1 //===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "MCTargetDesc/ARMAsmBackend.h"
10 #include "MCTargetDesc/ARMAddressingModes.h"
11 #include "MCTargetDesc/ARMAsmBackendDarwin.h"
12 #include "MCTargetDesc/ARMAsmBackendELF.h"
13 #include "MCTargetDesc/ARMAsmBackendWinCOFF.h"
14 #include "MCTargetDesc/ARMFixupKinds.h"
15 #include "MCTargetDesc/ARMMCTargetDesc.h"
16 #include "llvm/ADT/StringSwitch.h"
17 #include "llvm/BinaryFormat/ELF.h"
18 #include "llvm/BinaryFormat/MachO.h"
19 #include "llvm/MC/MCAsmBackend.h"
20 #include "llvm/MC/MCAssembler.h"
21 #include "llvm/MC/MCContext.h"
22 #include "llvm/MC/MCDirectives.h"
23 #include "llvm/MC/MCELFObjectWriter.h"
24 #include "llvm/MC/MCExpr.h"
25 #include "llvm/MC/MCFixupKindInfo.h"
26 #include "llvm/MC/MCObjectWriter.h"
27 #include "llvm/MC/MCRegisterInfo.h"
28 #include "llvm/MC/MCSectionELF.h"
29 #include "llvm/MC/MCSectionMachO.h"
30 #include "llvm/MC/MCSubtargetInfo.h"
31 #include "llvm/MC/MCValue.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/EndianStream.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/Format.h"
36 #include "llvm/Support/TargetParser.h"
37 #include "llvm/Support/raw_ostream.h"
41 class ARMELFObjectWriter
: public MCELFObjectTargetWriter
{
43 ARMELFObjectWriter(uint8_t OSABI
)
44 : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI
, ELF::EM_ARM
,
45 /*HasRelocationAddend*/ false) {}
47 } // end anonymous namespace
49 const MCFixupKindInfo
&ARMAsmBackend::getFixupKindInfo(MCFixupKind Kind
) const {
50 const static MCFixupKindInfo InfosLE
[ARM::NumTargetFixupKinds
] = {
51 // This table *must* be in the order that the fixup_* kinds are defined in
54 // Name Offset (bits) Size (bits) Flags
55 {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
56 {"fixup_t2_ldst_pcrel_12", 0, 32,
57 MCFixupKindInfo::FKF_IsPCRel
|
58 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
59 {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
60 {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
61 {"fixup_t2_pcrel_10", 0, 32,
62 MCFixupKindInfo::FKF_IsPCRel
|
63 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
64 {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
65 {"fixup_t2_pcrel_9", 0, 32,
66 MCFixupKindInfo::FKF_IsPCRel
|
67 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
68 {"fixup_thumb_adr_pcrel_10", 0, 8,
69 MCFixupKindInfo::FKF_IsPCRel
|
70 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
71 {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
72 {"fixup_t2_adr_pcrel_12", 0, 32,
73 MCFixupKindInfo::FKF_IsPCRel
|
74 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
75 {"fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel
},
76 {"fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel
},
77 {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
78 {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
79 {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel
},
80 {"fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel
},
81 {"fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel
},
82 {"fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel
},
83 {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
84 {"fixup_arm_thumb_blx", 0, 32,
85 MCFixupKindInfo::FKF_IsPCRel
|
86 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
87 {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel
},
88 {"fixup_arm_thumb_cp", 0, 8,
89 MCFixupKindInfo::FKF_IsPCRel
|
90 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
91 {"fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel
},
92 // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
94 {"fixup_arm_movt_hi16", 0, 20, 0},
95 {"fixup_arm_movw_lo16", 0, 20, 0},
96 {"fixup_t2_movt_hi16", 0, 20, 0},
97 {"fixup_t2_movw_lo16", 0, 20, 0},
98 {"fixup_arm_mod_imm", 0, 12, 0},
99 {"fixup_t2_so_imm", 0, 26, 0},
101 const static MCFixupKindInfo InfosBE
[ARM::NumTargetFixupKinds
] = {
102 // This table *must* be in the order that the fixup_* kinds are defined in
105 // Name Offset (bits) Size (bits) Flags
106 {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
107 {"fixup_t2_ldst_pcrel_12", 0, 32,
108 MCFixupKindInfo::FKF_IsPCRel
|
109 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
110 {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
111 {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
112 {"fixup_t2_pcrel_10", 0, 32,
113 MCFixupKindInfo::FKF_IsPCRel
|
114 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
115 {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
116 {"fixup_t2_pcrel_9", 0, 32,
117 MCFixupKindInfo::FKF_IsPCRel
|
118 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
119 {"fixup_thumb_adr_pcrel_10", 8, 8,
120 MCFixupKindInfo::FKF_IsPCRel
|
121 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
122 {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
123 {"fixup_t2_adr_pcrel_12", 0, 32,
124 MCFixupKindInfo::FKF_IsPCRel
|
125 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
126 {"fixup_arm_condbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel
},
127 {"fixup_arm_uncondbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel
},
128 {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
129 {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
130 {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel
},
131 {"fixup_arm_uncondbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel
},
132 {"fixup_arm_condbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel
},
133 {"fixup_arm_blx", 8, 24, MCFixupKindInfo::FKF_IsPCRel
},
134 {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
135 {"fixup_arm_thumb_blx", 0, 32,
136 MCFixupKindInfo::FKF_IsPCRel
|
137 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
138 {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel
},
139 {"fixup_arm_thumb_cp", 8, 8,
140 MCFixupKindInfo::FKF_IsPCRel
|
141 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
142 {"fixup_arm_thumb_bcc", 8, 8, MCFixupKindInfo::FKF_IsPCRel
},
143 // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
145 {"fixup_arm_movt_hi16", 12, 20, 0},
146 {"fixup_arm_movw_lo16", 12, 20, 0},
147 {"fixup_t2_movt_hi16", 12, 20, 0},
148 {"fixup_t2_movw_lo16", 12, 20, 0},
149 {"fixup_arm_mod_imm", 20, 12, 0},
150 {"fixup_t2_so_imm", 26, 6, 0},
153 if (Kind
< FirstTargetFixupKind
)
154 return MCAsmBackend::getFixupKindInfo(Kind
);
156 assert(unsigned(Kind
- FirstTargetFixupKind
) < getNumFixupKinds() &&
158 return (Endian
== support::little
? InfosLE
159 : InfosBE
)[Kind
- FirstTargetFixupKind
];
162 void ARMAsmBackend::handleAssemblerFlag(MCAssemblerFlag Flag
) {
175 unsigned ARMAsmBackend::getRelaxedOpcode(unsigned Op
,
176 const MCSubtargetInfo
&STI
) const {
177 bool HasThumb2
= STI
.getFeatureBits()[ARM::FeatureThumb2
];
178 bool HasV8MBaselineOps
= STI
.getFeatureBits()[ARM::HasV8MBaselineOps
];
184 return HasThumb2
? (unsigned)ARM::t2Bcc
: Op
;
186 return HasThumb2
? (unsigned)ARM::t2LDRpci
: Op
;
188 return HasThumb2
? (unsigned)ARM::t2ADR
: Op
;
190 return HasV8MBaselineOps
? (unsigned)ARM::t2B
: Op
;
198 bool ARMAsmBackend::mayNeedRelaxation(const MCInst
&Inst
,
199 const MCSubtargetInfo
&STI
) const {
200 if (getRelaxedOpcode(Inst
.getOpcode(), STI
) != Inst
.getOpcode())
205 const char *ARMAsmBackend::reasonForFixupRelaxation(const MCFixup
&Fixup
,
206 uint64_t Value
) const {
207 switch ((unsigned)Fixup
.getKind()) {
208 case ARM::fixup_arm_thumb_br
: {
209 // Relaxing tB to t2B. tB has a signed 12-bit displacement with the
210 // low bit being an implied zero. There's an implied +4 offset for the
211 // branch, so we adjust the other way here to determine what's
214 // Relax if the value is too big for a (signed) i8.
