Reverting back to original 1.8 version so I can manually merge in patch.
[llvm-complete.git] / lib / ExecutionEngine / Interpreter / Execution.cpp
blob4104ff3636534657af1cb06f83c6defa70525f86
1 //===-- Execution.cpp - Implement code to simulate the program ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the actual instruction interpreter.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "interpreter"
15 #include "Interpreter.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/CodeGen/IntrinsicLowering.h"
20 #include "llvm/Support/GetElementPtrTypeIterator.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Support/Debug.h"
23 #include <cmath> // For fmod
24 using namespace llvm;
26 namespace {
27 Statistic<> NumDynamicInsts("lli", "Number of dynamic instructions executed");
29 Interpreter *TheEE = 0;
33 //===----------------------------------------------------------------------===//
34 // Value Manipulation code
35 //===----------------------------------------------------------------------===//
37 static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2,
38 const Type *Ty);
39 static GenericValue executeSubInst(GenericValue Src1, GenericValue Src2,
40 const Type *Ty);
41 static GenericValue executeMulInst(GenericValue Src1, GenericValue Src2,
42 const Type *Ty);
43 static GenericValue executeRemInst(GenericValue Src1, GenericValue Src2,
44 const Type *Ty);
45 static GenericValue executeDivInst(GenericValue Src1, GenericValue Src2,
46 const Type *Ty);
47 static GenericValue executeAndInst(GenericValue Src1, GenericValue Src2,
48 const Type *Ty);
49 static GenericValue executeOrInst(GenericValue Src1, GenericValue Src2,
50 const Type *Ty);
51 static GenericValue executeXorInst(GenericValue Src1, GenericValue Src2,
52 const Type *Ty);
53 static GenericValue executeSetEQInst(GenericValue Src1, GenericValue Src2,
54 const Type *Ty);
55 static GenericValue executeSetNEInst(GenericValue Src1, GenericValue Src2,
56 const Type *Ty);
57 static GenericValue executeSetLTInst(GenericValue Src1, GenericValue Src2,
58 const Type *Ty);
59 static GenericValue executeSetGTInst(GenericValue Src1, GenericValue Src2,
60 const Type *Ty);
61 static GenericValue executeSetLEInst(GenericValue Src1, GenericValue Src2,
62 const Type *Ty);
63 static GenericValue executeSetGEInst(GenericValue Src1, GenericValue Src2,
64 const Type *Ty);
65 static GenericValue executeShlInst(GenericValue Src1, GenericValue Src2,
66 const Type *Ty);
67 static GenericValue executeShrInst(GenericValue Src1, GenericValue Src2,
68 const Type *Ty);
69 static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2,
70 GenericValue Src3);
72 GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
73 ExecutionContext &SF) {
74 switch (CE->getOpcode()) {
75 case Instruction::Cast:
76 return executeCastOperation(CE->getOperand(0), CE->getType(), SF);
77 case Instruction::GetElementPtr:
78 return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE),
79 gep_type_end(CE), SF);
80 case Instruction::Add:
81 return executeAddInst(getOperandValue(CE->getOperand(0), SF),
82 getOperandValue(CE->getOperand(1), SF),
83 CE->getOperand(0)->getType());
84 case Instruction::Sub:
85 return executeSubInst(getOperandValue(CE->getOperand(0), SF),
86 getOperandValue(CE->getOperand(1), SF),
87 CE->getOperand(0)->getType());
88 case Instruction::Mul:
89 return executeMulInst(getOperandValue(CE->getOperand(0), SF),
90 getOperandValue(CE->getOperand(1), SF),
91 CE->getOperand(0)->getType());
92 case Instruction::Div:
93 return executeDivInst(getOperandValue(CE->getOperand(0), SF),
94 getOperandValue(CE->getOperand(1), SF),
95 CE->getOperand(0)->getType());
96 case Instruction::Rem:
97 return executeRemInst(getOperandValue(CE->getOperand(0), SF),
98 getOperandValue(CE->getOperand(1), SF),
99 CE->getOperand(0)->getType());
100 case Instruction::And:
101 return executeAndInst(getOperandValue(CE->getOperand(0), SF),
102 getOperandValue(CE->getOperand(1), SF),
103 CE->getOperand(0)->getType());
104 case Instruction::Or:
105 return executeOrInst(getOperandValue(CE->getOperand(0), SF),
106 getOperandValue(CE->getOperand(1), SF),
107 CE->getOperand(0)->getType());
108 case Instruction::Xor:
109 return executeXorInst(getOperandValue(CE->getOperand(0), SF),
