Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Target / ARM / ARMCodeGenPrepare.cpp
blobe9f5e6a4201d6f90ff7737e181f0955d7599a489
1 //===----- ARMCodeGenPrepare.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This pass inserts intrinsics to handle small types that would otherwise be
11 /// promoted during legalization. Here we can manually promote types or insert
12 /// intrinsics which can handle narrow types that aren't supported by the
13 /// register classes.
15 //===----------------------------------------------------------------------===//
17 #include "ARM.h"
18 #include "ARMSubtarget.h"
19 #include "ARMTargetMachine.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/CodeGen/Passes.h"
22 #include "llvm/CodeGen/TargetPassConfig.h"
23 #include "llvm/IR/Attributes.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/IR/Verifier.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/CommandLine.h"
39 #define DEBUG_TYPE "arm-codegenprepare"
41 using namespace llvm;
43 static cl::opt<bool>
44 DisableCGP("arm-disable-cgp", cl::Hidden, cl::init(true),
45 cl::desc("Disable ARM specific CodeGenPrepare pass"));
47 static cl::opt<bool>
48 EnableDSP("arm-enable-scalar-dsp", cl::Hidden, cl::init(false),
49 cl::desc("Use DSP instructions for scalar operations"));
51 static cl::opt<bool>
52 EnableDSPWithImms("arm-enable-scalar-dsp-imms", cl::Hidden, cl::init(false),
53 cl::desc("Use DSP instructions for scalar operations\
54 with immediate operands"));
56 // The goal of this pass is to enable more efficient code generation for
57 // operations on narrow types (i.e. types with < 32-bits) and this is a
58 // motivating IR code example:
60 // define hidden i32 @cmp(i8 zeroext) {
61 // %2 = add i8 %0, -49
62 // %3 = icmp ult i8 %2, 3
63 // ..
64 // }
66 // The issue here is that i8 is type-legalized to i32 because i8 is not a
67 // legal type. Thus, arithmetic is done in integer-precision, but then the
68 // byte value is masked out as follows:
70 // t19: i32 = add t4, Constant:i32<-49>
71 // t24: i32 = and t19, Constant:i32<255>
73 // Consequently, we generate code like this:
75 // subs r0, #49
76 // uxtb r1, r0
77 // cmp r1, #3
79 // This shows that masking out the byte value results in generation of
80 // the UXTB instruction. This is not optimal as r0 already contains the byte
81 // value we need, and so instead we can just generate:
83 // sub.w r1, r0, #49
84 // cmp r1, #3
86 // We achieve this by type promoting the IR to i32 like so for this example:
88 // define i32 @cmp(i8 zeroext %c) {
89 // %0 = zext i8 %c to i32
90 // %c.off = add i32 %0, -49
91 // %1 = icmp ult i32 %c.off, 3
92 // ..
93 // }
95 // For this to be valid and legal, we need to prove that the i32 add is
96 // producing the same value as the i8 addition, and that e.g. no overflow
97 // happens.
99 // A brief sketch of the algorithm and some terminology.
100 // We pattern match interesting IR patterns:
101 // - which have "sources": instructions producing narrow values (i8, i16), and
102 // - they have "sinks": instructions consuming these narrow values.
104 // We collect all instruction connecting sources and sinks in a worklist, so
105 // that we can mutate these instruction and perform type promotion when it is
106 // legal to do so.
108 namespace {
109 class IRPromoter {
110 SmallPtrSet<Value*, 8> NewInsts;
111 SmallPtrSet<Instruction*, 4> InstsToRemove;
112 DenseMap<Value*, SmallVector<Type*, 4>> TruncTysMap;
113 SmallPtrSet<Value*, 8> Promoted;
114 Module *M = nullptr;
115 LLVMContext &Ctx;
116 // The type we promote to: always i32
117 IntegerType *ExtTy = nullptr;
118 // The type of the value that the search began from, either i8 or i16.
119 // This defines the max range of the values that we allow in the promoted
120 // tree.