215 int64_t Offset
= int64_t(Value
) - 4;
216 if (Offset
> 2046 || Offset
< -2048)
217 return "out of range pc-relative fixup value";
220 case ARM::fixup_arm_thumb_bcc
: {
221 // Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the
222 // low bit being an implied zero. There's an implied +4 offset for the
223 // branch, so we adjust the other way here to determine what's
226 // Relax if the value is too big for a (signed) i8.
227 int64_t Offset
= int64_t(Value
) - 4;
228 if (Offset
> 254 || Offset
< -256)
229 return "out of range pc-relative fixup value";
232 case ARM::fixup_thumb_adr_pcrel_10
:
233 case ARM::fixup_arm_thumb_cp
: {
234 // If the immediate is negative, greater than 1020, or not a multiple
235 // of four, the wide version of the instruction must be used.
236 int64_t Offset
= int64_t(Value
) - 4;
238 return "misaligned pc-relative fixup value";
239 else if (Offset
> 1020 || Offset
< 0)
240 return "out of range pc-relative fixup value";
243 case ARM::fixup_arm_thumb_cb
: {
244 // If we have a Thumb CBZ or CBNZ instruction and its target is the next
245 // instruction it is actually out of range for the instruction.
246 // It will be changed to a NOP.
247 int64_t Offset
= (Value
& ~1);
249 return "will be converted to nop";
253 llvm_unreachable("Unexpected fixup kind in reasonForFixupRelaxation()!");
258 bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup
&Fixup
, uint64_t Value
,
259 const MCRelaxableFragment
*DF
,
260 const MCAsmLayout
&Layout
) const {
261 return reasonForFixupRelaxation(Fixup
, Value
);
264 void ARMAsmBackend::relaxInstruction(const MCInst
&Inst
,
265 const MCSubtargetInfo
&STI
,
267 unsigned RelaxedOp
= getRelaxedOpcode(Inst
.getOpcode(), STI
);
269 // Sanity check w/ diagnostic if we get here w/ a bogus instruction.
270 if (RelaxedOp
== Inst
.getOpcode()) {
271 SmallString
<256> Tmp
;
272 raw_svector_ostream
OS(Tmp
);
273 Inst
.dump_pretty(OS
);
275 report_fatal_error("unexpected instruction to relax: " + OS
.str());
278 // If we are changing Thumb CBZ or CBNZ instruction to a NOP, aka tHINT, we
279 // have to change the operands too.
280 if ((Inst
.getOpcode() == ARM::tCBZ
|| Inst
.getOpcode() == ARM::tCBNZ
) &&
281 RelaxedOp
== ARM::tHINT
) {
282 Res
.setOpcode(RelaxedOp
);
283 Res
.addOperand(MCOperand::createImm(0));
284 Res
.addOperand(MCOperand::createImm(14));
285 Res
.addOperand(MCOperand::createReg(0));
289 // The rest of instructions we're relaxing have the same operands.
290 // We just need to update to the proper opcode.
292 Res
.setOpcode(RelaxedOp
);
295 bool ARMAsmBackend::writeNopData(raw_ostream
&OS
, uint64_t Count
) const {
296 const uint16_t Thumb1_16bitNopEncoding
= 0x46c0; // using MOV r8,r8
297 const uint16_t Thumb2_16bitNopEncoding
= 0xbf00; // NOP
298 const uint32_t ARMv4_NopEncoding
= 0xe1a00000; // using MOV r0,r0
299 const uint32_t ARMv6T2_NopEncoding
= 0xe320f000; // NOP
301 const uint16_t nopEncoding
=
302 hasNOP() ? Thumb2_16bitNopEncoding
: Thumb1_16bitNopEncoding
;
303 uint64_t NumNops
= Count
/ 2;
304 for (uint64_t i
= 0; i
!= NumNops
; ++i
)
305 support::endian::write(OS
, nopEncoding
, Endian
);
311 const uint32_t nopEncoding
=
312 hasNOP() ? ARMv6T2_NopEncoding
: ARMv4_NopEncoding
;
313 uint64_t NumNops
= Count
/ 4;
314 for (uint64_t i
= 0; i
!= NumNops
; ++i
)
315 support::endian::write(OS
, nopEncoding
, Endian
);
316 // FIXME: should this function return false when unable to write exactly
317 // 'Count' bytes with NOP encodings?
