Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Target / AMDGPU / AMDGPUISelDAGToDAG.cpp
blob2cdd691fc109e2c8f38e5c4c825168174b965af8
1 //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //==-----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Defines an instruction selector for the AMDGPU target.
12 //===----------------------------------------------------------------------===//
14 #include "AMDGPU.h"
15 #include "AMDGPUArgumentUsageInfo.h"
16 #include "AMDGPUISelLowering.h" // For AMDGPUISD
17 #include "AMDGPUInstrInfo.h"
18 #include "AMDGPUPerfHintAnalysis.h"
19 #include "AMDGPURegisterInfo.h"
20 #include "AMDGPUSubtarget.h"
21 #include "AMDGPUTargetMachine.h"
22 #include "SIDefines.h"
23 #include "SIISelLowering.h"
24 #include "SIInstrInfo.h"
25 #include "SIMachineFunctionInfo.h"
26 #include "SIRegisterInfo.h"
27 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/CodeGen/FunctionLoweringInfo.h"
34 #include "llvm/CodeGen/ISDOpcodes.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/SelectionDAG.h"
38 #include "llvm/CodeGen/SelectionDAGISel.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/ValueTypes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/MC/MCInstrDesc.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/CodeGen.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/MachineValueType.h"
48 #include "llvm/Support/MathExtras.h"
49 #include <cassert>
50 #include <cstdint>
51 #include <new>
52 #include <vector>
54 using namespace llvm;
56 namespace llvm {
58 class R600InstrInfo;
60 } // end namespace llvm
62 //===----------------------------------------------------------------------===//
63 // Instruction Selector Implementation
64 //===----------------------------------------------------------------------===//
66 namespace {
68 /// AMDGPU specific code to select AMDGPU machine instructions for
69 /// SelectionDAG operations.
70 class AMDGPUDAGToDAGISel : public SelectionDAGISel {
71 // Subtarget - Keep a pointer to the AMDGPU Subtarget around so that we can
72 // make the right decision when generating code for different targets.
73 const GCNSubtarget *Subtarget;
74 bool EnableLateStructurizeCFG;
76 public:
77 explicit AMDGPUDAGToDAGISel(TargetMachine *TM = nullptr,
78 CodeGenOpt::Level OptLevel = CodeGenOpt::Default)
79 : SelectionDAGISel(*TM, OptLevel) {
80 EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG;
82 ~AMDGPUDAGToDAGISel() override = default;
84 void getAnalysisUsage(AnalysisUsage &AU) const override {
85 AU.addRequired<AMDGPUArgumentUsageInfo>();
86 AU.addRequired<AMDGPUPerfHintAnalysis>();
87 AU.addRequired<LegacyDivergenceAnalysis>();
88 SelectionDAGISel::getAnalysisUsage(AU);
91 bool runOnMachineFunction(MachineFunction &MF) override;
92 void Select(SDNode *N) override;
93 StringRef getPassName() const override;
94 void PostprocessISelDAG() override;
96 protected:
97 void SelectBuildVector(SDNode *N, unsigned RegClassID);
99 private:
100 std::pair<SDValue, SDValue> foldFrameIndex(SDValue N) const;
101 bool isNoNanSrc(SDValue N) const;
102 bool isInlineImmediate(const SDNode *N) const;
103 bool isVGPRImm(const SDNode *N) const;
104 bool isUniformLoad(const SDNode *N) const;
105 bool isUniformBr(const SDNode *N) const;
107 MachineSDNode *buildSMovImm64(SDLoc &DL, uint64_t Val, EVT VT) const;
109 SDNode *glueCopyToM0LDSInit(SDNode *N) const;
110 SDNode *glueCopyToM0(SDNode *N, SDValue Val) const;
112 const TargetRegisterClass *getOperandRegClass(SDNode *N, unsigned OpNo) const;
113 virtual bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset);
114 virtual bool SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset);
115 bool isDSOffsetLegal(SDValue Base, unsigned Offset,
116 unsigned OffsetBits) const;
117 bool SelectDS1Addr1Offset(SDValue Ptr, SDValue &Base, SDValue &Offset) const;
118 bool SelectDS64Bit4ByteAligned(SDValue Ptr, SDValue &Base, SDValue &Offset0,
119 SDValue &Offset1) const;
120 bool SelectMUBUF(SDValue Addr, SDValue &SRsrc, SDValue &VAddr,
121 SDValue &SOffset, SDValue &Offset, SDValue &Offen,
122 SDValue &Idxen, SDValue &Addr64, SDValue &GLC, SDValue &SLC,
123 SDValue &TFE) const;
124 bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, SDValue &VAddr,
125 SDValue &SOffset, SDValue &Offset, SDValue &GLC,
126 SDValue &SLC, SDValue &TFE) const;
127 bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
128 SDValue &VAddr, SDValue &SOffset, SDValue &Offset,
129 SDValue &SLC) const;
130 bool SelectMUBUFScratchOffen(SDNode *Parent,
131 SDValue Addr, SDValue &RSrc, SDValue &VAddr,
132 SDValue &SOffset, SDValue &ImmOffset) const;
133 bool SelectMUBUFScratchOffset(SDNode *Parent,
134 SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
135 SDValue &Offset) const;
137 bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &SOffset,
138 SDValue &Offset, SDValue &GLC, SDValue &SLC,
139 SDValue &TFE) const;
140 bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
141 SDValue &Offset, SDValue &SLC) const;
142 bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
143 SDValue &Offset) const;
145 bool SelectFlatAtomic(SDValue Addr, SDValue &VAddr,
146 SDValue &Offset, SDValue &SLC) const;
147 bool SelectFlatAtomicSigned(SDValue Addr, SDValue &VAddr,
148 SDValue &Offset, SDValue &SLC) const;
150 template <bool IsSigned>
151 bool SelectFlatOffset(SDValue Addr, SDValue &VAddr,
152 SDValue &Offset, SDValue &SLC) const;
154 bool SelectSMRDOffset(SDValue ByteOffsetNode, SDValue &Offset,
155 bool &Imm) const;
156 SDValue Expand32BitAddress(SDValue Addr) const;
157 bool SelectSMRD(SDValue Addr, SDValue &SBase, SDValue &Offset,
158 bool &Imm) const;
159 bool SelectSMRDImm(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
160 bool SelectSMRDImm32(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
161 bool SelectSMRDSgpr(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
162 bool SelectSMRDBufferImm(SDValue Addr, SDValue &Offset) const;
163 bool SelectSMRDBufferImm32(SDValue Addr, SDValue &Offset) const;
164 bool SelectMOVRELOffset(SDValue Index, SDValue &Base, SDValue &Offset) const;
166 bool SelectVOP3Mods_NNaN(SDValue In, SDValue &Src, SDValue &SrcMods) const;
167 bool SelectVOP3ModsImpl(SDValue In, SDValue &Src, unsigned &SrcMods) const;
168 bool SelectVOP3Mods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
169 bool SelectVOP3NoMods(SDValue In, SDValue &Src) const;
170 bool SelectVOP3Mods0(SDValue In, SDValue &Src, SDValue &SrcMods,
171 SDValue &Clamp, SDValue &Omod) const;
172 bool SelectVOP3NoMods0(SDValue In, SDValue &Src, SDValue &SrcMods,
173 SDValue &Clamp, SDValue &Omod) const;
175 bool SelectVOP3Mods0Clamp0OMod(SDValue In, SDValue &Src, SDValue &SrcMods,
176 SDValue &Clamp,
177 SDValue &Omod) const;
179 bool SelectVOP3OMods(SDValue In, SDValue &Src,
180 SDValue &Clamp, SDValue &Omod) const;
182 bool SelectVOP3PMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
183 bool SelectVOP3PMods0(SDValue In, SDValue &Src, SDValue &SrcMods,
184 SDValue &Clamp) const;
186 bool SelectVOP3OpSel(SDValue In, SDValue &Src, SDValue &SrcMods) const;
187 bool SelectVOP3OpSel0(SDValue In, SDValue &Src, SDValue &SrcMods,
188 SDValue &Clamp) const;
190 bool SelectVOP3OpSelMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
191 bool SelectVOP3OpSelMods0(SDValue In, SDValue &Src, SDValue &SrcMods,
192 SDValue &Clamp) const;
193 bool SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, unsigned &Mods) const;
194 bool SelectVOP3PMadMixMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
196 bool SelectHi16Elt(SDValue In, SDValue &Src) const;
198 void SelectADD_SUB_I64(SDNode *N);
199 void SelectUADDO_USUBO(SDNode *N);
200 void SelectDIV_SCALE(SDNode *N);
201 void SelectMAD_64_32(SDNode *N);
202 void SelectFMA_W_CHAIN(SDNode *N);
203 void SelectFMUL_W_CHAIN(SDNode *N);
205 SDNode *getS_BFE(unsigned Opcode, const SDLoc &DL, SDValue Val,
206 uint32_t Offset, uint32_t Width);
207 void SelectS_BFEFromShifts(SDNode *N);
208 void SelectS_BFE(SDNode *N);
209 bool isCBranchSCC(const SDNode *N) const;
210 void SelectBRCOND(SDNode *N);
211 void SelectFMAD_FMA(SDNode *N);
212 void SelectATOMIC_CMP_SWAP(SDNode *N);
213 void SelectINTRINSIC_W_CHAIN(SDNode *N);
215 protected:
216 // Include the pieces autogenerated from the target description.
