1 //===----- ARMCodeGenPrepare.cpp ------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This pass inserts intrinsics to handle small types that would otherwise be
11 /// promoted during legalization. Here we can manually promote types or insert
12 /// intrinsics which can handle narrow types that aren't supported by the
15 //===----------------------------------------------------------------------===//
18 #include "ARMSubtarget.h"
19 #include "ARMTargetMachine.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/CodeGen/Passes.h"
22 #include "llvm/CodeGen/TargetPassConfig.h"
23 #include "llvm/IR/Attributes.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/IR/Verifier.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/CommandLine.h"
39 #define DEBUG_TYPE "arm-codegenprepare"
44 DisableCGP("arm-disable-cgp", cl::Hidden
, cl::init(true),
45 cl::desc("Disable ARM specific CodeGenPrepare pass"));
48 EnableDSP("arm-enable-scalar-dsp", cl::Hidden
, cl::init(false),
49 cl::desc("Use DSP instructions for scalar operations"));
52 EnableDSPWithImms("arm-enable-scalar-dsp-imms", cl::Hidden
, cl::init(false),
53 cl::desc("Use DSP instructions for scalar operations\
54 with immediate operands"));
56 // The goal of this pass is to enable more efficient code generation for
57 // operations on narrow types (i.e. types with < 32-bits) and this is a
58 // motivating IR code example:
60 // define hidden i32 @cmp(i8 zeroext) {
61 // %2 = add i8 %0, -49
62 // %3 = icmp ult i8 %2, 3
66 // The issue here is that i8 is type-legalized to i32 because i8 is not a
67 // legal type. Thus, arithmetic is done in integer-precision, but then the
68 // byte value is masked out as follows:
70 // t19: i32 = add t4, Constant:i32<-49>
71 // t24: i32 = and t19, Constant:i32<255>
73 // Consequently, we generate code like this:
79 // This shows that masking out the byte value results in generation of
80 // the UXTB instruction. This is not optimal as r0 already contains the byte
81 // value we need, and so instead we can just generate:
86 // We achieve this by type promoting the IR to i32 like so for this example:
88 // define i32 @cmp(i8 zeroext %c) {
89 // %0 = zext i8 %c to i32
90 // %c.off = add i32 %0, -49
91 // %1 = icmp ult i32 %c.off, 3
95 // For this to be valid and legal, we need to prove that the i32 add is
96 // producing the same value as the i8 addition, and that e.g. no overflow
99 // A brief sketch of the algorithm and some terminology.
100 // We pattern match interesting IR patterns:
101 // - which have "sources": instructions producing narrow values (i8, i16), and
102 // - they have "sinks": instructions consuming these narrow values.
104 // We collect all instruction connecting sources and sinks in a worklist, so
105 // that we can mutate these instruction and perform type promotion when it is
110 SmallPtrSet
<Value
*, 8> NewInsts
;
111 SmallPtrSet
<Instruction
*, 4> InstsToRemove
;
112 DenseMap
<Value
*, SmallVector
<Type
*, 4>> TruncTysMap
;
113 SmallPtrSet
<Value
*, 8> Promoted
;
116 // The type we promote to: always i32
117 IntegerType
*ExtTy
= nullptr;
118 // The type of the value that the search began from, either i8 or i16.
119 // This defines the max range of the values that we allow in the promoted
121 IntegerType
*OrigTy
= nullptr;
122 SmallPtrSetImpl
<Value
*> *Visited
;
123 SmallPtrSetImpl
<Value
*> *Sources
;
124 SmallPtrSetImpl
<Instruction
*> *Sinks
;
125 SmallPtrSetImpl
<Instruction
*> *SafeToPromote
;
127 void ReplaceAllUsersOfWith(Value
*From
, Value
*To
);
128 void PrepareConstants(void);
129 void ExtendSources(void);
130 void ConvertTruncs(void);
131 void PromoteTree(void);
132 void TruncateSinks(void);
136 IRPromoter(Module
*M
) : M(M
), Ctx(M
->getContext()),
137 ExtTy(Type::getInt32Ty(Ctx
)) { }
140 void Mutate(Type
*OrigTy
,
141 SmallPtrSetImpl
<Value
*> &Visited
,
142 SmallPtrSetImpl
<Value
*> &Sources
,
143 SmallPtrSetImpl
<Instruction
*> &Sinks
,
144 SmallPtrSetImpl
<Instruction
*> &SafeToPromote
);
147 class ARMCodeGenPrepare
: public FunctionPass
{
148 const ARMSubtarget
*ST
= nullptr;
149 IRPromoter
*Promoter
= nullptr;
150 std::set
<Value
*> AllVisited
;
151 SmallPtrSet
<Instruction
*, 8> SafeToPromote
;
153 bool isSafeOverflow(Instruction
*I
);
154 bool isSupportedValue(Value
*V
);
155 bool isLegalToPromote(Value
*V
);
156 bool TryToPromote(Value
*V
);
160 static unsigned TypeSize
;