110 getOperandValue(CE->getOperand(1), SF),
111 CE->getOperand(0)->getType());
112 case Instruction::SetEQ:
113 return executeSetEQInst(getOperandValue(CE->getOperand(0), SF),
114 getOperandValue(CE->getOperand(1), SF),
115 CE->getOperand(0)->getType());
116 case Instruction::SetNE:
117 return executeSetNEInst(getOperandValue(CE->getOperand(0), SF),
118 getOperandValue(CE->getOperand(1), SF),
119 CE->getOperand(0)->getType());
120 case Instruction::SetLE:
121 return executeSetLEInst(getOperandValue(CE->getOperand(0), SF),
122 getOperandValue(CE->getOperand(1), SF),
123 CE->getOperand(0)->getType());
124 case Instruction::SetGE:
125 return executeSetGEInst(getOperandValue(CE->getOperand(0), SF),
126 getOperandValue(CE->getOperand(1), SF),
127 CE->getOperand(0)->getType());
128 case Instruction::SetLT:
129 return executeSetLTInst(getOperandValue(CE->getOperand(0), SF),
130 getOperandValue(CE->getOperand(1), SF),
131 CE->getOperand(0)->getType());
132 case Instruction::SetGT:
133 return executeSetGTInst(getOperandValue(CE->getOperand(0), SF),
134 getOperandValue(CE->getOperand(1), SF),
135 CE->getOperand(0)->getType());
136 case Instruction::Shl:
137 return executeShlInst(getOperandValue(CE->getOperand(0), SF),
138 getOperandValue(CE->getOperand(1), SF),
139 CE->getOperand(0)->getType());
140 case Instruction::Shr:
141 return executeShrInst(getOperandValue(CE->getOperand(0), SF),
142 getOperandValue(CE->getOperand(1), SF),
143 CE->getOperand(0)->getType());
144 case Instruction::Select:
145 return executeSelectInst(getOperandValue(CE->getOperand(0), SF),
146 getOperandValue(CE->getOperand(1), SF),
147 getOperandValue(CE->getOperand(2), SF));
148 default:
149 std::cerr << "Unhandled ConstantExpr: " << *CE << "\n";
150 abort();
151 return GenericValue();
155 GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) {
156 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
157 return getConstantExprValue(CE, SF);
158 } else if (Constant *CPV = dyn_cast<Constant>(V)) {
159 return getConstantValue(CPV);
160 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
161 return PTOGV(getPointerToGlobal(GV));
162 } else {
163 return SF.Values[V];
167 static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
168 SF.Values[V] = Val;
171 void Interpreter::initializeExecutionEngine() {
172 TheEE = this;
175 //===----------------------------------------------------------------------===//
176 // Binary Instruction Implementations
177 //===----------------------------------------------------------------------===//
179 #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
180 case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; break
182 static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2,
183 const Type *Ty) {
184 GenericValue Dest;
185 switch (Ty->getTypeID()) {
186 IMPLEMENT_BINARY_OPERATOR(+, UByte);
187 IMPLEMENT_BINARY_OPERATOR(+, SByte);
188 IMPLEMENT_BINARY_OPERATOR(+, UShort);
189 IMPLEMENT_BINARY_OPERATOR(+, Short);
190 IMPLEMENT_BINARY_OPERATOR(+, UInt);
191 IMPLEMENT_BINARY_OPERATOR(+, Int);
192 IMPLEMENT_BINARY_OPERATOR(+, ULong);
193 IMPLEMENT_BINARY_OPERATOR(+, Long);
194 IMPLEMENT_BINARY_OPERATOR(+, Float);
195 IMPLEMENT_BINARY_OPERATOR(+, Double);
196 default:
197 std::cout << "Unhandled type for Add instruction: " << *Ty << "\n";
198 abort();
200 return Dest;
203 static GenericValue executeSubInst(GenericValue Src1, GenericValue Src2,
204 const Type *Ty) {
205 GenericValue Dest;
206 switch (Ty->getTypeID()) {
207 IMPLEMENT_BINARY_OPERATOR(-, UByte);
208 IMPLEMENT_BINARY_OPERATOR(-, SByte);
209 IMPLEMENT_BINARY_OPERATOR(-, UShort);
210 IMPLEMENT_BINARY_OPERATOR(-, Short);
211 IMPLEMENT_BINARY_OPERATOR(-, UInt);
212 IMPLEMENT_BINARY_OPERATOR(-, Int);
213 IMPLEMENT_BINARY_OPERATOR(-, ULong);
214 IMPLEMENT_BINARY_OPERATOR(-, Long);
215 IMPLEMENT_BINARY_OPERATOR(-, Float);
216 IMPLEMENT_BINARY_OPERATOR(-, Double);
217 default:
218 std::cout << "Unhandled type for Sub instruction: " << *Ty << "\n";
219 abort();
221 return Dest;
224 static GenericValue executeMulInst(GenericValue Src1, GenericValue Src2,
225 const Type *Ty) {
226 GenericValue Dest;
227 switch (Ty->getTypeID()) {
228 IMPLEMENT_BINARY_OPERATOR(*, UByte);
