Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Target / ARM / ARMTargetMachine.cpp
blob9954eee2e5f4dcd9f0b3e3b1da574e6cb933ce5d
1 //===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //
10 //===----------------------------------------------------------------------===//
12 #include "ARMTargetMachine.h"
13 #include "ARM.h"
14 #include "ARMMacroFusion.h"
15 #include "ARMSubtarget.h"
16 #include "ARMTargetObjectFile.h"
17 #include "ARMTargetTransformInfo.h"
18 #include "MCTargetDesc/ARMMCTargetDesc.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/CodeGen/ExecutionDomainFix.h"
25 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
26 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
27 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
28 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
29 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
30 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
31 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
32 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineScheduler.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/TargetPassConfig.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/CodeGen.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/TargetParser.h"
45 #include "llvm/Support/TargetRegistry.h"
46 #include "llvm/Target/TargetLoweringObjectFile.h"
47 #include "llvm/Target/TargetOptions.h"
48 #include "llvm/Transforms/Scalar.h"
49 #include <cassert>
50 #include <memory>
51 #include <string>
53 using namespace llvm;
55 static cl::opt<bool>
56 DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden,
57 cl::desc("Inhibit optimization of S->D register accesses on A15"),
58 cl::init(false));
60 static cl::opt<bool>
61 EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden,
62 cl::desc("Run SimplifyCFG after expanding atomic operations"
63 " to make use of cmpxchg flow-based information"),
64 cl::init(true));
66 static cl::opt<bool>
67 EnableARMLoadStoreOpt("arm-load-store-opt", cl::Hidden,
68 cl::desc("Enable ARM load/store optimization pass"),
69 cl::init(true));
71 // FIXME: Unify control over GlobalMerge.
72 static cl::opt<cl::boolOrDefault>
73 EnableGlobalMerge("arm-global-merge", cl::Hidden,
74 cl::desc("Enable the global merge pass"));
76 namespace llvm {
77 void initializeARMExecutionDomainFixPass(PassRegistry&);
80 extern "C" void LLVMInitializeARMTarget() {
81 // Register the target.
82 RegisterTargetMachine<ARMLETargetMachine> X(getTheARMLETarget());
83 RegisterTargetMachine<ARMLETargetMachine> A(getTheThumbLETarget());
84 RegisterTargetMachine<ARMBETargetMachine> Y(getTheARMBETarget());
85 RegisterTargetMachine<ARMBETargetMachine> B(getTheThumbBETarget());
87 PassRegistry &Registry = *PassRegistry::getPassRegistry();
88 initializeGlobalISel(Registry);
89 initializeARMLoadStoreOptPass(Registry);
90 initializeARMPreAllocLoadStoreOptPass(Registry);
91 initializeARMParallelDSPPass(Registry);
92 initializeARMCodeGenPreparePass(Registry);
93 initializeARMConstantIslandsPass(Registry);
94 initializeARMExecutionDomainFixPass(Registry);
95 initializeARMExpandPseudoPass(Registry);
96 initializeThumb2SizeReducePass(Registry);
99 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
100 if (TT.isOSBinFormatMachO())
101 return llvm::make_unique<TargetLoweringObjectFileMachO>();
102 if (TT.isOSWindows())
103 return llvm::make_unique<TargetLoweringObjectFileCOFF>();
104 return llvm::make_unique<ARMElfTargetObjectFile>();
107 static ARMBaseTargetMachine::ARMABI
108 computeTargetABI(const Triple &TT, StringRef CPU,
109 const TargetOptions &Options) {
110 StringRef ABIName = Options.MCOptions.getABIName();
112 if (ABIName.empty())
113 ABIName = ARM::computeDefaultTargetABI(TT, CPU);
115 if (ABIName == "aapcs16")
116 return ARMBaseTargetMachine::ARM_ABI_AAPCS16;
117 else if (ABIName.startswith("aapcs"))
118 return ARMBaseTargetMachine::ARM_ABI_AAPCS;
119 else if (ABIName.startswith("apcs"))
120 return ARMBaseTargetMachine::ARM_ABI_APCS;
122 llvm_unreachable("Unhandled/unknown ABI Name!");
123 return ARMBaseTargetMachine::ARM_ABI_UNKNOWN;
126 static std::string computeDataLayout(const Triple &TT, StringRef CPU,
127 const TargetOptions &Options,
128 bool isLittle) {
129 auto ABI = computeTargetABI(TT, CPU, Options);
130 std::string Ret;
132 if (isLittle)
133 // Little endian.
134 Ret += "e";
135 else
136 // Big endian.
137 Ret += "E";
139 Ret += DataLayout::getManglingComponent(TT);
141 // Pointers are 32 bits and aligned to 32 bits.
