Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / CodeGen / SelectionDAG / ScheduleDAGRRList.cpp
blob75d9eb265aed17813eb481f3ef888c6d62bf6622
1 //===- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements bottom-up and top-down register pressure reduction list
10 // schedulers, using standard algorithms. The basic approach uses a priority
11 // queue of available nodes to schedule. One at a time, nodes are taken from
12 // the priority queue (thus in priority order), checked for legality to
13 // schedule, and emitted if legal.
15 //===----------------------------------------------------------------------===//
17 #include "ScheduleDAGSDNodes.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/CodeGen/ISDOpcodes.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/ScheduleDAG.h"
29 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
30 #include "llvm/CodeGen/SchedulerRegistry.h"
31 #include "llvm/CodeGen/SelectionDAGISel.h"
32 #include "llvm/CodeGen/SelectionDAGNodes.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/Config/llvm-config.h"
39 #include "llvm/IR/InlineAsm.h"
40 #include "llvm/MC/MCInstrDesc.h"
41 #include "llvm/MC/MCRegisterInfo.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/CodeGen.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/MachineValueType.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <cstdint>
53 #include <cstdlib>
54 #include <iterator>
55 #include <limits>
56 #include <memory>
57 #include <utility>
58 #include <vector>
60 using namespace llvm;
62 #define DEBUG_TYPE "pre-RA-sched"
64 STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
65 STATISTIC(NumUnfolds, "Number of nodes unfolded");
66 STATISTIC(NumDups, "Number of duplicated nodes");
67 STATISTIC(NumPRCopies, "Number of physical register copies");
69 static RegisterScheduler
70 burrListDAGScheduler("list-burr",
71 "Bottom-up register reduction list scheduling",
72 createBURRListDAGScheduler);
74 static RegisterScheduler
75 sourceListDAGScheduler("source",
76 "Similar to list-burr but schedules in source "
77 "order when possible",
78 createSourceListDAGScheduler);
80 static RegisterScheduler
81 hybridListDAGScheduler("list-hybrid",
82 "Bottom-up register pressure aware list scheduling "
83 "which tries to balance latency and register pressure",
84 createHybridListDAGScheduler);
86 static RegisterScheduler
87 ILPListDAGScheduler("list-ilp",
88 "Bottom-up register pressure aware list scheduling "
89 "which tries to balance ILP and register pressure",
90 createILPListDAGScheduler);
92 static cl::opt<bool> DisableSchedCycles(
93 "disable-sched-cycles", cl::Hidden, cl::init(false),
94 cl::desc("Disable cycle-level precision during preRA scheduling"));
96 // Temporary sched=list-ilp flags until the heuristics are robust.
97 // Some options are also available under sched=list-hybrid.
98 static cl::opt<bool> DisableSchedRegPressure(
99 "disable-sched-reg-pressure", cl::Hidden, cl::init(false),
100 cl::desc("Disable regpressure priority in sched=list-ilp"));
101 static cl::opt<bool> DisableSchedLiveUses(
102 "disable-sched-live-uses", cl::Hidden, cl::init(true),
103 cl::desc("Disable live use priority in sched=list-ilp"));
104 static cl::opt<bool> DisableSchedVRegCycle(
105 "disable-sched-vrcycle", cl::Hidden, cl::init(false),
106 cl::desc("Disable virtual register cycle interference checks"));
107 static cl::opt<bool> DisableSchedPhysRegJoin(
108 "disable-sched-physreg-join", cl::Hidden, cl::init(false),
109 cl::desc("Disable physreg def-use affinity"));
110 static cl::opt<bool> DisableSchedStalls(
111 "disable-sched-stalls", cl::Hidden, cl::init(true),
112 cl::desc("Disable no-stall priority in sched=list-ilp"));
113 static cl::opt<bool> DisableSchedCriticalPath(
114 "disable-sched-critical-path", cl::Hidden, cl::init(false),
115 cl::desc("Disable critical path priority in sched=list-ilp"));
116 static cl::opt<bool> DisableSchedHeight(
117 "disable-sched-height", cl::Hidden, cl::init(false),
118 cl::desc("Disable scheduled-height priority in sched=list-ilp"));
119 static cl::opt<bool> Disable2AddrHack(
120 "disable-2addr-hack", cl::Hidden, cl::init(true),
121 cl::desc("Disable scheduler's two-address hack"));
123 static cl::opt<int> MaxReorderWindow(
124 "max-sched-reorder", cl::Hidden, cl::init(6),
125 cl::desc("Number of instructions to allow ahead of the critical path "
126 "in sched=list-ilp"));
128 static cl::opt<unsigned> AvgIPC(
129 "sched-avg-ipc", cl::Hidden, cl::init(1),
130 cl::desc("Average inst/cycle whan no target itinerary exists."));
132 namespace {
134 //===----------------------------------------------------------------------===//
135 /// ScheduleDAGRRList - The actual register reduction list scheduler
136 /// implementation. This supports both top-down and bottom-up scheduling.
138 class ScheduleDAGRRList : public ScheduleDAGSDNodes {
139 private:
140 /// NeedLatency - True if the scheduler will make use of latency information.
141 bool NeedLatency;
143 /// AvailableQueue - The priority queue to use for the available SUnits.
144 SchedulingPriorityQueue *AvailableQueue;
146 /// PendingQueue - This contains all of the instructions whose operands have
147 /// been issued, but their results are not ready yet (due to the latency of
148 /// the operation). Once the operands becomes available, the instruction is
149 /// added to the AvailableQueue.
150 std::vector<SUnit *> PendingQueue;
152 /// HazardRec - The hazard recognizer to use.
153 ScheduleHazardRecognizer *HazardRec;
155 /// CurCycle - The current scheduler state corresponds to this cycle.
156 unsigned CurCycle = 0;
158 /// MinAvailableCycle - Cycle of the soonest available instruction.
159 unsigned MinAvailableCycle;
161 /// IssueCount - Count instructions issued in this cycle
162 /// Currently valid only for bottom-up scheduling.
163 unsigned IssueCount;
165 /// LiveRegDefs - A set of physical registers and their definition
166 /// that are "live". These nodes must be scheduled before any other nodes that
167 /// modifies the registers can be scheduled.
168 unsigned NumLiveRegs;
169 std::unique_ptr<SUnit*[]> LiveRegDefs;
170 std::unique_ptr<SUnit*[]> LiveRegGens;
172 // Collect interferences between physical register use/defs.
173 // Each interference is an SUnit and set of physical registers.
174 SmallVector<SUnit*, 4> Interferences;
176 using LRegsMapT = DenseMap<SUnit *, SmallVector<unsigned, 4>>;
178 LRegsMapT LRegsMap;
180 /// Topo - A topological ordering for SUnits which permits fast IsReachable
181 /// and similar queries.
182 ScheduleDAGTopologicalSort Topo;
184 // Hack to keep track of the inverse of FindCallSeqStart without more crazy
185 // DAG crawling.
186 DenseMap<SUnit*, SUnit*> CallSeqEndForStart;
188 public:
189 ScheduleDAGRRList(MachineFunction &mf, bool needlatency,
190 SchedulingPriorityQueue *availqueue,
191 CodeGenOpt::Level OptLevel)
192 : ScheduleDAGSDNodes(mf),
193 NeedLatency(needlatency), AvailableQueue(availqueue),
194 Topo(SUnits, nullptr) {
195 const TargetSubtargetInfo &STI = mf.getSubtarget();
196 if (DisableSchedCycles || !NeedLatency)
197 HazardRec = new ScheduleHazardRecognizer();
198 else
199 HazardRec = STI.getInstrInfo()->CreateTargetHazardRecognizer(&STI, this);
202 ~ScheduleDAGRRList() override {
203 delete HazardRec;
204 delete AvailableQueue;
207 void Schedule() override;
209 ScheduleHazardRecognizer *getHazardRec() { return HazardRec; }
211 /// IsReachable - Checks if SU is reachable from TargetSU.
212 bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
213 return Topo.IsReachable(SU, TargetSU);
216 /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
217 /// create a cycle.
218 bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
219 return Topo.WillCreateCycle(SU, TargetSU);
222 /// AddPred - adds a predecessor edge to SUnit SU.
223 /// This returns true if this is a new predecessor.
224 /// Updates the topological ordering if required.
225 void AddPred(SUnit *SU, const SDep &D) {
226 Topo.AddPred(SU, D.getSUnit());
227 SU->addPred(D);
230 /// RemovePred - removes a predecessor edge from SUnit SU.
231 /// This returns true if an edge was removed.
232 /// Updates the topological ordering if required.
233 void RemovePred(SUnit *SU, const SDep &D) {
234 Topo.RemovePred(SU, D.getSUnit());
235 SU->removePred(D);
238 private:
239 bool isReady(SUnit *SU) {
240 return DisableSchedCycles || !AvailableQueue->hasReadyFilter() ||
241 AvailableQueue->isReady(SU);
244 void ReleasePred(SUnit *SU, const SDep *PredEdge);
245 void ReleasePredecessors(SUnit *SU);
246 void ReleasePending();
247 void AdvanceToCycle(unsigned NextCycle);
248 void AdvancePastStalls(SUnit *SU);
249 void EmitNode(SUnit *SU);
250 void ScheduleNodeBottomUp(SUnit*);
251 void CapturePred(SDep *PredEdge);
252 void UnscheduleNodeBottomUp(SUnit*);
253 void RestoreHazardCheckerBottomUp();
254 void BacktrackBottomUp(SUnit*, SUnit*);
255 SUnit *TryUnfoldSU(SUnit *);
256 SUnit *CopyAndMoveSuccessors(SUnit*);
257 void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
258 const TargetRegisterClass*,
259 const TargetRegisterClass*,
260 SmallVectorImpl<SUnit*>&);
261 bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&);
263 void releaseInterferences(unsigned Reg = 0);
265 SUnit *PickNodeToScheduleBottomUp();
266 void ListScheduleBottomUp();
268 /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
269 /// Updates the topological ordering if required.
270 SUnit *CreateNewSUnit(SDNode *N) {
271 unsigned NumSUnits = SUnits.size();
272 SUnit *NewNode = newSUnit(N);
273 // Update the topological ordering.
274 if (NewNode->NodeNum >= NumSUnits)
275 Topo.InitDAGTopologicalSorting();
276 return NewNode;
279 /// CreateClone - Creates a new SUnit from an existing one.
280 /// Updates the topological ordering if required.
281 SUnit *CreateClone(SUnit *N) {
282 unsigned NumSUnits = SUnits.size();
283 SUnit *NewNode = Clone(N);
284 // Update the topological ordering.
285 if (NewNode->NodeNum >= NumSUnits)
286 Topo.InitDAGTopologicalSorting();
287 return NewNode;
290 /// forceUnitLatencies - Register-pressure-reducing scheduling doesn't
291 /// need actual latency information but the hybrid scheduler does.
292 bool forceUnitLatencies() const override {
293 return !NeedLatency;
297 } // end anonymous namespace
299 /// GetCostForDef - Looks up the register class and cost for a given definition.
300 /// Typically this just means looking up the representative register class,
301 /// but for untyped values (MVT::Untyped) it means inspecting the node's
302 /// opcode to determine what register class is being generated.
303 static void GetCostForDef(const ScheduleDAGSDNodes::RegDefIter &RegDefPos,
304 const TargetLowering *TLI,
305 const TargetInstrInfo *TII,
306 const TargetRegisterInfo *TRI,
307 unsigned &RegClass, unsigned &Cost,
308 const MachineFunction &MF) {
309 MVT VT = RegDefPos.GetValue();
311 // Special handling for untyped values. These values can only come from
312 // the expansion of custom DAG-to-DAG patterns.
313 if (VT == MVT::Untyped) {
314 const SDNode *Node = RegDefPos.GetNode();
316 // Special handling for CopyFromReg of untyped values.
317 if (!Node->isMachineOpcode() && Node->getOpcode() == ISD::CopyFromReg) {
318 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
319 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(Reg);
320 RegClass = RC->getID();
321 Cost = 1;
322 return;
325 unsigned Opcode = Node->getMachineOpcode();
326 if (Opcode == TargetOpcode::REG_SEQUENCE) {
327 unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
328 const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
329 RegClass = RC->getID();
330 Cost = 1;
331 return;
334 unsigned Idx = RegDefPos.GetIdx();
335 const MCInstrDesc Desc = TII->get(Opcode);
336 const TargetRegisterClass *RC = TII->getRegClass(Desc, Idx, TRI, MF);
337 RegClass = RC->getID();
338 // FIXME: Cost arbitrarily set to 1 because there doesn't seem to be a
339 // better way to determine it.
340 Cost = 1;
341 } else {
342 RegClass = TLI->getRepRegClassFor(VT)->getID();
343 Cost = TLI->getRepRegClassCostFor(VT);
347 /// Schedule - Schedule the DAG using list scheduling.
348 void ScheduleDAGRRList::Schedule() {
349 LLVM_DEBUG(dbgs() << "********** List Scheduling " << printMBBReference(*BB)
350 << " '" << BB->getName() << "' **********\n");
352 CurCycle = 0;
353 IssueCount = 0;
354 MinAvailableCycle =
355 DisableSchedCycles ? 0 : std::numeric_limits<unsigned>::max();
356 NumLiveRegs = 0;
357 // Allocate slots for each physical register, plus one for a special register
358 // to track the virtual resource of a calling sequence.
359 LiveRegDefs.reset(new SUnit*[TRI->getNumRegs() + 1]());
360 LiveRegGens.reset(new SUnit*[TRI->getNumRegs() + 1]());
361 CallSeqEndForStart.clear();
362 assert(Interferences.empty() && LRegsMap.empty() && "stale Interferences");
364 // Build the scheduling graph.
365 BuildSchedGraph(nullptr);
367 LLVM_DEBUG(dump());
368 Topo.InitDAGTopologicalSorting();
370 AvailableQueue->initNodes(SUnits);
372 HazardRec->Reset();
374 // Execute the actual scheduling loop.
375 ListScheduleBottomUp();
377 AvailableQueue->releaseState();
379 LLVM_DEBUG({
380 dbgs() << "*** Final schedule ***\n";
381 dumpSchedule();
382 dbgs() << '\n';
386 //===----------------------------------------------------------------------===//
387 // Bottom-Up Scheduling
388 //===----------------------------------------------------------------------===//
390 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
391 /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
392 void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
393 SUnit *PredSU = PredEdge->getSUnit();
395 #ifndef NDEBUG
396 if (PredSU->NumSuccsLeft == 0) {
397 dbgs() << "*** Scheduling failed! ***\n";
398 dumpNode(*PredSU);
399 dbgs() << " has been released too many times!\n";
400 llvm_unreachable(nullptr);
402 #endif
403 --PredSU->NumSuccsLeft;
405 if (!forceUnitLatencies()) {
406 // Updating predecessor's height. This is now the cycle when the
407 // predecessor can be scheduled without causing a pipeline stall.
408 PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge->getLatency());
411 // If all the node's successors are scheduled, this node is ready
412 // to be scheduled. Ignore the special EntrySU node.
413 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
414 PredSU->isAvailable = true;
416 unsigned Height = PredSU->getHeight();
417 if (Height < MinAvailableCycle)
418 MinAvailableCycle = Height;
420 if (isReady(PredSU)) {
421 AvailableQueue->push(PredSU);
423 // CapturePred and others may have left the node in the pending queue, avoid
424 // adding it twice.
