1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the primary stateless implementation of the
10 // Alias Analysis interface that implements identities (two different
11 // globals cannot alias, etc), but does no stateful analysis.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Analysis/BasicAliasAnalysis.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/Analysis/CaptureTracking.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/PhiValues.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GetElementPtrTypeIterator.h"
40 #include "llvm/IR/GlobalAlias.h"
41 #include "llvm/IR/GlobalVariable.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/Operator.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Compiler.h"
56 #include "llvm/Support/KnownBits.h"
62 #define DEBUG_TYPE "basicaa"
66 /// Enable analysis of recursive PHI nodes.
67 static cl::opt
<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden
,
70 /// By default, even on 32-bit architectures we use 64-bit integers for
71 /// calculations. This will allow us to more-aggressively decompose indexing
72 /// expressions calculated using i64 values (e.g., long long in C) which is
73 /// common enough to worry about.
74 static cl::opt
<bool> ForceAtLeast64Bits("basicaa-force-at-least-64b",
75 cl::Hidden
, cl::init(true));
76 static cl::opt
<bool> DoubleCalcBits("basicaa-double-calc-bits",
77 cl::Hidden
, cl::init(false));
79 /// SearchLimitReached / SearchTimes shows how often the limit of
80 /// to decompose GEPs is reached. It will affect the precision
81 /// of basic alias analysis.
82 STATISTIC(SearchLimitReached
, "Number of times the limit to "
83 "decompose GEPs is reached");
84 STATISTIC(SearchTimes
, "Number of times a GEP is decomposed");
86 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
87 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
88 /// careful with value equivalence. We use reachability to make sure a value
89 /// cannot be involved in a cycle.
90 const unsigned MaxNumPhiBBsValueReachabilityCheck
= 20;
92 // The max limit of the search depth in DecomposeGEPExpression() and
93 // GetUnderlyingObject(), both functions need to use the same search
94 // depth otherwise the algorithm in aliasGEP will assert.
95 static const unsigned MaxLookupSearchDepth
= 6;
97 bool BasicAAResult::invalidate(Function
&Fn
, const PreservedAnalyses
&PA
,
98 FunctionAnalysisManager::Invalidator
&Inv
) {
99 // We don't care if this analysis itself is preserved, it has no state. But
100 // we need to check that the analyses it depends on have been. Note that we
101 // may be created without handles to some analyses and in that case don't
103 if (Inv
.invalidate
<AssumptionAnalysis
>(Fn
, PA
) ||
104 (DT
&& Inv
.invalidate
<DominatorTreeAnalysis
>(Fn
, PA
)) ||
105 (LI
&& Inv
.invalidate
<LoopAnalysis
>(Fn
, PA
)) ||
106 (PV
&& Inv
.invalidate
<PhiValuesAnalysis
>(Fn
, PA
)))
109 // Otherwise this analysis result remains valid.
113 //===----------------------------------------------------------------------===//
115 //===----------------------------------------------------------------------===//
117 /// Returns true if the pointer is to a function-local object that never
118 /// escapes from the function.
119 static bool isNonEscapingLocalObject(
121 SmallDenseMap
<const Value
*, bool, 8> *IsCapturedCache
= nullptr) {
122 SmallDenseMap
<const Value
*, bool, 8>::iterator CacheIt
;
123 if (IsCapturedCache
) {
125 std::tie(CacheIt
, Inserted
) = IsCapturedCache
->insert({V
, false});
127 // Found cached result, return it!
128 return CacheIt
->second
;
131 // If this is a local allocation, check to see if it escapes.
132 if (isa
<AllocaInst
>(V
) || isNoAliasCall(V
)) {
133 // Set StoreCaptures to True so that we can assume in our callers that the
134 // pointer is not the result of a load instruction. Currently
135 // PointerMayBeCaptured doesn't have any special analysis for the
136 // StoreCaptures=false case; if it did, our callers could be refined to be
138 auto Ret
= !PointerMayBeCaptured(V
, false, /*StoreCaptures=*/true);
140 CacheIt
->second
= Ret
;
144 // If this is an argument that corresponds to a byval or noalias argument,
145 // then it has not escaped before entering the function. Check if it escapes
146 // inside the function.
147 if (const Argument
*A
= dyn_cast
<Argument
>(V
))
148 if (A
->hasByValAttr() || A
->hasNoAliasAttr()) {
149 // Note even if the argument is marked nocapture, we still need to check
150 // for copies made inside the function. The nocapture attribute only
151 // specifies that there are no copies made that outlive the function.
152 auto Ret
= !PointerMayBeCaptured(V
, false, /*StoreCaptures=*/true);
154 CacheIt
->second
= Ret
;
161 /// Returns true if the pointer is one which would have been considered an
162 /// escape by isNonEscapingLocalObject.
163 static bool isEscapeSource(const Value
*V
) {
164 if (isa
<CallBase
>(V
))
167 if (isa
<Argument
>(V
))
170 // The load case works because isNonEscapingLocalObject considers all
171 // stores to be escapes (it passes true for the StoreCaptures argument
172 // to PointerMayBeCaptured).
173 if (isa
<LoadInst
>(V
))
179 /// Returns the size of the object specified by V or UnknownSize if unknown.
180 static uint64_t getObjectSize(const Value
*V
, const DataLayout
&DL
,
181 const TargetLibraryInfo
&TLI
,
183 bool RoundToAlign
= false) {
186 Opts
.RoundToAlign
= RoundToAlign
;
187 Opts
.NullIsUnknownSize
= NullIsValidLoc
;
188 if (getObjectSize(V
, Size
, DL
, &TLI
, Opts
))
190 return MemoryLocation::UnknownSize
;
193 /// Returns true if we can prove that the object specified by V is smaller than
195 static bool isObjectSmallerThan(const Value
*V
, uint64_t Size
,
196 const DataLayout
&DL
,
197 const TargetLibraryInfo
&TLI
,
198 bool NullIsValidLoc
) {
199 // Note that the meanings of the "object" are slightly different in the
200 // following contexts:
201 // c1: llvm::getObjectSize()
202 // c2: llvm.objectsize() intrinsic
203 // c3: isObjectSmallerThan()
204 // c1 and c2 share the same meaning; however, the meaning of "object" in c3
205 // refers to the "entire object".
207 // Consider this example:
208 // char *p = (char*)malloc(100)
211 // In the context of c1 and c2, the "object" pointed by q refers to the
212 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
214 // However, in the context of c3, the "object" refers to the chunk of memory
215 // being allocated. So, the "object" has 100 bytes, and q points to the middle
216 // the "object". In case q is passed to isObjectSmallerThan() as the 1st
217 // parameter, before the llvm::getObjectSize() is called to get the size of
218 // entire object, we should:
219 // - either rewind the pointer q to the base-address of the object in
220 // question (in this case rewind to p), or
221 // - just give up. It is up to caller to make sure the pointer is pointing
222 // to the base address the object.
224 // We go for 2nd option for simplicity.
225 if (!isIdentifiedObject(V
))
228 // This function needs to use the aligned object size because we allow
229 // reads a bit past the end given sufficient alignment.
230 uint64_t ObjectSize
= getObjectSize(V
, DL
, TLI
, NullIsValidLoc
,
231 /*RoundToAlign*/ true);
233 return ObjectSize
!= MemoryLocation::UnknownSize
&& ObjectSize
< Size
;
236 /// Returns true if we can prove that the object specified by V has size Size.
237 static bool isObjectSize(const Value
*V
, uint64_t Size
, const DataLayout
&DL
,
238 const TargetLibraryInfo
&TLI
, bool NullIsValidLoc
) {
239 uint64_t ObjectSize
= getObjectSize(V
, DL
, TLI
, NullIsValidLoc
);
240 return ObjectSize
!= MemoryLocation::UnknownSize
&& ObjectSize
== Size
;
243 //===----------------------------------------------------------------------===//
244 // GetElementPtr Instruction Decomposition and Analysis
245 //===----------------------------------------------------------------------===//
247 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
248 /// B are constant integers.
250 /// Returns the scale and offset values as APInts and return V as a Value*, and
251 /// return whether we looked through any sign or zero extends. The incoming
252 /// Value is known to have IntegerType, and it may already be sign or zero
255 /// Note that this looks through extends, so the high bits may not be
256 /// represented in the result.
257 /*static*/ const Value
*BasicAAResult::GetLinearExpression(
258 const Value
*V
, APInt
&Scale
, APInt
&Offset
, unsigned &ZExtBits
,
259 unsigned &SExtBits
, const DataLayout
&DL
, unsigned Depth
,
260 AssumptionCache
*AC
, DominatorTree
*DT
, bool &NSW
, bool &NUW
) {
261 assert(V
->getType()->isIntegerTy() && "Not an integer value");
263 // Limit our recursion depth.
270 if (const ConstantInt
*Const
= dyn_cast
<ConstantInt
>(V
)) {
271 // If it's a constant, just convert it to an offset and remove the variable.
272 // If we've been called recursively, the Offset bit width will be greater
273 // than the constant's (the Offset's always as wide as the outermost call),
274 // so we'll zext here and process any extension in the isa<SExtInst> &
275 // isa<ZExtInst> cases below.
276 Offset
+= Const
->getValue().zextOrSelf(Offset
.getBitWidth());
277 assert(Scale
== 0 && "Constant values don't have a scale");
281 if (const BinaryOperator
*BOp
= dyn_cast
<BinaryOperator
>(V
)) {
282 if (ConstantInt
*RHSC
= dyn_cast
<ConstantInt
>(BOp
->getOperand(1))) {
283 // If we've been called recursively, then Offset and Scale will be wider
284 // than the BOp operands. We'll always zext it here as we'll process sign
285 // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
286 APInt RHS
= RHSC
->getValue().zextOrSelf(Offset
.getBitWidth());
288 switch (BOp
->getOpcode()) {
290 // We don't understand this instruction, so we can't decompose it any
295 case Instruction::Or
:
296 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't
298 if (!MaskedValueIsZero(BOp
->getOperand(0), RHSC
->getValue(), DL
, 0, AC
,
305 case Instruction::Add
:
306 V
= GetLinearExpression(BOp
->getOperand(0), Scale
, Offset
, ZExtBits
,
307 SExtBits
, DL
, Depth
+ 1, AC
, DT
, NSW
, NUW
);
310 case Instruction::Sub
:
311 V
= GetLinearExpression(BOp
->getOperand(0), Scale
, Offset
, ZExtBits
,
312 SExtBits
, DL
, Depth
+ 1, AC
, DT
, NSW
, NUW
);
315 case Instruction::Mul
:
316 V
= GetLinearExpression(BOp
->getOperand(0), Scale
, Offset
, ZExtBits
,
317 SExtBits
, DL
, Depth
+ 1, AC
, DT
, NSW
, NUW
);
321 case Instruction::Shl
:
322 V
= GetLinearExpression(BOp
->getOperand(0), Scale
, Offset
, ZExtBits
,
323 SExtBits
, DL
, Depth
+ 1, AC
, DT
, NSW
, NUW
);
325 // We're trying to linearize an expression of the kind:
327 // where the shift count exceeds the bitwidth of the type.