320 break; // No leftover bytes to write
328 OS
.write("\0\0\xa0", 3);
335 static uint32_t swapHalfWords(uint32_t Value
, bool IsLittleEndian
) {
336 if (IsLittleEndian
) {
337 // Note that the halfwords are stored high first and low second in thumb;
338 // so we need to swap the fixup value here to map properly.
339 uint32_t Swapped
= (Value
& 0xFFFF0000) >> 16;
340 Swapped
|= (Value
& 0x0000FFFF) << 16;
346 static uint32_t joinHalfWords(uint32_t FirstHalf
, uint32_t SecondHalf
,
347 bool IsLittleEndian
) {
350 if (IsLittleEndian
) {
351 Value
= (SecondHalf
& 0xFFFF) << 16;
352 Value
|= (FirstHalf
& 0xFFFF);
354 Value
= (SecondHalf
& 0xFFFF);
355 Value
|= (FirstHalf
& 0xFFFF) << 16;
361 unsigned ARMAsmBackend::adjustFixupValue(const MCAssembler
&Asm
,
362 const MCFixup
&Fixup
,
363 const MCValue
&Target
, uint64_t Value
,
364 bool IsResolved
, MCContext
&Ctx
,
365 const MCSubtargetInfo
* STI
) const {
366 unsigned Kind
= Fixup
.getKind();
368 // MachO tries to make .o files that look vaguely pre-linked, so for MOVW/MOVT
369 // and .word relocations they put the Thumb bit into the addend if possible.
370 // Other relocation types don't want this bit though (branches couldn't encode
371 // it if it *was* present, and no other relocations exist) and it can
372 // interfere with checking valid expressions.
373 if (const MCSymbolRefExpr
*A
= Target
.getSymA()) {
374 if (A
->hasSubsectionsViaSymbols() && Asm
.isThumbFunc(&A
->getSymbol()) &&
375 A
->getSymbol().isExternal() &&
376 (Kind
== FK_Data_4
|| Kind
== ARM::fixup_arm_movw_lo16
||
377 Kind
== ARM::fixup_arm_movt_hi16
|| Kind
== ARM::fixup_t2_movw_lo16
||
378 Kind
== ARM::fixup_t2_movt_hi16
))
384 Ctx
.reportError(Fixup
.getLoc(), "bad relocation fixup type");
394 case ARM::fixup_arm_movt_hi16
:
395 assert(STI
!= nullptr);
396 if (IsResolved
|| !STI
->getTargetTriple().isOSBinFormatELF())
399 case ARM::fixup_arm_movw_lo16
: {
400 unsigned Hi4
= (Value
& 0xF000) >> 12;
401 unsigned Lo12
= Value
& 0x0FFF;
402 // inst{19-16} = Hi4;
403 // inst{11-0} = Lo12;
404 Value
= (Hi4
<< 16) | (Lo12
);
407 case ARM::fixup_t2_movt_hi16
:
408 assert(STI
!= nullptr);
409 if (IsResolved
|| !STI
->getTargetTriple().isOSBinFormatELF())
412 case ARM::fixup_t2_movw_lo16
: {
413 unsigned Hi4
= (Value
& 0xF000) >> 12;
414 unsigned i
= (Value
& 0x800) >> 11;
415 unsigned Mid3
= (Value
& 0x700) >> 8;
416 unsigned Lo8
= Value
& 0x0FF;
417 // inst{19-16} = Hi4;
419 // inst{14-12} = Mid3;
421 Value
= (Hi4
<< 16) | (i
<< 26) | (Mid3
<< 12) | (Lo8
);
422 return swapHalfWords(Value
, Endian
== support::little
);
424 case ARM::fixup_arm_ldst_pcrel_12
:
425 // ARM PC-relative values are offset by 8.
428 case ARM::fixup_t2_ldst_pcrel_12
: {
429 // Offset by 4, adjusted by two due to the half-word ordering of thumb.
432 if ((int64_t)Value
< 0) {
437 Ctx
.reportError(Fixup
.getLoc(), "out of range pc-relative fixup value");
440 Value
|= isAdd
<< 23;
442 // Same addressing mode as fixup_arm_pcrel_10,
443 // but with 16-bit halfwords swapped.
444 if (Kind
== ARM::fixup_t2_ldst_pcrel_12
)
445 return swapHalfWords(Value
, Endian
== support::little
);
449 case ARM::fixup_arm_adr_pcrel_12
: {
450 // ARM PC-relative values are offset by 8.
452 unsigned opc
= 4; // bits {24-21}. Default to add: 0b0100
453 if ((int64_t)Value
< 0) {
457 if (ARM_AM::getSOImmVal(Value
) == -1) {
458 Ctx
.reportError(Fixup
.getLoc(), "out of range pc-relative fixup value");
461 // Encode the immediate and shift the opcode into place.
462 return ARM_AM::getSOImmVal(Value
) | (opc
<< 21);
465 case ARM::fixup_t2_adr_pcrel_12
: {
468 if ((int64_t)Value
< 0) {
473 uint32_t out
= (opc
<< 21);
474 out
|= (Value
& 0x800) << 15;
475 out
|= (Value
& 0x700) << 4;
476 out
|= (Value
& 0x0FF);
478 return swapHalfWords(out
, Endian
== support::little
);
481 case ARM::fixup_arm_condbranch
:
482 case ARM::fixup_arm_uncondbranch
:
483 case ARM::fixup_arm_uncondbl
:
484 case ARM::fixup_arm_condbl
:
485 case ARM::fixup_arm_blx
:
486 // These values don't encode the low two bits since they're always zero.
487 // Offset by 8 just as above.
488 if (const MCSymbolRefExpr
*SRE
=
489 dyn_cast
<MCSymbolRefExpr
>(Fixup
.getValue()))
490 if (SRE
->getKind() == MCSymbolRefExpr::VK_TLSCALL
)
492 return 0xffffff & ((Value
- 8) >> 2);
493 case ARM::fixup_t2_uncondbranch
: {
495 if (!isInt
<25>(Value
)) {
496 Ctx
.reportError(Fixup
.getLoc(), "Relocation out of range");
500 Value
>>= 1; // Low bit is not encoded.