425 else if (!PredSU->isPending) {
426 PredSU->isPending = true;
427 PendingQueue.push_back(PredSU);
432 /// IsChainDependent - Test if Outer is reachable from Inner through
433 /// chain dependencies.
434 static bool IsChainDependent(SDNode *Outer, SDNode *Inner,
435 unsigned NestLevel,
436 const TargetInstrInfo *TII) {
437 SDNode *N = Outer;
438 while (true) {
439 if (N == Inner)
440 return true;
441 // For a TokenFactor, examine each operand. There may be multiple ways
442 // to get to the CALLSEQ_BEGIN, but we need to find the path with the
443 // most nesting in order to ensure that we find the corresponding match.
444 if (N->getOpcode() == ISD::TokenFactor) {
445 for (const SDValue &Op : N->op_values())
446 if (IsChainDependent(Op.getNode(), Inner, NestLevel, TII))
447 return true;
448 return false;
450 // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
451 if (N->isMachineOpcode()) {
452 if (N->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
453 ++NestLevel;
454 } else if (N->getMachineOpcode() == TII->getCallFrameSetupOpcode()) {
455 if (NestLevel == 0)
456 return false;
457 --NestLevel;
460 // Otherwise, find the chain and continue climbing.
461 for (const SDValue &Op : N->op_values())
462 if (Op.getValueType() == MVT::Other) {
463 N = Op.getNode();
464 goto found_chain_operand;
466 return false;
467 found_chain_operand:;
468 if (N->getOpcode() == ISD::EntryToken)
469 return false;
473 /// FindCallSeqStart - Starting from the (lowered) CALLSEQ_END node, locate
474 /// the corresponding (lowered) CALLSEQ_BEGIN node.
476 /// NestLevel and MaxNested are used in recursion to indcate the current level
477 /// of nesting of CALLSEQ_BEGIN and CALLSEQ_END pairs, as well as the maximum
478 /// level seen so far.
480 /// TODO: It would be better to give CALLSEQ_END an explicit operand to point
481 /// to the corresponding CALLSEQ_BEGIN to avoid needing to search for it.
482 static SDNode *
483 FindCallSeqStart(SDNode *N, unsigned &NestLevel, unsigned &MaxNest,
484 const TargetInstrInfo *TII) {
485 while (true) {
486 // For a TokenFactor, examine each operand. There may be multiple ways
487 // to get to the CALLSEQ_BEGIN, but we need to find the path with the
488 // most nesting in order to ensure that we find the corresponding match.
489 if (N->getOpcode() == ISD::TokenFactor) {
490 SDNode *Best = nullptr;
491 unsigned BestMaxNest = MaxNest;
492 for (const SDValue &Op : N->op_values()) {
493 unsigned MyNestLevel = NestLevel;
494 unsigned MyMaxNest = MaxNest;
495 if (SDNode *New = FindCallSeqStart(Op.getNode(),
496 MyNestLevel, MyMaxNest, TII))
497 if (!Best || (MyMaxNest > BestMaxNest)) {
498 Best = New;
499 BestMaxNest = MyMaxNest;
502 assert(Best);
503 MaxNest = BestMaxNest;
504 return Best;
506 // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
507 if (N->isMachineOpcode()) {
508 if (N->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
509 ++NestLevel;
510 MaxNest = std::max(MaxNest, NestLevel);
511 } else if (N->getMachineOpcode() == TII->getCallFrameSetupOpcode()) {
512 assert(NestLevel != 0);
513 --NestLevel;
514 if (NestLevel == 0)
515 return N;
518 // Otherwise, find the chain and continue climbing.
519 for (const SDValue &Op : N->op_values())
520 if (Op.getValueType() == MVT::Other) {
521 N = Op.getNode();
522 goto found_chain_operand;
524 return nullptr;
525 found_chain_operand:;
526 if (N->getOpcode() == ISD::EntryToken)
527 return nullptr;
531 /// Call ReleasePred for each predecessor, then update register live def/gen.
532 /// Always update LiveRegDefs for a register dependence even if the current SU
533 /// also defines the register. This effectively create one large live range
534 /// across a sequence of two-address node. This is important because the
535 /// entire chain must be scheduled together. Example:
537 /// flags = (3) add
538 /// flags = (2) addc flags
539 /// flags = (1) addc flags
541 /// results in
543 /// LiveRegDefs[flags] = 3
544 /// LiveRegGens[flags] = 1
546 /// If (2) addc is unscheduled, then (1) addc must also be unscheduled to avoid
547 /// interference on flags.
548 void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU) {
549 // Bottom up: release predecessors
550 for (SDep &Pred : SU->Preds) {
551 ReleasePred(SU, &Pred);
552 if (Pred.isAssignedRegDep()) {
553 // This is a physical register dependency and it's impossible or
554 // expensive to copy the register. Make sure nothing that can
555 // clobber the register is scheduled between the predecessor and
556 // this node.
557 SUnit *RegDef = LiveRegDefs[Pred.getReg()]; (void)RegDef;
558 assert((!RegDef || RegDef == SU || RegDef == Pred.getSUnit()) &&
559 "interference on register dependence");
560 LiveRegDefs[Pred.getReg()] = Pred.getSUnit();
561 if (!LiveRegGens[Pred.getReg()]) {
562 ++NumLiveRegs;
563 LiveRegGens[Pred.getReg()] = SU;
568 // If we're scheduling a lowered CALLSEQ_END, find the corresponding
569 // CALLSEQ_BEGIN. Inject an artificial physical register dependence between
570 // these nodes, to prevent other calls from being interscheduled with them.
571 unsigned CallResource = TRI->getNumRegs();
572 if (!LiveRegDefs[CallResource])
573 for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode())
574 if (Node->isMachineOpcode() &&
575 Node->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
576 unsigned NestLevel = 0;
577 unsigned MaxNest = 0;
578 SDNode *N = FindCallSeqStart(Node, NestLevel, MaxNest, TII);
579 assert(N && "Must find call sequence start");
581 SUnit *Def = &SUnits[N->getNodeId()];
582 CallSeqEndForStart[Def] = SU;
584 ++NumLiveRegs;
585 LiveRegDefs[CallResource] = Def;
586 LiveRegGens[CallResource] = SU;
587 break;
591 /// Check to see if any of the pending instructions are ready to issue. If
592 /// so, add them to the available queue.
593 void ScheduleDAGRRList::ReleasePending() {
594 if (DisableSchedCycles) {
595 assert(PendingQueue.empty() && "pending instrs not allowed in this mode");
596 return;
599 // If the available queue is empty, it is safe to reset MinAvailableCycle.
600 if (AvailableQueue->empty())
601 MinAvailableCycle = std::numeric_limits<unsigned>::max();
603 // Check to see if any of the pending instructions are ready to issue. If
604 // so, add them to the available queue.
605 for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
606 unsigned ReadyCycle = PendingQueue[i]->getHeight();
607 if (ReadyCycle < MinAvailableCycle)
608 MinAvailableCycle = ReadyCycle;
610 if (PendingQueue[i]->isAvailable) {
611 if (!isReady(PendingQueue[i]))
612 continue;
613 AvailableQueue->push(PendingQueue[i]);
615 PendingQueue[i]->isPending = false;
616 PendingQueue[i] = PendingQueue.back();
617 PendingQueue.pop_back();
618 --i; --e;
622 /// Move the scheduler state forward by the specified number of Cycles.
623 void ScheduleDAGRRList::AdvanceToCycle(unsigned NextCycle) {
624 if (NextCycle <= CurCycle)
625 return;
627 IssueCount = 0;
628 AvailableQueue->setCurCycle(NextCycle);
629 if (!HazardRec->isEnabled()) {
630 // Bypass lots of virtual calls in case of long latency.
631 CurCycle = NextCycle;
633 else {
634 for (; CurCycle != NextCycle; ++CurCycle) {
635 HazardRec->RecedeCycle();
638 // FIXME: Instead of visiting the pending Q each time, set a dirty flag on the
639 // available Q to release pending nodes at least once before popping.
640 ReleasePending();
643 /// Move the scheduler state forward until the specified node's dependents are
644 /// ready and can be scheduled with no resource conflicts.
645 void ScheduleDAGRRList::AdvancePastStalls(SUnit *SU) {
646 if (DisableSchedCycles)
647 return;
649 // FIXME: Nodes such as CopyFromReg probably should not advance the current
650 // cycle. Otherwise, we can wrongly mask real stalls. If the non-machine node
651 // has predecessors the cycle will be advanced when they are scheduled.
652 // But given the crude nature of modeling latency though such nodes, we
653 // currently need to treat these nodes like real instructions.
654 // if (!SU->getNode() || !SU->getNode()->isMachineOpcode()) return;
656 unsigned ReadyCycle = SU->getHeight();
658 // Bump CurCycle to account for latency. We assume the latency of other
659 // available instructions may be hidden by the stall (not a full pipe stall).
660 // This updates the hazard recognizer's cycle before reserving resources for
661 // this instruction.
662 AdvanceToCycle(ReadyCycle);
664 // Calls are scheduled in their preceding cycle, so don't conflict with
665 // hazards from instructions after the call. EmitNode will reset the
666 // scoreboard state before emitting the call.
667 if (SU->isCall)
668 return;
670 // FIXME: For resource conflicts in very long non-pipelined stages, we
671 // should probably skip ahead here to avoid useless scoreboard checks.
672 int Stalls = 0;
673 while (true) {
674 ScheduleHazardRecognizer::HazardType HT =
675 HazardRec->getHazardType(SU, -Stalls);
677 if (HT == ScheduleHazardRecognizer::NoHazard)
678 break;
680 ++Stalls;
682 AdvanceToCycle(CurCycle + Stalls);
685 /// Record this SUnit in the HazardRecognizer.
686 /// Does not update CurCycle.
687 void ScheduleDAGRRList::EmitNode(SUnit *SU) {
688 if (!HazardRec->isEnabled())
689 return;
691 // Check for phys reg copy.
692 if (!SU->getNode())
693 return;
695 switch (SU->getNode()->getOpcode()) {
696 default:
697 assert(SU->getNode()->isMachineOpcode() &&
698 "This target-independent node should not be scheduled.");
699 break;
700 case ISD::MERGE_VALUES:
701 case ISD::TokenFactor:
702 case ISD::LIFETIME_START:
703 case ISD::LIFETIME_END:
704 case ISD::CopyToReg:
705 case ISD::CopyFromReg:
706 case ISD::EH_LABEL:
707 // Noops don't affect the scoreboard state. Copies are likely to be
708 // removed.
709 return;
710 case ISD::INLINEASM:
711 case ISD::INLINEASM_BR:
712 // For inline asm, clear the pipeline state.
713 HazardRec->Reset();
714 return;
716 if (SU->isCall) {
717 // Calls are scheduled with their preceding instructions. For bottom-up
718 // scheduling, clear the pipeline state before emitting.
719 HazardRec->Reset();
722 HazardRec->EmitInstruction(SU);
725 static void resetVRegCycle(SUnit *SU);
727 /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
728 /// count of its predecessors. If a predecessor pending count is zero, add it to
729 /// the Available queue.
730 void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU) {
731 LLVM_DEBUG(dbgs() << "\n*** Scheduling [" << CurCycle << "]: ");
732 LLVM_DEBUG(dumpNode(*SU));
734 #ifndef NDEBUG
735 if (CurCycle < SU->getHeight())
736 LLVM_DEBUG(dbgs() << " Height [" << SU->getHeight()
737 << "] pipeline stall!\n");
738 #endif
740 // FIXME: Do not modify node height. It may interfere with
741 // backtracking. Instead add a "ready cycle" to SUnit. Before scheduling the
742 // node its ready cycle can aid heuristics, and after scheduling it can
743 // indicate the scheduled cycle.
744 SU->setHeightToAtLeast(CurCycle);
746 // Reserve resources for the scheduled instruction.
747 EmitNode(SU);
749 Sequence.push_back(SU);
751 AvailableQueue->scheduledNode(SU);
753 // If HazardRec is disabled, and each inst counts as one cycle, then
754 // advance CurCycle before ReleasePredecessors to avoid useless pushes to
755 // PendingQueue for schedulers that implement HasReadyFilter.
756 if (!HazardRec->isEnabled() && AvgIPC < 2)
757 AdvanceToCycle(CurCycle + 1);
759 // Update liveness of predecessors before successors to avoid treating a
760 // two-address node as a live range def.
761 ReleasePredecessors(SU);
763 // Release all the implicit physical register defs that are live.
764 for (SDep &Succ : SU->Succs) {
765 // LiveRegDegs[Succ.getReg()] != SU when SU is a two-address node.
766 if (Succ.isAssignedRegDep() && LiveRegDefs[Succ.getReg()] == SU) {
767 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
768 --NumLiveRegs;
769 LiveRegDefs[Succ.getReg()] = nullptr;
770 LiveRegGens[Succ.getReg()] = nullptr;
771 releaseInterferences(Succ.getReg());
774 // Release the special call resource dependence, if this is the beginning
775 // of a call.
776 unsigned CallResource = TRI->getNumRegs();
777 if (LiveRegDefs[CallResource] == SU)
778 for (const SDNode *SUNode = SU->getNode(); SUNode;
779 SUNode = SUNode->getGluedNode()) {
780 if (SUNode->isMachineOpcode() &&
781 SUNode->getMachineOpcode() == TII->getCallFrameSetupOpcode()) {
782 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
783 --NumLiveRegs;
784 LiveRegDefs[CallResource] = nullptr;
785 LiveRegGens[CallResource] = nullptr;
786 releaseInterferences(CallResource);
790 resetVRegCycle(SU);
792 SU->isScheduled = true;
794 // Conditions under which the scheduler should eagerly advance the cycle:
795 // (1) No available instructions
796 // (2) All pipelines full, so available instructions must have hazards.
798 // If HazardRec is disabled, the cycle was pre-advanced before calling
799 // ReleasePredecessors. In that case, IssueCount should remain 0.
801 // Check AvailableQueue after ReleasePredecessors in case of zero latency.
802 if (HazardRec->isEnabled() || AvgIPC > 1) {
803 if (SU->getNode() && SU->getNode()->isMachineOpcode())
804 ++IssueCount;
805 if ((HazardRec->isEnabled() && HazardRec->atIssueLimit())
806 || (!HazardRec->isEnabled() && IssueCount == AvgIPC))
807 AdvanceToCycle(CurCycle + 1);
811 /// CapturePred - This does the opposite of ReleasePred. Since SU is being
812 /// unscheduled, increase the succ left count of its predecessors. Remove
813 /// them from AvailableQueue if necessary.
814 void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
815 SUnit *PredSU = PredEdge->getSUnit();
816 if (PredSU->isAvailable) {
817 PredSU->isAvailable = false;
818 if (!PredSU->isPending)
819 AvailableQueue->remove(PredSU);
822 assert(PredSU->NumSuccsLeft < std::numeric_limits<unsigned>::max() &&
823 "NumSuccsLeft will overflow!");
824 ++PredSU->NumSuccsLeft;
827 /// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
828 /// its predecessor states to reflect the change.