328 // We can't decompose this further (the expression would return
330 if (Offset
.getBitWidth() < RHS
.getLimitedValue() ||
331 Scale
.getBitWidth() < RHS
.getLimitedValue()) {
337 Offset
<<= RHS
.getLimitedValue();
338 Scale
<<= RHS
.getLimitedValue();
339 // the semantics of nsw and nuw for left shifts don't match those of
340 // multiplications, so we won't propagate them.
345 if (isa
<OverflowingBinaryOperator
>(BOp
)) {
346 NUW
&= BOp
->hasNoUnsignedWrap();
347 NSW
&= BOp
->hasNoSignedWrap();
353 // Since GEP indices are sign extended anyway, we don't care about the high
354 // bits of a sign or zero extended value - just scales and offsets. The
355 // extensions have to be consistent though.
356 if (isa
<SExtInst
>(V
) || isa
<ZExtInst
>(V
)) {
357 Value
*CastOp
= cast
<CastInst
>(V
)->getOperand(0);
358 unsigned NewWidth
= V
->getType()->getPrimitiveSizeInBits();
359 unsigned SmallWidth
= CastOp
->getType()->getPrimitiveSizeInBits();
360 unsigned OldZExtBits
= ZExtBits
, OldSExtBits
= SExtBits
;
361 const Value
*Result
=
362 GetLinearExpression(CastOp
, Scale
, Offset
, ZExtBits
, SExtBits
, DL
,
363 Depth
+ 1, AC
, DT
, NSW
, NUW
);
365 // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this
366 // by just incrementing the number of bits we've extended by.
367 unsigned ExtendedBy
= NewWidth
- SmallWidth
;
369 if (isa
<SExtInst
>(V
) && ZExtBits
== 0) {
370 // sext(sext(%x, a), b) == sext(%x, a + b)
373 // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
374 // into sext(%x) + sext(c). We'll sext the Offset ourselves:
375 unsigned OldWidth
= Offset
.getBitWidth();
376 Offset
= Offset
.trunc(SmallWidth
).sext(NewWidth
).zextOrSelf(OldWidth
);
378 // We may have signed-wrapped, so don't decompose sext(%x + c) into
379 // sext(%x) + sext(c)
383 ZExtBits
= OldZExtBits
;
384 SExtBits
= OldSExtBits
;
386 SExtBits
+= ExtendedBy
;
388 // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
391 // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
392 // zext(%x) + zext(c)
396 ZExtBits
= OldZExtBits
;
397 SExtBits
= OldSExtBits
;
399 ZExtBits
+= ExtendedBy
;
410 /// To ensure a pointer offset fits in an integer of size PointerSize
411 /// (in bits) when that size is smaller than the maximum pointer size. This is
412 /// an issue, for example, in particular for 32b pointers with negative indices
413 /// that rely on two's complement wrap-arounds for precise alias information
414 /// where the maximum pointer size is 64b.
415 static APInt
adjustToPointerSize(APInt Offset
, unsigned PointerSize
) {
416 assert(PointerSize
<= Offset
.getBitWidth() && "Invalid PointerSize!");
417 unsigned ShiftBits
= Offset
.getBitWidth() - PointerSize
;
418 return (Offset
<< ShiftBits
).ashr(ShiftBits
);
421 static unsigned getMaxPointerSize(const DataLayout
&DL
) {
422 unsigned MaxPointerSize
= DL
.getMaxPointerSizeInBits();
423 if (MaxPointerSize
< 64 && ForceAtLeast64Bits
) MaxPointerSize
= 64;
424 if (DoubleCalcBits
) MaxPointerSize
*= 2;
426 return MaxPointerSize
;
429 /// If V is a symbolic pointer expression, decompose it into a base pointer
430 /// with a constant offset and a number of scaled symbolic offsets.
432 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
433 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
434 /// specified amount, but which may have other unrepresented high bits. As
435 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
437 /// When DataLayout is around, this function is capable of analyzing everything
438 /// that GetUnderlyingObject can look through. To be able to do that
439 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search
440 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks
441 /// through pointer casts.
442 bool BasicAAResult::DecomposeGEPExpression(const Value
*V
,
443 DecomposedGEP
&Decomposed
, const DataLayout
&DL
, AssumptionCache
*AC
,
445 // Limit recursion depth to limit compile time in crazy cases.
446 unsigned MaxLookup
= MaxLookupSearchDepth
;
449 unsigned MaxPointerSize
= getMaxPointerSize(DL
);
450 Decomposed
.VarIndices
.clear();
452 // See if this is a bitcast or GEP.
453 const Operator
*Op
= dyn_cast
<Operator
>(V
);
455 // The only non-operator case we can handle are GlobalAliases.
456 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(V
)) {
457 if (!GA
->isInterposable()) {
458 V
= GA
->getAliasee();
466 if (Op
->getOpcode() == Instruction::BitCast
||
467 Op
->getOpcode() == Instruction::AddrSpaceCast
) {
468 V
= Op
->getOperand(0);
472 const GEPOperator
*GEPOp
= dyn_cast
<GEPOperator
>(Op
);
474 if (const auto *Call
= dyn_cast
<CallBase
>(V
)) {
475 // CaptureTracking can know about special capturing properties of some
476 // intrinsics like launder.invariant.group, that can't be expressed with
477 // the attributes, but have properties like returning aliasing pointer.
478 // Because some analysis may assume that nocaptured pointer is not
479 // returned from some special intrinsic (because function would have to
480 // be marked with returns attribute), it is crucial to use this function
481 // because it should be in sync with CaptureTracking. Not using it may
482 // cause weird miscompilations where 2 aliasing pointers are assumed to
484 if (auto *RP
= getArgumentAliasingToReturnedPointer(Call
)) {
490 // If it's not a GEP, hand it off to SimplifyInstruction to see if it
491 // can come up with something. This matches what GetUnderlyingObject does.
492 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
))
493 // TODO: Get a DominatorTree and AssumptionCache and use them here
494 // (these are both now available in this function, but this should be
495 // updated when GetUnderlyingObject is updated). TLI should be
497 if (const Value
*Simplified
=
498 SimplifyInstruction(const_cast<Instruction
*>(I
), DL
)) {
507 // Don't attempt to analyze GEPs over unsized objects.
508 if (!GEPOp
->getSourceElementType()->isSized()) {
513 unsigned AS
= GEPOp
->getPointerAddressSpace();
514 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
515 gep_type_iterator GTI
= gep_type_begin(GEPOp
);
516 unsigned PointerSize
= DL
.getPointerSizeInBits(AS
);
517 // Assume all GEP operands are constants until proven otherwise.
518 bool GepHasConstantOffset
= true;
519 for (User::const_op_iterator I
= GEPOp
->op_begin() + 1, E
= GEPOp
->op_end();
520 I
!= E
; ++I
, ++GTI
) {
521 const Value
*Index
= *I
;
522 // Compute the (potentially symbolic) offset in bytes for this index.
523 if (StructType
*STy
= GTI
.getStructTypeOrNull()) {
524 // For a struct, add the member offset.
525 unsigned FieldNo
= cast
<ConstantInt
>(Index
)->getZExtValue();
529 Decomposed
.StructOffset
+=
530 DL
.getStructLayout(STy
)->getElementOffset(FieldNo
);
534 // For an array/pointer, add the element offset, explicitly scaled.
535 if (const ConstantInt
*CIdx
= dyn_cast
<ConstantInt
>(Index
)) {
538 Decomposed
.OtherOffset
+=
539 (DL
.getTypeAllocSize(GTI
.getIndexedType()) *
540 CIdx
->getValue().sextOrSelf(MaxPointerSize
))
541 .sextOrTrunc(MaxPointerSize
);
545 GepHasConstantOffset
= false;
547 APInt
Scale(MaxPointerSize
, DL
.getTypeAllocSize(GTI
.getIndexedType()));
548 unsigned ZExtBits
= 0, SExtBits
= 0;
550 // If the integer type is smaller than the pointer size, it is implicitly
551 // sign extended to pointer size.
552 unsigned Width
= Index
->getType()->getIntegerBitWidth();
553 if (PointerSize
> Width
)
554 SExtBits
+= PointerSize
- Width
;
556 // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
557 APInt
IndexScale(Width
, 0), IndexOffset(Width
, 0);
558 bool NSW
= true, NUW
= true;
559 const Value
*OrigIndex
= Index
;
560 Index
= GetLinearExpression(Index
, IndexScale
, IndexOffset
, ZExtBits
,
561 SExtBits
, DL
, 0, AC
, DT
, NSW
, NUW
);
563 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
564 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
566 // It can be the case that, even through C1*V+C2 does not overflow for
567 // relevant values of V, (C2*Scale) can overflow. In that case, we cannot
568 // decompose the expression in this way.
570 // FIXME: C1*Scale and the other operations in the decomposed
571 // (C1*Scale)*V+C2*Scale can also overflow. We should check for this
573 APInt WideScaledOffset
= IndexOffset
.sextOrTrunc(MaxPointerSize
*2) *
574 Scale
.sext(MaxPointerSize
*2);
575 if (WideScaledOffset
.getMinSignedBits() > MaxPointerSize
) {
580 ZExtBits
= SExtBits
= 0;
581 if (PointerSize
> Width
)
582 SExtBits
+= PointerSize
- Width
;
584 Decomposed
.OtherOffset
+= IndexOffset
.sextOrTrunc(MaxPointerSize
) * Scale
;
585 Scale
*= IndexScale
.sextOrTrunc(MaxPointerSize
);
588 // If we already had an occurrence of this index variable, merge this
589 // scale into it. For example, we want to handle:
590 // A[x][x] -> x*16 + x*4 -> x*20
591 // This also ensures that 'x' only appears in the index list once.