503 bool I
= Value
& 0x800000;
504 bool J1
= Value
& 0x400000;
505 bool J2
= Value
& 0x200000;
509 out
|= I
<< 26; // S bit
510 out
|= !J1
<< 13; // J1 bit
511 out
|= !J2
<< 11; // J2 bit
512 out
|= (Value
& 0x1FF800) << 5; // imm6 field
513 out
|= (Value
& 0x0007FF); // imm11 field
515 return swapHalfWords(out
, Endian
== support::little
);
517 case ARM::fixup_t2_condbranch
: {
519 if (!isInt
<21>(Value
)) {
520 Ctx
.reportError(Fixup
.getLoc(), "Relocation out of range");
524 Value
>>= 1; // Low bit is not encoded.
527 out
|= (Value
& 0x80000) << 7; // S bit
528 out
|= (Value
& 0x40000) >> 7; // J2 bit
529 out
|= (Value
& 0x20000) >> 4; // J1 bit
530 out
|= (Value
& 0x1F800) << 5; // imm6 field
531 out
|= (Value
& 0x007FF); // imm11 field
533 return swapHalfWords(out
, Endian
== support::little
);
535 case ARM::fixup_arm_thumb_bl
: {
536 if (!isInt
<25>(Value
- 4) ||
537 (!STI
->getFeatureBits()[ARM::FeatureThumb2
] &&
538 !STI
->getFeatureBits()[ARM::HasV8MBaselineOps
] &&
539 !STI
->getFeatureBits()[ARM::HasV6MOps
] &&
540 !isInt
<23>(Value
- 4))) {
541 Ctx
.reportError(Fixup
.getLoc(), "Relocation out of range");
545 // The value doesn't encode the low bit (always zero) and is offset by
546 // four. The 32-bit immediate value is encoded as
547 // imm32 = SignExtend(S:I1:I2:imm10:imm11:0)
548 // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
549 // The value is encoded into disjoint bit positions in the destination
550 // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
551 // J = either J1 or J2 bit
553 // BL: xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII
555 // Note that the halfwords are stored high first, low second; so we need
556 // to transpose the fixup value here to map properly.
557 uint32_t offset
= (Value
- 4) >> 1;
558 uint32_t signBit
= (offset
& 0x800000) >> 23;
559 uint32_t I1Bit
= (offset
& 0x400000) >> 22;
560 uint32_t J1Bit
= (I1Bit
^ 0x1) ^ signBit
;
561 uint32_t I2Bit
= (offset
& 0x200000) >> 21;
562 uint32_t J2Bit
= (I2Bit
^ 0x1) ^ signBit
;
563 uint32_t imm10Bits
= (offset
& 0x1FF800) >> 11;
564 uint32_t imm11Bits
= (offset
& 0x000007FF);
566 uint32_t FirstHalf
= (((uint16_t)signBit
<< 10) | (uint16_t)imm10Bits
);
567 uint32_t SecondHalf
= (((uint16_t)J1Bit
<< 13) | ((uint16_t)J2Bit
<< 11) |
568 (uint16_t)imm11Bits
);
569 return joinHalfWords(FirstHalf
, SecondHalf
, Endian
== support::little
);
571 case ARM::fixup_arm_thumb_blx
: {
572 // The value doesn't encode the low two bits (always zero) and is offset by
573 // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as
574 // imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00)
575 // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
576 // The value is encoded into disjoint bit positions in the destination
577 // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
578 // J = either J1 or J2 bit, 0 = zero.
580 // BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0
582 // Note that the halfwords are stored high first, low second; so we need
583 // to transpose the fixup value here to map properly.
584 if (Value
% 4 != 0) {
585 Ctx
.reportError(Fixup
.getLoc(), "misaligned ARM call destination");
589 uint32_t offset
= (Value
- 4) >> 2;
590 if (const MCSymbolRefExpr
*SRE
=
591 dyn_cast
<MCSymbolRefExpr
>(Fixup
.getValue()))
592 if (SRE
->getKind() == MCSymbolRefExpr::VK_TLSCALL
)
594 uint32_t signBit
= (offset
& 0x400000) >> 22;
595 uint32_t I1Bit
= (offset
& 0x200000) >> 21;
596 uint32_t J1Bit
= (I1Bit
^ 0x1) ^ signBit
;
597 uint32_t I2Bit
= (offset
& 0x100000) >> 20;
598 uint32_t J2Bit
= (I2Bit
^ 0x1) ^ signBit
;
599 uint32_t imm10HBits
= (offset
& 0xFFC00) >> 10;
600 uint32_t imm10LBits
= (offset
& 0x3FF);
602 uint32_t FirstHalf
= (((uint16_t)signBit
<< 10) | (uint16_t)imm10HBits
);
603 uint32_t SecondHalf
= (((uint16_t)J1Bit
<< 13) | ((uint16_t)J2Bit
<< 11) |
604 ((uint16_t)imm10LBits
) << 1);
605 return joinHalfWords(FirstHalf
, SecondHalf
, Endian
== support::little
);
607 case ARM::fixup_thumb_adr_pcrel_10
:
608 case ARM::fixup_arm_thumb_cp
:
609 // On CPUs supporting Thumb2, this will be relaxed to an ldr.w, otherwise we
610 // could have an error on our hands.
611 assert(STI
!= nullptr);
612 if (!STI
->getFeatureBits()[ARM::FeatureThumb2
] && IsResolved
) {
613 const char *FixupDiagnostic
= reasonForFixupRelaxation(Fixup
, Value
);
614 if (FixupDiagnostic
) {
615 Ctx
.reportError(Fixup
.getLoc(), FixupDiagnostic
);
619 // Offset by 4, and don't encode the low two bits.
620 return ((Value
- 4) >> 2) & 0xff;
621 case ARM::fixup_arm_thumb_cb
: {
622 // CB instructions can only branch to offsets in [4, 126] in multiples of 2
623 // so ensure that the raw value LSB is zero and it lies in [2, 130].
624 // An offset of 2 will be relaxed to a NOP.
625 if ((int64_t)Value
< 2 || Value
> 0x82 || Value
& 1) {
626 Ctx
.reportError(Fixup
.getLoc(), "out of range pc-relative fixup value");
629 // Offset by 4 and don't encode the lower bit, which is always 0.
630 // FIXME: diagnose if no Thumb2
631 uint32_t Binary
= (Value
- 4) >> 1;
632 return ((Binary
& 0x20) << 4) | ((Binary
& 0x1f) << 3);
634 case ARM::fixup_arm_thumb_br
:
635 // Offset by 4 and don't encode the lower bit, which is always 0.