217 #include "AMDGPUGenDAGISel.inc"
220 class R600DAGToDAGISel : public AMDGPUDAGToDAGISel {
221 const R600Subtarget *Subtarget;
223 bool isConstantLoad(const MemSDNode *N, int cbID) const;
224 bool SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr);
225 bool SelectGlobalValueVariableOffset(SDValue Addr, SDValue &BaseReg,
226 SDValue& Offset);
227 public:
228 explicit R600DAGToDAGISel(TargetMachine *TM, CodeGenOpt::Level OptLevel) :
229 AMDGPUDAGToDAGISel(TM, OptLevel) {}
231 void Select(SDNode *N) override;
233 bool SelectADDRIndirect(SDValue Addr, SDValue &Base,
234 SDValue &Offset) override;
235 bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
236 SDValue &Offset) override;
238 bool runOnMachineFunction(MachineFunction &MF) override;
239 protected:
240 // Include the pieces autogenerated from the target description.
241 #include "R600GenDAGISel.inc"
244 } // end anonymous namespace
246 INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel, "amdgpu-isel",
247 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false)
248 INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo)
249 INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis)
250 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
251 INITIALIZE_PASS_END(AMDGPUDAGToDAGISel, "amdgpu-isel",
252 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false)
254 /// This pass converts a legalized DAG into a AMDGPU-specific
255 // DAG, ready for instruction scheduling.
256 FunctionPass *llvm::createAMDGPUISelDag(TargetMachine *TM,
257 CodeGenOpt::Level OptLevel) {
258 return new AMDGPUDAGToDAGISel(TM, OptLevel);
261 /// This pass converts a legalized DAG into a R600-specific
262 // DAG, ready for instruction scheduling.
263 FunctionPass *llvm::createR600ISelDag(TargetMachine *TM,
264 CodeGenOpt::Level OptLevel) {
265 return new R600DAGToDAGISel(TM, OptLevel);
268 bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
269 Subtarget = &MF.getSubtarget<GCNSubtarget>();
270 return SelectionDAGISel::runOnMachineFunction(MF);
273 bool AMDGPUDAGToDAGISel::isNoNanSrc(SDValue N) const {
274 if (TM.Options.NoNaNsFPMath)
275 return true;
277 // TODO: Move into isKnownNeverNaN
278 if (N->getFlags().isDefined())
279 return N->getFlags().hasNoNaNs();
281 return CurDAG->isKnownNeverNaN(N);
284 bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N) const {
285 const SIInstrInfo *TII = Subtarget->getInstrInfo();
287 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N))
288 return TII->isInlineConstant(C->getAPIntValue());
290 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N))
291 return TII->isInlineConstant(C->getValueAPF().bitcastToAPInt());
293 return false;
296 /// Determine the register class for \p OpNo
297 /// \returns The register class of the virtual register that will be used for
298 /// the given operand number \OpNo or NULL if the register class cannot be
299 /// determined.
300 const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N,
301 unsigned OpNo) const {
302 if (!N->isMachineOpcode()) {
303 if (N->getOpcode() == ISD::CopyToReg) {
304 unsigned Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
305 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
306 MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo();
307 return MRI.getRegClass(Reg);
310 const SIRegisterInfo *TRI
311 = static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo();
312 return TRI->getPhysRegClass(Reg);
315 return nullptr;
318 switch (N->getMachineOpcode()) {
319 default: {
320 const MCInstrDesc &Desc =
321 Subtarget->getInstrInfo()->get(N->getMachineOpcode());
322 unsigned OpIdx = Desc.getNumDefs() + OpNo;
323 if (OpIdx >= Desc.getNumOperands())
324 return nullptr;
325 int RegClass = Desc.OpInfo[OpIdx].RegClass;
326 if (RegClass == -1)
327 return nullptr;
329 return Subtarget->getRegisterInfo()->getRegClass(RegClass);
331 case AMDGPU::REG_SEQUENCE: {
332 unsigned RCID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
333 const TargetRegisterClass *SuperRC =
334 Subtarget->getRegisterInfo()->getRegClass(RCID);
336 SDValue SubRegOp = N->getOperand(OpNo + 1);
337 unsigned SubRegIdx = cast<ConstantSDNode>(SubRegOp)->getZExtValue();
338 return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC,
339 SubRegIdx);
344 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const {
345 const SITargetLowering& Lowering =
346 *static_cast<const SITargetLowering*>(getTargetLowering());
348 // Write max value to m0 before each load operation
350 SDValue M0 = Lowering.copyToM0(*CurDAG, CurDAG->getEntryNode(), SDLoc(N),
351 Val);
353 SDValue Glue = M0.getValue(1);
355 SmallVector <SDValue, 8> Ops;
356 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
357 Ops.push_back(N->getOperand(i));
359 Ops.push_back(Glue);
360 return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops);
363 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const {
364 if (cast<MemSDNode>(N)->getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS ||
365 !Subtarget->ldsRequiresM0Init())
366 return N;
367 return glueCopyToM0(N, CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32));
370 MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm,
371 EVT VT) const {
372 SDNode *Lo = CurDAG->getMachineNode(
373 AMDGPU::S_MOV_B32, DL, MVT::i32,
374 CurDAG->getConstant(Imm & 0xFFFFFFFF, DL, MVT::i32));
375 SDNode *Hi =
376 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32,
377 CurDAG->getConstant(Imm >> 32, DL, MVT::i32));
378 const SDValue Ops[] = {
379 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32),
380 SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
381 SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)};
383 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops);
386 static unsigned selectSGPRVectorRegClassID(unsigned NumVectorElts) {
387 switch (NumVectorElts) {
388 case 1:
389 return AMDGPU::SReg_32_XM0RegClassID;
390 case 2:
391 return AMDGPU::SReg_64RegClassID;
392 case 4:
393 return AMDGPU::SReg_128RegClassID;
394 case 8:
395 return AMDGPU::SReg_256RegClassID;
396 case 16:
397 return AMDGPU::SReg_512RegClassID;
400 llvm_unreachable("invalid vector size");
403 static bool getConstantValue(SDValue N, uint32_t &Out) {
404 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) {
405 Out = C->getAPIntValue().getZExtValue();
406 return true;
409 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) {
410 Out = C->getValueAPF().bitcastToAPInt().getZExtValue();
411 return true;
414 return false;
417 void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) {
418 EVT VT = N->getValueType(0);
419 unsigned NumVectorElts = VT.getVectorNumElements();
420 EVT EltVT = VT.getVectorElementType();
421 SDLoc DL(N);
422 SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32);
424 if (NumVectorElts == 1) {
425 CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0),
426 RegClass);
427 return;
430 assert(NumVectorElts <= 16 && "Vectors with more than 16 elements not "
431 "supported yet");
432 // 16 = Max Num Vector Elements
433 // 2 = 2 REG_SEQUENCE operands per element (value, subreg index)
434 // 1 = Vector Register Class
435 SmallVector<SDValue, 16 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1);
437 RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32);
438 bool IsRegSeq = true;
439 unsigned NOps = N->getNumOperands();
440 for (unsigned i = 0; i < NOps; i++) {
441 // XXX: Why is this here?
442 if (isa<RegisterSDNode>(N->getOperand(i))) {
443 IsRegSeq = false;
444 break;
446 unsigned Sub = AMDGPURegisterInfo::getSubRegFromChannel(i);
447 RegSeqArgs[1 + (2 * i)] = N->getOperand(i);
448 RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32);
450 if (NOps != NumVectorElts) {
451 // Fill in the missing undef elements if this was a scalar_to_vector.
452 assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts);
453 MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
454 DL, EltVT);
455 for (unsigned i = NOps; i < NumVectorElts; ++i) {
456 unsigned Sub = AMDGPURegisterInfo::getSubRegFromChannel(i);
457 RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0);
458 RegSeqArgs[1 + (2 * i) + 1] =
459 CurDAG->getTargetConstant(Sub, DL, MVT::i32);
463 if (!IsRegSeq)
464 SelectCode(N);
465 CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs);
468 void AMDGPUDAGToDAGISel::Select(SDNode *N) {
469 unsigned int Opc = N->getOpcode();
470 if (N->isMachineOpcode()) {
471 N->setNodeId(-1);
472 return; // Already selected.
475 if (isa<AtomicSDNode>(N) ||
476 (Opc == AMDGPUISD::ATOMIC_INC || Opc == AMDGPUISD::ATOMIC_DEC ||
477 Opc == ISD::ATOMIC_LOAD_FADD ||
478 Opc == AMDGPUISD::ATOMIC_LOAD_FMIN ||
479 Opc == AMDGPUISD::ATOMIC_LOAD_FMAX))
480 N = glueCopyToM0LDSInit(N);
482 switch (Opc) {
483 default:
484 break;
485 // We are selecting i64 ADD here instead of custom lower it during
486 // DAG legalization, so we can fold some i64 ADDs used for address
487 // calculation into the LOAD and STORE instructions.