592 for (unsigned i
= 0, e
= Decomposed
.VarIndices
.size(); i
!= e
; ++i
) {
593 if (Decomposed
.VarIndices
[i
].V
== Index
&&
594 Decomposed
.VarIndices
[i
].ZExtBits
== ZExtBits
&&
595 Decomposed
.VarIndices
[i
].SExtBits
== SExtBits
) {
596 Scale
+= Decomposed
.VarIndices
[i
].Scale
;
597 Decomposed
.VarIndices
.erase(Decomposed
.VarIndices
.begin() + i
);
602 // Make sure that we have a scale that makes sense for this target's
604 Scale
= adjustToPointerSize(Scale
, PointerSize
);
607 VariableGEPIndex Entry
= {Index
, ZExtBits
, SExtBits
, Scale
};
608 Decomposed
.VarIndices
.push_back(Entry
);
612 // Take care of wrap-arounds
613 if (GepHasConstantOffset
) {
614 Decomposed
.StructOffset
=
615 adjustToPointerSize(Decomposed
.StructOffset
, PointerSize
);
616 Decomposed
.OtherOffset
=
617 adjustToPointerSize(Decomposed
.OtherOffset
, PointerSize
);
620 // Analyze the base pointer next.
621 V
= GEPOp
->getOperand(0);
622 } while (--MaxLookup
);
624 // If the chain of expressions is too deep, just return early.
626 SearchLimitReached
++;
630 /// Returns whether the given pointer value points to memory that is local to
631 /// the function, with global constants being considered local to all
633 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation
&Loc
,
635 assert(Visited
.empty() && "Visited must be cleared after use!");
637 unsigned MaxLookup
= 8;
638 SmallVector
<const Value
*, 16> Worklist
;
639 Worklist
.push_back(Loc
.Ptr
);
641 const Value
*V
= GetUnderlyingObject(Worklist
.pop_back_val(), DL
);
642 if (!Visited
.insert(V
).second
) {
644 return AAResultBase::pointsToConstantMemory(Loc
, OrLocal
);
647 // An alloca instruction defines local memory.
648 if (OrLocal
&& isa
<AllocaInst
>(V
))
651 // A global constant counts as local memory for our purposes.
652 if (const GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(V
)) {
653 // Note: this doesn't require GV to be "ODR" because it isn't legal for a
654 // global to be marked constant in some modules and non-constant in
655 // others. GV may even be a declaration, not a definition.
656 if (!GV
->isConstant()) {
658 return AAResultBase::pointsToConstantMemory(Loc
, OrLocal
);
663 // If both select values point to local memory, then so does the select.
664 if (const SelectInst
*SI
= dyn_cast
<SelectInst
>(V
)) {
665 Worklist
.push_back(SI
->getTrueValue());
666 Worklist
.push_back(SI
->getFalseValue());
670 // If all values incoming to a phi node point to local memory, then so does
672 if (const PHINode
*PN
= dyn_cast
<PHINode
>(V
)) {
673 // Don't bother inspecting phi nodes with many operands.
674 if (PN
->getNumIncomingValues() > MaxLookup
) {
676 return AAResultBase::pointsToConstantMemory(Loc
, OrLocal
);
678 for (Value
*IncValue
: PN
->incoming_values())
679 Worklist
.push_back(IncValue
);
683 // Otherwise be conservative.
685 return AAResultBase::pointsToConstantMemory(Loc
, OrLocal
);
686 } while (!Worklist
.empty() && --MaxLookup
);
689 return Worklist
.empty();
692 /// Returns the behavior when calling the given call site.
693 FunctionModRefBehavior
BasicAAResult::getModRefBehavior(const CallBase
*Call
) {
694 if (Call
->doesNotAccessMemory())
695 // Can't do better than this.
696 return FMRB_DoesNotAccessMemory
;
698 FunctionModRefBehavior Min
= FMRB_UnknownModRefBehavior
;
700 // If the callsite knows it only reads memory, don't return worse
702 if (Call
->onlyReadsMemory())
703 Min
= FMRB_OnlyReadsMemory
;
704 else if (Call
->doesNotReadMemory())
705 Min
= FMRB_DoesNotReadMemory
;
707 if (Call
->onlyAccessesArgMemory())
708 Min
= FunctionModRefBehavior(Min
& FMRB_OnlyAccessesArgumentPointees
);
709 else if (Call
->onlyAccessesInaccessibleMemory())
710 Min
= FunctionModRefBehavior(Min
& FMRB_OnlyAccessesInaccessibleMem
);
711 else if (Call
->onlyAccessesInaccessibleMemOrArgMem())
712 Min
= FunctionModRefBehavior(Min
& FMRB_OnlyAccessesInaccessibleOrArgMem
);
714 // If the call has operand bundles then aliasing attributes from the function
715 // it calls do not directly apply to the call. This can be made more precise
717 if (!Call
->hasOperandBundles())
718 if (const Function
*F
= Call
->getCalledFunction())
720 FunctionModRefBehavior(Min
& getBestAAResults().getModRefBehavior(F
));
725 /// Returns the behavior when calling the given function. For use when the call
726 /// site is not known.
727 FunctionModRefBehavior
BasicAAResult::getModRefBehavior(const Function
*F
) {
728 // If the function declares it doesn't access memory, we can't do better.
729 if (F
->doesNotAccessMemory())
730 return FMRB_DoesNotAccessMemory
;
732 FunctionModRefBehavior Min
= FMRB_UnknownModRefBehavior
;
734 // If the function declares it only reads memory, go with that.
735 if (F
->onlyReadsMemory())
736 Min
= FMRB_OnlyReadsMemory
;
737 else if (F
->doesNotReadMemory())
738 Min
= FMRB_DoesNotReadMemory
;
740 if (F
->onlyAccessesArgMemory())
741 Min
= FunctionModRefBehavior(Min
& FMRB_OnlyAccessesArgumentPointees
);
742 else if (F
->onlyAccessesInaccessibleMemory())
743 Min
= FunctionModRefBehavior(Min
& FMRB_OnlyAccessesInaccessibleMem
);
744 else if (F
->onlyAccessesInaccessibleMemOrArgMem())
745 Min
= FunctionModRefBehavior(Min
& FMRB_OnlyAccessesInaccessibleOrArgMem
);
750 /// Returns true if this is a writeonly (i.e Mod only) parameter.
751 static bool isWriteOnlyParam(const CallBase
*Call
, unsigned ArgIdx
,
752 const TargetLibraryInfo
&TLI
) {
753 if (Call
->paramHasAttr(ArgIdx
, Attribute::WriteOnly
))
756 // We can bound the aliasing properties of memset_pattern16 just as we can
757 // for memcpy/memset. This is particularly important because the
758 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
759 // whenever possible.
760 // FIXME Consider handling this in InferFunctionAttr.cpp together with other
763 if (Call
->getCalledFunction() &&
764 TLI
.getLibFunc(*Call
->getCalledFunction(), F
) &&
765 F
== LibFunc_memset_pattern16
&& TLI
.has(F
))
769 // TODO: memset_pattern4, memset_pattern8
770 // TODO: _chk variants
771 // TODO: strcmp, strcpy
776 ModRefInfo
BasicAAResult::getArgModRefInfo(const CallBase
*Call
,
778 // Checking for known builtin intrinsics and target library functions.
779 if (isWriteOnlyParam(Call
, ArgIdx
, TLI
))
780 return ModRefInfo::Mod
;
782 if (Call
->paramHasAttr(ArgIdx
, Attribute::ReadOnly
))
783 return ModRefInfo::Ref
;
785 if (Call
->paramHasAttr(ArgIdx
, Attribute::ReadNone
))
786 return ModRefInfo::NoModRef
;
788 return AAResultBase::getArgModRefInfo(Call
, ArgIdx
);
791 static bool isIntrinsicCall(const CallBase
*Call
, Intrinsic::ID IID
) {
792 const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Call
);
793 return II
&& II
->getIntrinsicID() == IID
;
797 static const Function
*getParent(const Value
*V
) {
798 if (const Instruction
*inst
= dyn_cast
<Instruction
>(V
)) {
799 if (!inst
->getParent())
801 return inst
->getParent()->getParent();
804 if (const Argument
*arg
= dyn_cast
<Argument
>(V
))
805 return arg
->getParent();
810 static bool notDifferentParent(const Value
*O1
, const Value
*O2
) {
812 const Function
*F1
= getParent(O1
);
813 const Function
*F2
= getParent(O2
);
815 return !F1
|| !F2
|| F1
== F2
;
819 AliasResult
BasicAAResult::alias(const MemoryLocation
&LocA
,
820 const MemoryLocation
&LocB
) {
821 assert(notDifferentParent(LocA
.Ptr
, LocB
.Ptr
) &&
822 "BasicAliasAnalysis doesn't support interprocedural queries.");
824 // If we have a directly cached entry for these locations, we have recursed
825 // through this once, so just return the cached results. Notably, when this
826 // happens, we don't clear the cache.
827 auto CacheIt
= AliasCache
.find(LocPair(LocA
, LocB
));
828 if (CacheIt
!= AliasCache
.end())
829 return CacheIt
->second
;
831 AliasResult Alias
= aliasCheck(LocA
.Ptr
, LocA
.Size
, LocA
.AATags
, LocB
.Ptr
,
832 LocB
.Size
, LocB
.AATags
);
833 // AliasCache rarely has more than 1 or 2 elements, always use
834 // shrink_and_clear so it quickly returns to the inline capacity of the
835 // SmallDenseMap if it ever grows larger.
836 // FIXME: This should really be shrink_to_inline_capacity_and_clear().
837 AliasCache
.shrink_and_clear();
838 IsCapturedCache
.shrink_and_clear();
839 VisitedPhiBBs
.clear();
843 /// Checks to see if the specified callsite can clobber the specified memory
846 /// Since we only look at local properties of this function, we really can't
847 /// say much about this query. We do, however, use simple "address taken"
848 /// analysis on local objects.
849 ModRefInfo
BasicAAResult::getModRefInfo(const CallBase
*Call
,
850 const MemoryLocation
&Loc
) {
851 assert(notDifferentParent(Call
, Loc
.Ptr
) &&
852 "AliasAnalysis query involving multiple functions!");
854 const Value
*Object
= GetUnderlyingObject(Loc
.Ptr
, DL
);
856 // Calls marked 'tail' cannot read or write allocas from the current frame
857 // because the current frame might be destroyed by the time they run. However,
858 // a tail call may use an alloca with byval. Calling with byval copies the
859 // contents of the alloca into argument registers or stack slots, so there is
860 // no lifetime issue.
