Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Target / AMDGPU / SIFoldOperands.cpp
blob9cc24ce915b1d5f9d5d92cc7d6dabd51ca4123ef
1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 /// \file
8 //===----------------------------------------------------------------------===//
9 //
11 #include "AMDGPU.h"
12 #include "AMDGPUSubtarget.h"
13 #include "SIInstrInfo.h"
14 #include "SIMachineFunctionInfo.h"
15 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
16 #include "llvm/ADT/DepthFirstIterator.h"
17 #include "llvm/CodeGen/LiveIntervals.h"
18 #include "llvm/CodeGen/MachineFunctionPass.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/raw_ostream.h"
23 #include "llvm/Target/TargetMachine.h"
25 #define DEBUG_TYPE "si-fold-operands"
26 using namespace llvm;
28 namespace {
30 struct FoldCandidate {
31 MachineInstr *UseMI;
32 union {
33 MachineOperand *OpToFold;
34 uint64_t ImmToFold;
35 int FrameIndexToFold;
37 int ShrinkOpcode;
38 unsigned char UseOpNo;
39 MachineOperand::MachineOperandType Kind;
40 bool Commuted;
42 FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp,
43 bool Commuted_ = false,
44 int ShrinkOp = -1) :
45 UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo),
46 Kind(FoldOp->getType()),
47 Commuted(Commuted_) {
48 if (FoldOp->isImm()) {
49 ImmToFold = FoldOp->getImm();
50 } else if (FoldOp->isFI()) {
51 FrameIndexToFold = FoldOp->getIndex();
52 } else {
53 assert(FoldOp->isReg());
54 OpToFold = FoldOp;
58 bool isFI() const {
59 return Kind == MachineOperand::MO_FrameIndex;
62 bool isImm() const {
63 return Kind == MachineOperand::MO_Immediate;
66 bool isReg() const {
67 return Kind == MachineOperand::MO_Register;
70 bool isCommuted() const {
71 return Commuted;
74 bool needsShrink() const {
75 return ShrinkOpcode != -1;
78 int getShrinkOpcode() const {
79 return ShrinkOpcode;
83 class SIFoldOperands : public MachineFunctionPass {
84 public:
85 static char ID;
86 MachineRegisterInfo *MRI;
87 const SIInstrInfo *TII;
88 const SIRegisterInfo *TRI;
89 const GCNSubtarget *ST;
91 void foldOperand(MachineOperand &OpToFold,
92 MachineInstr *UseMI,
93 unsigned UseOpIdx,
94 SmallVectorImpl<FoldCandidate> &FoldList,
95 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const;
97 void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const;
99 const MachineOperand *isClamp(const MachineInstr &MI) const;
100 bool tryFoldClamp(MachineInstr &MI);
102 std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const;
103 bool tryFoldOMod(MachineInstr &MI);
105 public:
106 SIFoldOperands() : MachineFunctionPass(ID) {
107 initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry());
110 bool runOnMachineFunction(MachineFunction &MF) override;
112 StringRef getPassName() const override { return "SI Fold Operands"; }
114 void getAnalysisUsage(AnalysisUsage &AU) const override {
115 AU.setPreservesCFG();
116 MachineFunctionPass::getAnalysisUsage(AU);
120 } // End anonymous namespace.
122 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE,
123 "SI Fold Operands", false, false)
125 char SIFoldOperands::ID = 0;
127 char &llvm::SIFoldOperandsID = SIFoldOperands::ID;
129 // Wrapper around isInlineConstant that understands special cases when
130 // instruction types are replaced during operand folding.
131 static bool isInlineConstantIfFolded(const SIInstrInfo *TII,
132 const MachineInstr &UseMI,
133 unsigned OpNo,
134 const MachineOperand &OpToFold) {
135 if (TII->isInlineConstant(UseMI, OpNo, OpToFold))
136 return true;
138 unsigned Opc = UseMI.getOpcode();
139 switch (Opc) {
140 case AMDGPU::V_MAC_F32_e64:
141 case AMDGPU::V_MAC_F16_e64:
142 case AMDGPU::V_FMAC_F32_e64: {
143 // Special case for mac. Since this is replaced with mad when folded into
144 // src2, we need to check the legality for the final instruction.
145 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
146 if (static_cast<int>(OpNo) == Src2Idx) {
147 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64;
148 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64;
150 unsigned Opc = IsFMA ?
151 AMDGPU::V_FMA_F32 : (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16);
152 const MCInstrDesc &MadDesc = TII->get(Opc);
153 return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType);
155 return false;
157 default:
158 return false;
162 FunctionPass *llvm::createSIFoldOperandsPass() {
163 return new SIFoldOperands();
166 static bool updateOperand(FoldCandidate &Fold,
167 const SIInstrInfo &TII,
168 const TargetRegisterInfo &TRI) {
169 MachineInstr *MI = Fold.UseMI;
170 MachineOperand &Old = MI->getOperand(Fold.UseOpNo);
171 assert(Old.isReg());
173 if (Fold.isImm()) {
174 if (MI->getDesc().TSFlags & SIInstrFlags::IsPacked) {
175 // Set op_sel/op_sel_hi on this operand or bail out if op_sel is
176 // already set.
