Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / CodeGen / SelectionDAG / SelectionDAGISel.cpp
blob173919378ae35dba00344171a511b1a5eed08ca9
1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAGISel class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/SelectionDAGISel.h"
14 #include "ScheduleDAGSDNodes.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/PostOrderIterator.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/Analysis/CFG.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/CodeGen/FastISel.h"
34 #include "llvm/CodeGen/FunctionLoweringInfo.h"
35 #include "llvm/CodeGen/GCMetadata.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineInstr.h"
42 #include "llvm/CodeGen/MachineInstrBuilder.h"
43 #include "llvm/CodeGen/MachineMemOperand.h"
44 #include "llvm/CodeGen/MachineModuleInfo.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/MachinePassRegistry.h"
47 #include "llvm/CodeGen/MachineRegisterInfo.h"
48 #include "llvm/CodeGen/SchedulerRegistry.h"
49 #include "llvm/CodeGen/SelectionDAG.h"
50 #include "llvm/CodeGen/SelectionDAGNodes.h"
51 #include "llvm/CodeGen/StackProtector.h"
52 #include "llvm/CodeGen/TargetInstrInfo.h"
53 #include "llvm/CodeGen/TargetLowering.h"
54 #include "llvm/CodeGen/TargetRegisterInfo.h"
55 #include "llvm/CodeGen/TargetSubtargetInfo.h"
56 #include "llvm/CodeGen/ValueTypes.h"
57 #include "llvm/IR/BasicBlock.h"
58 #include "llvm/IR/Constants.h"
59 #include "llvm/IR/DataLayout.h"
60 #include "llvm/IR/DebugInfoMetadata.h"
61 #include "llvm/IR/DebugLoc.h"
62 #include "llvm/IR/DiagnosticInfo.h"
63 #include "llvm/IR/Dominators.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/InlineAsm.h"
66 #include "llvm/IR/InstIterator.h"
67 #include "llvm/IR/InstrTypes.h"
68 #include "llvm/IR/Instruction.h"
69 #include "llvm/IR/Instructions.h"
70 #include "llvm/IR/IntrinsicInst.h"
71 #include "llvm/IR/Intrinsics.h"
72 #include "llvm/IR/Metadata.h"
73 #include "llvm/IR/Type.h"
74 #include "llvm/IR/User.h"
75 #include "llvm/IR/Value.h"
76 #include "llvm/MC/MCInstrDesc.h"
77 #include "llvm/MC/MCRegisterInfo.h"
78 #include "llvm/Pass.h"
79 #include "llvm/Support/BranchProbability.h"
80 #include "llvm/Support/Casting.h"
81 #include "llvm/Support/CodeGen.h"
82 #include "llvm/Support/CommandLine.h"
83 #include "llvm/Support/Compiler.h"
84 #include "llvm/Support/Debug.h"
85 #include "llvm/Support/ErrorHandling.h"
86 #include "llvm/Support/KnownBits.h"
87 #include "llvm/Support/MachineValueType.h"
88 #include "llvm/Support/Timer.h"
89 #include "llvm/Support/raw_ostream.h"
90 #include "llvm/Target/TargetIntrinsicInfo.h"
91 #include "llvm/Target/TargetMachine.h"
92 #include "llvm/Target/TargetOptions.h"
93 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstdint>
97 #include <iterator>
98 #include <limits>
99 #include <memory>
100 #include <string>
101 #include <utility>
102 #include <vector>
104 using namespace llvm;
106 #define DEBUG_TYPE "isel"
108 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
109 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
110 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
111 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
112 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
113 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
114 STATISTIC(NumFastIselFailLowerArguments,
115 "Number of entry blocks where fast isel failed to lower arguments");
117 static cl::opt<int> EnableFastISelAbort(
118 "fast-isel-abort", cl::Hidden,
119 cl::desc("Enable abort calls when \"fast\" instruction selection "
120 "fails to lower an instruction: 0 disable the abort, 1 will "
121 "abort but for args, calls and terminators, 2 will also "
122 "abort for argument lowering, and 3 will never fallback "
123 "to SelectionDAG."));
125 static cl::opt<bool> EnableFastISelFallbackReport(
126 "fast-isel-report-on-fallback", cl::Hidden,
127 cl::desc("Emit a diagnostic when \"fast\" instruction selection "
128 "falls back to SelectionDAG."));
130 static cl::opt<bool>
131 UseMBPI("use-mbpi",
132 cl::desc("use Machine Branch Probability Info"),
133 cl::init(true), cl::Hidden);
135 #ifndef NDEBUG
136 static cl::opt<std::string>
137 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
138 cl::desc("Only display the basic block whose name "
139 "matches this for all view-*-dags options"));
140 static cl::opt<bool>
141 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
142 cl::desc("Pop up a window to show dags before the first "
143 "dag combine pass"));
144 static cl::opt<bool>
145 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
146 cl::desc("Pop up a window to show dags before legalize types"));
147 static cl::opt<bool>
148 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
149 cl::desc("Pop up a window to show dags before legalize"));
150 static cl::opt<bool>
151 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
152 cl::desc("Pop up a window to show dags before the second "
153 "dag combine pass"));
154 static cl::opt<bool>
155 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
156 cl::desc("Pop up a window to show dags before the post legalize types"
157 " dag combine pass"));
158 static cl::opt<bool>
159 ViewISelDAGs("view-isel-dags", cl::Hidden,
160 cl::desc("Pop up a window to show isel dags as they are selected"));
161 static cl::opt<bool>
162 ViewSchedDAGs("view-sched-dags", cl::Hidden,
163 cl::desc("Pop up a window to show sched dags as they are processed"));
164 static cl::opt<bool>
165 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
166 cl::desc("Pop up a window to show SUnit dags after they are processed"));
167 #else
168 static const bool ViewDAGCombine1 = false,
169 ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
170 ViewDAGCombine2 = false,
171 ViewDAGCombineLT = false,
172 ViewISelDAGs = false, ViewSchedDAGs = false,
173 ViewSUnitDAGs = false;
174 #endif
176 //===---------------------------------------------------------------------===//
178 /// RegisterScheduler class - Track the registration of instruction schedulers.
180 //===---------------------------------------------------------------------===//
181 MachinePassRegistry<RegisterScheduler::FunctionPassCtor>
182 RegisterScheduler::Registry;
184 //===---------------------------------------------------------------------===//
186 /// ISHeuristic command line option for instruction schedulers.
188 //===---------------------------------------------------------------------===//
189 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
190 RegisterPassParser<RegisterScheduler>>
191 ISHeuristic("pre-RA-sched",
192 cl::init(&createDefaultScheduler), cl::Hidden,
193 cl::desc("Instruction schedulers available (before register"
194 " allocation):"));
196 static RegisterScheduler
197 defaultListDAGScheduler("default", "Best scheduler for the target",
198 createDefaultScheduler);
200 namespace llvm {
202 //===--------------------------------------------------------------------===//
203 /// This class is used by SelectionDAGISel to temporarily override
204 /// the optimization level on a per-function basis.
205 class OptLevelChanger {
206 SelectionDAGISel &IS;
207 CodeGenOpt::Level SavedOptLevel;
208 bool SavedFastISel;
210 public:
211 OptLevelChanger(SelectionDAGISel &ISel,
212 CodeGenOpt::Level NewOptLevel) : IS(ISel) {
213 SavedOptLevel = IS.OptLevel;
214 if (NewOptLevel == SavedOptLevel)
215 return;
216 IS.OptLevel = NewOptLevel;
217 IS.TM.setOptLevel(NewOptLevel);
218 LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function "
219 << IS.MF->getFunction().getName() << "\n");
220 LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O"
221 << NewOptLevel << "\n");
222 SavedFastISel = IS.TM.Options.EnableFastISel;
223 if (NewOptLevel == CodeGenOpt::None) {
224 IS.TM.setFastISel(IS.TM.getO0WantsFastISel());
225 LLVM_DEBUG(
226 dbgs() << "\tFastISel is "
227 << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled")
228 << "\n");
232 ~OptLevelChanger() {
233 if (IS.OptLevel == SavedOptLevel)
234 return;
235 LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function "
236 << IS.MF->getFunction().getName() << "\n");
237 LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O"
238 << SavedOptLevel << "\n");
239 IS.OptLevel = SavedOptLevel;
240 IS.TM.setOptLevel(SavedOptLevel);
241 IS.TM.setFastISel(SavedFastISel);
245 //===--------------------------------------------------------------------===//
246 /// createDefaultScheduler - This creates an instruction scheduler appropriate
247 /// for the target.
248 ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
249 CodeGenOpt::Level OptLevel) {
250 const TargetLowering *TLI = IS->TLI;
251 const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
253 // Try first to see if the Target has its own way of selecting a scheduler
254 if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) {
255 return SchedulerCtor(IS, OptLevel);
258 if (OptLevel == CodeGenOpt::None ||
259 (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
260 TLI->getSchedulingPreference() == Sched::Source)
261 return createSourceListDAGScheduler(IS, OptLevel);
262 if (TLI->getSchedulingPreference() == Sched::RegPressure)
263 return createBURRListDAGScheduler(IS, OptLevel);
264 if (TLI->getSchedulingPreference() == Sched::Hybrid)
265 return createHybridListDAGScheduler(IS, OptLevel);
266 if (TLI->getSchedulingPreference() == Sched::VLIW)
267 return createVLIWDAGScheduler(IS, OptLevel);
268 assert(TLI->getSchedulingPreference() == Sched::ILP &&
269 "Unknown sched type!");
270 return createILPListDAGScheduler(IS, OptLevel);
273 } // end namespace llvm
275 // EmitInstrWithCustomInserter - This method should be implemented by targets
276 // that mark instructions with the 'usesCustomInserter' flag. These
277 // instructions are special in various ways, which require special support to
278 // insert. The specified MachineInstr is created but not inserted into any
279 // basic blocks, and this method is called to expand it into a sequence of
280 // instructions, potentially also creating new basic blocks and control flow.
281 // When new basic blocks are inserted and the edges from MBB to its successors
282 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
283 // DenseMap.
284 MachineBasicBlock *
285 TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
286 MachineBasicBlock *MBB) const {
287 #ifndef NDEBUG
288 dbgs() << "If a target marks an instruction with "
289 "'usesCustomInserter', it must implement "
290 "TargetLowering::EmitInstrWithCustomInserter!";
291 #endif
292 llvm_unreachable(nullptr);
295 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
296 SDNode *Node) const {
297 assert(!MI.hasPostISelHook() &&
298 "If a target marks an instruction with 'hasPostISelHook', "
299 "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
302 //===----------------------------------------------------------------------===//
303 // SelectionDAGISel code
304 //===----------------------------------------------------------------------===//
306 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm,
307 CodeGenOpt::Level OL) :
308 MachineFunctionPass(ID), TM(tm),
309 FuncInfo(new FunctionLoweringInfo()),
310 CurDAG(new SelectionDAG(tm, OL)),
311 SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
312 AA(), GFI(),
313 OptLevel(OL),
314 DAGSize(0) {
315 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
316 initializeBranchProbabilityInfoWrapperPassPass(
317 *PassRegistry::getPassRegistry());
318 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
319 initializeTargetLibraryInfoWrapperPassPass(
320 *PassRegistry::getPassRegistry());
323 SelectionDAGISel::~SelectionDAGISel() {
324 delete SDB;
325 delete CurDAG;
326 delete FuncInfo;
329 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
330 if (OptLevel != CodeGenOpt::None)
331 AU.addRequired<AAResultsWrapperPass>();
332 AU.addRequired<GCModuleInfo>();
333 AU.addRequired<StackProtector>();
334 AU.addPreserved<GCModuleInfo>();
335 AU.addRequired<TargetLibraryInfoWrapperPass>();
336 AU.addRequired<TargetTransformInfoWrapperPass>();
337 if (UseMBPI && OptLevel != CodeGenOpt::None)
338 AU.addRequired<BranchProbabilityInfoWrapperPass>();
339 MachineFunctionPass::getAnalysisUsage(AU);
342 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
343 /// may trap on it. In this case we have to split the edge so that the path
344 /// through the predecessor block that doesn't go to the phi block doesn't
345 /// execute the possibly trapping instruction. If available, we pass domtree
346 /// and loop info to be updated when we split critical edges. This is because
347 /// SelectionDAGISel preserves these analyses.
348 /// This is required for correctness, so it must be done at -O0.
350 static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT,
351 LoopInfo *LI) {
352 // Loop for blocks with phi nodes.
353 for (BasicBlock &BB : Fn) {
354 PHINode *PN = dyn_cast<PHINode>(BB.begin());
355 if (!PN) continue;
357 ReprocessBlock:
358 // For each block with a PHI node, check to see if any of the input values
359 // are potentially trapping constant expressions. Constant expressions are
360 // the only potentially trapping value that can occur as the argument to a
361 // PHI.
362 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I)
363 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
364 ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
365 if (!CE || !CE->canTrap()) continue;
367 // The only case we have to worry about is when the edge is critical.
368 // Since this block has a PHI Node, we assume it has multiple input
369 // edges: check to see if the pred has multiple successors.
370 BasicBlock *Pred = PN->getIncomingBlock(i);
371 if (Pred->getTerminator()->getNumSuccessors() == 1)
372 continue;
374 // Okay, we have to split this edge.
375 SplitCriticalEdge(
376 Pred->getTerminator(), GetSuccessorNumber(Pred, &BB),
377 CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges());
378 goto ReprocessBlock;
383 static void computeUsesMSVCFloatingPoint(const Triple &TT, const Function &F,
384 MachineModuleInfo &MMI) {
385 // Only needed for MSVC
386 if (!TT.isKnownWindowsMSVCEnvironment())
387 return;
389 // If it's already set, nothing to do.
390 if (MMI.usesMSVCFloatingPoint())
391 return;
393 for (const Instruction &I : instructions(F)) {
394 if (I.getType()->isFPOrFPVectorTy()) {
395 MMI.setUsesMSVCFloatingPoint(true);
396 return;
398 for (const auto &Op : I.operands()) {
399 if (Op->getType()->isFPOrFPVectorTy()) {
400 MMI.setUsesMSVCFloatingPoint(true);
401 return;
407 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
408 // If we already selected that function, we do not need to run SDISel.
409 if (mf.getProperties().hasProperty(
410 MachineFunctionProperties::Property::Selected))
411 return false;
412 // Do some sanity-checking on the command-line options.
413 assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
414 "-fast-isel-abort > 0 requires -fast-isel");
416 const Function &Fn = mf.getFunction();
417 MF = &mf;
419 // Reset the target options before resetting the optimization
420 // level below.
421 // FIXME: This is a horrible hack and should be processed via
422 // codegen looking at the optimization level explicitly when
423 // it wants to look at it.
424 TM.resetTargetOptions(Fn);
425 // Reset OptLevel to None for optnone functions.
426 CodeGenOpt::Level NewOptLevel = OptLevel;
427 if (OptLevel != CodeGenOpt::None && skipFunction(Fn))
428 NewOptLevel = CodeGenOpt::None;
429 OptLevelChanger OLC(*this, NewOptLevel);
431 TII = MF->getSubtarget().getInstrInfo();
432 TLI = MF->getSubtarget().getTargetLowering();
433 RegInfo = &MF->getRegInfo();
434 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
435 GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
436 ORE = make_unique<OptimizationRemarkEmitter>(&Fn);
437 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
438 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
439 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
440 LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
442 LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
444 SplitCriticalSideEffectEdges(const_cast<Function &>(Fn), DT, LI);
446 CurDAG->init(*MF, *ORE, this, LibInfo,
447 getAnalysisIfAvailable<LegacyDivergenceAnalysis>());
448 FuncInfo->set(Fn, *MF, CurDAG);
450 // Now get the optional analyzes if we want to.
451 // This is based on the possibly changed OptLevel (after optnone is taken
452 // into account). That's unfortunate but OK because it just means we won't
453 // ask for passes that have been required anyway.
455 if (UseMBPI && OptLevel != CodeGenOpt::None)
456 FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
457 else
458 FuncInfo->BPI = nullptr;
460 if (OptLevel != CodeGenOpt::None)
461 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
462 else
463 AA = nullptr;
465 SDB->init(GFI, AA, LibInfo);
467 MF->setHasInlineAsm(false);
469 FuncInfo->SplitCSR = false;
471 // We split CSR if the target supports it for the given function
472 // and the function has only return exits.
473 if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) {
474 FuncInfo->SplitCSR = true;
476 // Collect all the return blocks.
477 for (const BasicBlock &BB : Fn) {
478 if (!succ_empty(&BB))
479 continue;
481 const Instruction *Term = BB.getTerminator();
482 if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term))
483 continue;
485 // Bail out if the exit block is not Return nor Unreachable.
486 FuncInfo->SplitCSR = false;
487 break;
491 MachineBasicBlock *EntryMBB = &MF->front();
492 if (FuncInfo->SplitCSR)
493 // This performs initialization so lowering for SplitCSR will be correct.
