Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Target / PowerPC / PPCInstrInfo.cpp
blob5952d73d205bc203ef983d019e312a6aafa61047
1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "PPCInstrInfo.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCHazardRecognizers.h"
17 #include "PPCInstrBuilder.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/LiveIntervals.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/PseudoSourceValue.h"
29 #include "llvm/CodeGen/ScheduleDAG.h"
30 #include "llvm/CodeGen/SlotIndexes.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/TargetRegistry.h"
38 #include "llvm/Support/raw_ostream.h"
40 using namespace llvm;
42 #define DEBUG_TYPE "ppc-instr-info"
44 #define GET_INSTRMAP_INFO
45 #define GET_INSTRINFO_CTOR_DTOR
46 #include "PPCGenInstrInfo.inc"
48 STATISTIC(NumStoreSPILLVSRRCAsVec,
49 "Number of spillvsrrc spilled to stack as vec");
50 STATISTIC(NumStoreSPILLVSRRCAsGpr,
51 "Number of spillvsrrc spilled to stack as gpr");
52 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
53 STATISTIC(CmpIselsConverted,
54 "Number of ISELs that depend on comparison of constants converted");
55 STATISTIC(MissedConvertibleImmediateInstrs,
56 "Number of compare-immediate instructions fed by constants");
57 STATISTIC(NumRcRotatesConvertedToRcAnd,
58 "Number of record-form rotates converted to record-form andi");
60 static cl::
61 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
62 cl::desc("Disable analysis for CTR loops"));
64 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
65 cl::desc("Disable compare instruction optimization"), cl::Hidden);
67 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
68 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
69 cl::Hidden);
71 static cl::opt<bool>
72 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
73 cl::desc("Use the old (incorrect) instruction latency calculation"));
75 // Index into the OpcodesForSpill array.
76 enum SpillOpcodeKey {
77 SOK_Int4Spill,
78 SOK_Int8Spill,
79 SOK_Float8Spill,
80 SOK_Float4Spill,
81 SOK_CRSpill,
82 SOK_CRBitSpill,
83 SOK_VRVectorSpill,
84 SOK_VSXVectorSpill,
85 SOK_VectorFloat8Spill,
86 SOK_VectorFloat4Spill,
87 SOK_VRSaveSpill,
88 SOK_QuadFloat8Spill,
89 SOK_QuadFloat4Spill,
90 SOK_QuadBitSpill,
91 SOK_SpillToVSR,
92 SOK_SPESpill,
93 SOK_SPE4Spill,
94 SOK_LastOpcodeSpill // This must be last on the enum.
97 // Pin the vtable to this file.
98 void PPCInstrInfo::anchor() {}
100 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
101 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
102 /* CatchRetOpcode */ -1,
103 STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
104 Subtarget(STI), RI(STI.getTargetMachine()) {}
106 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
107 /// this target when scheduling the DAG.
108 ScheduleHazardRecognizer *
109 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
110 const ScheduleDAG *DAG) const {
111 unsigned Directive =
112 static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
113 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
114 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
115 const InstrItineraryData *II =
116 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
117 return new ScoreboardHazardRecognizer(II, DAG);
120 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
123 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
124 /// to use for this target when scheduling the DAG.
125 ScheduleHazardRecognizer *
126 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
127 const ScheduleDAG *DAG) const {
128 unsigned Directive =
129 DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective();
131 // FIXME: Leaving this as-is until we have POWER9 scheduling info
132 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
133 return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
135 // Most subtargets use a PPC970 recognizer.
136 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
137 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
138 assert(DAG->TII && "No InstrInfo?");
140 return new PPCHazardRecognizer970(*DAG);
143 return new ScoreboardHazardRecognizer(II, DAG);
146 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
147 const MachineInstr &MI,
148 unsigned *PredCost) const {
149 if (!ItinData || UseOldLatencyCalc)
150 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
152 // The default implementation of getInstrLatency calls getStageLatency, but
153 // getStageLatency does not do the right thing for us. While we have
154 // itinerary, most cores are fully pipelined, and so the itineraries only
155 // express the first part of the pipeline, not every stage. Instead, we need
156 // to use the listed output operand cycle number (using operand 0 here, which
157 // is an output).
159 unsigned Latency = 1;
160 unsigned DefClass = MI.getDesc().getSchedClass();
161 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
162 const MachineOperand &MO = MI.getOperand(i);
163 if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
164 continue;
166 int Cycle = ItinData->getOperandCycle(DefClass, i);
167 if (Cycle < 0)
168 continue;
170 Latency = std::max(Latency, (unsigned) Cycle);
173 return Latency;
176 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
177 const MachineInstr &DefMI, unsigned DefIdx,
178 const MachineInstr &UseMI,
179 unsigned UseIdx) const {
180 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
181 UseMI, UseIdx);
183 if (!DefMI.getParent())
184 return Latency;
186 const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
187 unsigned Reg = DefMO.getReg();
189 bool IsRegCR;
190 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
191 const MachineRegisterInfo *MRI =
192 &DefMI.getParent()->getParent()->getRegInfo();
193 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
194 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
195 } else {
196 IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
197 PPC::CRBITRCRegClass.contains(Reg);
200 if (UseMI.isBranch() && IsRegCR) {
201 if (Latency < 0)
202 Latency = getInstrLatency(ItinData, DefMI);
204 // On some cores, there is an additional delay between writing to a condition
205 // register, and using it from a branch.
206 unsigned Directive = Subtarget.getDarwinDirective();
207 switch (Directive) {
208 default: break;
209 case PPC::DIR_7400:
210 case PPC::DIR_750:
211 case PPC::DIR_970:
212 case PPC::DIR_E5500:
213 case PPC::DIR_PWR4:
214 case PPC::DIR_PWR5:
215 case PPC::DIR_PWR5X:
216 case PPC::DIR_PWR6:
217 case PPC::DIR_PWR6X:
218 case PPC::DIR_PWR7:
219 case PPC::DIR_PWR8:
220 // FIXME: Is this needed for POWER9?
221 Latency += 2;
222 break;
226 return Latency;
229 // This function does not list all associative and commutative operations, but
230 // only those worth feeding through the machine combiner in an attempt to
231 // reduce the critical path. Mostly, this means floating-point operations,
232 // because they have high latencies (compared to other operations, such and
233 // and/or, which are also associative and commutative, but have low latencies).
234 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
235 switch (Inst.getOpcode()) {
236 // FP Add:
237 case PPC::FADD:
238 case PPC::FADDS:
239 // FP Multiply:
240 case PPC::FMUL:
241 case PPC::FMULS:
242 // Altivec Add:
243 case PPC::VADDFP:
244 // VSX Add:
245 case PPC::XSADDDP:
246 case PPC::XVADDDP:
247 case PPC::XVADDSP:
248 case PPC::XSADDSP:
249 // VSX Multiply:
250 case PPC::XSMULDP:
251 case PPC::XVMULDP:
252 case PPC::XVMULSP:
253 case PPC::XSMULSP:
254 // QPX Add:
255 case PPC::QVFADD:
256 case PPC::QVFADDS:
257 case PPC::QVFADDSs:
258 // QPX Multiply:
259 case PPC::QVFMUL:
260 case PPC::QVFMULS:
261 case PPC::QVFMULSs:
262 return true;
263 default:
264 return false;
268 bool PPCInstrInfo::getMachineCombinerPatterns(
269 MachineInstr &Root,
270 SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
271 // Using the machine combiner in this way is potentially expensive, so
272 // restrict to when aggressive optimizations are desired.
273 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
274 return false;
276 // FP reassociation is only legal when we don't need strict IEEE semantics.
277 if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath)
278 return false;
280 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
283 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
284 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
285 unsigned &SrcReg, unsigned &DstReg,
286 unsigned &SubIdx) const {
287 switch (MI.getOpcode()) {
288 default: return false;
289 case PPC::EXTSW:
290 case PPC::EXTSW_32:
291 case PPC::EXTSW_32_64:
292 SrcReg = MI.getOperand(1).getReg();
293 DstReg = MI.getOperand(0).getReg();
294 SubIdx = PPC::sub_32;
295 return true;
299 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
300 int &FrameIndex) const {
301 unsigned Opcode = MI.getOpcode();
302 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
303 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
305 if (End != std::find(OpcodesForSpill, End, Opcode)) {
306 // Check for the operands added by addFrameReference (the immediate is the
307 // offset which defaults to 0).
308 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
309 MI.getOperand(2).isFI()) {
310 FrameIndex = MI.getOperand(2).getIndex();
311 return MI.getOperand(0).getReg();
314 return 0;
317 // For opcodes with the ReMaterializable flag set, this function is called to
318 // verify the instruction is really rematable.
319 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
320 AliasAnalysis *AA) const {
321 switch (MI.getOpcode()) {
322 default:
323 // This function should only be called for opcodes with the ReMaterializable
324 // flag set.
325 llvm_unreachable("Unknown rematerializable operation!");
326 break;
327 case PPC::LI:
328 case PPC::LI8:
329 case PPC::LIS:
330 case PPC::LIS8:
331 case PPC::QVGPCI:
332 case PPC::ADDIStocHA:
333 case PPC::ADDItocL:
334 case PPC::LOAD_STACK_GUARD:
335 return true;
337 return false;
340 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
341 int &FrameIndex) const {
342 unsigned Opcode = MI.getOpcode();
343 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
344 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
346 if (End != std::find(OpcodesForSpill, End, Opcode)) {
347 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
348 MI.getOperand(2).isFI()) {
349 FrameIndex = MI.getOperand(2).getIndex();
350 return MI.getOperand(0).getReg();
353 return 0;
356 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
357 unsigned OpIdx1,
358 unsigned OpIdx2) const {
359 MachineFunction &MF = *MI.getParent()->getParent();
361 // Normal instructions can be commuted the obvious way.
362 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo)
363 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
364 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
365 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
366 // changing the relative order of the mask operands might change what happens
367 // to the high-bits of the mask (and, thus, the result).
369 // Cannot commute if it has a non-zero rotate count.
370 if (MI.getOperand(3).getImm() != 0)
371 return nullptr;
373 // If we have a zero rotate count, we have:
374 // M = mask(MB,ME)
375 // Op0 = (Op1 & ~M) | (Op2 & M)
376 // Change this to:
377 // M = mask((ME+1)&31, (MB-1)&31)
378 // Op0 = (Op2 & ~M) | (Op1 & M)
380 // Swap op1/op2
381 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
382 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo.");
383 unsigned Reg0 = MI.getOperand(0).getReg();
384 unsigned Reg1 = MI.getOperand(1).getReg();
385 unsigned Reg2 = MI.getOperand(2).getReg();
386 unsigned SubReg1 = MI.getOperand(1).getSubReg();
387 unsigned SubReg2 = MI.getOperand(2).getSubReg();
388 bool Reg1IsKill = MI.getOperand(1).isKill();
389 bool Reg2IsKill = MI.getOperand(2).isKill();
390 bool ChangeReg0 = false;
391 // If machine instrs are no longer in two-address forms, update
392 // destination register as well.
393 if (Reg0 == Reg1) {
394 // Must be two address instruction!
395 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
396 "Expecting a two-address instruction!");
397 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
398 Reg2IsKill = false;
399 ChangeReg0 = true;
402 // Masks.
403 unsigned MB = MI.getOperand(4).getImm();
404 unsigned ME = MI.getOperand(5).getImm();
406 // We can't commute a trivial mask (there is no way to represent an all-zero
407 // mask).
408 if (MB == 0 && ME == 31)
409 return nullptr;
411 if (NewMI) {
412 // Create a new instruction.
413 unsigned Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
414 bool Reg0IsDead = MI.getOperand(0).isDead();
415 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
416 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
417 .addReg(Reg2, getKillRegState(Reg2IsKill))
418 .addReg(Reg1, getKillRegState(Reg1IsKill))
419 .addImm((ME + 1) & 31)
420 .addImm((MB - 1) & 31);
423 if (ChangeReg0) {
424 MI.getOperand(0).setReg(Reg2);
425 MI.getOperand(0).setSubReg(SubReg2);
427 MI.getOperand(2).setReg(Reg1);
428 MI.getOperand(1).setReg(Reg2);
429 MI.getOperand(2).setSubReg(SubReg1);
430 MI.getOperand(1).setSubReg(SubReg2);
431 MI.getOperand(2).setIsKill(Reg1IsKill);
432 MI.getOperand(1).setIsKill(Reg2IsKill);
434 // Swap the mask around.
435 MI.getOperand(4).setImm((ME + 1) & 31);
436 MI.getOperand(5).setImm((MB - 1) & 31);
437 return &MI;
440 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
441 unsigned &SrcOpIdx2) const {
442 // For VSX A-Type FMA instructions, it is the first two operands that can be
443 // commuted, however, because the non-encoded tied input operand is listed
444 // first, the operands to swap are actually the second and third.
446 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
447 if (AltOpc == -1)
448 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
450 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
451 // and SrcOpIdx2.
452 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
455 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
456 MachineBasicBlock::iterator MI) const {
457 // This function is used for scheduling, and the nop wanted here is the type
458 // that terminates dispatch groups on the POWER cores.
459 unsigned Directive = Subtarget.getDarwinDirective();
460 unsigned Opcode;
461 switch (Directive) {
462 default: Opcode = PPC::NOP; break;
463 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
464 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
465 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
466 // FIXME: Update when POWER9 scheduling model is ready.
467 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
470 DebugLoc DL;
471 BuildMI(MBB, MI, DL, get(Opcode));
474 /// Return the noop instruction to use for a noop.
475 void PPCInstrInfo::getNoop(MCInst &NopInst) const {
476 NopInst.setOpcode(PPC::NOP);
479 // Branch analysis.
480 // Note: If the condition register is set to CTR or CTR8 then this is a
481 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
482 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
483 MachineBasicBlock *&TBB,
484 MachineBasicBlock *&FBB,
485 SmallVectorImpl<MachineOperand> &Cond,
486 bool AllowModify) const {
487 bool isPPC64 = Subtarget.isPPC64();
489 // If the block has no terminators, it just falls into the block after it.
490 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
491 if (I == MBB.end())
492 return false;
494 if (!isUnpredicatedTerminator(*I))
495 return false;
497 if (AllowModify) {
498 // If the BB ends with an unconditional branch to the fallthrough BB,
499 // we eliminate the branch instruction.
500 if (I->getOpcode() == PPC::B &&
501 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
502 I->eraseFromParent();
504 // We update iterator after deleting the last branch.
505 I = MBB.getLastNonDebugInstr();
506 if (I == MBB.end() || !isUnpredicatedTerminator(*I))
507 return false;
511 // Get the last instruction in the block.
512 MachineInstr &LastInst = *I;
514 // If there is only one terminator instruction, process it.
515 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
516 if (LastInst.getOpcode() == PPC::B) {
517 if (!LastInst.getOperand(0).isMBB())
518 return true;
519 TBB = LastInst.getOperand(0).getMBB();
520 return false;
521 } else if (LastInst.getOpcode() == PPC::BCC) {
522 if (!LastInst.getOperand(2).isMBB())
523 return true;
524 // Block ends with fall-through condbranch.
525 TBB = LastInst.getOperand(2).getMBB();
526 Cond.push_back(LastInst.getOperand(0));
527 Cond.push_back(LastInst.getOperand(1));
528 return false;
529 } else if (LastInst.getOpcode() == PPC::BC) {
530 if (!LastInst.getOperand(1).isMBB())
531 return true;
532 // Block ends with fall-through condbranch.
533 TBB = LastInst.getOperand(1).getMBB();
534 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
535 Cond.push_back(LastInst.getOperand(0));
536 return false;
537 } else if (LastInst.getOpcode() == PPC::BCn) {
538 if (!LastInst.getOperand(1).isMBB())
539 return true;
540 // Block ends with fall-through condbranch.