177 unsigned Opcode = MI->getOpcode();
178 int OpNo = MI->getOperandNo(&Old);
179 int ModIdx = -1;
180 if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0))
181 ModIdx = AMDGPU::OpName::src0_modifiers;
182 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1))
183 ModIdx = AMDGPU::OpName::src1_modifiers;
184 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2))
185 ModIdx = AMDGPU::OpName::src2_modifiers;
186 assert(ModIdx != -1);
187 ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx);
188 MachineOperand &Mod = MI->getOperand(ModIdx);
189 unsigned Val = Mod.getImm();
190 if ((Val & SISrcMods::OP_SEL_0) || !(Val & SISrcMods::OP_SEL_1))
191 return false;
192 // If upper part is all zero we do not need op_sel_hi.
193 if (!isUInt<16>(Fold.ImmToFold)) {
194 if (!(Fold.ImmToFold & 0xffff)) {
195 Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0);
196 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1);
197 Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff);
198 return true;
200 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1);
204 if (Fold.needsShrink()) {
205 MachineBasicBlock *MBB = MI->getParent();
206 auto Liveness = MBB->computeRegisterLiveness(&TRI, AMDGPU::VCC, MI);
207 if (Liveness != MachineBasicBlock::LQR_Dead)
208 return false;
210 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
211 int Op32 = Fold.getShrinkOpcode();
212 MachineOperand &Dst0 = MI->getOperand(0);
213 MachineOperand &Dst1 = MI->getOperand(1);
214 assert(Dst0.isDef() && Dst1.isDef());
216 bool HaveNonDbgCarryUse = !MRI.use_nodbg_empty(Dst1.getReg());
218 const TargetRegisterClass *Dst0RC = MRI.getRegClass(Dst0.getReg());
219 unsigned NewReg0 = MRI.createVirtualRegister(Dst0RC);
220 const TargetRegisterClass *Dst1RC = MRI.getRegClass(Dst1.getReg());
221 unsigned NewReg1 = MRI.createVirtualRegister(Dst1RC);
223 MachineInstr *Inst32 = TII.buildShrunkInst(*MI, Op32);
225 if (HaveNonDbgCarryUse) {
226 BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), Dst1.getReg())
227 .addReg(AMDGPU::VCC, RegState::Kill);
230 // Keep the old instruction around to avoid breaking iterators, but
231 // replace the outputs with dummy registers.
232 Dst0.setReg(NewReg0);
233 Dst1.setReg(NewReg1);
235 if (Fold.isCommuted())
236 TII.commuteInstruction(*Inst32, false);
237 return true;
240 Old.ChangeToImmediate(Fold.ImmToFold);
241 return true;
244 assert(!Fold.needsShrink() && "not handled");
246 if (Fold.isFI()) {
247 Old.ChangeToFrameIndex(Fold.FrameIndexToFold);
248 return true;
251 MachineOperand *New = Fold.OpToFold;
252 if (TargetRegisterInfo::isVirtualRegister(Old.getReg()) &&
253 TargetRegisterInfo::isVirtualRegister(New->getReg())) {
254 Old.substVirtReg(New->getReg(), New->getSubReg(), TRI);
256 Old.setIsUndef(New->isUndef());
257 return true;
260 // FIXME: Handle physical registers.
262 return false;
265 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList,
266 const MachineInstr *MI) {
267 for (auto Candidate : FoldList) {
268 if (Candidate.UseMI == MI)
269 return true;
271 return false;
274 static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList,
275 MachineInstr *MI, unsigned OpNo,
276 MachineOperand *OpToFold,
277 const SIInstrInfo *TII) {
278 if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) {
280 // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2
281 unsigned Opc = MI->getOpcode();
282 if ((Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64 ||
283 Opc == AMDGPU::V_FMAC_F32_e64) &&
284 (int)OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)) {
285 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64;
286 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64;
287 unsigned NewOpc = IsFMA ?
288 AMDGPU::V_FMA_F32 : (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16);
290 // Check if changing this to a v_mad_{f16, f32} instruction will allow us
291 // to fold the operand.
292 MI->setDesc(TII->get(NewOpc));
293 bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII);
294 if (FoldAsMAD) {
295 MI->untieRegOperand(OpNo);
296 return true;
298 MI->setDesc(TII->get(Opc));
301 // Special case for s_setreg_b32
302 if (Opc == AMDGPU::S_SETREG_B32 && OpToFold->isImm()) {
303 MI->setDesc(TII->get(AMDGPU::S_SETREG_IMM32_B32));
304 FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold));
305 return true;
308 // If we are already folding into another operand of MI, then
309 // we can't commute the instruction, otherwise we risk making the
310 // other fold illegal.