121 IntegerType *OrigTy = nullptr;
122 SmallPtrSetImpl<Value*> *Visited;
123 SmallPtrSetImpl<Value*> *Sources;
124 SmallPtrSetImpl<Instruction*> *Sinks;
125 SmallPtrSetImpl<Instruction*> *SafeToPromote;
127 void ReplaceAllUsersOfWith(Value *From, Value *To);
128 void PrepareConstants(void);
129 void ExtendSources(void);
130 void ConvertTruncs(void);
131 void PromoteTree(void);
132 void TruncateSinks(void);
133 void Cleanup(void);
135 public:
136 IRPromoter(Module *M) : M(M), Ctx(M->getContext()),
137 ExtTy(Type::getInt32Ty(Ctx)) { }
140 void Mutate(Type *OrigTy,
141 SmallPtrSetImpl<Value*> &Visited,
142 SmallPtrSetImpl<Value*> &Sources,
143 SmallPtrSetImpl<Instruction*> &Sinks,
144 SmallPtrSetImpl<Instruction*> &SafeToPromote);
147 class ARMCodeGenPrepare : public FunctionPass {
148 const ARMSubtarget *ST = nullptr;
149 IRPromoter *Promoter = nullptr;
150 std::set<Value*> AllVisited;
151 SmallPtrSet<Instruction*, 8> SafeToPromote;
153 bool isSafeOverflow(Instruction *I);
154 bool isSupportedValue(Value *V);
155 bool isLegalToPromote(Value *V);
156 bool TryToPromote(Value *V);
158 public:
159 static char ID;
160 static unsigned TypeSize;
161 Type *OrigTy = nullptr;
163 ARMCodeGenPrepare() : FunctionPass(ID) {}
165 void getAnalysisUsage(AnalysisUsage &AU) const override {
166 AU.addRequired<TargetPassConfig>();
169 StringRef getPassName() const override { return "ARM IR optimizations"; }
171 bool doInitialization(Module &M) override;
172 bool runOnFunction(Function &F) override;
173 bool doFinalization(Module &M) override;
178 static bool generateSignBits(Value *V) {
179 if (!isa<Instruction>(V))
180 return false;
182 unsigned Opc = cast<Instruction>(V)->getOpcode();
183 return Opc == Instruction::AShr || Opc == Instruction::SDiv ||
184 Opc == Instruction::SRem;
187 static bool EqualTypeSize(Value *V) {
188 return V->getType()->getScalarSizeInBits() == ARMCodeGenPrepare::TypeSize;
191 static bool LessOrEqualTypeSize(Value *V) {
192 return V->getType()->getScalarSizeInBits() <= ARMCodeGenPrepare::TypeSize;
195 static bool GreaterThanTypeSize(Value *V) {
196 return V->getType()->getScalarSizeInBits() > ARMCodeGenPrepare::TypeSize;
199 static bool LessThanTypeSize(Value *V) {
200 return V->getType()->getScalarSizeInBits() < ARMCodeGenPrepare::TypeSize;
203 /// Some instructions can use 8- and 16-bit operands, and we don't need to
204 /// promote anything larger. We disallow booleans to make life easier when
205 /// dealing with icmps but allow any other integer that is <= 16 bits. Void
206 /// types are accepted so we can handle switches.
207 static bool isSupportedType(Value *V) {
208 Type *Ty = V->getType();
210 // Allow voids and pointers, these won't be promoted.
211 if (Ty->isVoidTy() || Ty->isPointerTy())
212 return true;
214 if (auto *Ld = dyn_cast<LoadInst>(V))
215 Ty = cast<PointerType>(Ld->getPointerOperandType())->getElementType();
217 if (!isa<IntegerType>(Ty) ||
218 cast<IntegerType>(V->getType())->getBitWidth() == 1)
219 return false;
221 return LessOrEqualTypeSize(V);
224 /// Return true if the given value is a source in the use-def chain, producing
225 /// a narrow 'TypeSize' value. These values will be zext to start the promotion
226 /// of the tree to i32. We guarantee that these won't populate the upper bits
227 /// of the register. ZExt on the loads will be free, and the same for call
228 /// return values because we only accept ones that guarantee a zeroext ret val.
229 /// Many arguments will have the zeroext attribute too, so those would be free
230 /// too.
231 static bool isSource(Value *V) {
232 if (!isa<IntegerType>(V->getType()))
233 return false;
235 // TODO Allow zext to be sources.
236 if (isa<Argument>(V))
237 return true;
238 else if (isa<LoadInst>(V))
239 return true;
240 else if (isa<BitCastInst>(V))
241 return true;
242 else if (auto *Call = dyn_cast<CallInst>(V))
243 return Call->hasRetAttr(Attribute::AttrKind::ZExt);
244 else if (auto *Trunc = dyn_cast<TruncInst>(V))
245 return EqualTypeSize(Trunc);
246 return false;
249 /// Return true if V will require any promoted values to be truncated for the
250 /// the IR to remain valid. We can't mutate the value type of these
251 /// instructions.
252 static bool isSink(Value *V) {
253 // TODO The truncate also isn't actually necessary because we would already
254 // proved that the data value is kept within the range of the original data
255 // type.
257 // Sinks are:
258 // - points where the value in the register is being observed, such as an
259 // icmp, switch or store.
260 // - points where value types have to match, such as calls and returns.
261 // - zext are included to ease the transformation and are generally removed
262 // later on.
263 if (auto *Store = dyn_cast<StoreInst>(V))
264 return LessOrEqualTypeSize(Store->getValueOperand());
265 if (auto *Return = dyn_cast<ReturnInst>(V))
266 return LessOrEqualTypeSize(Return->getReturnValue());
267 if (auto *ZExt = dyn_cast<ZExtInst>(V))
268 return GreaterThanTypeSize(ZExt);
269 if (auto *Switch = dyn_cast<SwitchInst>(V))
270 return LessThanTypeSize(Switch->getCondition());
271 if (auto *ICmp = dyn_cast<ICmpInst>(V))
272 return ICmp->isSigned() || LessThanTypeSize(ICmp->getOperand(0));
274 return isa<CallInst>(V);
277 /// Return whether the instruction can be promoted within any modifications to
278 /// its operands or result.
279 bool ARMCodeGenPrepare::isSafeOverflow(Instruction *I) {
280 // FIXME Do we need NSW too?