161 Type
*OrigTy
= nullptr;
163 ARMCodeGenPrepare() : FunctionPass(ID
) {}
165 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
166 AU
.addRequired
<TargetPassConfig
>();
169 StringRef
getPassName() const override
{ return "ARM IR optimizations"; }
171 bool doInitialization(Module
&M
) override
;
172 bool runOnFunction(Function
&F
) override
;
173 bool doFinalization(Module
&M
) override
;
178 static bool generateSignBits(Value
*V
) {
179 if (!isa
<Instruction
>(V
))
182 unsigned Opc
= cast
<Instruction
>(V
)->getOpcode();
183 return Opc
== Instruction::AShr
|| Opc
== Instruction::SDiv
||
184 Opc
== Instruction::SRem
;
187 static bool EqualTypeSize(Value
*V
) {
188 return V
->getType()->getScalarSizeInBits() == ARMCodeGenPrepare::TypeSize
;
191 static bool LessOrEqualTypeSize(Value
*V
) {
192 return V
->getType()->getScalarSizeInBits() <= ARMCodeGenPrepare::TypeSize
;
195 static bool GreaterThanTypeSize(Value
*V
) {
196 return V
->getType()->getScalarSizeInBits() > ARMCodeGenPrepare::TypeSize
;
199 static bool LessThanTypeSize(Value
*V
) {
200 return V
->getType()->getScalarSizeInBits() < ARMCodeGenPrepare::TypeSize
;
203 /// Some instructions can use 8- and 16-bit operands, and we don't need to
204 /// promote anything larger. We disallow booleans to make life easier when
205 /// dealing with icmps but allow any other integer that is <= 16 bits. Void
206 /// types are accepted so we can handle switches.
207 static bool isSupportedType(Value
*V
) {
208 Type
*Ty
= V
->getType();
210 // Allow voids and pointers, these won't be promoted.
211 if (Ty
->isVoidTy() || Ty
->isPointerTy())
214 if (auto *Ld
= dyn_cast
<LoadInst
>(V
))
215 Ty
= cast
<PointerType
>(Ld
->getPointerOperandType())->getElementType();
217 if (!isa
<IntegerType
>(Ty
) ||
218 cast
<IntegerType
>(V
->getType())->getBitWidth() == 1)
221 return LessOrEqualTypeSize(V
);
224 /// Return true if the given value is a source in the use-def chain, producing
225 /// a narrow 'TypeSize' value. These values will be zext to start the promotion
226 /// of the tree to i32. We guarantee that these won't populate the upper bits
227 /// of the register. ZExt on the loads will be free, and the same for call
228 /// return values because we only accept ones that guarantee a zeroext ret val.
229 /// Many arguments will have the zeroext attribute too, so those would be free
231 static bool isSource(Value
*V
) {
232 if (!isa
<IntegerType
>(V
->getType()))
235 // TODO Allow zext to be sources.
236 if (isa
<Argument
>(V
))
238 else if (isa
<LoadInst
>(V
))
240 else if (isa
<BitCastInst
>(V
))
242 else if (auto *Call
= dyn_cast
<CallInst
>(V
))
243 return Call
->hasRetAttr(Attribute::AttrKind::ZExt
);
244 else if (auto *Trunc
= dyn_cast
<TruncInst
>(V
))
245 return EqualTypeSize(Trunc
);
249 /// Return true if V will require any promoted values to be truncated for the
250 /// the IR to remain valid. We can't mutate the value type of these
252 static bool isSink(Value
*V
) {
253 // TODO The truncate also isn't actually necessary because we would already
254 // proved that the data value is kept within the range of the original data
258 // - points where the value in the register is being observed, such as an
259 // icmp, switch or store.
260 // - points where value types have to match, such as calls and returns.
261 // - zext are included to ease the transformation and are generally removed
263 if (auto *Store
= dyn_cast
<StoreInst
>(V
))
264 return LessOrEqualTypeSize(Store
->getValueOperand());
265 if (auto *Return
= dyn_cast
<ReturnInst
>(V
))
266 return LessOrEqualTypeSize(Return
->getReturnValue());
267 if (auto *ZExt
= dyn_cast
<ZExtInst
>(V
))
268 return GreaterThanTypeSize(ZExt
);
269 if (auto *Switch
= dyn_cast
<SwitchInst
>(V
))
270 return LessThanTypeSize(Switch
->getCondition());
271 if (auto *ICmp
= dyn_cast
<ICmpInst
>(V
))
272 return ICmp
->isSigned() || LessThanTypeSize(ICmp
->getOperand(0));
274 return isa
<CallInst
>(V
);
277 /// Return whether the instruction can be promoted within any modifications to
278 /// its operands or result.
279 bool ARMCodeGenPrepare::isSafeOverflow(Instruction
*I
) {
280 // FIXME Do we need NSW too?
281 if (isa
<OverflowingBinaryOperator
>(I
) && I
->hasNoUnsignedWrap())
284 // We can support a, potentially, overflowing instruction (I) if:
285 // - It is only used by an unsigned icmp.
286 // - The icmp uses a constant.