311 if (isUseMIInFoldList(FoldList, MI))
312 return false;
314 unsigned CommuteOpNo = OpNo;
316 // Operand is not legal, so try to commute the instruction to
317 // see if this makes it possible to fold.
318 unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex;
319 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
320 bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1);
322 if (CanCommute) {
323 if (CommuteIdx0 == OpNo)
324 CommuteOpNo = CommuteIdx1;
325 else if (CommuteIdx1 == OpNo)
326 CommuteOpNo = CommuteIdx0;
330 // One of operands might be an Imm operand, and OpNo may refer to it after
331 // the call of commuteInstruction() below. Such situations are avoided
332 // here explicitly as OpNo must be a register operand to be a candidate
333 // for memory folding.
334 if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() ||
335 !MI->getOperand(CommuteIdx1).isReg()))
336 return false;
338 if (!CanCommute ||
339 !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1))
340 return false;
342 if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) {
343 if ((Opc == AMDGPU::V_ADD_I32_e64 ||
344 Opc == AMDGPU::V_SUB_I32_e64 ||
345 Opc == AMDGPU::V_SUBREV_I32_e64) && // FIXME
346 OpToFold->isImm()) {
347 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
349 // Verify the other operand is a VGPR, otherwise we would violate the
350 // constant bus restriction.
351 unsigned OtherIdx = CommuteOpNo == CommuteIdx0 ? CommuteIdx1 : CommuteIdx0;
352 MachineOperand &OtherOp = MI->getOperand(OtherIdx);
353 if (!OtherOp.isReg() ||
354 !TII->getRegisterInfo().isVGPR(MRI, OtherOp.getReg()))
355 return false;
357 assert(MI->getOperand(1).isDef());
359 int Op32 = AMDGPU::getVOPe32(Opc);
360 FoldList.push_back(FoldCandidate(MI, CommuteOpNo, OpToFold, true,
361 Op32));
362 return true;
365 TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1);
366 return false;
369 FoldList.push_back(FoldCandidate(MI, CommuteOpNo, OpToFold, true));
370 return true;
373 FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold));
374 return true;
377 // If the use operand doesn't care about the value, this may be an operand only
378 // used for register indexing, in which case it is unsafe to fold.
379 static bool isUseSafeToFold(const SIInstrInfo *TII,
380 const MachineInstr &MI,
381 const MachineOperand &UseMO) {
382 return !UseMO.isUndef() && !TII->isSDWA(MI);
383 //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg());
386 void SIFoldOperands::foldOperand(
387 MachineOperand &OpToFold,
388 MachineInstr *UseMI,
389 unsigned UseOpIdx,
390 SmallVectorImpl<FoldCandidate> &FoldList,
391 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const {
392 const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx);
394 if (!isUseSafeToFold(TII, *UseMI, UseOp))
395 return;
397 // FIXME: Fold operands with subregs.
398 if (UseOp.isReg() && OpToFold.isReg()) {
399 if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister)
400 return;
402 // Don't fold subregister extracts into tied operands, only if it is a full
403 // copy since a subregister use tied to a full register def doesn't really
404 // make sense. e.g. don't fold:
406 // %1 = COPY %0:sub1
407 // %2<tied3> = V_MAC_{F16, F32} %3, %4, %1<tied0>
409 // into
410 // %2<tied3> = V_MAC_{F16, F32} %3, %4, %0:sub1<tied0>
411 if (UseOp.isTied() && OpToFold.getSubReg() != AMDGPU::NoSubRegister)
412 return;
415 // Special case for REG_SEQUENCE: We can't fold literals into
416 // REG_SEQUENCE instructions, so we have to fold them into the
417 // uses of REG_SEQUENCE.
418 if (UseMI->isRegSequence()) {
419 unsigned RegSeqDstReg = UseMI->getOperand(0).getReg();
420 unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm();
422 for (MachineRegisterInfo::use_iterator
423 RSUse = MRI->use_begin(RegSeqDstReg), RSE = MRI->use_end();
424 RSUse != RSE; ++RSUse) {
426 MachineInstr *RSUseMI = RSUse->getParent();
427 if (RSUse->getSubReg() != RegSeqDstSubReg)
428 continue;
430 foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList,
431 CopiesToReplace);
434 return;
438 bool FoldingImm = OpToFold.isImm();
440 if (FoldingImm && UseMI->isCopy()) {
441 unsigned DestReg = UseMI->getOperand(0).getReg();
442 const TargetRegisterClass *DestRC
443 = TargetRegisterInfo::isVirtualRegister(DestReg) ?