541 TBB = LastInst.getOperand(1).getMBB();
542 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
543 Cond.push_back(LastInst.getOperand(0));
544 return false;
545 } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
546 LastInst.getOpcode() == PPC::BDNZ) {
547 if (!LastInst.getOperand(0).isMBB())
548 return true;
549 if (DisableCTRLoopAnal)
550 return true;
551 TBB = LastInst.getOperand(0).getMBB();
552 Cond.push_back(MachineOperand::CreateImm(1));
553 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
554 true));
555 return false;
556 } else if (LastInst.getOpcode() == PPC::BDZ8 ||
557 LastInst.getOpcode() == PPC::BDZ) {
558 if (!LastInst.getOperand(0).isMBB())
559 return true;
560 if (DisableCTRLoopAnal)
561 return true;
562 TBB = LastInst.getOperand(0).getMBB();
563 Cond.push_back(MachineOperand::CreateImm(0));
564 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
565 true));
566 return false;
569 // Otherwise, don't know what this is.
570 return true;
573 // Get the instruction before it if it's a terminator.
574 MachineInstr &SecondLastInst = *I;
576 // If there are three terminators, we don't know what sort of block this is.
577 if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
578 return true;
580 // If the block ends with PPC::B and PPC:BCC, handle it.
581 if (SecondLastInst.getOpcode() == PPC::BCC &&
582 LastInst.getOpcode() == PPC::B) {
583 if (!SecondLastInst.getOperand(2).isMBB() ||
584 !LastInst.getOperand(0).isMBB())
585 return true;
586 TBB = SecondLastInst.getOperand(2).getMBB();
587 Cond.push_back(SecondLastInst.getOperand(0));
588 Cond.push_back(SecondLastInst.getOperand(1));
589 FBB = LastInst.getOperand(0).getMBB();
590 return false;
591 } else if (SecondLastInst.getOpcode() == PPC::BC &&
592 LastInst.getOpcode() == PPC::B) {
593 if (!SecondLastInst.getOperand(1).isMBB() ||
594 !LastInst.getOperand(0).isMBB())
595 return true;
596 TBB = SecondLastInst.getOperand(1).getMBB();
597 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
598 Cond.push_back(SecondLastInst.getOperand(0));
599 FBB = LastInst.getOperand(0).getMBB();
600 return false;
601 } else if (SecondLastInst.getOpcode() == PPC::BCn &&
602 LastInst.getOpcode() == PPC::B) {
603 if (!SecondLastInst.getOperand(1).isMBB() ||
604 !LastInst.getOperand(0).isMBB())
605 return true;
606 TBB = SecondLastInst.getOperand(1).getMBB();
607 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
608 Cond.push_back(SecondLastInst.getOperand(0));
609 FBB = LastInst.getOperand(0).getMBB();
610 return false;
611 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
612 SecondLastInst.getOpcode() == PPC::BDNZ) &&
613 LastInst.getOpcode() == PPC::B) {
614 if (!SecondLastInst.getOperand(0).isMBB() ||
615 !LastInst.getOperand(0).isMBB())
616 return true;
617 if (DisableCTRLoopAnal)
618 return true;
619 TBB = SecondLastInst.getOperand(0).getMBB();
620 Cond.push_back(MachineOperand::CreateImm(1));
621 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
622 true));
623 FBB = LastInst.getOperand(0).getMBB();
624 return false;
625 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
626 SecondLastInst.getOpcode() == PPC::BDZ) &&
627 LastInst.getOpcode() == PPC::B) {
628 if (!SecondLastInst.getOperand(0).isMBB() ||
629 !LastInst.getOperand(0).isMBB())
630 return true;
631 if (DisableCTRLoopAnal)
632 return true;
633 TBB = SecondLastInst.getOperand(0).getMBB();
634 Cond.push_back(MachineOperand::CreateImm(0));
635 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
636 true));
637 FBB = LastInst.getOperand(0).getMBB();
638 return false;
641 // If the block ends with two PPC:Bs, handle it. The second one is not
642 // executed, so remove it.
643 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
644 if (!SecondLastInst.getOperand(0).isMBB())
645 return true;
646 TBB = SecondLastInst.getOperand(0).getMBB();
647 I = LastInst;
648 if (AllowModify)
649 I->eraseFromParent();
650 return false;
653 // Otherwise, can't handle this.
654 return true;
657 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
658 int *BytesRemoved) const {
659 assert(!BytesRemoved && "code size not handled");
661 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
662 if (I == MBB.end())
663 return 0;
665 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
666 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
667 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
668 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ)
669 return 0;
671 // Remove the branch.
672 I->eraseFromParent();
674 I = MBB.end();
676 if (I == MBB.begin()) return 1;
677 --I;
678 if (I->getOpcode() != PPC::BCC &&
679 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
680 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
681 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ)
682 return 1;
684 // Remove the branch.
685 I->eraseFromParent();
686 return 2;
689 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
690 MachineBasicBlock *TBB,
691 MachineBasicBlock *FBB,
692 ArrayRef<MachineOperand> Cond,
693 const DebugLoc &DL,
694 int *BytesAdded) const {
695 // Shouldn't be a fall through.
696 assert(TBB && "insertBranch must not be told to insert a fallthrough");
697 assert((Cond.size() == 2 || Cond.size() == 0) &&
698 "PPC branch conditions have two components!");
699 assert(!BytesAdded && "code size not handled");
701 bool isPPC64 = Subtarget.isPPC64();
703 // One-way branch.
704 if (!FBB) {
705 if (Cond.empty()) // Unconditional branch
706 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
707 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
708 BuildMI(&MBB, DL, get(Cond[0].getImm() ?
709 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
710 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB);
711 else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
712 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
713 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
714 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
715 else // Conditional branch
716 BuildMI(&MBB, DL, get(PPC::BCC))
717 .addImm(Cond[0].getImm())
718 .add(Cond[1])
719 .addMBB(TBB);
720 return 1;
723 // Two-way Conditional Branch.
724 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
725 BuildMI(&MBB, DL, get(Cond[0].getImm() ?
726 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
727 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB);
728 else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
729 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
730 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
731 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
732 else
733 BuildMI(&MBB, DL, get(PPC::BCC))
734 .addImm(Cond[0].getImm())
735 .add(Cond[1])
736 .addMBB(TBB);
737 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
738 return 2;
741 // Select analysis.
742 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
743 ArrayRef<MachineOperand> Cond,
744 unsigned TrueReg, unsigned FalseReg,
745 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
746 if (Cond.size() != 2)
747 return false;
749 // If this is really a bdnz-like condition, then it cannot be turned into a
750 // select.
751 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
752 return false;
754 // Check register classes.
755 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
756 const TargetRegisterClass *RC =
757 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
758 if (!RC)
759 return false;
761 // isel is for regular integer GPRs only.
762 if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
763 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
764 !PPC::G8RCRegClass.hasSubClassEq(RC) &&
765 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
766 return false;
768 // FIXME: These numbers are for the A2, how well they work for other cores is
769 // an open question. On the A2, the isel instruction has a 2-cycle latency
770 // but single-cycle throughput. These numbers are used in combination with
771 // the MispredictPenalty setting from the active SchedMachineModel.
772 CondCycles = 1;
773 TrueCycles = 1;
774 FalseCycles = 1;
776 return true;
779 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
780 MachineBasicBlock::iterator MI,
781 const DebugLoc &dl, unsigned DestReg,
782 ArrayRef<MachineOperand> Cond, unsigned TrueReg,
783 unsigned FalseReg) const {
784 assert(Cond.size() == 2 &&
785 "PPC branch conditions have two components!");
787 // Get the register classes.
788 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
789 const TargetRegisterClass *RC =
790 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
791 assert(RC && "TrueReg and FalseReg must have overlapping register classes");
793 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
794 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
795 assert((Is64Bit ||
796 PPC::GPRCRegClass.hasSubClassEq(RC) ||
797 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
798 "isel is for regular integer GPRs only");
800 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
801 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
803 unsigned SubIdx = 0;
804 bool SwapOps = false;
805 switch (SelectPred) {
806 case PPC::PRED_EQ:
807 case PPC::PRED_EQ_MINUS:
808 case PPC::PRED_EQ_PLUS:
809 SubIdx = PPC::sub_eq; SwapOps = false; break;
810 case PPC::PRED_NE:
811 case PPC::PRED_NE_MINUS:
812 case PPC::PRED_NE_PLUS:
813 SubIdx = PPC::sub_eq; SwapOps = true; break;
814 case PPC::PRED_LT:
815 case PPC::PRED_LT_MINUS:
816 case PPC::PRED_LT_PLUS:
817 SubIdx = PPC::sub_lt; SwapOps = false; break;
818 case PPC::PRED_GE:
819 case PPC::PRED_GE_MINUS:
820 case PPC::PRED_GE_PLUS:
821 SubIdx = PPC::sub_lt; SwapOps = true; break;
822 case PPC::PRED_GT:
823 case PPC::PRED_GT_MINUS:
824 case PPC::PRED_GT_PLUS:
825 SubIdx = PPC::sub_gt; SwapOps = false; break;
826 case PPC::PRED_LE:
827 case PPC::PRED_LE_MINUS:
828 case PPC::PRED_LE_PLUS:
829 SubIdx = PPC::sub_gt; SwapOps = true; break;
830 case PPC::PRED_UN:
831 case PPC::PRED_UN_MINUS:
832 case PPC::PRED_UN_PLUS:
833 SubIdx = PPC::sub_un; SwapOps = false; break;
834 case PPC::PRED_NU:
835 case PPC::PRED_NU_MINUS:
836 case PPC::PRED_NU_PLUS:
837 SubIdx = PPC::sub_un; SwapOps = true; break;
838 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break;
839 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
842 unsigned FirstReg = SwapOps ? FalseReg : TrueReg,
843 SecondReg = SwapOps ? TrueReg : FalseReg;
845 // The first input register of isel cannot be r0. If it is a member
846 // of a register class that can be r0, then copy it first (the
847 // register allocator should eliminate the copy).
848 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
849 MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
850 const TargetRegisterClass *FirstRC =
851 MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
852 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
853 unsigned OldFirstReg = FirstReg;
854 FirstReg = MRI.createVirtualRegister(FirstRC);
855 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
856 .addReg(OldFirstReg);
859 BuildMI(MBB, MI, dl, get(OpCode), DestReg)
860 .addReg(FirstReg).addReg(SecondReg)
861 .addReg(Cond[1].getReg(), 0, SubIdx);
864 static unsigned getCRBitValue(unsigned CRBit) {
865 unsigned Ret = 4;
866 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
867 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
868 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
869 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
870 Ret = 3;
871 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
872 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
873 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
874 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
875 Ret = 2;
876 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
877 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
878 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
879 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
880 Ret = 1;
881 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
882 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
883 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
884 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
885 Ret = 0;
887 assert(Ret != 4 && "Invalid CR bit register");
888 return Ret;
891 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
892 MachineBasicBlock::iterator I,
893 const DebugLoc &DL, unsigned DestReg,
894 unsigned SrcReg, bool KillSrc) const {
895 // We can end up with self copies and similar things as a result of VSX copy
896 // legalization. Promote them here.
897 const TargetRegisterInfo *TRI = &getRegisterInfo();
898 if (PPC::F8RCRegClass.contains(DestReg) &&
899 PPC::VSRCRegClass.contains(SrcReg)) {
900 unsigned SuperReg =
901 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
903 if (VSXSelfCopyCrash && SrcReg == SuperReg)
904 llvm_unreachable("nop VSX copy");
906 DestReg = SuperReg;
907 } else if (PPC::F8RCRegClass.contains(SrcReg) &&
908 PPC::VSRCRegClass.contains(DestReg)) {
909 unsigned SuperReg =
910 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
912 if (VSXSelfCopyCrash && DestReg == SuperReg)
913 llvm_unreachable("nop VSX copy");
915 SrcReg = SuperReg;
918 // Different class register copy
919 if (PPC::CRBITRCRegClass.contains(SrcReg) &&
920 PPC::GPRCRegClass.contains(DestReg)) {
921 unsigned CRReg = getCRFromCRBit(SrcReg);
922 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
923 getKillRegState(KillSrc);
924 // Rotate the CR bit in the CR fields to be the least significant bit and
925 // then mask with 0x1 (MB = ME = 31).
926 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
927 .addReg(DestReg, RegState::Kill)
928 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
929 .addImm(31)
930 .addImm(31);
931 return;
932 } else if (PPC::CRRCRegClass.contains(SrcReg) &&
933 PPC::G8RCRegClass.contains(DestReg)) {
934 BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg);
935 getKillRegState(KillSrc);
936 return;
937 } else if (PPC::CRRCRegClass.contains(SrcReg) &&
938 PPC::GPRCRegClass.contains(DestReg)) {
939 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg);
940 getKillRegState(KillSrc);
941 return;
942 } else if (PPC::G8RCRegClass.contains(SrcReg) &&
943 PPC::VSFRCRegClass.contains(DestReg)) {
944 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
945 NumGPRtoVSRSpill++;
946 getKillRegState(KillSrc);
947 return;
948 } else if (PPC::VSFRCRegClass.contains(SrcReg) &&
949 PPC::G8RCRegClass.contains(DestReg)) {
950 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
951 getKillRegState(KillSrc);
952 return;
953 } else if (PPC::SPERCRegClass.contains(SrcReg) &&
954 PPC::SPE4RCRegClass.contains(DestReg)) {
955 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg);
956 getKillRegState(KillSrc);
957 return;
958 } else if (PPC::SPE4RCRegClass.contains(SrcReg) &&
959 PPC::SPERCRegClass.contains(DestReg)) {
960 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg);
961 getKillRegState(KillSrc);
962 return;
966 unsigned Opc;
967 if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
968 Opc = PPC::OR;
969 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
970 Opc = PPC::OR8;
971 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
972 Opc = PPC::FMR;
973 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
974 Opc = PPC::MCRF;
975 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
976 Opc = PPC::VOR;
977 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
978 // There are two different ways this can be done:
979 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
980 // issue in VSU pipeline 0.
981 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
982 // can go to either pipeline.
983 // We'll always use xxlor here, because in practically all cases where
984 // copies are generated, they are close enough to some use that the
985 // lower-latency form is preferable.