229 IMPLEMENT_BINARY_OPERATOR(*, SByte);
230 IMPLEMENT_BINARY_OPERATOR(*, UShort);
231 IMPLEMENT_BINARY_OPERATOR(*, Short);
232 IMPLEMENT_BINARY_OPERATOR(*, UInt);
233 IMPLEMENT_BINARY_OPERATOR(*, Int);
234 IMPLEMENT_BINARY_OPERATOR(*, ULong);
235 IMPLEMENT_BINARY_OPERATOR(*, Long);
236 IMPLEMENT_BINARY_OPERATOR(*, Float);
237 IMPLEMENT_BINARY_OPERATOR(*, Double);
238 default:
239 std::cout << "Unhandled type for Mul instruction: " << *Ty << "\n";
240 abort();
242 return Dest;
245 static GenericValue executeDivInst(GenericValue Src1, GenericValue Src2,
246 const Type *Ty) {
247 GenericValue Dest;
248 switch (Ty->getTypeID()) {
249 IMPLEMENT_BINARY_OPERATOR(/, UByte);
250 IMPLEMENT_BINARY_OPERATOR(/, SByte);
251 IMPLEMENT_BINARY_OPERATOR(/, UShort);
252 IMPLEMENT_BINARY_OPERATOR(/, Short);
253 IMPLEMENT_BINARY_OPERATOR(/, UInt);
254 IMPLEMENT_BINARY_OPERATOR(/, Int);
255 IMPLEMENT_BINARY_OPERATOR(/, ULong);
256 IMPLEMENT_BINARY_OPERATOR(/, Long);
257 IMPLEMENT_BINARY_OPERATOR(/, Float);
258 IMPLEMENT_BINARY_OPERATOR(/, Double);
259 default:
260 std::cout << "Unhandled type for Div instruction: " << *Ty << "\n";
261 abort();
263 return Dest;
266 static GenericValue executeRemInst(GenericValue Src1, GenericValue Src2,
267 const Type *Ty) {
268 GenericValue Dest;
269 switch (Ty->getTypeID()) {
270 IMPLEMENT_BINARY_OPERATOR(%, UByte);
271 IMPLEMENT_BINARY_OPERATOR(%, SByte);
272 IMPLEMENT_BINARY_OPERATOR(%, UShort);
273 IMPLEMENT_BINARY_OPERATOR(%, Short);
274 IMPLEMENT_BINARY_OPERATOR(%, UInt);
275 IMPLEMENT_BINARY_OPERATOR(%, Int);
276 IMPLEMENT_BINARY_OPERATOR(%, ULong);
277 IMPLEMENT_BINARY_OPERATOR(%, Long);
278 case Type::FloatTyID:
279 Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
280 break;
281 case Type::DoubleTyID:
282 Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
283 break;
284 default:
285 std::cout << "Unhandled type for Rem instruction: " << *Ty << "\n";
286 abort();
288 return Dest;
291 static GenericValue executeAndInst(GenericValue Src1, GenericValue Src2,
292 const Type *Ty) {
293 GenericValue Dest;
294 switch (Ty->getTypeID()) {
295 IMPLEMENT_BINARY_OPERATOR(&, Bool);
296 IMPLEMENT_BINARY_OPERATOR(&, UByte);
297 IMPLEMENT_BINARY_OPERATOR(&, SByte);
298 IMPLEMENT_BINARY_OPERATOR(&, UShort);
299 IMPLEMENT_BINARY_OPERATOR(&, Short);
300 IMPLEMENT_BINARY_OPERATOR(&, UInt);
301 IMPLEMENT_BINARY_OPERATOR(&, Int);
302 IMPLEMENT_BINARY_OPERATOR(&, ULong);
303 IMPLEMENT_BINARY_OPERATOR(&, Long);
304 default:
305 std::cout << "Unhandled type for And instruction: " << *Ty << "\n";
306 abort();
308 return Dest;
311 static GenericValue executeOrInst(GenericValue Src1, GenericValue Src2,
312 const Type *Ty) {
313 GenericValue Dest;
314 switch (Ty->getTypeID()) {
315 IMPLEMENT_BINARY_OPERATOR(|, Bool);
316 IMPLEMENT_BINARY_OPERATOR(|, UByte);
317 IMPLEMENT_BINARY_OPERATOR(|, SByte);
318 IMPLEMENT_BINARY_OPERATOR(|, UShort);
319 IMPLEMENT_BINARY_OPERATOR(|, Short);
320 IMPLEMENT_BINARY_OPERATOR(|, UInt);
321 IMPLEMENT_BINARY_OPERATOR(|, Int);
322 IMPLEMENT_BINARY_OPERATOR(|, ULong);
323 IMPLEMENT_BINARY_OPERATOR(|, Long);
324 default:
325 std::cout << "Unhandled type for Or instruction: " << *Ty << "\n";
326 abort();
328 return Dest;
331 static GenericValue executeXorInst(GenericValue Src1, GenericValue Src2,
332 const Type *Ty) {
333 GenericValue Dest;
334 switch (Ty->getTypeID()) {
335 IMPLEMENT_BINARY_OPERATOR(^, Bool);
336 IMPLEMENT_BINARY_OPERATOR(^, UByte);
337 IMPLEMENT_BINARY_OPERATOR(^, SByte);
338 IMPLEMENT_BINARY_OPERATOR(^, UShort);
339 IMPLEMENT_BINARY_OPERATOR(^, Short);
340 IMPLEMENT_BINARY_OPERATOR(^, UInt);
341 IMPLEMENT_BINARY_OPERATOR(^, Int);
342 IMPLEMENT_BINARY_OPERATOR(^, ULong);
343 IMPLEMENT_BINARY_OPERATOR(^, Long);
344 default:
345 std::cout << "Unhandled type for Xor instruction: " << *Ty << "\n";
346 abort();
348 return Dest;
351 #define IMPLEMENT_SETCC(OP, TY) \
352 case Type::TY##TyID: Dest.BoolVal = Src1.TY##Val OP Src2.TY##Val; break
354 // Handle pointers specially because they must be compared with only as much
355 // width as the host has. We _do not_ want to be comparing 64 bit values when
356 // running on a 32-bit target, otherwise the upper 32 bits might mess up
357 // comparisons if they contain garbage.