861 if (isa
<AllocaInst
>(Object
))
862 if (const CallInst
*CI
= dyn_cast
<CallInst
>(Call
))
863 if (CI
->isTailCall() &&
864 !CI
->getAttributes().hasAttrSomewhere(Attribute::ByVal
))
865 return ModRefInfo::NoModRef
;
867 // Stack restore is able to modify unescaped dynamic allocas. Assume it may
868 // modify them even though the alloca is not escaped.
869 if (auto *AI
= dyn_cast
<AllocaInst
>(Object
))
870 if (!AI
->isStaticAlloca() && isIntrinsicCall(Call
, Intrinsic::stackrestore
))
871 return ModRefInfo::Mod
;
873 // If the pointer is to a locally allocated object that does not escape,
874 // then the call can not mod/ref the pointer unless the call takes the pointer
875 // as an argument, and itself doesn't capture it.
876 if (!isa
<Constant
>(Object
) && Call
!= Object
&&
877 isNonEscapingLocalObject(Object
)) {
879 // Optimistically assume that call doesn't touch Object and check this
880 // assumption in the following loop.
881 ModRefInfo Result
= ModRefInfo::NoModRef
;
882 bool IsMustAlias
= true;
884 unsigned OperandNo
= 0;
885 for (auto CI
= Call
->data_operands_begin(), CE
= Call
->data_operands_end();
886 CI
!= CE
; ++CI
, ++OperandNo
) {
887 // Only look at the no-capture or byval pointer arguments. If this
888 // pointer were passed to arguments that were neither of these, then it
889 // couldn't be no-capture.
890 if (!(*CI
)->getType()->isPointerTy() ||
891 (!Call
->doesNotCapture(OperandNo
) &&
892 OperandNo
< Call
->getNumArgOperands() &&
893 !Call
->isByValArgument(OperandNo
)))
896 // Call doesn't access memory through this operand, so we don't care
897 // if it aliases with Object.
898 if (Call
->doesNotAccessMemory(OperandNo
))
901 // If this is a no-capture pointer argument, see if we can tell that it
902 // is impossible to alias the pointer we're checking.
904 getBestAAResults().alias(MemoryLocation(*CI
), MemoryLocation(Object
));
907 // Operand doesn't alias 'Object', continue looking for other aliases
910 // Operand aliases 'Object', but call doesn't modify it. Strengthen
911 // initial assumption and keep looking in case if there are more aliases.
912 if (Call
->onlyReadsMemory(OperandNo
)) {
913 Result
= setRef(Result
);
916 // Operand aliases 'Object' but call only writes into it.
917 if (Call
->doesNotReadMemory(OperandNo
)) {
918 Result
= setMod(Result
);
921 // This operand aliases 'Object' and call reads and writes into it.
922 // Setting ModRef will not yield an early return below, MustAlias is not
924 Result
= ModRefInfo::ModRef
;
928 // No operand aliases, reset Must bit. Add below if at least one aliases
929 // and all aliases found are MustAlias.
930 if (isNoModRef(Result
))
933 // Early return if we improved mod ref information
934 if (!isModAndRefSet(Result
)) {
935 if (isNoModRef(Result
))
936 return ModRefInfo::NoModRef
;
937 return IsMustAlias
? setMust(Result
) : clearMust(Result
);
941 // If the call is to malloc or calloc, we can assume that it doesn't
942 // modify any IR visible value. This is only valid because we assume these
943 // routines do not read values visible in the IR. TODO: Consider special
944 // casing realloc and strdup routines which access only their arguments as
945 // well. Or alternatively, replace all of this with inaccessiblememonly once
946 // that's implemented fully.
947 if (isMallocOrCallocLikeFn(Call
, &TLI
)) {
948 // Be conservative if the accessed pointer may alias the allocation -
949 // fallback to the generic handling below.
950 if (getBestAAResults().alias(MemoryLocation(Call
), Loc
) == NoAlias
)
951 return ModRefInfo::NoModRef
;
954 // The semantics of memcpy intrinsics forbid overlap between their respective
955 // operands, i.e., source and destination of any given memcpy must no-alias.
956 // If Loc must-aliases either one of these two locations, then it necessarily
957 // no-aliases the other.
958 if (auto *Inst
= dyn_cast
<AnyMemCpyInst
>(Call
)) {
959 AliasResult SrcAA
, DestAA
;
961 if ((SrcAA
= getBestAAResults().alias(MemoryLocation::getForSource(Inst
),
963 // Loc is exactly the memcpy source thus disjoint from memcpy dest.
964 return ModRefInfo::Ref
;
965 if ((DestAA
= getBestAAResults().alias(MemoryLocation::getForDest(Inst
),
967 // The converse case.
968 return ModRefInfo::Mod
;
970 // It's also possible for Loc to alias both src and dest, or neither.
971 ModRefInfo rv
= ModRefInfo::NoModRef
;
972 if (SrcAA
!= NoAlias
)
974 if (DestAA
!= NoAlias
)
979 // While the assume intrinsic is marked as arbitrarily writing so that
980 // proper control dependencies will be maintained, it never aliases any
981 // particular memory location.
982 if (isIntrinsicCall(Call
, Intrinsic::assume
))
983 return ModRefInfo::NoModRef
;
985 // Like assumes, guard intrinsics are also marked as arbitrarily writing so
986 // that proper control dependencies are maintained but they never mods any
987 // particular memory location.
989 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
990 // heap state at the point the guard is issued needs to be consistent in case
991 // the guard invokes the "deopt" continuation.
992 if (isIntrinsicCall(Call
, Intrinsic::experimental_guard
))
993 return ModRefInfo::Ref
;
995 // Like assumes, invariant.start intrinsics were also marked as arbitrarily
996 // writing so that proper control dependencies are maintained but they never
997 // mod any particular memory location visible to the IR.
998 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
999 // intrinsic is now modeled as reading memory. This prevents hoisting the
1000 // invariant.start intrinsic over stores. Consider:
1003 // invariant_start(ptr)
1007 // This cannot be transformed to:
1010 // invariant_start(ptr)
1015 // The transformation will cause the second store to be ignored (based on
1016 // rules of invariant.start) and print 40, while the first program always
1018 if (isIntrinsicCall(Call
, Intrinsic::invariant_start
))
1019 return ModRefInfo::Ref
;
1021 // The AAResultBase base class has some smarts, lets use them.
1022 return AAResultBase::getModRefInfo(Call
, Loc
);
1025 ModRefInfo
BasicAAResult::getModRefInfo(const CallBase
*Call1
,
1026 const CallBase
*Call2
) {
1027 // While the assume intrinsic is marked as arbitrarily writing so that
1028 // proper control dependencies will be maintained, it never aliases any
1029 // particular memory location.
1030 if (isIntrinsicCall(Call1
, Intrinsic::assume
) ||
1031 isIntrinsicCall(Call2
, Intrinsic::assume
))
1032 return ModRefInfo::NoModRef
;
1034 // Like assumes, guard intrinsics are also marked as arbitrarily writing so
1035 // that proper control dependencies are maintained but they never mod any
1036 // particular memory location.
1038 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
1039 // heap state at the point the guard is issued needs to be consistent in case
1040 // the guard invokes the "deopt" continuation.
1042 // NB! This function is *not* commutative, so we special case two
1043 // possibilities for guard intrinsics.
1045 if (isIntrinsicCall(Call1
, Intrinsic::experimental_guard
))
1046 return isModSet(createModRefInfo(getModRefBehavior(Call2
)))
1048 : ModRefInfo::NoModRef
;
1050 if (isIntrinsicCall(Call2
, Intrinsic::experimental_guard
))
1051 return isModSet(createModRefInfo(getModRefBehavior(Call1
)))
1053 : ModRefInfo::NoModRef
;
1055 // The AAResultBase base class has some smarts, lets use them.
1056 return AAResultBase::getModRefInfo(Call1
, Call2
);
1059 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
1060 /// both having the exact same pointer operand.
1061 static AliasResult
aliasSameBasePointerGEPs(const GEPOperator
*GEP1
,
1062 LocationSize MaybeV1Size
,
1063 const GEPOperator
*GEP2
,
1064 LocationSize MaybeV2Size
,
1065 const DataLayout
&DL
) {
1066 assert(GEP1
->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
1067 GEP2
->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
1068 GEP1
->getPointerOperandType() == GEP2
->getPointerOperandType() &&
1069 "Expected GEPs with the same pointer operand");
1071 // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
1072 // such that the struct field accesses provably cannot alias.
1073 // We also need at least two indices (the pointer, and the struct field).
1074 if (GEP1
->getNumIndices() != GEP2
->getNumIndices() ||
1075 GEP1
->getNumIndices() < 2)
1078 // If we don't know the size of the accesses through both GEPs, we can't
1079 // determine whether the struct fields accessed can't alias.
1080 if (MaybeV1Size
== LocationSize::unknown() ||
1081 MaybeV2Size
== LocationSize::unknown())
1084 const uint64_t V1Size
= MaybeV1Size
.getValue();
1085 const uint64_t V2Size
= MaybeV2Size
.getValue();
1088 dyn_cast
<ConstantInt
>(GEP1
->getOperand(GEP1
->getNumOperands() - 1));
1090 dyn_cast
<ConstantInt
>(GEP2
->getOperand(GEP2
->getNumOperands() - 1));
1092 // If the last (struct) indices are constants and are equal, the other indices
1093 // might be also be dynamically equal, so the GEPs can alias.
1095 unsigned BitWidth
= std::max(C1
->getBitWidth(), C2
->getBitWidth());
1096 if (C1
->getValue().sextOrSelf(BitWidth
) ==
1097 C2
->getValue().sextOrSelf(BitWidth
))
1101 // Find the last-indexed type of the GEP, i.e., the type you'd get if
1102 // you stripped the last index.
1103 // On the way, look at each indexed type. If there's something other
1104 // than an array, different indices can lead to different final types.
1105 SmallVector
<Value
*, 8> IntermediateIndices
;
1107 // Insert the first index; we don't need to check the type indexed
1108 // through it as it only drops the pointer indirection.
1109 assert(GEP1
->getNumIndices() > 1 && "Not enough GEP indices to examine");
1110 IntermediateIndices
.push_back(GEP1
->getOperand(1));
1112 // Insert all the remaining indices but the last one.
1113 // Also, check that they all index through arrays.
