Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Analysis / ScalarEvolutionExpander.cpp
blob939907ce1b5186a23e3526e4186a878b076bc2b2
1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution expander,
10 // which is used to generate the code corresponding to a given scalar evolution
11 // expression.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Analysis/ScalarEvolutionExpander.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/raw_ostream.h"
30 using namespace llvm;
31 using namespace PatternMatch;
33 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
34 /// reusing an existing cast if a suitable one exists, moving an existing
35 /// cast if a suitable one exists but isn't in the right place, or
36 /// creating a new one.
37 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
38 Instruction::CastOps Op,
39 BasicBlock::iterator IP) {
40 // This function must be called with the builder having a valid insertion
41 // point. It doesn't need to be the actual IP where the uses of the returned
42 // cast will be added, but it must dominate such IP.
43 // We use this precondition to produce a cast that will dominate all its
44 // uses. In particular, this is crucial for the case where the builder's
45 // insertion point *is* the point where we were asked to put the cast.
46 // Since we don't know the builder's insertion point is actually
47 // where the uses will be added (only that it dominates it), we are
48 // not allowed to move it.
49 BasicBlock::iterator BIP = Builder.GetInsertPoint();
51 Instruction *Ret = nullptr;
53 // Check to see if there is already a cast!
54 for (User *U : V->users())
55 if (U->getType() == Ty)
56 if (CastInst *CI = dyn_cast<CastInst>(U))
57 if (CI->getOpcode() == Op) {
58 // If the cast isn't where we want it, create a new cast at IP.
59 // Likewise, do not reuse a cast at BIP because it must dominate
60 // instructions that might be inserted before BIP.
61 if (BasicBlock::iterator(CI) != IP || BIP == IP) {
62 // Create a new cast, and leave the old cast in place in case
63 // it is being used as an insert point. Clear its operand
64 // so that it doesn't hold anything live.
65 Ret = CastInst::Create(Op, V, Ty, "", &*IP);
66 Ret->takeName(CI);
67 CI->replaceAllUsesWith(Ret);
68 CI->setOperand(0, UndefValue::get(V->getType()));
69 break;
71 Ret = CI;
72 break;
75 // Create a new cast.
76 if (!Ret)
77 Ret = CastInst::Create(Op, V, Ty, V->getName(), &*IP);
79 // We assert at the end of the function since IP might point to an
80 // instruction with different dominance properties than a cast
81 // (an invoke for example) and not dominate BIP (but the cast does).
82 assert(SE.DT.dominates(Ret, &*BIP));
84 rememberInstruction(Ret);
85 return Ret;
88 static BasicBlock::iterator findInsertPointAfter(Instruction *I,
89 BasicBlock *MustDominate) {
90 BasicBlock::iterator IP = ++I->getIterator();
91 if (auto *II = dyn_cast<InvokeInst>(I))
92 IP = II->getNormalDest()->begin();
94 while (isa<PHINode>(IP))
95 ++IP;
97 if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
98 ++IP;
99 } else if (isa<CatchSwitchInst>(IP)) {
100 IP = MustDominate->getFirstInsertionPt();
101 } else {
102 assert(!IP->isEHPad() && "unexpected eh pad!");
105 return IP;
108 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
109 /// which must be possible with a noop cast, doing what we can to share
110 /// the casts.
111 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
112 Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
113 assert((Op == Instruction::BitCast ||
114 Op == Instruction::PtrToInt ||
115 Op == Instruction::IntToPtr) &&
116 "InsertNoopCastOfTo cannot perform non-noop casts!");
117 assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
118 "InsertNoopCastOfTo cannot change sizes!");
120 // Short-circuit unnecessary bitcasts.
121 if (Op == Instruction::BitCast) {
122 if (V->getType() == Ty)
123 return V;
124 if (CastInst *CI = dyn_cast<CastInst>(V)) {
125 if (CI->getOperand(0)->getType() == Ty)
126 return CI->getOperand(0);
129 // Short-circuit unnecessary inttoptr<->ptrtoint casts.
130 if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
131 SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
132 if (CastInst *CI = dyn_cast<CastInst>(V))
133 if ((CI->getOpcode() == Instruction::PtrToInt ||
134 CI->getOpcode() == Instruction::IntToPtr) &&
135 SE.getTypeSizeInBits(CI->getType()) ==
136 SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
137 return CI->getOperand(0);
138 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
139 if ((CE->getOpcode() == Instruction::PtrToInt ||
140 CE->getOpcode() == Instruction::IntToPtr) &&
141 SE.getTypeSizeInBits(CE->getType()) ==
142 SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
143 return CE->getOperand(0);
146 // Fold a cast of a constant.
147 if (Constant *C = dyn_cast<Constant>(V))
148 return ConstantExpr::getCast(Op, C, Ty);
150 // Cast the argument at the beginning of the entry block, after
151 // any bitcasts of other arguments.
152 if (Argument *A = dyn_cast<Argument>(V)) {
153 BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
154 while ((isa<BitCastInst>(IP) &&
155 isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
156 cast<BitCastInst>(IP)->getOperand(0) != A) ||
157 isa<DbgInfoIntrinsic>(IP))
158 ++IP;
159 return ReuseOrCreateCast(A, Ty, Op, IP);
162 // Cast the instruction immediately after the instruction.
163 Instruction *I = cast<Instruction>(V);
164 BasicBlock::iterator IP = findInsertPointAfter(I, Builder.GetInsertBlock());
165 return ReuseOrCreateCast(I, Ty, Op, IP);
168 /// InsertBinop - Insert the specified binary operator, doing a small amount
169 /// of work to avoid inserting an obviously redundant operation.
170 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
171 Value *LHS, Value *RHS) {
172 // Fold a binop with constant operands.
173 if (Constant *CLHS = dyn_cast<Constant>(LHS))
174 if (Constant *CRHS = dyn_cast<Constant>(RHS))
175 return ConstantExpr::get(Opcode, CLHS, CRHS);
177 // Do a quick scan to see if we have this binop nearby. If so, reuse it.
178 unsigned ScanLimit = 6;
179 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
180 // Scanning starts from the last instruction before the insertion point.
181 BasicBlock::iterator IP = Builder.GetInsertPoint();
182 if (IP != BlockBegin) {
183 --IP;
184 for (; ScanLimit; --IP, --ScanLimit) {
185 // Don't count dbg.value against the ScanLimit, to avoid perturbing the
186 // generated code.
187 if (isa<DbgInfoIntrinsic>(IP))
188 ScanLimit++;
190 // Conservatively, do not use any instruction which has any of wrap/exact
191 // flags installed.
192 // TODO: Instead of simply disable poison instructions we can be clever
193 // here and match SCEV to this instruction.
194 auto canGeneratePoison = [](Instruction *I) {
195 if (isa<OverflowingBinaryOperator>(I) &&
196 (I->hasNoSignedWrap() || I->hasNoUnsignedWrap()))
197 return true;
198 if (isa<PossiblyExactOperator>(I) && I->isExact())
199 return true;
200 return false;
202 if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
203 IP->getOperand(1) == RHS && !canGeneratePoison(&*IP))
204 return &*IP;
205 if (IP == BlockBegin) break;
209 // Save the original insertion point so we can restore it when we're done.
210 DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
211 SCEVInsertPointGuard Guard(Builder, this);
213 // Move the insertion point out of as many loops as we can.
214 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
215 if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
216 BasicBlock *Preheader = L->getLoopPreheader();
217 if (!Preheader) break;
219 // Ok, move up a level.
220 Builder.SetInsertPoint(Preheader->getTerminator());
223 // If we haven't found this binop, insert it.
224 Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
225 BO->setDebugLoc(Loc);
226 rememberInstruction(BO);
228 return BO;
231 /// FactorOutConstant - Test if S is divisible by Factor, using signed
232 /// division. If so, update S with Factor divided out and return true.
233 /// S need not be evenly divisible if a reasonable remainder can be
234 /// computed.
235 /// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
236 /// unnecessary; in its place, just signed-divide Ops[i] by the scale and
237 /// check to see if the divide was folded.
238 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder,
239 const SCEV *Factor, ScalarEvolution &SE,
240 const DataLayout &DL) {
241 // Everything is divisible by one.
242 if (Factor->isOne())
243 return true;
245 // x/x == 1.
246 if (S == Factor) {
247 S = SE.getConstant(S->getType(), 1);
248 return true;
251 // For a Constant, check for a multiple of the given factor.
252 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
253 // 0/x == 0.
254 if (C->isZero())
255 return true;
256 // Check for divisibility.
257 if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
258 ConstantInt *CI =
259 ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt()));
260 // If the quotient is zero and the remainder is non-zero, reject
261 // the value at this scale. It will be considered for subsequent
262 // smaller scales.
263 if (!CI->isZero()) {
264 const SCEV *Div = SE.getConstant(CI);
265 S = Div;
266 Remainder = SE.getAddExpr(
267 Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt())));
268 return true;
273 // In a Mul, check if there is a constant operand which is a multiple
274 // of the given factor.
275 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
276 // Size is known, check if there is a constant operand which is a multiple
277 // of the given factor. If so, we can factor it.
278 const SCEVConstant *FC = cast<SCEVConstant>(Factor);
279 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
280 if (!C->getAPInt().srem(FC->getAPInt())) {
281 SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
282 NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt()));
283 S = SE.getMulExpr(NewMulOps);
284 return true;
288 // In an AddRec, check if both start and step are divisible.
289 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
290 const SCEV *Step = A->getStepRecurrence(SE);
291 const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
292 if (!FactorOutConstant(Step, StepRem, Factor, SE, DL))
293 return false;
294 if (!StepRem->isZero())
295 return false;
296 const SCEV *Start = A->getStart();
297 if (!FactorOutConstant(Start, Remainder, Factor, SE, DL))
298 return false;
299 S = SE.getAddRecExpr(Start, Step, A->getLoop(),
300 A->getNoWrapFlags(SCEV::FlagNW));
301 return true;
304 return false;
307 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
308 /// is the number of SCEVAddRecExprs present, which are kept at the end of
309 /// the list.