829 void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
830 LLVM_DEBUG(dbgs() << "*** Unscheduling [" << SU->getHeight() << "]: ");
831 LLVM_DEBUG(dumpNode(*SU));
833 for (SDep &Pred : SU->Preds) {
834 CapturePred(&Pred);
835 if (Pred.isAssignedRegDep() && SU == LiveRegGens[Pred.getReg()]){
836 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
837 assert(LiveRegDefs[Pred.getReg()] == Pred.getSUnit() &&
838 "Physical register dependency violated?");
839 --NumLiveRegs;
840 LiveRegDefs[Pred.getReg()] = nullptr;
841 LiveRegGens[Pred.getReg()] = nullptr;
842 releaseInterferences(Pred.getReg());
846 // Reclaim the special call resource dependence, if this is the beginning
847 // of a call.
848 unsigned CallResource = TRI->getNumRegs();
849 for (const SDNode *SUNode = SU->getNode(); SUNode;
850 SUNode = SUNode->getGluedNode()) {
851 if (SUNode->isMachineOpcode() &&
852 SUNode->getMachineOpcode() == TII->getCallFrameSetupOpcode()) {
853 SUnit *SeqEnd = CallSeqEndForStart[SU];
854 assert(SeqEnd && "Call sequence start/end must be known");
855 assert(!LiveRegDefs[CallResource]);
856 assert(!LiveRegGens[CallResource]);
857 ++NumLiveRegs;
858 LiveRegDefs[CallResource] = SU;
859 LiveRegGens[CallResource] = SeqEnd;
863 // Release the special call resource dependence, if this is the end
864 // of a call.
865 if (LiveRegGens[CallResource] == SU)
866 for (const SDNode *SUNode = SU->getNode(); SUNode;
867 SUNode = SUNode->getGluedNode()) {
868 if (SUNode->isMachineOpcode() &&
869 SUNode->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
870 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
871 assert(LiveRegDefs[CallResource]);
872 assert(LiveRegGens[CallResource]);
873 --NumLiveRegs;
874 LiveRegDefs[CallResource] = nullptr;
875 LiveRegGens[CallResource] = nullptr;
876 releaseInterferences(CallResource);
880 for (auto &Succ : SU->Succs) {
881 if (Succ.isAssignedRegDep()) {
882 auto Reg = Succ.getReg();
883 if (!LiveRegDefs[Reg])
884 ++NumLiveRegs;
885 // This becomes the nearest def. Note that an earlier def may still be
886 // pending if this is a two-address node.
887 LiveRegDefs[Reg] = SU;
889 // Update LiveRegGen only if was empty before this unscheduling.
890 // This is to avoid incorrect updating LiveRegGen set in previous run.
891 if (!LiveRegGens[Reg]) {
892 // Find the successor with the lowest height.
893 LiveRegGens[Reg] = Succ.getSUnit();
894 for (auto &Succ2 : SU->Succs) {
895 if (Succ2.isAssignedRegDep() && Succ2.getReg() == Reg &&
896 Succ2.getSUnit()->getHeight() < LiveRegGens[Reg]->getHeight())
897 LiveRegGens[Reg] = Succ2.getSUnit();
902 if (SU->getHeight() < MinAvailableCycle)
903 MinAvailableCycle = SU->getHeight();
905 SU->setHeightDirty();
906 SU->isScheduled = false;
907 SU->isAvailable = true;
908 if (!DisableSchedCycles && AvailableQueue->hasReadyFilter()) {
909 // Don't make available until backtracking is complete.
910 SU->isPending = true;
911 PendingQueue.push_back(SU);
913 else {
914 AvailableQueue->push(SU);
916 AvailableQueue->unscheduledNode(SU);
919 /// After backtracking, the hazard checker needs to be restored to a state
920 /// corresponding the current cycle.
921 void ScheduleDAGRRList::RestoreHazardCheckerBottomUp() {
922 HazardRec->Reset();
924 unsigned LookAhead = std::min((unsigned)Sequence.size(),
925 HazardRec->getMaxLookAhead());
926 if (LookAhead == 0)
927 return;
929 std::vector<SUnit *>::const_iterator I = (Sequence.end() - LookAhead);
930 unsigned HazardCycle = (*I)->getHeight();
931 for (auto E = Sequence.end(); I != E; ++I) {
932 SUnit *SU = *I;
933 for (; SU->getHeight() > HazardCycle; ++HazardCycle) {
934 HazardRec->RecedeCycle();
936 EmitNode(SU);
940 /// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
941 /// BTCycle in order to schedule a specific node.
942 void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, SUnit *BtSU) {
943 SUnit *OldSU = Sequence.back();
944 while (true) {
945 Sequence.pop_back();
946 // FIXME: use ready cycle instead of height
947 CurCycle = OldSU->getHeight();
948 UnscheduleNodeBottomUp(OldSU);
949 AvailableQueue->setCurCycle(CurCycle);
950 if (OldSU == BtSU)
951 break;
952 OldSU = Sequence.back();
955 assert(!SU->isSucc(OldSU) && "Something is wrong!");
957 RestoreHazardCheckerBottomUp();
959 ReleasePending();
961 ++NumBacktracks;
964 static bool isOperandOf(const SUnit *SU, SDNode *N) {
965 for (const SDNode *SUNode = SU->getNode(); SUNode;
966 SUNode = SUNode->getGluedNode()) {
967 if (SUNode->isOperandOf(N))
968 return true;
970 return false;
973 /// TryUnfold - Attempt to unfold
974 SUnit *ScheduleDAGRRList::TryUnfoldSU(SUnit *SU) {
975 SDNode *N = SU->getNode();
976 // Use while over if to ease fall through.
977 SmallVector<SDNode *, 2> NewNodes;
978 if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
979 return nullptr;
981 // unfolding an x86 DEC64m operation results in store, dec, load which
982 // can't be handled here so quit
983 if (NewNodes.size() == 3)
984 return nullptr;
986 assert(NewNodes.size() == 2 && "Expected a load folding node!");
988 N = NewNodes[1];
989 SDNode *LoadNode = NewNodes[0];
990 unsigned NumVals = N->getNumValues();
991 unsigned OldNumVals = SU->getNode()->getNumValues();
993 // LoadNode may already exist. This can happen when there is another
994 // load from the same location and producing the same type of value
995 // but it has different alignment or volatileness.
996 bool isNewLoad = true;
997 SUnit *LoadSU;
998 if (LoadNode->getNodeId() != -1) {
999 LoadSU = &SUnits[LoadNode->getNodeId()];
1000 // If LoadSU has already been scheduled, we should clone it but
1001 // this would negate the benefit to unfolding so just return SU.
1002 if (LoadSU->isScheduled)
1003 return SU;
1004 isNewLoad = false;
1005 } else {
1006 LoadSU = CreateNewSUnit(LoadNode);
1007 LoadNode->setNodeId(LoadSU->NodeNum);
1009 InitNumRegDefsLeft(LoadSU);
1010 computeLatency(LoadSU);
1013 bool isNewN = true;
1014 SUnit *NewSU;
1015 // This can only happen when isNewLoad is false.
1016 if (N->getNodeId() != -1) {
1017 NewSU = &SUnits[N->getNodeId()];
1018 // If NewSU has already been scheduled, we need to clone it, but this
1019 // negates the benefit to unfolding so just return SU.
1020 if (NewSU->isScheduled)
1021 return SU;
1022 isNewN = false;
1023 } else {
1024 NewSU = CreateNewSUnit(N);
1025 N->setNodeId(NewSU->NodeNum);
1027 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1028 for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
1029 if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
1030 NewSU->isTwoAddress = true;
1031 break;
1034 if (MCID.isCommutable())
1035 NewSU->isCommutable = true;
1037 InitNumRegDefsLeft(NewSU);
1038 computeLatency(NewSU);
1041 LLVM_DEBUG(dbgs() << "Unfolding SU #" << SU->NodeNum << "\n");
1043 // Now that we are committed to unfolding replace DAG Uses.
1044 for (unsigned i = 0; i != NumVals; ++i)
1045 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
1046 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals - 1),
1047 SDValue(LoadNode, 1));
1049 // Record all the edges to and from the old SU, by category.
1050 SmallVector<SDep, 4> ChainPreds;
1051 SmallVector<SDep, 4> ChainSuccs;
1052 SmallVector<SDep, 4> LoadPreds;
1053 SmallVector<SDep, 4> NodePreds;
1054 SmallVector<SDep, 4> NodeSuccs;
1055 for (SDep &Pred : SU->Preds) {
1056 if (Pred.isCtrl())
1057 ChainPreds.push_back(Pred);
1058 else if (isOperandOf(Pred.getSUnit(), LoadNode))
1059 LoadPreds.push_back(Pred);
1060 else
1061 NodePreds.push_back(Pred);
1063 for (SDep &Succ : SU->Succs) {
1064 if (Succ.isCtrl())
1065 ChainSuccs.push_back(Succ);
1066 else
1067 NodeSuccs.push_back(Succ);
1070 // Now assign edges to the newly-created nodes.
1071 for (const SDep &Pred : ChainPreds) {
1072 RemovePred(SU, Pred);
1073 if (isNewLoad)
1074 AddPred(LoadSU, Pred);
1076 for (const SDep &Pred : LoadPreds) {
1077 RemovePred(SU, Pred);
1078 if (isNewLoad)
1079 AddPred(LoadSU, Pred);
1081 for (const SDep &Pred : NodePreds) {
1082 RemovePred(SU, Pred);
1083 AddPred(NewSU, Pred);
1085 for (SDep D : NodeSuccs) {
1086 SUnit *SuccDep = D.getSUnit();
1087 D.setSUnit(SU);
1088 RemovePred(SuccDep, D);
1089 D.setSUnit(NewSU);
1090 AddPred(SuccDep, D);
1091 // Balance register pressure.
1092 if (AvailableQueue->tracksRegPressure() && SuccDep->isScheduled &&
1093 !D.isCtrl() && NewSU->NumRegDefsLeft > 0)
1094 --NewSU->NumRegDefsLeft;
1096 for (SDep D : ChainSuccs) {
1097 SUnit *SuccDep = D.getSUnit();
1098 D.setSUnit(SU);
1099 RemovePred(SuccDep, D);
1100 if (isNewLoad) {
1101 D.setSUnit(LoadSU);
1102 AddPred(SuccDep, D);
1106 // Add a data dependency to reflect that NewSU reads the value defined
1107 // by LoadSU.
1108 SDep D(LoadSU, SDep::Data, 0);
1109 D.setLatency(LoadSU->Latency);
1110 AddPred(NewSU, D);
1112 if (isNewLoad)
1113 AvailableQueue->addNode(LoadSU);
1114 if (isNewN)
1115 AvailableQueue->addNode(NewSU);
1117 ++NumUnfolds;
1119 if (NewSU->NumSuccsLeft == 0)
1120 NewSU->isAvailable = true;
1122 return NewSU;
1125 /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
1126 /// successors to the newly created node.
1127 SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
1128 SDNode *N = SU->getNode();
1129 if (!N)
1130 return nullptr;
1132 LLVM_DEBUG(dbgs() << "Considering duplicating the SU\n");
1133 LLVM_DEBUG(dumpNode(*SU));
1135 if (N->getGluedNode() &&
1136 !TII->canCopyGluedNodeDuringSchedule(N)) {
1137 LLVM_DEBUG(
1138 dbgs()
1139 << "Giving up because it has incoming glue and the target does not "
1140 "want to copy it\n");
1141 return nullptr;
1144 SUnit *NewSU;
1145 bool TryUnfold = false;
1146 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
1147 MVT VT = N->getSimpleValueType(i);
1148 if (VT == MVT::Glue) {
1149 LLVM_DEBUG(dbgs() << "Giving up because it has outgoing glue\n");
1150 return nullptr;
1151 } else if (VT == MVT::Other)
1152 TryUnfold = true;
1154 for (const SDValue &Op : N->op_values()) {
1155 MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo());
1156 if (VT == MVT::Glue && !TII->canCopyGluedNodeDuringSchedule(N)) {
1157 LLVM_DEBUG(
1158 dbgs() << "Giving up because it one of the operands is glue and "
1159 "the target does not want to copy it\n");
1160 return nullptr;
1164 // If possible unfold instruction.
1165 if (TryUnfold) {
1166 SUnit *UnfoldSU = TryUnfoldSU(SU);
1167 if (!UnfoldSU)
1168 return nullptr;
1169 SU = UnfoldSU;
1170 N = SU->getNode();
1171 // If this can be scheduled don't bother duplicating and just return
1172 if (SU->NumSuccsLeft == 0)
1173 return SU;
1176 LLVM_DEBUG(dbgs() << " Duplicating SU #" << SU->NodeNum << "\n");
1177 NewSU = CreateClone(SU);
1179 // New SUnit has the exact same predecessors.
1180 for (SDep &Pred : SU->Preds)
1181 if (!Pred.isArtificial())
1182 AddPred(NewSU, Pred);
1184 // Only copy scheduled successors. Cut them from old node's successor
1185 // list and move them over.
1186 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
1187 for (SDep &Succ : SU->Succs) {
1188 if (Succ.isArtificial())
1189 continue;
1190 SUnit *SuccSU = Succ.getSUnit();
1191 if (SuccSU->isScheduled) {
1192 SDep D = Succ;
1193 D.setSUnit(NewSU);
1194 AddPred(SuccSU, D);
1195 D.setSUnit(SU);
1196 DelDeps.push_back(std::make_pair(SuccSU, D));
1199 for (auto &DelDep : DelDeps)
1200 RemovePred(DelDep.first, DelDep.second);
1202 AvailableQueue->updateNode(SU);
1203 AvailableQueue->addNode(NewSU);
1205 ++NumDups;
1206 return NewSU;
1209 /// InsertCopiesAndMoveSuccs - Insert register copies and move all
1210 /// scheduled successors of the given SUnit to the last copy.
1211 void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
1212 const TargetRegisterClass *DestRC,
1213 const TargetRegisterClass *SrcRC,
1214 SmallVectorImpl<SUnit*> &Copies) {
1215 SUnit *CopyFromSU = CreateNewSUnit(nullptr);
1216 CopyFromSU->CopySrcRC = SrcRC;
1217 CopyFromSU->CopyDstRC = DestRC;
1219 SUnit *CopyToSU = CreateNewSUnit(nullptr);
1220 CopyToSU->CopySrcRC = DestRC;
1221 CopyToSU->CopyDstRC = SrcRC;
1223 // Only copy scheduled successors. Cut them from old node's successor
1224 // list and move them over.
1225 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
1226 for (SDep &Succ : SU->Succs) {
1227 if (Succ.isArtificial())
1228 continue;
1229 SUnit *SuccSU = Succ.getSUnit();
1230 if (SuccSU->isScheduled) {
1231 SDep D = Succ;
1232 D.setSUnit(CopyToSU);
1233 AddPred(SuccSU, D);
1234 DelDeps.push_back(std::make_pair(SuccSU, Succ));
1236 else {
1237 // Avoid scheduling the def-side copy before other successors. Otherwise
1238 // we could introduce another physreg interference on the copy and
1239 // continue inserting copies indefinitely.
