1 //===- llvm/Target/TargetSchedule.cpp - Sched Machine Model ---------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements a wrapper around MCSchedModel that allows the interface
10 // to benefit from information currently only available in TargetInstrInfo.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/TargetSchedule.h"
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/CodeGen/MachineInstr.h"
17 #include "llvm/CodeGen/MachineOperand.h"
18 #include "llvm/CodeGen/TargetInstrInfo.h"
19 #include "llvm/CodeGen/TargetRegisterInfo.h"
20 #include "llvm/CodeGen/TargetSubtargetInfo.h"
21 #include "llvm/MC/MCInstrDesc.h"
22 #include "llvm/MC/MCInstrItineraries.h"
23 #include "llvm/MC/MCSchedule.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/raw_ostream.h"
33 static cl::opt
<bool> EnableSchedModel("schedmodel", cl::Hidden
, cl::init(true),
34 cl::desc("Use TargetSchedModel for latency lookup"));
36 static cl::opt
<bool> EnableSchedItins("scheditins", cl::Hidden
, cl::init(true),
37 cl::desc("Use InstrItineraryData for latency lookup"));
39 bool TargetSchedModel::hasInstrSchedModel() const {
40 return EnableSchedModel
&& SchedModel
.hasInstrSchedModel();
43 bool TargetSchedModel::hasInstrItineraries() const {
44 return EnableSchedItins
&& !InstrItins
.isEmpty();
47 static unsigned gcd(unsigned Dividend
, unsigned Divisor
) {
48 // Dividend and Divisor will be naturally swapped as needed.
50 unsigned Rem
= Dividend
% Divisor
;
57 static unsigned lcm(unsigned A
, unsigned B
) {
58 unsigned LCM
= (uint64_t(A
) * B
) / gcd(A
, B
);
59 assert((LCM
>= A
&& LCM
>= B
) && "LCM overflow");
63 void TargetSchedModel::init(const TargetSubtargetInfo
*TSInfo
) {
65 SchedModel
= TSInfo
->getSchedModel();
66 TII
= TSInfo
->getInstrInfo();
67 STI
->initInstrItins(InstrItins
);
69 unsigned NumRes
= SchedModel
.getNumProcResourceKinds();
70 ResourceFactors
.resize(NumRes
);
71 ResourceLCM
= SchedModel
.IssueWidth
;
72 for (unsigned Idx
= 0; Idx
< NumRes
; ++Idx
) {
73 unsigned NumUnits
= SchedModel
.getProcResource(Idx
)->NumUnits
;
75 ResourceLCM
= lcm(ResourceLCM
, NumUnits
);
77 MicroOpFactor
= ResourceLCM
/ SchedModel
.IssueWidth
;
78 for (unsigned Idx
= 0; Idx
< NumRes
; ++Idx
) {
79 unsigned NumUnits
= SchedModel
.getProcResource(Idx
)->NumUnits
;
80 ResourceFactors
[Idx
] = NumUnits
? (ResourceLCM
/ NumUnits
) : 0;
84 /// Returns true only if instruction is specified as single issue.
85 bool TargetSchedModel::mustBeginGroup(const MachineInstr
*MI
,
86 const MCSchedClassDesc
*SC
) const {
87 if (hasInstrSchedModel()) {
89 SC
= resolveSchedClass(MI
);
91 return SC
->BeginGroup
;
96 bool TargetSchedModel::mustEndGroup(const MachineInstr
*MI
,
97 const MCSchedClassDesc
*SC
) const {
98 if (hasInstrSchedModel()) {
100 SC
= resolveSchedClass(MI
);
107 unsigned TargetSchedModel::getNumMicroOps(const MachineInstr
*MI
,
108 const MCSchedClassDesc
*SC
) const {
109 if (hasInstrItineraries()) {
110 int UOps
= InstrItins
.getNumMicroOps(MI
->getDesc().getSchedClass());
111 return (UOps
>= 0) ? UOps
: TII
->getNumMicroOps(&InstrItins
, *MI
);
113 if (hasInstrSchedModel()) {
115 SC
= resolveSchedClass(MI
);
117 return SC
->NumMicroOps
;
119 return MI
->isTransient() ? 0 : 1;
122 // The machine model may explicitly specify an invalid latency, which
123 // effectively means infinite latency. Since users of the TargetSchedule API
124 // don't know how to handle this, we convert it to a very large latency that is
125 // easy to distinguish when debugging the DAG but won't induce overflow.
126 static unsigned capLatency(int Cycles
) {
127 return Cycles
>= 0 ? Cycles
: 1000;
130 /// Return the MCSchedClassDesc for this instruction. Some SchedClasses require
131 /// evaluation of predicates that depend on instruction operands or flags.
132 const MCSchedClassDesc
*TargetSchedModel::
133 resolveSchedClass(const MachineInstr
*MI
) const {
134 // Get the definition's scheduling class descriptor from this machine model.