311 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
312 Type *Ty,
313 ScalarEvolution &SE) {
314 unsigned NumAddRecs = 0;
315 for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
316 ++NumAddRecs;
317 // Group Ops into non-addrecs and addrecs.
318 SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
319 SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
320 // Let ScalarEvolution sort and simplify the non-addrecs list.
321 const SCEV *Sum = NoAddRecs.empty() ?
322 SE.getConstant(Ty, 0) :
323 SE.getAddExpr(NoAddRecs);
324 // If it returned an add, use the operands. Otherwise it simplified
325 // the sum into a single value, so just use that.
326 Ops.clear();
327 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
328 Ops.append(Add->op_begin(), Add->op_end());
329 else if (!Sum->isZero())
330 Ops.push_back(Sum);
331 // Then append the addrecs.
332 Ops.append(AddRecs.begin(), AddRecs.end());
335 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
336 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
337 /// This helps expose more opportunities for folding parts of the expressions
338 /// into GEP indices.
340 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
341 Type *Ty,
342 ScalarEvolution &SE) {
343 // Find the addrecs.
344 SmallVector<const SCEV *, 8> AddRecs;
345 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
346 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
347 const SCEV *Start = A->getStart();
348 if (Start->isZero()) break;
349 const SCEV *Zero = SE.getConstant(Ty, 0);
350 AddRecs.push_back(SE.getAddRecExpr(Zero,
351 A->getStepRecurrence(SE),
352 A->getLoop(),
353 A->getNoWrapFlags(SCEV::FlagNW)));
354 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
355 Ops[i] = Zero;
356 Ops.append(Add->op_begin(), Add->op_end());
357 e += Add->getNumOperands();
358 } else {
359 Ops[i] = Start;
362 if (!AddRecs.empty()) {
363 // Add the addrecs onto the end of the list.
364 Ops.append(AddRecs.begin(), AddRecs.end());
365 // Resort the operand list, moving any constants to the front.
366 SimplifyAddOperands(Ops, Ty, SE);
370 /// expandAddToGEP - Expand an addition expression with a pointer type into
371 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
372 /// BasicAliasAnalysis and other passes analyze the result. See the rules
373 /// for getelementptr vs. inttoptr in
374 /// http://llvm.org/docs/LangRef.html#pointeraliasing
375 /// for details.
377 /// Design note: The correctness of using getelementptr here depends on
378 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
379 /// they may introduce pointer arithmetic which may not be safely converted
380 /// into getelementptr.
382 /// Design note: It might seem desirable for this function to be more
383 /// loop-aware. If some of the indices are loop-invariant while others
384 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
385 /// loop-invariant portions of the overall computation outside the loop.
386 /// However, there are a few reasons this is not done here. Hoisting simple
387 /// arithmetic is a low-level optimization that often isn't very
388 /// important until late in the optimization process. In fact, passes
389 /// like InstructionCombining will combine GEPs, even if it means
390 /// pushing loop-invariant computation down into loops, so even if the
391 /// GEPs were split here, the work would quickly be undone. The
392 /// LoopStrengthReduction pass, which is usually run quite late (and
393 /// after the last InstructionCombining pass), takes care of hoisting
394 /// loop-invariant portions of expressions, after considering what
395 /// can be folded using target addressing modes.
397 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
398 const SCEV *const *op_end,
399 PointerType *PTy,
400 Type *Ty,
401 Value *V) {
402 Type *OriginalElTy = PTy->getElementType();
403 Type *ElTy = OriginalElTy;
404 SmallVector<Value *, 4> GepIndices;
405 SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
406 bool AnyNonZeroIndices = false;
408 // Split AddRecs up into parts as either of the parts may be usable
409 // without the other.
410 SplitAddRecs(Ops, Ty, SE);
412 Type *IntPtrTy = DL.getIntPtrType(PTy);
414 // Descend down the pointer's type and attempt to convert the other
415 // operands into GEP indices, at each level. The first index in a GEP
416 // indexes into the array implied by the pointer operand; the rest of
417 // the indices index into the element or field type selected by the
418 // preceding index.
419 for (;;) {
420 // If the scale size is not 0, attempt to factor out a scale for
421 // array indexing.
422 SmallVector<const SCEV *, 8> ScaledOps;
423 if (ElTy->isSized()) {
424 const SCEV *ElSize = SE.getSizeOfExpr(IntPtrTy, ElTy);
425 if (!ElSize->isZero()) {
426 SmallVector<const SCEV *, 8> NewOps;
427 for (const SCEV *Op : Ops) {
428 const SCEV *Remainder = SE.getConstant(Ty, 0);
429 if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) {
430 // Op now has ElSize factored out.
431 ScaledOps.push_back(Op);
432 if (!Remainder->isZero())
433 NewOps.push_back(Remainder);
434 AnyNonZeroIndices = true;
435 } else {
436 // The operand was not divisible, so add it to the list of operands
437 // we'll scan next iteration.
438 NewOps.push_back(Op);
441 // If we made any changes, update Ops.
442 if (!ScaledOps.empty()) {
443 Ops = NewOps;
444 SimplifyAddOperands(Ops, Ty, SE);
449 // Record the scaled array index for this level of the type. If
450 // we didn't find any operands that could be factored, tentatively
451 // assume that element zero was selected (since the zero offset
452 // would obviously be folded away).
453 Value *Scaled = ScaledOps.empty() ?
454 Constant::getNullValue(Ty) :
455 expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
456 GepIndices.push_back(Scaled);
458 // Collect struct field index operands.
459 while (StructType *STy = dyn_cast<StructType>(ElTy)) {
460 bool FoundFieldNo = false;
461 // An empty struct has no fields.
462 if (STy->getNumElements() == 0) break;
463 // Field offsets are known. See if a constant offset falls within any of
464 // the struct fields.
465 if (Ops.empty())
466 break;
467 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
468 if (SE.getTypeSizeInBits(C->getType()) <= 64) {
469 const StructLayout &SL = *DL.getStructLayout(STy);
470 uint64_t FullOffset = C->getValue()->getZExtValue();
471 if (FullOffset < SL.getSizeInBytes()) {
472 unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
473 GepIndices.push_back(
474 ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
475 ElTy = STy->getTypeAtIndex(ElIdx);
476 Ops[0] =
477 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
478 AnyNonZeroIndices = true;
479 FoundFieldNo = true;
482 // If no struct field offsets were found, tentatively assume that
483 // field zero was selected (since the zero offset would obviously
484 // be folded away).
485 if (!FoundFieldNo) {
486 ElTy = STy->getTypeAtIndex(0u);
487 GepIndices.push_back(
488 Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
492 if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
493 ElTy = ATy->getElementType();
494 else
495 break;
498 // If none of the operands were convertible to proper GEP indices, cast
499 // the base to i8* and do an ugly getelementptr with that. It's still
500 // better than ptrtoint+arithmetic+inttoptr at least.
501 if (!AnyNonZeroIndices) {
502 // Cast the base to i8*.
503 V = InsertNoopCastOfTo(V,
504 Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
506 assert(!isa<Instruction>(V) ||
507 SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
509 // Expand the operands for a plain byte offset.
510 Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
512 // Fold a GEP with constant operands.
513 if (Constant *CLHS = dyn_cast<Constant>(V))
514 if (Constant *CRHS = dyn_cast<Constant>(Idx))
515 return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()),
516 CLHS, CRHS);
518 // Do a quick scan to see if we have this GEP nearby. If so, reuse it.
519 unsigned ScanLimit = 6;
520 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
521 // Scanning starts from the last instruction before the insertion point.
522 BasicBlock::iterator IP = Builder.GetInsertPoint();
523 if (IP != BlockBegin) {
524 --IP;
525 for (; ScanLimit; --IP, --ScanLimit) {
526 // Don't count dbg.value against the ScanLimit, to avoid perturbing the
527 // generated code.
528 if (isa<DbgInfoIntrinsic>(IP))
529 ScanLimit++;
530 if (IP->getOpcode() == Instruction::GetElementPtr &&
531 IP->getOperand(0) == V && IP->getOperand(1) == Idx)
532 return &*IP;
533 if (IP == BlockBegin) break;
537 // Save the original insertion point so we can restore it when we're done.
538 SCEVInsertPointGuard Guard(Builder, this);
540 // Move the insertion point out of as many loops as we can.
541 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
542 if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
543 BasicBlock *Preheader = L->getLoopPreheader();
544 if (!Preheader) break;
546 // Ok, move up a level.
547 Builder.SetInsertPoint(Preheader->getTerminator());
550 // Emit a GEP.
551 Value *GEP = Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep");
552 rememberInstruction(GEP);
554 return GEP;
558 SCEVInsertPointGuard Guard(Builder, this);
560 // Move the insertion point out of as many loops as we can.
561 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
562 if (!L->isLoopInvariant(V)) break;
564 bool AnyIndexNotLoopInvariant = any_of(
565 GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); });
567 if (AnyIndexNotLoopInvariant)
568 break;
570 BasicBlock *Preheader = L->getLoopPreheader();
571 if (!Preheader) break;
573 // Ok, move up a level.
574 Builder.SetInsertPoint(Preheader->getTerminator());
577 // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
578 // because ScalarEvolution may have changed the address arithmetic to
579 // compute a value which is beyond the end of the allocated object.
580 Value *Casted = V;
581 if (V->getType() != PTy)
582 Casted = InsertNoopCastOfTo(Casted, PTy);
583 Value *GEP = Builder.CreateGEP(OriginalElTy, Casted, GepIndices, "scevgep");
584 Ops.push_back(SE.getUnknown(GEP));
585 rememberInstruction(GEP);
588 return expand(SE.getAddExpr(Ops));
591 Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty,
592 Value *V) {
593 const SCEV *const Ops[1] = {Op};
594 return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V);
597 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
598 /// SCEV expansion. If they are nested, this is the most nested. If they are
599 /// neighboring, pick the later.
600 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
601 DominatorTree &DT) {
602 if (!A) return B;
603 if (!B) return A;
604 if (A->contains(B)) return B;
605 if (B->contains(A)) return A;
606 if (DT.dominates(A->getHeader(), B->getHeader())) return B;
607 if (DT.dominates(B->getHeader(), A->getHeader())) return A;
608 return A; // Arbitrarily break the tie.