494 TLI->initializeSplitCSR(EntryMBB);
496 SelectAllBasicBlocks(Fn);
497 if (FastISelFailed && EnableFastISelFallbackReport) {
498 DiagnosticInfoISelFallback DiagFallback(Fn);
499 Fn.getContext().diagnose(DiagFallback);
502 // If the first basic block in the function has live ins that need to be
503 // copied into vregs, emit the copies into the top of the block before
504 // emitting the code for the block.
505 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
506 RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
508 // Insert copies in the entry block and the return blocks.
509 if (FuncInfo->SplitCSR) {
510 SmallVector<MachineBasicBlock*, 4> Returns;
511 // Collect all the return blocks.
512 for (MachineBasicBlock &MBB : mf) {
513 if (!MBB.succ_empty())
514 continue;
516 MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
517 if (Term != MBB.end() && Term->isReturn()) {
518 Returns.push_back(&MBB);
519 continue;
522 TLI->insertCopiesSplitCSR(EntryMBB, Returns);
525 DenseMap<unsigned, unsigned> LiveInMap;
526 if (!FuncInfo->ArgDbgValues.empty())
527 for (std::pair<unsigned, unsigned> LI : RegInfo->liveins())
528 if (LI.second)
529 LiveInMap.insert(LI);
531 // Insert DBG_VALUE instructions for function arguments to the entry block.
532 for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
533 MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
534 bool hasFI = MI->getOperand(0).isFI();
535 unsigned Reg =
536 hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
537 if (TargetRegisterInfo::isPhysicalRegister(Reg))
538 EntryMBB->insert(EntryMBB->begin(), MI);
539 else {
540 MachineInstr *Def = RegInfo->getVRegDef(Reg);
541 if (Def) {
542 MachineBasicBlock::iterator InsertPos = Def;
543 // FIXME: VR def may not be in entry block.
544 Def->getParent()->insert(std::next(InsertPos), MI);
545 } else
546 LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg"
547 << TargetRegisterInfo::virtReg2Index(Reg) << "\n");
550 // If Reg is live-in then update debug info to track its copy in a vreg.
551 DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
552 if (LDI != LiveInMap.end()) {
553 assert(!hasFI && "There's no handling of frame pointer updating here yet "
554 "- add if needed");
555 MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
556 MachineBasicBlock::iterator InsertPos = Def;
557 const MDNode *Variable = MI->getDebugVariable();
558 const MDNode *Expr = MI->getDebugExpression();
559 DebugLoc DL = MI->getDebugLoc();
560 bool IsIndirect = MI->isIndirectDebugValue();
561 if (IsIndirect)
562 assert(MI->getOperand(1).getImm() == 0 &&
563 "DBG_VALUE with nonzero offset");
564 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
565 "Expected inlined-at fields to agree");
566 // Def is never a terminator here, so it is ok to increment InsertPos.
567 BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
568 IsIndirect, LDI->second, Variable, Expr);
570 // If this vreg is directly copied into an exported register then
571 // that COPY instructions also need DBG_VALUE, if it is the only
572 // user of LDI->second.
573 MachineInstr *CopyUseMI = nullptr;
574 for (MachineRegisterInfo::use_instr_iterator
575 UI = RegInfo->use_instr_begin(LDI->second),
576 E = RegInfo->use_instr_end(); UI != E; ) {
577 MachineInstr *UseMI = &*(UI++);
578 if (UseMI->isDebugValue()) continue;
579 if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
580 CopyUseMI = UseMI; continue;
582 // Otherwise this is another use or second copy use.
583 CopyUseMI = nullptr; break;
585 if (CopyUseMI) {
586 // Use MI's debug location, which describes where Variable was
587 // declared, rather than whatever is attached to CopyUseMI.
588 MachineInstr *NewMI =
589 BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
590 CopyUseMI->getOperand(0).getReg(), Variable, Expr);
591 MachineBasicBlock::iterator Pos = CopyUseMI;
592 EntryMBB->insertAfter(Pos, NewMI);
597 // Determine if there are any calls in this machine function.
598 MachineFrameInfo &MFI = MF->getFrameInfo();
599 for (const auto &MBB : *MF) {
600 if (MFI.hasCalls() && MF->hasInlineAsm())
601 break;
603 for (const auto &MI : MBB) {
604 const MCInstrDesc &MCID = TII->get(MI.getOpcode());
605 if ((MCID.isCall() && !MCID.isReturn()) ||
606 MI.isStackAligningInlineAsm()) {
607 MFI.setHasCalls(true);
609 if (MI.isInlineAsm()) {
610 MF->setHasInlineAsm(true);
615 // Determine if there is a call to setjmp in the machine function.
616 MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
618 // Determine if floating point is used for msvc
619 computeUsesMSVCFloatingPoint(TM.getTargetTriple(), Fn, MF->getMMI());
621 // Replace forward-declared registers with the registers containing
622 // the desired value.
623 MachineRegisterInfo &MRI = MF->getRegInfo();
624 for (DenseMap<unsigned, unsigned>::iterator
625 I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
626 I != E; ++I) {
627 unsigned From = I->first;
628 unsigned To = I->second;
629 // If To is also scheduled to be replaced, find what its ultimate
630 // replacement is.
631 while (true) {
632 DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
633 if (J == E) break;
634 To = J->second;
636 // Make sure the new register has a sufficiently constrained register class.
637 if (TargetRegisterInfo::isVirtualRegister(From) &&
638 TargetRegisterInfo::isVirtualRegister(To))
639 MRI.constrainRegClass(To, MRI.getRegClass(From));
640 // Replace it.
643 // Replacing one register with another won't touch the kill flags.
644 // We need to conservatively clear the kill flags as a kill on the old
645 // register might dominate existing uses of the new register.
646 if (!MRI.use_empty(To))
647 MRI.clearKillFlags(From);
648 MRI.replaceRegWith(From, To);
651 TLI->finalizeLowering(*MF);
653 // Release function-specific state. SDB and CurDAG are already cleared
654 // at this point.
655 FuncInfo->clear();
657 LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
658 LLVM_DEBUG(MF->print(dbgs()));
660 return true;
663 static void reportFastISelFailure(MachineFunction &MF,
664 OptimizationRemarkEmitter &ORE,
665 OptimizationRemarkMissed &R,
666 bool ShouldAbort) {
667 // Print the function name explicitly if we don't have a debug location (which
668 // makes the diagnostic less useful) or if we're going to emit a raw error.
669 if (!R.getLocation().isValid() || ShouldAbort)
670 R << (" (in function: " + MF.getName() + ")").str();
672 if (ShouldAbort)
673 report_fatal_error(R.getMsg());
675 ORE.emit(R);
678 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
679 BasicBlock::const_iterator End,
680 bool &HadTailCall) {
681 // Allow creating illegal types during DAG building for the basic block.
682 CurDAG->NewNodesMustHaveLegalTypes = false;
684 // Lower the instructions. If a call is emitted as a tail call, cease emitting
685 // nodes for this block.
686 for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
687 if (!ElidedArgCopyInstrs.count(&*I))
688 SDB->visit(*I);
691 // Make sure the root of the DAG is up-to-date.
692 CurDAG->setRoot(SDB->getControlRoot());
693 HadTailCall = SDB->HasTailCall;
694 SDB->resolveOrClearDbgInfo();
695 SDB->clear();
697 // Final step, emit the lowered DAG as machine code.
698 CodeGenAndEmitDAG();
701 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
702 SmallPtrSet<SDNode*, 16> VisitedNodes;
703 SmallVector<SDNode*, 128> Worklist;
705 Worklist.push_back(CurDAG->getRoot().getNode());
707 KnownBits Known;
709 do {
710 SDNode *N = Worklist.pop_back_val();
712 // If we've already seen this node, ignore it.
713 if (!VisitedNodes.insert(N).second)
714 continue;
716 // Otherwise, add all chain operands to the worklist.
717 for (const SDValue &Op : N->op_values())
718 if (Op.getValueType() == MVT::Other)
719 Worklist.push_back(Op.getNode());
721 // If this is a CopyToReg with a vreg dest, process it.
722 if (N->getOpcode() != ISD::CopyToReg)
723 continue;
725 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
726 if (!TargetRegisterInfo::isVirtualRegister(DestReg))
727 continue;
729 // Ignore non-integer values.
730 SDValue Src = N->getOperand(2);
731 EVT SrcVT = Src.getValueType();
732 if (!SrcVT.isInteger())
733 continue;
735 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
736 Known = CurDAG->computeKnownBits(Src);
737 FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known);
738 } while (!Worklist.empty());
741 void SelectionDAGISel::CodeGenAndEmitDAG() {
742 StringRef GroupName = "sdag";
743 StringRef GroupDescription = "Instruction Selection and Scheduling";
744 std::string BlockName;
745 int BlockNumber = -1;
746 (void)BlockNumber;
747 bool MatchFilterBB = false; (void)MatchFilterBB;
748 #ifndef NDEBUG
749 TargetTransformInfo &TTI =
750 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn);
751 #endif
753 // Pre-type legalization allow creation of any node types.
754 CurDAG->NewNodesMustHaveLegalTypes = false;
756 #ifndef NDEBUG
757 MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
758 FilterDAGBasicBlockName ==
759 FuncInfo->MBB->getBasicBlock()->getName());
760 #endif
761 #ifdef NDEBUG
762 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
763 ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
764 ViewSUnitDAGs)
765 #endif
767 BlockNumber = FuncInfo->MBB->getNumber();
768 BlockName =
769 (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
771 LLVM_DEBUG(dbgs() << "Initial selection DAG: "
772 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
773 << "'\n";
774 CurDAG->dump());
776 if (ViewDAGCombine1 && MatchFilterBB)
777 CurDAG->viewGraph("dag-combine1 input for " + BlockName);
779 // Run the DAG combiner in pre-legalize mode.
781 NamedRegionTimer T("combine1", "DAG Combining 1", GroupName,
782 GroupDescription, TimePassesIsEnabled);
783 CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel);
786 #ifndef NDEBUG
787 if (TTI.hasBranchDivergence())
788 CurDAG->VerifyDAGDiverence();
789 #endif
791 LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: "
792 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
793 << "'\n";
794 CurDAG->dump());
796 // Second step, hack on the DAG until it only uses operations and types that
797 // the target supports.
798 if (ViewLegalizeTypesDAGs && MatchFilterBB)
799 CurDAG->viewGraph("legalize-types input for " + BlockName);
801 bool Changed;
803 NamedRegionTimer T("legalize_types", "Type Legalization", GroupName,
804 GroupDescription, TimePassesIsEnabled);
805 Changed = CurDAG->LegalizeTypes();
808 #ifndef NDEBUG
809 if (TTI.hasBranchDivergence())
810 CurDAG->VerifyDAGDiverence();
811 #endif
813 LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: "
814 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
815 << "'\n";
816 CurDAG->dump());
818 // Only allow creation of legal node types.
819 CurDAG->NewNodesMustHaveLegalTypes = true;
821 if (Changed) {
822 if (ViewDAGCombineLT && MatchFilterBB)
823 CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
825 // Run the DAG combiner in post-type-legalize mode.
827 NamedRegionTimer T("combine_lt", "DAG Combining after legalize types",
828 GroupName, GroupDescription, TimePassesIsEnabled);
829 CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel);
832 #ifndef NDEBUG
833 if (TTI.hasBranchDivergence())
834 CurDAG->VerifyDAGDiverence();
835 #endif
837 LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: "
838 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
839 << "'\n";
840 CurDAG->dump());
844 NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName,
845 GroupDescription, TimePassesIsEnabled);
846 Changed = CurDAG->LegalizeVectors();
849 if (Changed) {
850 LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: "
851 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
852 << "'\n";
853 CurDAG->dump());
856 NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName,
857 GroupDescription, TimePassesIsEnabled);
858 CurDAG->LegalizeTypes();
861 LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: "
862 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
863 << "'\n";
864 CurDAG->dump());
866 if (ViewDAGCombineLT && MatchFilterBB)
867 CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
869 // Run the DAG combiner in post-type-legalize mode.
871 NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors",
872 GroupName, GroupDescription, TimePassesIsEnabled);
873 CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel);
876 LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: "
877 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
878 << "'\n";
879 CurDAG->dump());
881 #ifndef NDEBUG
882 if (TTI.hasBranchDivergence())
883 CurDAG->VerifyDAGDiverence();
884 #endif
887 if (ViewLegalizeDAGs && MatchFilterBB)
888 CurDAG->viewGraph("legalize input for " + BlockName);
891 NamedRegionTimer T("legalize", "DAG Legalization", GroupName,
892 GroupDescription, TimePassesIsEnabled);
893 CurDAG->Legalize();
896 #ifndef NDEBUG
897 if (TTI.hasBranchDivergence())
898 CurDAG->VerifyDAGDiverence();
899 #endif
901 LLVM_DEBUG(dbgs() << "Legalized selection DAG: "
902 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
903 << "'\n";
904 CurDAG->dump());
906 if (ViewDAGCombine2 && MatchFilterBB)
907 CurDAG->viewGraph("dag-combine2 input for " + BlockName);
909 // Run the DAG combiner in post-legalize mode.
911 NamedRegionTimer T("combine2", "DAG Combining 2", GroupName,
912 GroupDescription, TimePassesIsEnabled);
913 CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel);
916 #ifndef NDEBUG
917 if (TTI.hasBranchDivergence())
918 CurDAG->VerifyDAGDiverence();
919 #endif
921 LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: "
922 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
923 << "'\n";
924 CurDAG->dump());
926 if (OptLevel != CodeGenOpt::None)
927 ComputeLiveOutVRegInfo();
929 if (ViewISelDAGs && MatchFilterBB)
930 CurDAG->viewGraph("isel input for " + BlockName);
932 // Third, instruction select all of the operations to machine code, adding the
933 // code to the MachineBasicBlock.
935 NamedRegionTimer T("isel", "Instruction Selection", GroupName,
936 GroupDescription, TimePassesIsEnabled);
937 DoInstructionSelection();
940 LLVM_DEBUG(dbgs() << "Selected selection DAG: "
941 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
942 << "'\n";
943 CurDAG->dump());
945 if (ViewSchedDAGs && MatchFilterBB)
946 CurDAG->viewGraph("scheduler input for " + BlockName);
948 // Schedule machine code.
949 ScheduleDAGSDNodes *Scheduler = CreateScheduler();
951 NamedRegionTimer T("sched", "Instruction Scheduling", GroupName,
952 GroupDescription, TimePassesIsEnabled);
953 Scheduler->Run(CurDAG, FuncInfo->MBB);
956 if (ViewSUnitDAGs && MatchFilterBB)
957 Scheduler->viewGraph();
959 // Emit machine code to BB. This can change 'BB' to the last block being
960 // inserted into.
961 MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
963 NamedRegionTimer T("emit", "Instruction Creation", GroupName,
964 GroupDescription, TimePassesIsEnabled);
966 // FuncInfo->InsertPt is passed by reference and set to the end of the
967 // scheduled instructions.
968 LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
971 // If the block was split, make sure we update any references that are used to
972 // update PHI nodes later on.
973 if (FirstMBB != LastMBB)
974 SDB->UpdateSplitBlock(FirstMBB, LastMBB);
976 // Free the scheduler state.
978 NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName,
979 GroupDescription, TimePassesIsEnabled);
980 delete Scheduler;
983 // Free the SelectionDAG state, now that we're finished with it.
984 CurDAG->clear();
987 namespace {
989 /// ISelUpdater - helper class to handle updates of the instruction selection
990 /// graph.
991 class ISelUpdater : public SelectionDAG::DAGUpdateListener {
992 SelectionDAG::allnodes_iterator &ISelPosition;
994 public:
995 ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
996 : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
998 /// NodeDeleted - Handle nodes deleted from the graph. If the node being
999 /// deleted is the current ISelPosition node, update ISelPosition.
1001 void NodeDeleted(SDNode *N, SDNode *E) override {
1002 if (ISelPosition == SelectionDAG::allnodes_iterator(N))
1003 ++ISelPosition;
1007 } // end anonymous namespace
1009 // This function is used to enforce the topological node id property
1010 // property leveraged during Instruction selection. Before selection all
1011 // nodes are given a non-negative id such that all nodes have a larger id than
1012 // their operands. As this holds transitively we can prune checks that a node N
1013 // is a predecessor of M another by not recursively checking through M's
1014 // operands if N's ID is larger than M's ID. This is significantly improves
1015 // performance of for various legality checks (e.g. IsLegalToFold /
1016 // UpdateChains).
1018 // However, when we fuse multiple nodes into a single node
1019 // during selection we may induce a predecessor relationship between inputs and
1020 // outputs of distinct nodes being merged violating the topological property.
1021 // Should a fused node have a successor which has yet to be selected, our
1022 // legality checks would be incorrect. To avoid this we mark all unselected
1023 // sucessor nodes, i.e. id != -1 as invalid for pruning by bit-negating (x =>
1024 // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M.