444 MRI->getRegClass(DestReg) :
445 TRI->getPhysRegClass(DestReg);
447 unsigned SrcReg = UseMI->getOperand(1).getReg();
448 if (TargetRegisterInfo::isVirtualRegister(DestReg) &&
449 TargetRegisterInfo::isVirtualRegister(SrcReg)) {
450 const TargetRegisterClass * SrcRC = MRI->getRegClass(SrcReg);
451 if (TRI->isSGPRClass(SrcRC) && TRI->hasVGPRs(DestRC)) {
452 MachineRegisterInfo::use_iterator NextUse;
453 SmallVector<FoldCandidate, 4> CopyUses;
454 for (MachineRegisterInfo::use_iterator
455 Use = MRI->use_begin(DestReg), E = MRI->use_end();
456 Use != E; Use = NextUse) {
457 NextUse = std::next(Use);
458 FoldCandidate FC = FoldCandidate(Use->getParent(),
459 Use.getOperandNo(), &UseMI->getOperand(1));
460 CopyUses.push_back(FC);
462 for (auto & F : CopyUses) {
463 foldOperand(*F.OpToFold, F.UseMI, F.UseOpNo,
464 FoldList, CopiesToReplace);
469 // In order to fold immediates into copies, we need to change the
470 // copy to a MOV.
472 unsigned MovOp = TII->getMovOpcode(DestRC);
473 if (MovOp == AMDGPU::COPY)
474 return;
476 UseMI->setDesc(TII->get(MovOp));
477 CopiesToReplace.push_back(UseMI);
478 } else {
479 if (UseMI->isCopy() && OpToFold.isReg() &&
480 TargetRegisterInfo::isVirtualRegister(UseMI->getOperand(0).getReg()) &&
481 TargetRegisterInfo::isVirtualRegister(UseMI->getOperand(1).getReg()) &&
482 TRI->isVGPR(*MRI, UseMI->getOperand(0).getReg()) &&
483 TRI->isVGPR(*MRI, UseMI->getOperand(1).getReg()) &&
484 !UseMI->getOperand(1).getSubReg()) {
485 UseMI->getOperand(1).setReg(OpToFold.getReg());
486 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg());
487 UseMI->getOperand(1).setIsKill(false);
488 CopiesToReplace.push_back(UseMI);
489 OpToFold.setIsKill(false);
490 return;
493 const MCInstrDesc &UseDesc = UseMI->getDesc();
495 // Don't fold into target independent nodes. Target independent opcodes
496 // don't have defined register classes.
497 if (UseDesc.isVariadic() ||
498 UseOp.isImplicit() ||
499 UseDesc.OpInfo[UseOpIdx].RegClass == -1)
500 return;
503 if (!FoldingImm) {
504 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
506 // FIXME: We could try to change the instruction from 64-bit to 32-bit
507 // to enable more folding opportunites. The shrink operands pass
508 // already does this.
509 return;
513 const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc();
514 const TargetRegisterClass *FoldRC =
515 TRI->getRegClass(FoldDesc.OpInfo[0].RegClass);
518 // Split 64-bit constants into 32-bits for folding.
519 if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) {
520 unsigned UseReg = UseOp.getReg();
521 const TargetRegisterClass *UseRC
522 = TargetRegisterInfo::isVirtualRegister(UseReg) ?
523 MRI->getRegClass(UseReg) :
524 TRI->getPhysRegClass(UseReg);
526 if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64)
527 return;
529 APInt Imm(64, OpToFold.getImm());
530 if (UseOp.getSubReg() == AMDGPU::sub0) {
531 Imm = Imm.getLoBits(32);
532 } else {
533 assert(UseOp.getSubReg() == AMDGPU::sub1);
534 Imm = Imm.getHiBits(32);
537 MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue());
538 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII);
539 return;
544 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
547 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result,
548 uint32_t LHS, uint32_t RHS) {
549 switch (Opcode) {
550 case AMDGPU::V_AND_B32_e64:
551 case AMDGPU::V_AND_B32_e32:
552 case AMDGPU::S_AND_B32:
553 Result = LHS & RHS;
554 return true;
555 case AMDGPU::V_OR_B32_e64:
556 case AMDGPU::V_OR_B32_e32:
557 case AMDGPU::S_OR_B32:
558 Result = LHS | RHS;
559 return true;
560 case AMDGPU::V_XOR_B32_e64:
561 case AMDGPU::V_XOR_B32_e32:
562 case AMDGPU::S_XOR_B32:
563 Result = LHS ^ RHS;
564 return true;
565 case AMDGPU::V_LSHL_B32_e64:
566 case AMDGPU::V_LSHL_B32_e32:
567 case AMDGPU::S_LSHL_B32:
568 // The instruction ignores the high bits for out of bounds shifts.