611 /// getRelevantLoop - Get the most relevant loop associated with the given
612 /// expression, according to PickMostRelevantLoop.
613 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
614 // Test whether we've already computed the most relevant loop for this SCEV.
615 auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
616 if (!Pair.second)
617 return Pair.first->second;
619 if (isa<SCEVConstant>(S))
620 // A constant has no relevant loops.
621 return nullptr;
622 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
623 if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
624 return Pair.first->second = SE.LI.getLoopFor(I->getParent());
625 // A non-instruction has no relevant loops.
626 return nullptr;
628 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
629 const Loop *L = nullptr;
630 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
631 L = AR->getLoop();
632 for (const SCEV *Op : N->operands())
633 L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
634 return RelevantLoops[N] = L;
636 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
637 const Loop *Result = getRelevantLoop(C->getOperand());
638 return RelevantLoops[C] = Result;
640 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
641 const Loop *Result = PickMostRelevantLoop(
642 getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT);
643 return RelevantLoops[D] = Result;
645 llvm_unreachable("Unexpected SCEV type!");
648 namespace {
650 /// LoopCompare - Compare loops by PickMostRelevantLoop.
651 class LoopCompare {
652 DominatorTree &DT;
653 public:
654 explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
656 bool operator()(std::pair<const Loop *, const SCEV *> LHS,
657 std::pair<const Loop *, const SCEV *> RHS) const {
658 // Keep pointer operands sorted at the end.
659 if (LHS.second->getType()->isPointerTy() !=
660 RHS.second->getType()->isPointerTy())
661 return LHS.second->getType()->isPointerTy();
663 // Compare loops with PickMostRelevantLoop.
664 if (LHS.first != RHS.first)
665 return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
667 // If one operand is a non-constant negative and the other is not,
668 // put the non-constant negative on the right so that a sub can
669 // be used instead of a negate and add.
670 if (LHS.second->isNonConstantNegative()) {
671 if (!RHS.second->isNonConstantNegative())
672 return false;
673 } else if (RHS.second->isNonConstantNegative())
674 return true;
676 // Otherwise they are equivalent according to this comparison.
677 return false;
683 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
684 Type *Ty = SE.getEffectiveSCEVType(S->getType());
686 // Collect all the add operands in a loop, along with their associated loops.
687 // Iterate in reverse so that constants are emitted last, all else equal, and
688 // so that pointer operands are inserted first, which the code below relies on
689 // to form more involved GEPs.
690 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
691 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
692 E(S->op_begin()); I != E; ++I)
693 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
695 // Sort by loop. Use a stable sort so that constants follow non-constants and
696 // pointer operands precede non-pointer operands.
697 std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(SE.DT));
699 // Emit instructions to add all the operands. Hoist as much as possible
700 // out of loops, and form meaningful getelementptrs where possible.
701 Value *Sum = nullptr;
702 for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
703 const Loop *CurLoop = I->first;
704 const SCEV *Op = I->second;
705 if (!Sum) {
706 // This is the first operand. Just expand it.
707 Sum = expand(Op);
708 ++I;
709 } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
710 // The running sum expression is a pointer. Try to form a getelementptr
711 // at this level with that as the base.
712 SmallVector<const SCEV *, 4> NewOps;
713 for (; I != E && I->first == CurLoop; ++I) {
714 // If the operand is SCEVUnknown and not instructions, peek through
715 // it, to enable more of it to be folded into the GEP.
716 const SCEV *X = I->second;
717 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
718 if (!isa<Instruction>(U->getValue()))
719 X = SE.getSCEV(U->getValue());
720 NewOps.push_back(X);
722 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
723 } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
724 // The running sum is an integer, and there's a pointer at this level.
725 // Try to form a getelementptr. If the running sum is instructions,
726 // use a SCEVUnknown to avoid re-analyzing them.
727 SmallVector<const SCEV *, 4> NewOps;
728 NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
729 SE.getSCEV(Sum));
730 for (++I; I != E && I->first == CurLoop; ++I)
731 NewOps.push_back(I->second);
732 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
733 } else if (Op->isNonConstantNegative()) {
734 // Instead of doing a negate and add, just do a subtract.
735 Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
736 Sum = InsertNoopCastOfTo(Sum, Ty);
737 Sum = InsertBinop(Instruction::Sub, Sum, W);
738 ++I;
739 } else {
740 // A simple add.
741 Value *W = expandCodeFor(Op, Ty);
742 Sum = InsertNoopCastOfTo(Sum, Ty);
743 // Canonicalize a constant to the RHS.
744 if (isa<Constant>(Sum)) std::swap(Sum, W);
745 Sum = InsertBinop(Instruction::Add, Sum, W);
746 ++I;
750 return Sum;
753 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
754 Type *Ty = SE.getEffectiveSCEVType(S->getType());
756 // Collect all the mul operands in a loop, along with their associated loops.
757 // Iterate in reverse so that constants are emitted last, all else equal.
758 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
759 for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
760 E(S->op_begin()); I != E; ++I)
761 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
763 // Sort by loop. Use a stable sort so that constants follow non-constants.
764 std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(SE.DT));
766 // Emit instructions to mul all the operands. Hoist as much as possible
767 // out of loops.
768 Value *Prod = nullptr;
769 auto I = OpsAndLoops.begin();
771 // Expand the calculation of X pow N in the following manner:
772 // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
773 // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
774 const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() {
775 auto E = I;
776 // Calculate how many times the same operand from the same loop is included
777 // into this power.
778 uint64_t Exponent = 0;
779 const uint64_t MaxExponent = UINT64_MAX >> 1;
780 // No one sane will ever try to calculate such huge exponents, but if we
781 // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
782 // below when the power of 2 exceeds our Exponent, and we want it to be
783 // 1u << 31 at most to not deal with unsigned overflow.
784 while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
785 ++Exponent;
786 ++E;
788 assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");
790 // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
791 // that are needed into the result.
792 Value *P = expandCodeFor(I->second, Ty);
793 Value *Result = nullptr;
794 if (Exponent & 1)
795 Result = P;
796 for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
797 P = InsertBinop(Instruction::Mul, P, P);
798 if (Exponent & BinExp)
799 Result = Result ? InsertBinop(Instruction::Mul, Result, P) : P;
802 I = E;
803 assert(Result && "Nothing was expanded?");
804 return Result;
807 while (I != OpsAndLoops.end()) {
808 if (!Prod) {
809 // This is the first operand. Just expand it.
810 Prod = ExpandOpBinPowN();
811 } else if (I->second->isAllOnesValue()) {
812 // Instead of doing a multiply by negative one, just do a negate.
813 Prod = InsertNoopCastOfTo(Prod, Ty);
814 Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod);
815 ++I;
816 } else {
817 // A simple mul.
818 Value *W = ExpandOpBinPowN();
819 Prod = InsertNoopCastOfTo(Prod, Ty);
820 // Canonicalize a constant to the RHS.
821 if (isa<Constant>(Prod)) std::swap(Prod, W);
822 const APInt *RHS;
823 if (match(W, m_Power2(RHS))) {
824 // Canonicalize Prod*(1<<C) to Prod<<C.
825 assert(!Ty->isVectorTy() && "vector types are not SCEVable");
826 Prod = InsertBinop(Instruction::Shl, Prod,
827 ConstantInt::get(Ty, RHS->logBase2()));
828 } else {
829 Prod = InsertBinop(Instruction::Mul, Prod, W);
834 return Prod;
837 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
838 Type *Ty = SE.getEffectiveSCEVType(S->getType());
840 Value *LHS = expandCodeFor(S->getLHS(), Ty);
841 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
842 const APInt &RHS = SC->getAPInt();
843 if (RHS.isPowerOf2())
844 return InsertBinop(Instruction::LShr, LHS,
845 ConstantInt::get(Ty, RHS.logBase2()));
848 Value *RHS = expandCodeFor(S->getRHS(), Ty);
849 return InsertBinop(Instruction::UDiv, LHS, RHS);
852 /// Move parts of Base into Rest to leave Base with the minimal
853 /// expression that provides a pointer operand suitable for a
854 /// GEP expansion.
855 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
856 ScalarEvolution &SE) {
857 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
858 Base = A->getStart();
859 Rest = SE.getAddExpr(Rest,
860 SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
861 A->getStepRecurrence(SE),
862 A->getLoop(),
863 A->getNoWrapFlags(SCEV::FlagNW)));
865 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
866 Base = A->getOperand(A->getNumOperands()-1);
867 SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
868 NewAddOps.back() = Rest;
869 Rest = SE.getAddExpr(NewAddOps);
870 ExposePointerBase(Base, Rest, SE);
874 /// Determine if this is a well-behaved chain of instructions leading back to
875 /// the PHI. If so, it may be reused by expanded expressions.
876 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
877 const Loop *L) {
878 if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
879 (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
880 return false;
881 // If any of the operands don't dominate the insert position, bail.
882 // Addrec operands are always loop-invariant, so this can only happen
883 // if there are instructions which haven't been hoisted.
884 if (L == IVIncInsertLoop) {
885 for (User::op_iterator OI = IncV->op_begin()+1,
886 OE = IncV->op_end(); OI != OE; ++OI)
887 if (Instruction *OInst = dyn_cast<Instruction>(OI))
888 if (!SE.DT.dominates(OInst, IVIncInsertPos))
889 return false;
891 // Advance to the next instruction.
892 IncV = dyn_cast<Instruction>(IncV->getOperand(0));
893 if (!IncV)
894 return false;
896 if (IncV->mayHaveSideEffects())
897 return false;
899 if (IncV == PN)
900 return true;
902 return isNormalAddRecExprPHI(PN, IncV, L);
905 /// getIVIncOperand returns an induction variable increment's induction
906 /// variable operand.
908 /// If allowScale is set, any type of GEP is allowed as long as the nonIV
909 /// operands dominate InsertPos.