488 case ISD::ADDC:
489 case ISD::ADDE:
490 case ISD::SUBC:
491 case ISD::SUBE: {
492 if (N->getValueType(0) != MVT::i64)
493 break;
495 SelectADD_SUB_I64(N);
496 return;
498 case ISD::UADDO:
499 case ISD::USUBO: {
500 SelectUADDO_USUBO(N);
501 return;
503 case AMDGPUISD::FMUL_W_CHAIN: {
504 SelectFMUL_W_CHAIN(N);
505 return;
507 case AMDGPUISD::FMA_W_CHAIN: {
508 SelectFMA_W_CHAIN(N);
509 return;
512 case ISD::SCALAR_TO_VECTOR:
513 case ISD::BUILD_VECTOR: {
514 EVT VT = N->getValueType(0);
515 unsigned NumVectorElts = VT.getVectorNumElements();
516 if (VT.getScalarSizeInBits() == 16) {
517 if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) {
518 uint32_t LHSVal, RHSVal;
519 if (getConstantValue(N->getOperand(0), LHSVal) &&
520 getConstantValue(N->getOperand(1), RHSVal)) {
521 uint32_t K = LHSVal | (RHSVal << 16);
522 CurDAG->SelectNodeTo(N, AMDGPU::S_MOV_B32, VT,
523 CurDAG->getTargetConstant(K, SDLoc(N), MVT::i32));
524 return;
528 break;
531 assert(VT.getVectorElementType().bitsEq(MVT::i32));
532 unsigned RegClassID = selectSGPRVectorRegClassID(NumVectorElts);
533 SelectBuildVector(N, RegClassID);
534 return;
536 case ISD::BUILD_PAIR: {
537 SDValue RC, SubReg0, SubReg1;
538 SDLoc DL(N);
539 if (N->getValueType(0) == MVT::i128) {
540 RC = CurDAG->getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32);
541 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32);
542 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32);
543 } else if (N->getValueType(0) == MVT::i64) {
544 RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32);
545 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
546 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
547 } else {
548 llvm_unreachable("Unhandled value type for BUILD_PAIR");
550 const SDValue Ops[] = { RC, N->getOperand(0), SubReg0,
551 N->getOperand(1), SubReg1 };
552 ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL,
553 N->getValueType(0), Ops));
554 return;
557 case ISD::Constant:
558 case ISD::ConstantFP: {
559 if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N))
560 break;
562 uint64_t Imm;
563 if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N))
564 Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue();
565 else {
566 ConstantSDNode *C = cast<ConstantSDNode>(N);
567 Imm = C->getZExtValue();
570 SDLoc DL(N);
571 ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0)));
572 return;
574 case ISD::LOAD:
575 case ISD::STORE:
576 case ISD::ATOMIC_LOAD:
577 case ISD::ATOMIC_STORE: {
578 N = glueCopyToM0LDSInit(N);
579 break;
582 case AMDGPUISD::BFE_I32:
583 case AMDGPUISD::BFE_U32: {
584 // There is a scalar version available, but unlike the vector version which
585 // has a separate operand for the offset and width, the scalar version packs
586 // the width and offset into a single operand. Try to move to the scalar
587 // version if the offsets are constant, so that we can try to keep extended
588 // loads of kernel arguments in SGPRs.
590 // TODO: Technically we could try to pattern match scalar bitshifts of
591 // dynamic values, but it's probably not useful.
592 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
593 if (!Offset)
594 break;
596 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
597 if (!Width)
598 break;
600 bool Signed = Opc == AMDGPUISD::BFE_I32;
602 uint32_t OffsetVal = Offset->getZExtValue();
603 uint32_t WidthVal = Width->getZExtValue();
605 ReplaceNode(N, getS_BFE(Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32,
606 SDLoc(N), N->getOperand(0), OffsetVal, WidthVal));
607 return;
609 case AMDGPUISD::DIV_SCALE: {
610 SelectDIV_SCALE(N);
611 return;
613 case AMDGPUISD::MAD_I64_I32:
614 case AMDGPUISD::MAD_U64_U32: {
615 SelectMAD_64_32(N);
616 return;
618 case ISD::CopyToReg: {
619 const SITargetLowering& Lowering =
620 *static_cast<const SITargetLowering*>(getTargetLowering());
621 N = Lowering.legalizeTargetIndependentNode(N, *CurDAG);
622 break;
624 case ISD::AND:
625 case ISD::SRL:
626 case ISD::SRA:
627 case ISD::SIGN_EXTEND_INREG:
628 if (N->getValueType(0) != MVT::i32)
629 break;
631 SelectS_BFE(N);
632 return;
633 case ISD::BRCOND:
634 SelectBRCOND(N);
635 return;
636 case ISD::FMAD:
637 case ISD::FMA:
638 SelectFMAD_FMA(N);
639 return;
640 case AMDGPUISD::ATOMIC_CMP_SWAP:
641 SelectATOMIC_CMP_SWAP(N);
642 return;
643 case AMDGPUISD::CVT_PKRTZ_F16_F32:
644 case AMDGPUISD::CVT_PKNORM_I16_F32:
645 case AMDGPUISD::CVT_PKNORM_U16_F32:
646 case AMDGPUISD::CVT_PK_U16_U32:
647 case AMDGPUISD::CVT_PK_I16_I32: {
648 // Hack around using a legal type if f16 is illegal.
649 if (N->getValueType(0) == MVT::i32) {
650 MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16;
651 N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT),
652 { N->getOperand(0), N->getOperand(1) });
653 SelectCode(N);
654 return;
657 break;
659 case ISD::INTRINSIC_W_CHAIN: {
660 SelectINTRINSIC_W_CHAIN(N);
661 return;
665 SelectCode(N);
668 bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const {
669 const BasicBlock *BB = FuncInfo->MBB->getBasicBlock();
670 const Instruction *Term = BB->getTerminator();
671 return Term->getMetadata("amdgpu.uniform") ||
672 Term->getMetadata("structurizecfg.uniform");
675 StringRef AMDGPUDAGToDAGISel::getPassName() const {
676 return "AMDGPU DAG->DAG Pattern Instruction Selection";
679 //===----------------------------------------------------------------------===//
680 // Complex Patterns
681 //===----------------------------------------------------------------------===//
683 bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
684 SDValue &Offset) {
685 return false;
688 bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base,
689 SDValue &Offset) {
690 ConstantSDNode *C;
691 SDLoc DL(Addr);
693 if ((C = dyn_cast<ConstantSDNode>(Addr))) {
694 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
695 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
696 } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) &&
697 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) {
698 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
699 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
700 } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
701 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
702 Base = Addr.getOperand(0);
703 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
704 } else {
705 Base = Addr;
706 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
709 return true;
712 // FIXME: Should only handle addcarry/subcarry
713 void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) {
714 SDLoc DL(N);
715 SDValue LHS = N->getOperand(0);
716 SDValue RHS = N->getOperand(1);
718 unsigned Opcode = N->getOpcode();
719 bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE);
720 bool ProduceCarry =
721 ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC;
722 bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE;
724 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
725 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
727 SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
728 DL, MVT::i32, LHS, Sub0);
729 SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
730 DL, MVT::i32, LHS, Sub1);
732 SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
733 DL, MVT::i32, RHS, Sub0);
734 SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
735 DL, MVT::i32, RHS, Sub1);
737 SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue);
739 unsigned Opc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
740 unsigned CarryOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
742 SDNode *AddLo;
743 if (!ConsumeCarry) {
744 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) };
745 AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args);
746 } else {
747 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) };
748 AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args);
750 SDValue AddHiArgs[] = {
751 SDValue(Hi0, 0),
752 SDValue(Hi1, 0),
753 SDValue(AddLo, 1)
755 SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs);
757 SDValue RegSequenceArgs[] = {
758 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32),
759 SDValue(AddLo,0),
760 Sub0,
761 SDValue(AddHi,0),
762 Sub1,
764 SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL,
765 MVT::i64, RegSequenceArgs);
767 if (ProduceCarry) {
768 // Replace the carry-use
769 ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1));
772 // Replace the remaining uses.
773 ReplaceNode(N, RegSequence);
776 void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) {
777 // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned
778 // carry out despite the _i32 name. These were renamed in VI to _U32.
779 // FIXME: We should probably rename the opcodes here.
780 unsigned Opc = N->getOpcode() == ISD::UADDO ?
781 AMDGPU::V_ADD_I32_e64 : AMDGPU::V_SUB_I32_e64;
783 CurDAG->SelectNodeTo(N, Opc, N->getVTList(),
784 { N->getOperand(0), N->getOperand(1) });
787 void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) {
788 SDLoc SL(N);
789 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, omod
790 SDValue Ops[10];
792 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]);
793 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]);
794 SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]);
795 Ops[8] = N->getOperand(0);
796 Ops[9] = N->getOperand(4);
798 CurDAG->SelectNodeTo(N, AMDGPU::V_FMA_F32, N->getVTList(), Ops);
801 void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) {
802 SDLoc SL(N);
803 // src0_modifiers, src0, src1_modifiers, src1, clamp, omod
804 SDValue Ops[8];
806 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]);
807 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]);
808 Ops[6] = N->getOperand(0);
809 Ops[7] = N->getOperand(3);
811 CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops);
814 // We need to handle this here because tablegen doesn't support matching
815 // instructions with multiple outputs.
816 void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) {
817 SDLoc SL(N);
818 EVT VT = N->getValueType(0);
820 assert(VT == MVT::f32 || VT == MVT::f64);
822 unsigned Opc
823 = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64 : AMDGPU::V_DIV_SCALE_F32;
825 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2) };
826 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
829 // We need to handle this here because tablegen doesn't support matching
830 // instructions with multiple outputs.
831 void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) {
832 SDLoc SL(N);
833 bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32;
834 unsigned Opc = Signed ? AMDGPU::V_MAD_I64_I32 : AMDGPU::V_MAD_U64_U32;
836 SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1);
837 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
838 Clamp };
839 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
842 bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset,
843 unsigned OffsetBits) const {
844 if ((OffsetBits == 16 && !isUInt<16>(Offset)) ||
845 (OffsetBits == 8 && !isUInt<8>(Offset)))
846 return false;
848 if (Subtarget->getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS ||
849 Subtarget->unsafeDSOffsetFoldingEnabled())
850 return true;
852 // On Southern Islands instruction with a negative base value and an offset
853 // don't seem to work.