358 #define IMPLEMENT_POINTERSETCC(OP) \
359 case Type::PointerTyID: \
360 Dest.BoolVal = (void*)(intptr_t)Src1.PointerVal OP \
361 (void*)(intptr_t)Src2.PointerVal; break
363 static GenericValue executeSetEQInst(GenericValue Src1, GenericValue Src2,
364 const Type *Ty) {
365 GenericValue Dest;
366 switch (Ty->getTypeID()) {
367 IMPLEMENT_SETCC(==, UByte);
368 IMPLEMENT_SETCC(==, SByte);
369 IMPLEMENT_SETCC(==, UShort);
370 IMPLEMENT_SETCC(==, Short);
371 IMPLEMENT_SETCC(==, UInt);
372 IMPLEMENT_SETCC(==, Int);
373 IMPLEMENT_SETCC(==, ULong);
374 IMPLEMENT_SETCC(==, Long);
375 IMPLEMENT_SETCC(==, Float);
376 IMPLEMENT_SETCC(==, Double);
377 IMPLEMENT_POINTERSETCC(==);
378 default:
379 std::cout << "Unhandled type for SetEQ instruction: " << *Ty << "\n";
380 abort();
382 return Dest;
385 static GenericValue executeSetNEInst(GenericValue Src1, GenericValue Src2,
386 const Type *Ty) {
387 GenericValue Dest;
388 switch (Ty->getTypeID()) {
389 IMPLEMENT_SETCC(!=, UByte);
390 IMPLEMENT_SETCC(!=, SByte);
391 IMPLEMENT_SETCC(!=, UShort);
392 IMPLEMENT_SETCC(!=, Short);
393 IMPLEMENT_SETCC(!=, UInt);
394 IMPLEMENT_SETCC(!=, Int);
395 IMPLEMENT_SETCC(!=, ULong);
396 IMPLEMENT_SETCC(!=, Long);
397 IMPLEMENT_SETCC(!=, Float);
398 IMPLEMENT_SETCC(!=, Double);
399 IMPLEMENT_POINTERSETCC(!=);
401 default:
402 std::cout << "Unhandled type for SetNE instruction: " << *Ty << "\n";
403 abort();
405 return Dest;
408 static GenericValue executeSetLEInst(GenericValue Src1, GenericValue Src2,
409 const Type *Ty) {
410 GenericValue Dest;
411 switch (Ty->getTypeID()) {
412 IMPLEMENT_SETCC(<=, UByte);
413 IMPLEMENT_SETCC(<=, SByte);
414 IMPLEMENT_SETCC(<=, UShort);
415 IMPLEMENT_SETCC(<=, Short);
416 IMPLEMENT_SETCC(<=, UInt);
417 IMPLEMENT_SETCC(<=, Int);
418 IMPLEMENT_SETCC(<=, ULong);
419 IMPLEMENT_SETCC(<=, Long);
420 IMPLEMENT_SETCC(<=, Float);
421 IMPLEMENT_SETCC(<=, Double);
422 IMPLEMENT_POINTERSETCC(<=);
423 default:
424 std::cout << "Unhandled type for SetLE instruction: " << *Ty << "\n";
425 abort();
427 return Dest;
430 static GenericValue executeSetGEInst(GenericValue Src1, GenericValue Src2,
431 const Type *Ty) {
432 GenericValue Dest;
433 switch (Ty->getTypeID()) {
434 IMPLEMENT_SETCC(>=, UByte);
435 IMPLEMENT_SETCC(>=, SByte);
436 IMPLEMENT_SETCC(>=, UShort);
437 IMPLEMENT_SETCC(>=, Short);
438 IMPLEMENT_SETCC(>=, UInt);
439 IMPLEMENT_SETCC(>=, Int);
440 IMPLEMENT_SETCC(>=, ULong);
441 IMPLEMENT_SETCC(>=, Long);
442 IMPLEMENT_SETCC(>=, Float);
443 IMPLEMENT_SETCC(>=, Double);
444 IMPLEMENT_POINTERSETCC(>=);
445 default:
446 std::cout << "Unhandled type for SetGE instruction: " << *Ty << "\n";
447 abort();
449 return Dest;
452 static GenericValue executeSetLTInst(GenericValue Src1, GenericValue Src2,
453 const Type *Ty) {
454 GenericValue Dest;
455 switch (Ty->getTypeID()) {
456 IMPLEMENT_SETCC(<, UByte);
457 IMPLEMENT_SETCC(<, SByte);
458 IMPLEMENT_SETCC(<, UShort);
459 IMPLEMENT_SETCC(<, Short);
460 IMPLEMENT_SETCC(<, UInt);
461 IMPLEMENT_SETCC(<, Int);
462 IMPLEMENT_SETCC(<, ULong);
463 IMPLEMENT_SETCC(<, Long);
464 IMPLEMENT_SETCC(<, Float);
465 IMPLEMENT_SETCC(<, Double);
466 IMPLEMENT_POINTERSETCC(<);
467 default:
468 std::cout << "Unhandled type for SetLT instruction: " << *Ty << "\n";
469 abort();
471 return Dest;
474 static GenericValue executeSetGTInst(GenericValue Src1, GenericValue Src2,
475 const Type *Ty) {
476 GenericValue Dest;
477 switch (Ty->getTypeID()) {
478 IMPLEMENT_SETCC(>, UByte);
479 IMPLEMENT_SETCC(>, SByte);
480 IMPLEMENT_SETCC(>, UShort);
481 IMPLEMENT_SETCC(>, Short);
482 IMPLEMENT_SETCC(>, UInt);
483 IMPLEMENT_SETCC(>, Int);
484 IMPLEMENT_SETCC(>, ULong);
485 IMPLEMENT_SETCC(>, Long);
486 IMPLEMENT_SETCC(>, Float);
487 IMPLEMENT_SETCC(>, Double);
488 IMPLEMENT_POINTERSETCC(>);
489 default:
490 std::cout << "Unhandled type for SetGT instruction: " << *Ty << "\n";
491 abort();
493 return Dest;
496 void Interpreter::visitBinaryOperator(BinaryOperator &I) {
497 ExecutionContext &SF = ECStack.back();
498 const Type *Ty = I.getOperand(0)->getType();
499 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
500 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
501 GenericValue R; // Result
503 switch (I.getOpcode()) {
504 case Instruction::Add: R = executeAddInst (Src1, Src2, Ty); break;
505 case Instruction::Sub: R = executeSubInst (Src1, Src2, Ty); break;
506 case Instruction::Mul: R = executeMulInst (Src1, Src2, Ty); break;
507 case Instruction::Div: R = executeDivInst (Src1, Src2, Ty); break;
508 case Instruction::Rem: R = executeRemInst (Src1, Src2, Ty); break;
509 case Instruction::And: R = executeAndInst (Src1, Src2, Ty); break;
510 case Instruction::Or: R = executeOrInst (Src1, Src2, Ty); break;
511 case Instruction::Xor: R = executeXorInst (Src1, Src2, Ty); break;
512 case Instruction::SetEQ: R = executeSetEQInst(Src1, Src2, Ty); break;
513 case Instruction::SetNE: R = executeSetNEInst(Src1, Src2, Ty); break;
514 case Instruction::SetLE: R = executeSetLEInst(Src1, Src2, Ty); break;
515 case Instruction::SetGE: R = executeSetGEInst(Src1, Src2, Ty); break;
516 case Instruction::SetLT: R = executeSetLTInst(Src1, Src2, Ty); break;
517 case Instruction::SetGT: R = executeSetGTInst(Src1, Src2, Ty); break;
518 default:
519 std::cout << "Don't know how to handle this binary operator!\n-->" << I;
520 abort();
523 SetValue(&I, R, SF);
526 static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2,
527 GenericValue Src3) {
528 return Src1.BoolVal ? Src2 : Src3;
531 void Interpreter::visitSelectInst(SelectInst &I) {
532 ExecutionContext &SF = ECStack.back();
533 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
534 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
535 GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
536 GenericValue R = executeSelectInst(Src1, Src2, Src3);
537 SetValue(&I, R, SF);
541 //===----------------------------------------------------------------------===//
542 // Terminator Instruction Implementations
543 //===----------------------------------------------------------------------===//
545 void Interpreter::exitCalled(GenericValue GV) {
546 // runAtExitHandlers() assumes there are no stack frames, but
547 // if exit() was called, then it had a stack frame. Blow away
548 // the stack before interpreting atexit handlers.