1240 AddPred(SuccSU, SDep(CopyFromSU, SDep::Artificial));
1243 for (auto &DelDep : DelDeps)
1244 RemovePred(DelDep.first, DelDep.second);
1246 SDep FromDep(SU, SDep::Data, Reg);
1247 FromDep.setLatency(SU->Latency);
1248 AddPred(CopyFromSU, FromDep);
1249 SDep ToDep(CopyFromSU, SDep::Data, 0);
1250 ToDep.setLatency(CopyFromSU->Latency);
1251 AddPred(CopyToSU, ToDep);
1253 AvailableQueue->updateNode(SU);
1254 AvailableQueue->addNode(CopyFromSU);
1255 AvailableQueue->addNode(CopyToSU);
1256 Copies.push_back(CopyFromSU);
1257 Copies.push_back(CopyToSU);
1259 ++NumPRCopies;
1262 /// getPhysicalRegisterVT - Returns the ValueType of the physical register
1263 /// definition of the specified node.
1264 /// FIXME: Move to SelectionDAG?
1265 static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
1266 const TargetInstrInfo *TII) {
1267 unsigned NumRes;
1268 if (N->getOpcode() == ISD::CopyFromReg) {
1269 // CopyFromReg has: "chain, Val, glue" so operand 1 gives the type.
1270 NumRes = 1;
1271 } else {
1272 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1273 assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
1274 NumRes = MCID.getNumDefs();
1275 for (const MCPhysReg *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
1276 if (Reg == *ImpDef)
1277 break;
1278 ++NumRes;
1281 return N->getSimpleValueType(NumRes);
1284 /// CheckForLiveRegDef - Return true and update live register vector if the
1285 /// specified register def of the specified SUnit clobbers any "live" registers.
1286 static void CheckForLiveRegDef(SUnit *SU, unsigned Reg,
1287 SUnit **LiveRegDefs,
1288 SmallSet<unsigned, 4> &RegAdded,
1289 SmallVectorImpl<unsigned> &LRegs,
1290 const TargetRegisterInfo *TRI) {
1291 for (MCRegAliasIterator AliasI(Reg, TRI, true); AliasI.isValid(); ++AliasI) {
1293 // Check if Ref is live.
1294 if (!LiveRegDefs[*AliasI]) continue;
1296 // Allow multiple uses of the same def.
1297 if (LiveRegDefs[*AliasI] == SU) continue;
1299 // Add Reg to the set of interfering live regs.
1300 if (RegAdded.insert(*AliasI).second) {
1301 LRegs.push_back(*AliasI);
1306 /// CheckForLiveRegDefMasked - Check for any live physregs that are clobbered
1307 /// by RegMask, and add them to LRegs.
1308 static void CheckForLiveRegDefMasked(SUnit *SU, const uint32_t *RegMask,
1309 ArrayRef<SUnit*> LiveRegDefs,
1310 SmallSet<unsigned, 4> &RegAdded,
1311 SmallVectorImpl<unsigned> &LRegs) {
1312 // Look at all live registers. Skip Reg0 and the special CallResource.
1313 for (unsigned i = 1, e = LiveRegDefs.size()-1; i != e; ++i) {
1314 if (!LiveRegDefs[i]) continue;
1315 if (LiveRegDefs[i] == SU) continue;
1316 if (!MachineOperand::clobbersPhysReg(RegMask, i)) continue;
1317 if (RegAdded.insert(i).second)
1318 LRegs.push_back(i);
1322 /// getNodeRegMask - Returns the register mask attached to an SDNode, if any.
1323 static const uint32_t *getNodeRegMask(const SDNode *N) {
1324 for (const SDValue &Op : N->op_values())
1325 if (const auto *RegOp = dyn_cast<RegisterMaskSDNode>(Op.getNode()))
1326 return RegOp->getRegMask();
1327 return nullptr;
1330 /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
1331 /// scheduling of the given node to satisfy live physical register dependencies.
1332 /// If the specific node is the last one that's available to schedule, do
1333 /// whatever is necessary (i.e. backtracking or cloning) to make it possible.
1334 bool ScheduleDAGRRList::
1335 DelayForLiveRegsBottomUp(SUnit *SU, SmallVectorImpl<unsigned> &LRegs) {
1336 if (NumLiveRegs == 0)
1337 return false;
1339 SmallSet<unsigned, 4> RegAdded;
1340 // If this node would clobber any "live" register, then it's not ready.
1342 // If SU is the currently live definition of the same register that it uses,
1343 // then we are free to schedule it.
1344 for (SDep &Pred : SU->Preds) {
1345 if (Pred.isAssignedRegDep() && LiveRegDefs[Pred.getReg()] != SU)
1346 CheckForLiveRegDef(Pred.getSUnit(), Pred.getReg(), LiveRegDefs.get(),
1347 RegAdded, LRegs, TRI);
1350 for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
1351 if (Node->getOpcode() == ISD::INLINEASM ||
1352 Node->getOpcode() == ISD::INLINEASM_BR) {
1353 // Inline asm can clobber physical defs.
1354 unsigned NumOps = Node->getNumOperands();
1355 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1356 --NumOps; // Ignore the glue operand.
1358 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1359 unsigned Flags =
1360 cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
1361 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
1363 ++i; // Skip the ID value.
1364 if (InlineAsm::isRegDefKind(Flags) ||
1365 InlineAsm::isRegDefEarlyClobberKind(Flags) ||
1366 InlineAsm::isClobberKind(Flags)) {
1367 // Check for def of register or earlyclobber register.
1368 for (; NumVals; --NumVals, ++i) {
1369 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1370 if (TargetRegisterInfo::isPhysicalRegister(Reg))
1371 CheckForLiveRegDef(SU, Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI);
1373 } else
1374 i += NumVals;
1376 continue;
1379 if (!Node->isMachineOpcode())
1380 continue;
1381 // If we're in the middle of scheduling a call, don't begin scheduling
1382 // another call. Also, don't allow any physical registers to be live across
1383 // the call.
1384 if (Node->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
1385 // Check the special calling-sequence resource.
1386 unsigned CallResource = TRI->getNumRegs();
1387 if (LiveRegDefs[CallResource]) {
1388 SDNode *Gen = LiveRegGens[CallResource]->getNode();
1389 while (SDNode *Glued = Gen->getGluedNode())
1390 Gen = Glued;
1391 if (!IsChainDependent(Gen, Node, 0, TII) &&
1392 RegAdded.insert(CallResource).second)
1393 LRegs.push_back(CallResource);
1396 if (const uint32_t *RegMask = getNodeRegMask(Node))
1397 CheckForLiveRegDefMasked(SU, RegMask,
1398 makeArrayRef(LiveRegDefs.get(), TRI->getNumRegs()),
1399 RegAdded, LRegs);
1401 const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
1402 if (MCID.hasOptionalDef()) {
1403 // Most ARM instructions have an OptionalDef for CPSR, to model the S-bit.
1404 // This operand can be either a def of CPSR, if the S bit is set; or a use
1405 // of %noreg. When the OptionalDef is set to a valid register, we need to
1406 // handle it in the same way as an ImplicitDef.
1407 for (unsigned i = 0; i < MCID.getNumDefs(); ++i)
1408 if (MCID.OpInfo[i].isOptionalDef()) {
1409 const SDValue &OptionalDef = Node->getOperand(i - Node->getNumValues());
1410 unsigned Reg = cast<RegisterSDNode>(OptionalDef)->getReg();
1411 CheckForLiveRegDef(SU, Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI);
1414 if (!MCID.ImplicitDefs)
1415 continue;
1416 for (const MCPhysReg *Reg = MCID.getImplicitDefs(); *Reg; ++Reg)
1417 CheckForLiveRegDef(SU, *Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI);
1420 return !LRegs.empty();
1423 void ScheduleDAGRRList::releaseInterferences(unsigned Reg) {
1424 // Add the nodes that aren't ready back onto the available list.
1425 for (unsigned i = Interferences.size(); i > 0; --i) {
1426 SUnit *SU = Interferences[i-1];
1427 LRegsMapT::iterator LRegsPos = LRegsMap.find(SU);
1428 if (Reg) {
1429 SmallVectorImpl<unsigned> &LRegs = LRegsPos->second;
1430 if (!is_contained(LRegs, Reg))
1431 continue;
1433 SU->isPending = false;
1434 // The interfering node may no longer be available due to backtracking.
1435 // Furthermore, it may have been made available again, in which case it is
1436 // now already in the AvailableQueue.
1437 if (SU->isAvailable && !SU->NodeQueueId) {
1438 LLVM_DEBUG(dbgs() << " Repushing SU #" << SU->NodeNum << '\n');
1439 AvailableQueue->push(SU);
1441 if (i < Interferences.size())
1442 Interferences[i-1] = Interferences.back();
1443 Interferences.pop_back();
1444 LRegsMap.erase(LRegsPos);
1448 /// Return a node that can be scheduled in this cycle. Requirements:
1449 /// (1) Ready: latency has been satisfied
1450 /// (2) No Hazards: resources are available
1451 /// (3) No Interferences: may unschedule to break register interferences.
1452 SUnit *ScheduleDAGRRList::PickNodeToScheduleBottomUp() {
1453 SUnit *CurSU = AvailableQueue->empty() ? nullptr : AvailableQueue->pop();
1454 auto FindAvailableNode = [&]() {
1455 while (CurSU) {
1456 SmallVector<unsigned, 4> LRegs;
1457 if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
1458 break;
1459 LLVM_DEBUG(dbgs() << " Interfering reg ";
1460 if (LRegs[0] == TRI->getNumRegs()) dbgs() << "CallResource";
1461 else dbgs() << printReg(LRegs[0], TRI);
1462 dbgs() << " SU #" << CurSU->NodeNum << '\n');
1463 std::pair<LRegsMapT::iterator, bool> LRegsPair =
1464 LRegsMap.insert(std::make_pair(CurSU, LRegs));
1465 if (LRegsPair.second) {
1466 CurSU->isPending = true; // This SU is not in AvailableQueue right now.
1467 Interferences.push_back(CurSU);
1469 else {
1470 assert(CurSU->isPending && "Interferences are pending");
1471 // Update the interference with current live regs.
1472 LRegsPair.first->second = LRegs;
1474 CurSU = AvailableQueue->pop();
1477 FindAvailableNode();
1478 if (CurSU)
1479 return CurSU;
1481 // All candidates are delayed due to live physical reg dependencies.
1482 // Try backtracking, code duplication, or inserting cross class copies
1483 // to resolve it.
1484 for (SUnit *TrySU : Interferences) {
1485 SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
1487 // Try unscheduling up to the point where it's safe to schedule
1488 // this node.
1489 SUnit *BtSU = nullptr;
1490 unsigned LiveCycle = std::numeric_limits<unsigned>::max();
1491 for (unsigned Reg : LRegs) {
1492 if (LiveRegGens[Reg]->getHeight() < LiveCycle) {
1493 BtSU = LiveRegGens[Reg];
1494 LiveCycle = BtSU->getHeight();
1497 if (!WillCreateCycle(TrySU, BtSU)) {
1498 // BacktrackBottomUp mutates Interferences!
1499 BacktrackBottomUp(TrySU, BtSU);
1501 // Force the current node to be scheduled before the node that
1502 // requires the physical reg dep.
1503 if (BtSU->isAvailable) {
1504 BtSU->isAvailable = false;
1505 if (!BtSU->isPending)
1506 AvailableQueue->remove(BtSU);
1508 LLVM_DEBUG(dbgs() << "ARTIFICIAL edge from SU(" << BtSU->NodeNum
1509 << ") to SU(" << TrySU->NodeNum << ")\n");
1510 AddPred(TrySU, SDep(BtSU, SDep::Artificial));
1512 // If one or more successors has been unscheduled, then the current
1513 // node is no longer available.
1514 if (!TrySU->isAvailable || !TrySU->NodeQueueId) {
1515 LLVM_DEBUG(dbgs() << "TrySU not available; choosing node from queue\n");
1516 CurSU = AvailableQueue->pop();
1517 } else {
1518 LLVM_DEBUG(dbgs() << "TrySU available\n");
1519 // Available and in AvailableQueue
1520 AvailableQueue->remove(TrySU);
1521 CurSU = TrySU;
1523 FindAvailableNode();
1524 // Interferences has been mutated. We must break.
1525 break;
1529 if (!CurSU) {
1530 // Can't backtrack. If it's too expensive to copy the value, then try
1531 // duplicate the nodes that produces these "too expensive to copy"
1532 // values to break the dependency. In case even that doesn't work,
1533 // insert cross class copies.
1534 // If it's not too expensive, i.e. cost != -1, issue copies.
1535 SUnit *TrySU = Interferences[0];
1536 SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
1537 assert(LRegs.size() == 1 && "Can't handle this yet!");
1538 unsigned Reg = LRegs[0];
1539 SUnit *LRDef = LiveRegDefs[Reg];
1540 MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
1541 const TargetRegisterClass *RC =
1542 TRI->getMinimalPhysRegClass(Reg, VT);
1543 const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
1545 // If cross copy register class is the same as RC, then it must be possible
1546 // copy the value directly. Do not try duplicate the def.
1547 // If cross copy register class is not the same as RC, then it's possible to
1548 // copy the value but it require cross register class copies and it is
1549 // expensive.
1550 // If cross copy register class is null, then it's not possible to copy
1551 // the value at all.
1552 SUnit *NewDef = nullptr;
1553 if (DestRC != RC) {
1554 NewDef = CopyAndMoveSuccessors(LRDef);
1555 if (!DestRC && !NewDef)
1556 report_fatal_error("Can't handle live physical register dependency!");
1558 if (!NewDef) {
1559 // Issue copies, these can be expensive cross register class copies.
1560 SmallVector<SUnit*, 2> Copies;
1561 InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
1562 LLVM_DEBUG(dbgs() << " Adding an edge from SU #" << TrySU->NodeNum
1563 << " to SU #" << Copies.front()->NodeNum << "\n");
1564 AddPred(TrySU, SDep(Copies.front(), SDep::Artificial));
1565 NewDef = Copies.back();
1568 LLVM_DEBUG(dbgs() << " Adding an edge from SU #" << NewDef->NodeNum
1569 << " to SU #" << TrySU->NodeNum << "\n");
1570 LiveRegDefs[Reg] = NewDef;
1571 AddPred(NewDef, SDep(TrySU, SDep::Artificial));
1572 TrySU->isAvailable = false;
1573 CurSU = NewDef;
1575 assert(CurSU && "Unable to resolve live physical register dependencies!");
1576 return CurSU;
1579 /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
1580 /// schedulers.
1581 void ScheduleDAGRRList::ListScheduleBottomUp() {
1582 // Release any predecessors of the special Exit node.
1583 ReleasePredecessors(&ExitSU);
1585 // Add root to Available queue.
1586 if (!SUnits.empty()) {
1587 SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
1588 assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
1589 RootSU->isAvailable = true;
1590 AvailableQueue->push(RootSU);
1593 // While Available queue is not empty, grab the node with the highest
1594 // priority. If it is not ready put it back. Schedule the node.
1595 Sequence.reserve(SUnits.size());
1596 while (!AvailableQueue->empty() || !Interferences.empty()) {
1597 LLVM_DEBUG(dbgs() << "\nExamining Available:\n";
1598 AvailableQueue->dump(this));
1600 // Pick the best node to schedule taking all constraints into
1601 // consideration.