1114 for (unsigned i
= 1, e
= GEP1
->getNumIndices() - 1; i
!= e
; ++i
) {
1115 if (!isa
<ArrayType
>(GetElementPtrInst::getIndexedType(
1116 GEP1
->getSourceElementType(), IntermediateIndices
)))
1118 IntermediateIndices
.push_back(GEP1
->getOperand(i
+ 1));
1121 auto *Ty
= GetElementPtrInst::getIndexedType(
1122 GEP1
->getSourceElementType(), IntermediateIndices
);
1123 StructType
*LastIndexedStruct
= dyn_cast
<StructType
>(Ty
);
1125 if (isa
<SequentialType
>(Ty
)) {
1127 // - both GEPs begin indexing from the exact same pointer;
1128 // - the last indices in both GEPs are constants, indexing into a sequential
1129 // type (array or pointer);
1130 // - both GEPs only index through arrays prior to that.
1132 // Because array indices greater than the number of elements are valid in
1133 // GEPs, unless we know the intermediate indices are identical between
1134 // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
1135 // partially overlap. We also need to check that the loaded size matches
1136 // the element size, otherwise we could still have overlap.
1137 const uint64_t ElementSize
=
1138 DL
.getTypeStoreSize(cast
<SequentialType
>(Ty
)->getElementType());
1139 if (V1Size
!= ElementSize
|| V2Size
!= ElementSize
)
1142 for (unsigned i
= 0, e
= GEP1
->getNumIndices() - 1; i
!= e
; ++i
)
1143 if (GEP1
->getOperand(i
+ 1) != GEP2
->getOperand(i
+ 1))
1146 // Now we know that the array/pointer that GEP1 indexes into and that
1147 // that GEP2 indexes into must either precisely overlap or be disjoint.
1148 // Because they cannot partially overlap and because fields in an array
1149 // cannot overlap, if we can prove the final indices are different between
1150 // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
1152 // If the last indices are constants, we've already checked they don't
1153 // equal each other so we can exit early.
1157 Value
*GEP1LastIdx
= GEP1
->getOperand(GEP1
->getNumOperands() - 1);
1158 Value
*GEP2LastIdx
= GEP2
->getOperand(GEP2
->getNumOperands() - 1);
1159 if (isa
<PHINode
>(GEP1LastIdx
) || isa
<PHINode
>(GEP2LastIdx
)) {
1160 // If one of the indices is a PHI node, be safe and only use
1161 // computeKnownBits so we don't make any assumptions about the
1162 // relationships between the two indices. This is important if we're
1163 // asking about values from different loop iterations. See PR32314.
1164 // TODO: We may be able to change the check so we only do this when
1165 // we definitely looked through a PHINode.
1166 if (GEP1LastIdx
!= GEP2LastIdx
&&
1167 GEP1LastIdx
->getType() == GEP2LastIdx
->getType()) {
1168 KnownBits Known1
= computeKnownBits(GEP1LastIdx
, DL
);
1169 KnownBits Known2
= computeKnownBits(GEP2LastIdx
, DL
);
1170 if (Known1
.Zero
.intersects(Known2
.One
) ||
1171 Known1
.One
.intersects(Known2
.Zero
))
1174 } else if (isKnownNonEqual(GEP1LastIdx
, GEP2LastIdx
, DL
))
1178 } else if (!LastIndexedStruct
|| !C1
|| !C2
) {
1182 if (C1
->getValue().getActiveBits() > 64 ||
1183 C2
->getValue().getActiveBits() > 64)
1187 // - both GEPs begin indexing from the exact same pointer;
1188 // - the last indices in both GEPs are constants, indexing into a struct;
1189 // - said indices are different, hence, the pointed-to fields are different;
1190 // - both GEPs only index through arrays prior to that.
1192 // This lets us determine that the struct that GEP1 indexes into and the
1193 // struct that GEP2 indexes into must either precisely overlap or be
1194 // completely disjoint. Because they cannot partially overlap, indexing into
1195 // different non-overlapping fields of the struct will never alias.
1197 // Therefore, the only remaining thing needed to show that both GEPs can't
1198 // alias is that the fields are not overlapping.
1199 const StructLayout
*SL
= DL
.getStructLayout(LastIndexedStruct
);
1200 const uint64_t StructSize
= SL
->getSizeInBytes();
1201 const uint64_t V1Off
= SL
->getElementOffset(C1
->getZExtValue());
1202 const uint64_t V2Off
= SL
->getElementOffset(C2
->getZExtValue());
1204 auto EltsDontOverlap
= [StructSize
](uint64_t V1Off
, uint64_t V1Size
,
1205 uint64_t V2Off
, uint64_t V2Size
) {
1206 return V1Off
< V2Off
&& V1Off
+ V1Size
<= V2Off
&&
1207 ((V2Off
+ V2Size
<= StructSize
) ||
1208 (V2Off
+ V2Size
- StructSize
<= V1Off
));
1211 if (EltsDontOverlap(V1Off
, V1Size
, V2Off
, V2Size
) ||
1212 EltsDontOverlap(V2Off
, V2Size
, V1Off
, V1Size
))
1218 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the
1219 // beginning of the object the GEP points would have a negative offset with
1220 // repsect to the alloca, that means the GEP can not alias pointer (b).
1221 // Note that the pointer based on the alloca may not be a GEP. For
1222 // example, it may be the alloca itself.
1223 // The same applies if (b) is based on a GlobalVariable. Note that just being
1224 // based on isIdentifiedObject() is not enough - we need an identified object
1225 // that does not permit access to negative offsets. For example, a negative
1226 // offset from a noalias argument or call can be inbounds w.r.t the actual
1227 // underlying object.
1229 // For example, consider:
1231 // struct { int f0, int f1, ...} foo;
1233 // foo* random = bar(alloca);
1234 // int *f0 = &alloca.f0
1235 // int *f1 = &random->f1;
1237 // Which is lowered, approximately, to:
1239 // %alloca = alloca %struct.foo
1240 // %random = call %struct.foo* @random(%struct.foo* %alloca)
1241 // %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0
1242 // %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1
1244 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated
1245 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also
1246 // point into the same object. But since %f0 points to the beginning of %alloca,
1247 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher
1248 // than (%alloca - 1), and so is not inbounds, a contradiction.
1249 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator
*GEPOp
,
1250 const DecomposedGEP
&DecompGEP
, const DecomposedGEP
&DecompObject
,
1251 LocationSize MaybeObjectAccessSize
) {
1252 // If the object access size is unknown, or the GEP isn't inbounds, bail.
1253 if (MaybeObjectAccessSize
== LocationSize::unknown() || !GEPOp
->isInBounds())
1256 const uint64_t ObjectAccessSize
= MaybeObjectAccessSize
.getValue();
1258 // We need the object to be an alloca or a globalvariable, and want to know
1259 // the offset of the pointer from the object precisely, so no variable
1260 // indices are allowed.
1261 if (!(isa
<AllocaInst
>(DecompObject
.Base
) ||
1262 isa
<GlobalVariable
>(DecompObject
.Base
)) ||
1263 !DecompObject
.VarIndices
.empty())
1266 APInt ObjectBaseOffset
= DecompObject
.StructOffset
+
1267 DecompObject
.OtherOffset
;
1269 // If the GEP has no variable indices, we know the precise offset
1270 // from the base, then use it. If the GEP has variable indices,
1271 // we can't get exact GEP offset to identify pointer alias. So return
1272 // false in that case.
1273 if (!DecompGEP
.VarIndices
.empty())
1276 APInt GEPBaseOffset
= DecompGEP
.StructOffset
;
1277 GEPBaseOffset
+= DecompGEP
.OtherOffset
;
1279 return GEPBaseOffset
.sge(ObjectBaseOffset
+ (int64_t)ObjectAccessSize
);
1282 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1283 /// another pointer.
1285 /// We know that V1 is a GEP, but we don't know anything about V2.
1286 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for
1289 BasicAAResult::aliasGEP(const GEPOperator
*GEP1
, LocationSize V1Size
,
1290 const AAMDNodes
&V1AAInfo
, const Value
*V2
,
1291 LocationSize V2Size
, const AAMDNodes
&V2AAInfo
,
1292 const Value
*UnderlyingV1
, const Value
*UnderlyingV2
) {
1293 DecomposedGEP DecompGEP1
, DecompGEP2
;
1294 unsigned MaxPointerSize
= getMaxPointerSize(DL
);
1295 DecompGEP1
.StructOffset
= DecompGEP1
.OtherOffset
= APInt(MaxPointerSize
, 0);
1296 DecompGEP2
.StructOffset
= DecompGEP2
.OtherOffset
= APInt(MaxPointerSize
, 0);
1298 bool GEP1MaxLookupReached
=
1299 DecomposeGEPExpression(GEP1
, DecompGEP1
, DL
, &AC
, DT
);
1300 bool GEP2MaxLookupReached
=
1301 DecomposeGEPExpression(V2
, DecompGEP2
, DL
, &AC
, DT
);
1303 APInt GEP1BaseOffset
= DecompGEP1
.StructOffset
+ DecompGEP1
.OtherOffset
;
1304 APInt GEP2BaseOffset
= DecompGEP2
.StructOffset
+ DecompGEP2
.OtherOffset
;
1306 assert(DecompGEP1
.Base
== UnderlyingV1
&& DecompGEP2
.Base
== UnderlyingV2
&&
1307 "DecomposeGEPExpression returned a result different from "
1308 "GetUnderlyingObject");
1310 // If the GEP's offset relative to its base is such that the base would
1311 // fall below the start of the object underlying V2, then the GEP and V2
1313 if (!GEP1MaxLookupReached
&& !GEP2MaxLookupReached
&&
1314 isGEPBaseAtNegativeOffset(GEP1
, DecompGEP1
, DecompGEP2
, V2Size
))
1316 // If we have two gep instructions with must-alias or not-alias'ing base
1317 // pointers, figure out if the indexes to the GEP tell us anything about the
1319 if (const GEPOperator
*GEP2
= dyn_cast
<GEPOperator
>(V2
)) {
1320 // Check for the GEP base being at a negative offset, this time in the other
1322 if (!GEP1MaxLookupReached
&& !GEP2MaxLookupReached
&&
1323 isGEPBaseAtNegativeOffset(GEP2
, DecompGEP2
, DecompGEP1
, V1Size
))
1325 // Do the base pointers alias?
1326 AliasResult BaseAlias
=
1327 aliasCheck(UnderlyingV1
, LocationSize::unknown(), AAMDNodes(),
1328 UnderlyingV2
, LocationSize::unknown(), AAMDNodes());
1330 // Check for geps of non-aliasing underlying pointers where the offsets are
1332 if ((BaseAlias
== MayAlias
) && V1Size
== V2Size
) {
1333 // Do the base pointers alias assuming type and size.