287 // - The overflowing value (I) is decreasing, i.e would underflow - wrapping
288 // around zero to become a larger number than before.
289 // - The underflowing instruction (I) also uses a constant.
291 // We can then use the two constants to calculate whether the result would
292 // wrap in respect to itself in the original bitwidth. If it doesn't wrap,
293 // just underflows the range, the icmp would give the same result whether the
294 // result has been truncated or not. We calculate this by:
295 // - Zero extending both constants, if needed, to 32-bits.
296 // - Take the absolute value of I's constant, adding this to the icmp const.
297 // - Check that this value is not out of range for small type. If it is, it
298 // means that it has underflowed enough to wrap around the icmp constant.
302 // %sub = sub i8 %a, 2
303 // %cmp = icmp ule i8 %sub, 254
305 // If %a = 0, %sub = -2 == FE == 254
306 // But if this is evalulated as a i32
307 // %sub = -2 == FF FF FF FE == 4294967294
308 // So the unsigned compares (i8 and i32) would not yield the same result.
310 // Another way to look at it is:
314 // And we can't represent 256 in the i8 format, so we don't support it.
319 // %cmp = icmp ule i8 %sub, 254
321 // If %a = 0, %sub = -1 == FF == 255
323 // %sub = -1 == FF FF FF FF == 4294967295
325 // In this case, the unsigned compare results would be the same and this
326 // would also be true for ult, uge and ugt:
327 // - (255 < 254) == (0xFFFFFFFF < 254) == false
328 // - (255 <= 254) == (0xFFFFFFFF <= 254) == false
329 // - (255 > 254) == (0xFFFFFFFF > 254) == true
330 // - (255 >= 254) == (0xFFFFFFFF >= 254) == true
332 // To demonstrate why we can't handle increasing values:
334 // %add = add i8 %a, 2
335 // %cmp = icmp ult i8 %add, 127
337 // If %a = 254, %add = 256 == (i8 1)
341 // (1 < 127) != (256 < 127)
343 unsigned Opc
= I
->getOpcode();
344 if (Opc
!= Instruction::Add
&& Opc
!= Instruction::Sub
)
347 if (!I
->hasOneUse() ||
348 !isa
<ICmpInst
>(*I
->user_begin()) ||
349 !isa
<ConstantInt
>(I
->getOperand(1)))
352 ConstantInt
*OverflowConst
= cast
<ConstantInt
>(I
->getOperand(1));
353 bool NegImm
= OverflowConst
->isNegative();
354 bool IsDecreasing
= ((Opc
== Instruction::Sub
) && !NegImm
) ||
355 ((Opc
== Instruction::Add
) && NegImm
);
359 // Don't support an icmp that deals with sign bits.
360 auto *CI
= cast
<ICmpInst
>(*I
->user_begin());
361 if (CI
->isSigned() || CI
->isEquality())
364 ConstantInt
*ICmpConst
= nullptr;
365 if (auto *Const
= dyn_cast
<ConstantInt
>(CI
->getOperand(0)))
367 else if (auto *Const
= dyn_cast
<ConstantInt
>(CI
->getOperand(1)))
372 // Now check that the result can't wrap on itself.
373 APInt Total
= ICmpConst
->getValue().getBitWidth() < 32 ?
374 ICmpConst
->getValue().zext(32) : ICmpConst
->getValue();
376 Total
+= OverflowConst
->getValue().getBitWidth() < 32 ?
377 OverflowConst
->getValue().abs().zext(32) : OverflowConst
->getValue().abs();
379 APInt Max
= APInt::getAllOnesValue(ARMCodeGenPrepare::TypeSize
);
381 if (Total
.getBitWidth() > Max
.getBitWidth()) {
382 if (Total
.ugt(Max
.zext(Total
.getBitWidth())))
384 } else if (Max
.getBitWidth() > Total
.getBitWidth()) {
385 if (Total
.zext(Max
.getBitWidth()).ugt(Max
))
387 } else if (Total
.ugt(Max
))
390 LLVM_DEBUG(dbgs() << "ARM CGP: Allowing safe overflow for " << *I
<< "\n");
394 static bool shouldPromote(Value
*V
) {
395 if (!isa
<IntegerType
>(V
->getType()) || isSink(V
))
401 auto *I
= dyn_cast
<Instruction
>(V
);
405 if (isa
<ICmpInst
>(I
))
411 /// Return whether we can safely mutate V's type to ExtTy without having to be
412 /// concerned with zero extending or truncation.
413 static bool isPromotedResultSafe(Value
*V
) {
414 if (!isa
<Instruction
>(V
))
417 if (generateSignBits(V
))
420 return !isa
<OverflowingBinaryOperator
>(V
);
423 /// Return the intrinsic for the instruction that can perform the same
424 /// operation but on a narrow type. This is using the parallel dsp intrinsics
425 /// on scalar values.