1602 SUnit *SU = PickNodeToScheduleBottomUp();
1604 AdvancePastStalls(SU);
1606 ScheduleNodeBottomUp(SU);
1608 while (AvailableQueue->empty() && !PendingQueue.empty()) {
1609 // Advance the cycle to free resources. Skip ahead to the next ready SU.
1610 assert(MinAvailableCycle < std::numeric_limits<unsigned>::max() &&
1611 "MinAvailableCycle uninitialized");
1612 AdvanceToCycle(std::max(CurCycle + 1, MinAvailableCycle));
1616 // Reverse the order if it is bottom up.
1617 std::reverse(Sequence.begin(), Sequence.end());
1619 #ifndef NDEBUG
1620 VerifyScheduledSequence(/*isBottomUp=*/true);
1621 #endif
1624 namespace {
1626 class RegReductionPQBase;
1628 struct queue_sort {
1629 bool isReady(SUnit* SU, unsigned CurCycle) const { return true; }
1632 #ifndef NDEBUG
1633 template<class SF>
1634 struct reverse_sort : public queue_sort {
1635 SF &SortFunc;
1637 reverse_sort(SF &sf) : SortFunc(sf) {}
1639 bool operator()(SUnit* left, SUnit* right) const {
1640 // reverse left/right rather than simply !SortFunc(left, right)
1641 // to expose different paths in the comparison logic.
1642 return SortFunc(right, left);
1645 #endif // NDEBUG
1647 /// bu_ls_rr_sort - Priority function for bottom up register pressure
1648 // reduction scheduler.
1649 struct bu_ls_rr_sort : public queue_sort {
1650 enum {
1651 IsBottomUp = true,
1652 HasReadyFilter = false
1655 RegReductionPQBase *SPQ;
1657 bu_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1659 bool operator()(SUnit* left, SUnit* right) const;
1662 // src_ls_rr_sort - Priority function for source order scheduler.
1663 struct src_ls_rr_sort : public queue_sort {
1664 enum {
1665 IsBottomUp = true,
1666 HasReadyFilter = false
1669 RegReductionPQBase *SPQ;
1671 src_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1673 bool operator()(SUnit* left, SUnit* right) const;
1676 // hybrid_ls_rr_sort - Priority function for hybrid scheduler.
1677 struct hybrid_ls_rr_sort : public queue_sort {
1678 enum {
1679 IsBottomUp = true,
1680 HasReadyFilter = false
1683 RegReductionPQBase *SPQ;
1685 hybrid_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1687 bool isReady(SUnit *SU, unsigned CurCycle) const;
1689 bool operator()(SUnit* left, SUnit* right) const;
1692 // ilp_ls_rr_sort - Priority function for ILP (instruction level parallelism)
1693 // scheduler.
1694 struct ilp_ls_rr_sort : public queue_sort {
1695 enum {
1696 IsBottomUp = true,
1697 HasReadyFilter = false
1700 RegReductionPQBase *SPQ;
1702 ilp_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1704 bool isReady(SUnit *SU, unsigned CurCycle) const;
1706 bool operator()(SUnit* left, SUnit* right) const;
1709 class RegReductionPQBase : public SchedulingPriorityQueue {
1710 protected:
1711 std::vector<SUnit *> Queue;
1712 unsigned CurQueueId = 0;
1713 bool TracksRegPressure;
1714 bool SrcOrder;
1716 // SUnits - The SUnits for the current graph.
1717 std::vector<SUnit> *SUnits;
1719 MachineFunction &MF;
1720 const TargetInstrInfo *TII;
1721 const TargetRegisterInfo *TRI;
1722 const TargetLowering *TLI;
1723 ScheduleDAGRRList *scheduleDAG = nullptr;
1725 // SethiUllmanNumbers - The SethiUllman number for each node.
1726 std::vector<unsigned> SethiUllmanNumbers;
1728 /// RegPressure - Tracking current reg pressure per register class.
1729 std::vector<unsigned> RegPressure;
1731 /// RegLimit - Tracking the number of allocatable registers per register
1732 /// class.
1733 std::vector<unsigned> RegLimit;
1735 public:
1736 RegReductionPQBase(MachineFunction &mf,
1737 bool hasReadyFilter,
1738 bool tracksrp,
1739 bool srcorder,
1740 const TargetInstrInfo *tii,
1741 const TargetRegisterInfo *tri,
1742 const TargetLowering *tli)
1743 : SchedulingPriorityQueue(hasReadyFilter), TracksRegPressure(tracksrp),
1744 SrcOrder(srcorder), MF(mf), TII(tii), TRI(tri), TLI(tli) {
1745 if (TracksRegPressure) {
1746 unsigned NumRC = TRI->getNumRegClasses();
1747 RegLimit.resize(NumRC);
1748 RegPressure.resize(NumRC);
1749 std::fill(RegLimit.begin(), RegLimit.end(), 0);
1750 std::fill(RegPressure.begin(), RegPressure.end(), 0);
1751 for (const TargetRegisterClass *RC : TRI->regclasses())
1752 RegLimit[RC->getID()] = tri->getRegPressureLimit(RC, MF);
1756 void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
1757 scheduleDAG = scheduleDag;
1760 ScheduleHazardRecognizer* getHazardRec() {
1761 return scheduleDAG->getHazardRec();
1764 void initNodes(std::vector<SUnit> &sunits) override;
1766 void addNode(const SUnit *SU) override;
1768 void updateNode(const SUnit *SU) override;
1770 void releaseState() override {
1771 SUnits = nullptr;
1772 SethiUllmanNumbers.clear();
1773 std::fill(RegPressure.begin(), RegPressure.end(), 0);
1776 unsigned getNodePriority(const SUnit *SU) const;
1778 unsigned getNodeOrdering(const SUnit *SU) const {
1779 if (!SU->getNode()) return 0;
1781 return SU->getNode()->getIROrder();
1784 bool empty() const override { return Queue.empty(); }
1786 void push(SUnit *U) override {
1787 assert(!U->NodeQueueId && "Node in the queue already");
1788 U->NodeQueueId = ++CurQueueId;
1789 Queue.push_back(U);
1792 void remove(SUnit *SU) override {
1793 assert(!Queue.empty() && "Queue is empty!");
1794 assert(SU->NodeQueueId != 0 && "Not in queue!");
1795 std::vector<SUnit *>::iterator I = llvm::find(Queue, SU);
1796 if (I != std::prev(Queue.end()))
1797 std::swap(*I, Queue.back());
1798 Queue.pop_back();
1799 SU->NodeQueueId = 0;
1802 bool tracksRegPressure() const override { return TracksRegPressure; }
1804 void dumpRegPressure() const;
1806 bool HighRegPressure(const SUnit *SU) const;
1808 bool MayReduceRegPressure(SUnit *SU) const;
1810 int RegPressureDiff(SUnit *SU, unsigned &LiveUses) const;
1812 void scheduledNode(SUnit *SU) override;
1814 void unscheduledNode(SUnit *SU) override;
1816 protected:
1817 bool canClobber(const SUnit *SU, const SUnit *Op);
1818 void AddPseudoTwoAddrDeps();
1819 void PrescheduleNodesWithMultipleUses();
1820 void CalculateSethiUllmanNumbers();
1823 template<class SF>
1824 static SUnit *popFromQueueImpl(std::vector<SUnit *> &Q, SF &Picker) {
1825 std::vector<SUnit *>::iterator Best = Q.begin();
1826 for (auto I = std::next(Q.begin()), E = Q.end(); I != E; ++I)
1827 if (Picker(*Best, *I))
1828 Best = I;
1829 SUnit *V = *Best;
1830 if (Best != std::prev(Q.end()))
1831 std::swap(*Best, Q.back());
1832 Q.pop_back();
1833 return V;
1836 template<class SF>
1837 SUnit *popFromQueue(std::vector<SUnit *> &Q, SF &Picker, ScheduleDAG *DAG) {
1838 #ifndef NDEBUG
1839 if (DAG->StressSched) {
1840 reverse_sort<SF> RPicker(Picker);
1841 return popFromQueueImpl(Q, RPicker);
1843 #endif
1844 (void)DAG;
1845 return popFromQueueImpl(Q, Picker);
1848 //===----------------------------------------------------------------------===//
1849 // RegReductionPriorityQueue Definition
1850 //===----------------------------------------------------------------------===//
1852 // This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
1853 // to reduce register pressure.
1855 template<class SF>
1856 class RegReductionPriorityQueue : public RegReductionPQBase {
1857 SF Picker;
1859 public:
1860 RegReductionPriorityQueue(MachineFunction &mf,
1861 bool tracksrp,
1862 bool srcorder,
1863 const TargetInstrInfo *tii,
1864 const TargetRegisterInfo *tri,
1865 const TargetLowering *tli)
1866 : RegReductionPQBase(mf, SF::HasReadyFilter, tracksrp, srcorder,
1867 tii, tri, tli),
1868 Picker(this) {}
1870 bool isBottomUp() const override { return SF::IsBottomUp; }
1872 bool isReady(SUnit *U) const override {
1873 return Picker.HasReadyFilter && Picker.isReady(U, getCurCycle());
1876 SUnit *pop() override {
1877 if (Queue.empty()) return nullptr;
1879 SUnit *V = popFromQueue(Queue, Picker, scheduleDAG);
1880 V->NodeQueueId = 0;
1881 return V;
1884 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1885 LLVM_DUMP_METHOD void dump(ScheduleDAG *DAG) const override {
1886 // Emulate pop() without clobbering NodeQueueIds.
1887 std::vector<SUnit *> DumpQueue = Queue;
1888 SF DumpPicker = Picker;
1889 while (!DumpQueue.empty()) {
1890 SUnit *SU = popFromQueue(DumpQueue, DumpPicker, scheduleDAG);
1891 dbgs() << "Height " << SU->getHeight() << ": ";
1892 DAG->dumpNode(*SU);
1895 #endif
1898 using BURegReductionPriorityQueue = RegReductionPriorityQueue<bu_ls_rr_sort>;
1899 using SrcRegReductionPriorityQueue = RegReductionPriorityQueue<src_ls_rr_sort>;
1900 using HybridBURRPriorityQueue = RegReductionPriorityQueue<hybrid_ls_rr_sort>;
1901 using ILPBURRPriorityQueue = RegReductionPriorityQueue<ilp_ls_rr_sort>;
1903 } // end anonymous namespace
1905 //===----------------------------------------------------------------------===//
1906 // Static Node Priority for Register Pressure Reduction
1907 //===----------------------------------------------------------------------===//
1909 // Check for special nodes that bypass scheduling heuristics.
1910 // Currently this pushes TokenFactor nodes down, but may be used for other
1911 // pseudo-ops as well.
1913 // Return -1 to schedule right above left, 1 for left above right.
1914 // Return 0 if no bias exists.
1915 static int checkSpecialNodes(const SUnit *left, const SUnit *right) {
1916 bool LSchedLow = left->isScheduleLow;
1917 bool RSchedLow = right->isScheduleLow;
1918 if (LSchedLow != RSchedLow)
1919 return LSchedLow < RSchedLow ? 1 : -1;
1920 return 0;
1923 /// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
1924 /// Smaller number is the higher priority.
1925 static unsigned
1926 CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
1927 if (SUNumbers[SU->NodeNum] != 0)
1928 return SUNumbers[SU->NodeNum];
1930 // Use WorkList to avoid stack overflow on excessively large IRs.
1931 struct WorkState {
1932 WorkState(const SUnit *SU) : SU(SU) {}
1933 const SUnit *SU;
1934 unsigned PredsProcessed = 0;
1937 SmallVector<WorkState, 16> WorkList;
1938 WorkList.push_back(SU);
1939 while (!WorkList.empty()) {
1940 auto &Temp = WorkList.back();
1941 auto *TempSU = Temp.SU;
1942 bool AllPredsKnown = true;
1943 // Try to find a non-evaluated pred and push it into the processing stack.
1944 for (unsigned P = Temp.PredsProcessed; P < TempSU->Preds.size(); ++P) {
1945 auto &Pred = TempSU->Preds[P];
1946 if (Pred.isCtrl()) continue; // ignore chain preds
1947 SUnit *PredSU = Pred.getSUnit();
1948 if (SUNumbers[PredSU->NodeNum] == 0) {
1949 #ifndef NDEBUG
1950 // In debug mode, check that we don't have such element in the stack.
1951 for (auto It : WorkList)
1952 assert(It.SU != PredSU && "Trying to push an element twice?");
1953 #endif
1954 // Next time start processing this one starting from the next pred.
1955 Temp.PredsProcessed = P + 1;
1956 WorkList.push_back(PredSU);
1957 AllPredsKnown = false;
1958 break;
1962 if (!AllPredsKnown)
1963 continue;
1965 // Once all preds are known, we can calculate the answer for this one.
1966 unsigned SethiUllmanNumber = 0;
1967 unsigned Extra = 0;
1968 for (const SDep &Pred : TempSU->Preds) {
1969 if (Pred.isCtrl()) continue; // ignore chain preds
1970 SUnit *PredSU = Pred.getSUnit();
1971 unsigned PredSethiUllman = SUNumbers[PredSU->NodeNum];
1972 assert(PredSethiUllman > 0 && "We should have evaluated this pred!");
1973 if (PredSethiUllman > SethiUllmanNumber) {
1974 SethiUllmanNumber = PredSethiUllman;
1975 Extra = 0;
1976 } else if (PredSethiUllman == SethiUllmanNumber)
1977 ++Extra;
1980 SethiUllmanNumber += Extra;
1981 if (SethiUllmanNumber == 0)
1982 SethiUllmanNumber = 1;
1983 SUNumbers[TempSU->NodeNum] = SethiUllmanNumber;
1984 WorkList.pop_back();
1987 assert(SUNumbers[SU->NodeNum] > 0 && "SethiUllman should never be zero!");
1988 return SUNumbers[SU->NodeNum];
1991 /// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1992 /// scheduling units.
1993 void RegReductionPQBase::CalculateSethiUllmanNumbers() {
1994 SethiUllmanNumbers.assign(SUnits->size(), 0);
1996 for (const SUnit &SU : *SUnits)
1997 CalcNodeSethiUllmanNumber(&SU, SethiUllmanNumbers);
2000 void RegReductionPQBase::addNode(const SUnit *SU) {
2001 unsigned SUSize = SethiUllmanNumbers.size();
2002 if (SUnits->size() > SUSize)
2003 SethiUllmanNumbers.resize(SUSize*2, 0);
2004 CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
2007 void RegReductionPQBase::updateNode(const SUnit *SU) {
2008 SethiUllmanNumbers[SU->NodeNum] = 0;
2009 CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
2012 // Lower priority means schedule further down. For bottom-up scheduling, lower
2013 // priority SUs are scheduled before higher priority SUs.
2014 unsigned RegReductionPQBase::getNodePriority(const SUnit *SU) const {
2015 assert(SU->NodeNum < SethiUllmanNumbers.size());
2016 unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
2017 if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
2018 // CopyToReg should be close to its uses to facilitate coalescing and
2019 // avoid spilling.
2020 return 0;
2021 if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2022 Opc == TargetOpcode::SUBREG_TO_REG ||
2023 Opc == TargetOpcode::INSERT_SUBREG)
2024 // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
2025 // close to their uses to facilitate coalescing.