569 Result = LHS << (RHS & 31);
570 return true;
571 case AMDGPU::V_LSHLREV_B32_e64:
572 case AMDGPU::V_LSHLREV_B32_e32:
573 Result = RHS << (LHS & 31);
574 return true;
575 case AMDGPU::V_LSHR_B32_e64:
576 case AMDGPU::V_LSHR_B32_e32:
577 case AMDGPU::S_LSHR_B32:
578 Result = LHS >> (RHS & 31);
579 return true;
580 case AMDGPU::V_LSHRREV_B32_e64:
581 case AMDGPU::V_LSHRREV_B32_e32:
582 Result = RHS >> (LHS & 31);
583 return true;
584 case AMDGPU::V_ASHR_I32_e64:
585 case AMDGPU::V_ASHR_I32_e32:
586 case AMDGPU::S_ASHR_I32:
587 Result = static_cast<int32_t>(LHS) >> (RHS & 31);
588 return true;
589 case AMDGPU::V_ASHRREV_I32_e64:
590 case AMDGPU::V_ASHRREV_I32_e32:
591 Result = static_cast<int32_t>(RHS) >> (LHS & 31);
592 return true;
593 default:
594 return false;
598 static unsigned getMovOpc(bool IsScalar) {
599 return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
602 /// Remove any leftover implicit operands from mutating the instruction. e.g.
603 /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def
604 /// anymore.
605 static void stripExtraCopyOperands(MachineInstr &MI) {
606 const MCInstrDesc &Desc = MI.getDesc();
607 unsigned NumOps = Desc.getNumOperands() +
608 Desc.getNumImplicitUses() +
609 Desc.getNumImplicitDefs();
611 for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I)
612 MI.RemoveOperand(I);
615 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) {
616 MI.setDesc(NewDesc);
617 stripExtraCopyOperands(MI);
620 static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI,
621 MachineOperand &Op) {
622 if (Op.isReg()) {
623 // If this has a subregister, it obviously is a register source.
624 if (Op.getSubReg() != AMDGPU::NoSubRegister ||
625 !TargetRegisterInfo::isVirtualRegister(Op.getReg()))
626 return &Op;
628 MachineInstr *Def = MRI.getVRegDef(Op.getReg());
629 if (Def && Def->isMoveImmediate()) {
630 MachineOperand &ImmSrc = Def->getOperand(1);
631 if (ImmSrc.isImm())
632 return &ImmSrc;
636 return &Op;
639 // Try to simplify operations with a constant that may appear after instruction
640 // selection.
641 // TODO: See if a frame index with a fixed offset can fold.
642 static bool tryConstantFoldOp(MachineRegisterInfo &MRI,
643 const SIInstrInfo *TII,
644 MachineInstr *MI,
645 MachineOperand *ImmOp) {
646 unsigned Opc = MI->getOpcode();
647 if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 ||
648 Opc == AMDGPU::S_NOT_B32) {
649 MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm());
650 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32)));
651 return true;
654 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
655 if (Src1Idx == -1)
656 return false;
658 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
659 MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx));
660 MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx));
662 if (!Src0->isImm() && !Src1->isImm())
663 return false;
665 if (MI->getOpcode() == AMDGPU::V_LSHL_OR_B32) {
666 if (Src0->isImm() && Src0->getImm() == 0) {
667 // v_lshl_or_b32 0, X, Y -> copy Y
668 // v_lshl_or_b32 0, X, K -> v_mov_b32 K
669 bool UseCopy = TII->getNamedOperand(*MI, AMDGPU::OpName::src2)->isReg();
670 MI->RemoveOperand(Src1Idx);
671 MI->RemoveOperand(Src0Idx);
673 MI->setDesc(TII->get(UseCopy ? AMDGPU::COPY : AMDGPU::V_MOV_B32_e32));
674 return true;
678 // and k0, k1 -> v_mov_b32 (k0 & k1)
679 // or k0, k1 -> v_mov_b32 (k0 | k1)
680 // xor k0, k1 -> v_mov_b32 (k0 ^ k1)
681 if (Src0->isImm() && Src1->isImm()) {
682 int32_t NewImm;
683 if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm()))
684 return false;
686 const SIRegisterInfo &TRI = TII->getRegisterInfo();
687 bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg());
689 // Be careful to change the right operand, src0 may belong to a different
690 // instruction.