1334 AliasResult PreciseBaseAlias
= aliasCheck(UnderlyingV1
, V1Size
, V1AAInfo
,
1335 UnderlyingV2
, V2Size
, V2AAInfo
);
1336 if (PreciseBaseAlias
== NoAlias
) {
1337 // See if the computed offset from the common pointer tells us about the
1338 // relation of the resulting pointer.
1339 // If the max search depth is reached the result is undefined
1340 if (GEP2MaxLookupReached
|| GEP1MaxLookupReached
)
1344 if (GEP1BaseOffset
== GEP2BaseOffset
&&
1345 DecompGEP1
.VarIndices
== DecompGEP2
.VarIndices
)
1350 // If we get a No or May, then return it immediately, no amount of analysis
1351 // will improve this situation.
1352 if (BaseAlias
!= MustAlias
) {
1353 assert(BaseAlias
== NoAlias
|| BaseAlias
== MayAlias
);
1357 // Otherwise, we have a MustAlias. Since the base pointers alias each other
1358 // exactly, see if the computed offset from the common pointer tells us
1359 // about the relation of the resulting pointer.
1360 // If we know the two GEPs are based off of the exact same pointer (and not
1361 // just the same underlying object), see if that tells us anything about
1362 // the resulting pointers.
1363 if (GEP1
->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
1364 GEP2
->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
1365 GEP1
->getPointerOperandType() == GEP2
->getPointerOperandType()) {
1366 AliasResult R
= aliasSameBasePointerGEPs(GEP1
, V1Size
, GEP2
, V2Size
, DL
);
1367 // If we couldn't find anything interesting, don't abandon just yet.
1372 // If the max search depth is reached, the result is undefined
1373 if (GEP2MaxLookupReached
|| GEP1MaxLookupReached
)
1376 // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1377 // symbolic difference.
1378 GEP1BaseOffset
-= GEP2BaseOffset
;
1379 GetIndexDifference(DecompGEP1
.VarIndices
, DecompGEP2
.VarIndices
);
1382 // Check to see if these two pointers are related by the getelementptr
1383 // instruction. If one pointer is a GEP with a non-zero index of the other
1384 // pointer, we know they cannot alias.
1386 // If both accesses are unknown size, we can't do anything useful here.
1387 if (V1Size
== LocationSize::unknown() && V2Size
== LocationSize::unknown())
1391 aliasCheck(UnderlyingV1
, LocationSize::unknown(), AAMDNodes(), V2
,
1392 LocationSize::unknown(), V2AAInfo
, nullptr, UnderlyingV2
);
1393 if (R
!= MustAlias
) {
1394 // If V2 may alias GEP base pointer, conservatively returns MayAlias.
1395 // If V2 is known not to alias GEP base pointer, then the two values
1396 // cannot alias per GEP semantics: "Any memory access must be done through
1397 // a pointer value associated with an address range of the memory access,
1398 // otherwise the behavior is undefined.".
1399 assert(R
== NoAlias
|| R
== MayAlias
);
1403 // If the max search depth is reached the result is undefined
1404 if (GEP1MaxLookupReached
)
1408 // In the two GEP Case, if there is no difference in the offsets of the
1409 // computed pointers, the resultant pointers are a must alias. This
1410 // happens when we have two lexically identical GEP's (for example).
1412 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
1413 // must aliases the GEP, the end result is a must alias also.
1414 if (GEP1BaseOffset
== 0 && DecompGEP1
.VarIndices
.empty())
1417 // If there is a constant difference between the pointers, but the difference
1418 // is less than the size of the associated memory object, then we know
1419 // that the objects are partially overlapping. If the difference is
1420 // greater, we know they do not overlap.
1421 if (GEP1BaseOffset
!= 0 && DecompGEP1
.VarIndices
.empty()) {
1422 if (GEP1BaseOffset
.sge(0)) {
1423 if (V2Size
!= LocationSize::unknown()) {
1424 if (GEP1BaseOffset
.ult(V2Size
.getValue()))
1425 return PartialAlias
;
1429 // We have the situation where:
1432 // ---------------->|
1433 // |-->V1Size |-------> V2Size
1435 // We need to know that V2Size is not unknown, otherwise we might have
1436 // stripped a gep with negative index ('gep <ptr>, -1, ...).
1437 if (V1Size
!= LocationSize::unknown() &&
1438 V2Size
!= LocationSize::unknown()) {
1439 if ((-GEP1BaseOffset
).ult(V1Size
.getValue()))
1440 return PartialAlias
;
1446 if (!DecompGEP1
.VarIndices
.empty()) {
1447 APInt
Modulo(MaxPointerSize
, 0);
1448 bool AllPositive
= true;
1449 for (unsigned i
= 0, e
= DecompGEP1
.VarIndices
.size(); i
!= e
; ++i
) {
1451 // Try to distinguish something like &A[i][1] against &A[42][0].
1452 // Grab the least significant bit set in any of the scales. We
1453 // don't need std::abs here (even if the scale's negative) as we'll
1454 // be ^'ing Modulo with itself later.
1455 Modulo
|= DecompGEP1
.VarIndices
[i
].Scale
;
1458 // If the Value could change between cycles, then any reasoning about
1459 // the Value this cycle may not hold in the next cycle. We'll just
1460 // give up if we can't determine conditions that hold for every cycle:
1461 const Value
*V
= DecompGEP1
.VarIndices
[i
].V
;
1463 KnownBits Known
= computeKnownBits(V
, DL
, 0, &AC
, nullptr, DT
);
1464 bool SignKnownZero
= Known
.isNonNegative();
1465 bool SignKnownOne
= Known
.isNegative();
1467 // Zero-extension widens the variable, and so forces the sign
1469 bool IsZExt
= DecompGEP1
.VarIndices
[i
].ZExtBits
> 0 || isa
<ZExtInst
>(V
);
1470 SignKnownZero
|= IsZExt
;
1471 SignKnownOne
&= !IsZExt
;
1473 // If the variable begins with a zero then we know it's
1474 // positive, regardless of whether the value is signed or
1476 APInt Scale
= DecompGEP1
.VarIndices
[i
].Scale
;
1478 (SignKnownZero
&& Scale
.sge(0)) || (SignKnownOne
&& Scale
.slt(0));
1482 Modulo
= Modulo
^ (Modulo
& (Modulo
- 1));
1484 // We can compute the difference between the two addresses
1485 // mod Modulo. Check whether that difference guarantees that the
1486 // two locations do not alias.
1487 APInt ModOffset
= GEP1BaseOffset
& (Modulo
- 1);
1488 if (V1Size
!= LocationSize::unknown() &&
1489 V2Size
!= LocationSize::unknown() && ModOffset
.uge(V2Size
.getValue()) &&
1490 (Modulo
- ModOffset
).uge(V1Size
.getValue()))
1493 // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
1494 // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
1495 // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
1496 if (AllPositive
&& GEP1BaseOffset
.sgt(0) &&
1497 V2Size
!= LocationSize::unknown() &&
1498 GEP1BaseOffset
.uge(V2Size
.getValue()))
1501 if (constantOffsetHeuristic(DecompGEP1
.VarIndices
, V1Size
, V2Size
,
1502 GEP1BaseOffset
, &AC
, DT
))
1506 // Statically, we can see that the base objects are the same, but the
1507 // pointers have dynamic offsets which we can't resolve. And none of our
1508 // little tricks above worked.
1512 static AliasResult
MergeAliasResults(AliasResult A
, AliasResult B
) {
1513 // If the results agree, take it.
1516 // A mix of PartialAlias and MustAlias is PartialAlias.
1517 if ((A
== PartialAlias
&& B
== MustAlias
) ||
1518 (B
== PartialAlias
&& A
== MustAlias
))
1519 return PartialAlias
;
1520 // Otherwise, we don't know anything.
1524 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1525 /// against another.
1526 AliasResult
BasicAAResult::aliasSelect(const SelectInst
*SI
,
1527 LocationSize SISize
,
1528 const AAMDNodes
&SIAAInfo
,
1529 const Value
*V2
, LocationSize V2Size
,
1530 const AAMDNodes
&V2AAInfo
,
1531 const Value
*UnderV2
) {
1532 // If the values are Selects with the same condition, we can do a more precise
1533 // check: just check for aliases between the values on corresponding arms.
1534 if (const SelectInst
*SI2
= dyn_cast
<SelectInst
>(V2
))
1535 if (SI
->getCondition() == SI2
->getCondition()) {
1536 AliasResult Alias
= aliasCheck(SI
->getTrueValue(), SISize
, SIAAInfo
,
1537 SI2
->getTrueValue(), V2Size
, V2AAInfo
);
1538 if (Alias
== MayAlias
)
1540 AliasResult ThisAlias
=
1541 aliasCheck(SI
->getFalseValue(), SISize
, SIAAInfo
,
1542 SI2
->getFalseValue(), V2Size
, V2AAInfo
);
1543 return MergeAliasResults(ThisAlias
, Alias
);
1546 // If both arms of the Select node NoAlias or MustAlias V2, then returns
1547 // NoAlias / MustAlias. Otherwise, returns MayAlias.
1549 aliasCheck(V2
, V2Size
, V2AAInfo
, SI
->getTrueValue(),
1550 SISize
, SIAAInfo
, UnderV2
);
1551 if (Alias
== MayAlias
)
1554 AliasResult ThisAlias
=
1555 aliasCheck(V2
, V2Size
, V2AAInfo
, SI
->getFalseValue(), SISize
, SIAAInfo
,
1557 return MergeAliasResults(ThisAlias
, Alias
);
1560 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1562 AliasResult
BasicAAResult::aliasPHI(const PHINode
*PN
, LocationSize PNSize
,
1563 const AAMDNodes
&PNAAInfo
, const Value
*V2
,
1564 LocationSize V2Size
,
1565 const AAMDNodes
&V2AAInfo
,
1566 const Value
*UnderV2
) {
1567 // Track phi nodes we have visited. We use this information when we determine
1568 // value equivalence.
1569 VisitedPhiBBs
.insert(PN
->getParent());
1571 // If the values are PHIs in the same block, we can do a more precise
1572 // as well as efficient check: just check for aliases between the values
1573 // on corresponding edges.
1574 if (const PHINode
*PN2
= dyn_cast
<PHINode
>(V2
))
1575 if (PN2
->getParent() == PN
->getParent()) {
1576 LocPair
Locs(MemoryLocation(PN
, PNSize
, PNAAInfo
),
1577 MemoryLocation(V2
, V2Size
, V2AAInfo
));
1579 std::swap(Locs
.first
, Locs
.second
);
1580 // Analyse the PHIs' inputs under the assumption that the PHIs are
1582 // If the PHIs are May/MustAlias there must be (recursively) an input
1583 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
1584 // there must be an operation on the PHIs within the PHIs' value cycle
1585 // that causes a MayAlias.