911 /// If allowScale is not set, ensure that a GEP increment conforms to one of the
912 /// simple patterns generated by getAddRecExprPHILiterally and
913 /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
914 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
915 Instruction *InsertPos,
916 bool allowScale) {
917 if (IncV == InsertPos)
918 return nullptr;
920 switch (IncV->getOpcode()) {
921 default:
922 return nullptr;
923 // Check for a simple Add/Sub or GEP of a loop invariant step.
924 case Instruction::Add:
925 case Instruction::Sub: {
926 Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
927 if (!OInst || SE.DT.dominates(OInst, InsertPos))
928 return dyn_cast<Instruction>(IncV->getOperand(0));
929 return nullptr;
931 case Instruction::BitCast:
932 return dyn_cast<Instruction>(IncV->getOperand(0));
933 case Instruction::GetElementPtr:
934 for (auto I = IncV->op_begin() + 1, E = IncV->op_end(); I != E; ++I) {
935 if (isa<Constant>(*I))
936 continue;
937 if (Instruction *OInst = dyn_cast<Instruction>(*I)) {
938 if (!SE.DT.dominates(OInst, InsertPos))
939 return nullptr;
941 if (allowScale) {
942 // allow any kind of GEP as long as it can be hoisted.
943 continue;
945 // This must be a pointer addition of constants (pretty), which is already
946 // handled, or some number of address-size elements (ugly). Ugly geps
947 // have 2 operands. i1* is used by the expander to represent an
948 // address-size element.
949 if (IncV->getNumOperands() != 2)
950 return nullptr;
951 unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
952 if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
953 && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
954 return nullptr;
955 break;
957 return dyn_cast<Instruction>(IncV->getOperand(0));
961 /// If the insert point of the current builder or any of the builders on the
962 /// stack of saved builders has 'I' as its insert point, update it to point to
963 /// the instruction after 'I'. This is intended to be used when the instruction
964 /// 'I' is being moved. If this fixup is not done and 'I' is moved to a
965 /// different block, the inconsistent insert point (with a mismatched
966 /// Instruction and Block) can lead to an instruction being inserted in a block
967 /// other than its parent.
968 void SCEVExpander::fixupInsertPoints(Instruction *I) {
969 BasicBlock::iterator It(*I);
970 BasicBlock::iterator NewInsertPt = std::next(It);
971 if (Builder.GetInsertPoint() == It)
972 Builder.SetInsertPoint(&*NewInsertPt);
973 for (auto *InsertPtGuard : InsertPointGuards)
974 if (InsertPtGuard->GetInsertPoint() == It)
975 InsertPtGuard->SetInsertPoint(NewInsertPt);
978 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
979 /// it available to other uses in this loop. Recursively hoist any operands,
980 /// until we reach a value that dominates InsertPos.
981 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
982 if (SE.DT.dominates(IncV, InsertPos))
983 return true;
985 // InsertPos must itself dominate IncV so that IncV's new position satisfies
986 // its existing users.
987 if (isa<PHINode>(InsertPos) ||
988 !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
989 return false;
991 if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
992 return false;
994 // Check that the chain of IV operands leading back to Phi can be hoisted.
995 SmallVector<Instruction*, 4> IVIncs;
996 for(;;) {
997 Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
998 if (!Oper)
999 return false;
1000 // IncV is safe to hoist.
1001 IVIncs.push_back(IncV);
1002 IncV = Oper;
1003 if (SE.DT.dominates(IncV, InsertPos))
1004 break;
1006 for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) {
1007 fixupInsertPoints(*I);
1008 (*I)->moveBefore(InsertPos);
1010 return true;
1013 /// Determine if this cyclic phi is in a form that would have been generated by
1014 /// LSR. We don't care if the phi was actually expanded in this pass, as long
1015 /// as it is in a low-cost form, for example, no implied multiplication. This
1016 /// should match any patterns generated by getAddRecExprPHILiterally and
1017 /// expandAddtoGEP.
1018 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
1019 const Loop *L) {
1020 for(Instruction *IVOper = IncV;
1021 (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
1022 /*allowScale=*/false));) {
1023 if (IVOper == PN)
1024 return true;
1026 return false;
1029 /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
1030 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
1031 /// need to materialize IV increments elsewhere to handle difficult situations.
1032 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
1033 Type *ExpandTy, Type *IntTy,
1034 bool useSubtract) {
1035 Value *IncV;
1036 // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
1037 if (ExpandTy->isPointerTy()) {
1038 PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
1039 // If the step isn't constant, don't use an implicitly scaled GEP, because
1040 // that would require a multiply inside the loop.
1041 if (!isa<ConstantInt>(StepV))
1042 GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
1043 GEPPtrTy->getAddressSpace());
1044 IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN);
1045 if (IncV->getType() != PN->getType()) {
1046 IncV = Builder.CreateBitCast(IncV, PN->getType());
1047 rememberInstruction(IncV);
1049 } else {
1050 IncV = useSubtract ?
1051 Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
1052 Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
1053 rememberInstruction(IncV);
1055 return IncV;
1058 /// Hoist the addrec instruction chain rooted in the loop phi above the
1059 /// position. This routine assumes that this is possible (has been checked).
1060 void SCEVExpander::hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist,
1061 Instruction *Pos, PHINode *LoopPhi) {
1062 do {
1063 if (DT->dominates(InstToHoist, Pos))
1064 break;
1065 // Make sure the increment is where we want it. But don't move it
1066 // down past a potential existing post-inc user.
1067 fixupInsertPoints(InstToHoist);
1068 InstToHoist->moveBefore(Pos);
1069 Pos = InstToHoist;
1070 InstToHoist = cast<Instruction>(InstToHoist->getOperand(0));
1071 } while (InstToHoist != LoopPhi);
1074 /// Check whether we can cheaply express the requested SCEV in terms of
1075 /// the available PHI SCEV by truncation and/or inversion of the step.
1076 static bool canBeCheaplyTransformed(ScalarEvolution &SE,
1077 const SCEVAddRecExpr *Phi,
1078 const SCEVAddRecExpr *Requested,
1079 bool &InvertStep) {
1080 Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
1081 Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
1083 if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
1084 return false;
1086 // Try truncate it if necessary.
1087 Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
1088 if (!Phi)
1089 return false;
1091 // Check whether truncation will help.
1092 if (Phi == Requested) {
1093 InvertStep = false;
1094 return true;
1097 // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
1098 if (SE.getAddExpr(Requested->getStart(),
1099 SE.getNegativeSCEV(Requested)) == Phi) {
1100 InvertStep = true;
1101 return true;
1104 return false;
1107 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1108 if (!isa<IntegerType>(AR->getType()))
1109 return false;
1111 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1112 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1113 const SCEV *Step = AR->getStepRecurrence(SE);
1114 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
1115 SE.getSignExtendExpr(AR, WideTy));
1116 const SCEV *ExtendAfterOp =
1117 SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1118 return ExtendAfterOp == OpAfterExtend;
1121 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1122 if (!isa<IntegerType>(AR->getType()))
1123 return false;
1125 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1126 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1127 const SCEV *Step = AR->getStepRecurrence(SE);
1128 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
1129 SE.getZeroExtendExpr(AR, WideTy));
1130 const SCEV *ExtendAfterOp =
1131 SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1132 return ExtendAfterOp == OpAfterExtend;
1135 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
1136 /// the base addrec, which is the addrec without any non-loop-dominating
1137 /// values, and return the PHI.
1138 PHINode *
1139 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
1140 const Loop *L,
1141 Type *ExpandTy,
1142 Type *IntTy,
1143 Type *&TruncTy,
1144 bool &InvertStep) {
1145 assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
1147 // Reuse a previously-inserted PHI, if present.
1148 BasicBlock *LatchBlock = L->getLoopLatch();
1149 if (LatchBlock) {
1150 PHINode *AddRecPhiMatch = nullptr;
1151 Instruction *IncV = nullptr;
1152 TruncTy = nullptr;
1153 InvertStep = false;
1155 // Only try partially matching scevs that need truncation and/or
1156 // step-inversion if we know this loop is outside the current loop.
1157 bool TryNonMatchingSCEV =
1158 IVIncInsertLoop &&
1159 SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
1161 for (PHINode &PN : L->getHeader()->phis()) {
1162 if (!SE.isSCEVable(PN.getType()))
1163 continue;
1165 const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
1166 if (!PhiSCEV)
1167 continue;
1169 bool IsMatchingSCEV = PhiSCEV == Normalized;
1170 // We only handle truncation and inversion of phi recurrences for the
1171 // expanded expression if the expanded expression's loop dominates the
1172 // loop we insert to. Check now, so we can bail out early.
1173 if (!IsMatchingSCEV && !TryNonMatchingSCEV)
1174 continue;
1176 // TODO: this possibly can be reworked to avoid this cast at all.
1177 Instruction *TempIncV =
1178 dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock));
1179 if (!TempIncV)
1180 continue;
1182 // Check whether we can reuse this PHI node.
1183 if (LSRMode) {
1184 if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
1185 continue;
1186 if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos))
1187 continue;
1188 } else {
1189 if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
1190 continue;
1193 // Stop if we have found an exact match SCEV.
1194 if (IsMatchingSCEV) {
1195 IncV = TempIncV;
1196 TruncTy = nullptr;
1197 InvertStep = false;
1198 AddRecPhiMatch = &PN;
1199 break;
1202 // Try whether the phi can be translated into the requested form
1203 // (truncated and/or offset by a constant).
1204 if ((!TruncTy || InvertStep) &&
1205 canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
1206 // Record the phi node. But don't stop we might find an exact match
1207 // later.
1208 AddRecPhiMatch = &PN;
1209 IncV = TempIncV;
1210 TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
1214 if (AddRecPhiMatch) {
1215 // Potentially, move the increment. We have made sure in
1216 // isExpandedAddRecExprPHI or hoistIVInc that this is possible.
1217 if (L == IVIncInsertLoop)
1218 hoistBeforePos(&SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch);
1220 // Ok, the add recurrence looks usable.
1221 // Remember this PHI, even in post-inc mode.
1222 InsertedValues.insert(AddRecPhiMatch);
1223 // Remember the increment.