1025 // We use bit-negation to more clearly enforce that node id -1 can only be
1026 // achieved by selected nodes). As the conversion is reversable the original Id,
1027 // topological pruning can still be leveraged when looking for unselected nodes.
1028 // This method is call internally in all ISel replacement calls.
1029 void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) {
1030 SmallVector<SDNode *, 4> Nodes;
1031 Nodes.push_back(Node);
1033 while (!Nodes.empty()) {
1034 SDNode *N = Nodes.pop_back_val();
1035 for (auto *U : N->uses()) {
1036 auto UId = U->getNodeId();
1037 if (UId > 0) {
1038 InvalidateNodeId(U);
1039 Nodes.push_back(U);
1045 // InvalidateNodeId - As discusses in EnforceNodeIdInvariant, mark a
1046 // NodeId with the equivalent node id which is invalid for topological
1047 // pruning.
1048 void SelectionDAGISel::InvalidateNodeId(SDNode *N) {
1049 int InvalidId = -(N->getNodeId() + 1);
1050 N->setNodeId(InvalidId);
1053 // getUninvalidatedNodeId - get original uninvalidated node id.
1054 int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) {
1055 int Id = N->getNodeId();
1056 if (Id < -1)
1057 return -(Id + 1);
1058 return Id;
1061 void SelectionDAGISel::DoInstructionSelection() {
1062 LLVM_DEBUG(dbgs() << "===== Instruction selection begins: "
1063 << printMBBReference(*FuncInfo->MBB) << " '"
1064 << FuncInfo->MBB->getName() << "'\n");
1066 PreprocessISelDAG();
1068 // Select target instructions for the DAG.
1070 // Number all nodes with a topological order and set DAGSize.
1071 DAGSize = CurDAG->AssignTopologicalOrder();
1073 // Create a dummy node (which is not added to allnodes), that adds
1074 // a reference to the root node, preventing it from being deleted,
1075 // and tracking any changes of the root.
1076 HandleSDNode Dummy(CurDAG->getRoot());
1077 SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
1078 ++ISelPosition;
1080 // Make sure that ISelPosition gets properly updated when nodes are deleted
1081 // in calls made from this function.
1082 ISelUpdater ISU(*CurDAG, ISelPosition);
1084 // The AllNodes list is now topological-sorted. Visit the
1085 // nodes by starting at the end of the list (the root of the
1086 // graph) and preceding back toward the beginning (the entry
1087 // node).
1088 while (ISelPosition != CurDAG->allnodes_begin()) {
1089 SDNode *Node = &*--ISelPosition;
1090 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
1091 // but there are currently some corner cases that it misses. Also, this
1092 // makes it theoretically possible to disable the DAGCombiner.
1093 if (Node->use_empty())
1094 continue;
1096 #ifndef NDEBUG
1097 SmallVector<SDNode *, 4> Nodes;
1098 Nodes.push_back(Node);
1100 while (!Nodes.empty()) {
1101 auto N = Nodes.pop_back_val();
1102 if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0)
1103 continue;
1104 for (const SDValue &Op : N->op_values()) {
1105 if (Op->getOpcode() == ISD::TokenFactor)
1106 Nodes.push_back(Op.getNode());
1107 else {
1108 // We rely on topological ordering of node ids for checking for
1109 // cycles when fusing nodes during selection. All unselected nodes
1110 // successors of an already selected node should have a negative id.
1111 // This assertion will catch such cases. If this assertion triggers
1112 // it is likely you using DAG-level Value/Node replacement functions
1113 // (versus equivalent ISEL replacement) in backend-specific
1114 // selections. See comment in EnforceNodeIdInvariant for more
1115 // details.
1116 assert(Op->getNodeId() != -1 &&
1117 "Node has already selected predecessor node");
1121 #endif
1123 // When we are using non-default rounding modes or FP exception behavior
1124 // FP operations are represented by StrictFP pseudo-operations. They
1125 // need to be simplified here so that the target-specific instruction
1126 // selectors know how to handle them.
1128 // If the current node is a strict FP pseudo-op, the isStrictFPOp()
1129 // function will provide the corresponding normal FP opcode to which the
1130 // node should be mutated.
1132 // FIXME: The backends need a way to handle FP constraints.
1133 if (Node->isStrictFPOpcode())
1134 Node = CurDAG->mutateStrictFPToFP(Node);
1136 LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: ";
1137 Node->dump(CurDAG));
1139 Select(Node);
1142 CurDAG->setRoot(Dummy.getValue());
1145 LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n");
1147 PostprocessISelDAG();
1150 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) {
1151 for (const User *U : CPI->users()) {
1152 if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) {
1153 Intrinsic::ID IID = EHPtrCall->getIntrinsicID();
1154 if (IID == Intrinsic::eh_exceptionpointer ||
1155 IID == Intrinsic::eh_exceptioncode)
1156 return true;
1159 return false;
1162 // wasm.landingpad.index intrinsic is for associating a landing pad index number
1163 // with a catchpad instruction. Retrieve the landing pad index in the intrinsic
1164 // and store the mapping in the function.
1165 static void mapWasmLandingPadIndex(MachineBasicBlock *MBB,
1166 const CatchPadInst *CPI) {
1167 MachineFunction *MF = MBB->getParent();
1168 // In case of single catch (...), we don't emit LSDA, so we don't need
1169 // this information.
1170 bool IsSingleCatchAllClause =
1171 CPI->getNumArgOperands() == 1 &&
1172 cast<Constant>(CPI->getArgOperand(0))->isNullValue();
1173 if (!IsSingleCatchAllClause) {
1174 // Create a mapping from landing pad label to landing pad index.
1175 bool IntrFound = false;
1176 for (const User *U : CPI->users()) {
1177 if (const auto *Call = dyn_cast<IntrinsicInst>(U)) {
1178 Intrinsic::ID IID = Call->getIntrinsicID();
1179 if (IID == Intrinsic::wasm_landingpad_index) {
1180 Value *IndexArg = Call->getArgOperand(1);
1181 int Index = cast<ConstantInt>(IndexArg)->getZExtValue();
1182 MF->setWasmLandingPadIndex(MBB, Index);
1183 IntrFound = true;
1184 break;
1188 assert(IntrFound && "wasm.landingpad.index intrinsic not found!");
1189 (void)IntrFound;
1193 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
1194 /// do other setup for EH landing-pad blocks.
1195 bool SelectionDAGISel::PrepareEHLandingPad() {
1196 MachineBasicBlock *MBB = FuncInfo->MBB;
1197 const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn();
1198 const BasicBlock *LLVMBB = MBB->getBasicBlock();
1199 const TargetRegisterClass *PtrRC =
1200 TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout()));
1202 auto Pers = classifyEHPersonality(PersonalityFn);
1204 // Catchpads have one live-in register, which typically holds the exception
1205 // pointer or code.
1206 if (isFuncletEHPersonality(Pers)) {
1207 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) {
1208 if (hasExceptionPointerOrCodeUser(CPI)) {
1209 // Get or create the virtual register to hold the pointer or code. Mark
1210 // the live in physreg and copy into the vreg.
1211 MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn);
1212 assert(EHPhysReg && "target lacks exception pointer register");
1213 MBB->addLiveIn(EHPhysReg);
1214 unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC);
1215 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
1216 TII->get(TargetOpcode::COPY), VReg)
1217 .addReg(EHPhysReg, RegState::Kill);
1220 return true;
1223 // Add a label to mark the beginning of the landing pad. Deletion of the
1224 // landing pad can thus be detected via the MachineModuleInfo.
1225 MCSymbol *Label = MF->addLandingPad(MBB);
1227 const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
1228 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
1229 .addSym(Label);
1231 if (Pers == EHPersonality::Wasm_CXX) {
1232 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI()))
1233 mapWasmLandingPadIndex(MBB, CPI);
1234 } else {
1235 // Assign the call site to the landing pad's begin label.
1236 MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
1237 // Mark exception register as live in.
1238 if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn))
1239 FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
1240 // Mark exception selector register as live in.
1241 if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn))
1242 FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
1245 return true;
1248 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
1249 /// side-effect free and is either dead or folded into a generated instruction.
1250 /// Return false if it needs to be emitted.
1251 static bool isFoldedOrDeadInstruction(const Instruction *I,
1252 FunctionLoweringInfo *FuncInfo) {
1253 return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
1254 !I->isTerminator() && // Terminators aren't folded.
1255 !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded.
1256 !I->isEHPad() && // EH pad instructions aren't folded.
1257 !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
1260 /// Set up SwiftErrorVals by going through the function. If the function has
1261 /// swifterror argument, it will be the first entry.
1262 static void setupSwiftErrorVals(const Function &Fn, const TargetLowering *TLI,
1263 FunctionLoweringInfo *FuncInfo) {
1264 if (!TLI->supportSwiftError())
1265 return;
1267 FuncInfo->SwiftErrorVals.clear();
1268 FuncInfo->SwiftErrorVRegDefMap.clear();
1269 FuncInfo->SwiftErrorVRegUpwardsUse.clear();
1270 FuncInfo->SwiftErrorVRegDefUses.clear();
1271 FuncInfo->SwiftErrorArg = nullptr;
1273 // Check if function has a swifterror argument.
1274 bool HaveSeenSwiftErrorArg = false;
1275 for (Function::const_arg_iterator AI = Fn.arg_begin(), AE = Fn.arg_end();
1276 AI != AE; ++AI)
1277 if (AI->hasSwiftErrorAttr()) {
1278 assert(!HaveSeenSwiftErrorArg &&
1279 "Must have only one swifterror parameter");
1280 (void)HaveSeenSwiftErrorArg; // silence warning.
1281 HaveSeenSwiftErrorArg = true;
1282 FuncInfo->SwiftErrorArg = &*AI;
1283 FuncInfo->SwiftErrorVals.push_back(&*AI);
1286 for (const auto &LLVMBB : Fn)
1287 for (const auto &Inst : LLVMBB) {
1288 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(&Inst))
1289 if (Alloca->isSwiftError())
1290 FuncInfo->SwiftErrorVals.push_back(Alloca);
1294 static void createSwiftErrorEntriesInEntryBlock(FunctionLoweringInfo *FuncInfo,
1295 FastISel *FastIS,
1296 const TargetLowering *TLI,
1297 const TargetInstrInfo *TII,
1298 SelectionDAGBuilder *SDB) {
1299 if (!TLI->supportSwiftError())
1300 return;
1302 // We only need to do this when we have swifterror parameter or swifterror
1303 // alloc.
1304 if (FuncInfo->SwiftErrorVals.empty())
1305 return;
1307 assert(FuncInfo->MBB == &*FuncInfo->MF->begin() &&
1308 "expected to insert into entry block");
1309 auto &DL = FuncInfo->MF->getDataLayout();
1310 auto const *RC = TLI->getRegClassFor(TLI->getPointerTy(DL));
1311 for (const auto *SwiftErrorVal : FuncInfo->SwiftErrorVals) {
1312 // We will always generate a copy from the argument. It is always used at
1313 // least by the 'return' of the swifterror.
1314 if (FuncInfo->SwiftErrorArg && FuncInfo->SwiftErrorArg == SwiftErrorVal)
1315 continue;
1316 unsigned VReg = FuncInfo->MF->getRegInfo().createVirtualRegister(RC);
1317 // Assign Undef to Vreg. We construct MI directly to make sure it works
1318 // with FastISel.
1319 BuildMI(*FuncInfo->MBB, FuncInfo->MBB->getFirstNonPHI(),
1320 SDB->getCurDebugLoc(), TII->get(TargetOpcode::IMPLICIT_DEF),
1321 VReg);
1323 // Keep FastIS informed about the value we just inserted.
1324 if (FastIS)
1325 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1327 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, SwiftErrorVal, VReg);
1331 /// Collect llvm.dbg.declare information. This is done after argument lowering
1332 /// in case the declarations refer to arguments.
1333 static void processDbgDeclares(FunctionLoweringInfo *FuncInfo) {
1334 MachineFunction *MF = FuncInfo->MF;
1335 const DataLayout &DL = MF->getDataLayout();
1336 for (const BasicBlock &BB : *FuncInfo->Fn) {
1337 for (const Instruction &I : BB) {
1338 const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I);
1339 if (!DI)
1340 continue;
1342 assert(DI->getVariable() && "Missing variable");
1343 assert(DI->getDebugLoc() && "Missing location");
1344 const Value *Address = DI->getAddress();
1345 if (!Address)
1346 continue;
1348 // Look through casts and constant offset GEPs. These mostly come from
1349 // inalloca.
1350 APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0);
1351 Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
1353 // Check if the variable is a static alloca or a byval or inalloca
1354 // argument passed in memory. If it is not, then we will ignore this
1355 // intrinsic and handle this during isel like dbg.value.
1356 int FI = std::numeric_limits<int>::max();
1357 if (const auto *AI = dyn_cast<AllocaInst>(Address)) {
1358 auto SI = FuncInfo->StaticAllocaMap.find(AI);
1359 if (SI != FuncInfo->StaticAllocaMap.end())
1360 FI = SI->second;
1361 } else if (const auto *Arg = dyn_cast<Argument>(Address))
1362 FI = FuncInfo->getArgumentFrameIndex(Arg);
1364 if (FI == std::numeric_limits<int>::max())
1365 continue;
1367 DIExpression *Expr = DI->getExpression();
1368 if (Offset.getBoolValue())
1369 Expr = DIExpression::prepend(Expr, DIExpression::NoDeref,
1370 Offset.getZExtValue());
1371 MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc());
1376 /// Propagate swifterror values through the machine function CFG.
1377 static void propagateSwiftErrorVRegs(FunctionLoweringInfo *FuncInfo) {
1378 auto *TLI = FuncInfo->TLI;
1379 if (!TLI->supportSwiftError())
1380 return;
1382 // We only need to do this when we have swifterror parameter or swifterror
1383 // alloc.
1384 if (FuncInfo->SwiftErrorVals.empty())
1385 return;
1387 // For each machine basic block in reverse post order.
1388 ReversePostOrderTraversal<MachineFunction *> RPOT(FuncInfo->MF);
1389 for (MachineBasicBlock *MBB : RPOT) {
1390 // For each swifterror value in the function.
1391 for(const auto *SwiftErrorVal : FuncInfo->SwiftErrorVals) {
1392 auto Key = std::make_pair(MBB, SwiftErrorVal);
1393 auto UUseIt = FuncInfo->SwiftErrorVRegUpwardsUse.find(Key);
1394 auto VRegDefIt = FuncInfo->SwiftErrorVRegDefMap.find(Key);
1395 bool UpwardsUse = UUseIt != FuncInfo->SwiftErrorVRegUpwardsUse.end();
1396 unsigned UUseVReg = UpwardsUse ? UUseIt->second : 0;
1397 bool DownwardDef = VRegDefIt != FuncInfo->SwiftErrorVRegDefMap.end();
1398 assert(!(UpwardsUse && !DownwardDef) &&
1399 "We can't have an upwards use but no downwards def");
1401 // If there is no upwards exposed use and an entry for the swifterror in
1402 // the def map for this value we don't need to do anything: We already
1403 // have a downward def for this basic block.
1404 if (!UpwardsUse && DownwardDef)
1405 continue;
1407 // Otherwise we either have an upwards exposed use vreg that we need to
1408 // materialize or need to forward the downward def from predecessors.
1410 // Check whether we have a single vreg def from all predecessors.
1411 // Otherwise we need a phi.
1412 SmallVector<std::pair<MachineBasicBlock *, unsigned>, 4> VRegs;
1413 SmallSet<const MachineBasicBlock*, 8> Visited;
1414 for (auto *Pred : MBB->predecessors()) {
1415 if (!Visited.insert(Pred).second)
1416 continue;
1417 VRegs.push_back(std::make_pair(
1418 Pred, FuncInfo->getOrCreateSwiftErrorVReg(Pred, SwiftErrorVal)));
1419 if (Pred != MBB)
1420 continue;
1421 // We have a self-edge.
1422 // If there was no upwards use in this basic block there is now one: the
1423 // phi needs to use it self.
1424 if (!UpwardsUse) {
1425 UpwardsUse = true;
1426 UUseIt = FuncInfo->SwiftErrorVRegUpwardsUse.find(Key);
1427 assert(UUseIt != FuncInfo->SwiftErrorVRegUpwardsUse.end());
1428 UUseVReg = UUseIt->second;
1432 // We need a phi node if we have more than one predecessor with different
1433 // downward defs.
1434 bool needPHI =
1435 VRegs.size() >= 1 &&
1436 std::find_if(
1437 VRegs.begin(), VRegs.end(),
1438 [&](const std::pair<const MachineBasicBlock *, unsigned> &V)
1439 -> bool { return V.second != VRegs[0].second; }) !=
1440 VRegs.end();
1442 // If there is no upwards exposed used and we don't need a phi just
1443 // forward the swifterror vreg from the predecessor(s).
1444 if (!UpwardsUse && !needPHI) {
1445 assert(!VRegs.empty() &&
1446 "No predecessors? The entry block should bail out earlier");
1447 // Just forward the swifterror vreg from the predecessor(s).