281 if (isa<OverflowingBinaryOperator>(I) && I->hasNoUnsignedWrap())
282 return true;
284 // We can support a, potentially, overflowing instruction (I) if:
285 // - It is only used by an unsigned icmp.
286 // - The icmp uses a constant.
287 // - The overflowing value (I) is decreasing, i.e would underflow - wrapping
288 // around zero to become a larger number than before.
289 // - The underflowing instruction (I) also uses a constant.
291 // We can then use the two constants to calculate whether the result would
292 // wrap in respect to itself in the original bitwidth. If it doesn't wrap,
293 // just underflows the range, the icmp would give the same result whether the
294 // result has been truncated or not. We calculate this by:
295 // - Zero extending both constants, if needed, to 32-bits.
296 // - Take the absolute value of I's constant, adding this to the icmp const.
297 // - Check that this value is not out of range for small type. If it is, it
298 // means that it has underflowed enough to wrap around the icmp constant.
300 // For example:
302 // %sub = sub i8 %a, 2
303 // %cmp = icmp ule i8 %sub, 254
305 // If %a = 0, %sub = -2 == FE == 254
306 // But if this is evalulated as a i32
307 // %sub = -2 == FF FF FF FE == 4294967294
308 // So the unsigned compares (i8 and i32) would not yield the same result.
310 // Another way to look at it is:
311 // %a - 2 <= 254
312 // %a + 2 <= 254 + 2
313 // %a <= 256
314 // And we can't represent 256 in the i8 format, so we don't support it.
316 // Whereas:
318 // %sub i8 %a, 1
319 // %cmp = icmp ule i8 %sub, 254
321 // If %a = 0, %sub = -1 == FF == 255
322 // As i32:
323 // %sub = -1 == FF FF FF FF == 4294967295
325 // In this case, the unsigned compare results would be the same and this
326 // would also be true for ult, uge and ugt:
327 // - (255 < 254) == (0xFFFFFFFF < 254) == false
328 // - (255 <= 254) == (0xFFFFFFFF <= 254) == false
329 // - (255 > 254) == (0xFFFFFFFF > 254) == true
330 // - (255 >= 254) == (0xFFFFFFFF >= 254) == true
332 // To demonstrate why we can't handle increasing values:
334 // %add = add i8 %a, 2
335 // %cmp = icmp ult i8 %add, 127
337 // If %a = 254, %add = 256 == (i8 1)
338 // As i32:
339 // %add = 256
341 // (1 < 127) != (256 < 127)
343 unsigned Opc = I->getOpcode();
344 if (Opc != Instruction::Add && Opc != Instruction::Sub)
345 return false;
347 if (!I->hasOneUse() ||
348 !isa<ICmpInst>(*I->user_begin()) ||
349 !isa<ConstantInt>(I->getOperand(1)))
350 return false;
352 ConstantInt *OverflowConst = cast<ConstantInt>(I->getOperand(1));
353 bool NegImm = OverflowConst->isNegative();
354 bool IsDecreasing = ((Opc == Instruction::Sub) && !NegImm) ||
355 ((Opc == Instruction::Add) && NegImm);
356 if (!IsDecreasing)
357 return false;
359 // Don't support an icmp that deals with sign bits.
360 auto *CI = cast<ICmpInst>(*I->user_begin());
361 if (CI->isSigned() || CI->isEquality())
362 return false;
364 ConstantInt *ICmpConst = nullptr;
365 if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(0)))
366 ICmpConst = Const;
367 else if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(1)))
368 ICmpConst = Const;
369 else
370 return false;
372 // Now check that the result can't wrap on itself.
373 APInt Total = ICmpConst->getValue().getBitWidth() < 32 ?
374 ICmpConst->getValue().zext(32) : ICmpConst->getValue();
376 Total += OverflowConst->getValue().getBitWidth() < 32 ?
377 OverflowConst->getValue().abs().zext(32) : OverflowConst->getValue().abs();
379 APInt Max = APInt::getAllOnesValue(ARMCodeGenPrepare::TypeSize);
381 if (Total.getBitWidth() > Max.getBitWidth()) {
382 if (Total.ugt(Max.zext(Total.getBitWidth())))
383 return false;
384 } else if (Max.getBitWidth() > Total.getBitWidth()) {
385 if (Total.zext(Max.getBitWidth()).ugt(Max))
386 return false;
387 } else if (Total.ugt(Max))
388 return false;
390 LLVM_DEBUG(dbgs() << "ARM CGP: Allowing safe overflow for " << *I << "\n");
391 return true;
394 static bool shouldPromote(Value *V) {
395 if (!isa<IntegerType>(V->getType()) || isSink(V))
396 return false;
398 if (isSource(V))
399 return true;
401 auto *I = dyn_cast<Instruction>(V);
402 if (!I)
403 return false;
405 if (isa<ICmpInst>(I))
406 return false;
408 return true;
411 /// Return whether we can safely mutate V's type to ExtTy without having to be
412 /// concerned with zero extending or truncation.
413 static bool isPromotedResultSafe(Value *V) {
414 if (!isa<Instruction>(V))
415 return true;
417 if (generateSignBits(V))
418 return false;
420 return !isa<OverflowingBinaryOperator>(V);
423 /// Return the intrinsic for the instruction that can perform the same
424 /// operation but on a narrow type. This is using the parallel dsp intrinsics
425 /// on scalar values.