636 assert(STI
!= nullptr);
637 if (!STI
->getFeatureBits()[ARM::FeatureThumb2
] &&
638 !STI
->getFeatureBits()[ARM::HasV8MBaselineOps
]) {
639 const char *FixupDiagnostic
= reasonForFixupRelaxation(Fixup
, Value
);
640 if (FixupDiagnostic
) {
641 Ctx
.reportError(Fixup
.getLoc(), FixupDiagnostic
);
645 return ((Value
- 4) >> 1) & 0x7ff;
646 case ARM::fixup_arm_thumb_bcc
:
647 // Offset by 4 and don't encode the lower bit, which is always 0.
648 assert(STI
!= nullptr);
649 if (!STI
->getFeatureBits()[ARM::FeatureThumb2
]) {
650 const char *FixupDiagnostic
= reasonForFixupRelaxation(Fixup
, Value
);
651 if (FixupDiagnostic
) {
652 Ctx
.reportError(Fixup
.getLoc(), FixupDiagnostic
);
656 return ((Value
- 4) >> 1) & 0xff;
657 case ARM::fixup_arm_pcrel_10_unscaled
: {
658 Value
= Value
- 8; // ARM fixups offset by an additional word and don't
659 // need to adjust for the half-word ordering.
661 if ((int64_t)Value
< 0) {
665 // The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8].
667 Ctx
.reportError(Fixup
.getLoc(), "out of range pc-relative fixup value");
670 Value
= (Value
& 0xf) | ((Value
& 0xf0) << 4);
671 return Value
| (isAdd
<< 23);
673 case ARM::fixup_arm_pcrel_10
:
674 Value
= Value
- 4; // ARM fixups offset by an additional word and don't
675 // need to adjust for the half-word ordering.
677 case ARM::fixup_t2_pcrel_10
: {
678 // Offset by 4, adjusted by two due to the half-word ordering of thumb.
681 if ((int64_t)Value
< 0) {
685 // These values don't encode the low two bits since they're always zero.
688 Ctx
.reportError(Fixup
.getLoc(), "out of range pc-relative fixup value");
691 Value
|= isAdd
<< 23;
693 // Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords
695 if (Kind
== ARM::fixup_t2_pcrel_10
)
696 return swapHalfWords(Value
, Endian
== support::little
);
700 case ARM::fixup_arm_pcrel_9
:
701 Value
= Value
- 4; // ARM fixups offset by an additional word and don't
702 // need to adjust for the half-word ordering.
704 case ARM::fixup_t2_pcrel_9
: {
705 // Offset by 4, adjusted by two due to the half-word ordering of thumb.
708 if ((int64_t)Value
< 0) {
712 // These values don't encode the low bit since it's always zero.
714 Ctx
.reportError(Fixup
.getLoc(), "invalid value for this fixup");
719 Ctx
.reportError(Fixup
.getLoc(), "out of range pc-relative fixup value");
722 Value
|= isAdd
<< 23;
724 // Same addressing mode as fixup_arm_pcrel_9, but with 16-bit halfwords
726 if (Kind
== ARM::fixup_t2_pcrel_9
)
727 return swapHalfWords(Value
, Endian
== support::little
);
731 case ARM::fixup_arm_mod_imm
:
732 Value
= ARM_AM::getSOImmVal(Value
);
734 Ctx
.reportError(Fixup
.getLoc(), "out of range immediate fixup value");
738 case ARM::fixup_t2_so_imm
: {
739 Value
= ARM_AM::getT2SOImmVal(Value
);
740 if ((int64_t)Value
< 0) {
741 Ctx
.reportError(Fixup
.getLoc(), "out of range immediate fixup value");
744 // Value will contain a 12-bit value broken up into a 4-bit shift in bits
745 // 11:8 and the 8-bit immediate in 0:7. The instruction has the immediate
746 // in 0:7. The 4-bit shift is split up into i:imm3 where i is placed at bit
747 // 10 of the upper half-word and imm3 is placed at 14:12 of the lower
749 uint64_t EncValue
= 0;
750 EncValue
|= (Value
& 0x800) << 15;
751 EncValue
|= (Value
& 0x700) << 4;
752 EncValue
|= (Value
& 0xff);
753 return swapHalfWords(EncValue
, Endian
== support::little
);
758 bool ARMAsmBackend::shouldForceRelocation(const MCAssembler
&Asm
,
759 const MCFixup
&Fixup
,
760 const MCValue
&Target
) {
761 const MCSymbolRefExpr
*A
= Target
.getSymA();
762 const MCSymbol
*Sym
= A
? &A
->getSymbol() : nullptr;
763 const unsigned FixupKind
= Fixup
.getKind() ;
764 if ((unsigned)Fixup
.getKind() == ARM::fixup_arm_thumb_bl
) {
765 assert(Sym
&& "How did we resolve this?");
767 // If the symbol is external the linker will handle it.
768 // FIXME: Should we handle it as an optimization?
770 // If the symbol is out of range, produce a relocation and hope the
771 // linker can handle it. GNU AS produces an error in this case.
772 if (Sym
->isExternal())
775 // Create relocations for unconditional branches to function symbols with
776 // different execution mode in ELF binaries.
777 if (Sym
&& Sym
->isELF()) {
778 unsigned Type
= cast
<MCSymbolELF
>(Sym
)->getType();
779 if ((Type
== ELF::STT_FUNC
|| Type
== ELF::STT_GNU_IFUNC
)) {
780 if (Asm
.isThumbFunc(Sym
) && (FixupKind
== ARM::fixup_arm_uncondbranch
))
782 if (!Asm
.isThumbFunc(Sym
) && (FixupKind
== ARM::fixup_arm_thumb_br
||
783 FixupKind
== ARM::fixup_arm_thumb_bl
||
784 FixupKind
== ARM::fixup_t2_condbranch
||
785 FixupKind
== ARM::fixup_t2_uncondbranch
))
789 // We must always generate a relocation for BL/BLX instructions if we have
790 // a symbol to reference, as the linker relies on knowing the destination
791 // symbol's thumb-ness to get interworking right.