986 Opc = PPC::XXLOR;
987 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
988 PPC::VSSRCRegClass.contains(DestReg, SrcReg))
989 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf;
990 else if (PPC::QFRCRegClass.contains(DestReg, SrcReg))
991 Opc = PPC::QVFMR;
992 else if (PPC::QSRCRegClass.contains(DestReg, SrcReg))
993 Opc = PPC::QVFMRs;
994 else if (PPC::QBRCRegClass.contains(DestReg, SrcReg))
995 Opc = PPC::QVFMRb;
996 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
997 Opc = PPC::CROR;
998 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg))
999 Opc = PPC::EVOR;
1000 else
1001 llvm_unreachable("Impossible reg-to-reg copy");
1003 const MCInstrDesc &MCID = get(Opc);
1004 if (MCID.getNumOperands() == 3)
1005 BuildMI(MBB, I, DL, MCID, DestReg)
1006 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1007 else
1008 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
1011 unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg,
1012 const TargetRegisterClass *RC)
1013 const {
1014 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
1015 int OpcodeIndex = 0;
1017 if (RC != nullptr) {
1018 if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1019 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1020 OpcodeIndex = SOK_Int4Spill;
1021 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1022 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1023 OpcodeIndex = SOK_Int8Spill;
1024 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1025 OpcodeIndex = SOK_Float8Spill;
1026 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1027 OpcodeIndex = SOK_Float4Spill;
1028 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1029 OpcodeIndex = SOK_SPESpill;
1030 } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) {
1031 OpcodeIndex = SOK_SPE4Spill;
1032 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1033 OpcodeIndex = SOK_CRSpill;
1034 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1035 OpcodeIndex = SOK_CRBitSpill;
1036 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1037 OpcodeIndex = SOK_VRVectorSpill;
1038 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1039 OpcodeIndex = SOK_VSXVectorSpill;
1040 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1041 OpcodeIndex = SOK_VectorFloat8Spill;
1042 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1043 OpcodeIndex = SOK_VectorFloat4Spill;
1044 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1045 OpcodeIndex = SOK_VRSaveSpill;
1046 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1047 OpcodeIndex = SOK_QuadFloat8Spill;
1048 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1049 OpcodeIndex = SOK_QuadFloat4Spill;
1050 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1051 OpcodeIndex = SOK_QuadBitSpill;
1052 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1053 OpcodeIndex = SOK_SpillToVSR;
1054 } else {
1055 llvm_unreachable("Unknown regclass!");
1057 } else {
1058 if (PPC::GPRCRegClass.contains(Reg) ||
1059 PPC::GPRC_NOR0RegClass.contains(Reg)) {
1060 OpcodeIndex = SOK_Int4Spill;
1061 } else if (PPC::G8RCRegClass.contains(Reg) ||
1062 PPC::G8RC_NOX0RegClass.contains(Reg)) {
1063 OpcodeIndex = SOK_Int8Spill;
1064 } else if (PPC::F8RCRegClass.contains(Reg)) {
1065 OpcodeIndex = SOK_Float8Spill;
1066 } else if (PPC::F4RCRegClass.contains(Reg)) {
1067 OpcodeIndex = SOK_Float4Spill;
1068 } else if (PPC::CRRCRegClass.contains(Reg)) {
1069 OpcodeIndex = SOK_CRSpill;
1070 } else if (PPC::CRBITRCRegClass.contains(Reg)) {
1071 OpcodeIndex = SOK_CRBitSpill;
1072 } else if (PPC::VRRCRegClass.contains(Reg)) {
1073 OpcodeIndex = SOK_VRVectorSpill;
1074 } else if (PPC::VSRCRegClass.contains(Reg)) {
1075 OpcodeIndex = SOK_VSXVectorSpill;
1076 } else if (PPC::VSFRCRegClass.contains(Reg)) {
1077 OpcodeIndex = SOK_VectorFloat8Spill;
1078 } else if (PPC::VSSRCRegClass.contains(Reg)) {
1079 OpcodeIndex = SOK_VectorFloat4Spill;
1080 } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
1081 OpcodeIndex = SOK_VRSaveSpill;
1082 } else if (PPC::QFRCRegClass.contains(Reg)) {
1083 OpcodeIndex = SOK_QuadFloat8Spill;
1084 } else if (PPC::QSRCRegClass.contains(Reg)) {
1085 OpcodeIndex = SOK_QuadFloat4Spill;
1086 } else if (PPC::QBRCRegClass.contains(Reg)) {
1087 OpcodeIndex = SOK_QuadBitSpill;
1088 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
1089 OpcodeIndex = SOK_SpillToVSR;
1090 } else {
1091 llvm_unreachable("Unknown regclass!");
1094 return OpcodesForSpill[OpcodeIndex];
1097 unsigned
1098 PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg,
1099 const TargetRegisterClass *RC) const {
1100 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
1101 int OpcodeIndex = 0;
1103 if (RC != nullptr) {
1104 if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1105 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1106 OpcodeIndex = SOK_Int4Spill;
1107 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1108 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1109 OpcodeIndex = SOK_Int8Spill;
1110 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1111 OpcodeIndex = SOK_Float8Spill;
1112 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1113 OpcodeIndex = SOK_Float4Spill;
1114 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1115 OpcodeIndex = SOK_SPESpill;
1116 } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) {
1117 OpcodeIndex = SOK_SPE4Spill;
1118 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1119 OpcodeIndex = SOK_CRSpill;
1120 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1121 OpcodeIndex = SOK_CRBitSpill;
1122 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1123 OpcodeIndex = SOK_VRVectorSpill;
1124 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1125 OpcodeIndex = SOK_VSXVectorSpill;
1126 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1127 OpcodeIndex = SOK_VectorFloat8Spill;
1128 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1129 OpcodeIndex = SOK_VectorFloat4Spill;
1130 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1131 OpcodeIndex = SOK_VRSaveSpill;
1132 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1133 OpcodeIndex = SOK_QuadFloat8Spill;
1134 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1135 OpcodeIndex = SOK_QuadFloat4Spill;
1136 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1137 OpcodeIndex = SOK_QuadBitSpill;
1138 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1139 OpcodeIndex = SOK_SpillToVSR;
1140 } else {
1141 llvm_unreachable("Unknown regclass!");
1143 } else {
1144 if (PPC::GPRCRegClass.contains(Reg) ||
1145 PPC::GPRC_NOR0RegClass.contains(Reg)) {
1146 OpcodeIndex = SOK_Int4Spill;
1147 } else if (PPC::G8RCRegClass.contains(Reg) ||
1148 PPC::G8RC_NOX0RegClass.contains(Reg)) {
1149 OpcodeIndex = SOK_Int8Spill;
1150 } else if (PPC::F8RCRegClass.contains(Reg)) {
1151 OpcodeIndex = SOK_Float8Spill;
1152 } else if (PPC::F4RCRegClass.contains(Reg)) {
1153 OpcodeIndex = SOK_Float4Spill;
1154 } else if (PPC::CRRCRegClass.contains(Reg)) {
1155 OpcodeIndex = SOK_CRSpill;
1156 } else if (PPC::CRBITRCRegClass.contains(Reg)) {
1157 OpcodeIndex = SOK_CRBitSpill;
1158 } else if (PPC::VRRCRegClass.contains(Reg)) {
1159 OpcodeIndex = SOK_VRVectorSpill;
1160 } else if (PPC::VSRCRegClass.contains(Reg)) {
1161 OpcodeIndex = SOK_VSXVectorSpill;
1162 } else if (PPC::VSFRCRegClass.contains(Reg)) {
1163 OpcodeIndex = SOK_VectorFloat8Spill;
1164 } else if (PPC::VSSRCRegClass.contains(Reg)) {
1165 OpcodeIndex = SOK_VectorFloat4Spill;
1166 } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
1167 OpcodeIndex = SOK_VRSaveSpill;
1168 } else if (PPC::QFRCRegClass.contains(Reg)) {
1169 OpcodeIndex = SOK_QuadFloat8Spill;
1170 } else if (PPC::QSRCRegClass.contains(Reg)) {
1171 OpcodeIndex = SOK_QuadFloat4Spill;
1172 } else if (PPC::QBRCRegClass.contains(Reg)) {
1173 OpcodeIndex = SOK_QuadBitSpill;
1174 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
1175 OpcodeIndex = SOK_SpillToVSR;
1176 } else {
1177 llvm_unreachable("Unknown regclass!");
1180 return OpcodesForSpill[OpcodeIndex];
1183 void PPCInstrInfo::StoreRegToStackSlot(
1184 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx,
1185 const TargetRegisterClass *RC,
1186 SmallVectorImpl<MachineInstr *> &NewMIs) const {
1187 unsigned Opcode = getStoreOpcodeForSpill(PPC::NoRegister, RC);
1188 DebugLoc DL;
1190 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1191 FuncInfo->setHasSpills();
1193 NewMIs.push_back(addFrameReference(
1194 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)),
1195 FrameIdx));
1197 if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1198 PPC::CRBITRCRegClass.hasSubClassEq(RC))
1199 FuncInfo->setSpillsCR();
1201 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1202 FuncInfo->setSpillsVRSAVE();
1204 if (isXFormMemOp(Opcode))
1205 FuncInfo->setHasNonRISpills();
1208 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1209 MachineBasicBlock::iterator MI,
1210 unsigned SrcReg, bool isKill,
1211 int FrameIdx,
1212 const TargetRegisterClass *RC,
1213 const TargetRegisterInfo *TRI) const {
1214 MachineFunction &MF = *MBB.getParent();
1215 SmallVector<MachineInstr *, 4> NewMIs;
1217 // We need to avoid a situation in which the value from a VRRC register is
1218 // spilled using an Altivec instruction and reloaded into a VSRC register
1219 // using a VSX instruction. The issue with this is that the VSX
1220 // load/store instructions swap the doublewords in the vector and the Altivec
1221 // ones don't. The register classes on the spill/reload may be different if
1222 // the register is defined using an Altivec instruction and is then used by a
1223 // VSX instruction.
1224 RC = updatedRC(RC);
1226 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs);
1228 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1229 MBB.insert(MI, NewMIs[i]);
1231 const MachineFrameInfo &MFI = MF.getFrameInfo();
1232 MachineMemOperand *MMO = MF.getMachineMemOperand(
1233 MachinePointerInfo::getFixedStack(MF, FrameIdx),
1234 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1235 MFI.getObjectAlignment(FrameIdx));
1236 NewMIs.back()->addMemOperand(MF, MMO);
1239 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1240 unsigned DestReg, int FrameIdx,
1241 const TargetRegisterClass *RC,
1242 SmallVectorImpl<MachineInstr *> &NewMIs)
1243 const {
1244 unsigned Opcode = getLoadOpcodeForSpill(PPC::NoRegister, RC);
1245 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg),
1246 FrameIdx));
1247 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1249 if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1250 PPC::CRBITRCRegClass.hasSubClassEq(RC))
1251 FuncInfo->setSpillsCR();
1253 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1254 FuncInfo->setSpillsVRSAVE();
1256 if (isXFormMemOp(Opcode))
1257 FuncInfo->setHasNonRISpills();
1260 void
1261 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1262 MachineBasicBlock::iterator MI,
1263 unsigned DestReg, int FrameIdx,
1264 const TargetRegisterClass *RC,
1265 const TargetRegisterInfo *TRI) const {
1266 MachineFunction &MF = *MBB.getParent();
1267 SmallVector<MachineInstr*, 4> NewMIs;
1268 DebugLoc DL;
1269 if (MI != MBB.end()) DL = MI->getDebugLoc();
1271 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1272 FuncInfo->setHasSpills();
1274 // We need to avoid a situation in which the value from a VRRC register is
1275 // spilled using an Altivec instruction and reloaded into a VSRC register
1276 // using a VSX instruction. The issue with this is that the VSX
1277 // load/store instructions swap the doublewords in the vector and the Altivec
1278 // ones don't. The register classes on the spill/reload may be different if
1279 // the register is defined using an Altivec instruction and is then used by a
1280 // VSX instruction.
1281 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
1282 RC = &PPC::VSRCRegClass;
1284 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
1286 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1287 MBB.insert(MI, NewMIs[i]);
1289 const MachineFrameInfo &MFI = MF.getFrameInfo();
1290 MachineMemOperand *MMO = MF.getMachineMemOperand(
1291 MachinePointerInfo::getFixedStack(MF, FrameIdx),
1292 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
1293 MFI.getObjectAlignment(FrameIdx));
1294 NewMIs.back()->addMemOperand(MF, MMO);
1297 bool PPCInstrInfo::
1298 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1299 assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
1300 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
1301 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
1302 else
1303 // Leave the CR# the same, but invert the condition.
1304 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
1305 return false;
1308 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1309 unsigned Reg, MachineRegisterInfo *MRI) const {
1310 // For some instructions, it is legal to fold ZERO into the RA register field.
1311 // A zero immediate should always be loaded with a single li.
1312 unsigned DefOpc = DefMI.getOpcode();
1313 if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
1314 return false;
1315 if (!DefMI.getOperand(1).isImm())
1316 return false;
1317 if (DefMI.getOperand(1).getImm() != 0)
1318 return false;
1320 // Note that we cannot here invert the arguments of an isel in order to fold
1321 // a ZERO into what is presented as the second argument. All we have here
1322 // is the condition bit, and that might come from a CR-logical bit operation.
1324 const MCInstrDesc &UseMCID = UseMI.getDesc();
1326 // Only fold into real machine instructions.
1327 if (UseMCID.isPseudo())
1328 return false;
1330 unsigned UseIdx;
1331 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
1332 if (UseMI.getOperand(UseIdx).isReg() &&
1333 UseMI.getOperand(UseIdx).getReg() == Reg)
1334 break;
1336 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
1337 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1339 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1341 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1342 // register (which might also be specified as a pointer class kind).
1343 if (UseInfo->isLookupPtrRegClass()) {
1344 if (UseInfo->RegClass /* Kind */ != 1)
1345 return false;
1346 } else {
1347 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1348 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1349 return false;
1352 // Make sure this is not tied to an output register (or otherwise
1353 // constrained). This is true for ST?UX registers, for example, which
1354 // are tied to their output registers.
1355 if (UseInfo->Constraints != 0)
1356 return false;
1358 unsigned ZeroReg;
1359 if (UseInfo->isLookupPtrRegClass()) {
1360 bool isPPC64 = Subtarget.isPPC64();
1361 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1362 } else {
1363 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1364 PPC::ZERO8 : PPC::ZERO;
1367 bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1368 UseMI.getOperand(UseIdx).setReg(ZeroReg);
1370 if (DeleteDef)
1371 DefMI.eraseFromParent();
1373 return true;
1376 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1377 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1378 I != IE; ++I)
1379 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1380 return true;
1381 return false;
1384 // We should make sure that, if we're going to predicate both sides of a
1385 // condition (a diamond), that both sides don't define the counter register. We
1386 // can predicate counter-decrement-based branches, but while that predicates
1387 // the branching, it does not predicate the counter decrement. If we tried to
1388 // merge the triangle into one predicated block, we'd decrement the counter
1389 // twice.
1390 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1391 unsigned NumT, unsigned ExtraT,
1392 MachineBasicBlock &FMBB,
1393 unsigned NumF, unsigned ExtraF,
1394 BranchProbability Probability) const {
1395 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1399 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
1400 // The predicated branches are identified by their type, not really by the
1401 // explicit presence of a predicate. Furthermore, some of them can be
1402 // predicated more than once. Because if conversion won't try to predicate
1403 // any instruction which already claims to be predicated (by returning true
1404 // here), always return false. In doing so, we let isPredicable() be the
1405 // final word on whether not the instruction can be (further) predicated.
1407 return false;
1410 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
1411 if (!MI.isTerminator())
1412 return false;
1414 // Conditional branch is a special case.
1415 if (MI.isBranch() && !MI.isBarrier())
1416 return true;
1418 return !isPredicated(MI);
1421 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
1422 ArrayRef<MachineOperand> Pred) const {
1423 unsigned OpC = MI.getOpcode();
1424 if (OpC == PPC::BLR || OpC == PPC::BLR8) {
1425 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1426 bool isPPC64 = Subtarget.isPPC64();
1427 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
1428 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
1429 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1430 MI.setDesc(get(PPC::BCLR));
1431 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1432 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1433 MI.setDesc(get(PPC::BCLRn));
1434 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1435 } else {
1436 MI.setDesc(get(PPC::BCCLR));
1437 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1438 .addImm(Pred[0].getImm())
1439 .add(Pred[1]);
1442 return true;
1443 } else if (OpC == PPC::B) {
1444 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1445 bool isPPC64 = Subtarget.isPPC64();
1446 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
1447 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
1448 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1449 MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1450 MI.RemoveOperand(0);
1452 MI.setDesc(get(PPC::BC));
1453 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1454 .add(Pred[1])
1455 .addMBB(MBB);
1456 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1457 MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1458 MI.RemoveOperand(0);
1460 MI.setDesc(get(PPC::BCn));
1461 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1462 .add(Pred[1])
1463 .addMBB(MBB);
1464 } else {
1465 MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1466 MI.RemoveOperand(0);
1468 MI.setDesc(get(PPC::BCC));
1469 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1470 .addImm(Pred[0].getImm())
1471 .add(Pred[1])
1472 .addMBB(MBB);
1475 return true;
1476 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL ||
1477 OpC == PPC::BCTRL8) {
1478 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1479 llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1481 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1482 bool isPPC64 = Subtarget.isPPC64();
1484 if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1485 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
1486 : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
1487 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1488 return true;
1489 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1490 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
1491 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
1492 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1493 return true;
1496 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
1497 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
1498 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1499 .addImm(Pred[0].getImm())
1500 .add(Pred[1]);
1501 return true;
1504 return false;
1507 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1508 ArrayRef<MachineOperand> Pred2) const {
1509 assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1510 assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1512 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1513 return false;
1514 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1515 return false;
1517 // P1 can only subsume P2 if they test the same condition register.
1518 if (Pred1[1].getReg() != Pred2[1].getReg())
1519 return false;
1521 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1522 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1524 if (P1 == P2)
1525 return true;
1527 // Does P1 subsume P2, e.g. GE subsumes GT.