854 return CurDAG->SignBitIsZero(Base);
857 bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base,
858 SDValue &Offset) const {
859 SDLoc DL(Addr);
860 if (CurDAG->isBaseWithConstantOffset(Addr)) {
861 SDValue N0 = Addr.getOperand(0);
862 SDValue N1 = Addr.getOperand(1);
863 ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
864 if (isDSOffsetLegal(N0, C1->getSExtValue(), 16)) {
865 // (add n0, c0)
866 Base = N0;
867 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
868 return true;
870 } else if (Addr.getOpcode() == ISD::SUB) {
871 // sub C, x -> add (sub 0, x), C
872 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) {
873 int64_t ByteOffset = C->getSExtValue();
874 if (isUInt<16>(ByteOffset)) {
875 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
877 // XXX - This is kind of hacky. Create a dummy sub node so we can check
878 // the known bits in isDSOffsetLegal. We need to emit the selected node
879 // here, so this is thrown away.
880 SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32,
881 Zero, Addr.getOperand(1));
883 if (isDSOffsetLegal(Sub, ByteOffset, 16)) {
884 // FIXME: Select to VOP3 version for with-carry.
885 unsigned SubOp = Subtarget->hasAddNoCarry() ?
886 AMDGPU::V_SUB_U32_e64 : AMDGPU::V_SUB_I32_e32;
888 MachineSDNode *MachineSub
889 = CurDAG->getMachineNode(SubOp, DL, MVT::i32,
890 Zero, Addr.getOperand(1));
892 Base = SDValue(MachineSub, 0);
893 Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16);
894 return true;
898 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
899 // If we have a constant address, prefer to put the constant into the
900 // offset. This can save moves to load the constant address since multiple
901 // operations can share the zero base address register, and enables merging
902 // into read2 / write2 instructions.
904 SDLoc DL(Addr);
906 if (isUInt<16>(CAddr->getZExtValue())) {
907 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
908 MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
909 DL, MVT::i32, Zero);
910 Base = SDValue(MovZero, 0);
911 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16);
912 return true;
916 // default case
917 Base = Addr;
918 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16);
919 return true;
922 // TODO: If offset is too big, put low 16-bit into offset.
923 bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base,
924 SDValue &Offset0,
925 SDValue &Offset1) const {
926 SDLoc DL(Addr);
928 if (CurDAG->isBaseWithConstantOffset(Addr)) {
929 SDValue N0 = Addr.getOperand(0);
930 SDValue N1 = Addr.getOperand(1);
931 ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
932 unsigned DWordOffset0 = C1->getZExtValue() / 4;
933 unsigned DWordOffset1 = DWordOffset0 + 1;
934 // (add n0, c0)
935 if (isDSOffsetLegal(N0, DWordOffset1, 8)) {
936 Base = N0;
937 Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8);
938 Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8);
939 return true;
941 } else if (Addr.getOpcode() == ISD::SUB) {
942 // sub C, x -> add (sub 0, x), C
943 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) {
944 unsigned DWordOffset0 = C->getZExtValue() / 4;
945 unsigned DWordOffset1 = DWordOffset0 + 1;
947 if (isUInt<8>(DWordOffset0)) {
948 SDLoc DL(Addr);
949 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
951 // XXX - This is kind of hacky. Create a dummy sub node so we can check
952 // the known bits in isDSOffsetLegal. We need to emit the selected node
953 // here, so this is thrown away.
954 SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32,
955 Zero, Addr.getOperand(1));
957 if (isDSOffsetLegal(Sub, DWordOffset1, 8)) {
958 unsigned SubOp = Subtarget->hasAddNoCarry() ?
959 AMDGPU::V_SUB_U32_e64 : AMDGPU::V_SUB_I32_e32;
961 MachineSDNode *MachineSub
962 = CurDAG->getMachineNode(SubOp, DL, MVT::i32,
963 Zero, Addr.getOperand(1));
965 Base = SDValue(MachineSub, 0);
966 Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8);
967 Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8);
968 return true;
972 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
973 unsigned DWordOffset0 = CAddr->getZExtValue() / 4;
974 unsigned DWordOffset1 = DWordOffset0 + 1;
975 assert(4 * DWordOffset0 == CAddr->getZExtValue());
977 if (isUInt<8>(DWordOffset0) && isUInt<8>(DWordOffset1)) {
978 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
979 MachineSDNode *MovZero
980 = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
981 DL, MVT::i32, Zero);
982 Base = SDValue(MovZero, 0);
983 Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8);
984 Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8);
985 return true;
989 // default case
991 Base = Addr;
992 Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8);
993 Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8);
994 return true;
997 bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr,
998 SDValue &VAddr, SDValue &SOffset,
999 SDValue &Offset, SDValue &Offen,
1000 SDValue &Idxen, SDValue &Addr64,
1001 SDValue &GLC, SDValue &SLC,
1002 SDValue &TFE) const {
1003 // Subtarget prefers to use flat instruction
1004 if (Subtarget->useFlatForGlobal())
1005 return false;
1007 SDLoc DL(Addr);
1009 if (!GLC.getNode())
1010 GLC = CurDAG->getTargetConstant(0, DL, MVT::i1);
1011 if (!SLC.getNode())
1012 SLC = CurDAG->getTargetConstant(0, DL, MVT::i1);
1013 TFE = CurDAG->getTargetConstant(0, DL, MVT::i1);
1015 Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1);
1016 Offen = CurDAG->getTargetConstant(0, DL, MVT::i1);
1017 Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1);
1018 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1020 ConstantSDNode *C1 = nullptr;
1021 SDValue N0 = Addr;
1022 if (CurDAG->isBaseWithConstantOffset(Addr)) {
1023 C1 = cast<ConstantSDNode>(Addr.getOperand(1));
1024 if (isUInt<32>(C1->getZExtValue()))
1025 N0 = Addr.getOperand(0);
1026 else
1027 C1 = nullptr;
1030 if (N0.getOpcode() == ISD::ADD) {
1031 // (add N2, N3) -> addr64, or
1032 // (add (add N2, N3), C1) -> addr64
1033 SDValue N2 = N0.getOperand(0);
1034 SDValue N3 = N0.getOperand(1);
1035 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1);
1037 if (N2->isDivergent()) {
1038 if (N3->isDivergent()) {
1039 // Both N2 and N3 are divergent. Use N0 (the result of the add) as the
1040 // addr64, and construct the resource from a 0 address.
1041 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0);
1042 VAddr = N0;
1043 } else {
1044 // N2 is divergent, N3 is not.
1045 Ptr = N3;
1046 VAddr = N2;
1048 } else {
1049 // N2 is not divergent.
1050 Ptr = N2;
1051 VAddr = N3;
1053 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1054 } else if (N0->isDivergent()) {
1055 // N0 is divergent. Use it as the addr64, and construct the resource from a
1056 // 0 address.
1057 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0);
1058 VAddr = N0;
1059 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1);
1060 } else {
1061 // N0 -> offset, or
1062 // (N0 + C1) -> offset
1063 VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32);
1064 Ptr = N0;
1067 if (!C1) {
1068 // No offset.
1069 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1070 return true;
1073 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue())) {
1074 // Legal offset for instruction.
1075 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
1076 return true;
1079 // Illegal offset, store it in soffset.
1080 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1081 SOffset =
1082 SDValue(CurDAG->getMachineNode(
1083 AMDGPU::S_MOV_B32, DL, MVT::i32,
1084 CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)),
1086 return true;
1089 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
1090 SDValue &VAddr, SDValue &SOffset,
1091 SDValue &Offset, SDValue &GLC,
1092 SDValue &SLC, SDValue &TFE) const {
1093 SDValue Ptr, Offen, Idxen, Addr64;
1095 // addr64 bit was removed for volcanic islands.
1096 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
1097 return false;
1099 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64,
1100 GLC, SLC, TFE))
1101 return false;
1103 ConstantSDNode *C = cast<ConstantSDNode>(Addr64);
1104 if (C->getSExtValue()) {
1105 SDLoc DL(Addr);
1107 const SITargetLowering& Lowering =
1108 *static_cast<const SITargetLowering*>(getTargetLowering());
1110 SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0);
1111 return true;
1114 return false;
1117 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
1118 SDValue &VAddr, SDValue &SOffset,
1119 SDValue &Offset,
1120 SDValue &SLC) const {
1121 SLC = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i1);
1122 SDValue GLC, TFE;
1124 return SelectMUBUFAddr64(Addr, SRsrc, VAddr, SOffset, Offset, GLC, SLC, TFE);
1127 static bool isStackPtrRelative(const MachinePointerInfo &PtrInfo) {
1128 auto PSV = PtrInfo.V.dyn_cast<const PseudoSourceValue *>();
1129 return PSV && PSV->isStack();
1132 std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const {
1133 const MachineFunction &MF = CurDAG->getMachineFunction();
1134 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1136 if (auto FI = dyn_cast<FrameIndexSDNode>(N)) {
1137 SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(),
1138 FI->getValueType(0));
1140 // If we can resolve this to a frame index access, this is relative to the
1141 // frame pointer SGPR.
1142 return std::make_pair(TFI, CurDAG->getRegister(Info->getFrameOffsetReg(),
1143 MVT::i32));
1146 // If we don't know this private access is a local stack object, it needs to
1147 // be relative to the entry point's scratch wave offset register.