426 static Intrinsic::ID
getNarrowIntrinsic(Instruction
*I
) {
427 // Whether we use the signed or unsigned versions of these intrinsics
428 // doesn't matter because we're not using the GE bits that they set in
430 switch(I
->getOpcode()) {
433 case Instruction::Add
:
434 return ARMCodeGenPrepare::TypeSize
== 16 ? Intrinsic::arm_uadd16
:
435 Intrinsic::arm_uadd8
;
436 case Instruction::Sub
:
437 return ARMCodeGenPrepare::TypeSize
== 16 ? Intrinsic::arm_usub16
:
438 Intrinsic::arm_usub8
;
440 llvm_unreachable("unhandled opcode for narrow intrinsic");
443 void IRPromoter::ReplaceAllUsersOfWith(Value
*From
, Value
*To
) {
444 SmallVector
<Instruction
*, 4> Users
;
445 Instruction
*InstTo
= dyn_cast
<Instruction
>(To
);
446 bool ReplacedAll
= true;
448 LLVM_DEBUG(dbgs() << "ARM CGP: Replacing " << *From
<< " with " << *To
451 for (Use
&U
: From
->uses()) {
452 auto *User
= cast
<Instruction
>(U
.getUser());
453 if (InstTo
&& User
->isIdenticalTo(InstTo
)) {
457 Users
.push_back(User
);
460 for (auto *U
: Users
)
461 U
->replaceUsesOfWith(From
, To
);
464 if (auto *I
= dyn_cast
<Instruction
>(From
))
465 InstsToRemove
.insert(I
);
468 void IRPromoter::PrepareConstants() {
469 IRBuilder
<> Builder
{Ctx
};
470 // First step is to prepare the instructions for mutation. Most constants
471 // just need to be zero extended into their new type, but complications arise
473 // - For nuw binary operators, negative immediates would need sign extending;
474 // however, instead we'll change them to positive and zext them. We can do
476 // > The operators that can wrap are: add, sub, mul and shl.
477 // > shl interprets its second operand as unsigned and if the first operand
478 // is an immediate, it will need zext to be nuw.
479 // > I'm assuming mul has to interpret immediates as unsigned for nuw.
480 // > Which leaves the nuw add and sub to be handled; as with shl, if an
481 // immediate is used as operand 0, it will need zext to be nuw.
482 // - We also allow add and sub to safely overflow in certain circumstances
483 // and only when the value (operand 0) is being decreased.
485 // For adds and subs, that are either nuw or safely wrap and use a negative
486 // immediate as operand 1, we create an equivalent instruction using a
487 // positive immediate. That positive immediate can then be zext along with
488 // all the other immediates later.
489 for (auto *V
: *Visited
) {
490 if (!isa
<Instruction
>(V
))
493 auto *I
= cast
<Instruction
>(V
);
494 if (SafeToPromote
->count(I
)) {
496 if (!isa
<OverflowingBinaryOperator
>(I
))
499 if (auto *Const
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
500 if (!Const
->isNegative())
503 unsigned Opc
= I
->getOpcode();
504 if (Opc
!= Instruction::Add
&& Opc
!= Instruction::Sub
)
507 LLVM_DEBUG(dbgs() << "ARM CGP: Adjusting " << *I
<< "\n");
508 auto *NewConst
= ConstantInt::get(Ctx
, Const
->getValue().abs());
509 Builder
.SetInsertPoint(I
);
510 Value
*NewVal
= Opc
== Instruction::Sub
?
511 Builder
.CreateAdd(I
->getOperand(0), NewConst
) :
512 Builder
.CreateSub(I
->getOperand(0), NewConst
);
513 LLVM_DEBUG(dbgs() << "ARM CGP: New equivalent: " << *NewVal
<< "\n");
515 if (auto *NewInst
= dyn_cast
<Instruction
>(NewVal
)) {
516 NewInst
->copyIRFlags(I
);
517 NewInsts
.insert(NewInst
);
519 InstsToRemove
.insert(I
);
520 I
->replaceAllUsesWith(NewVal
);
524 for (auto *I
: NewInsts
)
528 void IRPromoter::ExtendSources() {
529 IRBuilder
<> Builder
{Ctx
};
531 auto InsertZExt
= [&](Value
*V
, Instruction
*InsertPt
) {
532 assert(V
->getType() != ExtTy
&& "zext already extends to i32");
533 LLVM_DEBUG(dbgs() << "ARM CGP: Inserting ZExt for " << *V
<< "\n");
534 Builder
.SetInsertPoint(InsertPt
);
535 if (auto *I
= dyn_cast
<Instruction
>(V
))
536 Builder
.SetCurrentDebugLocation(I
->getDebugLoc());
538 Value
*ZExt
= Builder
.CreateZExt(V
, ExtTy
);
539 if (auto *I
= dyn_cast
<Instruction
>(ZExt
)) {
540 if (isa
<Argument
>(V
))
541 I
->moveBefore(InsertPt
);
543 I
->moveAfter(InsertPt
);
547 ReplaceAllUsersOfWith(V
, ZExt
);
550 // Now, insert extending instructions between the sources and their users.