792 if (A
&& (FixupKind
== ARM::fixup_arm_thumb_blx
||
793 FixupKind
== ARM::fixup_arm_blx
||
794 FixupKind
== ARM::fixup_arm_uncondbl
||
795 FixupKind
== ARM::fixup_arm_condbl
))
800 /// getFixupKindNumBytes - The number of bytes the fixup may change.
801 static unsigned getFixupKindNumBytes(unsigned Kind
) {
804 llvm_unreachable("Unknown fixup kind!");
807 case ARM::fixup_arm_thumb_bcc
:
808 case ARM::fixup_arm_thumb_cp
:
809 case ARM::fixup_thumb_adr_pcrel_10
:
813 case ARM::fixup_arm_thumb_br
:
814 case ARM::fixup_arm_thumb_cb
:
815 case ARM::fixup_arm_mod_imm
:
818 case ARM::fixup_arm_pcrel_10_unscaled
:
819 case ARM::fixup_arm_ldst_pcrel_12
:
820 case ARM::fixup_arm_pcrel_10
:
821 case ARM::fixup_arm_pcrel_9
:
822 case ARM::fixup_arm_adr_pcrel_12
:
823 case ARM::fixup_arm_uncondbl
:
824 case ARM::fixup_arm_condbl
:
825 case ARM::fixup_arm_blx
:
826 case ARM::fixup_arm_condbranch
:
827 case ARM::fixup_arm_uncondbranch
:
831 case ARM::fixup_t2_ldst_pcrel_12
:
832 case ARM::fixup_t2_condbranch
:
833 case ARM::fixup_t2_uncondbranch
:
834 case ARM::fixup_t2_pcrel_10
:
835 case ARM::fixup_t2_pcrel_9
:
836 case ARM::fixup_t2_adr_pcrel_12
:
837 case ARM::fixup_arm_thumb_bl
:
838 case ARM::fixup_arm_thumb_blx
:
839 case ARM::fixup_arm_movt_hi16
:
840 case ARM::fixup_arm_movw_lo16
:
841 case ARM::fixup_t2_movt_hi16
:
842 case ARM::fixup_t2_movw_lo16
:
843 case ARM::fixup_t2_so_imm
:
853 /// getFixupKindContainerSizeBytes - The number of bytes of the
854 /// container involved in big endian.
855 static unsigned getFixupKindContainerSizeBytes(unsigned Kind
) {
858 llvm_unreachable("Unknown fixup kind!");
867 case ARM::fixup_arm_thumb_bcc
:
868 case ARM::fixup_arm_thumb_cp
:
869 case ARM::fixup_thumb_adr_pcrel_10
:
870 case ARM::fixup_arm_thumb_br
:
871 case ARM::fixup_arm_thumb_cb
:
872 // Instruction size is 2 bytes.
875 case ARM::fixup_arm_pcrel_10_unscaled
:
876 case ARM::fixup_arm_ldst_pcrel_12
:
877 case ARM::fixup_arm_pcrel_10
:
878 case ARM::fixup_arm_adr_pcrel_12
:
879 case ARM::fixup_arm_uncondbl
:
880 case ARM::fixup_arm_condbl
:
881 case ARM::fixup_arm_blx
:
882 case ARM::fixup_arm_condbranch
:
883 case ARM::fixup_arm_uncondbranch
:
884 case ARM::fixup_t2_ldst_pcrel_12
:
885 case ARM::fixup_t2_condbranch
:
886 case ARM::fixup_t2_uncondbranch
:
887 case ARM::fixup_t2_pcrel_10
:
888 case ARM::fixup_t2_adr_pcrel_12
:
889 case ARM::fixup_arm_thumb_bl
:
890 case ARM::fixup_arm_thumb_blx
:
891 case ARM::fixup_arm_movt_hi16
:
892 case ARM::fixup_arm_movw_lo16
:
893 case ARM::fixup_t2_movt_hi16
:
894 case ARM::fixup_t2_movw_lo16
:
895 case ARM::fixup_arm_mod_imm
:
896 case ARM::fixup_t2_so_imm
:
897 // Instruction size is 4 bytes.
902 void ARMAsmBackend::applyFixup(const MCAssembler
&Asm
, const MCFixup
&Fixup
,
903 const MCValue
&Target
,
904 MutableArrayRef
<char> Data
, uint64_t Value
,
906 const MCSubtargetInfo
* STI
) const {
907 unsigned NumBytes
= getFixupKindNumBytes(Fixup
.getKind());
908 MCContext
&Ctx
= Asm
.getContext();
909 Value
= adjustFixupValue(Asm
, Fixup
, Target
, Value
, IsResolved
, Ctx
, STI
);
911 return; // Doesn't change encoding.
913 unsigned Offset
= Fixup
.getOffset();
914 assert(Offset
+ NumBytes
<= Data
.size() && "Invalid fixup offset!");
916 // Used to point to big endian bytes.
917 unsigned FullSizeBytes
;
918 if (Endian
== support::big
) {
919 FullSizeBytes
= getFixupKindContainerSizeBytes(Fixup
.getKind());
920 assert((Offset
+ FullSizeBytes
) <= Data
.size() && "Invalid fixup size!");
921 assert(NumBytes
<= FullSizeBytes
&& "Invalid fixup size!");
924 // For each byte of the fragment that the fixup touches, mask in the bits from
925 // the fixup value. The Value has been "split up" into the appropriate
927 for (unsigned i
= 0; i
!= NumBytes
; ++i
) {
928 unsigned Idx
= Endian
== support::little
? i
: (FullSizeBytes
- 1 - i
);
929 Data
[Offset
+ Idx
] |= uint8_t((Value
>> (i
* 8)) & 0xff);
935 /// Compact unwind encoding values.