1586 // Pretend the phis do not alias.
1587 AliasResult Alias
= NoAlias
;
1588 assert(AliasCache
.count(Locs
) &&
1589 "There must exist an entry for the phi node");
1590 AliasResult OrigAliasResult
= AliasCache
[Locs
];
1591 AliasCache
[Locs
] = NoAlias
;
1593 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
1594 AliasResult ThisAlias
=
1595 aliasCheck(PN
->getIncomingValue(i
), PNSize
, PNAAInfo
,
1596 PN2
->getIncomingValueForBlock(PN
->getIncomingBlock(i
)),
1598 Alias
= MergeAliasResults(ThisAlias
, Alias
);
1599 if (Alias
== MayAlias
)
1603 // Reset if speculation failed.
1604 if (Alias
!= NoAlias
)
1605 AliasCache
[Locs
] = OrigAliasResult
;
1610 SmallVector
<Value
*, 4> V1Srcs
;
1611 bool isRecursive
= false;
1613 // If we have PhiValues then use it to get the underlying phi values.
1614 const PhiValues::ValueSet
&PhiValueSet
= PV
->getValuesForPhi(PN
);
1615 // If we have more phi values than the search depth then return MayAlias
1616 // conservatively to avoid compile time explosion. The worst possible case
1617 // is if both sides are PHI nodes. In which case, this is O(m x n) time
1618 // where 'm' and 'n' are the number of PHI sources.
1619 if (PhiValueSet
.size() > MaxLookupSearchDepth
)
1621 // Add the values to V1Srcs
1622 for (Value
*PV1
: PhiValueSet
) {
1623 if (EnableRecPhiAnalysis
) {
1624 if (GEPOperator
*PV1GEP
= dyn_cast
<GEPOperator
>(PV1
)) {
1625 // Check whether the incoming value is a GEP that advances the pointer
1626 // result of this PHI node (e.g. in a loop). If this is the case, we
1627 // would recurse and always get a MayAlias. Handle this case specially
1629 if (PV1GEP
->getPointerOperand() == PN
&& PV1GEP
->getNumIndices() == 1 &&
1630 isa
<ConstantInt
>(PV1GEP
->idx_begin())) {
1636 V1Srcs
.push_back(PV1
);
1639 // If we don't have PhiInfo then just look at the operands of the phi itself
1640 // FIXME: Remove this once we can guarantee that we have PhiInfo always
1641 SmallPtrSet
<Value
*, 4> UniqueSrc
;
1642 for (Value
*PV1
: PN
->incoming_values()) {
1643 if (isa
<PHINode
>(PV1
))
1644 // If any of the source itself is a PHI, return MayAlias conservatively
1645 // to avoid compile time explosion. The worst possible case is if both
1646 // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1647 // and 'n' are the number of PHI sources.
1650 if (EnableRecPhiAnalysis
)
1651 if (GEPOperator
*PV1GEP
= dyn_cast
<GEPOperator
>(PV1
)) {
1652 // Check whether the incoming value is a GEP that advances the pointer
1653 // result of this PHI node (e.g. in a loop). If this is the case, we
1654 // would recurse and always get a MayAlias. Handle this case specially
1656 if (PV1GEP
->getPointerOperand() == PN
&& PV1GEP
->getNumIndices() == 1 &&
1657 isa
<ConstantInt
>(PV1GEP
->idx_begin())) {
1663 if (UniqueSrc
.insert(PV1
).second
)
1664 V1Srcs
.push_back(PV1
);
1668 // If V1Srcs is empty then that means that the phi has no underlying non-phi
1669 // value. This should only be possible in blocks unreachable from the entry
1670 // block, but return MayAlias just in case.
1674 // If this PHI node is recursive, set the size of the accessed memory to
1675 // unknown to represent all the possible values the GEP could advance the
1678 PNSize
= LocationSize::unknown();
1681 aliasCheck(V2
, V2Size
, V2AAInfo
, V1Srcs
[0],
1682 PNSize
, PNAAInfo
, UnderV2
);
1684 // Early exit if the check of the first PHI source against V2 is MayAlias.
1685 // Other results are not possible.
1686 if (Alias
== MayAlias
)
1689 // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1690 // NoAlias / MustAlias. Otherwise, returns MayAlias.
1691 for (unsigned i
= 1, e
= V1Srcs
.size(); i
!= e
; ++i
) {
1692 Value
*V
= V1Srcs
[i
];
1694 AliasResult ThisAlias
=
1695 aliasCheck(V2
, V2Size
, V2AAInfo
, V
, PNSize
, PNAAInfo
, UnderV2
);
1696 Alias
= MergeAliasResults(ThisAlias
, Alias
);
1697 if (Alias
== MayAlias
)
1704 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1705 /// array references.
1706 AliasResult
BasicAAResult::aliasCheck(const Value
*V1
, LocationSize V1Size
,
1707 AAMDNodes V1AAInfo
, const Value
*V2
,
1708 LocationSize V2Size
, AAMDNodes V2AAInfo
,
1709 const Value
*O1
, const Value
*O2
) {
1710 // If either of the memory references is empty, it doesn't matter what the
1711 // pointer values are.
1712 if (V1Size
.isZero() || V2Size
.isZero())
1715 // Strip off any casts if they exist.
1716 V1
= V1
->stripPointerCastsAndInvariantGroups();
1717 V2
= V2
->stripPointerCastsAndInvariantGroups();
1719 // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1720 // value for undef that aliases nothing in the program.
1721 if (isa
<UndefValue
>(V1
) || isa
<UndefValue
>(V2
))
1724 // Are we checking for alias of the same value?
1725 // Because we look 'through' phi nodes, we could look at "Value" pointers from
1726 // different iterations. We must therefore make sure that this is not the
1727 // case. The function isValueEqualInPotentialCycles ensures that this cannot
1728 // happen by looking at the visited phi nodes and making sure they cannot
1730 if (isValueEqualInPotentialCycles(V1
, V2
))
1733 if (!V1
->getType()->isPointerTy() || !V2
->getType()->isPointerTy())
1734 return NoAlias
; // Scalars cannot alias each other
1736 // Figure out what objects these things are pointing to if we can.
1738 O1
= GetUnderlyingObject(V1
, DL
, MaxLookupSearchDepth
);
1741 O2
= GetUnderlyingObject(V2
, DL
, MaxLookupSearchDepth
);
1743 // Null values in the default address space don't point to any object, so they
1744 // don't alias any other pointer.
1745 if (const ConstantPointerNull
*CPN
= dyn_cast
<ConstantPointerNull
>(O1
))
1746 if (!NullPointerIsDefined(&F
, CPN
->getType()->getAddressSpace()))
1748 if (const ConstantPointerNull
*CPN
= dyn_cast
<ConstantPointerNull
>(O2
))
1749 if (!NullPointerIsDefined(&F
, CPN
->getType()->getAddressSpace()))
1753 // If V1/V2 point to two different objects, we know that we have no alias.
1754 if (isIdentifiedObject(O1
) && isIdentifiedObject(O2
))
1757 // Constant pointers can't alias with non-const isIdentifiedObject objects.
1758 if ((isa
<Constant
>(O1
) && isIdentifiedObject(O2
) && !isa
<Constant
>(O2
)) ||
1759 (isa
<Constant
>(O2
) && isIdentifiedObject(O1
) && !isa
<Constant
>(O1
)))
1762 // Function arguments can't alias with things that are known to be
1763 // unambigously identified at the function level.
1764 if ((isa
<Argument
>(O1
) && isIdentifiedFunctionLocal(O2
)) ||
1765 (isa
<Argument
>(O2
) && isIdentifiedFunctionLocal(O1
)))
1768 // If one pointer is the result of a call/invoke or load and the other is a
1769 // non-escaping local object within the same function, then we know the
1770 // object couldn't escape to a point where the call could return it.
1772 // Note that if the pointers are in different functions, there are a
1773 // variety of complications. A call with a nocapture argument may still
1774 // temporary store the nocapture argument's value in a temporary memory
1775 // location if that memory location doesn't escape. Or it may pass a
1776 // nocapture value to other functions as long as they don't capture it.
1777 if (isEscapeSource(O1
) && isNonEscapingLocalObject(O2
, &IsCapturedCache
))
1779 if (isEscapeSource(O2
) && isNonEscapingLocalObject(O1
, &IsCapturedCache
))
1783 // If the size of one access is larger than the entire object on the other
1784 // side, then we know such behavior is undefined and can assume no alias.
1785 bool NullIsValidLocation
= NullPointerIsDefined(&F
);
1786 if ((V1Size
.isPrecise() && isObjectSmallerThan(O2
, V1Size
.getValue(), DL
, TLI
,
1787 NullIsValidLocation
)) ||
1788 (V2Size
.isPrecise() && isObjectSmallerThan(O1
, V2Size
.getValue(), DL
, TLI
,
1789 NullIsValidLocation
)))
1792 // Check the cache before climbing up use-def chains. This also terminates
1793 // otherwise infinitely recursive queries.
1794 LocPair
Locs(MemoryLocation(V1
, V1Size
, V1AAInfo
),
1795 MemoryLocation(V2
, V2Size
, V2AAInfo
));
1797 std::swap(Locs
.first
, Locs
.second
);
1798 std::pair
<AliasCacheTy::iterator
, bool> Pair
=
1799 AliasCache
.insert(std::make_pair(Locs
, MayAlias
));
1801 return Pair
.first
->second
;
1803 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1804 // GEP can't simplify, we don't even look at the PHI cases.