1448 FuncInfo->setCurrentSwiftErrorVReg(MBB, SwiftErrorVal, VRegs[0].second);
1449 continue;
1452 auto DLoc = isa<Instruction>(SwiftErrorVal)
1453 ? cast<Instruction>(SwiftErrorVal)->getDebugLoc()
1454 : DebugLoc();
1455 const auto *TII = FuncInfo->MF->getSubtarget().getInstrInfo();
1457 // If we don't need a phi create a copy to the upward exposed vreg.
1458 if (!needPHI) {
1459 assert(UpwardsUse);
1460 assert(!VRegs.empty() &&
1461 "No predecessors? Is the Calling Convention correct?");
1462 unsigned DestReg = UUseVReg;
1463 BuildMI(*MBB, MBB->getFirstNonPHI(), DLoc, TII->get(TargetOpcode::COPY),
1464 DestReg)
1465 .addReg(VRegs[0].second);
1466 continue;
1469 // We need a phi: if there is an upwards exposed use we already have a
1470 // destination virtual register number otherwise we generate a new one.
1471 auto &DL = FuncInfo->MF->getDataLayout();
1472 auto const *RC = TLI->getRegClassFor(TLI->getPointerTy(DL));
1473 unsigned PHIVReg =
1474 UpwardsUse ? UUseVReg
1475 : FuncInfo->MF->getRegInfo().createVirtualRegister(RC);
1476 MachineInstrBuilder SwiftErrorPHI =
1477 BuildMI(*MBB, MBB->getFirstNonPHI(), DLoc,
1478 TII->get(TargetOpcode::PHI), PHIVReg);
1479 for (auto BBRegPair : VRegs) {
1480 SwiftErrorPHI.addReg(BBRegPair.second).addMBB(BBRegPair.first);
1483 // We did not have a definition in this block before: store the phi's vreg
1484 // as this block downward exposed def.
1485 if (!UpwardsUse)
1486 FuncInfo->setCurrentSwiftErrorVReg(MBB, SwiftErrorVal, PHIVReg);
1491 static void preassignSwiftErrorRegs(const TargetLowering *TLI,
1492 FunctionLoweringInfo *FuncInfo,
1493 BasicBlock::const_iterator Begin,
1494 BasicBlock::const_iterator End) {
1495 if (!TLI->supportSwiftError() || FuncInfo->SwiftErrorVals.empty())
1496 return;
1498 // Iterator over instructions and assign vregs to swifterror defs and uses.
1499 for (auto It = Begin; It != End; ++It) {
1500 ImmutableCallSite CS(&*It);
1501 if (CS) {
1502 // A call-site with a swifterror argument is both use and def.
1503 const Value *SwiftErrorAddr = nullptr;
1504 for (auto &Arg : CS.args()) {
1505 if (!Arg->isSwiftError())
1506 continue;
1507 // Use of swifterror.
1508 assert(!SwiftErrorAddr && "Cannot have multiple swifterror arguments");
1509 SwiftErrorAddr = &*Arg;
1510 assert(SwiftErrorAddr->isSwiftError() &&
1511 "Must have a swifterror value argument");
1512 unsigned VReg; bool CreatedReg;
1513 std::tie(VReg, CreatedReg) = FuncInfo->getOrCreateSwiftErrorVRegUseAt(
1514 &*It, FuncInfo->MBB, SwiftErrorAddr);
1515 assert(CreatedReg);
1517 if (!SwiftErrorAddr)
1518 continue;
1520 // Def of swifterror.
1521 unsigned VReg; bool CreatedReg;
1522 std::tie(VReg, CreatedReg) =
1523 FuncInfo->getOrCreateSwiftErrorVRegDefAt(&*It);
1524 assert(CreatedReg);
1525 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, SwiftErrorAddr, VReg);
1527 // A load is a use.
1528 } else if (const LoadInst *LI = dyn_cast<const LoadInst>(&*It)) {
1529 const Value *V = LI->getOperand(0);
1530 if (!V->isSwiftError())
1531 continue;
1533 unsigned VReg; bool CreatedReg;
1534 std::tie(VReg, CreatedReg) =
1535 FuncInfo->getOrCreateSwiftErrorVRegUseAt(LI, FuncInfo->MBB, V);
1536 assert(CreatedReg);
1538 // A store is a def.
1539 } else if (const StoreInst *SI = dyn_cast<const StoreInst>(&*It)) {
1540 const Value *SwiftErrorAddr = SI->getOperand(1);
1541 if (!SwiftErrorAddr->isSwiftError())
1542 continue;
1544 // Def of swifterror.
1545 unsigned VReg; bool CreatedReg;
1546 std::tie(VReg, CreatedReg) =
1547 FuncInfo->getOrCreateSwiftErrorVRegDefAt(&*It);
1548 assert(CreatedReg);
1549 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, SwiftErrorAddr, VReg);
1551 // A return in a swiferror returning function is a use.
1552 } else if (const ReturnInst *R = dyn_cast<const ReturnInst>(&*It)) {
1553 const Function *F = R->getParent()->getParent();
1554 if(!F->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
1555 continue;
1557 unsigned VReg; bool CreatedReg;
1558 std::tie(VReg, CreatedReg) = FuncInfo->getOrCreateSwiftErrorVRegUseAt(
1559 R, FuncInfo->MBB, FuncInfo->SwiftErrorArg);
1560 assert(CreatedReg);
1565 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
1566 FastISelFailed = false;
1567 // Initialize the Fast-ISel state, if needed.
1568 FastISel *FastIS = nullptr;
1569 if (TM.Options.EnableFastISel) {
1570 LLVM_DEBUG(dbgs() << "Enabling fast-isel\n");
1571 FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
1574 setupSwiftErrorVals(Fn, TLI, FuncInfo);
1576 ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1578 // Lower arguments up front. An RPO iteration always visits the entry block
1579 // first.
1580 assert(*RPOT.begin() == &Fn.getEntryBlock());
1581 ++NumEntryBlocks;
1583 // Set up FuncInfo for ISel. Entry blocks never have PHIs.
1584 FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()];
1585 FuncInfo->InsertPt = FuncInfo->MBB->begin();
1587 CurDAG->setFunctionLoweringInfo(FuncInfo);
1589 if (!FastIS) {
1590 LowerArguments(Fn);
1591 } else {
1592 // See if fast isel can lower the arguments.
1593 FastIS->startNewBlock();
1594 if (!FastIS->lowerArguments()) {
1595 FastISelFailed = true;
1596 // Fast isel failed to lower these arguments
1597 ++NumFastIselFailLowerArguments;
1599 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1600 Fn.getSubprogram(),
1601 &Fn.getEntryBlock());
1602 R << "FastISel didn't lower all arguments: "
1603 << ore::NV("Prototype", Fn.getType());
1604 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1);
1606 // Use SelectionDAG argument lowering
1607 LowerArguments(Fn);
1608 CurDAG->setRoot(SDB->getControlRoot());
1609 SDB->clear();
1610 CodeGenAndEmitDAG();
1613 // If we inserted any instructions at the beginning, make a note of
1614 // where they are, so we can be sure to emit subsequent instructions
1615 // after them.
1616 if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1617 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1618 else
1619 FastIS->setLastLocalValue(nullptr);
1621 createSwiftErrorEntriesInEntryBlock(FuncInfo, FastIS, TLI, TII, SDB);
1623 processDbgDeclares(FuncInfo);
1625 // Iterate over all basic blocks in the function.
1626 StackProtector &SP = getAnalysis<StackProtector>();
1627 for (const BasicBlock *LLVMBB : RPOT) {
1628 if (OptLevel != CodeGenOpt::None) {
1629 bool AllPredsVisited = true;
1630 for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
1631 PI != PE; ++PI) {
1632 if (!FuncInfo->VisitedBBs.count(*PI)) {
1633 AllPredsVisited = false;
1634 break;
1638 if (AllPredsVisited) {
1639 for (const PHINode &PN : LLVMBB->phis())
1640 FuncInfo->ComputePHILiveOutRegInfo(&PN);
1641 } else {
1642 for (const PHINode &PN : LLVMBB->phis())
1643 FuncInfo->InvalidatePHILiveOutRegInfo(&PN);
1646 FuncInfo->VisitedBBs.insert(LLVMBB);
1649 BasicBlock::const_iterator const Begin =
1650 LLVMBB->getFirstNonPHI()->getIterator();
1651 BasicBlock::const_iterator const End = LLVMBB->end();
1652 BasicBlock::const_iterator BI = End;
1654 FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1655 if (!FuncInfo->MBB)
1656 continue; // Some blocks like catchpads have no code or MBB.
1658 // Insert new instructions after any phi or argument setup code.
1659 FuncInfo->InsertPt = FuncInfo->MBB->end();
1661 // Setup an EH landing-pad block.
1662 FuncInfo->ExceptionPointerVirtReg = 0;
1663 FuncInfo->ExceptionSelectorVirtReg = 0;
1664 if (LLVMBB->isEHPad())
1665 if (!PrepareEHLandingPad())
1666 continue;
1668 // Before doing SelectionDAG ISel, see if FastISel has been requested.
1669 if (FastIS) {
1670 if (LLVMBB != &Fn.getEntryBlock())
1671 FastIS->startNewBlock();
1673 unsigned NumFastIselRemaining = std::distance(Begin, End);
1675 // Pre-assign swifterror vregs.
1676 preassignSwiftErrorRegs(TLI, FuncInfo, Begin, End);
1678 // Do FastISel on as many instructions as possible.
1679 for (; BI != Begin; --BI) {
1680 const Instruction *Inst = &*std::prev(BI);
1682 // If we no longer require this instruction, skip it.
1683 if (isFoldedOrDeadInstruction(Inst, FuncInfo) ||
1684 ElidedArgCopyInstrs.count(Inst)) {
1685 --NumFastIselRemaining;
1686 continue;
1689 // Bottom-up: reset the insert pos at the top, after any local-value
1690 // instructions.
1691 FastIS->recomputeInsertPt();
1693 // Try to select the instruction with FastISel.
1694 if (FastIS->selectInstruction(Inst)) {
1695 --NumFastIselRemaining;
1696 ++NumFastIselSuccess;
1697 // If fast isel succeeded, skip over all the folded instructions, and
1698 // then see if there is a load right before the selected instructions.
1699 // Try to fold the load if so.
1700 const Instruction *BeforeInst = Inst;
1701 while (BeforeInst != &*Begin) {
1702 BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst));
1703 if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1704 break;
1706 if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1707 BeforeInst->hasOneUse() &&
1708 FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1709 // If we succeeded, don't re-select the load.
1710 BI = std::next(BasicBlock::const_iterator(BeforeInst));
1711 --NumFastIselRemaining;
1712 ++NumFastIselSuccess;
1714 continue;
1717 FastISelFailed = true;
1719 // Then handle certain instructions as single-LLVM-Instruction blocks.
1720 // We cannot separate out GCrelocates to their own blocks since we need
1721 // to keep track of gc-relocates for a particular gc-statepoint. This is
1722 // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before
1723 // visitGCRelocate.
1724 if (isa<CallInst>(Inst) && !isStatepoint(Inst) && !isGCRelocate(Inst)) {
1725 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1726 Inst->getDebugLoc(), LLVMBB);
1728 R << "FastISel missed call";
1730 if (R.isEnabled() || EnableFastISelAbort) {
1731 std::string InstStrStorage;
1732 raw_string_ostream InstStr(InstStrStorage);
1733 InstStr << *Inst;
1735 R << ": " << InstStr.str();
1738 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2);
1740 if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() &&
1741 !Inst->use_empty()) {
1742 unsigned &R = FuncInfo->ValueMap[Inst];
1743 if (!R)
1744 R = FuncInfo->CreateRegs(Inst->getType());
1747 bool HadTailCall = false;
1748 MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1749 SelectBasicBlock(Inst->getIterator(), BI, HadTailCall);
1751 // If the call was emitted as a tail call, we're done with the block.
1752 // We also need to delete any previously emitted instructions.
1753 if (HadTailCall) {
1754 FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1755 --BI;
1756 break;
1759 // Recompute NumFastIselRemaining as Selection DAG instruction
1760 // selection may have handled the call, input args, etc.
1761 unsigned RemainingNow = std::distance(Begin, BI);
1762 NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1763 NumFastIselRemaining = RemainingNow;
1764 continue;
1767 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1768 Inst->getDebugLoc(), LLVMBB);
1770 bool ShouldAbort = EnableFastISelAbort;
1771 if (Inst->isTerminator()) {
1772 // Use a different message for terminator misses.
1773 R << "FastISel missed terminator";
1774 // Don't abort for terminator unless the level is really high
1775 ShouldAbort = (EnableFastISelAbort > 2);
1776 } else {
1777 R << "FastISel missed";
1780 if (R.isEnabled() || EnableFastISelAbort) {
1781 std::string InstStrStorage;
1782 raw_string_ostream InstStr(InstStrStorage);
1783 InstStr << *Inst;
1784 R << ": " << InstStr.str();
1787 reportFastISelFailure(*MF, *ORE, R, ShouldAbort);
1789 NumFastIselFailures += NumFastIselRemaining;
1790 break;
1793 FastIS->recomputeInsertPt();
1796 if (SP.shouldEmitSDCheck(*LLVMBB)) {
1797 bool FunctionBasedInstrumentation =
1798 TLI->getSSPStackGuardCheck(*Fn.getParent());
1799 SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB],
1800 FunctionBasedInstrumentation);
1803 if (Begin != BI)
1804 ++NumDAGBlocks;
1805 else
1806 ++NumFastIselBlocks;
1808 if (Begin != BI) {
1809 // Run SelectionDAG instruction selection on the remainder of the block
1810 // not handled by FastISel. If FastISel is not run, this is the entire
1811 // block.
1812 bool HadTailCall;
1813 SelectBasicBlock(Begin, BI, HadTailCall);
1815 // But if FastISel was run, we already selected some of the block.
1816 // If we emitted a tail-call, we need to delete any previously emitted
1817 // instruction that follows it.
1818 if (HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end())
1819 FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end());
1822 if (FastIS)
1823 FastIS->finishBasicBlock();
1824 FinishBasicBlock();
1825 FuncInfo->PHINodesToUpdate.clear();
1826 ElidedArgCopyInstrs.clear();
1829 SP.copyToMachineFrameInfo(MF->getFrameInfo());
1831 propagateSwiftErrorVRegs(FuncInfo);
1833 delete FastIS;
1834 SDB->clearDanglingDebugInfo();
1835 SDB->SPDescriptor.resetPerFunctionState();
1838 /// Given that the input MI is before a partial terminator sequence TSeq, return
1839 /// true if M + TSeq also a partial terminator sequence.
1841 /// A Terminator sequence is a sequence of MachineInstrs which at this point in
1842 /// lowering copy vregs into physical registers, which are then passed into
1843 /// terminator instructors so we can satisfy ABI constraints. A partial
1844 /// terminator sequence is an improper subset of a terminator sequence (i.e. it
1845 /// may be the whole terminator sequence).
1846 static bool MIIsInTerminatorSequence(const MachineInstr &MI) {
1847 // If we do not have a copy or an implicit def, we return true if and only if
1848 // MI is a debug value.
1849 if (!MI.isCopy() && !MI.isImplicitDef())
1850 // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
1851 // physical registers if there is debug info associated with the terminator
1852 // of our mbb. We want to include said debug info in our terminator
1853 // sequence, so we return true in that case.
1854 return MI.isDebugValue();
1856 // We have left the terminator sequence if we are not doing one of the
1857 // following:
1859 // 1. Copying a vreg into a physical register.
1860 // 2. Copying a vreg into a vreg.
1861 // 3. Defining a register via an implicit def.
1863 // OPI should always be a register definition...
1864 MachineInstr::const_mop_iterator OPI = MI.operands_begin();
1865 if (!OPI->isReg() || !OPI->isDef())
1866 return false;
1868 // Defining any register via an implicit def is always ok.
1869 if (MI.isImplicitDef())
1870 return true;
1872 // Grab the copy source...
1873 MachineInstr::const_mop_iterator OPI2 = OPI;
1874 ++OPI2;
1875 assert(OPI2 != MI.operands_end()
1876 && "Should have a copy implying we should have 2 arguments.");
1878 // Make sure that the copy dest is not a vreg when the copy source is a
1879 // physical register.
1880 if (!OPI2->isReg() ||
1881 (!TargetRegisterInfo::isPhysicalRegister(OPI->getReg()) &&
1882 TargetRegisterInfo::isPhysicalRegister(OPI2->getReg())))
1883 return false;
1885 return true;
1888 /// Find the split point at which to splice the end of BB into its success stack
1889 /// protector check machine basic block.
1891 /// On many platforms, due to ABI constraints, terminators, even before register
1892 /// allocation, use physical registers. This creates an issue for us since
1893 /// physical registers at this point can not travel across basic
1894 /// blocks. Luckily, selectiondag always moves physical registers into vregs
1895 /// when they enter functions and moves them through a sequence of copies back
1896 /// into the physical registers right before the terminator creating a
1897 /// ``Terminator Sequence''. This function is searching for the beginning of the
1898 /// terminator sequence so that we can ensure that we splice off not just the
1899 /// terminator, but additionally the copies that move the vregs into the
1900 /// physical registers.