936 enum CompactUnwindEncodings
{
937 UNWIND_ARM_MODE_MASK
= 0x0F000000,
938 UNWIND_ARM_MODE_FRAME
= 0x01000000,
939 UNWIND_ARM_MODE_FRAME_D
= 0x02000000,
940 UNWIND_ARM_MODE_DWARF
= 0x04000000,
942 UNWIND_ARM_FRAME_STACK_ADJUST_MASK
= 0x00C00000,
944 UNWIND_ARM_FRAME_FIRST_PUSH_R4
= 0x00000001,
945 UNWIND_ARM_FRAME_FIRST_PUSH_R5
= 0x00000002,
946 UNWIND_ARM_FRAME_FIRST_PUSH_R6
= 0x00000004,
948 UNWIND_ARM_FRAME_SECOND_PUSH_R8
= 0x00000008,
949 UNWIND_ARM_FRAME_SECOND_PUSH_R9
= 0x00000010,
950 UNWIND_ARM_FRAME_SECOND_PUSH_R10
= 0x00000020,
951 UNWIND_ARM_FRAME_SECOND_PUSH_R11
= 0x00000040,
952 UNWIND_ARM_FRAME_SECOND_PUSH_R12
= 0x00000080,
954 UNWIND_ARM_FRAME_D_REG_COUNT_MASK
= 0x00000F00,
956 UNWIND_ARM_DWARF_SECTION_OFFSET
= 0x00FFFFFF
959 } // end CU namespace
961 /// Generate compact unwind encoding for the function based on the CFI
962 /// instructions. If the CFI instructions describe a frame that cannot be
963 /// encoded in compact unwind, the method returns UNWIND_ARM_MODE_DWARF which
964 /// tells the runtime to fallback and unwind using dwarf.
965 uint32_t ARMAsmBackendDarwin::generateCompactUnwindEncoding(
966 ArrayRef
<MCCFIInstruction
> Instrs
) const {
967 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "generateCU()\n");
968 // Only armv7k uses CFI based unwinding.
969 if (Subtype
!= MachO::CPU_SUBTYPE_ARM_V7K
)
971 // No .cfi directives means no frame.
974 // Start off assuming CFA is at SP+0.
975 int CFARegister
= ARM::SP
;
976 int CFARegisterOffset
= 0;
977 // Mark savable registers as initially unsaved
978 DenseMap
<unsigned, int> RegOffsets
;
979 int FloatRegCount
= 0;
980 // Process each .cfi directive and build up compact unwind info.
981 for (size_t i
= 0, e
= Instrs
.size(); i
!= e
; ++i
) {
983 const MCCFIInstruction
&Inst
= Instrs
[i
];
984 switch (Inst
.getOperation()) {
985 case MCCFIInstruction::OpDefCfa
: // DW_CFA_def_cfa
986 CFARegisterOffset
= -Inst
.getOffset();
987 CFARegister
= MRI
.getLLVMRegNum(Inst
.getRegister(), true);
989 case MCCFIInstruction::OpDefCfaOffset
: // DW_CFA_def_cfa_offset
990 CFARegisterOffset
= -Inst
.getOffset();
992 case MCCFIInstruction::OpDefCfaRegister
: // DW_CFA_def_cfa_register
993 CFARegister
= MRI
.getLLVMRegNum(Inst
.getRegister(), true);
995 case MCCFIInstruction::OpOffset
: // DW_CFA_offset
996 Reg
= MRI
.getLLVMRegNum(Inst
.getRegister(), true);
997 if (ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(Reg
))
998 RegOffsets
[Reg
] = Inst
.getOffset();
999 else if (ARMMCRegisterClasses
[ARM::DPRRegClassID
].contains(Reg
)) {
1000 RegOffsets
[Reg
] = Inst
.getOffset();
1003 DEBUG_WITH_TYPE("compact-unwind",
1004 llvm::dbgs() << ".cfi_offset on unknown register="
1005 << Inst
.getRegister() << "\n");
1006 return CU::UNWIND_ARM_MODE_DWARF
;
1009 case MCCFIInstruction::OpRelOffset
: // DW_CFA_advance_loc
1013 // Directive not convertable to compact unwind, bail out.
1014 DEBUG_WITH_TYPE("compact-unwind",
1016 << "CFI directive not compatiable with comact "
1017 "unwind encoding, opcode=" << Inst
.getOperation()
1019 return CU::UNWIND_ARM_MODE_DWARF
;
1024 // If no frame set up, return no unwind info.
1025 if ((CFARegister
== ARM::SP
) && (CFARegisterOffset
== 0))
1028 // Verify standard frame (lr/r7) was used.
1029 if (CFARegister
!= ARM::R7
) {
1030 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "frame register is "
1032 << " instead of r7\n");
1033 return CU::UNWIND_ARM_MODE_DWARF
;
1035 int StackAdjust
= CFARegisterOffset
- 8;
1036 if (RegOffsets
.lookup(ARM::LR
) != (-4 - StackAdjust
)) {
1037 DEBUG_WITH_TYPE("compact-unwind",
1039 << "LR not saved as standard frame, StackAdjust="
1041 << ", CFARegisterOffset=" << CFARegisterOffset
1042 << ", lr save at offset=" << RegOffsets
[14] << "\n");
1043 return CU::UNWIND_ARM_MODE_DWARF
;
1045 if (RegOffsets
.lookup(ARM::R7
) != (-8 - StackAdjust
)) {
1046 DEBUG_WITH_TYPE("compact-unwind",
1047 llvm::dbgs() << "r7 not saved as standard frame\n");
1048 return CU::UNWIND_ARM_MODE_DWARF
;
1050 uint32_t CompactUnwindEncoding
= CU::UNWIND_ARM_MODE_FRAME
;
1052 // If var-args are used, there may be a stack adjust required.
1053 switch (StackAdjust
) {
1057 CompactUnwindEncoding
|= 0x00400000;
1060 CompactUnwindEncoding
|= 0x00800000;
1063 CompactUnwindEncoding
|= 0x00C00000;
1066 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs()
1067 << ".cfi_def_cfa stack adjust ("
1068 << StackAdjust
<< ") out of range\n");
1069 return CU::UNWIND_ARM_MODE_DWARF
;
1072 // If r6 is saved, it must be right below r7.