691 MI->getOperand(Src0Idx).ChangeToImmediate(NewImm);
692 MI->RemoveOperand(Src1Idx);
693 mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR)));
694 return true;
697 if (!MI->isCommutable())
698 return false;
700 if (Src0->isImm() && !Src1->isImm()) {
701 std::swap(Src0, Src1);
702 std::swap(Src0Idx, Src1Idx);
705 int32_t Src1Val = static_cast<int32_t>(Src1->getImm());
706 if (Opc == AMDGPU::V_OR_B32_e64 ||
707 Opc == AMDGPU::V_OR_B32_e32 ||
708 Opc == AMDGPU::S_OR_B32) {
709 if (Src1Val == 0) {
710 // y = or x, 0 => y = copy x
711 MI->RemoveOperand(Src1Idx);
712 mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
713 } else if (Src1Val == -1) {
714 // y = or x, -1 => y = v_mov_b32 -1
715 MI->RemoveOperand(Src1Idx);
716 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32)));
717 } else
718 return false;
720 return true;
723 if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 ||
724 MI->getOpcode() == AMDGPU::V_AND_B32_e32 ||
725 MI->getOpcode() == AMDGPU::S_AND_B32) {
726 if (Src1Val == 0) {
727 // y = and x, 0 => y = v_mov_b32 0
728 MI->RemoveOperand(Src0Idx);
729 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32)));
730 } else if (Src1Val == -1) {
731 // y = and x, -1 => y = copy x
732 MI->RemoveOperand(Src1Idx);
733 mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
734 stripExtraCopyOperands(*MI);
735 } else
736 return false;
738 return true;
741 if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 ||
742 MI->getOpcode() == AMDGPU::V_XOR_B32_e32 ||
743 MI->getOpcode() == AMDGPU::S_XOR_B32) {
744 if (Src1Val == 0) {
745 // y = xor x, 0 => y = copy x
746 MI->RemoveOperand(Src1Idx);
747 mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
748 return true;
752 return false;
755 // Try to fold an instruction into a simpler one
756 static bool tryFoldInst(const SIInstrInfo *TII,
757 MachineInstr *MI) {
758 unsigned Opc = MI->getOpcode();
760 if (Opc == AMDGPU::V_CNDMASK_B32_e32 ||
761 Opc == AMDGPU::V_CNDMASK_B32_e64 ||
762 Opc == AMDGPU::V_CNDMASK_B64_PSEUDO) {
763 const MachineOperand *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0);
764 const MachineOperand *Src1 = TII->getNamedOperand(*MI, AMDGPU::OpName::src1);
765 if (Src1->isIdenticalTo(*Src0)) {
766 LLVM_DEBUG(dbgs() << "Folded " << *MI << " into ");
767 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
768 if (Src2Idx != -1)
769 MI->RemoveOperand(Src2Idx);
770 MI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1));
771 mutateCopyOp(*MI, TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY
772 : getMovOpc(false)));
773 LLVM_DEBUG(dbgs() << *MI << '\n');
774 return true;
778 return false;
781 void SIFoldOperands::foldInstOperand(MachineInstr &MI,
782 MachineOperand &OpToFold) const {
783 // We need mutate the operands of new mov instructions to add implicit
784 // uses of EXEC, but adding them invalidates the use_iterator, so defer
785 // this.
786 SmallVector<MachineInstr *, 4> CopiesToReplace;
787 SmallVector<FoldCandidate, 4> FoldList;
788 MachineOperand &Dst = MI.getOperand(0);
790 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI();
791 if (FoldingImm) {
792 unsigned NumLiteralUses = 0;
793 MachineOperand *NonInlineUse = nullptr;
794 int NonInlineUseOpNo = -1;
796 MachineRegisterInfo::use_iterator NextUse;
797 for (MachineRegisterInfo::use_iterator
798 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end();
799 Use != E; Use = NextUse) {
800 NextUse = std::next(Use);
801 MachineInstr *UseMI = Use->getParent();
802 unsigned OpNo = Use.getOperandNo();
804 // Folding the immediate may reveal operations that can be constant
805 // folded or replaced with a copy. This can happen for example after
806 // frame indices are lowered to constants or from splitting 64-bit
807 // constants.
809 // We may also encounter cases where one or both operands are
810 // immediates materialized into a register, which would ordinarily not
811 // be folded due to multiple uses or operand constraints.
813 if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) {
814 LLVM_DEBUG(dbgs() << "Constant folded " << *UseMI << '\n');
816 // Some constant folding cases change the same immediate's use to a new
817 // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user
818 // again. The same constant folded instruction could also have a second
819 // use operand.
820 NextUse = MRI->use_begin(Dst.getReg());
821 FoldList.clear();
822 continue;
825 // Try to fold any inline immediate uses, and then only fold other
826 // constants if they have one use.
828 // The legality of the inline immediate must be checked based on the use
829 // operand, not the defining instruction, because 32-bit instructions
830 // with 32-bit inline immediate sources may be used to materialize
831 // constants used in 16-bit operands.
833 // e.g. it is unsafe to fold:
834 // s_mov_b32 s0, 1.0 // materializes 0x3f800000
835 // v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00
837 // Folding immediates with more than one use will increase program size.
838 // FIXME: This will also reduce register usage, which may be better
839 // in some cases. A better heuristic is needed.
840 if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) {
841 foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace);
842 } else {
843 if (++NumLiteralUses == 1) {
844 NonInlineUse = &*Use;
845 NonInlineUseOpNo = OpNo;
850 if (NumLiteralUses == 1) {
851 MachineInstr *UseMI = NonInlineUse->getParent();
852 foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace);
854 } else {
855 // Folding register.
856 SmallVector <MachineRegisterInfo::use_iterator, 4> UsesToProcess;
857 for (MachineRegisterInfo::use_iterator
858 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end();
859 Use != E; ++Use) {
860 UsesToProcess.push_back(Use);
862 for (auto U : UsesToProcess) {
863 MachineInstr *UseMI = U->getParent();
865 foldOperand(OpToFold, UseMI, U.getOperandNo(),
866 FoldList, CopiesToReplace);
870 MachineFunction *MF = MI.getParent()->getParent();
871 // Make sure we add EXEC uses to any new v_mov instructions created.