549 ECStack.clear ();
550 runAtExitHandlers ();
551 exit (GV.IntVal);
554 /// Pop the last stack frame off of ECStack and then copy the result
555 /// back into the result variable if we are not returning void. The
556 /// result variable may be the ExitValue, or the Value of the calling
557 /// CallInst if there was a previous stack frame. This method may
558 /// invalidate any ECStack iterators you have. This method also takes
559 /// care of switching to the normal destination BB, if we are returning
560 /// from an invoke.
562 void Interpreter::popStackAndReturnValueToCaller (const Type *RetTy,
563 GenericValue Result) {
564 // Pop the current stack frame.
565 ECStack.pop_back();
567 if (ECStack.empty()) { // Finished main. Put result into exit code...
568 if (RetTy && RetTy->isIntegral()) { // Nonvoid return type?
569 ExitValue = Result; // Capture the exit value of the program
570 } else {
571 memset(&ExitValue, 0, sizeof(ExitValue));
573 } else {
574 // If we have a previous stack frame, and we have a previous call,
575 // fill in the return value...
576 ExecutionContext &CallingSF = ECStack.back();
577 if (Instruction *I = CallingSF.Caller.getInstruction()) {
578 if (CallingSF.Caller.getType() != Type::VoidTy) // Save result...
579 SetValue(I, Result, CallingSF);
580 if (InvokeInst *II = dyn_cast<InvokeInst> (I))
581 SwitchToNewBasicBlock (II->getNormalDest (), CallingSF);
582 CallingSF.Caller = CallSite(); // We returned from the call...
587 void Interpreter::visitReturnInst(ReturnInst &I) {
588 ExecutionContext &SF = ECStack.back();
589 const Type *RetTy = Type::VoidTy;
590 GenericValue Result;
592 // Save away the return value... (if we are not 'ret void')
593 if (I.getNumOperands()) {
594 RetTy = I.getReturnValue()->getType();
595 Result = getOperandValue(I.getReturnValue(), SF);
598 popStackAndReturnValueToCaller(RetTy, Result);
601 void Interpreter::visitUnwindInst(UnwindInst &I) {
602 // Unwind stack
603 Instruction *Inst;
604 do {
605 ECStack.pop_back ();
606 if (ECStack.empty ())
607 abort ();
608 Inst = ECStack.back ().Caller.getInstruction ();
609 } while (!(Inst && isa<InvokeInst> (Inst)));
611 // Return from invoke
612 ExecutionContext &InvokingSF = ECStack.back ();
613 InvokingSF.Caller = CallSite ();
615 // Go to exceptional destination BB of invoke instruction
616 SwitchToNewBasicBlock(cast<InvokeInst>(Inst)->getUnwindDest(), InvokingSF);
619 void Interpreter::visitUnreachableInst(UnreachableInst &I) {
620 std::cerr << "ERROR: Program executed an 'unreachable' instruction!\n";
621 abort();
624 void Interpreter::visitBranchInst(BranchInst &I) {
625 ExecutionContext &SF = ECStack.back();
626 BasicBlock *Dest;
628 Dest = I.getSuccessor(0); // Uncond branches have a fixed dest...
629 if (!I.isUnconditional()) {
630 Value *Cond = I.getCondition();
631 if (getOperandValue(Cond, SF).BoolVal == 0) // If false cond...
632 Dest = I.getSuccessor(1);
634 SwitchToNewBasicBlock(Dest, SF);
637 void Interpreter::visitSwitchInst(SwitchInst &I) {
638 ExecutionContext &SF = ECStack.back();
639 GenericValue CondVal = getOperandValue(I.getOperand(0), SF);
640 const Type *ElTy = I.getOperand(0)->getType();
642 // Check to see if any of the cases match...
643 BasicBlock *Dest = 0;
644 for (unsigned i = 2, e = I.getNumOperands(); i != e; i += 2)
645 if (executeSetEQInst(CondVal,
646 getOperandValue(I.getOperand(i), SF), ElTy).BoolVal) {
647 Dest = cast<BasicBlock>(I.getOperand(i+1));
648 break;
651 if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default
652 SwitchToNewBasicBlock(Dest, SF);
655 // SwitchToNewBasicBlock - This method is used to jump to a new basic block.
656 // This function handles the actual updating of block and instruction iterators
657 // as well as execution of all of the PHI nodes in the destination block.
659 // This method does this because all of the PHI nodes must be executed
660 // atomically, reading their inputs before any of the results are updated. Not
661 // doing this can cause problems if the PHI nodes depend on other PHI nodes for
662 // their inputs. If the input PHI node is updated before it is read, incorrect
663 // results can happen. Thus we use a two phase approach.