1528 if (P1 == PPC::PRED_LE &&
1529 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1530 return true;
1531 if (P1 == PPC::PRED_GE &&
1532 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1533 return true;
1535 return false;
1538 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI,
1539 std::vector<MachineOperand> &Pred) const {
1540 // Note: At the present time, the contents of Pred from this function is
1541 // unused by IfConversion. This implementation follows ARM by pushing the
1542 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1543 // predicate, instructions defining CTR or CTR8 are also included as
1544 // predicate-defining instructions.
1546 const TargetRegisterClass *RCs[] =
1547 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1548 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1550 bool Found = false;
1551 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1552 const MachineOperand &MO = MI.getOperand(i);
1553 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1554 const TargetRegisterClass *RC = RCs[c];
1555 if (MO.isReg()) {
1556 if (MO.isDef() && RC->contains(MO.getReg())) {
1557 Pred.push_back(MO);
1558 Found = true;
1560 } else if (MO.isRegMask()) {
1561 for (TargetRegisterClass::iterator I = RC->begin(),
1562 IE = RC->end(); I != IE; ++I)
1563 if (MO.clobbersPhysReg(*I)) {
1564 Pred.push_back(MO);
1565 Found = true;
1571 return Found;
1574 bool PPCInstrInfo::isPredicable(const MachineInstr &MI) const {
1575 unsigned OpC = MI.getOpcode();
1576 switch (OpC) {
1577 default:
1578 return false;
1579 case PPC::B:
1580 case PPC::BLR:
1581 case PPC::BLR8:
1582 case PPC::BCTR:
1583 case PPC::BCTR8:
1584 case PPC::BCTRL:
1585 case PPC::BCTRL8:
1586 return true;
1590 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1591 unsigned &SrcReg2, int &Mask,
1592 int &Value) const {
1593 unsigned Opc = MI.getOpcode();
1595 switch (Opc) {
1596 default: return false;
1597 case PPC::CMPWI:
1598 case PPC::CMPLWI:
1599 case PPC::CMPDI:
1600 case PPC::CMPLDI:
1601 SrcReg = MI.getOperand(1).getReg();
1602 SrcReg2 = 0;
1603 Value = MI.getOperand(2).getImm();
1604 Mask = 0xFFFF;
1605 return true;
1606 case PPC::CMPW:
1607 case PPC::CMPLW:
1608 case PPC::CMPD:
1609 case PPC::CMPLD:
1610 case PPC::FCMPUS:
1611 case PPC::FCMPUD:
1612 SrcReg = MI.getOperand(1).getReg();
1613 SrcReg2 = MI.getOperand(2).getReg();
1614 Value = 0;
1615 Mask = 0;
1616 return true;
1620 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
1621 unsigned SrcReg2, int Mask, int Value,
1622 const MachineRegisterInfo *MRI) const {
1623 if (DisableCmpOpt)
1624 return false;
1626 int OpC = CmpInstr.getOpcode();
1627 unsigned CRReg = CmpInstr.getOperand(0).getReg();
1629 // FP record forms set CR1 based on the exception status bits, not a
1630 // comparison with zero.
1631 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1632 return false;
1634 // The record forms set the condition register based on a signed comparison
1635 // with zero (so says the ISA manual). This is not as straightforward as it
1636 // seems, however, because this is always a 64-bit comparison on PPC64, even
1637 // for instructions that are 32-bit in nature (like slw for example).
1638 // So, on PPC32, for unsigned comparisons, we can use the record forms only
1639 // for equality checks (as those don't depend on the sign). On PPC64,
1640 // we are restricted to equality for unsigned 64-bit comparisons and for
1641 // signed 32-bit comparisons the applicability is more restricted.
1642 bool isPPC64 = Subtarget.isPPC64();
1643 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW;
1644 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1645 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1647 // Get the unique definition of SrcReg.
1648 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1649 if (!MI) return false;
1651 bool equalityOnly = false;
1652 bool noSub = false;
1653 if (isPPC64) {
1654 if (is32BitSignedCompare) {
1655 // We can perform this optimization only if MI is sign-extending.
1656 if (isSignExtended(*MI))
1657 noSub = true;
1658 else
1659 return false;
1660 } else if (is32BitUnsignedCompare) {
1661 // We can perform this optimization, equality only, if MI is
1662 // zero-extending.
1663 if (isZeroExtended(*MI)) {
1664 noSub = true;
1665 equalityOnly = true;
1666 } else
1667 return false;
1668 } else
1669 equalityOnly = is64BitUnsignedCompare;
1670 } else
1671 equalityOnly = is32BitUnsignedCompare;
1673 if (equalityOnly) {
1674 // We need to check the uses of the condition register in order to reject
1675 // non-equality comparisons.
1676 for (MachineRegisterInfo::use_instr_iterator
1677 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1678 I != IE; ++I) {
1679 MachineInstr *UseMI = &*I;
1680 if (UseMI->getOpcode() == PPC::BCC) {
1681 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1682 unsigned PredCond = PPC::getPredicateCondition(Pred);
1683 // We ignore hint bits when checking for non-equality comparisons.
1684 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
1685 return false;
1686 } else if (UseMI->getOpcode() == PPC::ISEL ||
1687 UseMI->getOpcode() == PPC::ISEL8) {
1688 unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1689 if (SubIdx != PPC::sub_eq)
1690 return false;
1691 } else
1692 return false;
1696 MachineBasicBlock::iterator I = CmpInstr;
1698 // Scan forward to find the first use of the compare.
1699 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
1700 ++I) {
1701 bool FoundUse = false;
1702 for (MachineRegisterInfo::use_instr_iterator
1703 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
1704 J != JE; ++J)
1705 if (&*J == &*I) {
1706 FoundUse = true;
1707 break;
1710 if (FoundUse)
1711 break;
1714 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1715 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1717 // There are two possible candidates which can be changed to set CR[01].
1718 // One is MI, the other is a SUB instruction.
1719 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1720 MachineInstr *Sub = nullptr;
1721 if (SrcReg2 != 0)
1722 // MI is not a candidate for CMPrr.
1723 MI = nullptr;
1724 // FIXME: Conservatively refuse to convert an instruction which isn't in the
1725 // same BB as the comparison. This is to allow the check below to avoid calls
1726 // (and other explicit clobbers); instead we should really check for these
1727 // more explicitly (in at least a few predecessors).
1728 else if (MI->getParent() != CmpInstr.getParent())
1729 return false;
1730 else if (Value != 0) {
1731 // The record-form instructions set CR bit based on signed comparison
1732 // against 0. We try to convert a compare against 1 or -1 into a compare
1733 // against 0 to exploit record-form instructions. For example, we change
1734 // the condition "greater than -1" into "greater than or equal to 0"
1735 // and "less than 1" into "less than or equal to 0".
1737 // Since we optimize comparison based on a specific branch condition,
1738 // we don't optimize if condition code is used by more than once.
1739 if (equalityOnly || !MRI->hasOneUse(CRReg))
1740 return false;
1742 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
1743 if (UseMI->getOpcode() != PPC::BCC)
1744 return false;
1746 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1747 PPC::Predicate NewPred = Pred;
1748 unsigned PredCond = PPC::getPredicateCondition(Pred);
1749 unsigned PredHint = PPC::getPredicateHint(Pred);
1750 int16_t Immed = (int16_t)Value;
1752 // When modifying the condition in the predicate, we propagate hint bits
1753 // from the original predicate to the new one.
1754 if (Immed == -1 && PredCond == PPC::PRED_GT)
1755 // We convert "greater than -1" into "greater than or equal to 0",
1756 // since we are assuming signed comparison by !equalityOnly
1757 NewPred = PPC::getPredicate(PPC::PRED_GE, PredHint);
1758 else if (Immed == -1 && PredCond == PPC::PRED_LE)
1759 // We convert "less than or equal to -1" into "less than 0".
1760 NewPred = PPC::getPredicate(PPC::PRED_LT, PredHint);
1761 else if (Immed == 1 && PredCond == PPC::PRED_LT)
1762 // We convert "less than 1" into "less than or equal to 0".
1763 NewPred = PPC::getPredicate(PPC::PRED_LE, PredHint);
1764 else if (Immed == 1 && PredCond == PPC::PRED_GE)
1765 // We convert "greater than or equal to 1" into "greater than 0".
1766 NewPred = PPC::getPredicate(PPC::PRED_GT, PredHint);
1767 else
1768 return false;
1770 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1771 NewPred));
1774 // Search for Sub.
1775 const TargetRegisterInfo *TRI = &getRegisterInfo();
1776 --I;
1778 // Get ready to iterate backward from CmpInstr.
1779 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
1781 for (; I != E && !noSub; --I) {
1782 const MachineInstr &Instr = *I;
1783 unsigned IOpC = Instr.getOpcode();
1785 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
1786 Instr.readsRegister(PPC::CR0, TRI)))
1787 // This instruction modifies or uses the record condition register after
1788 // the one we want to change. While we could do this transformation, it
1789 // would likely not be profitable. This transformation removes one
1790 // instruction, and so even forcing RA to generate one move probably
1791 // makes it unprofitable.
1792 return false;
1794 // Check whether CmpInstr can be made redundant by the current instruction.
1795 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
1796 OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
1797 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
1798 ((Instr.getOperand(1).getReg() == SrcReg &&
1799 Instr.getOperand(2).getReg() == SrcReg2) ||
1800 (Instr.getOperand(1).getReg() == SrcReg2 &&
1801 Instr.getOperand(2).getReg() == SrcReg))) {
1802 Sub = &*I;
1803 break;
1806 if (I == B)
1807 // The 'and' is below the comparison instruction.
1808 return false;
1811 // Return false if no candidates exist.
1812 if (!MI && !Sub)
1813 return false;
1815 // The single candidate is called MI.
1816 if (!MI) MI = Sub;
1818 int NewOpC = -1;
1819 int MIOpC = MI->getOpcode();
1820 if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8 ||
1821 MIOpC == PPC::ANDISo || MIOpC == PPC::ANDISo8)
1822 NewOpC = MIOpC;
1823 else {
1824 NewOpC = PPC::getRecordFormOpcode(MIOpC);
1825 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
1826 NewOpC = MIOpC;
1829 // FIXME: On the non-embedded POWER architectures, only some of the record
1830 // forms are fast, and we should use only the fast ones.
1832 // The defining instruction has a record form (or is already a record
1833 // form). It is possible, however, that we'll need to reverse the condition
1834 // code of the users.
1835 if (NewOpC == -1)
1836 return false;
1838 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1839 // needs to be updated to be based on SUB. Push the condition code
1840 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the
1841 // condition code of these operands will be modified.
1842 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
1843 // comparison against 0, which may modify predicate.
1844 bool ShouldSwap = false;
1845 if (Sub && Value == 0) {
1846 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
1847 Sub->getOperand(2).getReg() == SrcReg;
1849 // The operands to subf are the opposite of sub, so only in the fixed-point
1850 // case, invert the order.
1851 ShouldSwap = !ShouldSwap;
1854 if (ShouldSwap)
1855 for (MachineRegisterInfo::use_instr_iterator
1856 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1857 I != IE; ++I) {
1858 MachineInstr *UseMI = &*I;
1859 if (UseMI->getOpcode() == PPC::BCC) {
1860 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
1861 unsigned PredCond = PPC::getPredicateCondition(Pred);
1862 assert((!equalityOnly ||
1863 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
1864 "Invalid predicate for equality-only optimization");
1865 (void)PredCond; // To suppress warning in release build.
1866 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1867 PPC::getSwappedPredicate(Pred)));
1868 } else if (UseMI->getOpcode() == PPC::ISEL ||
1869 UseMI->getOpcode() == PPC::ISEL8) {
1870 unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
1871 assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
1872 "Invalid CR bit for equality-only optimization");
1874 if (NewSubReg == PPC::sub_lt)
1875 NewSubReg = PPC::sub_gt;
1876 else if (NewSubReg == PPC::sub_gt)
1877 NewSubReg = PPC::sub_lt;
1879 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
1880 NewSubReg));
1881 } else // We need to abort on a user we don't understand.
1882 return false;
1884 assert(!(Value != 0 && ShouldSwap) &&
1885 "Non-zero immediate support and ShouldSwap"
1886 "may conflict in updating predicate");
1888 // Create a new virtual register to hold the value of the CR set by the
1889 // record-form instruction. If the instruction was not previously in
1890 // record form, then set the kill flag on the CR.
1891 CmpInstr.eraseFromParent();
1893 MachineBasicBlock::iterator MII = MI;
1894 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
1895 get(TargetOpcode::COPY), CRReg)
1896 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
1898 // Even if CR0 register were dead before, it is alive now since the
1899 // instruction we just built uses it.
1900 MI->clearRegisterDeads(PPC::CR0);
1902 if (MIOpC != NewOpC) {
1903 // We need to be careful here: we're replacing one instruction with
1904 // another, and we need to make sure that we get all of the right
1905 // implicit uses and defs. On the other hand, the caller may be holding
1906 // an iterator to this instruction, and so we can't delete it (this is
1907 // specifically the case if this is the instruction directly after the
1908 // compare).
1910 // Rotates are expensive instructions. If we're emitting a record-form
1911 // rotate that can just be an andi/andis, we should just emit that.
1912 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) {
1913 unsigned GPRRes = MI->getOperand(0).getReg();
1914 int64_t SH = MI->getOperand(2).getImm();
1915 int64_t MB = MI->getOperand(3).getImm();
1916 int64_t ME = MI->getOperand(4).getImm();
1917 // We can only do this if both the start and end of the mask are in the
1918 // same halfword.
1919 bool MBInLoHWord = MB >= 16;
1920 bool MEInLoHWord = ME >= 16;
1921 uint64_t Mask = ~0LLU;
1923 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) {
1924 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
1925 // The mask value needs to shift right 16 if we're emitting andis.
1926 Mask >>= MBInLoHWord ? 0 : 16;
1927 NewOpC = MIOpC == PPC::RLWINM ?
1928 (MBInLoHWord ? PPC::ANDIo : PPC::ANDISo) :
1929 (MBInLoHWord ? PPC::ANDIo8 :PPC::ANDISo8);
1930 } else if (MRI->use_empty(GPRRes) && (ME == 31) &&
1931 (ME - MB + 1 == SH) && (MB >= 16)) {
1932 // If we are rotating by the exact number of bits as are in the mask
1933 // and the mask is in the least significant bits of the register,
1934 // that's just an andis. (as long as the GPR result has no uses).
1935 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1);
1936 Mask >>= 16;
1937 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDISo :PPC::ANDISo8;
1939 // If we've set the mask, we can transform.
1940 if (Mask != ~0LLU) {
1941 MI->RemoveOperand(4);
1942 MI->RemoveOperand(3);
1943 MI->getOperand(2).setImm(Mask);
1944 NumRcRotatesConvertedToRcAnd++;
1946 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
1947 int64_t MB = MI->getOperand(3).getImm();
1948 if (MB >= 48) {
1949 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
1950 NewOpC = PPC::ANDIo8;
1951 MI->RemoveOperand(3);
1952 MI->getOperand(2).setImm(Mask);
1953 NumRcRotatesConvertedToRcAnd++;
1957 const MCInstrDesc &NewDesc = get(NewOpC);
1958 MI->setDesc(NewDesc);
1960 if (NewDesc.ImplicitDefs)
1961 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
1962 *ImpDefs; ++ImpDefs)
1963 if (!MI->definesRegister(*ImpDefs))
1964 MI->addOperand(*MI->getParent()->getParent(),
1965 MachineOperand::CreateReg(*ImpDefs, true, true));
1966 if (NewDesc.ImplicitUses)
1967 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
1968 *ImpUses; ++ImpUses)
1969 if (!MI->readsRegister(*ImpUses))
1970 MI->addOperand(*MI->getParent()->getParent(),
1971 MachineOperand::CreateReg(*ImpUses, false, true));
1973 assert(MI->definesRegister(PPC::CR0) &&
1974 "Record-form instruction does not define cr0?");
1976 // Modify the condition code of operands in OperandsToUpdate.
1977 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
1978 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
1979 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
1980 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
1982 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
1983 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
1985 return true;
1988 /// GetInstSize - Return the number of bytes of code the specified
1989 /// instruction may be. This returns the maximum number of bytes.