872 for (MachineInstr *Copy : CopiesToReplace)
873 Copy->addImplicitDefUseOperands(*MF);
875 for (FoldCandidate &Fold : FoldList) {
876 if (updateOperand(Fold, *TII, *TRI)) {
877 // Clear kill flags.
878 if (Fold.isReg()) {
879 assert(Fold.OpToFold && Fold.OpToFold->isReg());
880 // FIXME: Probably shouldn't bother trying to fold if not an
881 // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR
882 // copies.
883 MRI->clearKillFlags(Fold.OpToFold->getReg());
885 LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo "
886 << static_cast<int>(Fold.UseOpNo) << " of "
887 << *Fold.UseMI << '\n');
888 tryFoldInst(TII, Fold.UseMI);
889 } else if (Fold.isCommuted()) {
890 // Restoring instruction's original operand order if fold has failed.
891 TII->commuteInstruction(*Fold.UseMI, false);
896 // Clamp patterns are canonically selected to v_max_* instructions, so only
897 // handle them.
898 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const {
899 unsigned Op = MI.getOpcode();
900 switch (Op) {
901 case AMDGPU::V_MAX_F32_e64:
902 case AMDGPU::V_MAX_F16_e64:
903 case AMDGPU::V_MAX_F64:
904 case AMDGPU::V_PK_MAX_F16: {
905 if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm())
906 return nullptr;
908 // Make sure sources are identical.
909 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
910 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
911 if (!Src0->isReg() || !Src1->isReg() ||
912 Src0->getReg() != Src1->getReg() ||
913 Src0->getSubReg() != Src1->getSubReg() ||
914 Src0->getSubReg() != AMDGPU::NoSubRegister)
915 return nullptr;
917 // Can't fold up if we have modifiers.
918 if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
919 return nullptr;
921 unsigned Src0Mods
922 = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm();
923 unsigned Src1Mods
924 = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm();
926 // Having a 0 op_sel_hi would require swizzling the output in the source
927 // instruction, which we can't do.
928 unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1 : 0;
929 if (Src0Mods != UnsetMods && Src1Mods != UnsetMods)
930 return nullptr;
931 return Src0;
933 default:
934 return nullptr;
938 // We obviously have multiple uses in a clamp since the register is used twice
939 // in the same instruction.
940 static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) {
941 int Count = 0;
942 for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
943 I != E; ++I) {
944 if (++Count > 1)
945 return false;
948 return true;
951 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel.
952 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) {
953 const MachineOperand *ClampSrc = isClamp(MI);
954 if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg()))
955 return false;
957 MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg());
959 // The type of clamp must be compatible.
960 if (TII->getClampMask(*Def) != TII->getClampMask(MI))
961 return false;
963 MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp);
964 if (!DefClamp)
965 return false;
967 LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def
968 << '\n');
970 // Clamp is applied after omod, so it is OK if omod is set.
971 DefClamp->setImm(1);
972 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
973 MI.eraseFromParent();
974 return true;
977 static int getOModValue(unsigned Opc, int64_t Val) {
978 switch (Opc) {
979 case AMDGPU::V_MUL_F32_e64: {
980 switch (static_cast<uint32_t>(Val)) {
981 case 0x3f000000: // 0.5
982 return SIOutMods::DIV2;
983 case 0x40000000: // 2.0
984 return SIOutMods::MUL2;
985 case 0x40800000: // 4.0
986 return SIOutMods::MUL4;
987 default:
988 return SIOutMods::NONE;
991 case AMDGPU::V_MUL_F16_e64: {
992 switch (static_cast<uint16_t>(Val)) {
993 case 0x3800: // 0.5
994 return SIOutMods::DIV2;
995 case 0x4000: // 2.0
996 return SIOutMods::MUL2;
997 case 0x4400: // 4.0
998 return SIOutMods::MUL4;
999 default:
1000 return SIOutMods::NONE;
1003 default:
1004 llvm_unreachable("invalid mul opcode");
1008 // FIXME: Does this really not support denormals with f16?
1009 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not
1010 // handled, so will anything other than that break?
1011 std::pair<const MachineOperand *, int>
1012 SIFoldOperands::isOMod(const MachineInstr &MI) const {
1013 unsigned Op = MI.getOpcode();
1014 switch (Op) {
1015 case AMDGPU::V_MUL_F32_e64:
1016 case AMDGPU::V_MUL_F16_e64: {
1017 // If output denormals are enabled, omod is ignored.