426 static Intrinsic::ID getNarrowIntrinsic(Instruction *I) {
427 // Whether we use the signed or unsigned versions of these intrinsics
428 // doesn't matter because we're not using the GE bits that they set in
429 // the APSR.
430 switch(I->getOpcode()) {
431 default:
432 break;
433 case Instruction::Add:
434 return ARMCodeGenPrepare::TypeSize == 16 ? Intrinsic::arm_uadd16 :
435 Intrinsic::arm_uadd8;
436 case Instruction::Sub:
437 return ARMCodeGenPrepare::TypeSize == 16 ? Intrinsic::arm_usub16 :
438 Intrinsic::arm_usub8;
440 llvm_unreachable("unhandled opcode for narrow intrinsic");
443 void IRPromoter::ReplaceAllUsersOfWith(Value *From, Value *To) {
444 SmallVector<Instruction*, 4> Users;
445 Instruction *InstTo = dyn_cast<Instruction>(To);
446 bool ReplacedAll = true;
448 LLVM_DEBUG(dbgs() << "ARM CGP: Replacing " << *From << " with " << *To
449 << "\n");
451 for (Use &U : From->uses()) {
452 auto *User = cast<Instruction>(U.getUser());
453 if (InstTo && User->isIdenticalTo(InstTo)) {
454 ReplacedAll = false;
455 continue;
457 Users.push_back(User);
460 for (auto *U : Users)
461 U->replaceUsesOfWith(From, To);
463 if (ReplacedAll)
464 if (auto *I = dyn_cast<Instruction>(From))
465 InstsToRemove.insert(I);
468 void IRPromoter::PrepareConstants() {
469 IRBuilder<> Builder{Ctx};
470 // First step is to prepare the instructions for mutation. Most constants
471 // just need to be zero extended into their new type, but complications arise
472 // because:
473 // - For nuw binary operators, negative immediates would need sign extending;
474 // however, instead we'll change them to positive and zext them. We can do
475 // this because:
476 // > The operators that can wrap are: add, sub, mul and shl.
477 // > shl interprets its second operand as unsigned and if the first operand
478 // is an immediate, it will need zext to be nuw.
479 // > I'm assuming mul has to interpret immediates as unsigned for nuw.
480 // > Which leaves the nuw add and sub to be handled; as with shl, if an
481 // immediate is used as operand 0, it will need zext to be nuw.
482 // - We also allow add and sub to safely overflow in certain circumstances
483 // and only when the value (operand 0) is being decreased.
485 // For adds and subs, that are either nuw or safely wrap and use a negative
486 // immediate as operand 1, we create an equivalent instruction using a
487 // positive immediate. That positive immediate can then be zext along with
488 // all the other immediates later.
489 for (auto *V : *Visited) {
490 if (!isa<Instruction>(V))
491 continue;
493 auto *I = cast<Instruction>(V);
494 if (SafeToPromote->count(I)) {
496 if (!isa<OverflowingBinaryOperator>(I))
497 continue;
499 if (auto *Const = dyn_cast<ConstantInt>(I->getOperand(1))) {
500 if (!Const->isNegative())
501 break;
503 unsigned Opc = I->getOpcode();
504 if (Opc != Instruction::Add && Opc != Instruction::Sub)
505 continue;
507 LLVM_DEBUG(dbgs() << "ARM CGP: Adjusting " << *I << "\n");
508 auto *NewConst = ConstantInt::get(Ctx, Const->getValue().abs());
509 Builder.SetInsertPoint(I);
510 Value *NewVal = Opc == Instruction::Sub ?
511 Builder.CreateAdd(I->getOperand(0), NewConst) :
512 Builder.CreateSub(I->getOperand(0), NewConst);
513 LLVM_DEBUG(dbgs() << "ARM CGP: New equivalent: " << *NewVal << "\n");
515 if (auto *NewInst = dyn_cast<Instruction>(NewVal)) {
516 NewInst->copyIRFlags(I);
517 NewInsts.insert(NewInst);
519 InstsToRemove.insert(I);
520 I->replaceAllUsesWith(NewVal);
524 for (auto *I : NewInsts)
525 Visited->insert(I);
528 void IRPromoter::ExtendSources() {
529 IRBuilder<> Builder{Ctx};
531 auto InsertZExt = [&](Value *V, Instruction *InsertPt) {
532 assert(V->getType() != ExtTy && "zext already extends to i32");
533 LLVM_DEBUG(dbgs() << "ARM CGP: Inserting ZExt for " << *V << "\n");
534 Builder.SetInsertPoint(InsertPt);
535 if (auto *I = dyn_cast<Instruction>(V))
536 Builder.SetCurrentDebugLocation(I->getDebugLoc());
538 Value *ZExt = Builder.CreateZExt(V, ExtTy);
539 if (auto *I = dyn_cast<Instruction>(ZExt)) {
540 if (isa<Argument>(V))
541 I->moveBefore(InsertPt);
542 else
543 I->moveAfter(InsertPt);
544 NewInsts.insert(I);
547 ReplaceAllUsersOfWith(V, ZExt);
550 // Now, insert extending instructions between the sources and their users.