142 Ret += "-p:32:32";
144 // ABIs other than APCS have 64 bit integers with natural alignment.
145 if (ABI != ARMBaseTargetMachine::ARM_ABI_APCS)
146 Ret += "-i64:64";
148 // We have 64 bits floats. The APCS ABI requires them to be aligned to 32
149 // bits, others to 64 bits. We always try to align to 64 bits.
150 if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
151 Ret += "-f64:32:64";
153 // We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others
154 // to 64. We always ty to give them natural alignment.
155 if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
156 Ret += "-v64:32:64-v128:32:128";
157 else if (ABI != ARMBaseTargetMachine::ARM_ABI_AAPCS16)
158 Ret += "-v128:64:128";
160 // Try to align aggregates to 32 bits (the default is 64 bits, which has no
161 // particular hardware support on 32-bit ARM).
162 Ret += "-a:0:32";
164 // Integer registers are 32 bits.
165 Ret += "-n32";
167 // The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit
168 // aligned everywhere else.
169 if (TT.isOSNaCl() || ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16)
170 Ret += "-S128";
171 else if (ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS)
172 Ret += "-S64";
173 else
174 Ret += "-S32";
176 return Ret;
179 static Reloc::Model getEffectiveRelocModel(const Triple &TT,
180 Optional<Reloc::Model> RM) {
181 if (!RM.hasValue())
182 // Default relocation model on Darwin is PIC.
183 return TT.isOSBinFormatMachO() ? Reloc::PIC_ : Reloc::Static;
185 if (*RM == Reloc::ROPI || *RM == Reloc::RWPI || *RM == Reloc::ROPI_RWPI)
186 assert(TT.isOSBinFormatELF() &&
187 "ROPI/RWPI currently only supported for ELF");
189 // DynamicNoPIC is only used on darwin.
190 if (*RM == Reloc::DynamicNoPIC && !TT.isOSDarwin())
191 return Reloc::Static;
193 return *RM;
196 /// Create an ARM architecture model.
198 ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, const Triple &TT,
199 StringRef CPU, StringRef FS,
200 const TargetOptions &Options,
201 Optional<Reloc::Model> RM,
202 Optional<CodeModel::Model> CM,
203 CodeGenOpt::Level OL, bool isLittle)
204 : LLVMTargetMachine(T, computeDataLayout(TT, CPU, Options, isLittle), TT,
205 CPU, FS, Options, getEffectiveRelocModel(TT, RM),
206 getEffectiveCodeModel(CM, CodeModel::Small), OL),
207 TargetABI(computeTargetABI(TT, CPU, Options)),
208 TLOF(createTLOF(getTargetTriple())), isLittle(isLittle) {
210 // Default to triple-appropriate float ABI
211 if (Options.FloatABIType == FloatABI::Default) {
212 if (isTargetHardFloat())
213 this->Options.FloatABIType = FloatABI::Hard;
214 else
215 this->Options.FloatABIType = FloatABI::Soft;
218 // Default to triple-appropriate EABI
219 if (Options.EABIVersion == EABI::Default ||
220 Options.EABIVersion == EABI::Unknown) {
221 // musl is compatible with glibc with regard to EABI version
222 if ((TargetTriple.getEnvironment() == Triple::GNUEABI ||
223 TargetTriple.getEnvironment() == Triple::GNUEABIHF ||
224 TargetTriple.getEnvironment() == Triple::MuslEABI ||
225 TargetTriple.getEnvironment() == Triple::MuslEABIHF) &&
226 !(TargetTriple.isOSWindows() || TargetTriple.isOSDarwin()))
227 this->Options.EABIVersion = EABI::GNU;
228 else
229 this->Options.EABIVersion = EABI::EABI5;
232 if (TT.isOSBinFormatMachO()) {
233 this->Options.TrapUnreachable = true;
234 this->Options.NoTrapAfterNoreturn = true;
237 initAsmInfo();
240 ARMBaseTargetMachine::~ARMBaseTargetMachine() = default;
242 const ARMSubtarget *
243 ARMBaseTargetMachine::getSubtargetImpl(const Function &F) const {
244 Attribute CPUAttr = F.getFnAttribute("target-cpu");
245 Attribute FSAttr = F.getFnAttribute("target-features");
247 std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
248 ? CPUAttr.getValueAsString().str()
249 : TargetCPU;
250 std::string FS = !FSAttr.hasAttribute(Attribute::None)
251 ? FSAttr.getValueAsString().str()
252 : TargetFS;
254 // FIXME: This is related to the code below to reset the target options,
255 // we need to know whether or not the soft float flag is set on the
256 // function before we can generate a subtarget. We also need to use
257 // it as a key for the subtarget since that can be the only difference
258 // between two functions.