1901 static MachineBasicBlock::iterator
1902 FindSplitPointForStackProtector(MachineBasicBlock *BB) {
1903 MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
1905 if (SplitPoint == BB->begin())
1906 return SplitPoint;
1908 MachineBasicBlock::iterator Start = BB->begin();
1909 MachineBasicBlock::iterator Previous = SplitPoint;
1910 --Previous;
1912 while (MIIsInTerminatorSequence(*Previous)) {
1913 SplitPoint = Previous;
1914 if (Previous == Start)
1915 break;
1916 --Previous;
1919 return SplitPoint;
1922 void
1923 SelectionDAGISel::FinishBasicBlock() {
1924 LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: "
1925 << FuncInfo->PHINodesToUpdate.size() << "\n";
1926 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e;
1927 ++i) dbgs()
1928 << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first
1929 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1931 // Next, now that we know what the last MBB the LLVM BB expanded is, update
1932 // PHI nodes in successors.
1933 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1934 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1935 assert(PHI->isPHI() &&
1936 "This is not a machine PHI node that we are updating!");
1937 if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1938 continue;
1939 PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1942 // Handle stack protector.
1943 if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
1944 // The target provides a guard check function. There is no need to
1945 // generate error handling code or to split current basic block.
1946 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1948 // Add load and check to the basicblock.
1949 FuncInfo->MBB = ParentMBB;
1950 FuncInfo->InsertPt =
1951 FindSplitPointForStackProtector(ParentMBB);
1952 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1953 CurDAG->setRoot(SDB->getRoot());
1954 SDB->clear();
1955 CodeGenAndEmitDAG();
1957 // Clear the Per-BB State.
1958 SDB->SPDescriptor.resetPerBBState();
1959 } else if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1960 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1961 MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1963 // Find the split point to split the parent mbb. At the same time copy all
1964 // physical registers used in the tail of parent mbb into virtual registers
1965 // before the split point and back into physical registers after the split
1966 // point. This prevents us needing to deal with Live-ins and many other
1967 // register allocation issues caused by us splitting the parent mbb. The
1968 // register allocator will clean up said virtual copies later on.
1969 MachineBasicBlock::iterator SplitPoint =
1970 FindSplitPointForStackProtector(ParentMBB);
1972 // Splice the terminator of ParentMBB into SuccessMBB.
1973 SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1974 SplitPoint,
1975 ParentMBB->end());
1977 // Add compare/jump on neq/jump to the parent BB.
1978 FuncInfo->MBB = ParentMBB;
1979 FuncInfo->InsertPt = ParentMBB->end();
1980 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1981 CurDAG->setRoot(SDB->getRoot());
1982 SDB->clear();
1983 CodeGenAndEmitDAG();
1985 // CodeGen Failure MBB if we have not codegened it yet.
1986 MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1987 if (FailureMBB->empty()) {
1988 FuncInfo->MBB = FailureMBB;
1989 FuncInfo->InsertPt = FailureMBB->end();
1990 SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1991 CurDAG->setRoot(SDB->getRoot());
1992 SDB->clear();
1993 CodeGenAndEmitDAG();
1996 // Clear the Per-BB State.
1997 SDB->SPDescriptor.resetPerBBState();
2000 // Lower each BitTestBlock.
2001 for (auto &BTB : SDB->BitTestCases) {
2002 // Lower header first, if it wasn't already lowered
2003 if (!BTB.Emitted) {
2004 // Set the current basic block to the mbb we wish to insert the code into
2005 FuncInfo->MBB = BTB.Parent;
2006 FuncInfo->InsertPt = FuncInfo->MBB->end();
2007 // Emit the code
2008 SDB->visitBitTestHeader(BTB, FuncInfo->MBB);
2009 CurDAG->setRoot(SDB->getRoot());
2010 SDB->clear();
2011 CodeGenAndEmitDAG();
2014 BranchProbability UnhandledProb = BTB.Prob;
2015 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
2016 UnhandledProb -= BTB.Cases[j].ExtraProb;
2017 // Set the current basic block to the mbb we wish to insert the code into
2018 FuncInfo->MBB = BTB.Cases[j].ThisBB;
2019 FuncInfo->InsertPt = FuncInfo->MBB->end();
2020 // Emit the code
2022 // If all cases cover a contiguous range, it is not necessary to jump to
2023 // the default block after the last bit test fails. This is because the
2024 // range check during bit test header creation has guaranteed that every
2025 // case here doesn't go outside the range. In this case, there is no need
2026 // to perform the last bit test, as it will always be true. Instead, make
2027 // the second-to-last bit-test fall through to the target of the last bit
2028 // test, and delete the last bit test.
2030 MachineBasicBlock *NextMBB;
2031 if (BTB.ContiguousRange && j + 2 == ej) {
2032 // Second-to-last bit-test with contiguous range: fall through to the
2033 // target of the final bit test.
2034 NextMBB = BTB.Cases[j + 1].TargetBB;
2035 } else if (j + 1 == ej) {
2036 // For the last bit test, fall through to Default.
2037 NextMBB = BTB.Default;
2038 } else {
2039 // Otherwise, fall through to the next bit test.
2040 NextMBB = BTB.Cases[j + 1].ThisBB;
2043 SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j],
2044 FuncInfo->MBB);
2046 CurDAG->setRoot(SDB->getRoot());
2047 SDB->clear();
2048 CodeGenAndEmitDAG();
2050 if (BTB.ContiguousRange && j + 2 == ej) {
2051 // Since we're not going to use the final bit test, remove it.
2052 BTB.Cases.pop_back();
2053 break;
2057 // Update PHI Nodes
2058 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
2059 pi != pe; ++pi) {
2060 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
2061 MachineBasicBlock *PHIBB = PHI->getParent();
2062 assert(PHI->isPHI() &&
2063 "This is not a machine PHI node that we are updating!");
2064 // This is "default" BB. We have two jumps to it. From "header" BB and
2065 // from last "case" BB, unless the latter was skipped.
2066 if (PHIBB == BTB.Default) {
2067 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent);
2068 if (!BTB.ContiguousRange) {
2069 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
2070 .addMBB(BTB.Cases.back().ThisBB);
2073 // One of "cases" BB.
2074 for (unsigned j = 0, ej = BTB.Cases.size();
2075 j != ej; ++j) {
2076 MachineBasicBlock* cBB = BTB.Cases[j].ThisBB;
2077 if (cBB->isSuccessor(PHIBB))
2078 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
2082 SDB->BitTestCases.clear();
2084 // If the JumpTable record is filled in, then we need to emit a jump table.
2085 // Updating the PHI nodes is tricky in this case, since we need to determine
2086 // whether the PHI is a successor of the range check MBB or the jump table MBB
2087 for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
2088 // Lower header first, if it wasn't already lowered
2089 if (!SDB->JTCases[i].first.Emitted) {
2090 // Set the current basic block to the mbb we wish to insert the code into
2091 FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
2092 FuncInfo->InsertPt = FuncInfo->MBB->end();
2093 // Emit the code
2094 SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
2095 FuncInfo->MBB);
2096 CurDAG->setRoot(SDB->getRoot());
2097 SDB->clear();
2098 CodeGenAndEmitDAG();
2101 // Set the current basic block to the mbb we wish to insert the code into
2102 FuncInfo->MBB = SDB->JTCases[i].second.MBB;
2103 FuncInfo->InsertPt = FuncInfo->MBB->end();
2104 // Emit the code
2105 SDB->visitJumpTable(SDB->JTCases[i].second);
2106 CurDAG->setRoot(SDB->getRoot());
2107 SDB->clear();
2108 CodeGenAndEmitDAG();
2110 // Update PHI Nodes
2111 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
2112 pi != pe; ++pi) {
2113 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
2114 MachineBasicBlock *PHIBB = PHI->getParent();
2115 assert(PHI->isPHI() &&
2116 "This is not a machine PHI node that we are updating!");
2117 // "default" BB. We can go there only from header BB.
2118 if (PHIBB == SDB->JTCases[i].second.Default)
2119 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
2120 .addMBB(SDB->JTCases[i].first.HeaderBB);
2121 // JT BB. Just iterate over successors here
2122 if (FuncInfo->MBB->isSuccessor(PHIBB))
2123 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
2126 SDB->JTCases.clear();
2128 // If we generated any switch lowering information, build and codegen any
2129 // additional DAGs necessary.
2130 for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
2131 // Set the current basic block to the mbb we wish to insert the code into
2132 FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
2133 FuncInfo->InsertPt = FuncInfo->MBB->end();
2135 // Determine the unique successors.
2136 SmallVector<MachineBasicBlock *, 2> Succs;
2137 Succs.push_back(SDB->SwitchCases[i].TrueBB);
2138 if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
2139 Succs.push_back(SDB->SwitchCases[i].FalseBB);
2141 // Emit the code. Note that this could result in FuncInfo->MBB being split.
2142 SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
2143 CurDAG->setRoot(SDB->getRoot());
2144 SDB->clear();
2145 CodeGenAndEmitDAG();
2147 // Remember the last block, now that any splitting is done, for use in
2148 // populating PHI nodes in successors.
2149 MachineBasicBlock *ThisBB = FuncInfo->MBB;
2151 // Handle any PHI nodes in successors of this chunk, as if we were coming
2152 // from the original BB before switch expansion. Note that PHI nodes can
2153 // occur multiple times in PHINodesToUpdate. We have to be very careful to
2154 // handle them the right number of times.
2155 for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
2156 FuncInfo->MBB = Succs[i];
2157 FuncInfo->InsertPt = FuncInfo->MBB->end();
2158 // FuncInfo->MBB may have been removed from the CFG if a branch was
2159 // constant folded.
2160 if (ThisBB->isSuccessor(FuncInfo->MBB)) {
2161 for (MachineBasicBlock::iterator
2162 MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
2163 MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
2164 MachineInstrBuilder PHI(*MF, MBBI);
2165 // This value for this PHI node is recorded in PHINodesToUpdate.
2166 for (unsigned pn = 0; ; ++pn) {
2167 assert(pn != FuncInfo->PHINodesToUpdate.size() &&
2168 "Didn't find PHI entry!");
2169 if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
2170 PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
2171 break;
2178 SDB->SwitchCases.clear();
2181 /// Create the scheduler. If a specific scheduler was specified
2182 /// via the SchedulerRegistry, use it, otherwise select the
2183 /// one preferred by the target.
2185 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
2186 return ISHeuristic(this, OptLevel);
2189 //===----------------------------------------------------------------------===//
2190 // Helper functions used by the generated instruction selector.
2191 //===----------------------------------------------------------------------===//
2192 // Calls to these methods are generated by tblgen.
2194 /// CheckAndMask - The isel is trying to match something like (and X, 255). If
2195 /// the dag combiner simplified the 255, we still want to match. RHS is the
2196 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
2197 /// specified in the .td file (e.g. 255).
2198 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
2199 int64_t DesiredMaskS) const {
2200 const APInt &ActualMask = RHS->getAPIntValue();
2201 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
2203 // If the actual mask exactly matches, success!
2204 if (ActualMask == DesiredMask)
2205 return true;
2207 // If the actual AND mask is allowing unallowed bits, this doesn't match.
2208 if (!ActualMask.isSubsetOf(DesiredMask))
2209 return false;
2211 // Otherwise, the DAG Combiner may have proven that the value coming in is
2212 // either already zero or is not demanded. Check for known zero input bits.
2213 APInt NeededMask = DesiredMask & ~ActualMask;
2214 if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
2215 return true;
2217 // TODO: check to see if missing bits are just not demanded.
2219 // Otherwise, this pattern doesn't match.
2220 return false;
2223 /// CheckOrMask - The isel is trying to match something like (or X, 255). If
2224 /// the dag combiner simplified the 255, we still want to match. RHS is the
2225 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
2226 /// specified in the .td file (e.g. 255).
2227 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
2228 int64_t DesiredMaskS) const {
2229 const APInt &ActualMask = RHS->getAPIntValue();
2230 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
2232 // If the actual mask exactly matches, success!
2233 if (ActualMask == DesiredMask)
2234 return true;
2236 // If the actual AND mask is allowing unallowed bits, this doesn't match.
2237 if (!ActualMask.isSubsetOf(DesiredMask))
2238 return false;
2240 // Otherwise, the DAG Combiner may have proven that the value coming in is
2241 // either already zero or is not demanded. Check for known zero input bits.
2242 APInt NeededMask = DesiredMask & ~ActualMask;
2243 KnownBits Known = CurDAG->computeKnownBits(LHS);
2245 // If all the missing bits in the or are already known to be set, match!
2246 if (NeededMask.isSubsetOf(Known.One))
2247 return true;
2249 // TODO: check to see if missing bits are just not demanded.
2251 // Otherwise, this pattern doesn't match.
2252 return false;
2255 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
2256 /// by tblgen. Others should not call it.
2257 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops,
2258 const SDLoc &DL) {
2259 std::vector<SDValue> InOps;
2260 std::swap(InOps, Ops);
2262 Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
2263 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1
2264 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc
2265 Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack)
2267 unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
2268 if (InOps[e-1].getValueType() == MVT::Glue)
2269 --e; // Don't process a glue operand if it is here.
2271 while (i != e) {
2272 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
2273 if (!InlineAsm::isMemKind(Flags)) {
2274 // Just skip over this operand, copying the operands verbatim.
2275 Ops.insert(Ops.end(), InOps.begin()+i,
2276 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
2277 i += InlineAsm::getNumOperandRegisters(Flags) + 1;
2278 } else {
2279 assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
2280 "Memory operand with multiple values?");
2282 unsigned TiedToOperand;
2283 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) {
2284 // We need the constraint ID from the operand this is tied to.
2285 unsigned CurOp = InlineAsm::Op_FirstOperand;
2286 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2287 for (; TiedToOperand; --TiedToOperand) {
2288 CurOp += InlineAsm::getNumOperandRegisters(Flags)+1;
2289 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2293 // Otherwise, this is a memory operand. Ask the target to select it.
2294 std::vector<SDValue> SelOps;
2295 unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags);
2296 if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps))
2297 report_fatal_error("Could not match memory address. Inline asm"
2298 " failure!");
2300 // Add this to the output node.
2301 unsigned NewFlags =
2302 InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
2303 NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID);
2304 Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32));
2305 Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
2306 i += 2;
2310 // Add the glue input back if present.
2311 if (e != InOps.size())
2312 Ops.push_back(InOps.back());
2315 /// findGlueUse - Return use of MVT::Glue value produced by the specified
2316 /// SDNode.
2318 static SDNode *findGlueUse(SDNode *N) {
2319 unsigned FlagResNo = N->getNumValues()-1;
2320 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2321 SDUse &Use = I.getUse();
2322 if (Use.getResNo() == FlagResNo)
2323 return Use.getUser();
2325 return nullptr;
2328 /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path
2329 /// beyond "ImmedUse". We may ignore chains as they are checked separately.
2330 static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse,
2331 bool IgnoreChains) {
2332 SmallPtrSet<const SDNode *, 16> Visited;
2333 SmallVector<const SDNode *, 16> WorkList;
2334 // Only check if we have non-immediate uses of Def.
2335 if (ImmedUse->isOnlyUserOf(Def))
2336 return false;
2338 // We don't care about paths to Def that go through ImmedUse so mark it
2339 // visited and mark non-def operands as used.
2340 Visited.insert(ImmedUse);
2341 for (const SDValue &Op : ImmedUse->op_values()) {
2342 SDNode *N = Op.getNode();
2343 // Ignore chain deps (they are validated by
2344 // HandleMergeInputChains) and immediate uses
2345 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2346 continue;
2347 if (!Visited.insert(N).second)
2348 continue;
2349 WorkList.push_back(N);
2352 // Initialize worklist to operands of Root.
2353 if (Root != ImmedUse) {
2354 for (const SDValue &Op : Root->op_values()) {
2355 SDNode *N = Op.getNode();
2356 // Ignore chains (they are validated by HandleMergeInputChains)
2357 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2358 continue;
2359 if (!Visited.insert(N).second)
2360 continue;
2361 WorkList.push_back(N);
2365 return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true);
2368 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
2369 /// operand node N of U during instruction selection that starts at Root.
2370 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
2371 SDNode *Root) const {
2372 if (OptLevel == CodeGenOpt::None) return false;
2373 return N.hasOneUse();
2376 /// IsLegalToFold - Returns true if the specific operand node N of
2377 /// U can be folded during instruction selection that starts at Root.
2378 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
2379 CodeGenOpt::Level OptLevel,
2380 bool IgnoreChains) {
2381 if (OptLevel == CodeGenOpt::None) return false;
2383 // If Root use can somehow reach N through a path that that doesn't contain
2384 // U then folding N would create a cycle. e.g. In the following
2385 // diagram, Root can reach N through X. If N is folded into Root, then
2386 // X is both a predecessor and a successor of U.