1148 return std::make_pair(N, CurDAG->getRegister(Info->getScratchWaveOffsetReg(),
1149 MVT::i32));
1152 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent,
1153 SDValue Addr, SDValue &Rsrc,
1154 SDValue &VAddr, SDValue &SOffset,
1155 SDValue &ImmOffset) const {
1157 SDLoc DL(Addr);
1158 MachineFunction &MF = CurDAG->getMachineFunction();
1159 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1161 Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
1163 if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1164 unsigned Imm = CAddr->getZExtValue();
1166 SDValue HighBits = CurDAG->getTargetConstant(Imm & ~4095, DL, MVT::i32);
1167 MachineSDNode *MovHighBits = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
1168 DL, MVT::i32, HighBits);
1169 VAddr = SDValue(MovHighBits, 0);
1171 // In a call sequence, stores to the argument stack area are relative to the
1172 // stack pointer.
1173 const MachinePointerInfo &PtrInfo = cast<MemSDNode>(Parent)->getPointerInfo();
1174 unsigned SOffsetReg = isStackPtrRelative(PtrInfo) ?
1175 Info->getStackPtrOffsetReg() : Info->getScratchWaveOffsetReg();
1177 SOffset = CurDAG->getRegister(SOffsetReg, MVT::i32);
1178 ImmOffset = CurDAG->getTargetConstant(Imm & 4095, DL, MVT::i16);
1179 return true;
1182 if (CurDAG->isBaseWithConstantOffset(Addr)) {
1183 // (add n0, c1)
1185 SDValue N0 = Addr.getOperand(0);
1186 SDValue N1 = Addr.getOperand(1);
1188 // Offsets in vaddr must be positive if range checking is enabled.
1190 // The total computation of vaddr + soffset + offset must not overflow. If
1191 // vaddr is negative, even if offset is 0 the sgpr offset add will end up
1192 // overflowing.
1194 // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would
1195 // always perform a range check. If a negative vaddr base index was used,
1196 // this would fail the range check. The overall address computation would
1197 // compute a valid address, but this doesn't happen due to the range
1198 // check. For out-of-bounds MUBUF loads, a 0 is returned.
1200 // Therefore it should be safe to fold any VGPR offset on gfx9 into the
1201 // MUBUF vaddr, but not on older subtargets which can only do this if the
1202 // sign bit is known 0.
1203 ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1204 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue()) &&
1205 (!Subtarget->privateMemoryResourceIsRangeChecked() ||
1206 CurDAG->SignBitIsZero(N0))) {
1207 std::tie(VAddr, SOffset) = foldFrameIndex(N0);
1208 ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
1209 return true;
1213 // (node)
1214 std::tie(VAddr, SOffset) = foldFrameIndex(Addr);
1215 ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1216 return true;
1219 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent,
1220 SDValue Addr,
1221 SDValue &SRsrc,
1222 SDValue &SOffset,
1223 SDValue &Offset) const {
1224 ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr);
1225 if (!CAddr || !SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue()))
1226 return false;
1228 SDLoc DL(Addr);
1229 MachineFunction &MF = CurDAG->getMachineFunction();
1230 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1232 SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
1234 const MachinePointerInfo &PtrInfo = cast<MemSDNode>(Parent)->getPointerInfo();
1235 unsigned SOffsetReg = isStackPtrRelative(PtrInfo) ?
1236 Info->getStackPtrOffsetReg() : Info->getScratchWaveOffsetReg();
1238 // FIXME: Get from MachinePointerInfo? We should only be using the frame
1239 // offset if we know this is in a call sequence.
1240 SOffset = CurDAG->getRegister(SOffsetReg, MVT::i32);
1242 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16);
1243 return true;
1246 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
1247 SDValue &SOffset, SDValue &Offset,
1248 SDValue &GLC, SDValue &SLC,
1249 SDValue &TFE) const {
1250 SDValue Ptr, VAddr, Offen, Idxen, Addr64;
1251 const SIInstrInfo *TII =
1252 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
1254 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64,
1255 GLC, SLC, TFE))
1256 return false;
1258 if (!cast<ConstantSDNode>(Offen)->getSExtValue() &&
1259 !cast<ConstantSDNode>(Idxen)->getSExtValue() &&
1260 !cast<ConstantSDNode>(Addr64)->getSExtValue()) {
1261 uint64_t Rsrc = TII->getDefaultRsrcDataFormat() |
1262 APInt::getAllOnesValue(32).getZExtValue(); // Size
1263 SDLoc DL(Addr);
1265 const SITargetLowering& Lowering =
1266 *static_cast<const SITargetLowering*>(getTargetLowering());
1268 SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0);
1269 return true;
1271 return false;
1274 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
1275 SDValue &Soffset, SDValue &Offset
1276 ) const {
1277 SDValue GLC, SLC, TFE;
1279 return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE);
1281 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
1282 SDValue &Soffset, SDValue &Offset,
1283 SDValue &SLC) const {
1284 SDValue GLC, TFE;
1286 return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE);
1289 template <bool IsSigned>
1290 bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDValue Addr,
1291 SDValue &VAddr,
1292 SDValue &Offset,
1293 SDValue &SLC) const {
1294 int64_t OffsetVal = 0;
1296 if (Subtarget->hasFlatInstOffsets() &&
1297 CurDAG->isBaseWithConstantOffset(Addr)) {
1298 SDValue N0 = Addr.getOperand(0);
1299 SDValue N1 = Addr.getOperand(1);
1300 int64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue();
1302 if ((IsSigned && isInt<13>(COffsetVal)) ||
1303 (!IsSigned && isUInt<12>(COffsetVal))) {
1304 Addr = N0;
1305 OffsetVal = COffsetVal;
1309 VAddr = Addr;
1310 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i16);
1311 SLC = CurDAG->getTargetConstant(0, SDLoc(), MVT::i1);
1313 return true;
1316 bool AMDGPUDAGToDAGISel::SelectFlatAtomic(SDValue Addr,
1317 SDValue &VAddr,
1318 SDValue &Offset,
1319 SDValue &SLC) const {
1320 return SelectFlatOffset<false>(Addr, VAddr, Offset, SLC);
1323 bool AMDGPUDAGToDAGISel::SelectFlatAtomicSigned(SDValue Addr,
1324 SDValue &VAddr,
1325 SDValue &Offset,
1326 SDValue &SLC) const {
1327 return SelectFlatOffset<true>(Addr, VAddr, Offset, SLC);
1330 bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode,
1331 SDValue &Offset, bool &Imm) const {
1333 // FIXME: Handle non-constant offsets.
1334 ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode);
1335 if (!C)
1336 return false;
1338 SDLoc SL(ByteOffsetNode);
1339 GCNSubtarget::Generation Gen = Subtarget->getGeneration();
1340 int64_t ByteOffset = C->getSExtValue();
1341 int64_t EncodedOffset = AMDGPU::getSMRDEncodedOffset(*Subtarget, ByteOffset);
1343 if (AMDGPU::isLegalSMRDImmOffset(*Subtarget, ByteOffset)) {
1344 Offset = CurDAG->getTargetConstant(EncodedOffset, SL, MVT::i32);
1345 Imm = true;
1346 return true;
1349 if (!isUInt<32>(EncodedOffset) || !isUInt<32>(ByteOffset))
1350 return false;
1352 if (Gen == AMDGPUSubtarget::SEA_ISLANDS && isUInt<32>(EncodedOffset)) {
1353 // 32-bit Immediates are supported on Sea Islands.
1354 Offset = CurDAG->getTargetConstant(EncodedOffset, SL, MVT::i32);
1355 } else {
1356 SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32);
1357 Offset = SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32,
1358 C32Bit), 0);
1360 Imm = false;
1361 return true;
1364 SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const {
1365 if (Addr.getValueType() != MVT::i32)
1366 return Addr;
1368 // Zero-extend a 32-bit address.
1369 SDLoc SL(Addr);
1371 const MachineFunction &MF = CurDAG->getMachineFunction();
1372 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1373 unsigned AddrHiVal = Info->get32BitAddressHighBits();
1374 SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32);
1376 const SDValue Ops[] = {
1377 CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32),
1378 Addr,
1379 CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32),
1380 SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi),
1382 CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32),
1385 return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64,
1386 Ops), 0);
1389 bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase,
1390 SDValue &Offset, bool &Imm) const {
1391 SDLoc SL(Addr);
1393 // A 32-bit (address + offset) should not cause unsigned 32-bit integer
1394 // wraparound, because s_load instructions perform the addition in 64 bits.
1395 if ((Addr.getValueType() != MVT::i32 ||
1396 Addr->getFlags().hasNoUnsignedWrap()) &&
1397 CurDAG->isBaseWithConstantOffset(Addr)) {
1398 SDValue N0 = Addr.getOperand(0);
1399 SDValue N1 = Addr.getOperand(1);
1401 if (SelectSMRDOffset(N1, Offset, Imm)) {
1402 SBase = Expand32BitAddress(N0);
1403 return true;
1406 SBase = Expand32BitAddress(Addr);
1407 Offset = CurDAG->getTargetConstant(0, SL, MVT::i32);
1408 Imm = true;
1409 return true;
1412 bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase,
1413 SDValue &Offset) const {
1414 bool Imm;
1415 return SelectSMRD(Addr, SBase, Offset, Imm) && Imm;
1418 bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase,
1419 SDValue &Offset) const {
1421 if (Subtarget->getGeneration() != AMDGPUSubtarget::SEA_ISLANDS)
1422 return false;
1424 bool Imm;
1425 if (!SelectSMRD(Addr, SBase, Offset, Imm))
1426 return false;
1428 return !Imm && isa<ConstantSDNode>(Offset);
1431 bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase,
1432 SDValue &Offset) const {
1433 bool Imm;
1434 return SelectSMRD(Addr, SBase, Offset, Imm) && !Imm &&
1435 !isa<ConstantSDNode>(Offset);
1438 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue Addr,
1439 SDValue &Offset) const {
1440 bool Imm;
1441 return SelectSMRDOffset(Addr, Offset, Imm) && Imm;
1444 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue Addr,
1445 SDValue &Offset) const {
1446 if (Subtarget->getGeneration() != AMDGPUSubtarget::SEA_ISLANDS)
1447 return false;
1449 bool Imm;
1450 if (!SelectSMRDOffset(Addr, Offset, Imm))
1451 return false;
1453 return !Imm && isa<ConstantSDNode>(Offset);
1456 bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index,
1457 SDValue &Base,
1458 SDValue &Offset) const {
1459 SDLoc DL(Index);
1461 if (CurDAG->isBaseWithConstantOffset(Index)) {
1462 SDValue N0 = Index.getOperand(0);
1463 SDValue N1 = Index.getOperand(1);
1464 ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1466 // (add n0, c0)
1467 // Don't peel off the offset (c0) if doing so could possibly lead
1468 // the base (n0) to be negative.