2026 return 0;
2027 if (SU->NumSuccs == 0 && SU->NumPreds != 0)
2028 // If SU does not have a register use, i.e. it doesn't produce a value
2029 // that would be consumed (e.g. store), then it terminates a chain of
2030 // computation. Give it a large SethiUllman number so it will be
2031 // scheduled right before its predecessors that it doesn't lengthen
2032 // their live ranges.
2033 return 0xffff;
2034 if (SU->NumPreds == 0 && SU->NumSuccs != 0)
2035 // If SU does not have a register def, schedule it close to its uses
2036 // because it does not lengthen any live ranges.
2037 return 0;
2038 #if 1
2039 return SethiUllmanNumbers[SU->NodeNum];
2040 #else
2041 unsigned Priority = SethiUllmanNumbers[SU->NodeNum];
2042 if (SU->isCallOp) {
2043 // FIXME: This assumes all of the defs are used as call operands.
2044 int NP = (int)Priority - SU->getNode()->getNumValues();
2045 return (NP > 0) ? NP : 0;
2047 return Priority;
2048 #endif
2051 //===----------------------------------------------------------------------===//
2052 // Register Pressure Tracking
2053 //===----------------------------------------------------------------------===//
2055 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2056 LLVM_DUMP_METHOD void RegReductionPQBase::dumpRegPressure() const {
2057 for (const TargetRegisterClass *RC : TRI->regclasses()) {
2058 unsigned Id = RC->getID();
2059 unsigned RP = RegPressure[Id];
2060 if (!RP) continue;
2061 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << ": " << RP << " / "
2062 << RegLimit[Id] << '\n');
2065 #endif
2067 bool RegReductionPQBase::HighRegPressure(const SUnit *SU) const {
2068 if (!TLI)
2069 return false;
2071 for (const SDep &Pred : SU->Preds) {
2072 if (Pred.isCtrl())
2073 continue;
2074 SUnit *PredSU = Pred.getSUnit();
2075 // NumRegDefsLeft is zero when enough uses of this node have been scheduled
2076 // to cover the number of registers defined (they are all live).
2077 if (PredSU->NumRegDefsLeft == 0) {
2078 continue;
2080 for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
2081 RegDefPos.IsValid(); RegDefPos.Advance()) {
2082 unsigned RCId, Cost;
2083 GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2085 if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
2086 return true;
2089 return false;
2092 bool RegReductionPQBase::MayReduceRegPressure(SUnit *SU) const {
2093 const SDNode *N = SU->getNode();
2095 if (!N->isMachineOpcode() || !SU->NumSuccs)
2096 return false;
2098 unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2099 for (unsigned i = 0; i != NumDefs; ++i) {
2100 MVT VT = N->getSimpleValueType(i);
2101 if (!N->hasAnyUseOfValue(i))
2102 continue;
2103 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2104 if (RegPressure[RCId] >= RegLimit[RCId])
2105 return true;
2107 return false;
2110 // Compute the register pressure contribution by this instruction by count up
2111 // for uses that are not live and down for defs. Only count register classes
2112 // that are already under high pressure. As a side effect, compute the number of
2113 // uses of registers that are already live.
2115 // FIXME: This encompasses the logic in HighRegPressure and MayReduceRegPressure
2116 // so could probably be factored.
2117 int RegReductionPQBase::RegPressureDiff(SUnit *SU, unsigned &LiveUses) const {
2118 LiveUses = 0;
2119 int PDiff = 0;
2120 for (const SDep &Pred : SU->Preds) {
2121 if (Pred.isCtrl())
2122 continue;
2123 SUnit *PredSU = Pred.getSUnit();
2124 // NumRegDefsLeft is zero when enough uses of this node have been scheduled
2125 // to cover the number of registers defined (they are all live).
2126 if (PredSU->NumRegDefsLeft == 0) {
2127 if (PredSU->getNode()->isMachineOpcode())
2128 ++LiveUses;
2129 continue;
2131 for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
2132 RegDefPos.IsValid(); RegDefPos.Advance()) {
2133 MVT VT = RegDefPos.GetValue();
2134 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2135 if (RegPressure[RCId] >= RegLimit[RCId])
2136 ++PDiff;
2139 const SDNode *N = SU->getNode();
2141 if (!N || !N->isMachineOpcode() || !SU->NumSuccs)
2142 return PDiff;
2144 unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2145 for (unsigned i = 0; i != NumDefs; ++i) {
2146 MVT VT = N->getSimpleValueType(i);
2147 if (!N->hasAnyUseOfValue(i))
2148 continue;
2149 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2150 if (RegPressure[RCId] >= RegLimit[RCId])
2151 --PDiff;
2153 return PDiff;
2156 void RegReductionPQBase::scheduledNode(SUnit *SU) {
2157 if (!TracksRegPressure)
2158 return;
2160 if (!SU->getNode())
2161 return;
2163 for (const SDep &Pred : SU->Preds) {
2164 if (Pred.isCtrl())
2165 continue;
2166 SUnit *PredSU = Pred.getSUnit();
2167 // NumRegDefsLeft is zero when enough uses of this node have been scheduled
2168 // to cover the number of registers defined (they are all live).
2169 if (PredSU->NumRegDefsLeft == 0) {
2170 continue;
2172 // FIXME: The ScheduleDAG currently loses information about which of a
2173 // node's values is consumed by each dependence. Consequently, if the node
2174 // defines multiple register classes, we don't know which to pressurize
2175 // here. Instead the following loop consumes the register defs in an
2176 // arbitrary order. At least it handles the common case of clustered loads
2177 // to the same class. For precise liveness, each SDep needs to indicate the
2178 // result number. But that tightly couples the ScheduleDAG with the
2179 // SelectionDAG making updates tricky. A simpler hack would be to attach a
2180 // value type or register class to SDep.
2182 // The most important aspect of register tracking is balancing the increase
2183 // here with the reduction further below. Note that this SU may use multiple
2184 // defs in PredSU. The can't be determined here, but we've already
2185 // compensated by reducing NumRegDefsLeft in PredSU during
2186 // ScheduleDAGSDNodes::AddSchedEdges.
2187 --PredSU->NumRegDefsLeft;
2188 unsigned SkipRegDefs = PredSU->NumRegDefsLeft;
2189 for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
2190 RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
2191 if (SkipRegDefs)
2192 continue;
2194 unsigned RCId, Cost;
2195 GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2196 RegPressure[RCId] += Cost;
2197 break;
2201 // We should have this assert, but there may be dead SDNodes that never
2202 // materialize as SUnits, so they don't appear to generate liveness.
2203 //assert(SU->NumRegDefsLeft == 0 && "not all regdefs have scheduled uses");
2204 int SkipRegDefs = (int)SU->NumRegDefsLeft;
2205 for (ScheduleDAGSDNodes::RegDefIter RegDefPos(SU, scheduleDAG);
2206 RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
2207 if (SkipRegDefs > 0)
2208 continue;
2209 unsigned RCId, Cost;
2210 GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2211 if (RegPressure[RCId] < Cost) {
2212 // Register pressure tracking is imprecise. This can happen. But we try
2213 // hard not to let it happen because it likely results in poor scheduling.
2214 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum
2215 << ") has too many regdefs\n");
2216 RegPressure[RCId] = 0;
2218 else {
2219 RegPressure[RCId] -= Cost;
2222 LLVM_DEBUG(dumpRegPressure());
2225 void RegReductionPQBase::unscheduledNode(SUnit *SU) {
2226 if (!TracksRegPressure)
2227 return;
2229 const SDNode *N = SU->getNode();
2230 if (!N) return;
2232 if (!N->isMachineOpcode()) {
2233 if (N->getOpcode() != ISD::CopyToReg)
2234 return;
2235 } else {
2236 unsigned Opc = N->getMachineOpcode();
2237 if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2238 Opc == TargetOpcode::INSERT_SUBREG ||
2239 Opc == TargetOpcode::SUBREG_TO_REG ||
2240 Opc == TargetOpcode::REG_SEQUENCE ||
2241 Opc == TargetOpcode::IMPLICIT_DEF)
2242 return;
2245 for (const SDep &Pred : SU->Preds) {
2246 if (Pred.isCtrl())
2247 continue;
2248 SUnit *PredSU = Pred.getSUnit();
2249 // NumSuccsLeft counts all deps. Don't compare it with NumSuccs which only
2250 // counts data deps.
2251 if (PredSU->NumSuccsLeft != PredSU->Succs.size())
2252 continue;
2253 const SDNode *PN = PredSU->getNode();
2254 if (!PN->isMachineOpcode()) {
2255 if (PN->getOpcode() == ISD::CopyFromReg) {
2256 MVT VT = PN->getSimpleValueType(0);
2257 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2258 RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2260 continue;
2262 unsigned POpc = PN->getMachineOpcode();
2263 if (POpc == TargetOpcode::IMPLICIT_DEF)
2264 continue;
2265 if (POpc == TargetOpcode::EXTRACT_SUBREG ||
2266 POpc == TargetOpcode::INSERT_SUBREG ||
2267 POpc == TargetOpcode::SUBREG_TO_REG) {
2268 MVT VT = PN->getSimpleValueType(0);
2269 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2270 RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2271 continue;
2273 unsigned NumDefs = TII->get(PN->getMachineOpcode()).getNumDefs();
2274 for (unsigned i = 0; i != NumDefs; ++i) {
2275 MVT VT = PN->getSimpleValueType(i);
2276 if (!PN->hasAnyUseOfValue(i))
2277 continue;
2278 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2279 if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT))
2280 // Register pressure tracking is imprecise. This can happen.
2281 RegPressure[RCId] = 0;
2282 else
2283 RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
2287 // Check for isMachineOpcode() as PrescheduleNodesWithMultipleUses()
2288 // may transfer data dependencies to CopyToReg.
2289 if (SU->NumSuccs && N->isMachineOpcode()) {
2290 unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2291 for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2292 MVT VT = N->getSimpleValueType(i);
2293 if (VT == MVT::Glue || VT == MVT::Other)
2294 continue;
2295 if (!N->hasAnyUseOfValue(i))
2296 continue;
2297 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2298 RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2302 LLVM_DEBUG(dumpRegPressure());
2305 //===----------------------------------------------------------------------===//
2306 // Dynamic Node Priority for Register Pressure Reduction
2307 //===----------------------------------------------------------------------===//
2309 /// closestSucc - Returns the scheduled cycle of the successor which is
2310 /// closest to the current cycle.
2311 static unsigned closestSucc(const SUnit *SU) {
2312 unsigned MaxHeight = 0;
2313 for (const SDep &Succ : SU->Succs) {
2314 if (Succ.isCtrl()) continue; // ignore chain succs
2315 unsigned Height = Succ.getSUnit()->getHeight();
2316 // If there are bunch of CopyToRegs stacked up, they should be considered
2317 // to be at the same position.
2318 if (Succ.getSUnit()->getNode() &&
2319 Succ.getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
2320 Height = closestSucc(Succ.getSUnit())+1;
2321 if (Height > MaxHeight)
2322 MaxHeight = Height;
2324 return MaxHeight;
2327 /// calcMaxScratches - Returns an cost estimate of the worse case requirement
2328 /// for scratch registers, i.e. number of data dependencies.
2329 static unsigned calcMaxScratches(const SUnit *SU) {
2330 unsigned Scratches = 0;
2331 for (const SDep &Pred : SU->Preds) {
2332 if (Pred.isCtrl()) continue; // ignore chain preds
2333 Scratches++;
2335 return Scratches;
2338 /// hasOnlyLiveInOpers - Return true if SU has only value predecessors that are
2339 /// CopyFromReg from a virtual register.
2340 static bool hasOnlyLiveInOpers(const SUnit *SU) {
2341 bool RetVal = false;
2342 for (const SDep &Pred : SU->Preds) {
2343 if (Pred.isCtrl()) continue;
2344 const SUnit *PredSU = Pred.getSUnit();
2345 if (PredSU->getNode() &&
2346 PredSU->getNode()->getOpcode() == ISD::CopyFromReg) {
2347 unsigned Reg =
2348 cast<RegisterSDNode>(PredSU->getNode()->getOperand(1))->getReg();
2349 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2350 RetVal = true;
2351 continue;
2354 return false;
2356 return RetVal;
2359 /// hasOnlyLiveOutUses - Return true if SU has only value successors that are
2360 /// CopyToReg to a virtual register. This SU def is probably a liveout and
2361 /// it has no other use. It should be scheduled closer to the terminator.
2362 static bool hasOnlyLiveOutUses(const SUnit *SU) {
2363 bool RetVal = false;
2364 for (const SDep &Succ : SU->Succs) {
2365 if (Succ.isCtrl()) continue;
2366 const SUnit *SuccSU = Succ.getSUnit();
2367 if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg) {
2368 unsigned Reg =
2369 cast<RegisterSDNode>(SuccSU->getNode()->getOperand(1))->getReg();
2370 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2371 RetVal = true;
2372 continue;
2375 return false;
2377 return RetVal;
2380 // Set isVRegCycle for a node with only live in opers and live out uses. Also
2381 // set isVRegCycle for its CopyFromReg operands.
2383 // This is only relevant for single-block loops, in which case the VRegCycle
2384 // node is likely an induction variable in which the operand and target virtual
2385 // registers should be coalesced (e.g. pre/post increment values). Setting the
2386 // isVRegCycle flag helps the scheduler prioritize other uses of the same
2387 // CopyFromReg so that this node becomes the virtual register "kill". This
2388 // avoids interference between the values live in and out of the block and
2389 // eliminates a copy inside the loop.
2390 static void initVRegCycle(SUnit *SU) {
2391 if (DisableSchedVRegCycle)
2392 return;
2394 if (!hasOnlyLiveInOpers(SU) || !hasOnlyLiveOutUses(SU))
2395 return;
2397 LLVM_DEBUG(dbgs() << "VRegCycle: SU(" << SU->NodeNum << ")\n");
2399 SU->isVRegCycle = true;
2401 for (const SDep &Pred : SU->Preds) {
2402 if (Pred.isCtrl()) continue;
2403 Pred.getSUnit()->isVRegCycle = true;
2407 // After scheduling the definition of a VRegCycle, clear the isVRegCycle flag of
2408 // CopyFromReg operands. We should no longer penalize other uses of this VReg.
2409 static void resetVRegCycle(SUnit *SU) {
2410 if (!SU->isVRegCycle)
2411 return;
2413 for (const SDep &Pred : SU->Preds) {
2414 if (Pred.isCtrl()) continue; // ignore chain preds
2415 SUnit *PredSU = Pred.getSUnit();
2416 if (PredSU->isVRegCycle) {
2417 assert(PredSU->getNode()->getOpcode() == ISD::CopyFromReg &&
2418 "VRegCycle def must be CopyFromReg");
2419 Pred.getSUnit()->isVRegCycle = false;
2424 // Return true if this SUnit uses a CopyFromReg node marked as a VRegCycle. This
2425 // means a node that defines the VRegCycle has not been scheduled yet.
2426 static bool hasVRegCycleUse(const SUnit *SU) {
2427 // If this SU also defines the VReg, don't hoist it as a "use".
2428 if (SU->isVRegCycle)
2429 return false;
2431 for (const SDep &Pred : SU->Preds) {
2432 if (Pred.isCtrl()) continue; // ignore chain preds
2433 if (Pred.getSUnit()->isVRegCycle &&
2434 Pred.getSUnit()->getNode()->getOpcode() == ISD::CopyFromReg) {
2435 LLVM_DEBUG(dbgs() << " VReg cycle use: SU (" << SU->NodeNum << ")\n");
2436 return true;
2439 return false;
2442 // Check for either a dependence (latency) or resource (hazard) stall.