259 bool SoftFloat =
260 F.getFnAttribute("use-soft-float").getValueAsString() == "true";
261 // If the soft float attribute is set on the function turn on the soft float
262 // subtarget feature.
263 if (SoftFloat)
264 FS += FS.empty() ? "+soft-float" : ",+soft-float";
266 // Use the optminsize to identify the subtarget, but don't use it in the
267 // feature string.
268 std::string Key = CPU + FS;
269 if (F.optForMinSize())
270 Key += "+minsize";
272 auto &I = SubtargetMap[Key];
273 if (!I) {
274 // This needs to be done before we create a new subtarget since any
275 // creation will depend on the TM and the code generation flags on the
276 // function that reside in TargetOptions.
277 resetTargetOptions(F);
278 I = llvm::make_unique<ARMSubtarget>(TargetTriple, CPU, FS, *this, isLittle,
279 F.optForMinSize());
281 if (!I->isThumb() && !I->hasARMOps())
282 F.getContext().emitError("Function '" + F.getName() + "' uses ARM "
283 "instructions, but the target does not support ARM mode execution.");
286 return I.get();
289 TargetTransformInfo
290 ARMBaseTargetMachine::getTargetTransformInfo(const Function &F) {
291 return TargetTransformInfo(ARMTTIImpl(this, F));
294 ARMLETargetMachine::ARMLETargetMachine(const Target &T, const Triple &TT,
295 StringRef CPU, StringRef FS,
296 const TargetOptions &Options,
297 Optional<Reloc::Model> RM,
298 Optional<CodeModel::Model> CM,
299 CodeGenOpt::Level OL, bool JIT)
300 : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
302 ARMBETargetMachine::ARMBETargetMachine(const Target &T, const Triple &TT,
303 StringRef CPU, StringRef FS,
304 const TargetOptions &Options,
305 Optional<Reloc::Model> RM,
306 Optional<CodeModel::Model> CM,
307 CodeGenOpt::Level OL, bool JIT)
308 : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
310 namespace {
312 /// ARM Code Generator Pass Configuration Options.
313 class ARMPassConfig : public TargetPassConfig {
314 public:
315 ARMPassConfig(ARMBaseTargetMachine &TM, PassManagerBase &PM)
316 : TargetPassConfig(TM, PM) {
317 if (TM.getOptLevel() != CodeGenOpt::None) {
318 ARMGenSubtargetInfo STI(TM.getTargetTriple(), TM.getTargetCPU(),
319 TM.getTargetFeatureString());
320 if (STI.hasFeature(ARM::FeatureUseMISched))
321 substitutePass(&PostRASchedulerID, &PostMachineSchedulerID);
325 ARMBaseTargetMachine &getARMTargetMachine() const {
326 return getTM<ARMBaseTargetMachine>();
329 ScheduleDAGInstrs *
330 createMachineScheduler(MachineSchedContext *C) const override {
331 ScheduleDAGMILive *DAG = createGenericSchedLive(C);
332 // add DAG Mutations here.
333 const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>();
334 if (ST.hasFusion())
335 DAG->addMutation(createARMMacroFusionDAGMutation());
336 return DAG;
339 ScheduleDAGInstrs *
340 createPostMachineScheduler(MachineSchedContext *C) const override {
341 ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
342 // add DAG Mutations here.
343 const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>();
344 if (ST.hasFusion())
345 DAG->addMutation(createARMMacroFusionDAGMutation());
346 return DAG;
349 void addIRPasses() override;
350 void addCodeGenPrepare() override;
351 bool addPreISel() override;
352 bool addInstSelector() override;
353 bool addIRTranslator() override;
354 bool addLegalizeMachineIR() override;
355 bool addRegBankSelect() override;
356 bool addGlobalInstructionSelect() override;
357 void addPreRegAlloc() override;
358 void addPreSched2() override;
359 void addPreEmitPass() override;
362 class ARMExecutionDomainFix : public ExecutionDomainFix {
363 public:
364 static char ID;
365 ARMExecutionDomainFix() : ExecutionDomainFix(ID, ARM::DPRRegClass) {}
366 StringRef getPassName() const override {
367 return "ARM Execution Domain Fix";
370 char ARMExecutionDomainFix::ID;
372 } // end anonymous namespace
374 INITIALIZE_PASS_BEGIN(ARMExecutionDomainFix, "arm-execution-domain-fix",
375 "ARM Execution Domain Fix", false, false)
376 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
377 INITIALIZE_PASS_END(ARMExecutionDomainFix, "arm-execution-domain-fix",
378 "ARM Execution Domain Fix", false, false)
380 TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) {
381 return new ARMPassConfig(*this, PM);
384 void ARMPassConfig::addIRPasses() {
385 if (TM->Options.ThreadModel == ThreadModel::Single)
386 addPass(createLowerAtomicPass());
387 else
388 addPass(createAtomicExpandPass());
390 // Cmpxchg instructions are often used with a subsequent comparison to
391 // determine whether it succeeded. We can exploit existing control-flow in
392 // ldrex/strex loops to simplify this, but it needs tidying up.