1469 if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(N0)) {
1470 Base = N0;
1471 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32);
1472 return true;
1476 if (isa<ConstantSDNode>(Index))
1477 return false;
1479 Base = Index;
1480 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1481 return true;
1484 SDNode *AMDGPUDAGToDAGISel::getS_BFE(unsigned Opcode, const SDLoc &DL,
1485 SDValue Val, uint32_t Offset,
1486 uint32_t Width) {
1487 // Transformation function, pack the offset and width of a BFE into
1488 // the format expected by the S_BFE_I32 / S_BFE_U32. In the second
1489 // source, bits [5:0] contain the offset and bits [22:16] the width.
1490 uint32_t PackedVal = Offset | (Width << 16);
1491 SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32);
1493 return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst);
1496 void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) {
1497 // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c)
1498 // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c)
1499 // Predicate: 0 < b <= c < 32
1501 const SDValue &Shl = N->getOperand(0);
1502 ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1));
1503 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1505 if (B && C) {
1506 uint32_t BVal = B->getZExtValue();
1507 uint32_t CVal = C->getZExtValue();
1509 if (0 < BVal && BVal <= CVal && CVal < 32) {
1510 bool Signed = N->getOpcode() == ISD::SRA;
1511 unsigned Opcode = Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32;
1513 ReplaceNode(N, getS_BFE(Opcode, SDLoc(N), Shl.getOperand(0), CVal - BVal,
1514 32 - CVal));
1515 return;
1518 SelectCode(N);
1521 void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) {
1522 switch (N->getOpcode()) {
1523 case ISD::AND:
1524 if (N->getOperand(0).getOpcode() == ISD::SRL) {
1525 // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)"
1526 // Predicate: isMask(mask)
1527 const SDValue &Srl = N->getOperand(0);
1528 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1));
1529 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1));
1531 if (Shift && Mask) {
1532 uint32_t ShiftVal = Shift->getZExtValue();
1533 uint32_t MaskVal = Mask->getZExtValue();
1535 if (isMask_32(MaskVal)) {
1536 uint32_t WidthVal = countPopulation(MaskVal);
1538 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N),
1539 Srl.getOperand(0), ShiftVal, WidthVal));
1540 return;
1544 break;
1545 case ISD::SRL:
1546 if (N->getOperand(0).getOpcode() == ISD::AND) {
1547 // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)"
1548 // Predicate: isMask(mask >> b)
1549 const SDValue &And = N->getOperand(0);
1550 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1));
1551 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1));
1553 if (Shift && Mask) {
1554 uint32_t ShiftVal = Shift->getZExtValue();
1555 uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal;
1557 if (isMask_32(MaskVal)) {
1558 uint32_t WidthVal = countPopulation(MaskVal);
1560 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N),
1561 And.getOperand(0), ShiftVal, WidthVal));
1562 return;
1565 } else if (N->getOperand(0).getOpcode() == ISD::SHL) {
1566 SelectS_BFEFromShifts(N);
1567 return;
1569 break;
1570 case ISD::SRA:
1571 if (N->getOperand(0).getOpcode() == ISD::SHL) {
1572 SelectS_BFEFromShifts(N);
1573 return;
1575 break;
1577 case ISD::SIGN_EXTEND_INREG: {
1578 // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8
1579 SDValue Src = N->getOperand(0);
1580 if (Src.getOpcode() != ISD::SRL)
1581 break;
1583 const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
1584 if (!Amt)
1585 break;
1587 unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits();
1588 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_I32, SDLoc(N), Src.getOperand(0),
1589 Amt->getZExtValue(), Width));
1590 return;
1594 SelectCode(N);
1597 bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const {
1598 assert(N->getOpcode() == ISD::BRCOND);
1599 if (!N->hasOneUse())
1600 return false;
1602 SDValue Cond = N->getOperand(1);
1603 if (Cond.getOpcode() == ISD::CopyToReg)
1604 Cond = Cond.getOperand(2);
1606 if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse())
1607 return false;
1609 MVT VT = Cond.getOperand(0).getSimpleValueType();
1610 if (VT == MVT::i32)
1611 return true;
1613 if (VT == MVT::i64) {
1614 auto ST = static_cast<const GCNSubtarget *>(Subtarget);
1616 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
1617 return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64();
1620 return false;
1623 void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) {
1624 SDValue Cond = N->getOperand(1);
1626 if (Cond.isUndef()) {
1627 CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other,
1628 N->getOperand(2), N->getOperand(0));
1629 return;
1632 bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N);
1633 unsigned BrOp = UseSCCBr ? AMDGPU::S_CBRANCH_SCC1 : AMDGPU::S_CBRANCH_VCCNZ;
1634 unsigned CondReg = UseSCCBr ? AMDGPU::SCC : AMDGPU::VCC;
1635 SDLoc SL(N);
1637 if (!UseSCCBr) {
1638 // This is the case that we are selecting to S_CBRANCH_VCCNZ. We have not
1639 // analyzed what generates the vcc value, so we do not know whether vcc
1640 // bits for disabled lanes are 0. Thus we need to mask out bits for
1641 // disabled lanes.
1643 // For the case that we select S_CBRANCH_SCC1 and it gets
1644 // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls
1645 // SIInstrInfo::moveToVALU which inserts the S_AND).
1647 // We could add an analysis of what generates the vcc value here and omit
1648 // the S_AND when is unnecessary. But it would be better to add a separate
1649 // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it
1650 // catches both cases.
1651 Cond = SDValue(CurDAG->getMachineNode(AMDGPU::S_AND_B64, SL, MVT::i1,
1652 CurDAG->getRegister(AMDGPU::EXEC, MVT::i1),
1653 Cond),
1657 SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond);
1658 CurDAG->SelectNodeTo(N, BrOp, MVT::Other,
1659 N->getOperand(2), // Basic Block
1660 VCC.getValue(0));
1663 void AMDGPUDAGToDAGISel::SelectFMAD_FMA(SDNode *N) {
1664 MVT VT = N->getSimpleValueType(0);
1665 bool IsFMA = N->getOpcode() == ISD::FMA;
1666 if (VT != MVT::f32 || (!Subtarget->hasMadMixInsts() &&
1667 !Subtarget->hasFmaMixInsts()) ||
1668 ((IsFMA && Subtarget->hasMadMixInsts()) ||
1669 (!IsFMA && Subtarget->hasFmaMixInsts()))) {
1670 SelectCode(N);
1671 return;
1674 SDValue Src0 = N->getOperand(0);
1675 SDValue Src1 = N->getOperand(1);
1676 SDValue Src2 = N->getOperand(2);
1677 unsigned Src0Mods, Src1Mods, Src2Mods;
1679 // Avoid using v_mad_mix_f32/v_fma_mix_f32 unless there is actually an operand
1680 // using the conversion from f16.
1681 bool Sel0 = SelectVOP3PMadMixModsImpl(Src0, Src0, Src0Mods);
1682 bool Sel1 = SelectVOP3PMadMixModsImpl(Src1, Src1, Src1Mods);
1683 bool Sel2 = SelectVOP3PMadMixModsImpl(Src2, Src2, Src2Mods);
1685 assert((IsFMA || !Subtarget->hasFP32Denormals()) &&
1686 "fmad selected with denormals enabled");
1687 // TODO: We can select this with f32 denormals enabled if all the sources are
1688 // converted from f16 (in which case fmad isn't legal).
1690 if (Sel0 || Sel1 || Sel2) {
1691 // For dummy operands.
1692 SDValue Zero = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32);
1693 SDValue Ops[] = {
1694 CurDAG->getTargetConstant(Src0Mods, SDLoc(), MVT::i32), Src0,
1695 CurDAG->getTargetConstant(Src1Mods, SDLoc(), MVT::i32), Src1,
1696 CurDAG->getTargetConstant(Src2Mods, SDLoc(), MVT::i32), Src2,
1697 CurDAG->getTargetConstant(0, SDLoc(), MVT::i1),
1698 Zero, Zero
1701 CurDAG->SelectNodeTo(N,
1702 IsFMA ? AMDGPU::V_FMA_MIX_F32 : AMDGPU::V_MAD_MIX_F32,
1703 MVT::f32, Ops);
1704 } else {
1705 SelectCode(N);
1709 // This is here because there isn't a way to use the generated sub0_sub1 as the
1710 // subreg index to EXTRACT_SUBREG in tablegen.