1224 rememberInstruction(IncV);
1225 return AddRecPhiMatch;
1229 // Save the original insertion point so we can restore it when we're done.
1230 SCEVInsertPointGuard Guard(Builder, this);
1232 // Another AddRec may need to be recursively expanded below. For example, if
1233 // this AddRec is quadratic, the StepV may itself be an AddRec in this
1234 // loop. Remove this loop from the PostIncLoops set before expanding such
1235 // AddRecs. Otherwise, we cannot find a valid position for the step
1236 // (i.e. StepV can never dominate its loop header). Ideally, we could do
1237 // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
1238 // so it's not worth implementing SmallPtrSet::swap.
1239 PostIncLoopSet SavedPostIncLoops = PostIncLoops;
1240 PostIncLoops.clear();
1242 // Expand code for the start value into the loop preheader.
1243 assert(L->getLoopPreheader() &&
1244 "Can't expand add recurrences without a loop preheader!");
1245 Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
1246 L->getLoopPreheader()->getTerminator());
1248 // StartV must have been be inserted into L's preheader to dominate the new
1249 // phi.
1250 assert(!isa<Instruction>(StartV) ||
1251 SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
1252 L->getHeader()));
1254 // Expand code for the step value. Do this before creating the PHI so that PHI
1255 // reuse code doesn't see an incomplete PHI.
1256 const SCEV *Step = Normalized->getStepRecurrence(SE);
1257 // If the stride is negative, insert a sub instead of an add for the increment
1258 // (unless it's a constant, because subtracts of constants are canonicalized
1259 // to adds).
1260 bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1261 if (useSubtract)
1262 Step = SE.getNegativeSCEV(Step);
1263 // Expand the step somewhere that dominates the loop header.
1264 Value *StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front());
1266 // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
1267 // we actually do emit an addition. It does not apply if we emit a
1268 // subtraction.
1269 bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
1270 bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
1272 // Create the PHI.
1273 BasicBlock *Header = L->getHeader();
1274 Builder.SetInsertPoint(Header, Header->begin());
1275 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1276 PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1277 Twine(IVName) + ".iv");
1278 rememberInstruction(PN);
1280 // Create the step instructions and populate the PHI.
1281 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1282 BasicBlock *Pred = *HPI;
1284 // Add a start value.
1285 if (!L->contains(Pred)) {
1286 PN->addIncoming(StartV, Pred);
1287 continue;
1290 // Create a step value and add it to the PHI.
1291 // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1292 // instructions at IVIncInsertPos.
1293 Instruction *InsertPos = L == IVIncInsertLoop ?
1294 IVIncInsertPos : Pred->getTerminator();
1295 Builder.SetInsertPoint(InsertPos);
1296 Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1298 if (isa<OverflowingBinaryOperator>(IncV)) {
1299 if (IncrementIsNUW)
1300 cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
1301 if (IncrementIsNSW)
1302 cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
1304 PN->addIncoming(IncV, Pred);
1307 // After expanding subexpressions, restore the PostIncLoops set so the caller
1308 // can ensure that IVIncrement dominates the current uses.
1309 PostIncLoops = SavedPostIncLoops;
1311 // Remember this PHI, even in post-inc mode.
1312 InsertedValues.insert(PN);
1314 return PN;
1317 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1318 Type *STy = S->getType();
1319 Type *IntTy = SE.getEffectiveSCEVType(STy);
1320 const Loop *L = S->getLoop();
1322 // Determine a normalized form of this expression, which is the expression
1323 // before any post-inc adjustment is made.
1324 const SCEVAddRecExpr *Normalized = S;
1325 if (PostIncLoops.count(L)) {
1326 PostIncLoopSet Loops;
1327 Loops.insert(L);
1328 Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE));
1331 // Strip off any non-loop-dominating component from the addrec start.
1332 const SCEV *Start = Normalized->getStart();
1333 const SCEV *PostLoopOffset = nullptr;
1334 if (!SE.properlyDominates(Start, L->getHeader())) {
1335 PostLoopOffset = Start;
1336 Start = SE.getConstant(Normalized->getType(), 0);
1337 Normalized = cast<SCEVAddRecExpr>(
1338 SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1339 Normalized->getLoop(),
1340 Normalized->getNoWrapFlags(SCEV::FlagNW)));
1343 // Strip off any non-loop-dominating component from the addrec step.
1344 const SCEV *Step = Normalized->getStepRecurrence(SE);
1345 const SCEV *PostLoopScale = nullptr;
1346 if (!SE.dominates(Step, L->getHeader())) {
1347 PostLoopScale = Step;
1348 Step = SE.getConstant(Normalized->getType(), 1);
1349 if (!Start->isZero()) {
1350 // The normalization below assumes that Start is constant zero, so if
1351 // it isn't re-associate Start to PostLoopOffset.
1352 assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?");
1353 PostLoopOffset = Start;
1354 Start = SE.getConstant(Normalized->getType(), 0);
1356 Normalized =
1357 cast<SCEVAddRecExpr>(SE.getAddRecExpr(
1358 Start, Step, Normalized->getLoop(),
1359 Normalized->getNoWrapFlags(SCEV::FlagNW)));
1362 // Expand the core addrec. If we need post-loop scaling, force it to
1363 // expand to an integer type to avoid the need for additional casting.
1364 Type *ExpandTy = PostLoopScale ? IntTy : STy;
1365 // We can't use a pointer type for the addrec if the pointer type is
1366 // non-integral.
1367 Type *AddRecPHIExpandTy =
1368 DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy;
1370 // In some cases, we decide to reuse an existing phi node but need to truncate
1371 // it and/or invert the step.
1372 Type *TruncTy = nullptr;
1373 bool InvertStep = false;
1374 PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy,
1375 IntTy, TruncTy, InvertStep);
1377 // Accommodate post-inc mode, if necessary.
1378 Value *Result;
1379 if (!PostIncLoops.count(L))
1380 Result = PN;
1381 else {
1382 // In PostInc mode, use the post-incremented value.
1383 BasicBlock *LatchBlock = L->getLoopLatch();
1384 assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1385 Result = PN->getIncomingValueForBlock(LatchBlock);
1387 // For an expansion to use the postinc form, the client must call
1388 // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1389 // or dominated by IVIncInsertPos.
1390 if (isa<Instruction>(Result) &&
1391 !SE.DT.dominates(cast<Instruction>(Result),
1392 &*Builder.GetInsertPoint())) {
1393 // The induction variable's postinc expansion does not dominate this use.
1394 // IVUsers tries to prevent this case, so it is rare. However, it can
1395 // happen when an IVUser outside the loop is not dominated by the latch
1396 // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1397 // all cases. Consider a phi outside whose operand is replaced during
1398 // expansion with the value of the postinc user. Without fundamentally
1399 // changing the way postinc users are tracked, the only remedy is
1400 // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1401 // but hopefully expandCodeFor handles that.
1402 bool useSubtract =
1403 !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1404 if (useSubtract)
1405 Step = SE.getNegativeSCEV(Step);
1406 Value *StepV;
1408 // Expand the step somewhere that dominates the loop header.
1409 SCEVInsertPointGuard Guard(Builder, this);
1410 StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front());
1412 Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1416 // We have decided to reuse an induction variable of a dominating loop. Apply
1417 // truncation and/or inversion of the step.
1418 if (TruncTy) {
1419 Type *ResTy = Result->getType();
1420 // Normalize the result type.
1421 if (ResTy != SE.getEffectiveSCEVType(ResTy))
1422 Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
1423 // Truncate the result.
1424 if (TruncTy != Result->getType()) {
1425 Result = Builder.CreateTrunc(Result, TruncTy);
1426 rememberInstruction(Result);
1428 // Invert the result.
1429 if (InvertStep) {
1430 Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy),
1431 Result);
1432 rememberInstruction(Result);
1436 // Re-apply any non-loop-dominating scale.
1437 if (PostLoopScale) {
1438 assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
1439 Result = InsertNoopCastOfTo(Result, IntTy);
1440 Result = Builder.CreateMul(Result,
1441 expandCodeFor(PostLoopScale, IntTy));
1442 rememberInstruction(Result);
1445 // Re-apply any non-loop-dominating offset.
1446 if (PostLoopOffset) {
1447 if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1448 if (Result->getType()->isIntegerTy()) {
1449 Value *Base = expandCodeFor(PostLoopOffset, ExpandTy);
1450 Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base);
1451 } else {
1452 Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result);
1454 } else {
1455 Result = InsertNoopCastOfTo(Result, IntTy);
1456 Result = Builder.CreateAdd(Result,
1457 expandCodeFor(PostLoopOffset, IntTy));
1458 rememberInstruction(Result);
1462 return Result;
1465 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1466 if (!CanonicalMode) return expandAddRecExprLiterally(S);
1468 Type *Ty = SE.getEffectiveSCEVType(S->getType());
1469 const Loop *L = S->getLoop();
1471 // First check for an existing canonical IV in a suitable type.
1472 PHINode *CanonicalIV = nullptr;
1473 if (PHINode *PN = L->getCanonicalInductionVariable())
1474 if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1475 CanonicalIV = PN;
1477 // Rewrite an AddRec in terms of the canonical induction variable, if
1478 // its type is more narrow.
1479 if (CanonicalIV &&
1480 SE.getTypeSizeInBits(CanonicalIV->getType()) >
1481 SE.getTypeSizeInBits(Ty)) {
1482 SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1483 for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1484 NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1485 Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1486 S->getNoWrapFlags(SCEV::FlagNW)));
1487 BasicBlock::iterator NewInsertPt =
1488 findInsertPointAfter(cast<Instruction>(V), Builder.GetInsertBlock());
1489 V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
1490 &*NewInsertPt);
1491 return V;
1494 // {X,+,F} --> X + {0,+,F}
1495 if (!S->getStart()->isZero()) {
1496 SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
1497 NewOps[0] = SE.getConstant(Ty, 0);
1498 const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
1499 S->getNoWrapFlags(SCEV::FlagNW));
1501 // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1502 // comments on expandAddToGEP for details.
1503 const SCEV *Base = S->getStart();
1504 // Dig into the expression to find the pointer base for a GEP.