665 void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
666 BasicBlock *PrevBB = SF.CurBB; // Remember where we came from...
667 SF.CurBB = Dest; // Update CurBB to branch destination
668 SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr...
670 if (!isa<PHINode>(SF.CurInst)) return; // Nothing fancy to do
672 // Loop over all of the PHI nodes in the current block, reading their inputs.
673 std::vector<GenericValue> ResultValues;
675 for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) {
676 // Search for the value corresponding to this previous bb...
677 int i = PN->getBasicBlockIndex(PrevBB);
678 assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
679 Value *IncomingValue = PN->getIncomingValue(i);
681 // Save the incoming value for this PHI node...
682 ResultValues.push_back(getOperandValue(IncomingValue, SF));
685 // Now loop over all of the PHI nodes setting their values...
686 SF.CurInst = SF.CurBB->begin();
687 for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) {
688 PHINode *PN = cast<PHINode>(SF.CurInst);
689 SetValue(PN, ResultValues[i], SF);
693 //===----------------------------------------------------------------------===//
694 // Memory Instruction Implementations
695 //===----------------------------------------------------------------------===//
697 void Interpreter::visitAllocationInst(AllocationInst &I) {
698 ExecutionContext &SF = ECStack.back();
700 const Type *Ty = I.getType()->getElementType(); // Type to be allocated
702 // Get the number of elements being allocated by the array...
703 unsigned NumElements = getOperandValue(I.getOperand(0), SF).UIntVal;
705 // Allocate enough memory to hold the type...
706 void *Memory = malloc(NumElements * (size_t)TD.getTypeSize(Ty));
708 GenericValue Result = PTOGV(Memory);
709 assert(Result.PointerVal != 0 && "Null pointer returned by malloc!");
710 SetValue(&I, Result, SF);
712 if (I.getOpcode() == Instruction::Alloca)
713 ECStack.back().Allocas.add(Memory);
716 void Interpreter::visitFreeInst(FreeInst &I) {
717 ExecutionContext &SF = ECStack.back();
718 assert(isa<PointerType>(I.getOperand(0)->getType()) && "Freeing nonptr?");
719 GenericValue Value = getOperandValue(I.getOperand(0), SF);
720 // TODO: Check to make sure memory is allocated
721 free(GVTOP(Value)); // Free memory
724 // getElementOffset - The workhorse for getelementptr.
726 GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I,
727 gep_type_iterator E,
728 ExecutionContext &SF) {
729 assert(isa<PointerType>(Ptr->getType()) &&
730 "Cannot getElementOffset of a nonpointer type!");
732 PointerTy Total = 0;
734 for (; I != E; ++I) {
735 if (const StructType *STy = dyn_cast<StructType>(*I)) {
736 const StructLayout *SLO = TD.getStructLayout(STy);
738 const ConstantUInt *CPU = cast<ConstantUInt>(I.getOperand());
739 unsigned Index = unsigned(CPU->getValue());
741 Total += (PointerTy)SLO->MemberOffsets[Index];
742 } else {
743 const SequentialType *ST = cast<SequentialType>(*I);
744 // Get the index number for the array... which must be long type...
745 GenericValue IdxGV = getOperandValue(I.getOperand(), SF);
747 uint64_t Idx;
748 switch (I.getOperand()->getType()->getTypeID()) {
749 default: assert(0 && "Illegal getelementptr index for sequential type!");
750 case Type::SByteTyID: Idx = IdxGV.SByteVal; break;
751 case Type::ShortTyID: Idx = IdxGV.ShortVal; break;
752 case Type::IntTyID: Idx = IdxGV.IntVal; break;
753 case Type::LongTyID: Idx = IdxGV.LongVal; break;
754 case Type::UByteTyID: Idx = IdxGV.UByteVal; break;
755 case Type::UShortTyID: Idx = IdxGV.UShortVal; break;
756 case Type::UIntTyID: Idx = IdxGV.UIntVal; break;
757 case Type::ULongTyID: Idx = IdxGV.ULongVal; break;
759 Total += PointerTy(TD.getTypeSize(ST->getElementType())*Idx);
763 GenericValue Result;
764 Result.PointerVal = getOperandValue(Ptr, SF).PointerVal + Total;
765 return Result;
768 void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) {
769 ExecutionContext &SF = ECStack.back();
770 SetValue(&I, TheEE->executeGEPOperation(I.getPointerOperand(),
771 gep_type_begin(I), gep_type_end(I), SF), SF);
774 void Interpreter::visitLoadInst(LoadInst &I) {
775 ExecutionContext &SF = ECStack.back();
776 GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
777 GenericValue *Ptr = (GenericValue*)GVTOP(SRC);
778 GenericValue Result = LoadValueFromMemory(Ptr, I.getType());
779 SetValue(&I, Result, SF);
782 void Interpreter::visitStoreInst(StoreInst &I) {
783 ExecutionContext &SF = ECStack.back();
784 GenericValue Val = getOperandValue(I.getOperand(0), SF);
785 GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
786 StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
787 I.getOperand(0)->getType());
790 //===----------------------------------------------------------------------===//
791 // Miscellaneous Instruction Implementations
792 //===----------------------------------------------------------------------===//
794 void Interpreter::visitCallSite(CallSite CS) {
795 ExecutionContext &SF = ECStack.back();
797 // Check to see if this is an intrinsic function call...
798 if (Function *F = CS.getCalledFunction())
799 if (F->isExternal ())
800 switch (F->getIntrinsicID()) {
801 case Intrinsic::not_intrinsic:
802 break;
803 case Intrinsic::vastart: { // va_start
804 GenericValue ArgIndex;
805 ArgIndex.UIntPairVal.first = ECStack.size() - 1;
806 ArgIndex.UIntPairVal.second = 0;
807 SetValue(CS.getInstruction(), ArgIndex, SF);
808 return;
810 case Intrinsic::vaend: // va_end is a noop for the interpreter
811 return;
812 case Intrinsic::vacopy: // va_copy: dest = src
813 SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF);
814 return;
815 default:
816 // If it is an unknown intrinsic function, use the intrinsic lowering
817 // class to transform it into hopefully tasty LLVM code.