2388 // [N*] //
2389 // ^ ^ //
2390 // / \ //
2391 // [U*] [X]? //
2392 // ^ ^ //
2393 // \ / //
2394 // \ / //
2395 // [Root*] //
2397 // * indicates nodes to be folded together.
2399 // If Root produces glue, then it gets (even more) interesting. Since it
2400 // will be "glued" together with its glue use in the scheduler, we need to
2401 // check if it might reach N.
2403 // [N*] //
2404 // ^ ^ //
2405 // / \ //
2406 // [U*] [X]? //
2407 // ^ ^ //
2408 // \ \ //
2409 // \ | //
2410 // [Root*] | //
2411 // ^ | //
2412 // f | //
2413 // | / //
2414 // [Y] / //
2415 // ^ / //
2416 // f / //
2417 // | / //
2418 // [GU] //
2420 // If GU (glue use) indirectly reaches N (the load), and Root folds N
2421 // (call it Fold), then X is a predecessor of GU and a successor of
2422 // Fold. But since Fold and GU are glued together, this will create
2423 // a cycle in the scheduling graph.
2425 // If the node has glue, walk down the graph to the "lowest" node in the
2426 // glueged set.
2427 EVT VT = Root->getValueType(Root->getNumValues()-1);
2428 while (VT == MVT::Glue) {
2429 SDNode *GU = findGlueUse(Root);
2430 if (!GU)
2431 break;
2432 Root = GU;
2433 VT = Root->getValueType(Root->getNumValues()-1);
2435 // If our query node has a glue result with a use, we've walked up it. If
2436 // the user (which has already been selected) has a chain or indirectly uses
2437 // the chain, HandleMergeInputChains will not consider it. Because of
2438 // this, we cannot ignore chains in this predicate.
2439 IgnoreChains = false;
2442 return !findNonImmUse(Root, N.getNode(), U, IgnoreChains);
2445 void SelectionDAGISel::Select_INLINEASM(SDNode *N, bool Branch) {
2446 SDLoc DL(N);
2448 std::vector<SDValue> Ops(N->op_begin(), N->op_end());
2449 SelectInlineAsmMemoryOperands(Ops, DL);
2451 const EVT VTs[] = {MVT::Other, MVT::Glue};
2452 SDValue New = CurDAG->getNode(Branch ? ISD::INLINEASM_BR : ISD::INLINEASM, DL, VTs, Ops);
2453 New->setNodeId(-1);
2454 ReplaceUses(N, New.getNode());
2455 CurDAG->RemoveDeadNode(N);
2458 void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
2459 SDLoc dl(Op);
2460 MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
2461 const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
2462 unsigned Reg =
2463 TLI->getRegisterByName(RegStr->getString().data(), Op->getValueType(0),
2464 *CurDAG);
2465 SDValue New = CurDAG->getCopyFromReg(
2466 Op->getOperand(0), dl, Reg, Op->getValueType(0));
2467 New->setNodeId(-1);
2468 ReplaceUses(Op, New.getNode());
2469 CurDAG->RemoveDeadNode(Op);
2472 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
2473 SDLoc dl(Op);
2474 MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
2475 const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
2476 unsigned Reg = TLI->getRegisterByName(RegStr->getString().data(),
2477 Op->getOperand(2).getValueType(),
2478 *CurDAG);
2479 SDValue New = CurDAG->getCopyToReg(
2480 Op->getOperand(0), dl, Reg, Op->getOperand(2));
2481 New->setNodeId(-1);
2482 ReplaceUses(Op, New.getNode());
2483 CurDAG->RemoveDeadNode(Op);
2486 void SelectionDAGISel::Select_UNDEF(SDNode *N) {
2487 CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
2490 /// GetVBR - decode a vbr encoding whose top bit is set.
2491 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline uint64_t
2492 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
2493 assert(Val >= 128 && "Not a VBR");
2494 Val &= 127; // Remove first vbr bit.
2496 unsigned Shift = 7;
2497 uint64_t NextBits;
2498 do {
2499 NextBits = MatcherTable[Idx++];
2500 Val |= (NextBits&127) << Shift;
2501 Shift += 7;
2502 } while (NextBits & 128);
2504 return Val;
2507 /// When a match is complete, this method updates uses of interior chain results
2508 /// to use the new results.
2509 void SelectionDAGISel::UpdateChains(
2510 SDNode *NodeToMatch, SDValue InputChain,
2511 SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) {
2512 SmallVector<SDNode*, 4> NowDeadNodes;
2514 // Now that all the normal results are replaced, we replace the chain and
2515 // glue results if present.
2516 if (!ChainNodesMatched.empty()) {
2517 assert(InputChain.getNode() &&
2518 "Matched input chains but didn't produce a chain");
2519 // Loop over all of the nodes we matched that produced a chain result.
2520 // Replace all the chain results with the final chain we ended up with.
2521 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2522 SDNode *ChainNode = ChainNodesMatched[i];
2523 // If ChainNode is null, it's because we replaced it on a previous
2524 // iteration and we cleared it out of the map. Just skip it.
2525 if (!ChainNode)
2526 continue;
2528 assert(ChainNode->getOpcode() != ISD::DELETED_NODE &&
2529 "Deleted node left in chain");
2531 // Don't replace the results of the root node if we're doing a
2532 // MorphNodeTo.
2533 if (ChainNode == NodeToMatch && isMorphNodeTo)
2534 continue;
2536 SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
2537 if (ChainVal.getValueType() == MVT::Glue)
2538 ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
2539 assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
2540 SelectionDAG::DAGNodeDeletedListener NDL(
2541 *CurDAG, [&](SDNode *N, SDNode *E) {
2542 std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N,
2543 static_cast<SDNode *>(nullptr));
2545 if (ChainNode->getOpcode() != ISD::TokenFactor)
2546 ReplaceUses(ChainVal, InputChain);
2548 // If the node became dead and we haven't already seen it, delete it.
2549 if (ChainNode != NodeToMatch && ChainNode->use_empty() &&
2550 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
2551 NowDeadNodes.push_back(ChainNode);
2555 if (!NowDeadNodes.empty())
2556 CurDAG->RemoveDeadNodes(NowDeadNodes);
2558 LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n");
2561 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2562 /// operation for when the pattern matched at least one node with a chains. The
2563 /// input vector contains a list of all of the chained nodes that we match. We
2564 /// must determine if this is a valid thing to cover (i.e. matching it won't
2565 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2566 /// be used as the input node chain for the generated nodes.
2567 static SDValue
2568 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
2569 SelectionDAG *CurDAG) {
2571 SmallPtrSet<const SDNode *, 16> Visited;
2572 SmallVector<const SDNode *, 8> Worklist;
2573 SmallVector<SDValue, 3> InputChains;
2574 unsigned int Max = 8192;
2576 // Quick exit on trivial merge.
2577 if (ChainNodesMatched.size() == 1)
2578 return ChainNodesMatched[0]->getOperand(0);
2580 // Add chains that aren't already added (internal). Peek through
2581 // token factors.
2582 std::function<void(const SDValue)> AddChains = [&](const SDValue V) {
2583 if (V.getValueType() != MVT::Other)
2584 return;
2585 if (V->getOpcode() == ISD::EntryToken)
2586 return;
2587 if (!Visited.insert(V.getNode()).second)
2588 return;
2589 if (V->getOpcode() == ISD::TokenFactor) {
2590 for (const SDValue &Op : V->op_values())
2591 AddChains(Op);
2592 } else
2593 InputChains.push_back(V);
2596 for (auto *N : ChainNodesMatched) {
2597 Worklist.push_back(N);
2598 Visited.insert(N);
2601 while (!Worklist.empty())
2602 AddChains(Worklist.pop_back_val()->getOperand(0));
2604 // Skip the search if there are no chain dependencies.
2605 if (InputChains.size() == 0)
2606 return CurDAG->getEntryNode();
2608 // If one of these chains is a successor of input, we must have a
2609 // node that is both the predecessor and successor of the
2610 // to-be-merged nodes. Fail.
2611 Visited.clear();
2612 for (SDValue V : InputChains)
2613 Worklist.push_back(V.getNode());
2615 for (auto *N : ChainNodesMatched)
2616 if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true))
2617 return SDValue();
2619 // Return merged chain.
2620 if (InputChains.size() == 1)
2621 return InputChains[0];
2622 return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2623 MVT::Other, InputChains);
2626 /// MorphNode - Handle morphing a node in place for the selector.
2627 SDNode *SelectionDAGISel::
2628 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2629 ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
2630 // It is possible we're using MorphNodeTo to replace a node with no
2631 // normal results with one that has a normal result (or we could be
2632 // adding a chain) and the input could have glue and chains as well.
2633 // In this case we need to shift the operands down.
2634 // FIXME: This is a horrible hack and broken in obscure cases, no worse
2635 // than the old isel though.
2636 int OldGlueResultNo = -1, OldChainResultNo = -1;
2638 unsigned NTMNumResults = Node->getNumValues();
2639 if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2640 OldGlueResultNo = NTMNumResults-1;
2641 if (NTMNumResults != 1 &&
2642 Node->getValueType(NTMNumResults-2) == MVT::Other)
2643 OldChainResultNo = NTMNumResults-2;
2644 } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2645 OldChainResultNo = NTMNumResults-1;
2647 // Call the underlying SelectionDAG routine to do the transmogrification. Note
2648 // that this deletes operands of the old node that become dead.
2649 SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
2651 // MorphNodeTo can operate in two ways: if an existing node with the
2652 // specified operands exists, it can just return it. Otherwise, it
2653 // updates the node in place to have the requested operands.
2654 if (Res == Node) {
2655 // If we updated the node in place, reset the node ID. To the isel,
2656 // this should be just like a newly allocated machine node.
2657 Res->setNodeId(-1);
2660 unsigned ResNumResults = Res->getNumValues();
2661 // Move the glue if needed.
2662 if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2663 (unsigned)OldGlueResultNo != ResNumResults-1)
2664 ReplaceUses(SDValue(Node, OldGlueResultNo),
2665 SDValue(Res, ResNumResults - 1));
2667 if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2668 --ResNumResults;
2670 // Move the chain reference if needed.
2671 if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2672 (unsigned)OldChainResultNo != ResNumResults-1)
2673 ReplaceUses(SDValue(Node, OldChainResultNo),
2674 SDValue(Res, ResNumResults - 1));
2676 // Otherwise, no replacement happened because the node already exists. Replace
2677 // Uses of the old node with the new one.
2678 if (Res != Node) {
2679 ReplaceNode(Node, Res);
2680 } else {
2681 EnforceNodeIdInvariant(Res);
2684 return Res;
2687 /// CheckSame - Implements OP_CheckSame.
2688 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2689 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2690 SDValue N,
2691 const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2692 // Accept if it is exactly the same as a previously recorded node.
2693 unsigned RecNo = MatcherTable[MatcherIndex++];
2694 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2695 return N == RecordedNodes[RecNo].first;
2698 /// CheckChildSame - Implements OP_CheckChildXSame.
2699 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2700 CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2701 SDValue N,
2702 const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes,
2703 unsigned ChildNo) {
2704 if (ChildNo >= N.getNumOperands())
2705 return false; // Match fails if out of range child #.
2706 return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
2707 RecordedNodes);
2710 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2711 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2712 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2713 const SelectionDAGISel &SDISel) {
2714 return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2717 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
2718 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2719 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2720 const SelectionDAGISel &SDISel, SDNode *N) {
2721 return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2724 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2725 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2726 SDNode *N) {
2727 uint16_t Opc = MatcherTable[MatcherIndex++];
2728 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2729 return N->getOpcode() == Opc;
2732 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2733 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2734 const TargetLowering *TLI, const DataLayout &DL) {
2735 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2736 if (N.getValueType() == VT) return true;
2738 // Handle the case when VT is iPTR.
2739 return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL);
2742 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2743 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2744 SDValue N, const TargetLowering *TLI, const DataLayout &DL,
2745 unsigned ChildNo) {
2746 if (ChildNo >= N.getNumOperands())
2747 return false; // Match fails if out of range child #.
2748 return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI,
2749 DL);
2752 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2753 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2754 SDValue N) {
2755 return cast<CondCodeSDNode>(N)->get() ==
2756 (ISD::CondCode)MatcherTable[MatcherIndex++];
2759 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2760 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2761 SDValue N, const TargetLowering *TLI, const DataLayout &DL) {
2762 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2763 if (cast<VTSDNode>(N)->getVT() == VT)
2764 return true;
2766 // Handle the case when VT is iPTR.
2767 return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL);
2770 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2771 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2772 SDValue N) {
2773 int64_t Val = MatcherTable[MatcherIndex++];
2774 if (Val & 128)
2775 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2777 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2778 return C && C->getSExtValue() == Val;
2781 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2782 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2783 SDValue N, unsigned ChildNo) {
2784 if (ChildNo >= N.getNumOperands())
2785 return false; // Match fails if out of range child #.
2786 return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
2789 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2790 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2791 SDValue N, const SelectionDAGISel &SDISel) {
2792 int64_t Val = MatcherTable[MatcherIndex++];
2793 if (Val & 128)
2794 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2796 if (N->getOpcode() != ISD::AND) return false;
2798 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2799 return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2802 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2803 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2804 SDValue N, const SelectionDAGISel &SDISel) {
2805 int64_t Val = MatcherTable[MatcherIndex++];
2806 if (Val & 128)
2807 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2809 if (N->getOpcode() != ISD::OR) return false;
2811 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2812 return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2815 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
2816 /// scope, evaluate the current node. If the current predicate is known to
2817 /// fail, set Result=true and return anything. If the current predicate is
2818 /// known to pass, set Result=false and return the MatcherIndex to continue
2819 /// with. If the current predicate is unknown, set Result=false and return the
2820 /// MatcherIndex to continue with.
2821 static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2822 unsigned Index, SDValue N,
2823 bool &Result,
2824 const SelectionDAGISel &SDISel,
2825 SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2826 switch (Table[Index++]) {
2827 default:
2828 Result = false;
2829 return Index-1; // Could not evaluate this predicate.
2830 case SelectionDAGISel::OPC_CheckSame:
2831 Result = !::CheckSame(Table, Index, N, RecordedNodes);
2832 return Index;
2833 case SelectionDAGISel::OPC_CheckChild0Same:
2834 case SelectionDAGISel::OPC_CheckChild1Same:
2835 case SelectionDAGISel::OPC_CheckChild2Same:
2836 case SelectionDAGISel::OPC_CheckChild3Same:
2837 Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
2838 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
2839 return Index;
2840 case SelectionDAGISel::OPC_CheckPatternPredicate:
2841 Result = !::CheckPatternPredicate(Table, Index, SDISel);
2842 return Index;
2843 case SelectionDAGISel::OPC_CheckPredicate:
2844 Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2845 return Index;
2846 case SelectionDAGISel::OPC_CheckOpcode:
2847 Result = !::CheckOpcode(Table, Index, N.getNode());
2848 return Index;
2849 case SelectionDAGISel::OPC_CheckType:
2850 Result = !::CheckType(Table, Index, N, SDISel.TLI,
2851 SDISel.CurDAG->getDataLayout());
2852 return Index;
2853 case SelectionDAGISel::OPC_CheckTypeRes: {
2854 unsigned Res = Table[Index++];
2855 Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI,
2856 SDISel.CurDAG->getDataLayout());
2857 return Index;
2859 case SelectionDAGISel::OPC_CheckChild0Type:
2860 case SelectionDAGISel::OPC_CheckChild1Type:
2861 case SelectionDAGISel::OPC_CheckChild2Type:
2862 case SelectionDAGISel::OPC_CheckChild3Type:
2863 case SelectionDAGISel::OPC_CheckChild4Type:
2864 case SelectionDAGISel::OPC_CheckChild5Type:
2865 case SelectionDAGISel::OPC_CheckChild6Type:
2866 case SelectionDAGISel::OPC_CheckChild7Type:
2867 Result = !::CheckChildType(
2868 Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(),
2869 Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type);
2870 return Index;
2871 case SelectionDAGISel::OPC_CheckCondCode:
2872 Result = !::CheckCondCode(Table, Index, N);
2873 return Index;
2874 case SelectionDAGISel::OPC_CheckValueType:
2875 Result = !::CheckValueType(Table, Index, N, SDISel.TLI,
2876 SDISel.CurDAG->getDataLayout());
2877 return Index;
2878 case SelectionDAGISel::OPC_CheckInteger:
2879 Result = !::CheckInteger(Table, Index, N);
2880 return Index;
2881 case SelectionDAGISel::OPC_CheckChild0Integer:
2882 case SelectionDAGISel::OPC_CheckChild1Integer:
2883 case SelectionDAGISel::OPC_CheckChild2Integer:
2884 case SelectionDAGISel::OPC_CheckChild3Integer:
2885 case SelectionDAGISel::OPC_CheckChild4Integer:
2886 Result = !::CheckChildInteger(Table, Index, N,
2887 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
2888 return Index;
2889 case SelectionDAGISel::OPC_CheckAndImm:
2890 Result = !::CheckAndImm(Table, Index, N, SDISel);
2891 return Index;
2892 case SelectionDAGISel::OPC_CheckOrImm:
2893 Result = !::CheckOrImm(Table, Index, N, SDISel);
2894 return Index;
2898 namespace {
2900 struct MatchScope {
2901 /// FailIndex - If this match fails, this is the index to continue with.