1076 } GPRCSRegs
[] = {{ARM::R6
, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R6
},
1077 {ARM::R5
, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R5
},
1078 {ARM::R4
, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R4
},
1079 {ARM::R12
, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R12
},
1080 {ARM::R11
, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R11
},
1081 {ARM::R10
, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R10
},
1082 {ARM::R9
, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R9
},
1083 {ARM::R8
, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R8
}};
1085 int CurOffset
= -8 - StackAdjust
;
1086 for (auto CSReg
: GPRCSRegs
) {
1087 auto Offset
= RegOffsets
.find(CSReg
.Reg
);
1088 if (Offset
== RegOffsets
.end())
1091 int RegOffset
= Offset
->second
;
1092 if (RegOffset
!= CurOffset
- 4) {
1093 DEBUG_WITH_TYPE("compact-unwind",
1094 llvm::dbgs() << MRI
.getName(CSReg
.Reg
) << " saved at "
1095 << RegOffset
<< " but only supported at "
1096 << CurOffset
<< "\n");
1097 return CU::UNWIND_ARM_MODE_DWARF
;
1099 CompactUnwindEncoding
|= CSReg
.Encoding
;
1103 // If no floats saved, we are done.
1104 if (FloatRegCount
== 0)
1105 return CompactUnwindEncoding
;
1107 // Switch mode to include D register saving.
1108 CompactUnwindEncoding
&= ~CU::UNWIND_ARM_MODE_MASK
;
1109 CompactUnwindEncoding
|= CU::UNWIND_ARM_MODE_FRAME_D
;
1111 // FIXME: supporting more than 4 saved D-registers compactly would be trivial,
1112 // but needs coordination with the linker and libunwind.
1113 if (FloatRegCount
> 4) {
1114 DEBUG_WITH_TYPE("compact-unwind",
1115 llvm::dbgs() << "unsupported number of D registers saved ("
1116 << FloatRegCount
<< ")\n");
1117 return CU::UNWIND_ARM_MODE_DWARF
;
1120 // Floating point registers must either be saved sequentially, or we defer to
1121 // DWARF. No gaps allowed here so check that each saved d-register is
1122 // precisely where it should be.
1123 static unsigned FPRCSRegs
[] = { ARM::D8
, ARM::D10
, ARM::D12
, ARM::D14
};
1124 for (int Idx
= FloatRegCount
- 1; Idx
>= 0; --Idx
) {
1125 auto Offset
= RegOffsets
.find(FPRCSRegs
[Idx
]);
1126 if (Offset
== RegOffsets
.end()) {
1127 DEBUG_WITH_TYPE("compact-unwind",
1128 llvm::dbgs() << FloatRegCount
<< " D-regs saved, but "
1129 << MRI
.getName(FPRCSRegs
[Idx
])
1131 return CU::UNWIND_ARM_MODE_DWARF
;
1132 } else if (Offset
->second
!= CurOffset
- 8) {
1133 DEBUG_WITH_TYPE("compact-unwind",
1134 llvm::dbgs() << FloatRegCount
<< " D-regs saved, but "
1135 << MRI
.getName(FPRCSRegs
[Idx
])
1136 << " saved at " << Offset
->second
1137 << ", expected at " << CurOffset
- 8
1139 return CU::UNWIND_ARM_MODE_DWARF
;
1144 return CompactUnwindEncoding
| ((FloatRegCount
- 1) << 8);
1147 static MachO::CPUSubTypeARM
getMachOSubTypeFromArch(StringRef Arch
) {
1148 ARM::ArchKind AK
= ARM::parseArch(Arch
);
1151 return MachO::CPU_SUBTYPE_ARM_V7
;
1152 case ARM::ArchKind::ARMV4T
:
1153 return MachO::CPU_SUBTYPE_ARM_V4T
;
1154 case ARM::ArchKind::ARMV5T
:
1155 case ARM::ArchKind::ARMV5TE
:
1156 case ARM::ArchKind::ARMV5TEJ
:
1157 return MachO::CPU_SUBTYPE_ARM_V5
;
1158 case ARM::ArchKind::ARMV6
:
1159 case ARM::ArchKind::ARMV6K
:
1160 return MachO::CPU_SUBTYPE_ARM_V6
;
1161 case ARM::ArchKind::ARMV7A
:
1162 return MachO::CPU_SUBTYPE_ARM_V7
;
1163 case ARM::ArchKind::ARMV7S
:
1164 return MachO::CPU_SUBTYPE_ARM_V7S
;
1165 case ARM::ArchKind::ARMV7K
:
1166 return MachO::CPU_SUBTYPE_ARM_V7K
;
1167 case ARM::ArchKind::ARMV6M
:
1168 return MachO::CPU_SUBTYPE_ARM_V6M
;
1169 case ARM::ArchKind::ARMV7M
:
1170 return MachO::CPU_SUBTYPE_ARM_V7M
;
1171 case ARM::ArchKind::ARMV7EM
:
1172 return MachO::CPU_SUBTYPE_ARM_V7EM
;
1176 static MCAsmBackend
*createARMAsmBackend(const Target
&T
,
1177 const MCSubtargetInfo
&STI
,
1178 const MCRegisterInfo
&MRI
,
1179 const MCTargetOptions
&Options
,
1180 support::endianness Endian
) {
1181 const Triple
&TheTriple
= STI
.getTargetTriple();
1182 switch (TheTriple
.getObjectFormat()) {
1184 llvm_unreachable("unsupported object format");
1185 case Triple::MachO
: {
1186 MachO::CPUSubTypeARM CS
= getMachOSubTypeFromArch(TheTriple
.getArchName());
1187 return new ARMAsmBackendDarwin(T
, STI
, MRI
, CS
);
1190 assert(TheTriple
.isOSWindows() && "non-Windows ARM COFF is not supported");
1191 return new ARMAsmBackendWinCOFF(T
, STI
);
1193 assert(TheTriple
.isOSBinFormatELF() && "using ELF for non-ELF target");
1194 uint8_t OSABI
= MCELFObjectTargetWriter::getOSABI(TheTriple
.getOS());
1195 return new ARMAsmBackendELF(T
, STI
, OSABI
, Endian
);
1199 MCAsmBackend
*llvm::createARMLEAsmBackend(const Target
&T
,
1200 const MCSubtargetInfo
&STI
,
1201 const MCRegisterInfo
&MRI
,
1202 const MCTargetOptions
&Options
) {
1203 return createARMAsmBackend(T
, STI
, MRI
, Options
, support::little
);
1206 MCAsmBackend
*llvm::createARMBEAsmBackend(const Target
&T
,
1207 const MCSubtargetInfo
&STI
,
1208 const MCRegisterInfo
&MRI
,
1209 const MCTargetOptions
&Options
) {
1210 return createARMAsmBackend(T
, STI
, MRI
, Options
, support::big
);