551 LLVM_DEBUG(dbgs() << "ARM CGP: Promoting sources:\n");
552 for (auto V : *Sources) {
553 LLVM_DEBUG(dbgs() << " - " << *V << "\n");
554 if (auto *I = dyn_cast<Instruction>(V))
555 InsertZExt(I, I);
556 else if (auto *Arg = dyn_cast<Argument>(V)) {
557 BasicBlock &BB = Arg->getParent()->front();
558 InsertZExt(Arg, &*BB.getFirstInsertionPt());
559 } else {
560 llvm_unreachable("unhandled source that needs extending");
562 Promoted.insert(V);
566 void IRPromoter::PromoteTree() {
567 LLVM_DEBUG(dbgs() << "ARM CGP: Mutating the tree..\n");
569 IRBuilder<> Builder{Ctx};
571 // Mutate the types of the instructions within the tree. Here we handle
572 // constant operands.
573 for (auto *V : *Visited) {
574 if (Sources->count(V))
575 continue;
577 auto *I = cast<Instruction>(V);
578 if (Sinks->count(I))
579 continue;
581 for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) {
582 Value *Op = I->getOperand(i);
583 if ((Op->getType() == ExtTy) || !isa<IntegerType>(Op->getType()))
584 continue;
586 if (auto *Const = dyn_cast<ConstantInt>(Op)) {
587 Constant *NewConst = ConstantExpr::getZExt(Const, ExtTy);
588 I->setOperand(i, NewConst);
589 } else if (isa<UndefValue>(Op))
590 I->setOperand(i, UndefValue::get(ExtTy));
593 if (shouldPromote(I)) {
594 I->mutateType(ExtTy);
595 Promoted.insert(I);
599 // Finally, any instructions that should be promoted but haven't yet been,
600 // need to be handled using intrinsics.
601 for (auto *V : *Visited) {
602 auto *I = dyn_cast<Instruction>(V);
603 if (!I)
604 continue;
606 if (Sources->count(I) || Sinks->count(I))
607 continue;
609 if (!shouldPromote(I) || SafeToPromote->count(I) || NewInsts.count(I))
610 continue;
612 assert(EnableDSP && "DSP intrinisc insertion not enabled!");
614 // Replace unsafe instructions with appropriate intrinsic calls.
615 LLVM_DEBUG(dbgs() << "ARM CGP: Inserting DSP intrinsic for "
616 << *I << "\n");
617 Function *DSPInst =
618 Intrinsic::getDeclaration(M, getNarrowIntrinsic(I));
619 Builder.SetInsertPoint(I);
620 Builder.SetCurrentDebugLocation(I->getDebugLoc());
621 Value *Args[] = { I->getOperand(0), I->getOperand(1) };
622 CallInst *Call = Builder.CreateCall(DSPInst, Args);
623 NewInsts.insert(Call);
624 ReplaceAllUsersOfWith(I, Call);
628 void IRPromoter::TruncateSinks() {
629 LLVM_DEBUG(dbgs() << "ARM CGP: Fixing up the sinks:\n");
631 IRBuilder<> Builder{Ctx};
633 auto InsertTrunc = [&](Value *V, Type *TruncTy) -> Instruction* {
634 if (!isa<Instruction>(V) || !isa<IntegerType>(V->getType()))
635 return nullptr;
637 if ((!Promoted.count(V) && !NewInsts.count(V)) || Sources->count(V))
638 return nullptr;
640 LLVM_DEBUG(dbgs() << "ARM CGP: Creating " << *TruncTy << " Trunc for "
641 << *V << "\n");
642 Builder.SetInsertPoint(cast<Instruction>(V));
643 auto *Trunc = dyn_cast<Instruction>(Builder.CreateTrunc(V, TruncTy));
644 if (Trunc)
645 NewInsts.insert(Trunc);
646 return Trunc;
649 // Fix up any stores or returns that use the results of the promoted
650 // chain.
651 for (auto I : *Sinks) {
652 LLVM_DEBUG(dbgs() << "ARM CGP: For Sink: " << *I << "\n");
654 // Handle calls separately as we need to iterate over arg operands.
655 if (auto *Call = dyn_cast<CallInst>(I)) {
656 for (unsigned i = 0; i < Call->getNumArgOperands(); ++i) {
657 Value *Arg = Call->getArgOperand(i);
658 Type *Ty = TruncTysMap[Call][i];
659 if (Instruction *Trunc = InsertTrunc(Arg, Ty)) {
660 Trunc->moveBefore(Call);
661 Call->setArgOperand(i, Trunc);
664 continue;
667 // Special case switches because we need to truncate the condition.
668 if (auto *Switch = dyn_cast<SwitchInst>(I)) {
669 Type *Ty = TruncTysMap[Switch][0];
670 if (Instruction *Trunc = InsertTrunc(Switch->getCondition(), Ty)) {
671 Trunc->moveBefore(Switch);
672 Switch->setCondition(Trunc);
674 continue;
677 // Now handle the others.
