap
.begin(), e
= SectionMap
.end(); i
!= e
; ++i
) {
1887 const SectionRef
&Section
= i
->first
;
1890 Expected
<StringRef
> NameOrErr
= Section
.getName();
1894 consumeError(NameOrErr
.takeError());
1896 if (Name
== ".eh_frame") {
1897 UnregisteredEHFrameSections
.push_back(i
->second
);
1903 CurrentGOTIndex
= 0;
1905 return Error::success();
1908 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile
&Obj
) const {
1912 bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef
&R
) const {
1913 unsigned RelTy
= R
.getType();
1914 if (Arch
== Triple::aarch64
|| Arch
== Triple::aarch64_be
)
1915 return RelTy
== ELF::R_AARCH64_ADR_GOT_PAGE
||
1916 RelTy
== ELF::R_AARCH64_LD64_GOT_LO12_NC
;
1918 if (Arch
== Triple::x86_64
)
1919 return RelTy
== ELF::R_X86_64_GOTPCREL
||
1920 RelTy
== ELF::R_X86_64_GOTPCRELX
||
1921 RelTy
== ELF::R_X86_64_GOT64
||
1922 RelTy
== ELF::R_X86_64_REX_GOTPCRELX
;
1926 bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef
&R
) const {
1927 if (Arch
!= Triple::x86_64
)
1928 return true; // Conservative answer
1930 switch (R
.getType()) {
1932 return true; // Conservative answer
1935 case ELF::R_X86_64_GOTPCREL
:
1936 case ELF::R_X86_64_GOTPCRELX
:
1937 case ELF::R_X86_64_REX_GOTPCRELX
:
1938 case ELF::R_X86_64_GOTPC64
:
1939 case ELF::R_X86_64_GOT64
:
1940 case ELF::R_X86_64_GOTOFF64
:
1941 case ELF::R_X86_64_PC32
:
1942 case ELF::R_X86_64_PC64
:
1943 case ELF::R_X86_64_64
:
1944 // We know that these reloation types won't need a stub function. This list
1945 // can be extended as needed.