1991 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
1992 unsigned Opcode = MI.getOpcode();
1994 if (Opcode == PPC::INLINEASM) {
1995 const MachineFunction *MF = MI.getParent()->getParent();
1996 const char *AsmStr = MI.getOperand(0).getSymbolName();
1997 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1998 } else if (Opcode == TargetOpcode::STACKMAP) {
1999 StackMapOpers Opers(&MI);
2000 return Opers.getNumPatchBytes();
2001 } else if (Opcode == TargetOpcode::PATCHPOINT) {
2002 PatchPointOpers Opers(&MI);
2003 return Opers.getNumPatchBytes();
2004 } else {
2005 return get(Opcode).getSize();
2009 std::pair<unsigned, unsigned>
2010 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
2011 const unsigned Mask = PPCII::MO_ACCESS_MASK;
2012 return std::make_pair(TF & Mask, TF & ~Mask);
2015 ArrayRef<std::pair<unsigned, const char *>>
2016 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2017 using namespace PPCII;
2018 static const std::pair<unsigned, const char *> TargetFlags[] = {
2019 {MO_LO, "ppc-lo"},
2020 {MO_HA, "ppc-ha"},
2021 {MO_TPREL_LO, "ppc-tprel-lo"},
2022 {MO_TPREL_HA, "ppc-tprel-ha"},
2023 {MO_DTPREL_LO, "ppc-dtprel-lo"},
2024 {MO_TLSLD_LO, "ppc-tlsld-lo"},
2025 {MO_TOC_LO, "ppc-toc-lo"},
2026 {MO_TLS, "ppc-tls"}};
2027 return makeArrayRef(TargetFlags);
2030 ArrayRef<std::pair<unsigned, const char *>>
2031 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
2032 using namespace PPCII;
2033 static const std::pair<unsigned, const char *> TargetFlags[] = {
2034 {MO_PLT, "ppc-plt"},
2035 {MO_PIC_FLAG, "ppc-pic"},
2036 {MO_NLP_FLAG, "ppc-nlp"},
2037 {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}};
2038 return makeArrayRef(TargetFlags);
2041 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
2042 // The VSX versions have the advantage of a full 64-register target whereas
2043 // the FP ones have the advantage of lower latency and higher throughput. So
2044 // what we are after is using the faster instructions in low register pressure
2045 // situations and using the larger register file in high register pressure
2046 // situations.
2047 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
2048 unsigned UpperOpcode, LowerOpcode;
2049 switch (MI.getOpcode()) {
2050 case PPC::DFLOADf32:
2051 UpperOpcode = PPC::LXSSP;
2052 LowerOpcode = PPC::LFS;
2053 break;
2054 case PPC::DFLOADf64:
2055 UpperOpcode = PPC::LXSD;
2056 LowerOpcode = PPC::LFD;
2057 break;
2058 case PPC::DFSTOREf32:
2059 UpperOpcode = PPC::STXSSP;
2060 LowerOpcode = PPC::STFS;
2061 break;
2062 case PPC::DFSTOREf64:
2063 UpperOpcode = PPC::STXSD;
2064 LowerOpcode = PPC::STFD;
2065 break;
2066 case PPC::XFLOADf32:
2067 UpperOpcode = PPC::LXSSPX;
2068 LowerOpcode = PPC::LFSX;
2069 break;
2070 case PPC::XFLOADf64:
2071 UpperOpcode = PPC::LXSDX;
2072 LowerOpcode = PPC::LFDX;
2073 break;
2074 case PPC::XFSTOREf32:
2075 UpperOpcode = PPC::STXSSPX;
2076 LowerOpcode = PPC::STFSX;
2077 break;
2078 case PPC::XFSTOREf64:
2079 UpperOpcode = PPC::STXSDX;
2080 LowerOpcode = PPC::STFDX;
2081 break;
2082 case PPC::LIWAX:
2083 UpperOpcode = PPC::LXSIWAX;
2084 LowerOpcode = PPC::LFIWAX;
2085 break;
2086 case PPC::LIWZX:
2087 UpperOpcode = PPC::LXSIWZX;
2088 LowerOpcode = PPC::LFIWZX;
2089 break;
2090 case PPC::STIWX:
2091 UpperOpcode = PPC::STXSIWX;
2092 LowerOpcode = PPC::STFIWX;
2093 break;
2094 default:
2095 llvm_unreachable("Unknown Operation!");
2098 unsigned TargetReg = MI.getOperand(0).getReg();
2099 unsigned Opcode;
2100 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
2101 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
2102 Opcode = LowerOpcode;
2103 else
2104 Opcode = UpperOpcode;
2105 MI.setDesc(get(Opcode));
2106 return true;
2109 static bool isAnImmediateOperand(const MachineOperand &MO) {
2110 return MO.isCPI() || MO.isGlobal() || MO.isImm();
2113 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
2114 auto &MBB = *MI.getParent();
2115 auto DL = MI.getDebugLoc();
2117 switch (MI.getOpcode()) {
2118 case TargetOpcode::LOAD_STACK_GUARD: {
2119 assert(Subtarget.isTargetLinux() &&
2120 "Only Linux target is expected to contain LOAD_STACK_GUARD");
2121 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
2122 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
2123 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
2124 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2125 .addImm(Offset)
2126 .addReg(Reg);
2127 return true;
2129 case PPC::DFLOADf32:
2130 case PPC::DFLOADf64:
2131 case PPC::DFSTOREf32:
2132 case PPC::DFSTOREf64: {
2133 assert(Subtarget.hasP9Vector() &&
2134 "Invalid D-Form Pseudo-ops on Pre-P9 target.");
2135 assert(MI.getOperand(2).isReg() &&
2136 isAnImmediateOperand(MI.getOperand(1)) &&
2137 "D-form op must have register and immediate operands");
2138 return expandVSXMemPseudo(MI);
2140 case PPC::XFLOADf32:
2141 case PPC::XFSTOREf32:
2142 case PPC::LIWAX:
2143 case PPC::LIWZX:
2144 case PPC::STIWX: {
2145 assert(Subtarget.hasP8Vector() &&
2146 "Invalid X-Form Pseudo-ops on Pre-P8 target.");
2147 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2148 "X-form op must have register and register operands");
2149 return expandVSXMemPseudo(MI);
2151 case PPC::XFLOADf64:
2152 case PPC::XFSTOREf64: {
2153 assert(Subtarget.hasVSX() &&
2154 "Invalid X-Form Pseudo-ops on target that has no VSX.");
2155 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2156 "X-form op must have register and register operands");
2157 return expandVSXMemPseudo(MI);
2159 case PPC::SPILLTOVSR_LD: {
2160 unsigned TargetReg = MI.getOperand(0).getReg();
2161 if (PPC::VSFRCRegClass.contains(TargetReg)) {
2162 MI.setDesc(get(PPC::DFLOADf64));
2163 return expandPostRAPseudo(MI);
2165 else
2166 MI.setDesc(get(PPC::LD));
2167 return true;
2169 case PPC::SPILLTOVSR_ST: {
2170 unsigned SrcReg = MI.getOperand(0).getReg();
2171 if (PPC::VSFRCRegClass.contains(SrcReg)) {
2172 NumStoreSPILLVSRRCAsVec++;
2173 MI.setDesc(get(PPC::DFSTOREf64));
2174 return expandPostRAPseudo(MI);
2175 } else {
2176 NumStoreSPILLVSRRCAsGpr++;
2177 MI.setDesc(get(PPC::STD));
2179 return true;
2181 case PPC::SPILLTOVSR_LDX: {
2182 unsigned TargetReg = MI.getOperand(0).getReg();
2183 if (PPC::VSFRCRegClass.contains(TargetReg))
2184 MI.setDesc(get(PPC::LXSDX));
2185 else
2186 MI.setDesc(get(PPC::LDX));
2187 return true;
2189 case PPC::SPILLTOVSR_STX: {
2190 unsigned SrcReg = MI.getOperand(0).getReg();
2191 if (PPC::VSFRCRegClass.contains(SrcReg)) {
2192 NumStoreSPILLVSRRCAsVec++;
2193 MI.setDesc(get(PPC::STXSDX));
2194 } else {
2195 NumStoreSPILLVSRRCAsGpr++;
2196 MI.setDesc(get(PPC::STDX));
2198 return true;
2201 case PPC::CFENCE8: {
2202 auto Val = MI.getOperand(0).getReg();
2203 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val);
2204 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
2205 .addImm(PPC::PRED_NE_MINUS)
2206 .addReg(PPC::CR7)
2207 .addImm(1);
2208 MI.setDesc(get(PPC::ISYNC));
2209 MI.RemoveOperand(0);
2210 return true;
2213 return false;
2216 // Essentially a compile-time implementation of a compare->isel sequence.
2217 // It takes two constants to compare, along with the true/false registers
2218 // and the comparison type (as a subreg to a CR field) and returns one
2219 // of the true/false registers, depending on the comparison results.
2220 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
2221 unsigned TrueReg, unsigned FalseReg,
2222 unsigned CRSubReg) {
2223 // Signed comparisons. The immediates are assumed to be sign-extended.
2224 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
2225 switch (CRSubReg) {
2226 default: llvm_unreachable("Unknown integer comparison type.");
2227 case PPC::sub_lt:
2228 return Imm1 < Imm2 ? TrueReg : FalseReg;
2229 case PPC::sub_gt:
2230 return Imm1 > Imm2 ? TrueReg : FalseReg;
2231 case PPC::sub_eq:
2232 return Imm1 == Imm2 ? TrueReg : FalseReg;
2235 // Unsigned comparisons.
2236 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
2237 switch (CRSubReg) {
2238 default: llvm_unreachable("Unknown integer comparison type.");
2239 case PPC::sub_lt:
2240 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
2241 case PPC::sub_gt:
2242 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
2243 case PPC::sub_eq:
2244 return Imm1 == Imm2 ? TrueReg : FalseReg;
2247 return PPC::NoRegister;
2250 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI,
2251 unsigned OpNo,
2252 int64_t Imm) const {
2253 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG");
2254 // Replace the REG with the Immediate.
2255 unsigned InUseReg = MI.getOperand(OpNo).getReg();
2256 MI.getOperand(OpNo).ChangeToImmediate(Imm);
2258 if (empty(MI.implicit_operands()))
2259 return;
2261 // We need to make sure that the MI didn't have any implicit use
2262 // of this REG any more.
2263 const TargetRegisterInfo *TRI = &getRegisterInfo();
2264 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI);
2265 if (UseOpIdx >= 0) {
2266 MachineOperand &MO = MI.getOperand(UseOpIdx);
2267 if (MO.isImplicit())
2268 // The operands must always be in the following order:
2269 // - explicit reg defs,
2270 // - other explicit operands (reg uses, immediates, etc.),
2271 // - implicit reg defs
2272 // - implicit reg uses
2273 // Therefore, removing the implicit operand won't change the explicit
2274 // operands layout.
2275 MI.RemoveOperand(UseOpIdx);
2279 // Replace an instruction with one that materializes a constant (and sets
2280 // CR0 if the original instruction was a record-form instruction).
2281 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
2282 const LoadImmediateInfo &LII) const {
2283 // Remove existing operands.
2284 int OperandToKeep = LII.SetCR ? 1 : 0;
2285 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
2286 MI.RemoveOperand(i);
2288 // Replace the instruction.
2289 if (LII.SetCR) {
2290 MI.setDesc(get(LII.Is64Bit ? PPC::ANDIo8 : PPC::ANDIo));
2291 // Set the immediate.
2292 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2293 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
2294 return;
2296 else
2297 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));
2299 // Set the immediate.
2300 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2301 .addImm(LII.Imm);
2304 MachineInstr *PPCInstrInfo::getForwardingDefMI(
2305 MachineInstr &MI,
2306 unsigned &OpNoForForwarding,
2307 bool &SeenIntermediateUse) const {
2308 OpNoForForwarding = ~0U;
2309 MachineInstr *DefMI = nullptr;
2310 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
2311 const TargetRegisterInfo *TRI = &getRegisterInfo();
2312 // If we're in SSA, get the defs through the MRI. Otherwise, only look
2313 // within the basic block to see if the register is defined using an LI/LI8.
2314 if (MRI->isSSA()) {
2315 for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2316 if (!MI.getOperand(i).isReg())
2317 continue;
2318 unsigned Reg = MI.getOperand(i).getReg();
2319 if (!TargetRegisterInfo::isVirtualRegister(Reg))
2320 continue;
2321 unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI);
2322 if (TargetRegisterInfo::isVirtualRegister(TrueReg)) {
2323 DefMI = MRI->getVRegDef(TrueReg);
2324 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) {
2325 OpNoForForwarding = i;
2326 break;
2330 } else {
2331 // Looking back through the definition for each operand could be expensive,
2332 // so exit early if this isn't an instruction that either has an immediate
2333 // form or is already an immediate form that we can handle.
2334 ImmInstrInfo III;
2335 unsigned Opc = MI.getOpcode();
2336 bool ConvertibleImmForm =
2337 Opc == PPC::CMPWI || Opc == PPC::CMPLWI ||
2338 Opc == PPC::CMPDI || Opc == PPC::CMPLDI ||
2339 Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
2340 Opc == PPC::ORI || Opc == PPC::ORI8 ||
2341 Opc == PPC::XORI || Opc == PPC::XORI8 ||
2342 Opc == PPC::RLDICL || Opc == PPC::RLDICLo ||
2343 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
2344 Opc == PPC::RLWINM || Opc == PPC::RLWINMo ||
2345 Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o;
2346 if (!instrHasImmForm(MI, III, true) && !ConvertibleImmForm)
2347 return nullptr;
2349 // Don't convert or %X, %Y, %Y since that's just a register move.
2350 if ((Opc == PPC::OR || Opc == PPC::OR8) &&
2351 MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
2352 return nullptr;
2353 for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2354 MachineOperand &MO = MI.getOperand(i);
2355 SeenIntermediateUse = false;
2356 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
2357 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
2358 It++;
2359 unsigned Reg = MI.getOperand(i).getReg();
2361 // Is this register defined by some form of add-immediate (including
2362 // load-immediate) within this basic block?
2363 for ( ; It != E; ++It) {
2364 if (It->modifiesRegister(Reg, &getRegisterInfo())) {
2365 switch (It->getOpcode()) {
2366 default: break;
2367 case PPC::LI:
2368 case PPC::LI8:
2369 case PPC::ADDItocL:
2370 case PPC::ADDI:
2371 case PPC::ADDI8:
2372 OpNoForForwarding = i;
2373 return &*It;
2375 break;
2376 } else if (It->readsRegister(Reg, &getRegisterInfo()))
2377 // If we see another use of this reg between the def and the MI,
2378 // we want to flat it so the def isn't deleted.
2379 SeenIntermediateUse = true;
2384 return OpNoForForwarding == ~0U ? nullptr : DefMI;
2387 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const {
2388 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
2389 // Power 8
2390 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
2391 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX,
2392 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
2393 PPC::SPILLTOVSR_ST, PPC::EVSTDD, PPC::SPESTW},
2394 // Power 9
2395 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
2396 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32,
2397 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
2398 PPC::SPILLTOVSR_ST}};
2400 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
2403 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const {
2404 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
2405 // Power 8
2406 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
2407 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX,
2408 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
2409 PPC::SPILLTOVSR_LD, PPC::EVLDD, PPC::SPELWZ},
2410 // Power 9
2411 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
2412 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, PPC::DFLOADf32,
2413 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
2414 PPC::SPILLTOVSR_LD}};
2416 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
2419 // If this instruction has an immediate form and one of its operands is a
2420 // result of a load-immediate or an add-immediate, convert it to
2421 // the immediate form if the constant is in range.