1505 const SCEV *ExposedRest = Rest;
1506 ExposePointerBase(Base, ExposedRest, SE);
1507 // If we found a pointer, expand the AddRec with a GEP.
1508 if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
1509 // Make sure the Base isn't something exotic, such as a multiplied
1510 // or divided pointer value. In those cases, the result type isn't
1511 // actually a pointer type.
1512 if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
1513 Value *StartV = expand(Base);
1514 assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1515 return expandAddToGEP(ExposedRest, PTy, Ty, StartV);
1519 // Just do a normal add. Pre-expand the operands to suppress folding.
1521 // The LHS and RHS values are factored out of the expand call to make the
1522 // output independent of the argument evaluation order.
1523 const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
1524 const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
1525 return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
1528 // If we don't yet have a canonical IV, create one.
1529 if (!CanonicalIV) {
1530 // Create and insert the PHI node for the induction variable in the
1531 // specified loop.
1532 BasicBlock *Header = L->getHeader();
1533 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1534 CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
1535 &Header->front());
1536 rememberInstruction(CanonicalIV);
1538 SmallSet<BasicBlock *, 4> PredSeen;
1539 Constant *One = ConstantInt::get(Ty, 1);
1540 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1541 BasicBlock *HP = *HPI;
1542 if (!PredSeen.insert(HP).second) {
1543 // There must be an incoming value for each predecessor, even the
1544 // duplicates!
1545 CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
1546 continue;
1549 if (L->contains(HP)) {
1550 // Insert a unit add instruction right before the terminator
1551 // corresponding to the back-edge.
1552 Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1553 "indvar.next",
1554 HP->getTerminator());
1555 Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1556 rememberInstruction(Add);
1557 CanonicalIV->addIncoming(Add, HP);
1558 } else {
1559 CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1564 // {0,+,1} --> Insert a canonical induction variable into the loop!
1565 if (S->isAffine() && S->getOperand(1)->isOne()) {
1566 assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1567 "IVs with types different from the canonical IV should "
1568 "already have been handled!");
1569 return CanonicalIV;
1572 // {0,+,F} --> {0,+,1} * F
1574 // If this is a simple linear addrec, emit it now as a special case.
1575 if (S->isAffine()) // {0,+,F} --> i*F
1576 return
1577 expand(SE.getTruncateOrNoop(
1578 SE.getMulExpr(SE.getUnknown(CanonicalIV),
1579 SE.getNoopOrAnyExtend(S->getOperand(1),
1580 CanonicalIV->getType())),
1581 Ty));
1583 // If this is a chain of recurrences, turn it into a closed form, using the
1584 // folders, then expandCodeFor the closed form. This allows the folders to
1585 // simplify the expression without having to build a bunch of special code
1586 // into this folder.
1587 const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV.
1589 // Promote S up to the canonical IV type, if the cast is foldable.
1590 const SCEV *NewS = S;
1591 const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1592 if (isa<SCEVAddRecExpr>(Ext))
1593 NewS = Ext;
1595 const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1596 //cerr << "Evaluated: " << *this << "\n to: " << *V << "\n";
1598 // Truncate the result down to the original type, if needed.
1599 const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1600 return expand(T);
1603 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1604 Type *Ty = SE.getEffectiveSCEVType(S->getType());
1605 Value *V = expandCodeFor(S->getOperand(),
1606 SE.getEffectiveSCEVType(S->getOperand()->getType()));
1607 Value *I = Builder.CreateTrunc(V, Ty);
1608 rememberInstruction(I);
1609 return I;
1612 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1613 Type *Ty = SE.getEffectiveSCEVType(S->getType());
1614 Value *V = expandCodeFor(S->getOperand(),
1615 SE.getEffectiveSCEVType(S->getOperand()->getType()));
1616 Value *I = Builder.CreateZExt(V, Ty);
1617 rememberInstruction(I);
1618 return I;
1621 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1622 Type *Ty = SE.getEffectiveSCEVType(S->getType());
1623 Value *V = expandCodeFor(S->getOperand(),
1624 SE.getEffectiveSCEVType(S->getOperand()->getType()));
1625 Value *I = Builder.CreateSExt(V, Ty);
1626 rememberInstruction(I);
1627 return I;
1630 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1631 Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1632 Type *Ty = LHS->getType();
1633 for (int i = S->getNumOperands()-2; i >= 0; --i) {
1634 // In the case of mixed integer and pointer types, do the
1635 // rest of the comparisons as integer.
1636 if (S->getOperand(i)->getType() != Ty) {
1637 Ty = SE.getEffectiveSCEVType(Ty);
1638 LHS = InsertNoopCastOfTo(LHS, Ty);
1640 Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1641 Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
1642 rememberInstruction(ICmp);
1643 Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1644 rememberInstruction(Sel);
1645 LHS = Sel;
1647 // In the case of mixed integer and pointer types, cast the
1648 // final result back to the pointer type.
1649 if (LHS->getType() != S->getType())
1650 LHS = InsertNoopCastOfTo(LHS, S->getType());
1651 return LHS;
1654 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1655 Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1656 Type *Ty = LHS->getType();
1657 for (int i = S->getNumOperands()-2; i >= 0; --i) {
1658 // In the case of mixed integer and pointer types, do the
1659 // rest of the comparisons as integer.
1660 if (S->getOperand(i)->getType() != Ty) {
1661 Ty = SE.getEffectiveSCEVType(Ty);
1662 LHS = InsertNoopCastOfTo(LHS, Ty);
1664 Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1665 Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
1666 rememberInstruction(ICmp);
1667 Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1668 rememberInstruction(Sel);
1669 LHS = Sel;
1671 // In the case of mixed integer and pointer types, cast the
1672 // final result back to the pointer type.
1673 if (LHS->getType() != S->getType())
1674 LHS = InsertNoopCastOfTo(LHS, S->getType());
1675 return LHS;
1678 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
1679 Instruction *IP) {
1680 setInsertPoint(IP);
1681 return expandCodeFor(SH, Ty);
1684 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
1685 // Expand the code for this SCEV.
1686 Value *V = expand(SH);
1687 if (Ty) {
1688 assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1689 "non-trivial casts should be done with the SCEVs directly!");
1690 V = InsertNoopCastOfTo(V, Ty);
1692 return V;
1695 ScalarEvolution::ValueOffsetPair
1696 SCEVExpander::FindValueInExprValueMap(const SCEV *S,
1697 const Instruction *InsertPt) {
1698 SetVector<ScalarEvolution::ValueOffsetPair> *Set = SE.getSCEVValues(S);
1699 // If the expansion is not in CanonicalMode, and the SCEV contains any
1700 // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
1701 if (CanonicalMode || !SE.containsAddRecurrence(S)) {
1702 // If S is scConstant, it may be worse to reuse an existing Value.
1703 if (S->getSCEVType() != scConstant && Set) {
1704 // Choose a Value from the set which dominates the insertPt.
1705 // insertPt should be inside the Value's parent loop so as not to break
1706 // the LCSSA form.
1707 for (auto const &VOPair : *Set) {
1708 Value *V = VOPair.first;
1709 ConstantInt *Offset = VOPair.second;
1710 Instruction *EntInst = nullptr;
1711 if (V && isa<Instruction>(V) && (EntInst = cast<Instruction>(V)) &&
1712 S->getType() == V->getType() &&
1713 EntInst->getFunction() == InsertPt->getFunction() &&
1714 SE.DT.dominates(EntInst, InsertPt) &&
1715 (SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
1716 SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)))
1717 return {V, Offset};
1721 return {nullptr, nullptr};
1724 // The expansion of SCEV will either reuse a previous Value in ExprValueMap,
1725 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
1726 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
1727 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
1728 // the expansion will try to reuse Value from ExprValueMap, and only when it
1729 // fails, expand the SCEV literally.
1730 Value *SCEVExpander::expand(const SCEV *S) {
1731 // Compute an insertion point for this SCEV object. Hoist the instructions
1732 // as far out in the loop nest as possible.
1733 Instruction *InsertPt = &*Builder.GetInsertPoint();
1734 for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
1735 L = L->getParentLoop())
1736 if (SE.isLoopInvariant(S, L)) {
1737 if (!L) break;
1738 if (BasicBlock *Preheader = L->getLoopPreheader())
1739 InsertPt = Preheader->getTerminator();
1740 else {
1741 // LSR sets the insertion point for AddRec start/step values to the
1742 // block start to simplify value reuse, even though it's an invalid
1743 // position. SCEVExpander must correct for this in all cases.
1744 InsertPt = &*L->getHeader()->getFirstInsertionPt();
1746 } else {
1747 // We can move insertion point only if there is no div or rem operations
1748 // otherwise we are risky to move it over the check for zero denominator.
1749 auto SafeToHoist = [](const SCEV *S) {
1750 return !SCEVExprContains(S, [](const SCEV *S) {
1751 if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
1752 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
1753 // Division by non-zero constants can be hoisted.
1754 return SC->getValue()->isZero();
1755 // All other divisions should not be moved as they may be
1756 // divisions by zero and should be kept within the
1757 // conditions of the surrounding loops that guard their
1758 // execution (see PR35406).
1759 return true;
1761 return false;
1764 // If the SCEV is computable at this level, insert it into the header
1765 // after the PHIs (and after any other instructions that we've inserted
1766 // there) so that it is guaranteed to dominate any user inside the loop.
1767 if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L) &&
1768 SafeToHoist(S))
1769 InsertPt = &*L->getHeader()->getFirstInsertionPt();
1770 while (InsertPt->getIterator() != Builder.GetInsertPoint() &&
1771 (isInsertedInstruction(InsertPt) ||
1772 isa<DbgInfoIntrinsic>(InsertPt))) {
1773 InsertPt = &*std::next(InsertPt->getIterator());
1775 break;
1778 // Check to see if we already expanded this here.
1779 auto I = InsertedExpressions.find(std::make_pair(S, InsertPt));
1780 if (I != InsertedExpressions.end())
1781 return I->second;
1783 SCEVInsertPointGuard Guard(Builder, this);
1784 Builder.SetInsertPoint(InsertPt);
1786 // Expand the expression into instructions.