1711 void AMDGPUDAGToDAGISel::SelectATOMIC_CMP_SWAP(SDNode *N) {
1712 MemSDNode *Mem = cast<MemSDNode>(N);
1713 unsigned AS = Mem->getAddressSpace();
1714 if (AS == AMDGPUAS::FLAT_ADDRESS) {
1715 SelectCode(N);
1716 return;
1719 MVT VT = N->getSimpleValueType(0);
1720 bool Is32 = (VT == MVT::i32);
1721 SDLoc SL(N);
1723 MachineSDNode *CmpSwap = nullptr;
1724 if (Subtarget->hasAddr64()) {
1725 SDValue SRsrc, VAddr, SOffset, Offset, SLC;
1727 if (SelectMUBUFAddr64(Mem->getBasePtr(), SRsrc, VAddr, SOffset, Offset, SLC)) {
1728 unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_ADDR64_RTN :
1729 AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_ADDR64_RTN;
1730 SDValue CmpVal = Mem->getOperand(2);
1732 // XXX - Do we care about glue operands?
1734 SDValue Ops[] = {
1735 CmpVal, VAddr, SRsrc, SOffset, Offset, SLC, Mem->getChain()
1738 CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops);
1742 if (!CmpSwap) {
1743 SDValue SRsrc, SOffset, Offset, SLC;
1744 if (SelectMUBUFOffset(Mem->getBasePtr(), SRsrc, SOffset, Offset, SLC)) {
1745 unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_OFFSET_RTN :
1746 AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_OFFSET_RTN;
1748 SDValue CmpVal = Mem->getOperand(2);
1749 SDValue Ops[] = {
1750 CmpVal, SRsrc, SOffset, Offset, SLC, Mem->getChain()
1753 CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops);
1757 if (!CmpSwap) {
1758 SelectCode(N);
1759 return;
1762 MachineMemOperand *MMO = Mem->getMemOperand();
1763 CurDAG->setNodeMemRefs(CmpSwap, {MMO});
1765 unsigned SubReg = Is32 ? AMDGPU::sub0 : AMDGPU::sub0_sub1;
1766 SDValue Extract
1767 = CurDAG->getTargetExtractSubreg(SubReg, SL, VT, SDValue(CmpSwap, 0));
1769 ReplaceUses(SDValue(N, 0), Extract);
1770 ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 1));
1771 CurDAG->RemoveDeadNode(N);
1774 void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) {
1775 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
1776 if ((IntrID != Intrinsic::amdgcn_ds_append &&
1777 IntrID != Intrinsic::amdgcn_ds_consume) ||
1778 N->getValueType(0) != MVT::i32) {
1779 SelectCode(N);
1780 return;
1783 // The address is assumed to be uniform, so if it ends up in a VGPR, it will
1784 // be copied to an SGPR with readfirstlane.
1785 unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ?
1786 AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME;
1788 SDValue Chain = N->getOperand(0);
1789 SDValue Ptr = N->getOperand(2);
1790 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N);
1791 bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS;
1793 SDValue Offset;
1794 if (CurDAG->isBaseWithConstantOffset(Ptr)) {
1795 SDValue PtrBase = Ptr.getOperand(0);
1796 SDValue PtrOffset = Ptr.getOperand(1);
1798 const APInt &OffsetVal = cast<ConstantSDNode>(PtrOffset)->getAPIntValue();
1799 if (isDSOffsetLegal(PtrBase, OffsetVal.getZExtValue(), 16)) {
1800 N = glueCopyToM0(N, PtrBase);
1801 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32);
1805 if (!Offset) {
1806 N = glueCopyToM0(N, Ptr);
1807 Offset = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32);
1810 SDValue Ops[] = {
1811 Offset,
1812 CurDAG->getTargetConstant(IsGDS, SDLoc(), MVT::i32),
1813 Chain,
1814 N->getOperand(N->getNumOperands() - 1) // New glue
1817 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
1820 bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src,
1821 unsigned &Mods) const {
1822 Mods = 0;
1823 Src = In;
1825 if (Src.getOpcode() == ISD::FNEG) {
1826 Mods |= SISrcMods::NEG;
1827 Src = Src.getOperand(0);
1830 if (Src.getOpcode() == ISD::FABS) {
1831 Mods |= SISrcMods::ABS;
1832 Src = Src.getOperand(0);
1835 return true;
1838 bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src,
1839 SDValue &SrcMods) const {
1840 unsigned Mods;
1841 if (SelectVOP3ModsImpl(In, Src, Mods)) {
1842 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
1843 return true;
1846 return false;
1849 bool AMDGPUDAGToDAGISel::SelectVOP3Mods_NNaN(SDValue In, SDValue &Src,
1850 SDValue &SrcMods) const {
1851 SelectVOP3Mods(In, Src, SrcMods);
1852 return isNoNanSrc(Src);
1855 bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const {
1856 if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG)
1857 return false;
1859 Src = In;
1860 return true;
1863 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src,
1864 SDValue &SrcMods, SDValue &Clamp,
1865 SDValue &Omod) const {
1866 SDLoc DL(In);
1867 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
1868 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
1870 return SelectVOP3Mods(In, Src, SrcMods);
1873 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0Clamp0OMod(SDValue In, SDValue &Src,
1874 SDValue &SrcMods,
1875 SDValue &Clamp,
1876 SDValue &Omod) const {
1877 Clamp = Omod = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32);
1878 return SelectVOP3Mods(In, Src, SrcMods);
1881 bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src,
1882 SDValue &Clamp, SDValue &Omod) const {
1883 Src = In;
1885 SDLoc DL(In);
1886 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
1887 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
1889 return true;
1892 static SDValue stripBitcast(SDValue Val) {
1893 return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val;
1896 // Figure out if this is really an extract of the high 16-bits of a dword.
1897 static bool isExtractHiElt(SDValue In, SDValue &Out) {
1898 In = stripBitcast(In);
1899 if (In.getOpcode() != ISD::TRUNCATE)
1900 return false;
1902 SDValue Srl = In.getOperand(0);
1903 if (Srl.getOpcode() == ISD::SRL) {
1904 if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) {
1905 if (ShiftAmt->getZExtValue() == 16) {
1906 Out = stripBitcast(Srl.getOperand(0));
1907 return true;
1912 return false;
1915 // Look through operations that obscure just looking at the low 16-bits of the
1916 // same register.
1917 static SDValue stripExtractLoElt(SDValue In) {
1918 if (In.getOpcode() == ISD::TRUNCATE) {
1919 SDValue Src = In.getOperand(0);
1920 if (Src.getValueType().getSizeInBits() == 32)
1921 return stripBitcast(Src);
1924 return In;
1927 bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src,
1928 SDValue &SrcMods) const {
1929 unsigned Mods = 0;
1930 Src = In;
1932 if (Src.getOpcode() == ISD::FNEG) {
1933 Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI);
1934 Src = Src.getOperand(0);
1937 if (Src.getOpcode() == ISD::BUILD_VECTOR) {
1938 unsigned VecMods = Mods;
1940 SDValue Lo = stripBitcast(Src.getOperand(0));
1941 SDValue Hi = stripBitcast(Src.getOperand(1));
1943 if (Lo.getOpcode() == ISD::FNEG) {
1944 Lo = stripBitcast(Lo.getOperand(0));
1945 Mods ^= SISrcMods::NEG;
1948 if (Hi.getOpcode() == ISD::FNEG) {
1949 Hi = stripBitcast(Hi.getOperand(0));
1950 Mods ^= SISrcMods::NEG_HI;
1953 if (isExtractHiElt(Lo, Lo))
1954 Mods |= SISrcMods::OP_SEL_0;
1956 if (isExtractHiElt(Hi, Hi))
1957 Mods |= SISrcMods::OP_SEL_1;
1959 Lo = stripExtractLoElt(Lo);
1960 Hi = stripExtractLoElt(Hi);
1962 if (Lo == Hi && !isInlineImmediate(Lo.getNode())) {
1963 // Really a scalar input. Just select from the low half of the register to
1964 // avoid packing.
1966 Src = Lo;
1967 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
1968 return true;
1971 Mods = VecMods;
1974 // Packed instructions do not have abs modifiers.
1975 Mods |= SISrcMods::OP_SEL_1;
1977 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
1978 return true;
1981 bool AMDGPUDAGToDAGISel::SelectVOP3PMods0(SDValue In, SDValue &Src,
1982 SDValue &SrcMods,
1983 SDValue &Clamp) const {
1984 SDLoc SL(In);
1986 // FIXME: Handle clamp and op_sel
1987 Clamp = CurDAG->getTargetConstant(0, SL, MVT::i32);
1989 return SelectVOP3PMods(In, Src, SrcMods);
1992 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src,
1993 SDValue &SrcMods) const {
1994 Src = In;
1995 // FIXME: Handle op_sel
1996 SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32);
1997 return true;
2000 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel0(SDValue In, SDValue &Src,
2001 SDValue &SrcMods,
2002 SDValue &Clamp) const {
2003 SDLoc SL(In);
2005 // FIXME: Handle clamp
2006 Clamp = CurDAG->getTargetConstant(0, SL, MVT::i32);
2008 return SelectVOP3OpSel(In, Src, SrcMods);
2011 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src,
2012 SDValue &SrcMods) const {
2013 // FIXME: Handle op_sel
2014 return SelectVOP3Mods(In, Src, SrcMods);
2017 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods0(SDValue In, SDValue &Src,
2018 SDValue &SrcMods,
2019 SDValue &Clamp) const {
2020 SDLoc SL(In);
2022 // FIXME: Handle clamp
2023 Clamp = CurDAG->getTargetConstant(0, SL, MVT::i32);
2025 return SelectVOP3OpSelMods(In, Src, SrcMods);
2028 // The return value is not whether the match is possible (which it always is),
2029 // but whether or not it a conversion is really used.