819 Instruction *Prev = CS.getInstruction()->getPrev();
820 BasicBlock *Parent = CS.getInstruction()->getParent();
821 IL->LowerIntrinsicCall(cast<CallInst>(CS.getInstruction()));
823 // Restore the CurInst pointer to the first instruction newly inserted, if
824 // any.
825 if (!Prev) {
826 SF.CurInst = Parent->begin();
827 } else {
828 SF.CurInst = Prev;
829 ++SF.CurInst;
831 return;
834 SF.Caller = CS;
835 std::vector<GenericValue> ArgVals;
836 const unsigned NumArgs = SF.Caller.arg_size();
837 ArgVals.reserve(NumArgs);
838 for (CallSite::arg_iterator i = SF.Caller.arg_begin(),
839 e = SF.Caller.arg_end(); i != e; ++i) {
840 Value *V = *i;
841 ArgVals.push_back(getOperandValue(V, SF));
842 // Promote all integral types whose size is < sizeof(int) into ints. We do
843 // this by zero or sign extending the value as appropriate according to the
844 // source type.
845 const Type *Ty = V->getType();
846 if (Ty->isIntegral() && Ty->getPrimitiveSize() < 4) {
847 if (Ty == Type::ShortTy)
848 ArgVals.back().IntVal = ArgVals.back().ShortVal;
849 else if (Ty == Type::UShortTy)
850 ArgVals.back().UIntVal = ArgVals.back().UShortVal;
851 else if (Ty == Type::SByteTy)
852 ArgVals.back().IntVal = ArgVals.back().SByteVal;
853 else if (Ty == Type::UByteTy)
854 ArgVals.back().UIntVal = ArgVals.back().UByteVal;
855 else if (Ty == Type::BoolTy)
856 ArgVals.back().UIntVal = ArgVals.back().BoolVal;
857 else
858 assert(0 && "Unknown type!");
862 // To handle indirect calls, we must get the pointer value from the argument
863 // and treat it as a function pointer.
864 GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF);
865 callFunction((Function*)GVTOP(SRC), ArgVals);
868 #define IMPLEMENT_SHIFT(OP, TY) \
869 case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.UByteVal; break
871 static GenericValue executeShlInst(GenericValue Src1, GenericValue Src2,
872 const Type *Ty) {
873 GenericValue Dest;
874 switch (Ty->getTypeID()) {
875 IMPLEMENT_SHIFT(<<, UByte);
876 IMPLEMENT_SHIFT(<<, SByte);
877 IMPLEMENT_SHIFT(<<, UShort);
878 IMPLEMENT_SHIFT(<<, Short);
879 IMPLEMENT_SHIFT(<<, UInt);
880 IMPLEMENT_SHIFT(<<, Int);
881 IMPLEMENT_SHIFT(<<, ULong);
882 IMPLEMENT_SHIFT(<<, Long);
883 default:
884 std::cout << "Unhandled type for Shl instruction: " << *Ty << "\n";
886 return Dest;
889 static GenericValue executeShrInst(GenericValue Src1, GenericValue Src2,
890 const Type *Ty) {
891 GenericValue Dest;
892 switch (Ty->getTypeID()) {
893 IMPLEMENT_SHIFT(>>, UByte);
894 IMPLEMENT_SHIFT(>>, SByte);
895 IMPLEMENT_SHIFT(>>, UShort);
896 IMPLEMENT_SHIFT(>>, Short);
897 IMPLEMENT_SHIFT(>>, UInt);
898 IMPLEMENT_SHIFT(>>, Int);
899 IMPLEMENT_SHIFT(>>, ULong);
900 IMPLEMENT_SHIFT(>>, Long);
901 default:
902 std::cout << "Unhandled type for Shr instruction: " << *Ty << "\n";
903 abort();
905 return Dest;
908 void Interpreter::visitShl(ShiftInst &I) {
909 ExecutionContext &SF = ECStack.back();
910 const Type *Ty = I.getOperand(0)->getType();
911 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
912 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
913 GenericValue Dest;
914 Dest = executeShlInst (Src1, Src2, Ty);
915 SetValue(&I, Dest, SF);
918 void Interpreter::visitShr(ShiftInst &I) {
919 ExecutionContext &SF = ECStack.back();
920 const Type *Ty = I.getOperand(0)->getType();
921 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
922 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
923 GenericValue Dest;
924 Dest = executeShrInst (Src1, Src2, Ty);
925 SetValue(&I, Dest, SF);
928 #define IMPLEMENT_CAST(DTY, DCTY, STY) \
929 case Type::STY##TyID: Dest.DTY##Val = DCTY Src.STY##Val; break;
931 #define IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY) \
932 case Type::DESTTY##TyID: \
933 switch (SrcTy->getTypeID()) { \
934 IMPLEMENT_CAST(DESTTY, DESTCTY, Bool); \
935 IMPLEMENT_CAST(DESTTY, DESTCTY, UByte); \
936 IMPLEMENT_CAST(DESTTY, DESTCTY, SByte); \
937 IMPLEMENT_CAST(DESTTY, DESTCTY, UShort); \
938 IMPLEMENT_CAST(DESTTY, DESTCTY, Short); \
939 IMPLEMENT_CAST(DESTTY, DESTCTY, UInt); \
940 IMPLEMENT_CAST(DESTTY, DESTCTY, Int); \
941 IMPLEMENT_CAST(DESTTY, DESTCTY, ULong); \
942 IMPLEMENT_CAST(DESTTY, DESTCTY, Long); \
943 IMPLEMENT_CAST(DESTTY, DESTCTY, Pointer);
945 #define IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY) \
946 IMPLEMENT_CAST(DESTTY, DESTCTY, Float); \
947 IMPLEMENT_CAST(DESTTY, DESTCTY, Double)
949 #define IMPLEMENT_CAST_CASE_END() \
950 default: std::cout << "Unhandled cast: " << *SrcTy << " to " << *Ty << "\n"; \
951 abort(); \
953 break
955 #define IMPLEMENT_CAST_CASE(DESTTY, DESTCTY) \
956 IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY); \