551 LLVM_DEBUG(dbgs() << "ARM CGP: Promoting sources:\n");
552 for (auto V
: *Sources
) {
553 LLVM_DEBUG(dbgs() << " - " << *V
<< "\n");
554 if (auto *I
= dyn_cast
<Instruction
>(V
))
556 else if (auto *Arg
= dyn_cast
<Argument
>(V
)) {
557 BasicBlock
&BB
= Arg
->getParent()->front();
558 InsertZExt(Arg
, &*BB
.getFirstInsertionPt());
560 llvm_unreachable("unhandled source that needs extending");
566 void IRPromoter::PromoteTree() {
567 LLVM_DEBUG(dbgs() << "ARM CGP: Mutating the tree..\n");
569 IRBuilder
<> Builder
{Ctx
};
571 // Mutate the types of the instructions within the tree. Here we handle
572 // constant operands.
573 for (auto *V
: *Visited
) {
574 if (Sources
->count(V
))
577 auto *I
= cast
<Instruction
>(V
);
581 for (unsigned i
= 0, e
= I
->getNumOperands(); i
< e
; ++i
) {
582 Value
*Op
= I
->getOperand(i
);
583 if ((Op
->getType() == ExtTy
) || !isa
<IntegerType
>(Op
->getType()))
586 if (auto *Const
= dyn_cast
<ConstantInt
>(Op
)) {
587 Constant
*NewConst
= ConstantExpr::getZExt(Const
, ExtTy
);
588 I
->setOperand(i
, NewConst
);
589 } else if (isa
<UndefValue
>(Op
))
590 I
->setOperand(i
, UndefValue::get(ExtTy
));
593 if (shouldPromote(I
)) {
594 I
->mutateType(ExtTy
);
599 // Finally, any instructions that should be promoted but haven't yet been,
600 // need to be handled using intrinsics.
601 for (auto *V
: *Visited
) {
602 auto *I
= dyn_cast
<Instruction
>(V
);
606 if (Sources
->count(I
) || Sinks
->count(I
))
609 if (!shouldPromote(I
) || SafeToPromote
->count(I
) || NewInsts
.count(I
))
612 assert(EnableDSP
&& "DSP intrinisc insertion not enabled!");
614 // Replace unsafe instructions with appropriate intrinsic calls.
615 LLVM_DEBUG(dbgs() << "ARM CGP: Inserting DSP intrinsic for "
618 Intrinsic::getDeclaration(M
, getNarrowIntrinsic(I
));
619 Builder
.SetInsertPoint(I
);
620 Builder
.SetCurrentDebugLocation(I
->getDebugLoc());
621 Value
*Args
[] = { I
->getOperand(0), I
->getOperand(1) };
622 CallInst
*Call
= Builder
.CreateCall(DSPInst
, Args
);
623 NewInsts
.insert(Call
);
624 ReplaceAllUsersOfWith(I
, Call
);
628 void IRPromoter::TruncateSinks() {
629 LLVM_DEBUG(dbgs() << "ARM CGP: Fixing up the sinks:\n");
631 IRBuilder
<> Builder
{Ctx
};
633 auto InsertTrunc
= [&](Value
*V
, Type
*TruncTy
) -> Instruction
* {
634 if (!isa
<Instruction
>(V
) || !isa
<IntegerType
>(V
->getType()))
637 if ((!Promoted
.count(V
) && !NewInsts
.count(V
)) || Sources
->count(V
))
640 LLVM_DEBUG(dbgs() << "ARM CGP: Creating " << *TruncTy
<< " Trunc for "
642 Builder
.SetInsertPoint(cast
<Instruction
>(V
));
643 auto *Trunc
= dyn_cast
<Instruction
>(Builder
.CreateTrunc(V
, TruncTy
));
645 NewInsts
.insert(Trunc
);
649 // Fix up any stores or returns that use the results of the promoted
651 for (auto I
: *Sinks
) {
652 LLVM_DEBUG(dbgs() << "ARM CGP: For Sink: " << *I
<< "\n");
654 // Handle calls separately as we need to iterate over arg operands.
655 if (auto *Call
= dyn_cast
<CallInst
>(I
)) {
656 for (unsigned i
= 0; i
< Call
->getNumArgOperands(); ++i
) {
657 Value
*Arg
= Call
->getArgOperand(i
);
658 Type
*Ty
= TruncTysMap
[Call
][i
];
659 if (Instruction
*Trunc
= InsertTrunc(Arg
, Ty
)) {
660 Trunc
->moveBefore(Call
);
661 Call
->setArgOperand(i
, Trunc
);
667 // Special case switches because we need to truncate the condition.
668 if (auto *Switch
= dyn_cast
<SwitchInst
>(I
)) {
669 Type
*Ty
= TruncTysMap
[Switch
][0];
670 if (Instruction
*Trunc
= InsertTrunc(Switch
->getCondition(), Ty
)) {
671 Trunc
->moveBefore(Switch
);
672 Switch
->setCondition(Trunc
);
677 // Now handle the others.