2422 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
2423 MachineInstr **KilledDef) const {
2424 MachineFunction *MF = MI.getParent()->getParent();
2425 MachineRegisterInfo *MRI = &MF->getRegInfo();
2426 bool PostRA = !MRI->isSSA();
2427 bool SeenIntermediateUse = true;
2428 unsigned ForwardingOperand = ~0U;
2429 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand,
2430 SeenIntermediateUse);
2431 if (!DefMI)
2432 return false;
2433 assert(ForwardingOperand < MI.getNumOperands() &&
2434 "The forwarding operand needs to be valid at this point");
2435 bool KillFwdDefMI = !SeenIntermediateUse &&
2436 MI.getOperand(ForwardingOperand).isKill();
2437 if (KilledDef && KillFwdDefMI)
2438 *KilledDef = DefMI;
2440 ImmInstrInfo III;
2441 bool HasImmForm = instrHasImmForm(MI, III, PostRA);
2442 // If this is a reg+reg instruction that has a reg+imm form,
2443 // and one of the operands is produced by an add-immediate,
2444 // try to convert it.
2445 if (HasImmForm && transformToImmFormFedByAdd(MI, III, ForwardingOperand,
2446 *DefMI, KillFwdDefMI))
2447 return true;
2449 if ((DefMI->getOpcode() != PPC::LI && DefMI->getOpcode() != PPC::LI8) ||
2450 !DefMI->getOperand(1).isImm())
2451 return false;
2453 int64_t Immediate = DefMI->getOperand(1).getImm();
2454 // Sign-extend to 64-bits.
2455 int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
2456 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
2458 // If this is a reg+reg instruction that has a reg+imm form,
2459 // and one of the operands is produced by LI, convert it now.
2460 if (HasImmForm)
2461 return transformToImmFormFedByLI(MI, III, ForwardingOperand, SExtImm);
2463 bool ReplaceWithLI = false;
2464 bool Is64BitLI = false;
2465 int64_t NewImm = 0;
2466 bool SetCR = false;
2467 unsigned Opc = MI.getOpcode();
2468 switch (Opc) {
2469 default: return false;
2471 // FIXME: Any branches conditional on such a comparison can be made
2472 // unconditional. At this time, this happens too infrequently to be worth
2473 // the implementation effort, but if that ever changes, we could convert
2474 // such a pattern here.
2475 case PPC::CMPWI:
2476 case PPC::CMPLWI:
2477 case PPC::CMPDI:
2478 case PPC::CMPLDI: {
2479 // Doing this post-RA would require dataflow analysis to reliably find uses
2480 // of the CR register set by the compare.
2481 if (PostRA)
2482 return false;
2483 // If a compare-immediate is fed by an immediate and is itself an input of
2484 // an ISEL (the most common case) into a COPY of the correct register.
2485 bool Changed = false;
2486 unsigned DefReg = MI.getOperand(0).getReg();
2487 int64_t Comparand = MI.getOperand(2).getImm();
2488 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ?
2489 (Comparand | 0xFFFFFFFFFFFF0000) : Comparand;
2491 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
2492 unsigned UseOpc = CompareUseMI.getOpcode();
2493 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
2494 continue;
2495 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
2496 unsigned TrueReg = CompareUseMI.getOperand(1).getReg();
2497 unsigned FalseReg = CompareUseMI.getOperand(2).getReg();
2498 unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg,
2499 FalseReg, CRSubReg);
2500 if (RegToCopy == PPC::NoRegister)
2501 continue;
2502 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
2503 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
2504 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
2505 replaceInstrOperandWithImm(CompareUseMI, 1, 0);
2506 CompareUseMI.RemoveOperand(3);
2507 CompareUseMI.RemoveOperand(2);
2508 continue;
2510 LLVM_DEBUG(
2511 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
2512 LLVM_DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump());
2513 LLVM_DEBUG(dbgs() << "Is converted to:\n");
2514 // Convert to copy and remove unneeded operands.
2515 CompareUseMI.setDesc(get(PPC::COPY));
2516 CompareUseMI.RemoveOperand(3);
2517 CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1);
2518 CmpIselsConverted++;
2519 Changed = true;
2520 LLVM_DEBUG(CompareUseMI.dump());
2522 if (Changed)
2523 return true;
2524 // This may end up incremented multiple times since this function is called
2525 // during a fixed-point transformation, but it is only meant to indicate the
2526 // presence of this opportunity.
2527 MissedConvertibleImmediateInstrs++;
2528 return false;
2531 // Immediate forms - may simply be convertable to an LI.
2532 case PPC::ADDI:
2533 case PPC::ADDI8: {
2534 // Does the sum fit in a 16-bit signed field?
2535 int64_t Addend = MI.getOperand(2).getImm();
2536 if (isInt<16>(Addend + SExtImm)) {
2537 ReplaceWithLI = true;
2538 Is64BitLI = Opc == PPC::ADDI8;
2539 NewImm = Addend + SExtImm;
2540 break;
2542 return false;
2544 case PPC::RLDICL:
2545 case PPC::RLDICLo:
2546 case PPC::RLDICL_32:
2547 case PPC::RLDICL_32_64: {
2548 // Use APInt's rotate function.
2549 int64_t SH = MI.getOperand(2).getImm();
2550 int64_t MB = MI.getOperand(3).getImm();
2551 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICLo) ?
2552 64 : 32, SExtImm, true);
2553 InVal = InVal.rotl(SH);
2554 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
2555 InVal &= Mask;
2556 // Can't replace negative values with an LI as that will sign-extend
2557 // and not clear the left bits. If we're setting the CR bit, we will use
2558 // ANDIo which won't sign extend, so that's safe.
2559 if (isUInt<15>(InVal.getSExtValue()) ||
2560 (Opc == PPC::RLDICLo && isUInt<16>(InVal.getSExtValue()))) {
2561 ReplaceWithLI = true;
2562 Is64BitLI = Opc != PPC::RLDICL_32;
2563 NewImm = InVal.getSExtValue();
2564 SetCR = Opc == PPC::RLDICLo;
2565 break;
2567 return false;
2569 case PPC::RLWINM:
2570 case PPC::RLWINM8:
2571 case PPC::RLWINMo:
2572 case PPC::RLWINM8o: {
2573 int64_t SH = MI.getOperand(2).getImm();
2574 int64_t MB = MI.getOperand(3).getImm();
2575 int64_t ME = MI.getOperand(4).getImm();
2576 APInt InVal(32, SExtImm, true);
2577 InVal = InVal.rotl(SH);
2578 // Set the bits ( MB + 32 ) to ( ME + 32 ).
2579 uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
2580 InVal &= Mask;
2581 // Can't replace negative values with an LI as that will sign-extend
2582 // and not clear the left bits. If we're setting the CR bit, we will use
2583 // ANDIo which won't sign extend, so that's safe.
2584 bool ValueFits = isUInt<15>(InVal.getSExtValue());
2585 ValueFits |= ((Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o) &&
2586 isUInt<16>(InVal.getSExtValue()));
2587 if (ValueFits) {
2588 ReplaceWithLI = true;
2589 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o;
2590 NewImm = InVal.getSExtValue();
2591 SetCR = Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o;
2592 break;
2594 return false;
2596 case PPC::ORI:
2597 case PPC::ORI8:
2598 case PPC::XORI:
2599 case PPC::XORI8: {
2600 int64_t LogicalImm = MI.getOperand(2).getImm();
2601 int64_t Result = 0;
2602 if (Opc == PPC::ORI || Opc == PPC::ORI8)
2603 Result = LogicalImm | SExtImm;
2604 else
2605 Result = LogicalImm ^ SExtImm;
2606 if (isInt<16>(Result)) {
2607 ReplaceWithLI = true;
2608 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
2609 NewImm = Result;
2610 break;
2612 return false;
2616 if (ReplaceWithLI) {
2617 // We need to be careful with CR-setting instructions we're replacing.
2618 if (SetCR) {
2619 // We don't know anything about uses when we're out of SSA, so only
2620 // replace if the new immediate will be reproduced.
2621 bool ImmChanged = (SExtImm & NewImm) != NewImm;
2622 if (PostRA && ImmChanged)
2623 return false;
2625 if (!PostRA) {
2626 // If the defining load-immediate has no other uses, we can just replace
2627 // the immediate with the new immediate.
2628 if (MRI->hasOneUse(DefMI->getOperand(0).getReg()))
2629 DefMI->getOperand(1).setImm(NewImm);
2631 // If we're not using the GPR result of the CR-setting instruction, we
2632 // just need to and with zero/non-zero depending on the new immediate.
2633 else if (MRI->use_empty(MI.getOperand(0).getReg())) {
2634 if (NewImm) {
2635 assert(Immediate && "Transformation converted zero to non-zero?");
2636 NewImm = Immediate;
2639 else if (ImmChanged)
2640 return false;
2644 LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
2645 LLVM_DEBUG(MI.dump());
2646 LLVM_DEBUG(dbgs() << "Fed by:\n");
2647 LLVM_DEBUG(DefMI->dump());
2648 LoadImmediateInfo LII;
2649 LII.Imm = NewImm;
2650 LII.Is64Bit = Is64BitLI;
2651 LII.SetCR = SetCR;
2652 // If we're setting the CR, the original load-immediate must be kept (as an
2653 // operand to ANDIo/ANDI8o).
2654 if (KilledDef && SetCR)
2655 *KilledDef = nullptr;
2656 replaceInstrWithLI(MI, LII);
2657 LLVM_DEBUG(dbgs() << "With:\n");
2658 LLVM_DEBUG(MI.dump());
2659 return true;
2661 return false;
2664 static bool isVFReg(unsigned Reg) {
2665 return PPC::VFRCRegClass.contains(Reg);
2668 bool PPCInstrInfo::instrHasImmForm(const MachineInstr &MI,
2669 ImmInstrInfo &III, bool PostRA) const {
2670 unsigned Opc = MI.getOpcode();
2671 // The vast majority of the instructions would need their operand 2 replaced
2672 // with an immediate when switching to the reg+imm form. A marked exception
2673 // are the update form loads/stores for which a constant operand 2 would need
2674 // to turn into a displacement and move operand 1 to the operand 2 position.
2675 III.ImmOpNo = 2;
2676 III.OpNoForForwarding = 2;
2677 III.ImmWidth = 16;
2678 III.ImmMustBeMultipleOf = 1;
2679 III.TruncateImmTo = 0;
2680 III.IsSummingOperands = false;
2681 switch (Opc) {
2682 default: return false;
2683 case PPC::ADD4:
2684 case PPC::ADD8:
2685 III.SignedImm = true;
2686 III.ZeroIsSpecialOrig = 0;
2687 III.ZeroIsSpecialNew = 1;
2688 III.IsCommutative = true;
2689 III.IsSummingOperands = true;
2690 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
2691 break;
2692 case PPC::ADDC:
2693 case PPC::ADDC8:
2694 III.SignedImm = true;
2695 III.ZeroIsSpecialOrig = 0;
2696 III.ZeroIsSpecialNew = 0;
2697 III.IsCommutative = true;
2698 III.IsSummingOperands = true;
2699 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
2700 break;
2701 case PPC::ADDCo:
2702 III.SignedImm = true;
2703 III.ZeroIsSpecialOrig = 0;
2704 III.ZeroIsSpecialNew = 0;
2705 III.IsCommutative = true;
2706 III.IsSummingOperands = true;
2707 III.ImmOpcode = PPC::ADDICo;
2708 break;
2709 case PPC::SUBFC:
2710 case PPC::SUBFC8:
2711 III.SignedImm = true;
2712 III.ZeroIsSpecialOrig = 0;
2713 III.ZeroIsSpecialNew = 0;
2714 III.IsCommutative = false;
2715 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
2716 break;
2717 case PPC::CMPW:
2718 case PPC::CMPD:
2719 III.SignedImm = true;
2720 III.ZeroIsSpecialOrig = 0;
2721 III.ZeroIsSpecialNew = 0;
2722 III.IsCommutative = false;
2723 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
2724 break;
2725 case PPC::CMPLW:
2726 case PPC::CMPLD:
2727 III.SignedImm = false;
2728 III.ZeroIsSpecialOrig = 0;
2729 III.ZeroIsSpecialNew = 0;
2730 III.IsCommutative = false;
2731 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
2732 break;
2733 case PPC::ANDo:
2734 case PPC::AND8o:
2735 case PPC::OR:
2736 case PPC::OR8:
2737 case PPC::XOR:
2738 case PPC::XOR8:
2739 III.SignedImm = false;
2740 III.ZeroIsSpecialOrig = 0;
2741 III.ZeroIsSpecialNew = 0;
2742 III.IsCommutative = true;
2743 switch(Opc) {
2744 default: llvm_unreachable("Unknown opcode");
2745 case PPC::ANDo: III.ImmOpcode = PPC::ANDIo; break;
2746 case PPC::AND8o: III.ImmOpcode = PPC::ANDIo8; break;
2747 case PPC::OR: III.ImmOpcode = PPC::ORI; break;
2748 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
2749 case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
2750 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
2752 break;
2753 case PPC::RLWNM:
2754 case PPC::RLWNM8:
2755 case PPC::RLWNMo:
2756 case PPC::RLWNM8o:
2757 case PPC::SLW:
2758 case PPC::SLW8:
2759 case PPC::SLWo:
2760 case PPC::SLW8o:
2761 case PPC::SRW:
2762 case PPC::SRW8:
2763 case PPC::SRWo:
2764 case PPC::SRW8o:
2765 case PPC::SRAW:
2766 case PPC::SRAWo:
2767 III.SignedImm = false;
2768 III.ZeroIsSpecialOrig = 0;
2769 III.ZeroIsSpecialNew = 0;
2770 III.IsCommutative = false;
2771 // This isn't actually true, but the instructions ignore any of the
2772 // upper bits, so any immediate loaded with an LI is acceptable.
2773 // This does not apply to shift right algebraic because a value
2774 // out of range will produce a -1/0.
2775 III.ImmWidth = 16;
2776 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 ||
2777 Opc == PPC::RLWNMo || Opc == PPC::RLWNM8o)
2778 III.TruncateImmTo = 5;
2779 else
2780 III.TruncateImmTo = 6;
2781 switch(Opc) {
2782 default: llvm_unreachable("Unknown opcode");
2783 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
2784 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
2785 case PPC::RLWNMo: III.ImmOpcode = PPC::RLWINMo; break;
2786 case PPC::RLWNM8o: III.ImmOpcode = PPC::RLWINM8o; break;
2787 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
2788 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
2789 case PPC::SLWo: III.ImmOpcode = PPC::RLWINMo; break;
2790 case PPC::SLW8o: III.ImmOpcode = PPC::RLWINM8o; break;
2791 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
2792 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
2793 case PPC::SRWo: III.ImmOpcode = PPC::RLWINMo; break;
2794 case PPC::SRW8o: III.ImmOpcode = PPC::RLWINM8o; break;
2795 case PPC::SRAW:
2796 III.ImmWidth = 5;
2797 III.TruncateImmTo = 0;
2798 III.ImmOpcode = PPC::SRAWI;
2799 break;
2800 case PPC::SRAWo:
2801 III.ImmWidth = 5;
2802 III.TruncateImmTo = 0;
2803 III.ImmOpcode = PPC::SRAWIo;
2804 break;
2806 break;
2807 case PPC::RLDCL:
2808 case PPC::RLDCLo:
2809 case PPC::RLDCR:
2810 case PPC::RLDCRo:
2811 case PPC::SLD:
2812 case PPC::SLDo:
2813 case PPC::SRD:
2814 case PPC::SRDo:
2815 case PPC::SRAD:
2816 case PPC::SRADo:
2817 III.SignedImm = false;
2818 III.ZeroIsSpecialOrig = 0;
2819 III.ZeroIsSpecialNew = 0;
2820 III.IsCommutative = false;
2821 // This isn't actually true, but the instructions ignore any of the
2822 // upper bits, so any immediate loaded with an LI is acceptable.
2823 // This does not apply to shift right algebraic because a value
2824 // out of range will produce a -1/0.