957 IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY); \
958 IMPLEMENT_CAST_CASE_END()
960 GenericValue Interpreter::executeCastOperation(Value *SrcVal, const Type *Ty,
961 ExecutionContext &SF) {
962 const Type *SrcTy = SrcVal->getType();
963 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
965 switch (Ty->getTypeID()) {
966 IMPLEMENT_CAST_CASE(UByte , (unsigned char));
967 IMPLEMENT_CAST_CASE(SByte , ( signed char));
968 IMPLEMENT_CAST_CASE(UShort , (unsigned short));
969 IMPLEMENT_CAST_CASE(Short , ( signed short));
970 IMPLEMENT_CAST_CASE(UInt , (unsigned int ));
971 IMPLEMENT_CAST_CASE(Int , ( signed int ));
972 IMPLEMENT_CAST_CASE(ULong , (uint64_t));
973 IMPLEMENT_CAST_CASE(Long , ( int64_t));
974 IMPLEMENT_CAST_CASE(Pointer, (PointerTy));
975 IMPLEMENT_CAST_CASE(Float , (float));
976 IMPLEMENT_CAST_CASE(Double , (double));
977 IMPLEMENT_CAST_CASE(Bool , (bool));
978 default:
979 std::cout << "Unhandled dest type for cast instruction: " << *Ty << "\n";
980 abort();
983 return Dest;
986 void Interpreter::visitCastInst(CastInst &I) {
987 ExecutionContext &SF = ECStack.back();
988 SetValue(&I, executeCastOperation(I.getOperand(0), I.getType(), SF), SF);
991 #define IMPLEMENT_VAARG(TY) \
992 case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break
994 void Interpreter::visitVAArgInst(VAArgInst &I) {
995 ExecutionContext &SF = ECStack.back();
997 // Get the incoming valist parameter. LLI treats the valist as a
998 // (ec-stack-depth var-arg-index) pair.
999 GenericValue VAList = getOperandValue(I.getOperand(0), SF);
1000 GenericValue Dest;
1001 GenericValue Src = ECStack[VAList.UIntPairVal.first]
1002 .VarArgs[VAList.UIntPairVal.second];
1003 const Type *Ty = I.getType();
1004 switch (Ty->getTypeID()) {
1005 IMPLEMENT_VAARG(UByte);
1006 IMPLEMENT_VAARG(SByte);
1007 IMPLEMENT_VAARG(UShort);
1008 IMPLEMENT_VAARG(Short);
1009 IMPLEMENT_VAARG(UInt);
1010 IMPLEMENT_VAARG(Int);
1011 IMPLEMENT_VAARG(ULong);
1012 IMPLEMENT_VAARG(Long);
1013 IMPLEMENT_VAARG(Pointer);
1014 IMPLEMENT_VAARG(Float);
1015 IMPLEMENT_VAARG(Double);
1016 IMPLEMENT_VAARG(Bool);
1017 default:
1018 std::cout << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
1019 abort();
1022 // Set the Value of this Instruction.
1023 SetValue(&I, Dest, SF);
1025 // Move the pointer to the next vararg.
1026 ++VAList.UIntPairVal.second;
1029 //===----------------------------------------------------------------------===//
1030 // Dispatch and Execution Code
1031 //===----------------------------------------------------------------------===//
1033 //===----------------------------------------------------------------------===//
1034 // callFunction - Execute the specified function...
1036 void Interpreter::callFunction(Function *F,
1037 const std::vector<GenericValue> &ArgVals) {
1038 assert((ECStack.empty() || ECStack.back().Caller.getInstruction() == 0 ||
1039 ECStack.back().Caller.arg_size() == ArgVals.size()) &&
1040 "Incorrect number of arguments passed into function call!");
1041 // Make a new stack frame... and fill it in.
1042 ECStack.push_back(ExecutionContext());
1043 ExecutionContext &StackFrame = ECStack.back();
1044 StackFrame.CurFunction = F;
1046 // Special handling for external functions.
1047 if (F->isExternal()) {
1048 GenericValue Result = callExternalFunction (F, ArgVals);
1049 // Simulate a 'ret' instruction of the appropriate type.
1050 popStackAndReturnValueToCaller (F->getReturnType (), Result);
1051 return;
1054 // Get pointers to first LLVM BB & Instruction in function.
1055 StackFrame.CurBB = F->begin();
1056 StackFrame.CurInst = StackFrame.CurBB->begin();
1058 // Run through the function arguments and initialize their values...
1059 assert((ArgVals.size() == F->arg_size() ||
1060 (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&&
1061 "Invalid number of values passed to function invocation!");
1063 // Handle non-varargs arguments...
1064 unsigned i = 0;
1065 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; ++AI, ++i)
1066 SetValue(AI, ArgVals[i], StackFrame);
1068 // Handle varargs arguments...
1069 StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());
1072 void Interpreter::run() {
1073 while (!ECStack.empty()) {
1074 // Interpret a single instruction & increment the "PC".
1075 ExecutionContext &SF = ECStack.back(); // Current stack frame
1076 Instruction &I = *SF.CurInst++; // Increment before execute
1078 // Track the number of dynamic instructions executed.
1079 ++NumDynamicInsts;
1081 DEBUG(std::cerr << "About to interpret: " << I);
1082 visit(I); // Dispatch to one of the visit* methods...