678 for (unsigned i
= 0; i
< I
->getNumOperands(); ++i
) {
679 Type
*Ty
= TruncTysMap
[I
][i
];
680 if (Instruction
*Trunc
= InsertTrunc(I
->getOperand(i
), Ty
)) {
681 Trunc
->moveBefore(I
);
682 I
->setOperand(i
, Trunc
);
688 void IRPromoter::Cleanup() {
689 LLVM_DEBUG(dbgs() << "ARM CGP: Cleanup..\n");
690 // Some zexts will now have become redundant, along with their trunc
691 // operands, so remove them
692 for (auto V
: *Visited
) {
693 if (!isa
<ZExtInst
>(V
))
696 auto ZExt
= cast
<ZExtInst
>(V
);
697 if (ZExt
->getDestTy() != ExtTy
)
700 Value
*Src
= ZExt
->getOperand(0);
701 if (ZExt
->getSrcTy() == ZExt
->getDestTy()) {
702 LLVM_DEBUG(dbgs() << "ARM CGP: Removing unnecessary cast: " << *ZExt
704 ReplaceAllUsersOfWith(ZExt
, Src
);
708 // Unless they produce a value that is narrower than ExtTy, we can
709 // replace the result of the zext with the input of a newly inserted
711 if (NewInsts
.count(Src
) && isa
<TruncInst
>(Src
) &&
712 Src
->getType() == OrigTy
) {
713 auto *Trunc
= cast
<TruncInst
>(Src
);
714 assert(Trunc
->getOperand(0)->getType() == ExtTy
&&
715 "expected inserted trunc to be operating on i32");
716 ReplaceAllUsersOfWith(ZExt
, Trunc
->getOperand(0));
720 for (auto *I
: InstsToRemove
) {
721 LLVM_DEBUG(dbgs() << "ARM CGP: Removing " << *I
<< "\n");
722 I
->dropAllReferences();
723 I
->eraseFromParent();
726 InstsToRemove
.clear();
732 void IRPromoter::ConvertTruncs() {
733 LLVM_DEBUG(dbgs() << "ARM CGP: Converting truncs..\n");
734 IRBuilder
<> Builder
{Ctx
};
736 for (auto *V
: *Visited
) {
737 if (!isa
<TruncInst
>(V
) || Sources
->count(V
))
740 auto *Trunc
= cast
<TruncInst
>(V
);
741 Builder
.SetInsertPoint(Trunc
);
742 IntegerType
*SrcTy
= cast
<IntegerType
>(Trunc
->getOperand(0)->getType());
743 IntegerType
*DestTy
= cast
<IntegerType
>(TruncTysMap
[Trunc
][0]);
745 unsigned NumBits
= DestTy
->getScalarSizeInBits();
747 ConstantInt::get(SrcTy
, APInt::getMaxValue(NumBits
).getZExtValue());
748 Value
*Masked
= Builder
.CreateAnd(Trunc
->getOperand(0), Mask
);
750 if (auto *I
= dyn_cast
<Instruction
>(Masked
))
753 ReplaceAllUsersOfWith(Trunc
, Masked
);
757 void IRPromoter::Mutate(Type
*OrigTy
,
758 SmallPtrSetImpl
<Value
*> &Visited
,
759 SmallPtrSetImpl
<Value
*> &Sources
,
760 SmallPtrSetImpl
<Instruction
*> &Sinks
,
761 SmallPtrSetImpl
<Instruction
*> &SafeToPromote
) {
762 LLVM_DEBUG(dbgs() << "ARM CGP: Promoting use-def chains to from "
763 << ARMCodeGenPrepare::TypeSize
<< " to 32-bits\n");
765 assert(isa
<IntegerType
>(OrigTy
) && "expected integer type");
766 this->OrigTy
= cast
<IntegerType
>(OrigTy
);
767 assert(OrigTy
->getPrimitiveSizeInBits() < ExtTy
->getPrimitiveSizeInBits() &&
768 "original type not smaller than extended type");
770 this->Visited
= &Visited
;
771 this->Sources
= &Sources
;
772 this->Sinks
= &Sinks
;
773 this->SafeToPromote
= &SafeToPromote
;
775 // Cache original types of the values that will likely need truncating
776 for (auto *I
: Sinks
) {
777 if (auto *Call
= dyn_cast
<CallInst
>(I
)) {
778 for (unsigned i
= 0; i
< Call
->getNumArgOperands(); ++i
) {
779 Value
*Arg
= Call
->getArgOperand(i
);
780 TruncTysMap
[Call
].push_back(Arg
->getType());
782 } else if (auto *Switch
= dyn_cast
<SwitchInst
>(I
))
783 TruncTysMap
[I
].push_back(Switch
->getCondition()->getType());
785 for (unsigned i
= 0; i
< I
->getNumOperands(); ++i
)
786 TruncTysMap
[I
].push_back(I
->getOperand(i
)->getType());
789 for (auto *V
: Visited
) {
790 if (!isa
<TruncInst
>(V
) || Sources
.count(V
))
792 auto *Trunc
= cast
<TruncInst
>(V
);
793 TruncTysMap
[Trunc
].push_back(Trunc
->getDestTy());
796 // Convert adds and subs using negative immediates to equivalent instructions
797 // that use positive constants.
