Reverting back to original 1.8 version so I can manually merge in patch.
[llvm-complete.git] / lib / Analysis / ScalarEvolutionExpander.cpp
blobfd33e2fae2b1c91bdcec9aafefe208c9631b2f3d
1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution expander,
11 // which is used to generate the code corresponding to a given scalar evolution
12 // expression.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/ScalarEvolutionExpander.h"
18 using namespace llvm;
20 /// InsertCastOfTo - Insert a cast of V to the specified type, doing what
21 /// we can to share the casts.
22 Value *SCEVExpander::InsertCastOfTo(Value *V, const Type *Ty) {
23 // FIXME: keep track of the cast instruction.
24 if (Constant *C = dyn_cast<Constant>(V))
25 return ConstantExpr::getCast(C, Ty);
27 if (Argument *A = dyn_cast<Argument>(V)) {
28 // Check to see if there is already a cast!
29 for (Value::use_iterator UI = A->use_begin(), E = A->use_end();
30 UI != E; ++UI) {
31 if ((*UI)->getType() == Ty)
32 if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI))) {
33 // If the cast isn't in the first instruction of the function,
34 // move it.
35 if (BasicBlock::iterator(CI) !=
36 A->getParent()->getEntryBlock().begin()) {
37 CI->moveBefore(A->getParent()->getEntryBlock().begin());
39 return CI;
42 return new CastInst(V, Ty, V->getName(),
43 A->getParent()->getEntryBlock().begin());
46 Instruction *I = cast<Instruction>(V);
48 // Check to see if there is already a cast. If there is, use it.
49 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
50 UI != E; ++UI) {
51 if ((*UI)->getType() == Ty)
52 if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI))) {
53 BasicBlock::iterator It = I; ++It;
54 if (isa<InvokeInst>(I))
55 It = cast<InvokeInst>(I)->getNormalDest()->begin();
56 while (isa<PHINode>(It)) ++It;
57 if (It != BasicBlock::iterator(CI)) {
58 // Splice the cast immediately after the operand in question.
59 CI->moveBefore(It);
61 return CI;
64 BasicBlock::iterator IP = I; ++IP;
65 if (InvokeInst *II = dyn_cast<InvokeInst>(I))
66 IP = II->getNormalDest()->begin();
67 while (isa<PHINode>(IP)) ++IP;
68 return new CastInst(V, Ty, V->getName(), IP);
71 Value *SCEVExpander::visitMulExpr(SCEVMulExpr *S) {
72 const Type *Ty = S->getType();
73 int FirstOp = 0; // Set if we should emit a subtract.
74 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(0)))
75 if (SC->getValue()->isAllOnesValue())
76 FirstOp = 1;
78 int i = S->getNumOperands()-2;
79 Value *V = expandInTy(S->getOperand(i+1), Ty);
81 // Emit a bunch of multiply instructions
82 for (; i >= FirstOp; --i)
83 V = BinaryOperator::createMul(V, expandInTy(S->getOperand(i), Ty),
84 "tmp.", InsertPt);
85 // -1 * ... ---> 0 - ...
86 if (FirstOp == 1)
87 V = BinaryOperator::createNeg(V, "tmp.", InsertPt);
88 return V;
91 Value *SCEVExpander::visitAddRecExpr(SCEVAddRecExpr *S) {
92 const Type *Ty = S->getType();
93 const Loop *L = S->getLoop();
94 // We cannot yet do fp recurrences, e.g. the xform of {X,+,F} --> X+{0,+,F}
95 assert(Ty->isIntegral() && "Cannot expand fp recurrences yet!");
97 // {X,+,F} --> X + {0,+,F}
98 if (!isa<SCEVConstant>(S->getStart()) ||
99 !cast<SCEVConstant>(S->getStart())->getValue()->isNullValue()) {
100 Value *Start = expandInTy(S->getStart(), Ty);
101 std::vector<SCEVHandle> NewOps(S->op_begin(), S->op_end());
102 NewOps[0] = SCEVUnknown::getIntegerSCEV(0, Ty);
103 Value *Rest = expandInTy(SCEVAddRecExpr::get(NewOps, L), Ty);
105 // FIXME: look for an existing add to use.