2825 III.ImmWidth = 16;
2826 if (Opc == PPC::RLDCL || Opc == PPC::RLDCLo ||
2827 Opc == PPC::RLDCR || Opc == PPC::RLDCRo)
2828 III.TruncateImmTo = 6;
2829 else
2830 III.TruncateImmTo = 7;
2831 switch(Opc) {
2832 default: llvm_unreachable("Unknown opcode");
2833 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
2834 case PPC::RLDCLo: III.ImmOpcode = PPC::RLDICLo; break;
2835 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
2836 case PPC::RLDCRo: III.ImmOpcode = PPC::RLDICRo; break;
2837 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
2838 case PPC::SLDo: III.ImmOpcode = PPC::RLDICRo; break;
2839 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
2840 case PPC::SRDo: III.ImmOpcode = PPC::RLDICLo; break;
2841 case PPC::SRAD:
2842 III.ImmWidth = 6;
2843 III.TruncateImmTo = 0;
2844 III.ImmOpcode = PPC::SRADI;
2845 break;
2846 case PPC::SRADo:
2847 III.ImmWidth = 6;
2848 III.TruncateImmTo = 0;
2849 III.ImmOpcode = PPC::SRADIo;
2850 break;
2852 break;
2853 // Loads and stores:
2854 case PPC::LBZX:
2855 case PPC::LBZX8:
2856 case PPC::LHZX:
2857 case PPC::LHZX8:
2858 case PPC::LHAX:
2859 case PPC::LHAX8:
2860 case PPC::LWZX:
2861 case PPC::LWZX8:
2862 case PPC::LWAX:
2863 case PPC::LDX:
2864 case PPC::LFSX:
2865 case PPC::LFDX:
2866 case PPC::STBX:
2867 case PPC::STBX8:
2868 case PPC::STHX:
2869 case PPC::STHX8:
2870 case PPC::STWX:
2871 case PPC::STWX8:
2872 case PPC::STDX:
2873 case PPC::STFSX:
2874 case PPC::STFDX:
2875 III.SignedImm = true;
2876 III.ZeroIsSpecialOrig = 1;
2877 III.ZeroIsSpecialNew = 2;
2878 III.IsCommutative = true;
2879 III.IsSummingOperands = true;
2880 III.ImmOpNo = 1;
2881 III.OpNoForForwarding = 2;
2882 switch(Opc) {
2883 default: llvm_unreachable("Unknown opcode");
2884 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
2885 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
2886 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
2887 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
2888 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
2889 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
2890 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
2891 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
2892 case PPC::LWAX:
2893 III.ImmOpcode = PPC::LWA;
2894 III.ImmMustBeMultipleOf = 4;
2895 break;
2896 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
2897 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
2898 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
2899 case PPC::STBX: III.ImmOpcode = PPC::STB; break;
2900 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
2901 case PPC::STHX: III.ImmOpcode = PPC::STH; break;
2902 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
2903 case PPC::STWX: III.ImmOpcode = PPC::STW; break;
2904 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
2905 case PPC::STDX:
2906 III.ImmOpcode = PPC::STD;
2907 III.ImmMustBeMultipleOf = 4;
2908 break;
2909 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
2910 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
2912 break;
2913 case PPC::LBZUX:
2914 case PPC::LBZUX8:
2915 case PPC::LHZUX:
2916 case PPC::LHZUX8:
2917 case PPC::LHAUX:
2918 case PPC::LHAUX8:
2919 case PPC::LWZUX:
2920 case PPC::LWZUX8:
2921 case PPC::LDUX:
2922 case PPC::LFSUX:
2923 case PPC::LFDUX:
2924 case PPC::STBUX:
2925 case PPC::STBUX8:
2926 case PPC::STHUX:
2927 case PPC::STHUX8:
2928 case PPC::STWUX:
2929 case PPC::STWUX8:
2930 case PPC::STDUX:
2931 case PPC::STFSUX:
2932 case PPC::STFDUX:
2933 III.SignedImm = true;
2934 III.ZeroIsSpecialOrig = 2;
2935 III.ZeroIsSpecialNew = 3;
2936 III.IsCommutative = false;
2937 III.IsSummingOperands = true;
2938 III.ImmOpNo = 2;
2939 III.OpNoForForwarding = 3;
2940 switch(Opc) {
2941 default: llvm_unreachable("Unknown opcode");
2942 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
2943 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
2944 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
2945 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
2946 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
2947 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
2948 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
2949 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
2950 case PPC::LDUX:
2951 III.ImmOpcode = PPC::LDU;
2952 III.ImmMustBeMultipleOf = 4;
2953 break;
2954 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
2955 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
2956 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
2957 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
2958 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
2959 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
2960 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
2961 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
2962 case PPC::STDUX:
2963 III.ImmOpcode = PPC::STDU;
2964 III.ImmMustBeMultipleOf = 4;
2965 break;
2966 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
2967 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
2969 break;
2970 // Power9 and up only. For some of these, the X-Form version has access to all
2971 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those
2972 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded
2973 // into or stored from is one of the VR registers.
2974 case PPC::LXVX:
2975 case PPC::LXSSPX:
2976 case PPC::LXSDX:
2977 case PPC::STXVX:
2978 case PPC::STXSSPX:
2979 case PPC::STXSDX:
2980 case PPC::XFLOADf32:
2981 case PPC::XFLOADf64:
2982 case PPC::XFSTOREf32:
2983 case PPC::XFSTOREf64:
2984 if (!Subtarget.hasP9Vector())
2985 return false;
2986 III.SignedImm = true;
2987 III.ZeroIsSpecialOrig = 1;
2988 III.ZeroIsSpecialNew = 2;
2989 III.IsCommutative = true;
2990 III.IsSummingOperands = true;
2991 III.ImmOpNo = 1;
2992 III.OpNoForForwarding = 2;
2993 III.ImmMustBeMultipleOf = 4;
2994 switch(Opc) {
2995 default: llvm_unreachable("Unknown opcode");
2996 case PPC::LXVX:
2997 III.ImmOpcode = PPC::LXV;
2998 III.ImmMustBeMultipleOf = 16;
2999 break;
3000 case PPC::LXSSPX:
3001 if (PostRA) {
3002 if (isVFReg(MI.getOperand(0).getReg()))
3003 III.ImmOpcode = PPC::LXSSP;
3004 else {
3005 III.ImmOpcode = PPC::LFS;
3006 III.ImmMustBeMultipleOf = 1;
3008 break;
3010 LLVM_FALLTHROUGH;
3011 case PPC::XFLOADf32:
3012 III.ImmOpcode = PPC::DFLOADf32;
3013 break;
3014 case PPC::LXSDX:
3015 if (PostRA) {
3016 if (isVFReg(MI.getOperand(0).getReg()))
3017 III.ImmOpcode = PPC::LXSD;
3018 else {
3019 III.ImmOpcode = PPC::LFD;
3020 III.ImmMustBeMultipleOf = 1;
3022 break;
3024 LLVM_FALLTHROUGH;
3025 case PPC::XFLOADf64:
3026 III.ImmOpcode = PPC::DFLOADf64;
3027 break;
3028 case PPC::STXVX:
3029 III.ImmOpcode = PPC::STXV;
3030 III.ImmMustBeMultipleOf = 16;
3031 break;
3032 case PPC::STXSSPX:
3033 if (PostRA) {
3034 if (isVFReg(MI.getOperand(0).getReg()))
3035 III.ImmOpcode = PPC::STXSSP;
3036 else {
3037 III.ImmOpcode = PPC::STFS;
3038 III.ImmMustBeMultipleOf = 1;
3040 break;
3042 LLVM_FALLTHROUGH;
3043 case PPC::XFSTOREf32:
3044 III.ImmOpcode = PPC::DFSTOREf32;
3045 break;
3046 case PPC::STXSDX:
3047 if (PostRA) {
3048 if (isVFReg(MI.getOperand(0).getReg()))
3049 III.ImmOpcode = PPC::STXSD;
3050 else {
3051 III.ImmOpcode = PPC::STFD;
3052 III.ImmMustBeMultipleOf = 1;
3054 break;
3056 LLVM_FALLTHROUGH;
3057 case PPC::XFSTOREf64:
3058 III.ImmOpcode = PPC::DFSTOREf64;
3059 break;
3061 break;
3063 return true;
3066 // Utility function for swaping two arbitrary operands of an instruction.
3067 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
3068 assert(Op1 != Op2 && "Cannot swap operand with itself.");
3070 unsigned MaxOp = std::max(Op1, Op2);
3071 unsigned MinOp = std::min(Op1, Op2);
3072 MachineOperand MOp1 = MI.getOperand(MinOp);
3073 MachineOperand MOp2 = MI.getOperand(MaxOp);
3074 MI.RemoveOperand(std::max(Op1, Op2));
3075 MI.RemoveOperand(std::min(Op1, Op2));
3077 // If the operands we are swapping are the two at the end (the common case)
3078 // we can just remove both and add them in the opposite order.
3079 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
3080 MI.addOperand(MOp2);
3081 MI.addOperand(MOp1);
3082 } else {
3083 // Store all operands in a temporary vector, remove them and re-add in the
3084 // right order.
3085 SmallVector<MachineOperand, 2> MOps;
3086 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
3087 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
3088 MOps.push_back(MI.getOperand(i));
3089 MI.RemoveOperand(i);
3091 // MOp2 needs to be added next.
3092 MI.addOperand(MOp2);
3093 // Now add the rest.
3094 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
3095 if (i == MaxOp)
3096 MI.addOperand(MOp1);
3097 else {
3098 MI.addOperand(MOps.back());
3099 MOps.pop_back();
3105 // Check if the 'MI' that has the index OpNoForForwarding
3106 // meets the requirement described in the ImmInstrInfo.
3107 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI,
3108 const ImmInstrInfo &III,
3109 unsigned OpNoForForwarding
3110 ) const {
3111 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8
3112 // would not work pre-RA, we can only do the check post RA.
3113 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3114 if (MRI.isSSA())
3115 return false;
3117 // Cannot do the transform if MI isn't summing the operands.
3118 if (!III.IsSummingOperands)
3119 return false;
3121 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
3122 if (!III.ZeroIsSpecialOrig)
3123 return false;
3125 // We cannot do the transform if the operand we are trying to replace
3126 // isn't the same as the operand the instruction allows.
3127 if (OpNoForForwarding != III.OpNoForForwarding)
3128 return false;
3130 // Check if the instruction we are trying to transform really has
3131 // the special zero register as its operand.
3132 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO &&
3133 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8)
3134 return false;
3136 // This machine instruction is convertible if it is,
3137 // 1. summing the operands.
3138 // 2. one of the operands is special zero register.
3139 // 3. the operand we are trying to replace is allowed by the MI.
3140 return true;
3143 // Check if the DefMI is the add inst and set the ImmMO and RegMO
3144 // accordingly.
3145 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI,
3146 const ImmInstrInfo &III,
3147 MachineOperand *&ImmMO,
3148 MachineOperand *&RegMO) const {
3149 unsigned Opc = DefMI.getOpcode();
3150 if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8)
3151 return false;
3153 assert(DefMI.getNumOperands() >= 3 &&
3154 "Add inst must have at least three operands");
3155 RegMO = &DefMI.getOperand(1);
3156 ImmMO = &DefMI.getOperand(2);
3158 // This DefMI is elgible for forwarding if it is:
3159 // 1. add inst
3160 // 2. one of the operands is Imm/CPI/Global.
3161 return isAnImmediateOperand(*ImmMO);
3164 bool PPCInstrInfo::isRegElgibleForForwarding(const MachineOperand &RegMO,
3165 const MachineInstr &DefMI,
3166 const MachineInstr &MI,
3167 bool KillDefMI
3168 ) const {
3169 // x = addi y, imm
3170 // ...
3171 // z = lfdx 0, x -> z = lfd imm(y)
3172 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF
3173 // of "y" between the DEF of "x" and "z".
3174 // The query is only valid post RA.
3175 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3176 if (MRI.isSSA())
3177 return false;
3179 unsigned Reg = RegMO.getReg();
3181 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
3182 MachineBasicBlock::const_reverse_iterator It = MI;
3183 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend();
3184 It++;
3185 for (; It != E; ++It) {
3186 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3187 return false;
3188 // Made it to DefMI without encountering a clobber.
3189 if ((&*It) == &DefMI)
3190 break;
3192 assert((&*It) == &DefMI && "DefMI is missing");
3194 // If DefMI also defines the register to be forwarded, we can only forward it
3195 // if DefMI is being erased.
3196 if (DefMI.modifiesRegister(Reg, &getRegisterInfo()))
3197 return KillDefMI;
3199 return true;
3202 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO,
3203 const MachineInstr &DefMI,
3204 const ImmInstrInfo &III,
3205 int64_t &Imm) const {
3206 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate");
3207 if (DefMI.getOpcode() == PPC::ADDItocL) {
3208 // The operand for ADDItocL is CPI, which isn't imm at compiling time,
3209 // However, we know that, it is 16-bit width, and has the alignment of 4.
3210 // Check if the instruction met the requirement.
3211 if (III.ImmMustBeMultipleOf > 4 ||
3212 III.TruncateImmTo || III.ImmWidth != 16)
3213 return false;
3215 // Going from XForm to DForm loads means that the displacement needs to be
3216 // not just an immediate but also a multiple of 4, or 16 depending on the
3217 // load. A DForm load cannot be represented if it is a multiple of say 2.
3218 // XForm loads do not have this restriction.
3219 if (ImmMO.isGlobal() &&
3220 ImmMO.getGlobal()->getAlignment() < III.ImmMustBeMultipleOf)
3221 return false;
3223 return true;
3226 if (ImmMO.isImm()) {
3227 // It is Imm, we need to check if the Imm fit the range.
3228 int64_t Immediate = ImmMO.getImm();
3229 // Sign-extend to 64-bits.
3230 Imm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
3231 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
3233 if (Imm % III.ImmMustBeMultipleOf)
3234 return false;
3235 if (III.TruncateImmTo)
3236 Imm &= ((1 << III.TruncateImmTo) - 1);
3237 if (III.SignedImm) {
3238 APInt ActualValue(64, Imm, true);
3239 if (!ActualValue.isSignedIntN(III.ImmWidth))
3240 return false;
3241 } else {
3242 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3243 if ((uint64_t)Imm > UnsignedMax)
3244 return false;
3247 else
3248 return false;
3250 // This ImmMO is forwarded if it meets the requriement describle
3251 // in ImmInstrInfo
3252 return true;
3255 // If an X-Form instruction is fed by an add-immediate and one of its operands
3256 // is the literal zero, attempt to forward the source of the add-immediate to
3257 // the corresponding D-Form instruction with the displacement coming from
3258 // the immediate being added.
3259 bool PPCInstrInfo::transformToImmFormFedByAdd(MachineInstr &MI,
3260 const ImmInstrInfo &III,
3261 unsigned OpNoForForwarding,
3262 MachineInstr &DefMI,
3263 bool KillDefMI) const {
3264 // RegMO ImmMO
3265 // | |
3266 // x = addi reg, imm <----- DefMI
3267 // y = op 0 , x <----- MI
3268 // |
3269 // OpNoForForwarding
3270 // Check if the MI meet the requirement described in the III.
3271 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding))
3272 return false;
3274 // Check if the DefMI meet the requirement
3275 // described in the III. If yes, set the ImmMO and RegMO accordingly.
3276 MachineOperand *ImmMO = nullptr;
3277 MachineOperand *RegMO = nullptr;
3278 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
3279 return false;
3280 assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
3282 // As we get the Imm operand now, we need to check if the ImmMO meet
3283 // the requirement described in the III. If yes set the Imm.
3284 int64_t Imm = 0;
3285 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm))
3286 return false;
3288 // Check if the RegMO can be forwarded to MI.
3289 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI))
3290 return false;
3292 // We know that, the MI and DefMI both meet the pattern, and
3293 // the Imm also meet the requirement with the new Imm-form.
3294 // It is safe to do the transformation now.
3295 LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
3296 LLVM_DEBUG(MI.dump());
3297 LLVM_DEBUG(dbgs() << "Fed by:\n");
3298 LLVM_DEBUG(DefMI.dump());
3300 // Update the base reg first.
3301 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(),
3302 false, false,
3303 RegMO->isKill());
3305 // Then, update the imm.
3306 if (ImmMO->isImm()) {
3307 // If the ImmMO is Imm, change the operand that has ZERO to that Imm
3308 // directly.
3309 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm);
3311 else {
3312 // Otherwise, it is Constant Pool Index(CPI) or Global,
3313 // which is relocation in fact. We need to replace the special zero
3314 // register with ImmMO.