800 // Insert zext instructions between sources and their users.
803 // Promote visited instructions, mutating their types in place. Also insert
804 // DSP intrinsics, if enabled, for adds and subs which would be unsafe to
808 // Convert any truncs, that aren't sources, into AND masks.
811 // Insert trunc instructions for use by calls, stores etc...
814 // Finally, remove unecessary zexts and truncs, delete old instructions and
815 // clear the data structures.
818 LLVM_DEBUG(dbgs() << "ARM CGP: Mutation complete\n");
821 /// We accept most instructions, as well as Arguments and ConstantInsts. We
822 /// Disallow casts other than zext and truncs and only allow calls if their
823 /// return value is zeroext. We don't allow opcodes that can introduce sign
825 bool ARMCodeGenPrepare::isSupportedValue(Value
*V
) {
826 if (auto *I
= dyn_cast
<ICmpInst
>(V
)) {
827 // Now that we allow small types than TypeSize, only allow icmp of
828 // TypeSize because they will require a trunc to be legalised.
829 // TODO: Allow icmp of smaller types, and calculate at the end
830 // whether the transform would be beneficial.
831 if (isa
<PointerType
>(I
->getOperand(0)->getType()))
833 return EqualTypeSize(I
->getOperand(0));
836 // Memory instructions
837 if (isa
<StoreInst
>(V
) || isa
<GetElementPtrInst
>(V
))
840 // Branches and targets.
841 if( isa
<BranchInst
>(V
) || isa
<SwitchInst
>(V
) || isa
<BasicBlock
>(V
))
844 // Non-instruction values that we can handle.
845 if ((isa
<Constant
>(V
) && !isa
<ConstantExpr
>(V
)) || isa
<Argument
>(V
))
846 return isSupportedType(V
);
848 if (isa
<PHINode
>(V
) || isa
<SelectInst
>(V
) || isa
<ReturnInst
>(V
) ||
850 return isSupportedType(V
);
852 if (isa
<SExtInst
>(V
))
855 if (auto *Cast
= dyn_cast
<CastInst
>(V
))
856 return isSupportedType(Cast
) || isSupportedType(Cast
->getOperand(0));
858 // Special cases for calls as we need to check for zeroext
859 // TODO We should accept calls even if they don't have zeroext, as they can
861 if (auto *Call
= dyn_cast
<CallInst
>(V
))
862 return isSupportedType(Call
) &&
863 Call
->hasRetAttr(Attribute::AttrKind::ZExt
);
865 if (!isa
<BinaryOperator
>(V
))
868 if (!isSupportedType(V
))
871 if (generateSignBits(V
)) {
872 LLVM_DEBUG(dbgs() << "ARM CGP: No, instruction can generate sign bits.\n");
878 /// Check that the type of V would be promoted and that the original type is
879 /// smaller than the targeted promoted type. Check that we're not trying to
880 /// promote something larger than our base 'TypeSize' type.
881 bool ARMCodeGenPrepare::isLegalToPromote(Value
*V
) {
883 auto *I
= dyn_cast
<Instruction
>(V
);
887 if (SafeToPromote
.count(I
))
890 if (isPromotedResultSafe(V
) || isSafeOverflow(I
)) {
891 SafeToPromote
.insert(I
);
895 if (I
->getOpcode() != Instruction::Add
&& I
->getOpcode() != Instruction::Sub
)
898 // If promotion is not safe, can we use a DSP instruction to natively
899 // handle the narrow type?
900 if (!ST
->hasDSP() || !EnableDSP
|| !isSupportedType(I
))
903 if (ST
->isThumb() && !ST
->hasThumb2())
907 // Would it be profitable? For Thumb code, these parallel DSP instructions
908 // are only Thumb-2, so we wouldn't be able to dual issue on Cortex-M33. For
909 // Cortex-A, specifically Cortex-A72, the latency is double and throughput is
910 // halved. They also do not take immediates as operands.
911 for (auto &Op
: I
->operands()) {
912 if (isa
<Constant
>(Op
)) {
913 if (!EnableDSPWithImms
)
917 LLVM_DEBUG(dbgs() << "ARM CGP: Will use an intrinsic for: " << *I
<< "\n");
921 bool ARMCodeGenPrepare::TryToPromote(Value
*V
) {
922 OrigTy
= V
->getType();
923 TypeSize
= OrigTy
->getPrimitiveSizeInBits();
924 if (TypeSize
> 16 || TypeSize
< 8)
927 SafeToPromote
.clear();
929 if (!isSupportedValue(V
) || !shouldPromote(V
) || !isLegalToPromote(V
))
932 LLVM_DEBUG(dbgs() << "ARM CGP: TryToPromote: " << *V
<< ", TypeSize = "
933 << TypeSize
<< "\n");
935 SetVector
<Value
*> WorkList
;
936 SmallPtrSet
<Value
*, 8> Sources
;
937 SmallPtrSet
<Instruction
*, 4> Sinks
;
938 SmallPtrSet
<Value
*, 16> CurrentVisited
;
941 // Return true if V was added to the worklist as a supported instruction,
942 // if it was already visited, or if we don't need to explore it (e.g.