135 unsigned SchedClass
= MI
->getDesc().getSchedClass();
136 const MCSchedClassDesc
*SCDesc
= SchedModel
.getSchedClassDesc(SchedClass
);
137 if (!SCDesc
->isValid())
143 while (SCDesc
->isVariant()) {
144 assert(++NIter
< 6 && "Variants are nested deeper than the magic number");
146 SchedClass
= STI
->resolveSchedClass(SchedClass
, MI
, this);
147 SCDesc
= SchedModel
.getSchedClassDesc(SchedClass
);
152 /// Find the def index of this operand. This index maps to the machine model and
153 /// is independent of use operands. Def operands may be reordered with uses or
154 /// merged with uses without affecting the def index (e.g. before/after
155 /// regalloc). However, an instruction's def operands must never be reordered
156 /// with respect to each other.
157 static unsigned findDefIdx(const MachineInstr
*MI
, unsigned DefOperIdx
) {
159 for (unsigned i
= 0; i
!= DefOperIdx
; ++i
) {
160 const MachineOperand
&MO
= MI
->getOperand(i
);
161 if (MO
.isReg() && MO
.isDef())
167 /// Find the use index of this operand. This is independent of the instruction's
170 /// Note that uses are not determined by the operand's isUse property, which
171 /// is simply the inverse of isDef. Here we consider any readsReg operand to be
172 /// a "use". The machine model allows an operand to be both a Def and Use.
173 static unsigned findUseIdx(const MachineInstr
*MI
, unsigned UseOperIdx
) {
175 for (unsigned i
= 0; i
!= UseOperIdx
; ++i
) {
176 const MachineOperand
&MO
= MI
->getOperand(i
);
177 if (MO
.isReg() && MO
.readsReg() && !MO
.isDef())
183 // Top-level API for clients that know the operand indices.
184 unsigned TargetSchedModel::computeOperandLatency(
185 const MachineInstr
*DefMI
, unsigned DefOperIdx
,
186 const MachineInstr
*UseMI
, unsigned UseOperIdx
) const {
188 if (!hasInstrSchedModel() && !hasInstrItineraries())
189 return TII
->defaultDefLatency(SchedModel
, *DefMI
);
191 if (hasInstrItineraries()) {
194 OperLatency
= TII
->getOperandLatency(&InstrItins
, *DefMI
, DefOperIdx
,
198 unsigned DefClass
= DefMI
->getDesc().getSchedClass();
199 OperLatency
= InstrItins
.getOperandCycle(DefClass
, DefOperIdx
);
201 if (OperLatency
>= 0)
204 // No operand latency was found.
205 unsigned InstrLatency
= TII
->getInstrLatency(&InstrItins
, *DefMI
);
207 // Expected latency is the max of the stage latency and itinerary props.
208 // Rather than directly querying InstrItins stage latency, we call a TII
209 // hook to allow subtargets to specialize latency. This hook is only
210 // applicable to the InstrItins model. InstrSchedModel should model all
211 // special cases without TII hooks.
213 std::max(InstrLatency
, TII
->defaultDefLatency(SchedModel
, *DefMI
));
216 // hasInstrSchedModel()
217 const MCSchedClassDesc
*SCDesc
= resolveSchedClass(DefMI
);
218 unsigned DefIdx
= findDefIdx(DefMI
, DefOperIdx
);
219 if (DefIdx
< SCDesc
->NumWriteLatencyEntries
) {
220 // Lookup the definition's write latency in SubtargetInfo.
221 const MCWriteLatencyEntry
*WLEntry
=
222 STI
->getWriteLatencyEntry(SCDesc
, DefIdx
);
223 unsigned WriteID
= WLEntry
->WriteResourceID
;
224 unsigned Latency
= capLatency(WLEntry
->Cycles
);
228 // Lookup the use's latency adjustment in SubtargetInfo.
229 const MCSchedClassDesc
*UseDesc
= resolveSchedClass(UseMI
);
230 if (UseDesc
->NumReadAdvanceEntries
== 0)
232 unsigned UseIdx
= findUseIdx(UseMI
, UseOperIdx
);
233 int Advance
= STI
->getReadAdvanceCycles(UseDesc
, UseIdx
, WriteID
);
234 if (Advance
> 0 && (unsigned)Advance
> Latency
) // unsigned wrap
236 return Latency
- Advance
;
238 // If DefIdx does not exist in the model (e.g. implicit defs), then return
239 // unit latency (defaultDefLatency may be too conservative).
241 if (SCDesc
->isValid() && !DefMI
->getOperand(DefOperIdx
).isImplicit()
242 && !DefMI
->getDesc().OpInfo
[DefOperIdx
].isOptionalDef()
243 && SchedModel
.isComplete()) {
244 errs() << "DefIdx " << DefIdx
<< " exceeds machine model writes for "
245 << *DefMI
<< " (Try with MCSchedModel.CompleteModel set to false)";
246 llvm_unreachable("incomplete machine model");
249 // FIXME: Automatically giving all implicit defs defaultDefLatency is
250 // undesirable. We should only do it for defs that are known to the MC
251 // desc like flags. Truly implicit defs should get 1 cycle latency.