678 for (unsigned i = 0; i < I->getNumOperands(); ++i) {
679 Type *Ty = TruncTysMap[I][i];
680 if (Instruction *Trunc = InsertTrunc(I->getOperand(i), Ty)) {
681 Trunc->moveBefore(I);
682 I->setOperand(i, Trunc);
688 void IRPromoter::Cleanup() {
689 LLVM_DEBUG(dbgs() << "ARM CGP: Cleanup..\n");
690 // Some zexts will now have become redundant, along with their trunc
691 // operands, so remove them
692 for (auto V : *Visited) {
693 if (!isa<ZExtInst>(V))
694 continue;
696 auto ZExt = cast<ZExtInst>(V);
697 if (ZExt->getDestTy() != ExtTy)
698 continue;
700 Value *Src = ZExt->getOperand(0);
701 if (ZExt->getSrcTy() == ZExt->getDestTy()) {
702 LLVM_DEBUG(dbgs() << "ARM CGP: Removing unnecessary cast: " << *ZExt
703 << "\n");
704 ReplaceAllUsersOfWith(ZExt, Src);
705 continue;
708 // Unless they produce a value that is narrower than ExtTy, we can
709 // replace the result of the zext with the input of a newly inserted
710 // trunc.
711 if (NewInsts.count(Src) && isa<TruncInst>(Src) &&
712 Src->getType() == OrigTy) {
713 auto *Trunc = cast<TruncInst>(Src);
714 assert(Trunc->getOperand(0)->getType() == ExtTy &&
715 "expected inserted trunc to be operating on i32");
716 ReplaceAllUsersOfWith(ZExt, Trunc->getOperand(0));
720 for (auto *I : InstsToRemove) {
721 LLVM_DEBUG(dbgs() << "ARM CGP: Removing " << *I << "\n");
722 I->dropAllReferences();
723 I->eraseFromParent();
726 InstsToRemove.clear();
727 NewInsts.clear();
728 TruncTysMap.clear();
729 Promoted.clear();
732 void IRPromoter::ConvertTruncs() {
733 LLVM_DEBUG(dbgs() << "ARM CGP: Converting truncs..\n");
734 IRBuilder<> Builder{Ctx};
736 for (auto *V : *Visited) {
737 if (!isa<TruncInst>(V) || Sources->count(V))
738 continue;
740 auto *Trunc = cast<TruncInst>(V);
741 Builder.SetInsertPoint(Trunc);
742 IntegerType *SrcTy = cast<IntegerType>(Trunc->getOperand(0)->getType());
743 IntegerType *DestTy = cast<IntegerType>(TruncTysMap[Trunc][0]);
745 unsigned NumBits = DestTy->getScalarSizeInBits();
746 ConstantInt *Mask =
747 ConstantInt::get(SrcTy, APInt::getMaxValue(NumBits).getZExtValue());
748 Value *Masked = Builder.CreateAnd(Trunc->getOperand(0), Mask);
750 if (auto *I = dyn_cast<Instruction>(Masked))
751 NewInsts.insert(I);
753 ReplaceAllUsersOfWith(Trunc, Masked);
757 void IRPromoter::Mutate(Type *OrigTy,
758 SmallPtrSetImpl<Value*> &Visited,
759 SmallPtrSetImpl<Value*> &Sources,
760 SmallPtrSetImpl<Instruction*> &Sinks,
761 SmallPtrSetImpl<Instruction*> &SafeToPromote) {
762 LLVM_DEBUG(dbgs() << "ARM CGP: Promoting use-def chains to from "
763 << ARMCodeGenPrepare::TypeSize << " to 32-bits\n");
765 assert(isa<IntegerType>(OrigTy) && "expected integer type");
766 this->OrigTy = cast<IntegerType>(OrigTy);
767 assert(OrigTy->getPrimitiveSizeInBits() < ExtTy->getPrimitiveSizeInBits() &&
768 "original type not smaller than extended type");
770 this->Visited = &Visited;
771 this->Sources = &Sources;
772 this->Sinks = &Sinks;
773 this->SafeToPromote = &SafeToPromote;
775 // Cache original types of the values that will likely need truncating
776 for (auto *I : Sinks) {
777 if (auto *Call = dyn_cast<CallInst>(I)) {
778 for (unsigned i = 0; i < Call->getNumArgOperands(); ++i) {
779 Value *Arg = Call->getArgOperand(i);
780 TruncTysMap[Call].push_back(Arg->getType());
782 } else if (auto *Switch = dyn_cast<SwitchInst>(I))
783 TruncTysMap[I].push_back(Switch->getCondition()->getType());
784 else {
785 for (unsigned i = 0; i < I->getNumOperands(); ++i)
786 TruncTysMap[I].push_back(I->getOperand(i)->getType());
789 for (auto *V : Visited) {
790 if (!isa<TruncInst>(V) || Sources.count(V))
791 continue;
792 auto *Trunc = cast<TruncInst>(V);
793 TruncTysMap[Trunc].push_back(Trunc->getDestTy());
796 // Convert adds and subs using negative immediates to equivalent instructions
797 // that use positive constants.
798 PrepareConstants();
800 // Insert zext instructions between sources and their users.
801 ExtendSources();
803 // Promote visited instructions, mutating their types in place. Also insert
804 // DSP intrinsics, if enabled, for adds and subs which would be unsafe to
805 // promote.