2902 unsigned FailIndex;
2904 /// NodeStack - The node stack when the scope was formed.
2905 SmallVector<SDValue, 4> NodeStack;
2907 /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2908 unsigned NumRecordedNodes;
2910 /// NumMatchedMemRefs - The number of matched memref entries.
2911 unsigned NumMatchedMemRefs;
2913 /// InputChain/InputGlue - The current chain/glue
2914 SDValue InputChain, InputGlue;
2916 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2917 bool HasChainNodesMatched;
2920 /// \A DAG update listener to keep the matching state
2921 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
2922 /// change the DAG while matching. X86 addressing mode matcher is an example
2923 /// for this.
2924 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
2926 SDNode **NodeToMatch;
2927 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes;
2928 SmallVectorImpl<MatchScope> &MatchScopes;
2930 public:
2931 MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch,
2932 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN,
2933 SmallVectorImpl<MatchScope> &MS)
2934 : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch),
2935 RecordedNodes(RN), MatchScopes(MS) {}
2937 void NodeDeleted(SDNode *N, SDNode *E) override {
2938 // Some early-returns here to avoid the search if we deleted the node or
2939 // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
2940 // do, so it's unnecessary to update matching state at that point).
2941 // Neither of these can occur currently because we only install this
2942 // update listener during matching a complex patterns.
2943 if (!E || E->isMachineOpcode())
2944 return;
2945 // Check if NodeToMatch was updated.
2946 if (N == *NodeToMatch)
2947 *NodeToMatch = E;
2948 // Performing linear search here does not matter because we almost never
2949 // run this code. You'd have to have a CSE during complex pattern
2950 // matching.
2951 for (auto &I : RecordedNodes)
2952 if (I.first.getNode() == N)
2953 I.first.setNode(E);
2955 for (auto &I : MatchScopes)
2956 for (auto &J : I.NodeStack)
2957 if (J.getNode() == N)
2958 J.setNode(E);
2962 } // end anonymous namespace
2964 void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch,
2965 const unsigned char *MatcherTable,
2966 unsigned TableSize) {
2967 // FIXME: Should these even be selected? Handle these cases in the caller?
2968 switch (NodeToMatch->getOpcode()) {
2969 default:
2970 break;
2971 case ISD::EntryToken: // These nodes remain the same.
2972 case ISD::BasicBlock:
2973 case ISD::Register:
2974 case ISD::RegisterMask:
2975 case ISD::HANDLENODE:
2976 case ISD::MDNODE_SDNODE:
2977 case ISD::TargetConstant:
2978 case ISD::TargetConstantFP:
2979 case ISD::TargetConstantPool:
2980 case ISD::TargetFrameIndex:
2981 case ISD::TargetExternalSymbol:
2982 case ISD::MCSymbol:
2983 case ISD::TargetBlockAddress:
2984 case ISD::TargetJumpTable:
2985 case ISD::TargetGlobalTLSAddress:
2986 case ISD::TargetGlobalAddress:
2987 case ISD::TokenFactor:
2988 case ISD::CopyFromReg:
2989 case ISD::CopyToReg:
2990 case ISD::EH_LABEL:
2991 case ISD::ANNOTATION_LABEL:
2992 case ISD::LIFETIME_START:
2993 case ISD::LIFETIME_END:
2994 NodeToMatch->setNodeId(-1); // Mark selected.
2995 return;
2996 case ISD::AssertSext:
2997 case ISD::AssertZext:
2998 ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0));
2999 CurDAG->RemoveDeadNode(NodeToMatch);
3000 return;
3001 case ISD::INLINEASM:
3002 case ISD::INLINEASM_BR:
3003 Select_INLINEASM(NodeToMatch,
3004 NodeToMatch->getOpcode() == ISD::INLINEASM_BR);
3005 return;
3006 case ISD::READ_REGISTER:
3007 Select_READ_REGISTER(NodeToMatch);
3008 return;
3009 case ISD::WRITE_REGISTER:
3010 Select_WRITE_REGISTER(NodeToMatch);
3011 return;
3012 case ISD::UNDEF:
3013 Select_UNDEF(NodeToMatch);
3014 return;
3017 assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
3019 // Set up the node stack with NodeToMatch as the only node on the stack.
3020 SmallVector<SDValue, 8> NodeStack;
3021 SDValue N = SDValue(NodeToMatch, 0);
3022 NodeStack.push_back(N);
3024 // MatchScopes - Scopes used when matching, if a match failure happens, this
3025 // indicates where to continue checking.
3026 SmallVector<MatchScope, 8> MatchScopes;
3028 // RecordedNodes - This is the set of nodes that have been recorded by the
3029 // state machine. The second value is the parent of the node, or null if the
3030 // root is recorded.
3031 SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
3033 // MatchedMemRefs - This is the set of MemRef's we've seen in the input
3034 // pattern.
3035 SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
3037 // These are the current input chain and glue for use when generating nodes.
3038 // Various Emit operations change these. For example, emitting a copytoreg
3039 // uses and updates these.
3040 SDValue InputChain, InputGlue;
3042 // ChainNodesMatched - If a pattern matches nodes that have input/output
3043 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
3044 // which ones they are. The result is captured into this list so that we can
3045 // update the chain results when the pattern is complete.
3046 SmallVector<SDNode*, 3> ChainNodesMatched;
3048 LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n");
3050 // Determine where to start the interpreter. Normally we start at opcode #0,
3051 // but if the state machine starts with an OPC_SwitchOpcode, then we
3052 // accelerate the first lookup (which is guaranteed to be hot) with the
3053 // OpcodeOffset table.
3054 unsigned MatcherIndex = 0;
3056 if (!OpcodeOffset.empty()) {
3057 // Already computed the OpcodeOffset table, just index into it.
3058 if (N.getOpcode() < OpcodeOffset.size())
3059 MatcherIndex = OpcodeOffset[N.getOpcode()];
3060 LLVM_DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n");
3062 } else if (MatcherTable[0] == OPC_SwitchOpcode) {
3063 // Otherwise, the table isn't computed, but the state machine does start
3064 // with an OPC_SwitchOpcode instruction. Populate the table now, since this
3065 // is the first time we're selecting an instruction.
3066 unsigned Idx = 1;
3067 while (true) {
3068 // Get the size of this case.
3069 unsigned CaseSize = MatcherTable[Idx++];
3070 if (CaseSize & 128)
3071 CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
3072 if (CaseSize == 0) break;
3074 // Get the opcode, add the index to the table.
3075 uint16_t Opc = MatcherTable[Idx++];
3076 Opc |= (unsigned short)MatcherTable[Idx++] << 8;
3077 if (Opc >= OpcodeOffset.size())
3078 OpcodeOffset.resize((Opc+1)*2);
3079 OpcodeOffset[Opc] = Idx;
3080 Idx += CaseSize;
3083 // Okay, do the lookup for the first opcode.
3084 if (N.getOpcode() < OpcodeOffset.size())
3085 MatcherIndex = OpcodeOffset[N.getOpcode()];
3088 while (true) {
3089 assert(MatcherIndex < TableSize && "Invalid index");
3090 #ifndef NDEBUG
3091 unsigned CurrentOpcodeIndex = MatcherIndex;
3092 #endif
3093 BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
3094 switch (Opcode) {
3095 case OPC_Scope: {
3096 // Okay, the semantics of this operation are that we should push a scope
3097 // then evaluate the first child. However, pushing a scope only to have
3098 // the first check fail (which then pops it) is inefficient. If we can
3099 // determine immediately that the first check (or first several) will
3100 // immediately fail, don't even bother pushing a scope for them.
3101 unsigned FailIndex;
3103 while (true) {
3104 unsigned NumToSkip = MatcherTable[MatcherIndex++];
3105 if (NumToSkip & 128)
3106 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3107 // Found the end of the scope with no match.
3108 if (NumToSkip == 0) {
3109 FailIndex = 0;
3110 break;
3113 FailIndex = MatcherIndex+NumToSkip;
3115 unsigned MatcherIndexOfPredicate = MatcherIndex;
3116 (void)MatcherIndexOfPredicate; // silence warning.
3118 // If we can't evaluate this predicate without pushing a scope (e.g. if
3119 // it is a 'MoveParent') or if the predicate succeeds on this node, we
3120 // push the scope and evaluate the full predicate chain.
3121 bool Result;
3122 MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
3123 Result, *this, RecordedNodes);
3124 if (!Result)
3125 break;
3127 LLVM_DEBUG(
3128 dbgs() << " Skipped scope entry (due to false predicate) at "
3129 << "index " << MatcherIndexOfPredicate << ", continuing at "
3130 << FailIndex << "\n");
3131 ++NumDAGIselRetries;
3133 // Otherwise, we know that this case of the Scope is guaranteed to fail,
3134 // move to the next case.
3135 MatcherIndex = FailIndex;
3138 // If the whole scope failed to match, bail.
3139 if (FailIndex == 0) break;
3141 // Push a MatchScope which indicates where to go if the first child fails
3142 // to match.
3143 MatchScope NewEntry;
3144 NewEntry.FailIndex = FailIndex;
3145 NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
3146 NewEntry.NumRecordedNodes = RecordedNodes.size();
3147 NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
3148 NewEntry.InputChain = InputChain;
3149 NewEntry.InputGlue = InputGlue;
3150 NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
3151 MatchScopes.push_back(NewEntry);
3152 continue;
3154 case OPC_RecordNode: {
3155 // Remember this node, it may end up being an operand in the pattern.
3156 SDNode *Parent = nullptr;
3157 if (NodeStack.size() > 1)
3158 Parent = NodeStack[NodeStack.size()-2].getNode();
3159 RecordedNodes.push_back(std::make_pair(N, Parent));
3160 continue;
3163 case OPC_RecordChild0: case OPC_RecordChild1:
3164 case OPC_RecordChild2: case OPC_RecordChild3:
3165 case OPC_RecordChild4: case OPC_RecordChild5:
3166 case OPC_RecordChild6: case OPC_RecordChild7: {
3167 unsigned ChildNo = Opcode-OPC_RecordChild0;
3168 if (ChildNo >= N.getNumOperands())
3169 break; // Match fails if out of range child #.
3171 RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
3172 N.getNode()));
3173 continue;
3175 case OPC_RecordMemRef:
3176 if (auto *MN = dyn_cast<MemSDNode>(N))
3177 MatchedMemRefs.push_back(MN->getMemOperand());
3178 else {
3179 LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG);
3180 dbgs() << '\n');
3183 continue;
3185 case OPC_CaptureGlueInput:
3186 // If the current node has an input glue, capture it in InputGlue.
3187 if (N->getNumOperands() != 0 &&
3188 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
3189 InputGlue = N->getOperand(N->getNumOperands()-1);
3190 continue;
3192 case OPC_MoveChild: {
3193 unsigned ChildNo = MatcherTable[MatcherIndex++];
3194 if (ChildNo >= N.getNumOperands())
3195 break; // Match fails if out of range child #.
3196 N = N.getOperand(ChildNo);
3197 NodeStack.push_back(N);
3198 continue;
3201 case OPC_MoveChild0: case OPC_MoveChild1:
3202 case OPC_MoveChild2: case OPC_MoveChild3:
3203 case OPC_MoveChild4: case OPC_MoveChild5:
3204 case OPC_MoveChild6: case OPC_MoveChild7: {
3205 unsigned ChildNo = Opcode-OPC_MoveChild0;
3206 if (ChildNo >= N.getNumOperands())
3207 break; // Match fails if out of range child #.
3208 N = N.getOperand(ChildNo);
3209 NodeStack.push_back(N);
3210 continue;
3213 case OPC_MoveParent:
3214 // Pop the current node off the NodeStack.
3215 NodeStack.pop_back();
3216 assert(!NodeStack.empty() && "Node stack imbalance!");
3217 N = NodeStack.back();
3218 continue;
3220 case OPC_CheckSame:
3221 if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
3222 continue;
3224 case OPC_CheckChild0Same: case OPC_CheckChild1Same:
3225 case OPC_CheckChild2Same: case OPC_CheckChild3Same:
3226 if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
3227 Opcode-OPC_CheckChild0Same))
3228 break;
3229 continue;
3231 case OPC_CheckPatternPredicate:
3232 if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
3233 continue;
3234 case OPC_CheckPredicate:
3235 if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
3236 N.getNode()))
3237 break;
3238 continue;
3239 case OPC_CheckPredicateWithOperands: {
3240 unsigned OpNum = MatcherTable[MatcherIndex++];
3241 SmallVector<SDValue, 8> Operands;
3243 for (unsigned i = 0; i < OpNum; ++i)
3244 Operands.push_back(RecordedNodes[MatcherTable[MatcherIndex++]].first);
3246 unsigned PredNo = MatcherTable[MatcherIndex++];
3247 if (!CheckNodePredicateWithOperands(N.getNode(), PredNo, Operands))
3248 break;
3249 continue;
3251 case OPC_CheckComplexPat: {
3252 unsigned CPNum = MatcherTable[MatcherIndex++];
3253 unsigned RecNo = MatcherTable[MatcherIndex++];
3254 assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
3256 // If target can modify DAG during matching, keep the matching state
3257 // consistent.
3258 std::unique_ptr<MatchStateUpdater> MSU;
3259 if (ComplexPatternFuncMutatesDAG())
3260 MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes,
3261 MatchScopes));
3263 if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
3264 RecordedNodes[RecNo].first, CPNum,
3265 RecordedNodes))
3266 break;
3267 continue;
3269 case OPC_CheckOpcode:
3270 if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
3271 continue;
3273 case OPC_CheckType:
3274 if (!::CheckType(MatcherTable, MatcherIndex, N, TLI,
3275 CurDAG->getDataLayout()))
3276 break;
3277 continue;
3279 case OPC_CheckTypeRes: {
3280 unsigned Res = MatcherTable[MatcherIndex++];
3281 if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI,
3282 CurDAG->getDataLayout()))
3283 break;
3284 continue;
3287 case OPC_SwitchOpcode: {
3288 unsigned CurNodeOpcode = N.getOpcode();
3289 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3290 unsigned CaseSize;
3291 while (true) {
3292 // Get the size of this case.
3293 CaseSize = MatcherTable[MatcherIndex++];
3294 if (CaseSize & 128)
3295 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3296 if (CaseSize == 0) break;
3298 uint16_t Opc = MatcherTable[MatcherIndex++];
3299 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3301 // If the opcode matches, then we will execute this case.
3302 if (CurNodeOpcode == Opc)
3303 break;
3305 // Otherwise, skip over this case.
3306 MatcherIndex += CaseSize;
3309 // If no cases matched, bail out.
3310 if (CaseSize == 0) break;
3312 // Otherwise, execute the case we found.
3313 LLVM_DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart << " to "
3314 << MatcherIndex << "\n");
3315 continue;
3318 case OPC_SwitchType: {
3319 MVT CurNodeVT = N.getSimpleValueType();
3320 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3321 unsigned CaseSize;
3322 while (true) {
3323 // Get the size of this case.
3324 CaseSize = MatcherTable[MatcherIndex++];
3325 if (CaseSize & 128)
3326 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3327 if (CaseSize == 0) break;
3329 MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3330 if (CaseVT == MVT::iPTR)
3331 CaseVT = TLI->getPointerTy(CurDAG->getDataLayout());
3333 // If the VT matches, then we will execute this case.
3334 if (CurNodeVT == CaseVT)
3335 break;
3337 // Otherwise, skip over this case.
3338 MatcherIndex += CaseSize;
3341 // If no cases matched, bail out.
3342 if (CaseSize == 0) break;
3344 // Otherwise, execute the case we found.
3345 LLVM_DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString()
3346 << "] from " << SwitchStart << " to " << MatcherIndex
3347 << '\n');
3348 continue;
3350 case OPC_CheckChild0Type: case OPC_CheckChild1Type:
3351 case OPC_CheckChild2Type: case OPC_CheckChild3Type:
3352 case OPC_CheckChild4Type: case OPC_CheckChild5Type:
3353 case OPC_CheckChild6Type: case OPC_CheckChild7Type:
3354 if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
3355 CurDAG->getDataLayout(),
3356 Opcode - OPC_CheckChild0Type))
3357 break;
3358 continue;
3359 case OPC_CheckCondCode:
3360 if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
3361 continue;
3362 case OPC_CheckValueType:
3363 if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI,
3364 CurDAG->getDataLayout()))
3365 break;
3366 continue;
3367 case OPC_CheckInteger:
3368 if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
3369 continue;
3370 case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
3371 case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
3372 case OPC_CheckChild4Integer:
3373 if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
3374 Opcode-OPC_CheckChild0Integer)) break;
3375 continue;
3376 case OPC_CheckAndImm:
3377 if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
3378 continue;
3379 case OPC_CheckOrImm:
3380 if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
3381 continue;
3383 case OPC_CheckFoldableChainNode: {
3384 assert(NodeStack.size() != 1 && "No parent node");
3385 // Verify that all intermediate nodes between the root and this one have
3386 // a single use.