2444 // Note: The ScheduleHazardRecognizer interface requires a non-const SU.
2445 static bool BUHasStall(SUnit *SU, int Height, RegReductionPQBase *SPQ) {
2446 if ((int)SPQ->getCurCycle() < Height) return true;
2447 if (SPQ->getHazardRec()->getHazardType(SU, 0)
2448 != ScheduleHazardRecognizer::NoHazard)
2449 return true;
2450 return false;
2453 // Return -1 if left has higher priority, 1 if right has higher priority.
2454 // Return 0 if latency-based priority is equivalent.
2455 static int BUCompareLatency(SUnit *left, SUnit *right, bool checkPref,
2456 RegReductionPQBase *SPQ) {
2457 // Scheduling an instruction that uses a VReg whose postincrement has not yet
2458 // been scheduled will induce a copy. Model this as an extra cycle of latency.
2459 int LPenalty = hasVRegCycleUse(left) ? 1 : 0;
2460 int RPenalty = hasVRegCycleUse(right) ? 1 : 0;
2461 int LHeight = (int)left->getHeight() + LPenalty;
2462 int RHeight = (int)right->getHeight() + RPenalty;
2464 bool LStall = (!checkPref || left->SchedulingPref == Sched::ILP) &&
2465 BUHasStall(left, LHeight, SPQ);
2466 bool RStall = (!checkPref || right->SchedulingPref == Sched::ILP) &&
2467 BUHasStall(right, RHeight, SPQ);
2469 // If scheduling one of the node will cause a pipeline stall, delay it.
2470 // If scheduling either one of the node will cause a pipeline stall, sort
2471 // them according to their height.
2472 if (LStall) {
2473 if (!RStall)
2474 return 1;
2475 if (LHeight != RHeight)
2476 return LHeight > RHeight ? 1 : -1;
2477 } else if (RStall)
2478 return -1;
2480 // If either node is scheduling for latency, sort them by height/depth
2481 // and latency.
2482 if (!checkPref || (left->SchedulingPref == Sched::ILP ||
2483 right->SchedulingPref == Sched::ILP)) {
2484 // If neither instruction stalls (!LStall && !RStall) and HazardRecognizer
2485 // is enabled, grouping instructions by cycle, then its height is already
2486 // covered so only its depth matters. We also reach this point if both stall
2487 // but have the same height.
2488 if (!SPQ->getHazardRec()->isEnabled()) {
2489 if (LHeight != RHeight)
2490 return LHeight > RHeight ? 1 : -1;
2492 int LDepth = left->getDepth() - LPenalty;
2493 int RDepth = right->getDepth() - RPenalty;
2494 if (LDepth != RDepth) {
2495 LLVM_DEBUG(dbgs() << " Comparing latency of SU (" << left->NodeNum
2496 << ") depth " << LDepth << " vs SU (" << right->NodeNum
2497 << ") depth " << RDepth << "\n");
2498 return LDepth < RDepth ? 1 : -1;
2500 if (left->Latency != right->Latency)
2501 return left->Latency > right->Latency ? 1 : -1;
2503 return 0;
2506 static bool BURRSort(SUnit *left, SUnit *right, RegReductionPQBase *SPQ) {
2507 // Schedule physical register definitions close to their use. This is
2508 // motivated by microarchitectures that can fuse cmp+jump macro-ops. But as
2509 // long as shortening physreg live ranges is generally good, we can defer
2510 // creating a subtarget hook.
2511 if (!DisableSchedPhysRegJoin) {
2512 bool LHasPhysReg = left->hasPhysRegDefs;
2513 bool RHasPhysReg = right->hasPhysRegDefs;
2514 if (LHasPhysReg != RHasPhysReg) {
2515 #ifndef NDEBUG
2516 static const char *const PhysRegMsg[] = { " has no physreg",
2517 " defines a physreg" };
2518 #endif
2519 LLVM_DEBUG(dbgs() << " SU (" << left->NodeNum << ") "
2520 << PhysRegMsg[LHasPhysReg] << " SU(" << right->NodeNum
2521 << ") " << PhysRegMsg[RHasPhysReg] << "\n");
2522 return LHasPhysReg < RHasPhysReg;
2526 // Prioritize by Sethi-Ulmann number and push CopyToReg nodes down.
2527 unsigned LPriority = SPQ->getNodePriority(left);
2528 unsigned RPriority = SPQ->getNodePriority(right);
2530 // Be really careful about hoisting call operands above previous calls.
2531 // Only allows it if it would reduce register pressure.
2532 if (left->isCall && right->isCallOp) {
2533 unsigned RNumVals = right->getNode()->getNumValues();
2534 RPriority = (RPriority > RNumVals) ? (RPriority - RNumVals) : 0;
2536 if (right->isCall && left->isCallOp) {
2537 unsigned LNumVals = left->getNode()->getNumValues();
2538 LPriority = (LPriority > LNumVals) ? (LPriority - LNumVals) : 0;
2541 if (LPriority != RPriority)
2542 return LPriority > RPriority;
2544 // One or both of the nodes are calls and their sethi-ullman numbers are the
2545 // same, then keep source order.
2546 if (left->isCall || right->isCall) {
2547 unsigned LOrder = SPQ->getNodeOrdering(left);
2548 unsigned ROrder = SPQ->getNodeOrdering(right);
2550 // Prefer an ordering where the lower the non-zero order number, the higher
2551 // the preference.
2552 if ((LOrder || ROrder) && LOrder != ROrder)
2553 return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2556 // Try schedule def + use closer when Sethi-Ullman numbers are the same.
2557 // e.g.
2558 // t1 = op t2, c1
2559 // t3 = op t4, c2
2561 // and the following instructions are both ready.
2562 // t2 = op c3
2563 // t4 = op c4
2565 // Then schedule t2 = op first.
2566 // i.e.
2567 // t4 = op c4
2568 // t2 = op c3
2569 // t1 = op t2, c1
2570 // t3 = op t4, c2
2572 // This creates more short live intervals.
2573 unsigned LDist = closestSucc(left);
2574 unsigned RDist = closestSucc(right);
2575 if (LDist != RDist)
2576 return LDist < RDist;
2578 // How many registers becomes live when the node is scheduled.
2579 unsigned LScratch = calcMaxScratches(left);
2580 unsigned RScratch = calcMaxScratches(right);
2581 if (LScratch != RScratch)
2582 return LScratch > RScratch;
2584 // Comparing latency against a call makes little sense unless the node
2585 // is register pressure-neutral.
2586 if ((left->isCall && RPriority > 0) || (right->isCall && LPriority > 0))
2587 return (left->NodeQueueId > right->NodeQueueId);
2589 // Do not compare latencies when one or both of the nodes are calls.
2590 if (!DisableSchedCycles &&
2591 !(left->isCall || right->isCall)) {
2592 int result = BUCompareLatency(left, right, false /*checkPref*/, SPQ);
2593 if (result != 0)
2594 return result > 0;
2596 else {
2597 if (left->getHeight() != right->getHeight())
2598 return left->getHeight() > right->getHeight();
2600 if (left->getDepth() != right->getDepth())
2601 return left->getDepth() < right->getDepth();
2604 assert(left->NodeQueueId && right->NodeQueueId &&
2605 "NodeQueueId cannot be zero");
2606 return (left->NodeQueueId > right->NodeQueueId);
2609 // Bottom up
2610 bool bu_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2611 if (int res = checkSpecialNodes(left, right))
2612 return res > 0;
2614 return BURRSort(left, right, SPQ);
2617 // Source order, otherwise bottom up.
2618 bool src_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2619 if (int res = checkSpecialNodes(left, right))
2620 return res > 0;
2622 unsigned LOrder = SPQ->getNodeOrdering(left);
2623 unsigned ROrder = SPQ->getNodeOrdering(right);
2625 // Prefer an ordering where the lower the non-zero order number, the higher
2626 // the preference.
2627 if ((LOrder || ROrder) && LOrder != ROrder)
2628 return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2630 return BURRSort(left, right, SPQ);
2633 // If the time between now and when the instruction will be ready can cover
2634 // the spill code, then avoid adding it to the ready queue. This gives long
2635 // stalls highest priority and allows hoisting across calls. It should also
2636 // speed up processing the available queue.
2637 bool hybrid_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2638 static const unsigned ReadyDelay = 3;
2640 if (SPQ->MayReduceRegPressure(SU)) return true;
2642 if (SU->getHeight() > (CurCycle + ReadyDelay)) return false;
2644 if (SPQ->getHazardRec()->getHazardType(SU, -ReadyDelay)
2645 != ScheduleHazardRecognizer::NoHazard)
2646 return false;
2648 return true;
2651 // Return true if right should be scheduled with higher priority than left.
2652 bool hybrid_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2653 if (int res = checkSpecialNodes(left, right))
2654 return res > 0;
2656 if (left->isCall || right->isCall)
2657 // No way to compute latency of calls.
2658 return BURRSort(left, right, SPQ);
2660 bool LHigh = SPQ->HighRegPressure(left);
2661 bool RHigh = SPQ->HighRegPressure(right);
2662 // Avoid causing spills. If register pressure is high, schedule for
2663 // register pressure reduction.
2664 if (LHigh && !RHigh) {
2665 LLVM_DEBUG(dbgs() << " pressure SU(" << left->NodeNum << ") > SU("
2666 << right->NodeNum << ")\n");
2667 return true;
2669 else if (!LHigh && RHigh) {
2670 LLVM_DEBUG(dbgs() << " pressure SU(" << right->NodeNum << ") > SU("
2671 << left->NodeNum << ")\n");
2672 return false;
2674 if (!LHigh && !RHigh) {
2675 int result = BUCompareLatency(left, right, true /*checkPref*/, SPQ);
2676 if (result != 0)
2677 return result > 0;
2679 return BURRSort(left, right, SPQ);
2682 // Schedule as many instructions in each cycle as possible. So don't make an
2683 // instruction available unless it is ready in the current cycle.
2684 bool ilp_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2685 if (SU->getHeight() > CurCycle) return false;
2687 if (SPQ->getHazardRec()->getHazardType(SU, 0)
2688 != ScheduleHazardRecognizer::NoHazard)
2689 return false;
2691 return true;
2694 static bool canEnableCoalescing(SUnit *SU) {
2695 unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
2696 if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
2697 // CopyToReg should be close to its uses to facilitate coalescing and
2698 // avoid spilling.
2699 return true;
2701 if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2702 Opc == TargetOpcode::SUBREG_TO_REG ||
2703 Opc == TargetOpcode::INSERT_SUBREG)
2704 // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
2705 // close to their uses to facilitate coalescing.
2706 return true;
2708 if (SU->NumPreds == 0 && SU->NumSuccs != 0)
2709 // If SU does not have a register def, schedule it close to its uses
2710 // because it does not lengthen any live ranges.
2711 return true;
2713 return false;
2716 // list-ilp is currently an experimental scheduler that allows various
2717 // heuristics to be enabled prior to the normal register reduction logic.
2718 bool ilp_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2719 if (int res = checkSpecialNodes(left, right))
2720 return res > 0;
2722 if (left->isCall || right->isCall)
2723 // No way to compute latency of calls.
2724 return BURRSort(left, right, SPQ);
2726 unsigned LLiveUses = 0, RLiveUses = 0;
2727 int LPDiff = 0, RPDiff = 0;
2728 if (!DisableSchedRegPressure || !DisableSchedLiveUses) {
2729 LPDiff = SPQ->RegPressureDiff(left, LLiveUses);
2730 RPDiff = SPQ->RegPressureDiff(right, RLiveUses);
2732 if (!DisableSchedRegPressure && LPDiff != RPDiff) {
2733 LLVM_DEBUG(dbgs() << "RegPressureDiff SU(" << left->NodeNum
2734 << "): " << LPDiff << " != SU(" << right->NodeNum
2735 << "): " << RPDiff << "\n");
2736 return LPDiff > RPDiff;
2739 if (!DisableSchedRegPressure && (LPDiff > 0 || RPDiff > 0)) {
2740 bool LReduce = canEnableCoalescing(left);
2741 bool RReduce = canEnableCoalescing(right);
2742 if (LReduce && !RReduce) return false;
2743 if (RReduce && !LReduce) return true;
2746 if (!DisableSchedLiveUses && (LLiveUses != RLiveUses)) {
2747 LLVM_DEBUG(dbgs() << "Live uses SU(" << left->NodeNum << "): " << LLiveUses
2748 << " != SU(" << right->NodeNum << "): " << RLiveUses
2749 << "\n");
2750 return LLiveUses < RLiveUses;
2753 if (!DisableSchedStalls) {
2754 bool LStall = BUHasStall(left, left->getHeight(), SPQ);
2755 bool RStall = BUHasStall(right, right->getHeight(), SPQ);
2756 if (LStall != RStall)
2757 return left->getHeight() > right->getHeight();
2760 if (!DisableSchedCriticalPath) {
2761 int spread = (int)left->getDepth() - (int)right->getDepth();
2762 if (std::abs(spread) > MaxReorderWindow) {
2763 LLVM_DEBUG(dbgs() << "Depth of SU(" << left->NodeNum << "): "
2764 << left->getDepth() << " != SU(" << right->NodeNum
2765 << "): " << right->getDepth() << "\n");
2766 return left->getDepth() < right->getDepth();
2770 if (!DisableSchedHeight && left->getHeight() != right->getHeight()) {
2771 int spread = (int)left->getHeight() - (int)right->getHeight();
2772 if (std::abs(spread) > MaxReorderWindow)
2773 return left->getHeight() > right->getHeight();
2776 return BURRSort(left, right, SPQ);
2779 void RegReductionPQBase::initNodes(std::vector<SUnit> &sunits) {
2780 SUnits = &sunits;
2781 // Add pseudo dependency edges for two-address nodes.
2782 if (!Disable2AddrHack)
2783 AddPseudoTwoAddrDeps();
2784 // Reroute edges to nodes with multiple uses.
2785 if (!TracksRegPressure && !SrcOrder)
2786 PrescheduleNodesWithMultipleUses();
2787 // Calculate node priorities.
2788 CalculateSethiUllmanNumbers();
2790 // For single block loops, mark nodes that look like canonical IV increments.
2791 if (scheduleDAG->BB->isSuccessor(scheduleDAG->BB))
2792 for (SUnit &SU : sunits)
2793 initVRegCycle(&SU);
2796 //===----------------------------------------------------------------------===//
2797 // Preschedule for Register Pressure
2798 //===----------------------------------------------------------------------===//
2800 bool RegReductionPQBase::canClobber(const SUnit *SU, const SUnit *Op) {
2801 if (SU->isTwoAddress) {
2802 unsigned Opc = SU->getNode()->getMachineOpcode();
2803 const MCInstrDesc &MCID = TII->get(Opc);
2804 unsigned NumRes = MCID.getNumDefs();
2805 unsigned NumOps = MCID.getNumOperands() - NumRes;
2806 for (unsigned i = 0; i != NumOps; ++i) {
2807 if (MCID.getOperandConstraint(i+NumRes, MCOI::TIED_TO) != -1) {
2808 SDNode *DU = SU->getNode()->getOperand(i).getNode();
2809 if (DU->getNodeId() != -1 &&
2810 Op->OrigNode == &(*SUnits)[DU->getNodeId()])
2811 return true;
2815 return false;
2818 /// canClobberReachingPhysRegUse - True if SU would clobber one of it's
2819 /// successor's explicit physregs whose definition can reach DepSU.