1787 ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, InsertPt);
1788 Value *V = VO.first;
1790 if (!V)
1791 V = visit(S);
1792 else if (VO.second) {
1793 if (PointerType *Vty = dyn_cast<PointerType>(V->getType())) {
1794 Type *Ety = Vty->getPointerElementType();
1795 int64_t Offset = VO.second->getSExtValue();
1796 int64_t ESize = SE.getTypeSizeInBits(Ety);
1797 if ((Offset * 8) % ESize == 0) {
1798 ConstantInt *Idx =
1799 ConstantInt::getSigned(VO.second->getType(), -(Offset * 8) / ESize);
1800 V = Builder.CreateGEP(Ety, V, Idx, "scevgep");
1801 } else {
1802 ConstantInt *Idx =
1803 ConstantInt::getSigned(VO.second->getType(), -Offset);
1804 unsigned AS = Vty->getAddressSpace();
1805 V = Builder.CreateBitCast(V, Type::getInt8PtrTy(SE.getContext(), AS));
1806 V = Builder.CreateGEP(Type::getInt8Ty(SE.getContext()), V, Idx,
1807 "uglygep");
1808 V = Builder.CreateBitCast(V, Vty);
1810 } else {
1811 V = Builder.CreateSub(V, VO.second);
1814 // Remember the expanded value for this SCEV at this location.
1816 // This is independent of PostIncLoops. The mapped value simply materializes
1817 // the expression at this insertion point. If the mapped value happened to be
1818 // a postinc expansion, it could be reused by a non-postinc user, but only if
1819 // its insertion point was already at the head of the loop.
1820 InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1821 return V;
1824 void SCEVExpander::rememberInstruction(Value *I) {
1825 if (!PostIncLoops.empty())
1826 InsertedPostIncValues.insert(I);
1827 else
1828 InsertedValues.insert(I);
1831 /// getOrInsertCanonicalInductionVariable - This method returns the
1832 /// canonical induction variable of the specified type for the specified
1833 /// loop (inserting one if there is none). A canonical induction variable
1834 /// starts at zero and steps by one on each iteration.
1835 PHINode *
1836 SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
1837 Type *Ty) {
1838 assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
1840 // Build a SCEV for {0,+,1}<L>.
1841 // Conservatively use FlagAnyWrap for now.
1842 const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
1843 SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap);
1845 // Emit code for it.
1846 SCEVInsertPointGuard Guard(Builder, this);
1847 PHINode *V =
1848 cast<PHINode>(expandCodeFor(H, nullptr, &L->getHeader()->front()));
1850 return V;
1853 /// replaceCongruentIVs - Check for congruent phis in this loop header and
1854 /// replace them with their most canonical representative. Return the number of
1855 /// phis eliminated.
1857 /// This does not depend on any SCEVExpander state but should be used in
1858 /// the same context that SCEVExpander is used.
1859 unsigned
1860 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
1861 SmallVectorImpl<WeakTrackingVH> &DeadInsts,
1862 const TargetTransformInfo *TTI) {
1863 // Find integer phis in order of increasing width.
1864 SmallVector<PHINode*, 8> Phis;
1865 for (PHINode &PN : L->getHeader()->phis())
1866 Phis.push_back(&PN);
1868 if (TTI)
1869 llvm::sort(Phis, [](Value *LHS, Value *RHS) {
1870 // Put pointers at the back and make sure pointer < pointer = false.
1871 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
1872 return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
1873 return RHS->getType()->getPrimitiveSizeInBits() <
1874 LHS->getType()->getPrimitiveSizeInBits();
1877 unsigned NumElim = 0;
1878 DenseMap<const SCEV *, PHINode *> ExprToIVMap;
1879 // Process phis from wide to narrow. Map wide phis to their truncation
1880 // so narrow phis can reuse them.
1881 for (PHINode *Phi : Phis) {
1882 auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
1883 if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
1884 return V;
1885 if (!SE.isSCEVable(PN->getType()))
1886 return nullptr;
1887 auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
1888 if (!Const)
1889 return nullptr;
1890 return Const->getValue();
1893 // Fold constant phis. They may be congruent to other constant phis and
1894 // would confuse the logic below that expects proper IVs.
1895 if (Value *V = SimplifyPHINode(Phi)) {
1896 if (V->getType() != Phi->getType())
1897 continue;
1898 Phi->replaceAllUsesWith(V);
1899 DeadInsts.emplace_back(Phi);
1900 ++NumElim;
1901 DEBUG_WITH_TYPE(DebugType, dbgs()
1902 << "INDVARS: Eliminated constant iv: " << *Phi << '\n');
1903 continue;
1906 if (!SE.isSCEVable(Phi->getType()))
1907 continue;
1909 PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
1910 if (!OrigPhiRef) {
1911 OrigPhiRef = Phi;
1912 if (Phi->getType()->isIntegerTy() && TTI &&
1913 TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
1914 // This phi can be freely truncated to the narrowest phi type. Map the
1915 // truncated expression to it so it will be reused for narrow types.
1916 const SCEV *TruncExpr =
1917 SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
1918 ExprToIVMap[TruncExpr] = Phi;
1920 continue;
1923 // Replacing a pointer phi with an integer phi or vice-versa doesn't make
1924 // sense.
1925 if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
1926 continue;
1928 if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1929 Instruction *OrigInc = dyn_cast<Instruction>(
1930 OrigPhiRef->getIncomingValueForBlock(LatchBlock));
1931 Instruction *IsomorphicInc =
1932 dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1934 if (OrigInc && IsomorphicInc) {
1935 // If this phi has the same width but is more canonical, replace the
1936 // original with it. As part of the "more canonical" determination,
1937 // respect a prior decision to use an IV chain.
1938 if (OrigPhiRef->getType() == Phi->getType() &&
1939 !(ChainedPhis.count(Phi) ||
1940 isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) &&
1941 (ChainedPhis.count(Phi) ||
1942 isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
1943 std::swap(OrigPhiRef, Phi);
1944 std::swap(OrigInc, IsomorphicInc);
1946 // Replacing the congruent phi is sufficient because acyclic
1947 // redundancy elimination, CSE/GVN, should handle the
1948 // rest. However, once SCEV proves that a phi is congruent,
1949 // it's often the head of an IV user cycle that is isomorphic
1950 // with the original phi. It's worth eagerly cleaning up the
1951 // common case of a single IV increment so that DeleteDeadPHIs
1952 // can remove cycles that had postinc uses.
1953 const SCEV *TruncExpr =
1954 SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
1955 if (OrigInc != IsomorphicInc &&
1956 TruncExpr == SE.getSCEV(IsomorphicInc) &&
1957 SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) &&
1958 hoistIVInc(OrigInc, IsomorphicInc)) {
1959 DEBUG_WITH_TYPE(DebugType,
1960 dbgs() << "INDVARS: Eliminated congruent iv.inc: "
1961 << *IsomorphicInc << '\n');
1962 Value *NewInc = OrigInc;
1963 if (OrigInc->getType() != IsomorphicInc->getType()) {
1964 Instruction *IP = nullptr;
1965 if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
1966 IP = &*PN->getParent()->getFirstInsertionPt();
1967 else
1968 IP = OrigInc->getNextNode();
1970 IRBuilder<> Builder(IP);
1971 Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
1972 NewInc = Builder.CreateTruncOrBitCast(
1973 OrigInc, IsomorphicInc->getType(), IVName);
1975 IsomorphicInc->replaceAllUsesWith(NewInc);
1976 DeadInsts.emplace_back(IsomorphicInc);
1980 DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Eliminated congruent iv: "
1981 << *Phi << '\n');
1982 ++NumElim;
1983 Value *NewIV = OrigPhiRef;
1984 if (OrigPhiRef->getType() != Phi->getType()) {
1985 IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt());
1986 Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
1987 NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
1989 Phi->replaceAllUsesWith(NewIV);
1990 DeadInsts.emplace_back(Phi);
1992 return NumElim;
1995 Value *SCEVExpander::getExactExistingExpansion(const SCEV *S,
1996 const Instruction *At, Loop *L) {
1997 Optional<ScalarEvolution::ValueOffsetPair> VO =
1998 getRelatedExistingExpansion(S, At, L);
1999 if (VO && VO.getValue().second == nullptr)
2000 return VO.getValue().first;
2001 return nullptr;
2004 Optional<ScalarEvolution::ValueOffsetPair>
2005 SCEVExpander::getRelatedExistingExpansion(const SCEV *S, const Instruction *At,
2006 Loop *L) {
2007 using namespace llvm::PatternMatch;
2009 SmallVector<BasicBlock *, 4> ExitingBlocks;
2010 L->getExitingBlocks(ExitingBlocks);
2012 // Look for suitable value in simple conditions at the loop exits.
2013 for (BasicBlock *BB : ExitingBlocks) {
2014 ICmpInst::Predicate Pred;
2015 Instruction *LHS, *RHS;
2016 BasicBlock *TrueBB, *FalseBB;
2018 if (!match(BB->getTerminator(),
2019 m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
2020 TrueBB, FalseBB)))
2021 continue;
2023 if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
2024 return ScalarEvolution::ValueOffsetPair(LHS, nullptr);
2026 if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
2027 return ScalarEvolution::ValueOffsetPair(RHS, nullptr);
2030 // Use expand's logic which is used for reusing a previous Value in
2031 // ExprValueMap.
2032 ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, At);
2033 if (VO.first)
2034 return VO;
2036 // There is potential to make this significantly smarter, but this simple
2037 // heuristic already gets some interesting cases.
2039 // Can not find suitable value.
2040 return None;
2043 bool SCEVExpander::isHighCostExpansionHelper(
2044 const SCEV *S, Loop *L, const Instruction *At,
2045 SmallPtrSetImpl<const SCEV *> &Processed) {
2047 // If we can find an existing value for this scev available at the point "At"
2048 // then consider the expression cheap.