3315 // Before that, we need to fixup the target flags for imm.
3316 // For some reason, we miss to set the flag for the ImmMO if it is CPI.
3317 if (DefMI.getOpcode() == PPC::ADDItocL)
3318 ImmMO->setTargetFlags(PPCII::MO_TOC_LO);
3320 // MI didn't have the interface such as MI.setOperand(i) though
3321 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with
3322 // ImmMO, we need to remove ZERO operand and all the operands behind it,
3323 // and, add the ImmMO, then, move back all the operands behind ZERO.
3324 SmallVector<MachineOperand, 2> MOps;
3325 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) {
3326 MOps.push_back(MI.getOperand(i));
3327 MI.RemoveOperand(i);
3330 // Remove the last MO in the list, which is ZERO operand in fact.
3331 MOps.pop_back();
3332 // Add the imm operand.
3333 MI.addOperand(*ImmMO);
3334 // Now add the rest back.
3335 for (auto &MO : MOps)
3336 MI.addOperand(MO);
3339 // Update the opcode.
3340 MI.setDesc(get(III.ImmOpcode));
3342 LLVM_DEBUG(dbgs() << "With:\n");
3343 LLVM_DEBUG(MI.dump());
3345 return true;
3348 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI,
3349 const ImmInstrInfo &III,
3350 unsigned ConstantOpNo,
3351 int64_t Imm) const {
3352 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3353 bool PostRA = !MRI.isSSA();
3354 // Exit early if we can't convert this.
3355 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative)
3356 return false;
3357 if (Imm % III.ImmMustBeMultipleOf)
3358 return false;
3359 if (III.TruncateImmTo)
3360 Imm &= ((1 << III.TruncateImmTo) - 1);
3361 if (III.SignedImm) {
3362 APInt ActualValue(64, Imm, true);
3363 if (!ActualValue.isSignedIntN(III.ImmWidth))
3364 return false;
3365 } else {
3366 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3367 if ((uint64_t)Imm > UnsignedMax)
3368 return false;
3371 // If we're post-RA, the instructions don't agree on whether register zero is
3372 // special, we can transform this as long as the register operand that will
3373 // end up in the location where zero is special isn't R0.
3374 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
3375 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
3376 III.ZeroIsSpecialNew + 1;
3377 unsigned OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
3378 unsigned NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
3379 // If R0 is in the operand where zero is special for the new instruction,
3380 // it is unsafe to transform if the constant operand isn't that operand.
3381 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
3382 ConstantOpNo != III.ZeroIsSpecialNew)
3383 return false;
3384 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
3385 ConstantOpNo != PosForOrigZero)
3386 return false;
3389 unsigned Opc = MI.getOpcode();
3390 bool SpecialShift32 =
3391 Opc == PPC::SLW || Opc == PPC::SLWo || Opc == PPC::SRW || Opc == PPC::SRWo;
3392 bool SpecialShift64 =
3393 Opc == PPC::SLD || Opc == PPC::SLDo || Opc == PPC::SRD || Opc == PPC::SRDo;
3394 bool SetCR = Opc == PPC::SLWo || Opc == PPC::SRWo ||
3395 Opc == PPC::SLDo || Opc == PPC::SRDo;
3396 bool RightShift =
3397 Opc == PPC::SRW || Opc == PPC::SRWo || Opc == PPC::SRD || Opc == PPC::SRDo;
3399 MI.setDesc(get(III.ImmOpcode));
3400 if (ConstantOpNo == III.OpNoForForwarding) {
3401 // Converting shifts to immediate form is a bit tricky since they may do
3402 // one of three things:
3403 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
3404 // 2. If the shift amount is zero, the result is unchanged (save for maybe
3405 // setting CR0)
3406 // 3. If the shift amount is in [1, OpSize), it's just a shift
3407 if (SpecialShift32 || SpecialShift64) {
3408 LoadImmediateInfo LII;
3409 LII.Imm = 0;
3410 LII.SetCR = SetCR;
3411 LII.Is64Bit = SpecialShift64;
3412 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
3413 if (Imm & (SpecialShift32 ? 0x20 : 0x40))
3414 replaceInstrWithLI(MI, LII);
3415 // Shifts by zero don't change the value. If we don't need to set CR0,
3416 // just convert this to a COPY. Can't do this post-RA since we've already
3417 // cleaned up the copies.
3418 else if (!SetCR && ShAmt == 0 && !PostRA) {
3419 MI.RemoveOperand(2);
3420 MI.setDesc(get(PPC::COPY));
3421 } else {
3422 // The 32 bit and 64 bit instructions are quite different.
3423 if (SpecialShift32) {
3424 // Left shifts use (N, 0, 31-N), right shifts use (32-N, N, 31).
3425 uint64_t SH = RightShift ? 32 - ShAmt : ShAmt;
3426 uint64_t MB = RightShift ? ShAmt : 0;
3427 uint64_t ME = RightShift ? 31 : 31 - ShAmt;
3428 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
3429 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
3430 .addImm(ME);
3431 } else {
3432 // Left shifts use (N, 63-N), right shifts use (64-N, N).
3433 uint64_t SH = RightShift ? 64 - ShAmt : ShAmt;
3434 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
3435 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
3436 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
3439 } else
3440 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
3442 // Convert commutative instructions (switch the operands and convert the
3443 // desired one to an immediate.
3444 else if (III.IsCommutative) {
3445 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
3446 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding);
3447 } else
3448 llvm_unreachable("Should have exited early!");
3450 // For instructions for which the constant register replaces a different
3451 // operand than where the immediate goes, we need to swap them.
3452 if (III.OpNoForForwarding != III.ImmOpNo)
3453 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo);
3455 // If the special R0/X0 register index are different for original instruction
3456 // and new instruction, we need to fix up the register class in new
3457 // instruction.
3458 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
3459 if (III.ZeroIsSpecialNew) {
3460 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no
3461 // need to fix up register class.
3462 unsigned RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
3463 if (TargetRegisterInfo::isVirtualRegister(RegToModify)) {
3464 const TargetRegisterClass *NewRC =
3465 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
3466 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
3467 MRI.setRegClass(RegToModify, NewRC);
3471 return true;
3474 const TargetRegisterClass *
3475 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
3476 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
3477 return &PPC::VSRCRegClass;
3478 return RC;
3481 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
3482 return PPC::getRecordFormOpcode(Opcode);
3485 // This function returns true if the machine instruction
3486 // always outputs a value by sign-extending a 32 bit value,
3487 // i.e. 0 to 31-th bits are same as 32-th bit.
3488 static bool isSignExtendingOp(const MachineInstr &MI) {
3489 int Opcode = MI.getOpcode();
3490 if (Opcode == PPC::LI || Opcode == PPC::LI8 ||
3491 Opcode == PPC::LIS || Opcode == PPC::LIS8 ||
3492 Opcode == PPC::SRAW || Opcode == PPC::SRAWo ||
3493 Opcode == PPC::SRAWI || Opcode == PPC::SRAWIo ||
3494 Opcode == PPC::LWA || Opcode == PPC::LWAX ||
3495 Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 ||
3496 Opcode == PPC::LHA || Opcode == PPC::LHAX ||
3497 Opcode == PPC::LHA8 || Opcode == PPC::LHAX8 ||
3498 Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
3499 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
3500 Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
3501 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
3502 Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
3503 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 ||
3504 Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
3505 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 ||
3506 Opcode == PPC::EXTSB || Opcode == PPC::EXTSBo ||
3507 Opcode == PPC::EXTSH || Opcode == PPC::EXTSHo ||
3508 Opcode == PPC::EXTSB8 || Opcode == PPC::EXTSH8 ||
3509 Opcode == PPC::EXTSW || Opcode == PPC::EXTSWo ||
3510 Opcode == PPC::SETB || Opcode == PPC::SETB8 ||
3511 Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 ||
3512 Opcode == PPC::EXTSB8_32_64)
3513 return true;
3515 if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33)
3516 return true;
3518 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo ||
3519 Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo) &&
3520 MI.getOperand(3).getImm() > 0 &&
3521 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
3522 return true;
3524 return false;
3527 // This function returns true if the machine instruction
3528 // always outputs zeros in higher 32 bits.
3529 static bool isZeroExtendingOp(const MachineInstr &MI) {
3530 int Opcode = MI.getOpcode();
3531 // The 16-bit immediate is sign-extended in li/lis.
3532 // If the most significant bit is zero, all higher bits are zero.
3533 if (Opcode == PPC::LI || Opcode == PPC::LI8 ||
3534 Opcode == PPC::LIS || Opcode == PPC::LIS8) {
3535 int64_t Imm = MI.getOperand(1).getImm();
3536 if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
3537 return true;
3540 // We have some variations of rotate-and-mask instructions
3541 // that clear higher 32-bits.
3542 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo ||
3543 Opcode == PPC::RLDCL || Opcode == PPC::RLDCLo ||
3544 Opcode == PPC::RLDICL_32_64) &&
3545 MI.getOperand(3).getImm() >= 32)
3546 return true;
3548 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) &&
3549 MI.getOperand(3).getImm() >= 32 &&
3550 MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm())
3551 return true;
3553 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo ||
3554 Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo ||
3555 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
3556 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
3557 return true;
3559 // There are other instructions that clear higher 32-bits.
3560 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZWo ||
3561 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZWo ||
3562 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 ||
3563 Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZDo ||
3564 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZDo ||
3565 Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW ||
3566 Opcode == PPC::SLW || Opcode == PPC::SLWo ||
3567 Opcode == PPC::SRW || Opcode == PPC::SRWo ||
3568 Opcode == PPC::SLW8 || Opcode == PPC::SRW8 ||
3569 Opcode == PPC::SLWI || Opcode == PPC::SLWIo ||
3570 Opcode == PPC::SRWI || Opcode == PPC::SRWIo ||
3571 Opcode == PPC::LWZ || Opcode == PPC::LWZX ||
3572 Opcode == PPC::LWZU || Opcode == PPC::LWZUX ||
3573 Opcode == PPC::LWBRX || Opcode == PPC::LHBRX ||
3574 Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
3575 Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
3576 Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
3577 Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
3578 Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 ||
3579 Opcode == PPC::LWZU8 || Opcode == PPC::LWZUX8 ||
3580 Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 ||
3581 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 ||
3582 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 ||
3583 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
3584 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
3585 Opcode == PPC::ANDIo || Opcode == PPC::ANDISo ||
3586 Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWIo ||
3587 Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWIo ||
3588 Opcode == PPC::MFVSRWZ)
3589 return true;
3591 return false;
3594 // This function returns true if the input MachineInstr is a TOC save
3595 // instruction.
3596 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
3597 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
3598 return false;
3599 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
3600 unsigned StackOffset = MI.getOperand(1).getImm();
3601 unsigned StackReg = MI.getOperand(2).getReg();
3602 if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset)
3603 return true;
3605 return false;
3608 // We limit the max depth to track incoming values of PHIs or binary ops
3609 // (e.g. AND) to avoid excessive cost.
3610 const unsigned MAX_DEPTH = 1;
3612 bool
3613 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
3614 const unsigned Depth) const {
3615 const MachineFunction *MF = MI.getParent()->getParent();
3616 const MachineRegisterInfo *MRI = &MF->getRegInfo();
3618 // If we know this instruction returns sign- or zero-extended result,
3619 // return true.
3620 if (SignExt ? isSignExtendingOp(MI):
3621 isZeroExtendingOp(MI))
3622 return true;
3624 switch (MI.getOpcode()) {
3625 case PPC::COPY: {
3626 unsigned SrcReg = MI.getOperand(1).getReg();
3628 // In both ELFv1 and v2 ABI, method parameters and the return value
3629 // are sign- or zero-extended.
3630 if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
3631 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
3632 // We check the ZExt/SExt flags for a method parameter.
3633 if (MI.getParent()->getBasicBlock() ==
3634 &MF->getFunction().getEntryBlock()) {
3635 unsigned VReg = MI.getOperand(0).getReg();
3636 if (MF->getRegInfo().isLiveIn(VReg))
3637 return SignExt ? FuncInfo->isLiveInSExt(VReg) :
3638 FuncInfo->isLiveInZExt(VReg);
3641 // For a method return value, we check the ZExt/SExt flags in attribute.
3642 // We assume the following code sequence for method call.
3643 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
3644 // BL8_NOP @func,...
3645 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
3646 // %5 = COPY %x3; G8RC:%5
3647 if (SrcReg == PPC::X3) {
3648 const MachineBasicBlock *MBB = MI.getParent();
3649 MachineBasicBlock::const_instr_iterator II =
3650 MachineBasicBlock::const_instr_iterator(&MI);
3651 if (II != MBB->instr_begin() &&
3652 (--II)->getOpcode() == PPC::ADJCALLSTACKUP) {
3653 const MachineInstr &CallMI = *(--II);
3654 if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) {
3655 const Function *CalleeFn =
3656 dyn_cast<Function>(CallMI.getOperand(0).getGlobal());
3657 if (!CalleeFn)
3658 return false;
3659 const IntegerType *IntTy =
3660 dyn_cast<IntegerType>(CalleeFn->getReturnType());
3661 const AttributeSet &Attrs =
3662 CalleeFn->getAttributes().getRetAttributes();
3663 if (IntTy && IntTy->getBitWidth() <= 32)
3664 return Attrs.hasAttribute(SignExt ? Attribute::SExt :
3665 Attribute::ZExt);
3671 // If this is a copy from another register, we recursively check source.
3672 if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
3673 return false;
3674 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3675 if (SrcMI != NULL)
3676 return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
3678 return false;
3681 case PPC::ANDIo:
3682 case PPC::ANDISo:
3683 case PPC::ORI:
3684 case PPC::ORIS:
3685 case PPC::XORI:
3686 case PPC::XORIS:
3687 case PPC::ANDIo8:
3688 case PPC::ANDISo8:
3689 case PPC::ORI8:
3690 case PPC::ORIS8:
3691 case PPC::XORI8:
3692 case PPC::XORIS8: {
3693 // logical operation with 16-bit immediate does not change the upper bits.
3694 // So, we track the operand register as we do for register copy.
3695 unsigned SrcReg = MI.getOperand(1).getReg();
3696 if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
3697 return false;
3698 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3699 if (SrcMI != NULL)
3700 return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
3702 return false;
3705 // If all incoming values are sign-/zero-extended,
3706 // the output of OR, ISEL or PHI is also sign-/zero-extended.
3707 case PPC::OR:
3708 case PPC::OR8:
3709 case PPC::ISEL:
3710 case PPC::PHI: {
3711 if (Depth >= MAX_DEPTH)
3712 return false;
3714 // The input registers for PHI are operand 1, 3, ...
3715 // The input registers for others are operand 1 and 2.
3716 unsigned E = 3, D = 1;
3717 if (MI.getOpcode() == PPC::PHI) {
3718 E = MI.getNumOperands();
3719 D = 2;
3722 for (unsigned I = 1; I != E; I += D) {
3723 if (MI.getOperand(I).isReg()) {
3724 unsigned SrcReg = MI.getOperand(I).getReg();
3725 if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
3726 return false;
3727 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3728 if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1))
3729 return false;
3731 else
3732 return false;
3734 return true;
3737 // If at least one of the incoming values of an AND is zero extended
3738 // then the output is also zero-extended. If both of the incoming values
3739 // are sign-extended then the output is also sign extended.
3740 case PPC::AND:
3741 case PPC::AND8: {
3742 if (Depth >= MAX_DEPTH)
3743 return false;
3745 assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg());
3747 unsigned SrcReg1 = MI.getOperand(1).getReg();
3748 unsigned SrcReg2 = MI.getOperand(2).getReg();
3750 if (!TargetRegisterInfo::isVirtualRegister(SrcReg1) ||
3751 !TargetRegisterInfo::isVirtualRegister(SrcReg2))
3752 return false;
3754 const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1);
3755 const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2);
3756 if (!MISrc1 || !MISrc2)
3757 return false;
3759 if(SignExt)
3760 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) &&
3761 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
3762 else
3763 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) ||
3764 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
3767 default:
3768 break;
3770 return false;