2030 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src,
2031 unsigned &Mods) const {
2032 Mods = 0;
2033 SelectVOP3ModsImpl(In, Src, Mods);
2035 if (Src.getOpcode() == ISD::FP_EXTEND) {
2036 Src = Src.getOperand(0);
2037 assert(Src.getValueType() == MVT::f16);
2038 Src = stripBitcast(Src);
2040 // Be careful about folding modifiers if we already have an abs. fneg is
2041 // applied last, so we don't want to apply an earlier fneg.
2042 if ((Mods & SISrcMods::ABS) == 0) {
2043 unsigned ModsTmp;
2044 SelectVOP3ModsImpl(Src, Src, ModsTmp);
2046 if ((ModsTmp & SISrcMods::NEG) != 0)
2047 Mods ^= SISrcMods::NEG;
2049 if ((ModsTmp & SISrcMods::ABS) != 0)
2050 Mods |= SISrcMods::ABS;
2053 // op_sel/op_sel_hi decide the source type and source.
2054 // If the source's op_sel_hi is set, it indicates to do a conversion from fp16.
2055 // If the sources's op_sel is set, it picks the high half of the source
2056 // register.
2058 Mods |= SISrcMods::OP_SEL_1;
2059 if (isExtractHiElt(Src, Src)) {
2060 Mods |= SISrcMods::OP_SEL_0;
2062 // TODO: Should we try to look for neg/abs here?
2065 return true;
2068 return false;
2071 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src,
2072 SDValue &SrcMods) const {
2073 unsigned Mods = 0;
2074 SelectVOP3PMadMixModsImpl(In, Src, Mods);
2075 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2076 return true;
2079 // TODO: Can we identify things like v_mad_mixhi_f16?
2080 bool AMDGPUDAGToDAGISel::SelectHi16Elt(SDValue In, SDValue &Src) const {
2081 if (In.isUndef()) {
2082 Src = In;
2083 return true;
2086 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) {
2087 SDLoc SL(In);
2088 SDValue K = CurDAG->getTargetConstant(C->getZExtValue() << 16, SL, MVT::i32);
2089 MachineSDNode *MovK = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
2090 SL, MVT::i32, K);
2091 Src = SDValue(MovK, 0);
2092 return true;
2095 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) {
2096 SDLoc SL(In);
2097 SDValue K = CurDAG->getTargetConstant(
2098 C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32);
2099 MachineSDNode *MovK = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
2100 SL, MVT::i32, K);
2101 Src = SDValue(MovK, 0);
2102 return true;
2105 return isExtractHiElt(In, Src);
2108 bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const {
2109 if (Subtarget->getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS) {
2110 return false;
2112 const SIRegisterInfo *SIRI =
2113 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
2114 const SIInstrInfo * SII =
2115 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
2117 unsigned Limit = 0;
2118 bool AllUsesAcceptSReg = true;
2119 for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end();
2120 Limit < 10 && U != E; ++U, ++Limit) {
2121 const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo());
2123 // If the register class is unknown, it could be an unknown
2124 // register class that needs to be an SGPR, e.g. an inline asm
2125 // constraint
2126 if (!RC || SIRI->isSGPRClass(RC))
2127 return false;
2129 if (RC != &AMDGPU::VS_32RegClass) {
2130 AllUsesAcceptSReg = false;
2131 SDNode * User = *U;
2132 if (User->isMachineOpcode()) {
2133 unsigned Opc = User->getMachineOpcode();
2134 MCInstrDesc Desc = SII->get(Opc);
2135 if (Desc.isCommutable()) {
2136 unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo();
2137 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
2138 if (SII->findCommutedOpIndices(Desc, OpIdx, CommuteIdx1)) {
2139 unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs();
2140 const TargetRegisterClass *CommutedRC = getOperandRegClass(*U, CommutedOpNo);
2141 if (CommutedRC == &AMDGPU::VS_32RegClass)
2142 AllUsesAcceptSReg = true;
2146 // If "AllUsesAcceptSReg == false" so far we haven't suceeded
2147 // commuting current user. This means have at least one use
2148 // that strictly require VGPR. Thus, we will not attempt to commute
2149 // other user instructions.
2150 if (!AllUsesAcceptSReg)
2151 break;
2154 return !AllUsesAcceptSReg && (Limit < 10);
2157 bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode * N) const {
2158 auto Ld = cast<LoadSDNode>(N);
2160 return Ld->getAlignment() >= 4 &&
2164 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
2165 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT
2168 !N->isDivergent()
2172 Subtarget->getScalarizeGlobalBehavior() &&
2173 Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS &&
2174 !Ld->isVolatile() &&
2175 !N->isDivergent() &&
2176 static_cast<const SITargetLowering *>(
2177 getTargetLowering())->isMemOpHasNoClobberedMemOperand(N)
2182 void AMDGPUDAGToDAGISel::PostprocessISelDAG() {
2183 const AMDGPUTargetLowering& Lowering =
2184 *static_cast<const AMDGPUTargetLowering*>(getTargetLowering());
2185 bool IsModified = false;
2186 do {
2187 IsModified = false;
2189 // Go over all selected nodes and try to fold them a bit more
2190 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin();
2191 while (Position != CurDAG->allnodes_end()) {
2192 SDNode *Node = &*Position++;
2193 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node);
2194 if (!MachineNode)
2195 continue;
2197 SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG);
2198 if (ResNode != Node) {
2199 if (ResNode)
2200 ReplaceUses(Node, ResNode);
2201 IsModified = true;
2204 CurDAG->RemoveDeadNodes();
2205 } while (IsModified);
2208 bool R600DAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
2209 Subtarget = &MF.getSubtarget<R600Subtarget>();
2210 return SelectionDAGISel::runOnMachineFunction(MF);
2213 bool R600DAGToDAGISel::isConstantLoad(const MemSDNode *N, int CbId) const {
2214 if (!N->readMem())
2215 return false;
2216 if (CbId == -1)
2217 return N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
2218 N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
2220 return N->getAddressSpace() == AMDGPUAS::CONSTANT_BUFFER_0 + CbId;
2223 bool R600DAGToDAGISel::SelectGlobalValueConstantOffset(SDValue Addr,
2224 SDValue& IntPtr) {
2225 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Addr)) {
2226 IntPtr = CurDAG->getIntPtrConstant(Cst->getZExtValue() / 4, SDLoc(Addr),
2227 true);
2228 return true;
2230 return false;
2233 bool R600DAGToDAGISel::SelectGlobalValueVariableOffset(SDValue Addr,
2234 SDValue& BaseReg, SDValue &Offset) {
2235 if (!isa<ConstantSDNode>(Addr)) {
2236 BaseReg = Addr;
2237 Offset = CurDAG->getIntPtrConstant(0, SDLoc(Addr), true);
2238 return true;
2240 return false;
2243 void R600DAGToDAGISel::Select(SDNode *N) {
2244 unsigned int Opc = N->getOpcode();
2245 if (N->isMachineOpcode()) {
2246 N->setNodeId(-1);
2247 return; // Already selected.
2250 switch (Opc) {
2251 default: break;
2252 case AMDGPUISD::BUILD_VERTICAL_VECTOR:
2253 case ISD::SCALAR_TO_VECTOR:
2254 case ISD::BUILD_VECTOR: {
2255 EVT VT = N->getValueType(0);
2256 unsigned NumVectorElts = VT.getVectorNumElements();
2257 unsigned RegClassID;
2258 // BUILD_VECTOR was lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG
2259 // that adds a 128 bits reg copy when going through TwoAddressInstructions
2260 // pass. We want to avoid 128 bits copies as much as possible because they
2261 // can't be bundled by our scheduler.
2262 switch(NumVectorElts) {
2263 case 2: RegClassID = R600::R600_Reg64RegClassID; break;
2264 case 4:
2265 if (Opc == AMDGPUISD::BUILD_VERTICAL_VECTOR)
2266 RegClassID = R600::R600_Reg128VerticalRegClassID;
2267 else
2268 RegClassID = R600::R600_Reg128RegClassID;
2269 break;
2270 default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR");
2272 SelectBuildVector(N, RegClassID);
2273 return;
2277 SelectCode(N);
2280 bool R600DAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base,
2281 SDValue &Offset) {
2282 ConstantSDNode *C;
2283 SDLoc DL(Addr);
2285 if ((C = dyn_cast<ConstantSDNode>(Addr))) {
2286 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
2287 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
2288 } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) &&
2289 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) {
2290 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
2291 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
2292 } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
2293 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
2294 Base = Addr.getOperand(0);
2295 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
2296 } else {
2297 Base = Addr;
2298 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
2301 return true;
2304 bool R600DAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
2305 SDValue &Offset) {
2306 ConstantSDNode *IMMOffset;
2308 if (Addr.getOpcode() == ISD::ADD
2309 && (IMMOffset = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))
2310 && isInt<16>(IMMOffset->getZExtValue())) {
2312 Base = Addr.getOperand(0);
2313 Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr),
2314 MVT::i32);
2315 return true;
2316 // If the pointer address is constant, we can move it to the offset field.
2317 } else if ((IMMOffset = dyn_cast<ConstantSDNode>(Addr))
2318 && isInt<16>(IMMOffset->getZExtValue())) {
2319 Base = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
2320 SDLoc(CurDAG->getEntryNode()),
2321 R600::ZERO, MVT::i32);
2322 Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr),
2323 MVT::i32);
2324 return true;
2327 // Default case, no offset
2328 Base = Addr;
2329 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i32);
2330 return true;