943 // pointer values and GEPs), and false otherwise.
944 auto AddLegalInst
= [&](Value
*V
) {
945 if (CurrentVisited
.count(V
))
948 // Ignore GEPs because they don't need promoting and the constant indices
949 // will prevent the transformation.
950 if (isa
<GetElementPtrInst
>(V
))
953 if (!isSupportedValue(V
) || (shouldPromote(V
) && !isLegalToPromote(V
))) {
954 LLVM_DEBUG(dbgs() << "ARM CGP: Can't handle: " << *V
<< "\n");
962 // Iterate through, and add to, a tree of operands and users in the use-def.
963 while (!WorkList
.empty()) {
964 Value
*V
= WorkList
.back();
966 if (CurrentVisited
.count(V
))
969 // Ignore non-instructions, other than arguments.
970 if (!isa
<Instruction
>(V
) && !isSource(V
))
973 // If we've already visited this value from somewhere, bail now because
974 // the tree has already been explored.
975 // TODO: This could limit the transform, ie if we try to promote something
976 // from an i8 and fail first, before trying an i16.
977 if (AllVisited
.count(V
))
980 CurrentVisited
.insert(V
);
981 AllVisited
.insert(V
);
983 // Calls can be both sources and sinks.
985 Sinks
.insert(cast
<Instruction
>(V
));
990 if (!isSink(V
) && !isSource(V
)) {
991 if (auto *I
= dyn_cast
<Instruction
>(V
)) {
992 // Visit operands of any instruction visited.
993 for (auto &U
: I
->operands()) {
994 if (!AddLegalInst(U
))
1000 // Don't visit users of a node which isn't going to be mutated unless its a
1002 if (isSource(V
) || shouldPromote(V
)) {
1003 for (Use
&U
: V
->uses()) {
1004 if (!AddLegalInst(U
.getUser()))
1010 LLVM_DEBUG(dbgs() << "ARM CGP: Visited nodes:\n";
1011 for (auto *I
: CurrentVisited
)
1014 unsigned ToPromote
= 0;
1015 for (auto *V
: CurrentVisited
) {
1016 if (Sources
.count(V
))
1018 if (Sinks
.count(cast
<Instruction
>(V
)))
1026 Promoter
->Mutate(OrigTy
, CurrentVisited
, Sources
, Sinks
, SafeToPromote
);
1030 bool ARMCodeGenPrepare::doInitialization(Module
&M
) {
1031 Promoter
= new IRPromoter(&M
);
1035 bool ARMCodeGenPrepare::runOnFunction(Function
&F
) {
1036 if (skipFunction(F
) || DisableCGP
)
1039 auto *TPC
= &getAnalysis
<TargetPassConfig
>();
1043 const TargetMachine
&TM
= TPC
->getTM
<TargetMachine
>();
1044 ST
= &TM
.getSubtarget
<ARMSubtarget
>(F
);
1045 bool MadeChange
= false;
1046 LLVM_DEBUG(dbgs() << "ARM CGP: Running on " << F
.getName() << "\n");
1048 // Search up from icmps to try to promote their operands.
1049 for (BasicBlock
&BB
: F
) {
1050 auto &Insts
= BB
.getInstList();
1051 for (auto &I
: Insts
) {
1052 if (AllVisited
.count(&I
))
1055 if (isa
<ICmpInst
>(I
)) {
1056 auto &CI
= cast
<ICmpInst
>(I
);
1058 // Skip signed or pointer compares
1059 if (CI
.isSigned() || !isa
<IntegerType
>(CI
.getOperand(0)->getType()))
1062 LLVM_DEBUG(dbgs() << "ARM CGP: Searching from: " << CI
<< "\n");
1064 for (auto &Op
: CI
.operands()) {
1065 if (auto *I
= dyn_cast
<Instruction
>(Op
))
1066 MadeChange
|= TryToPromote(I
);
1070 LLVM_DEBUG(if (verifyFunction(F
, &dbgs())) {
1072 report_fatal_error("Broken function after type promotion");
1076 LLVM_DEBUG(dbgs() << "After ARMCodeGenPrepare: " << F
<< "\n");
1081 bool ARMCodeGenPrepare::doFinalization(Module
&M
) {
1086 INITIALIZE_PASS_BEGIN(ARMCodeGenPrepare
, DEBUG_TYPE
,
1087 "ARM IR optimizations", false, false)
1088 INITIALIZE_PASS_END(ARMCodeGenPrepare
, DEBUG_TYPE
, "ARM IR optimizations",
1091 char ARMCodeGenPrepare::ID
= 0;
1092 unsigned ARMCodeGenPrepare::TypeSize
= 0;
1094 FunctionPass
*llvm::createARMCodeGenPreparePass() {
1095 return new ARMCodeGenPrepare();