393 if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy)
394 addPass(createCFGSimplificationPass(
395 1, false, false, true, true, [this](const Function &F) {
396 const auto &ST = this->TM->getSubtarget<ARMSubtarget>(F);
397 return ST.hasAnyDataBarrier() && !ST.isThumb1Only();
398 }));
400 TargetPassConfig::addIRPasses();
402 // Match interleaved memory accesses to ldN/stN intrinsics.
403 if (TM->getOptLevel() != CodeGenOpt::None)
404 addPass(createInterleavedAccessPass());
407 void ARMPassConfig::addCodeGenPrepare() {
408 if (getOptLevel() != CodeGenOpt::None)
409 addPass(createARMCodeGenPreparePass());
410 TargetPassConfig::addCodeGenPrepare();
413 bool ARMPassConfig::addPreISel() {
414 if (getOptLevel() != CodeGenOpt::None)
415 addPass(createARMParallelDSPPass());
417 if ((TM->getOptLevel() != CodeGenOpt::None &&
418 EnableGlobalMerge == cl::BOU_UNSET) ||
419 EnableGlobalMerge == cl::BOU_TRUE) {
420 // FIXME: This is using the thumb1 only constant value for
421 // maximal global offset for merging globals. We may want
422 // to look into using the old value for non-thumb1 code of
423 // 4095 based on the TargetMachine, but this starts to become
424 // tricky when doing code gen per function.
425 bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) &&
426 (EnableGlobalMerge == cl::BOU_UNSET);
427 // Merging of extern globals is enabled by default on non-Mach-O as we
428 // expect it to be generally either beneficial or harmless. On Mach-O it
429 // is disabled as we emit the .subsections_via_symbols directive which
430 // means that merging extern globals is not safe.
431 bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO();
432 addPass(createGlobalMergePass(TM, 127, OnlyOptimizeForSize,
433 MergeExternalByDefault));
436 return false;
439 bool ARMPassConfig::addInstSelector() {
440 addPass(createARMISelDag(getARMTargetMachine(), getOptLevel()));
441 return false;
444 bool ARMPassConfig::addIRTranslator() {
445 addPass(new IRTranslator());
446 return false;
449 bool ARMPassConfig::addLegalizeMachineIR() {
450 addPass(new Legalizer());
451 return false;
454 bool ARMPassConfig::addRegBankSelect() {
455 addPass(new RegBankSelect());
456 return false;
459 bool ARMPassConfig::addGlobalInstructionSelect() {
460 addPass(new InstructionSelect());
461 return false;
464 void ARMPassConfig::addPreRegAlloc() {
465 if (getOptLevel() != CodeGenOpt::None) {
466 addPass(createMLxExpansionPass());
468 if (EnableARMLoadStoreOpt)
469 addPass(createARMLoadStoreOptimizationPass(/* pre-register alloc */ true));
471 if (!DisableA15SDOptimization)
472 addPass(createA15SDOptimizerPass());
476 void ARMPassConfig::addPreSched2() {
477 if (getOptLevel() != CodeGenOpt::None) {
478 if (EnableARMLoadStoreOpt)
479 addPass(createARMLoadStoreOptimizationPass());
481 addPass(new ARMExecutionDomainFix());
482 addPass(createBreakFalseDeps());
485 // Expand some pseudo instructions into multiple instructions to allow
486 // proper scheduling.
487 addPass(createARMExpandPseudoPass());
489 if (getOptLevel() != CodeGenOpt::None) {
490 // in v8, IfConversion depends on Thumb instruction widths
491 addPass(createThumb2SizeReductionPass([this](const Function &F) {
492 return this->TM->getSubtarget<ARMSubtarget>(F).restrictIT();
493 }));
495 addPass(createIfConverter([](const MachineFunction &MF) {
496 return !MF.getSubtarget<ARMSubtarget>().isThumb1Only();
497 }));
499 addPass(createThumb2ITBlockPass());
502 void ARMPassConfig::addPreEmitPass() {
503 addPass(createThumb2SizeReductionPass());
505 // Constant island pass work on unbundled instructions.
506 addPass(createUnpackMachineBundles([](const MachineFunction &MF) {
507 return MF.getSubtarget<ARMSubtarget>().isThumb2();
508 }));
510 // Don't optimize barriers at -O0.
511 if (getOptLevel() != CodeGenOpt::None)
512 addPass(createARMOptimizeBarriersPass());
514 addPass(createARMConstantIslandPass());