806 PromoteTree();
808 // Convert any truncs, that aren't sources, into AND masks.
809 ConvertTruncs();
811 // Insert trunc instructions for use by calls, stores etc...
812 TruncateSinks();
814 // Finally, remove unecessary zexts and truncs, delete old instructions and
815 // clear the data structures.
816 Cleanup();
818 LLVM_DEBUG(dbgs() << "ARM CGP: Mutation complete\n");
821 /// We accept most instructions, as well as Arguments and ConstantInsts. We
822 /// Disallow casts other than zext and truncs and only allow calls if their
823 /// return value is zeroext. We don't allow opcodes that can introduce sign
824 /// bits.
825 bool ARMCodeGenPrepare::isSupportedValue(Value *V) {
826 if (auto *I = dyn_cast<ICmpInst>(V)) {
827 // Now that we allow small types than TypeSize, only allow icmp of
828 // TypeSize because they will require a trunc to be legalised.
829 // TODO: Allow icmp of smaller types, and calculate at the end
830 // whether the transform would be beneficial.
831 if (isa<PointerType>(I->getOperand(0)->getType()))
832 return true;
833 return EqualTypeSize(I->getOperand(0));
836 // Memory instructions
837 if (isa<StoreInst>(V) || isa<GetElementPtrInst>(V))
838 return true;
840 // Branches and targets.
841 if( isa<BranchInst>(V) || isa<SwitchInst>(V) || isa<BasicBlock>(V))
842 return true;
844 // Non-instruction values that we can handle.
845 if ((isa<Constant>(V) && !isa<ConstantExpr>(V)) || isa<Argument>(V))
846 return isSupportedType(V);
848 if (isa<PHINode>(V) || isa<SelectInst>(V) || isa<ReturnInst>(V) ||
849 isa<LoadInst>(V))
850 return isSupportedType(V);
852 if (isa<SExtInst>(V))
853 return false;
855 if (auto *Cast = dyn_cast<CastInst>(V))
856 return isSupportedType(Cast) || isSupportedType(Cast->getOperand(0));
858 // Special cases for calls as we need to check for zeroext
859 // TODO We should accept calls even if they don't have zeroext, as they can
860 // still be sinks.
861 if (auto *Call = dyn_cast<CallInst>(V))
862 return isSupportedType(Call) &&
863 Call->hasRetAttr(Attribute::AttrKind::ZExt);
865 if (!isa<BinaryOperator>(V))
866 return false;
868 if (!isSupportedType(V))
869 return false;
871 if (generateSignBits(V)) {
872 LLVM_DEBUG(dbgs() << "ARM CGP: No, instruction can generate sign bits.\n");
873 return false;
875 return true;
878 /// Check that the type of V would be promoted and that the original type is
879 /// smaller than the targeted promoted type. Check that we're not trying to
880 /// promote something larger than our base 'TypeSize' type.
881 bool ARMCodeGenPrepare::isLegalToPromote(Value *V) {
883 auto *I = dyn_cast<Instruction>(V);
884 if (!I)
885 return true;
887 if (SafeToPromote.count(I))
888 return true;
890 if (isPromotedResultSafe(V) || isSafeOverflow(I)) {
891 SafeToPromote.insert(I);
892 return true;
895 if (I->getOpcode() != Instruction::Add && I->getOpcode() != Instruction::Sub)
896 return false;
898 // If promotion is not safe, can we use a DSP instruction to natively
899 // handle the narrow type?
900 if (!ST->hasDSP() || !EnableDSP || !isSupportedType(I))
901 return false;
903 if (ST->isThumb() && !ST->hasThumb2())
904 return false;
906 // TODO
907 // Would it be profitable? For Thumb code, these parallel DSP instructions
908 // are only Thumb-2, so we wouldn't be able to dual issue on Cortex-M33. For
909 // Cortex-A, specifically Cortex-A72, the latency is double and throughput is
910 // halved. They also do not take immediates as operands.
911 for (auto &Op : I->operands()) {
912 if (isa<Constant>(Op)) {
913 if (!EnableDSPWithImms)
914 return false;
917 LLVM_DEBUG(dbgs() << "ARM CGP: Will use an intrinsic for: " << *I << "\n");
918 return true;
921 bool ARMCodeGenPrepare::TryToPromote(Value *V) {
922 OrigTy = V->getType();
923 TypeSize = OrigTy->getPrimitiveSizeInBits();
924 if (TypeSize > 16 || TypeSize < 8)
925 return false;
927 SafeToPromote.clear();
929 if (!isSupportedValue(V) || !shouldPromote(V) || !isLegalToPromote(V))
930 return false;
932 LLVM_DEBUG(dbgs() << "ARM CGP: TryToPromote: " << *V << ", TypeSize = "
933 << TypeSize << "\n");
935 SetVector<Value*> WorkList;
936 SmallPtrSet<Value*, 8> Sources;
937 SmallPtrSet<Instruction*, 4> Sinks;
938 SmallPtrSet<Value*, 16> CurrentVisited;
939 WorkList.insert(V);
941 // Return true if V was added to the worklist as a supported instruction,
942 // if it was already visited, or if we don't need to explore it (e.g.