1805 if (!isa
<GEPOperator
>(V1
) && isa
<GEPOperator
>(V2
)) {
1807 std::swap(V1Size
, V2Size
);
1809 std::swap(V1AAInfo
, V2AAInfo
);
1811 if (const GEPOperator
*GV1
= dyn_cast
<GEPOperator
>(V1
)) {
1812 AliasResult Result
=
1813 aliasGEP(GV1
, V1Size
, V1AAInfo
, V2
, V2Size
, V2AAInfo
, O1
, O2
);
1814 if (Result
!= MayAlias
)
1815 return AliasCache
[Locs
] = Result
;
1818 if (isa
<PHINode
>(V2
) && !isa
<PHINode
>(V1
)) {
1821 std::swap(V1Size
, V2Size
);
1822 std::swap(V1AAInfo
, V2AAInfo
);
1824 if (const PHINode
*PN
= dyn_cast
<PHINode
>(V1
)) {
1825 AliasResult Result
= aliasPHI(PN
, V1Size
, V1AAInfo
,
1826 V2
, V2Size
, V2AAInfo
, O2
);
1827 if (Result
!= MayAlias
)
1828 return AliasCache
[Locs
] = Result
;
1831 if (isa
<SelectInst
>(V2
) && !isa
<SelectInst
>(V1
)) {
1834 std::swap(V1Size
, V2Size
);
1835 std::swap(V1AAInfo
, V2AAInfo
);
1837 if (const SelectInst
*S1
= dyn_cast
<SelectInst
>(V1
)) {
1838 AliasResult Result
=
1839 aliasSelect(S1
, V1Size
, V1AAInfo
, V2
, V2Size
, V2AAInfo
, O2
);
1840 if (Result
!= MayAlias
)
1841 return AliasCache
[Locs
] = Result
;
1844 // If both pointers are pointing into the same object and one of them
1845 // accesses the entire object, then the accesses must overlap in some way.
1847 if (V1Size
.isPrecise() && V2Size
.isPrecise() &&
1848 (isObjectSize(O1
, V1Size
.getValue(), DL
, TLI
, NullIsValidLocation
) ||
1849 isObjectSize(O2
, V2Size
.getValue(), DL
, TLI
, NullIsValidLocation
)))
1850 return AliasCache
[Locs
] = PartialAlias
;
1852 // Recurse back into the best AA results we have, potentially with refined
1853 // memory locations. We have already ensured that BasicAA has a MayAlias
1854 // cache result for these, so any recursion back into BasicAA won't loop.
1855 AliasResult Result
= getBestAAResults().alias(Locs
.first
, Locs
.second
);
1856 return AliasCache
[Locs
] = Result
;
1859 /// Check whether two Values can be considered equivalent.
1861 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1862 /// they can not be part of a cycle in the value graph by looking at all
1863 /// visited phi nodes an making sure that the phis cannot reach the value. We
1864 /// have to do this because we are looking through phi nodes (That is we say
1865 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1866 bool BasicAAResult::isValueEqualInPotentialCycles(const Value
*V
,
1871 const Instruction
*Inst
= dyn_cast
<Instruction
>(V
);
1875 if (VisitedPhiBBs
.empty())
1878 if (VisitedPhiBBs
.size() > MaxNumPhiBBsValueReachabilityCheck
)
1881 // Make sure that the visited phis cannot reach the Value. This ensures that
1882 // the Values cannot come from different iterations of a potential cycle the
1883 // phi nodes could be involved in.
1884 for (auto *P
: VisitedPhiBBs
)
1885 if (isPotentiallyReachable(&P
->front(), Inst
, DT
, LI
))
1891 /// Computes the symbolic difference between two de-composed GEPs.
1893 /// Dest and Src are the variable indices from two decomposed GetElementPtr
1894 /// instructions GEP1 and GEP2 which have common base pointers.
1895 void BasicAAResult::GetIndexDifference(
1896 SmallVectorImpl
<VariableGEPIndex
> &Dest
,
1897 const SmallVectorImpl
<VariableGEPIndex
> &Src
) {
1901 for (unsigned i
= 0, e
= Src
.size(); i
!= e
; ++i
) {
1902 const Value
*V
= Src
[i
].V
;
1903 unsigned ZExtBits
= Src
[i
].ZExtBits
, SExtBits
= Src
[i
].SExtBits
;
1904 APInt Scale
= Src
[i
].Scale
;
1906 // Find V in Dest. This is N^2, but pointer indices almost never have more
1907 // than a few variable indexes.
1908 for (unsigned j
= 0, e
= Dest
.size(); j
!= e
; ++j
) {
1909 if (!isValueEqualInPotentialCycles(Dest
[j
].V
, V
) ||
1910 Dest
[j
].ZExtBits
!= ZExtBits
|| Dest
[j
].SExtBits
!= SExtBits
)
1913 // If we found it, subtract off Scale V's from the entry in Dest. If it
1914 // goes to zero, remove the entry.
1915 if (Dest
[j
].Scale
!= Scale
)
1916 Dest
[j
].Scale
-= Scale
;
1918 Dest
.erase(Dest
.begin() + j
);
1923 // If we didn't consume this entry, add it to the end of the Dest list.
1925 VariableGEPIndex Entry
= {V
, ZExtBits
, SExtBits
, -Scale
};
1926 Dest
.push_back(Entry
);
1931 bool BasicAAResult::constantOffsetHeuristic(
1932 const SmallVectorImpl
<VariableGEPIndex
> &VarIndices
,
1933 LocationSize MaybeV1Size
, LocationSize MaybeV2Size
, APInt BaseOffset
,
1934 AssumptionCache
*AC
, DominatorTree
*DT
) {
1935 if (VarIndices
.size() != 2 || MaybeV1Size
== LocationSize::unknown() ||
1936 MaybeV2Size
== LocationSize::unknown())
1939 const uint64_t V1Size
= MaybeV1Size
.getValue();
1940 const uint64_t V2Size
= MaybeV2Size
.getValue();
1942 const VariableGEPIndex
&Var0
= VarIndices
[0], &Var1
= VarIndices
[1];
1944 if (Var0
.ZExtBits
!= Var1
.ZExtBits
|| Var0
.SExtBits
!= Var1
.SExtBits
||
1945 Var0
.Scale
!= -Var1
.Scale
)
1948 unsigned Width
= Var1
.V
->getType()->getIntegerBitWidth();
1950 // We'll strip off the Extensions of Var0 and Var1 and do another round
1951 // of GetLinearExpression decomposition. In the example above, if Var0
1952 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
1954 APInt
V0Scale(Width
, 0), V0Offset(Width
, 0), V1Scale(Width
, 0),
1956 bool NSW
= true, NUW
= true;
1957 unsigned V0ZExtBits
= 0, V0SExtBits
= 0, V1ZExtBits
= 0, V1SExtBits
= 0;
1958 const Value
*V0
= GetLinearExpression(Var0
.V
, V0Scale
, V0Offset
, V0ZExtBits
,
1959 V0SExtBits
, DL
, 0, AC
, DT
, NSW
, NUW
);
1962 const Value
*V1
= GetLinearExpression(Var1
.V
, V1Scale
, V1Offset
, V1ZExtBits
,
1963 V1SExtBits
, DL
, 0, AC
, DT
, NSW
, NUW
);
1965 if (V0Scale
!= V1Scale
|| V0ZExtBits
!= V1ZExtBits
||
1966 V0SExtBits
!= V1SExtBits
|| !isValueEqualInPotentialCycles(V0
, V1
))
1969 // We have a hit - Var0 and Var1 only differ by a constant offset!
1971 // If we've been sext'ed then zext'd the maximum difference between Var0 and
1972 // Var1 is possible to calculate, but we're just interested in the absolute
1973 // minimum difference between the two. The minimum distance may occur due to
1974 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
1975 // the minimum distance between %i and %i + 5 is 3.
1976 APInt MinDiff
= V0Offset
- V1Offset
, Wrapped
= -MinDiff
;
1977 MinDiff
= APIntOps::umin(MinDiff
, Wrapped
);
1978 APInt MinDiffBytes
=
1979 MinDiff
.zextOrTrunc(Var0
.Scale
.getBitWidth()) * Var0
.Scale
.abs();
1981 // We can't definitely say whether GEP1 is before or after V2 due to wrapping
1982 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
1983 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
1984 // V2Size can fit in the MinDiffBytes gap.
1985 return MinDiffBytes
.uge(V1Size
+ BaseOffset
.abs()) &&
1986 MinDiffBytes
.uge(V2Size
+ BaseOffset
.abs());
1989 //===----------------------------------------------------------------------===//
1990 // BasicAliasAnalysis Pass
1991 //===----------------------------------------------------------------------===//
1993 AnalysisKey
BasicAA::Key
;
1995 BasicAAResult
BasicAA::run(Function
&F
, FunctionAnalysisManager
&AM
) {
1996 return BasicAAResult(F
.getParent()->getDataLayout(),
1998 AM
.getResult
<TargetLibraryAnalysis
>(F
),
1999 AM
.getResult
<AssumptionAnalysis
>(F
),
2000 &AM
.getResult
<DominatorTreeAnalysis
>(F
),
2001 AM
.getCachedResult
<LoopAnalysis
>(F
),
2002 AM
.getCachedResult
<PhiValuesAnalysis
>(F
));
2005 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID
) {
2006 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
2009 char BasicAAWrapperPass::ID
= 0;
2011 void BasicAAWrapperPass::anchor() {}
2013 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass
, "basicaa",
2014 "Basic Alias Analysis (stateless AA impl)", false, true)
2015 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
2016 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
2017 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
2018 INITIALIZE_PASS_END(BasicAAWrapperPass
, "basicaa",
2019 "Basic Alias Analysis (stateless AA impl)", false, true)
2021 FunctionPass
*llvm::createBasicAAWrapperPass() {
2022 return new BasicAAWrapperPass();
2025 bool BasicAAWrapperPass::runOnFunction(Function
&F
) {
2026 auto &ACT
= getAnalysis
<AssumptionCacheTracker
>();
2027 auto &TLIWP
= getAnalysis
<TargetLibraryInfoWrapperPass
>();
2028 auto &DTWP
= getAnalysis
<DominatorTreeWrapperPass
>();
2029 auto *LIWP
= getAnalysisIfAvailable
<LoopInfoWrapperPass
>();
2030 auto *PVWP
= getAnalysisIfAvailable
<PhiValuesWrapperPass
>();
2032 Result
.reset(new BasicAAResult(F
.getParent()->getDataLayout(), F
, TLIWP
.getTLI(),
2033 ACT
.getAssumptionCache(F
), &DTWP
.getDomTree(),
2034 LIWP
? &LIWP
->getLoopInfo() : nullptr,
2035 PVWP
? &PVWP
->getResult() : nullptr));
2040 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
2041 AU
.setPreservesAll();
2042 AU
.addRequired
<AssumptionCacheTracker
>();
2043 AU
.addRequired
<DominatorTreeWrapperPass
>();
2044 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
2045 AU
.addUsedIfAvailable
<PhiValuesWrapperPass
>();
2048 BasicAAResult
llvm::createLegacyPMBasicAAResult(Pass
&P
, Function
&F
) {
2049 return BasicAAResult(
2050 F
.getParent()->getDataLayout(),
2052 P
.getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(),
2053 P
.getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
));