2820 /// i.e. DepSU should not be scheduled above SU.
2821 static bool canClobberReachingPhysRegUse(const SUnit *DepSU, const SUnit *SU,
2822 ScheduleDAGRRList *scheduleDAG,
2823 const TargetInstrInfo *TII,
2824 const TargetRegisterInfo *TRI) {
2825 const MCPhysReg *ImpDefs
2826 = TII->get(SU->getNode()->getMachineOpcode()).getImplicitDefs();
2827 const uint32_t *RegMask = getNodeRegMask(SU->getNode());
2828 if(!ImpDefs && !RegMask)
2829 return false;
2831 for (const SDep &Succ : SU->Succs) {
2832 SUnit *SuccSU = Succ.getSUnit();
2833 for (const SDep &SuccPred : SuccSU->Preds) {
2834 if (!SuccPred.isAssignedRegDep())
2835 continue;
2837 if (RegMask &&
2838 MachineOperand::clobbersPhysReg(RegMask, SuccPred.getReg()) &&
2839 scheduleDAG->IsReachable(DepSU, SuccPred.getSUnit()))
2840 return true;
2842 if (ImpDefs)
2843 for (const MCPhysReg *ImpDef = ImpDefs; *ImpDef; ++ImpDef)
2844 // Return true if SU clobbers this physical register use and the
2845 // definition of the register reaches from DepSU. IsReachable queries
2846 // a topological forward sort of the DAG (following the successors).
2847 if (TRI->regsOverlap(*ImpDef, SuccPred.getReg()) &&
2848 scheduleDAG->IsReachable(DepSU, SuccPred.getSUnit()))
2849 return true;
2852 return false;
2855 /// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
2856 /// physical register defs.
2857 static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
2858 const TargetInstrInfo *TII,
2859 const TargetRegisterInfo *TRI) {
2860 SDNode *N = SuccSU->getNode();
2861 unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2862 const MCPhysReg *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
2863 assert(ImpDefs && "Caller should check hasPhysRegDefs");
2864 for (const SDNode *SUNode = SU->getNode(); SUNode;
2865 SUNode = SUNode->getGluedNode()) {
2866 if (!SUNode->isMachineOpcode())
2867 continue;
2868 const MCPhysReg *SUImpDefs =
2869 TII->get(SUNode->getMachineOpcode()).getImplicitDefs();
2870 const uint32_t *SURegMask = getNodeRegMask(SUNode);
2871 if (!SUImpDefs && !SURegMask)
2872 continue;
2873 for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2874 MVT VT = N->getSimpleValueType(i);
2875 if (VT == MVT::Glue || VT == MVT::Other)
2876 continue;
2877 if (!N->hasAnyUseOfValue(i))
2878 continue;
2879 unsigned Reg = ImpDefs[i - NumDefs];
2880 if (SURegMask && MachineOperand::clobbersPhysReg(SURegMask, Reg))
2881 return true;
2882 if (!SUImpDefs)
2883 continue;
2884 for (;*SUImpDefs; ++SUImpDefs) {
2885 unsigned SUReg = *SUImpDefs;
2886 if (TRI->regsOverlap(Reg, SUReg))
2887 return true;
2891 return false;
2894 /// PrescheduleNodesWithMultipleUses - Nodes with multiple uses
2895 /// are not handled well by the general register pressure reduction
2896 /// heuristics. When presented with code like this:
2898 /// N
2899 /// / |
2900 /// / |
2901 /// U store
2902 /// |
2903 /// ...
2905 /// the heuristics tend to push the store up, but since the
2906 /// operand of the store has another use (U), this would increase
2907 /// the length of that other use (the U->N edge).
2909 /// This function transforms code like the above to route U's
2910 /// dependence through the store when possible, like this:
2912 /// N
2913 /// ||
2914 /// ||
2915 /// store
2916 /// |
2917 /// U
2918 /// |
2919 /// ...
2921 /// This results in the store being scheduled immediately
2922 /// after N, which shortens the U->N live range, reducing
2923 /// register pressure.
2924 void RegReductionPQBase::PrescheduleNodesWithMultipleUses() {
2925 // Visit all the nodes in topological order, working top-down.
2926 for (SUnit &SU : *SUnits) {
2927 // For now, only look at nodes with no data successors, such as stores.
2928 // These are especially important, due to the heuristics in
2929 // getNodePriority for nodes with no data successors.
2930 if (SU.NumSuccs != 0)
2931 continue;
2932 // For now, only look at nodes with exactly one data predecessor.
2933 if (SU.NumPreds != 1)
2934 continue;
2935 // Avoid prescheduling copies to virtual registers, which don't behave
2936 // like other nodes from the perspective of scheduling heuristics.
2937 if (SDNode *N = SU.getNode())
2938 if (N->getOpcode() == ISD::CopyToReg &&
2939 TargetRegisterInfo::isVirtualRegister
2940 (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
2941 continue;
2943 SDNode *PredFrameSetup = nullptr;
2944 for (const SDep &Pred : SU.Preds)
2945 if (Pred.isCtrl() && Pred.getSUnit()) {
2946 // Find the predecessor which is not data dependence.
2947 SDNode *PredND = Pred.getSUnit()->getNode();
2949 // If PredND is FrameSetup, we should not pre-scheduled the node,
2950 // or else, when bottom up scheduling, ADJCALLSTACKDOWN and
2951 // ADJCALLSTACKUP may hold CallResource too long and make other
2952 // calls can't be scheduled. If there's no other available node
2953 // to schedule, the schedular will try to rename the register by
2954 // creating copy to avoid the conflict which will fail because
2955 // CallResource is not a real physical register.
2956 if (PredND && PredND->isMachineOpcode() &&
2957 (PredND->getMachineOpcode() == TII->getCallFrameSetupOpcode())) {
2958 PredFrameSetup = PredND;
2959 break;
2962 // Skip the node has FrameSetup parent.
2963 if (PredFrameSetup != nullptr)
2964 continue;
2966 // Locate the single data predecessor.
2967 SUnit *PredSU = nullptr;
2968 for (const SDep &Pred : SU.Preds)
2969 if (!Pred.isCtrl()) {
2970 PredSU = Pred.getSUnit();
2971 break;
2973 assert(PredSU);
2975 // Don't rewrite edges that carry physregs, because that requires additional
2976 // support infrastructure.
2977 if (PredSU->hasPhysRegDefs)
2978 continue;
2979 // Short-circuit the case where SU is PredSU's only data successor.
2980 if (PredSU->NumSuccs == 1)
2981 continue;
2982 // Avoid prescheduling to copies from virtual registers, which don't behave
2983 // like other nodes from the perspective of scheduling heuristics.
2984 if (SDNode *N = SU.getNode())
2985 if (N->getOpcode() == ISD::CopyFromReg &&
2986 TargetRegisterInfo::isVirtualRegister
2987 (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
2988 continue;
2990 // Perform checks on the successors of PredSU.
2991 for (const SDep &PredSucc : PredSU->Succs) {
2992 SUnit *PredSuccSU = PredSucc.getSUnit();
2993 if (PredSuccSU == &SU) continue;
2994 // If PredSU has another successor with no data successors, for
2995 // now don't attempt to choose either over the other.
2996 if (PredSuccSU->NumSuccs == 0)
2997 goto outer_loop_continue;
2998 // Don't break physical register dependencies.
2999 if (SU.hasPhysRegClobbers && PredSuccSU->hasPhysRegDefs)
3000 if (canClobberPhysRegDefs(PredSuccSU, &SU, TII, TRI))
3001 goto outer_loop_continue;
3002 // Don't introduce graph cycles.
3003 if (scheduleDAG->IsReachable(&SU, PredSuccSU))
3004 goto outer_loop_continue;
3007 // Ok, the transformation is safe and the heuristics suggest it is
3008 // profitable. Update the graph.
3009 LLVM_DEBUG(
3010 dbgs() << " Prescheduling SU #" << SU.NodeNum << " next to PredSU #"
3011 << PredSU->NodeNum
3012 << " to guide scheduling in the presence of multiple uses\n");
3013 for (unsigned i = 0; i != PredSU->Succs.size(); ++i) {
3014 SDep Edge = PredSU->Succs[i];
3015 assert(!Edge.isAssignedRegDep());
3016 SUnit *SuccSU = Edge.getSUnit();
3017 if (SuccSU != &SU) {
3018 Edge.setSUnit(PredSU);
3019 scheduleDAG->RemovePred(SuccSU, Edge);
3020 scheduleDAG->AddPred(&SU, Edge);
3021 Edge.setSUnit(&SU);
3022 scheduleDAG->AddPred(SuccSU, Edge);
3023 --i;
3026 outer_loop_continue:;
3030 /// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
3031 /// it as a def&use operand. Add a pseudo control edge from it to the other
3032 /// node (if it won't create a cycle) so the two-address one will be scheduled
3033 /// first (lower in the schedule). If both nodes are two-address, favor the
3034 /// one that has a CopyToReg use (more likely to be a loop induction update).
3035 /// If both are two-address, but one is commutable while the other is not
3036 /// commutable, favor the one that's not commutable.
3037 void RegReductionPQBase::AddPseudoTwoAddrDeps() {
3038 for (SUnit &SU : *SUnits) {
3039 if (!SU.isTwoAddress)
3040 continue;
3042 SDNode *Node = SU.getNode();
3043 if (!Node || !Node->isMachineOpcode() || SU.getNode()->getGluedNode())
3044 continue;
3046 bool isLiveOut = hasOnlyLiveOutUses(&SU);
3047 unsigned Opc = Node->getMachineOpcode();
3048 const MCInstrDesc &MCID = TII->get(Opc);
3049 unsigned NumRes = MCID.getNumDefs();
3050 unsigned NumOps = MCID.getNumOperands() - NumRes;
3051 for (unsigned j = 0; j != NumOps; ++j) {
3052 if (MCID.getOperandConstraint(j+NumRes, MCOI::TIED_TO) == -1)
3053 continue;
3054 SDNode *DU = SU.getNode()->getOperand(j).getNode();
3055 if (DU->getNodeId() == -1)
3056 continue;
3057 const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
3058 if (!DUSU)
3059 continue;
3060 for (const SDep &Succ : DUSU->Succs) {
3061 if (Succ.isCtrl())
3062 continue;
3063 SUnit *SuccSU = Succ.getSUnit();
3064 if (SuccSU == &SU)
3065 continue;
3066 // Be conservative. Ignore if nodes aren't at roughly the same
3067 // depth and height.
3068 if (SuccSU->getHeight() < SU.getHeight() &&
3069 (SU.getHeight() - SuccSU->getHeight()) > 1)
3070 continue;
3071 // Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge
3072 // constrains whatever is using the copy, instead of the copy
3073 // itself. In the case that the copy is coalesced, this
3074 // preserves the intent of the pseudo two-address heurietics.
3075 while (SuccSU->Succs.size() == 1 &&
3076 SuccSU->getNode()->isMachineOpcode() &&
3077 SuccSU->getNode()->getMachineOpcode() ==
3078 TargetOpcode::COPY_TO_REGCLASS)
3079 SuccSU = SuccSU->Succs.front().getSUnit();
3080 // Don't constrain non-instruction nodes.
3081 if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
3082 continue;
3083 // Don't constrain nodes with physical register defs if the
3084 // predecessor can clobber them.
3085 if (SuccSU->hasPhysRegDefs && SU.hasPhysRegClobbers) {
3086 if (canClobberPhysRegDefs(SuccSU, &SU, TII, TRI))
3087 continue;
3089 // Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG;
3090 // these may be coalesced away. We want them close to their uses.
3091 unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
3092 if (SuccOpc == TargetOpcode::EXTRACT_SUBREG ||
3093 SuccOpc == TargetOpcode::INSERT_SUBREG ||
3094 SuccOpc == TargetOpcode::SUBREG_TO_REG)
3095 continue;
3096 if (!canClobberReachingPhysRegUse(SuccSU, &SU, scheduleDAG, TII, TRI) &&
3097 (!canClobber(SuccSU, DUSU) ||
3098 (isLiveOut && !hasOnlyLiveOutUses(SuccSU)) ||
3099 (!SU.isCommutable && SuccSU->isCommutable)) &&
3100 !scheduleDAG->IsReachable(SuccSU, &SU)) {
3101 LLVM_DEBUG(dbgs()
3102 << " Adding a pseudo-two-addr edge from SU #"
3103 << SU.NodeNum << " to SU #" << SuccSU->NodeNum << "\n");
3104 scheduleDAG->AddPred(&SU, SDep(SuccSU, SDep::Artificial));
3111 //===----------------------------------------------------------------------===//
3112 // Public Constructor Functions
3113 //===----------------------------------------------------------------------===//
3115 ScheduleDAGSDNodes *
3116 llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
3117 CodeGenOpt::Level OptLevel) {
3118 const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
3119 const TargetInstrInfo *TII = STI.getInstrInfo();
3120 const TargetRegisterInfo *TRI = STI.getRegisterInfo();
3122 BURegReductionPriorityQueue *PQ =
3123 new BURegReductionPriorityQueue(*IS->MF, false, false, TII, TRI, nullptr);
3124 ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
3125 PQ->setScheduleDAG(SD);
3126 return SD;
3129 ScheduleDAGSDNodes *
3130 llvm::createSourceListDAGScheduler(SelectionDAGISel *IS,
3131 CodeGenOpt::Level OptLevel) {
3132 const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
3133 const TargetInstrInfo *TII = STI.getInstrInfo();
3134 const TargetRegisterInfo *TRI = STI.getRegisterInfo();
3136 SrcRegReductionPriorityQueue *PQ =
3137 new SrcRegReductionPriorityQueue(*IS->MF, false, true, TII, TRI, nullptr);
3138 ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
3139 PQ->setScheduleDAG(SD);
3140 return SD;
3143 ScheduleDAGSDNodes *
3144 llvm::createHybridListDAGScheduler(SelectionDAGISel *IS,
3145 CodeGenOpt::Level OptLevel) {
3146 const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
3147 const TargetInstrInfo *TII = STI.getInstrInfo();
3148 const TargetRegisterInfo *TRI = STI.getRegisterInfo();
3149 const TargetLowering *TLI = IS->TLI;
3151 HybridBURRPriorityQueue *PQ =
3152 new HybridBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
3154 ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
3155 PQ->setScheduleDAG(SD);
3156 return SD;
3159 ScheduleDAGSDNodes *
3160 llvm::createILPListDAGScheduler(SelectionDAGISel *IS,
3161 CodeGenOpt::Level OptLevel) {
3162 const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
3163 const TargetInstrInfo *TII = STI.getInstrInfo();
3164 const TargetRegisterInfo *TRI = STI.getRegisterInfo();
3165 const TargetLowering *TLI = IS->TLI;
3167 ILPBURRPriorityQueue *PQ =
3168 new ILPBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
3169 ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
3170 PQ->setScheduleDAG(SD);
3171 return SD;