252 return DefMI
->isTransient() ? 0 : TII
->defaultDefLatency(SchedModel
, *DefMI
);
256 TargetSchedModel::computeInstrLatency(const MCSchedClassDesc
&SCDesc
) const {
257 return capLatency(MCSchedModel::computeInstrLatency(*STI
, SCDesc
));
260 unsigned TargetSchedModel::computeInstrLatency(unsigned Opcode
) const {
261 assert(hasInstrSchedModel() && "Only call this function with a SchedModel");
262 unsigned SCIdx
= TII
->get(Opcode
).getSchedClass();
263 return capLatency(SchedModel
.computeInstrLatency(*STI
, SCIdx
));
266 unsigned TargetSchedModel::computeInstrLatency(const MCInst
&Inst
) const {
267 if (hasInstrSchedModel())
268 return capLatency(SchedModel
.computeInstrLatency(*STI
, *TII
, Inst
));
269 return computeInstrLatency(Inst
.getOpcode());
273 TargetSchedModel::computeInstrLatency(const MachineInstr
*MI
,
274 bool UseDefaultDefLatency
) const {
275 // For the itinerary model, fall back to the old subtarget hook.
276 // Allow subtargets to compute Bundle latencies outside the machine model.
277 if (hasInstrItineraries() || MI
->isBundle() ||
278 (!hasInstrSchedModel() && !UseDefaultDefLatency
))
279 return TII
->getInstrLatency(&InstrItins
, *MI
);
281 if (hasInstrSchedModel()) {
282 const MCSchedClassDesc
*SCDesc
= resolveSchedClass(MI
);
283 if (SCDesc
->isValid())
284 return computeInstrLatency(*SCDesc
);
286 return TII
->defaultDefLatency(SchedModel
, *MI
);
289 unsigned TargetSchedModel::
290 computeOutputLatency(const MachineInstr
*DefMI
, unsigned DefOperIdx
,
291 const MachineInstr
*DepMI
) const {
292 if (!SchedModel
.isOutOfOrder())
295 // Out-of-order processor can dispatch WAW dependencies in the same cycle.
297 // Treat predication as a data dependency for out-of-order cpus. In-order
298 // cpus do not need to treat predicated writes specially.
300 // TODO: The following hack exists because predication passes do not
301 // correctly append imp-use operands, and readsReg() strangely returns false
302 // for predicated defs.
303 unsigned Reg
= DefMI
->getOperand(DefOperIdx
).getReg();
304 const MachineFunction
&MF
= *DefMI
->getMF();
305 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
306 if (!DepMI
->readsRegister(Reg
, TRI
) && TII
->isPredicated(*DepMI
))
307 return computeInstrLatency(DefMI
);
309 // If we have a per operand scheduling model, check if this def is writing
310 // an unbuffered resource. If so, it treated like an in-order cpu.
311 if (hasInstrSchedModel()) {
312 const MCSchedClassDesc
*SCDesc
= resolveSchedClass(DefMI
);
313 if (SCDesc
->isValid()) {
314 for (const MCWriteProcResEntry
*PRI
= STI
->getWriteProcResBegin(SCDesc
),
315 *PRE
= STI
->getWriteProcResEnd(SCDesc
); PRI
!= PRE
; ++PRI
) {
316 if (!SchedModel
.getProcResource(PRI
->ProcResourceIdx
)->BufferSize
)
325 TargetSchedModel::computeReciprocalThroughput(const MachineInstr
*MI
) const {
326 if (hasInstrItineraries()) {
327 unsigned SchedClass
= MI
->getDesc().getSchedClass();
328 return MCSchedModel::getReciprocalThroughput(SchedClass
,
329 *getInstrItineraries());
332 if (hasInstrSchedModel())
333 return MCSchedModel::getReciprocalThroughput(*STI
, *resolveSchedClass(MI
));
339 TargetSchedModel::computeReciprocalThroughput(unsigned Opcode
) const {
340 unsigned SchedClass
= TII
->get(Opcode
).getSchedClass();
341 if (hasInstrItineraries())
342 return MCSchedModel::getReciprocalThroughput(SchedClass
,
343 *getInstrItineraries());
344 if (hasInstrSchedModel()) {
345 const MCSchedClassDesc
&SCDesc
= *SchedModel
.getSchedClassDesc(SchedClass
);
346 if (SCDesc
.isValid() && !SCDesc
.isVariant())
347 return MCSchedModel::getReciprocalThroughput(*STI
, SCDesc
);
354 TargetSchedModel::computeReciprocalThroughput(const MCInst
&MI
) const {
355 if (hasInstrSchedModel())
356 return SchedModel
.getReciprocalThroughput(*STI
, *TII
, MI
);
357 return computeReciprocalThroughput(MI
.getOpcode());