3387 bool HasMultipleUses = false;
3388 for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
3389 if (!NodeStack[i].getNode()->hasOneUse()) {
3390 HasMultipleUses = true;
3391 break;
3393 if (HasMultipleUses) break;
3395 // Check to see that the target thinks this is profitable to fold and that
3396 // we can fold it without inducing cycles in the graph.
3397 if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3398 NodeToMatch) ||
3399 !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3400 NodeToMatch, OptLevel,
3401 true/*We validate our own chains*/))
3402 break;
3404 continue;
3406 case OPC_EmitInteger: {
3407 MVT::SimpleValueType VT =
3408 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3409 int64_t Val = MatcherTable[MatcherIndex++];
3410 if (Val & 128)
3411 Val = GetVBR(Val, MatcherTable, MatcherIndex);
3412 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3413 CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch),
3414 VT), nullptr));
3415 continue;
3417 case OPC_EmitRegister: {
3418 MVT::SimpleValueType VT =
3419 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3420 unsigned RegNo = MatcherTable[MatcherIndex++];
3421 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3422 CurDAG->getRegister(RegNo, VT), nullptr));
3423 continue;
3425 case OPC_EmitRegister2: {
3426 // For targets w/ more than 256 register names, the register enum
3427 // values are stored in two bytes in the matcher table (just like
3428 // opcodes).
3429 MVT::SimpleValueType VT =
3430 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3431 unsigned RegNo = MatcherTable[MatcherIndex++];
3432 RegNo |= MatcherTable[MatcherIndex++] << 8;
3433 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3434 CurDAG->getRegister(RegNo, VT), nullptr));
3435 continue;
3438 case OPC_EmitConvertToTarget: {
3439 // Convert from IMM/FPIMM to target version.
3440 unsigned RecNo = MatcherTable[MatcherIndex++];
3441 assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
3442 SDValue Imm = RecordedNodes[RecNo].first;
3444 if (Imm->getOpcode() == ISD::Constant) {
3445 const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
3446 Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch),
3447 Imm.getValueType());
3448 } else if (Imm->getOpcode() == ISD::ConstantFP) {
3449 const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
3450 Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch),
3451 Imm.getValueType());
3454 RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
3455 continue;
3458 case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0
3459 case OPC_EmitMergeInputChains1_1: // OPC_EmitMergeInputChains, 1, 1
3460 case OPC_EmitMergeInputChains1_2: { // OPC_EmitMergeInputChains, 1, 2
3461 // These are space-optimized forms of OPC_EmitMergeInputChains.
3462 assert(!InputChain.getNode() &&
3463 "EmitMergeInputChains should be the first chain producing node");
3464 assert(ChainNodesMatched.empty() &&
3465 "Should only have one EmitMergeInputChains per match");
3467 // Read all of the chained nodes.
3468 unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0;
3469 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3470 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3472 // FIXME: What if other value results of the node have uses not matched
3473 // by this pattern?
3474 if (ChainNodesMatched.back() != NodeToMatch &&
3475 !RecordedNodes[RecNo].first.hasOneUse()) {
3476 ChainNodesMatched.clear();
3477 break;
3480 // Merge the input chains if they are not intra-pattern references.
3481 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3483 if (!InputChain.getNode())
3484 break; // Failed to merge.
3485 continue;
3488 case OPC_EmitMergeInputChains: {
3489 assert(!InputChain.getNode() &&
3490 "EmitMergeInputChains should be the first chain producing node");
3491 // This node gets a list of nodes we matched in the input that have
3492 // chains. We want to token factor all of the input chains to these nodes
3493 // together. However, if any of the input chains is actually one of the
3494 // nodes matched in this pattern, then we have an intra-match reference.
3495 // Ignore these because the newly token factored chain should not refer to
3496 // the old nodes.
3497 unsigned NumChains = MatcherTable[MatcherIndex++];
3498 assert(NumChains != 0 && "Can't TF zero chains");
3500 assert(ChainNodesMatched.empty() &&
3501 "Should only have one EmitMergeInputChains per match");
3503 // Read all of the chained nodes.
3504 for (unsigned i = 0; i != NumChains; ++i) {
3505 unsigned RecNo = MatcherTable[MatcherIndex++];
3506 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3507 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3509 // FIXME: What if other value results of the node have uses not matched
3510 // by this pattern?
3511 if (ChainNodesMatched.back() != NodeToMatch &&
3512 !RecordedNodes[RecNo].first.hasOneUse()) {
3513 ChainNodesMatched.clear();
3514 break;
3518 // If the inner loop broke out, the match fails.
3519 if (ChainNodesMatched.empty())
3520 break;
3522 // Merge the input chains if they are not intra-pattern references.
3523 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3525 if (!InputChain.getNode())
3526 break; // Failed to merge.
3528 continue;
3531 case OPC_EmitCopyToReg: {
3532 unsigned RecNo = MatcherTable[MatcherIndex++];
3533 assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
3534 unsigned DestPhysReg = MatcherTable[MatcherIndex++];
3536 if (!InputChain.getNode())
3537 InputChain = CurDAG->getEntryNode();
3539 InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
3540 DestPhysReg, RecordedNodes[RecNo].first,
3541 InputGlue);
3543 InputGlue = InputChain.getValue(1);
3544 continue;
3547 case OPC_EmitNodeXForm: {
3548 unsigned XFormNo = MatcherTable[MatcherIndex++];
3549 unsigned RecNo = MatcherTable[MatcherIndex++];
3550 assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
3551 SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
3552 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
3553 continue;
3555 case OPC_Coverage: {
3556 // This is emitted right before MorphNode/EmitNode.
3557 // So it should be safe to assume that this node has been selected
3558 unsigned index = MatcherTable[MatcherIndex++];
3559 index |= (MatcherTable[MatcherIndex++] << 8);
3560 dbgs() << "COVERED: " << getPatternForIndex(index) << "\n";
3561 dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n";
3562 continue;
3565 case OPC_EmitNode: case OPC_MorphNodeTo:
3566 case OPC_EmitNode0: case OPC_EmitNode1: case OPC_EmitNode2:
3567 case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: {
3568 uint16_t TargetOpc = MatcherTable[MatcherIndex++];
3569 TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3570 unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
3571 // Get the result VT list.
3572 unsigned NumVTs;
3573 // If this is one of the compressed forms, get the number of VTs based
3574 // on the Opcode. Otherwise read the next byte from the table.
3575 if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2)
3576 NumVTs = Opcode - OPC_MorphNodeTo0;
3577 else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2)
3578 NumVTs = Opcode - OPC_EmitNode0;
3579 else
3580 NumVTs = MatcherTable[MatcherIndex++];
3581 SmallVector<EVT, 4> VTs;
3582 for (unsigned i = 0; i != NumVTs; ++i) {
3583 MVT::SimpleValueType VT =
3584 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3585 if (VT == MVT::iPTR)
3586 VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy;
3587 VTs.push_back(VT);
3590 if (EmitNodeInfo & OPFL_Chain)
3591 VTs.push_back(MVT::Other);
3592 if (EmitNodeInfo & OPFL_GlueOutput)
3593 VTs.push_back(MVT::Glue);
3595 // This is hot code, so optimize the two most common cases of 1 and 2
3596 // results.
3597 SDVTList VTList;
3598 if (VTs.size() == 1)
3599 VTList = CurDAG->getVTList(VTs[0]);
3600 else if (VTs.size() == 2)
3601 VTList = CurDAG->getVTList(VTs[0], VTs[1]);
3602 else
3603 VTList = CurDAG->getVTList(VTs);
3605 // Get the operand list.
3606 unsigned NumOps = MatcherTable[MatcherIndex++];
3607 SmallVector<SDValue, 8> Ops;
3608 for (unsigned i = 0; i != NumOps; ++i) {
3609 unsigned RecNo = MatcherTable[MatcherIndex++];
3610 if (RecNo & 128)
3611 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
3613 assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
3614 Ops.push_back(RecordedNodes[RecNo].first);
3617 // If there are variadic operands to add, handle them now.
3618 if (EmitNodeInfo & OPFL_VariadicInfo) {
3619 // Determine the start index to copy from.
3620 unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
3621 FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
3622 assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
3623 "Invalid variadic node");
3624 // Copy all of the variadic operands, not including a potential glue
3625 // input.
3626 for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
3627 i != e; ++i) {
3628 SDValue V = NodeToMatch->getOperand(i);
3629 if (V.getValueType() == MVT::Glue) break;
3630 Ops.push_back(V);
3634 // If this has chain/glue inputs, add them.
3635 if (EmitNodeInfo & OPFL_Chain)
3636 Ops.push_back(InputChain);
3637 if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
3638 Ops.push_back(InputGlue);
3640 // Create the node.
3641 MachineSDNode *Res = nullptr;
3642 bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo ||
3643 (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2);
3644 if (!IsMorphNodeTo) {
3645 // If this is a normal EmitNode command, just create the new node and
3646 // add the results to the RecordedNodes list.
3647 Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
3648 VTList, Ops);
3650 // Add all the non-glue/non-chain results to the RecordedNodes list.
3651 for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
3652 if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
3653 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
3654 nullptr));
3656 } else {
3657 assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE &&
3658 "NodeToMatch was removed partway through selection");
3659 SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N,
3660 SDNode *E) {
3661 CurDAG->salvageDebugInfo(*N);
3662 auto &Chain = ChainNodesMatched;
3663 assert((!E || !is_contained(Chain, N)) &&
3664 "Chain node replaced during MorphNode");
3665 Chain.erase(std::remove(Chain.begin(), Chain.end(), N), Chain.end());
3667 Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList,
3668 Ops, EmitNodeInfo));
3671 // If the node had chain/glue results, update our notion of the current
3672 // chain and glue.
3673 if (EmitNodeInfo & OPFL_GlueOutput) {
3674 InputGlue = SDValue(Res, VTs.size()-1);
3675 if (EmitNodeInfo & OPFL_Chain)
3676 InputChain = SDValue(Res, VTs.size()-2);
3677 } else if (EmitNodeInfo & OPFL_Chain)
3678 InputChain = SDValue(Res, VTs.size()-1);
3680 // If the OPFL_MemRefs glue is set on this node, slap all of the
3681 // accumulated memrefs onto it.
3683 // FIXME: This is vastly incorrect for patterns with multiple outputs
3684 // instructions that access memory and for ComplexPatterns that match
3685 // loads.
3686 if (EmitNodeInfo & OPFL_MemRefs) {
3687 // Only attach load or store memory operands if the generated
3688 // instruction may load or store.
3689 const MCInstrDesc &MCID = TII->get(TargetOpc);
3690 bool mayLoad = MCID.mayLoad();
3691 bool mayStore = MCID.mayStore();
3693 // We expect to have relatively few of these so just filter them into a
3694 // temporary buffer so that we can easily add them to the instruction.
3695 SmallVector<MachineMemOperand *, 4> FilteredMemRefs;
3696 for (MachineMemOperand *MMO : MatchedMemRefs) {
3697 if (MMO->isLoad()) {
3698 if (mayLoad)
3699 FilteredMemRefs.push_back(MMO);
3700 } else if (MMO->isStore()) {
3701 if (mayStore)
3702 FilteredMemRefs.push_back(MMO);
3703 } else {
3704 FilteredMemRefs.push_back(MMO);
3708 CurDAG->setNodeMemRefs(Res, FilteredMemRefs);
3711 LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs()
3712 << " Dropping mem operands\n";
3713 dbgs() << " " << (IsMorphNodeTo ? "Morphed" : "Created")
3714 << " node: ";
3715 Res->dump(CurDAG););
3717 // If this was a MorphNodeTo then we're completely done!
3718 if (IsMorphNodeTo) {
3719 // Update chain uses.
3720 UpdateChains(Res, InputChain, ChainNodesMatched, true);
3721 return;
3723 continue;
3726 case OPC_CompleteMatch: {
3727 // The match has been completed, and any new nodes (if any) have been
3728 // created. Patch up references to the matched dag to use the newly
3729 // created nodes.
3730 unsigned NumResults = MatcherTable[MatcherIndex++];
3732 for (unsigned i = 0; i != NumResults; ++i) {
3733 unsigned ResSlot = MatcherTable[MatcherIndex++];
3734 if (ResSlot & 128)
3735 ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
3737 assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
3738 SDValue Res = RecordedNodes[ResSlot].first;
3740 assert(i < NodeToMatch->getNumValues() &&
3741 NodeToMatch->getValueType(i) != MVT::Other &&
3742 NodeToMatch->getValueType(i) != MVT::Glue &&
3743 "Invalid number of results to complete!");
3744 assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
3745 NodeToMatch->getValueType(i) == MVT::iPTR ||
3746 Res.getValueType() == MVT::iPTR ||
3747 NodeToMatch->getValueType(i).getSizeInBits() ==
3748 Res.getValueSizeInBits()) &&
3749 "invalid replacement");
3750 ReplaceUses(SDValue(NodeToMatch, i), Res);
3753 // Update chain uses.
3754 UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false);
3756 // If the root node defines glue, we need to update it to the glue result.
3757 // TODO: This never happens in our tests and I think it can be removed /
3758 // replaced with an assert, but if we do it this the way the change is
3759 // NFC.
3760 if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) ==
3761 MVT::Glue &&
3762 InputGlue.getNode())
3763 ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1),
3764 InputGlue);
3766 assert(NodeToMatch->use_empty() &&
3767 "Didn't replace all uses of the node?");
3768 CurDAG->RemoveDeadNode(NodeToMatch);
3770 return;
3774 // If the code reached this point, then the match failed. See if there is
3775 // another child to try in the current 'Scope', otherwise pop it until we
3776 // find a case to check.
3777 LLVM_DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex
3778 << "\n");
3779 ++NumDAGIselRetries;
3780 while (true) {
3781 if (MatchScopes.empty()) {
3782 CannotYetSelect(NodeToMatch);
3783 return;
3786 // Restore the interpreter state back to the point where the scope was
3787 // formed.
3788 MatchScope &LastScope = MatchScopes.back();
3789 RecordedNodes.resize(LastScope.NumRecordedNodes);
3790 NodeStack.clear();
3791 NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
3792 N = NodeStack.back();
3794 if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
3795 MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
3796 MatcherIndex = LastScope.FailIndex;
3798 LLVM_DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n");
3800 InputChain = LastScope.InputChain;
3801 InputGlue = LastScope.InputGlue;
3802 if (!LastScope.HasChainNodesMatched)
3803 ChainNodesMatched.clear();
3805 // Check to see what the offset is at the new MatcherIndex. If it is zero
3806 // we have reached the end of this scope, otherwise we have another child
3807 // in the current scope to try.
3808 unsigned NumToSkip = MatcherTable[MatcherIndex++];
3809 if (NumToSkip & 128)
3810 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3812 // If we have another child in this scope to match, update FailIndex and
3813 // try it.
3814 if (NumToSkip != 0) {
3815 LastScope.FailIndex = MatcherIndex+NumToSkip;
3816 break;
3819 // End of this scope, pop it and try the next child in the containing
3820 // scope.
3821 MatchScopes.pop_back();
3826 bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const {
3827 assert(N->getOpcode() == ISD::OR && "Unexpected opcode");
3828 auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
3829 if (!C)
3830 return false;
3832 // Detect when "or" is used to add an offset to a stack object.
3833 if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) {
3834 MachineFrameInfo &MFI = MF->getFrameInfo();
3835 unsigned A = MFI.getObjectAlignment(FN->getIndex());
3836 assert(isPowerOf2_32(A) && "Unexpected alignment");
3837 int32_t Off = C->getSExtValue();
3838 // If the alleged offset fits in the zero bits guaranteed by
3839 // the alignment, then this or is really an add.
3840 return (Off >= 0) && (((A - 1) & Off) == unsigned(Off));
3842 return false;
3845 void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3846 std::string msg;
3847 raw_string_ostream Msg(msg);
3848 Msg << "Cannot select: ";
3850 if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3851 N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3852 N->getOpcode() != ISD::INTRINSIC_VOID) {
3853 N->printrFull(Msg, CurDAG);
3854 Msg << "\nIn function: " << MF->getName();
3855 } else {
3856 bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3857 unsigned iid =
3858 cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3859 if (iid < Intrinsic::num_intrinsics)
3860 Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid, None);
3861 else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3862 Msg << "target intrinsic %" << TII->getName(iid);
3863 else
3864 Msg << "unknown intrinsic #" << iid;
3866 report_fatal_error(Msg.str());
3869 char SelectionDAGISel::ID = 0;