106 return BinaryOperator::createAdd(Rest, Start, "tmp.", InsertPt);
109 // {0,+,1} --> Insert a canonical induction variable into the loop!
110 if (S->getNumOperands() == 2 &&
111 S->getOperand(1) == SCEVUnknown::getIntegerSCEV(1, Ty)) {
112 // Create and insert the PHI node for the induction variable in the
113 // specified loop.
114 BasicBlock *Header = L->getHeader();
115 PHINode *PN = new PHINode(Ty, "indvar", Header->begin());
116 PN->addIncoming(Constant::getNullValue(Ty), L->getLoopPreheader());
118 pred_iterator HPI = pred_begin(Header);
119 assert(HPI != pred_end(Header) && "Loop with zero preds???");
120 if (!L->contains(*HPI)) ++HPI;
121 assert(HPI != pred_end(Header) && L->contains(*HPI) &&
122 "No backedge in loop?");
124 // Insert a unit add instruction right before the terminator corresponding
125 // to the back-edge.
126 Constant *One = Ty->isFloatingPoint() ? (Constant*)ConstantFP::get(Ty, 1.0)
127 : ConstantInt::get(Ty, 1);
128 Instruction *Add = BinaryOperator::createAdd(PN, One, "indvar.next",
129 (*HPI)->getTerminator());
131 pred_iterator PI = pred_begin(Header);
132 if (*PI == L->getLoopPreheader())
133 ++PI;
134 PN->addIncoming(Add, *PI);
135 return PN;
138 // Get the canonical induction variable I for this loop.
139 Value *I = getOrInsertCanonicalInductionVariable(L, Ty);
141 // If this is a simple linear addrec, emit it now as a special case.
142 if (S->getNumOperands() == 2) { // {0,+,F} --> i*F
143 Value *F = expandInTy(S->getOperand(1), Ty);
145 // IF the step is by one, just return the inserted IV.
146 if (ConstantIntegral *CI = dyn_cast<ConstantIntegral>(F))
147 if (CI->getRawValue() == 1)
148 return I;
150 // If the insert point is directly inside of the loop, emit the multiply at
151 // the insert point. Otherwise, L is a loop that is a parent of the insert
152 // point loop. If we can, move the multiply to the outer most loop that it
153 // is safe to be in.
154 Instruction *MulInsertPt = InsertPt;
155 Loop *InsertPtLoop = LI.getLoopFor(MulInsertPt->getParent());
156 if (InsertPtLoop != L && InsertPtLoop &&
157 L->contains(InsertPtLoop->getHeader())) {
158 while (InsertPtLoop != L) {
159 // If we cannot hoist the multiply out of this loop, don't.
160 if (!InsertPtLoop->isLoopInvariant(F)) break;
162 // Otherwise, move the insert point to the preheader of the loop.
163 MulInsertPt = InsertPtLoop->getLoopPreheader()->getTerminator();
164 InsertPtLoop = InsertPtLoop->getParentLoop();
168 return BinaryOperator::createMul(I, F, "tmp.", MulInsertPt);
171 // If this is a chain of recurrences, turn it into a closed form, using the
172 // folders, then expandCodeFor the closed form. This allows the folders to
173 // simplify the expression without having to build a bunch of special code
174 // into this folder.
175 SCEVHandle IH = SCEVUnknown::get(I); // Get I as a "symbolic" SCEV.
177 SCEVHandle V = S->evaluateAtIteration(IH);
178 //std::cerr << "Evaluated: " << *this << "\n to: " << *V << "\n";
180 return expandInTy(V, Ty);