1018 if ((Op == AMDGPU::V_MUL_F32_e64 && ST->hasFP32Denormals()) ||
1019 (Op == AMDGPU::V_MUL_F16_e64 && ST->hasFP16Denormals()))
1020 return std::make_pair(nullptr, SIOutMods::NONE);
1022 const MachineOperand *RegOp = nullptr;
1023 const MachineOperand *ImmOp = nullptr;
1024 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1025 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1026 if (Src0->isImm()) {
1027 ImmOp = Src0;
1028 RegOp = Src1;
1029 } else if (Src1->isImm()) {
1030 ImmOp = Src1;
1031 RegOp = Src0;
1032 } else
1033 return std::make_pair(nullptr, SIOutMods::NONE);
1035 int OMod = getOModValue(Op, ImmOp->getImm());
1036 if (OMod == SIOutMods::NONE ||
1037 TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) ||
1038 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) ||
1039 TII->hasModifiersSet(MI, AMDGPU::OpName::omod) ||
1040 TII->hasModifiersSet(MI, AMDGPU::OpName::clamp))
1041 return std::make_pair(nullptr, SIOutMods::NONE);
1043 return std::make_pair(RegOp, OMod);
1045 case AMDGPU::V_ADD_F32_e64:
1046 case AMDGPU::V_ADD_F16_e64: {
1047 // If output denormals are enabled, omod is ignored.
1048 if ((Op == AMDGPU::V_ADD_F32_e64 && ST->hasFP32Denormals()) ||
1049 (Op == AMDGPU::V_ADD_F16_e64 && ST->hasFP16Denormals()))
1050 return std::make_pair(nullptr, SIOutMods::NONE);
1052 // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x
1053 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1054 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1056 if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() &&
1057 Src0->getSubReg() == Src1->getSubReg() &&
1058 !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) &&
1059 !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) &&
1060 !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) &&
1061 !TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
1062 return std::make_pair(Src0, SIOutMods::MUL2);
1064 return std::make_pair(nullptr, SIOutMods::NONE);
1066 default:
1067 return std::make_pair(nullptr, SIOutMods::NONE);
1071 // FIXME: Does this need to check IEEE bit on function?
1072 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) {
1073 const MachineOperand *RegOp;
1074 int OMod;
1075 std::tie(RegOp, OMod) = isOMod(MI);
1076 if (OMod == SIOutMods::NONE || !RegOp->isReg() ||
1077 RegOp->getSubReg() != AMDGPU::NoSubRegister ||
1078 !hasOneNonDBGUseInst(*MRI, RegOp->getReg()))
1079 return false;
1081 MachineInstr *Def = MRI->getVRegDef(RegOp->getReg());
1082 MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod);
1083 if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE)
1084 return false;
1086 // Clamp is applied after omod. If the source already has clamp set, don't
1087 // fold it.
1088 if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp))
1089 return false;
1091 LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n');
1093 DefOMod->setImm(OMod);
1094 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
1095 MI.eraseFromParent();
1096 return true;
1099 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) {
1100 if (skipFunction(MF.getFunction()))
1101 return false;
1103 MRI = &MF.getRegInfo();
1104 ST = &MF.getSubtarget<GCNSubtarget>();
1105 TII = ST->getInstrInfo();
1106 TRI = &TII->getRegisterInfo();
1108 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1110 // omod is ignored by hardware if IEEE bit is enabled. omod also does not
1111 // correctly handle signed zeros.
1113 bool IsIEEEMode = ST->enableIEEEBit(MF);
1114 bool HasNSZ = MFI->hasNoSignedZerosFPMath();
1116 for (MachineBasicBlock *MBB : depth_first(&MF)) {
1117 MachineBasicBlock::iterator I, Next;
1118 for (I = MBB->begin(); I != MBB->end(); I = Next) {
1119 Next = std::next(I);
1120 MachineInstr &MI = *I;
1122 tryFoldInst(TII, &MI);
1124 if (!TII->isFoldableCopy(MI)) {
1125 // TODO: Omod might be OK if there is NSZ only on the source
1126 // instruction, and not the omod multiply.
1127 if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) ||
1128 !tryFoldOMod(MI))
1129 tryFoldClamp(MI);
1130 continue;
1133 MachineOperand &OpToFold = MI.getOperand(1);
1134 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI();
1136 // FIXME: We could also be folding things like TargetIndexes.
1137 if (!FoldingImm && !OpToFold.isReg())
1138 continue;
1140 if (OpToFold.isReg() &&
1141 !TargetRegisterInfo::isVirtualRegister(OpToFold.getReg()))
1142 continue;
1144 // Prevent folding operands backwards in the function. For example,
1145 // the COPY opcode must not be replaced by 1 in this example:
1147 // %3 = COPY %vgpr0; VGPR_32:%3
1148 // ...
1149 // %vgpr0 = V_MOV_B32_e32 1, implicit %exec
1150 MachineOperand &Dst = MI.getOperand(0);
1151 if (Dst.isReg() &&
1152 !TargetRegisterInfo::isVirtualRegister(Dst.getReg()))
1153 continue;
1155 foldInstOperand(MI, OpToFold);
1158 return false;