2049 if (At && getRelatedExistingExpansion(S, At, L))
2050 return false;
2052 // Zero/One operand expressions
2053 switch (S->getSCEVType()) {
2054 case scUnknown:
2055 case scConstant:
2056 return false;
2057 case scTruncate:
2058 return isHighCostExpansionHelper(cast<SCEVTruncateExpr>(S)->getOperand(),
2059 L, At, Processed);
2060 case scZeroExtend:
2061 return isHighCostExpansionHelper(cast<SCEVZeroExtendExpr>(S)->getOperand(),
2062 L, At, Processed);
2063 case scSignExtend:
2064 return isHighCostExpansionHelper(cast<SCEVSignExtendExpr>(S)->getOperand(),
2065 L, At, Processed);
2068 if (!Processed.insert(S).second)
2069 return false;
2071 if (auto *UDivExpr = dyn_cast<SCEVUDivExpr>(S)) {
2072 // If the divisor is a power of two and the SCEV type fits in a native
2073 // integer, consider the division cheap irrespective of whether it occurs in
2074 // the user code since it can be lowered into a right shift.
2075 if (auto *SC = dyn_cast<SCEVConstant>(UDivExpr->getRHS()))
2076 if (SC->getAPInt().isPowerOf2()) {
2077 const DataLayout &DL =
2078 L->getHeader()->getParent()->getParent()->getDataLayout();
2079 unsigned Width = cast<IntegerType>(UDivExpr->getType())->getBitWidth();
2080 return DL.isIllegalInteger(Width);
2083 // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
2084 // HowManyLessThans produced to compute a precise expression, rather than a
2085 // UDiv from the user's code. If we can't find a UDiv in the code with some
2086 // simple searching, assume the former consider UDivExpr expensive to
2087 // compute.
2088 BasicBlock *ExitingBB = L->getExitingBlock();
2089 if (!ExitingBB)
2090 return true;
2092 // At the beginning of this function we already tried to find existing value
2093 // for plain 'S'. Now try to lookup 'S + 1' since it is common pattern
2094 // involving division. This is just a simple search heuristic.
2095 if (!At)
2096 At = &ExitingBB->back();
2097 if (!getRelatedExistingExpansion(
2098 SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), At, L))
2099 return true;
2102 // HowManyLessThans uses a Max expression whenever the loop is not guarded by
2103 // the exit condition.
2104 if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
2105 return true;
2107 // Recurse past nary expressions, which commonly occur in the
2108 // BackedgeTakenCount. They may already exist in program code, and if not,
2109 // they are not too expensive rematerialize.
2110 if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(S)) {
2111 for (auto *Op : NAry->operands())
2112 if (isHighCostExpansionHelper(Op, L, At, Processed))
2113 return true;
2116 // If we haven't recognized an expensive SCEV pattern, assume it's an
2117 // expression produced by program code.
2118 return false;
2121 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
2122 Instruction *IP) {
2123 assert(IP);
2124 switch (Pred->getKind()) {
2125 case SCEVPredicate::P_Union:
2126 return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
2127 case SCEVPredicate::P_Equal:
2128 return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP);
2129 case SCEVPredicate::P_Wrap: {
2130 auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
2131 return expandWrapPredicate(AddRecPred, IP);
2134 llvm_unreachable("Unknown SCEV predicate type");
2137 Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred,
2138 Instruction *IP) {
2139 Value *Expr0 = expandCodeFor(Pred->getLHS(), Pred->getLHS()->getType(), IP);
2140 Value *Expr1 = expandCodeFor(Pred->getRHS(), Pred->getRHS()->getType(), IP);
2142 Builder.SetInsertPoint(IP);
2143 auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check");
2144 return I;
2147 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
2148 Instruction *Loc, bool Signed) {
2149 assert(AR->isAffine() && "Cannot generate RT check for "
2150 "non-affine expression");
2152 SCEVUnionPredicate Pred;
2153 const SCEV *ExitCount =
2154 SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred);
2156 assert(ExitCount != SE.getCouldNotCompute() && "Invalid loop count");
2158 const SCEV *Step = AR->getStepRecurrence(SE);
2159 const SCEV *Start = AR->getStart();
2161 Type *ARTy = AR->getType();
2162 unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
2163 unsigned DstBits = SE.getTypeSizeInBits(ARTy);
2165 // The expression {Start,+,Step} has nusw/nssw if
2166 // Step < 0, Start - |Step| * Backedge <= Start
2167 // Step >= 0, Start + |Step| * Backedge > Start
2168 // and |Step| * Backedge doesn't unsigned overflow.
2170 IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits);
2171 Builder.SetInsertPoint(Loc);
2172 Value *TripCountVal = expandCodeFor(ExitCount, CountTy, Loc);
2174 IntegerType *Ty =
2175 IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy));
2176 Type *ARExpandTy = DL.isNonIntegralPointerType(ARTy) ? ARTy : Ty;
2178 Value *StepValue = expandCodeFor(Step, Ty, Loc);
2179 Value *NegStepValue = expandCodeFor(SE.getNegativeSCEV(Step), Ty, Loc);
2180 Value *StartValue = expandCodeFor(Start, ARExpandTy, Loc);
2182 ConstantInt *Zero =
2183 ConstantInt::get(Loc->getContext(), APInt::getNullValue(DstBits));
2185 Builder.SetInsertPoint(Loc);
2186 // Compute |Step|
2187 Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
2188 Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
2190 // Get the backedge taken count and truncate or extended to the AR type.
2191 Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
2192 auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
2193 Intrinsic::umul_with_overflow, Ty);
2195 // Compute |Step| * Backedge
2196 CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
2197 Value *MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
2198 Value *OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
2200 // Compute:
2201 // Start + |Step| * Backedge < Start
2202 // Start - |Step| * Backedge > Start
2203 Value *Add = nullptr, *Sub = nullptr;
2204 if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARExpandTy)) {
2205 const SCEV *MulS = SE.getSCEV(MulV);
2206 const SCEV *NegMulS = SE.getNegativeSCEV(MulS);
2207 Add = Builder.CreateBitCast(expandAddToGEP(MulS, ARPtrTy, Ty, StartValue),
2208 ARPtrTy);
2209 Sub = Builder.CreateBitCast(
2210 expandAddToGEP(NegMulS, ARPtrTy, Ty, StartValue), ARPtrTy);
2211 } else {
2212 Add = Builder.CreateAdd(StartValue, MulV);
2213 Sub = Builder.CreateSub(StartValue, MulV);
2216 Value *EndCompareGT = Builder.CreateICmp(
2217 Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
2219 Value *EndCompareLT = Builder.CreateICmp(
2220 Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
2222 // Select the answer based on the sign of Step.
2223 Value *EndCheck =
2224 Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
2226 // If the backedge taken count type is larger than the AR type,
2227 // check that we don't drop any bits by truncating it. If we are
2228 // dropping bits, then we have overflow (unless the step is zero).
2229 if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) {
2230 auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
2231 auto *BackedgeCheck =
2232 Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
2233 ConstantInt::get(Loc->getContext(), MaxVal));
2234 BackedgeCheck = Builder.CreateAnd(
2235 BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
2237 EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
2240 EndCheck = Builder.CreateOr(EndCheck, OfMul);
2241 return EndCheck;
2244 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
2245 Instruction *IP) {
2246 const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
2247 Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
2249 // Add a check for NUSW
2250 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
2251 NUSWCheck = generateOverflowCheck(A, IP, false);
2253 // Add a check for NSSW
2254 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
2255 NSSWCheck = generateOverflowCheck(A, IP, true);
2257 if (NUSWCheck && NSSWCheck)
2258 return Builder.CreateOr(NUSWCheck, NSSWCheck);
2260 if (NUSWCheck)
2261 return NUSWCheck;
2263 if (NSSWCheck)
2264 return NSSWCheck;
2266 return ConstantInt::getFalse(IP->getContext());
2269 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
2270 Instruction *IP) {
2271 auto *BoolType = IntegerType::get(IP->getContext(), 1);
2272 Value *Check = ConstantInt::getNullValue(BoolType);
2274 // Loop over all checks in this set.
2275 for (auto Pred : Union->getPredicates()) {
2276 auto *NextCheck = expandCodeForPredicate(Pred, IP);
2277 Builder.SetInsertPoint(IP);
2278 Check = Builder.CreateOr(Check, NextCheck);
2281 return Check;
2284 namespace {
2285 // Search for a SCEV subexpression that is not safe to expand. Any expression
2286 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
2287 // UDiv expressions. We don't know if the UDiv is derived from an IR divide
2288 // instruction, but the important thing is that we prove the denominator is
2289 // nonzero before expansion.
2291 // IVUsers already checks that IV-derived expressions are safe. So this check is
2292 // only needed when the expression includes some subexpression that is not IV
2293 // derived.
2295 // Currently, we only allow division by a nonzero constant here. If this is
2296 // inadequate, we could easily allow division by SCEVUnknown by using
2297 // ValueTracking to check isKnownNonZero().
2299 // We cannot generally expand recurrences unless the step dominates the loop
2300 // header. The expander handles the special case of affine recurrences by
2301 // scaling the recurrence outside the loop, but this technique isn't generally
2302 // applicable. Expanding a nested recurrence outside a loop requires computing
2303 // binomial coefficients. This could be done, but the recurrence has to be in a
2304 // perfectly reduced form, which can't be guaranteed.
2305 struct SCEVFindUnsafe {
2306 ScalarEvolution &SE;
2307 bool IsUnsafe;
2309 SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {}
2311 bool follow(const SCEV *S) {
2312 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2313 const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
2314 if (!SC || SC->getValue()->isZero()) {
2315 IsUnsafe = true;
2316 return false;
2319 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2320 const SCEV *Step = AR->getStepRecurrence(SE);
2321 if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
2322 IsUnsafe = true;
2323 return false;
2326 return true;
2328 bool isDone() const { return IsUnsafe; }
2332 namespace llvm {
2333 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) {
2334 SCEVFindUnsafe Search(SE);
2335 visitAll(S, Search);
2336 return !Search.IsUnsafe;
2339 bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint,
2340 ScalarEvolution &SE) {
2341 return isSafeToExpand(S, SE) && SE.dominates(S, InsertionPoint->getParent());