943 // pointer values and GEPs), and false otherwise.
944 auto AddLegalInst = [&](Value *V) {
945 if (CurrentVisited.count(V))
946 return true;
948 // Ignore GEPs because they don't need promoting and the constant indices
949 // will prevent the transformation.
950 if (isa<GetElementPtrInst>(V))
951 return true;
953 if (!isSupportedValue(V) || (shouldPromote(V) && !isLegalToPromote(V))) {
954 LLVM_DEBUG(dbgs() << "ARM CGP: Can't handle: " << *V << "\n");
955 return false;
958 WorkList.insert(V);
959 return true;
962 // Iterate through, and add to, a tree of operands and users in the use-def.
963 while (!WorkList.empty()) {
964 Value *V = WorkList.back();
965 WorkList.pop_back();
966 if (CurrentVisited.count(V))
967 continue;
969 // Ignore non-instructions, other than arguments.
970 if (!isa<Instruction>(V) && !isSource(V))
971 continue;
973 // If we've already visited this value from somewhere, bail now because
974 // the tree has already been explored.
975 // TODO: This could limit the transform, ie if we try to promote something
976 // from an i8 and fail first, before trying an i16.
977 if (AllVisited.count(V))
978 return false;
980 CurrentVisited.insert(V);
981 AllVisited.insert(V);
983 // Calls can be both sources and sinks.
984 if (isSink(V))
985 Sinks.insert(cast<Instruction>(V));
987 if (isSource(V))
988 Sources.insert(V);
990 if (!isSink(V) && !isSource(V)) {
991 if (auto *I = dyn_cast<Instruction>(V)) {
992 // Visit operands of any instruction visited.
993 for (auto &U : I->operands()) {
994 if (!AddLegalInst(U))
995 return false;
1000 // Don't visit users of a node which isn't going to be mutated unless its a
1001 // source.
1002 if (isSource(V) || shouldPromote(V)) {
1003 for (Use &U : V->uses()) {
1004 if (!AddLegalInst(U.getUser()))
1005 return false;
1010 LLVM_DEBUG(dbgs() << "ARM CGP: Visited nodes:\n";
1011 for (auto *I : CurrentVisited)
1012 I->dump();
1014 unsigned ToPromote = 0;
1015 for (auto *V : CurrentVisited) {
1016 if (Sources.count(V))
1017 continue;
1018 if (Sinks.count(cast<Instruction>(V)))
1019 continue;
1020 ++ToPromote;
1023 if (ToPromote < 2)
1024 return false;
1026 Promoter->Mutate(OrigTy, CurrentVisited, Sources, Sinks, SafeToPromote);
1027 return true;
1030 bool ARMCodeGenPrepare::doInitialization(Module &M) {
1031 Promoter = new IRPromoter(&M);
1032 return false;
1035 bool ARMCodeGenPrepare::runOnFunction(Function &F) {
1036 if (skipFunction(F) || DisableCGP)
1037 return false;
1039 auto *TPC = &getAnalysis<TargetPassConfig>();
1040 if (!TPC)
1041 return false;
1043 const TargetMachine &TM = TPC->getTM<TargetMachine>();
1044 ST = &TM.getSubtarget<ARMSubtarget>(F);
1045 bool MadeChange = false;
1046 LLVM_DEBUG(dbgs() << "ARM CGP: Running on " << F.getName() << "\n");
1048 // Search up from icmps to try to promote their operands.
1049 for (BasicBlock &BB : F) {
1050 auto &Insts = BB.getInstList();
1051 for (auto &I : Insts) {
1052 if (AllVisited.count(&I))
1053 continue;
1055 if (isa<ICmpInst>(I)) {
1056 auto &CI = cast<ICmpInst>(I);
1058 // Skip signed or pointer compares
1059 if (CI.isSigned() || !isa<IntegerType>(CI.getOperand(0)->getType()))
1060 continue;
1062 LLVM_DEBUG(dbgs() << "ARM CGP: Searching from: " << CI << "\n");
1064 for (auto &Op : CI.operands()) {
1065 if (auto *I = dyn_cast<Instruction>(Op))
1066 MadeChange |= TryToPromote(I);
1070 LLVM_DEBUG(if (verifyFunction(F, &dbgs())) {
1071 dbgs() << F;
1072 report_fatal_error("Broken function after type promotion");
1075 if (MadeChange)
1076 LLVM_DEBUG(dbgs() << "After ARMCodeGenPrepare: " << F << "\n");
1078 return MadeChange;
1081 bool ARMCodeGenPrepare::doFinalization(Module &M) {
1082 delete Promoter;
1083 return false;
1086 INITIALIZE_PASS_BEGIN(ARMCodeGenPrepare, DEBUG_TYPE,
1087 "ARM IR optimizations", false, false)
1088 INITIALIZE_PASS_END(ARMCodeGenPrepare, DEBUG_TYPE, "ARM IR optimizations",
1089 false, false)
1091 char ARMCodeGenPrepare::ID = 0;
1092 unsigned ARMCodeGenPrepare::TypeSize = 0;
1094 FunctionPass *llvm::createARMCodeGenPreparePass() {
1095 return new ARMCodeGenPrepare();