Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Target / X86 / Disassembler / X86DisassemblerDecoder.cpp
blob9a7bcc8bd5d1020c75c8feae806c9135b18041bc
1 //===-- X86DisassemblerDecoder.cpp - Disassembler decoder -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is part of the X86 Disassembler.
10 // It contains the implementation of the instruction decoder.
11 // Documentation for the disassembler can be found in X86Disassembler.h.
13 //===----------------------------------------------------------------------===//
15 #include <cstdarg> /* for va_*() */
16 #include <cstdio> /* for vsnprintf() */
17 #include <cstdlib> /* for exit() */
18 #include <cstring> /* for memset() */
20 #include "X86DisassemblerDecoder.h"
22 using namespace llvm::X86Disassembler;
24 /// Specifies whether a ModR/M byte is needed and (if so) which
25 /// instruction each possible value of the ModR/M byte corresponds to. Once
26 /// this information is known, we have narrowed down to a single instruction.
27 struct ModRMDecision {
28 uint8_t modrm_type;
29 uint16_t instructionIDs;
32 /// Specifies which set of ModR/M->instruction tables to look at
33 /// given a particular opcode.
34 struct OpcodeDecision {
35 ModRMDecision modRMDecisions[256];
38 /// Specifies which opcode->instruction tables to look at given
39 /// a particular context (set of attributes). Since there are many possible
40 /// contexts, the decoder first uses CONTEXTS_SYM to determine which context
41 /// applies given a specific set of attributes. Hence there are only IC_max
42 /// entries in this table, rather than 2^(ATTR_max).
43 struct ContextDecision {
44 OpcodeDecision opcodeDecisions[IC_max];
47 #include "X86GenDisassemblerTables.inc"
49 #ifndef NDEBUG
50 #define debug(s) do { Debug(__FILE__, __LINE__, s); } while (0)
51 #else
52 #define debug(s) do { } while (0)
53 #endif
56 * contextForAttrs - Client for the instruction context table. Takes a set of
57 * attributes and returns the appropriate decode context.
59 * @param attrMask - Attributes, from the enumeration attributeBits.
60 * @return - The InstructionContext to use when looking up an
61 * an instruction with these attributes.
63 static InstructionContext contextForAttrs(uint16_t attrMask) {
64 return static_cast<InstructionContext>(CONTEXTS_SYM[attrMask]);
68 * modRMRequired - Reads the appropriate instruction table to determine whether
69 * the ModR/M byte is required to decode a particular instruction.
71 * @param type - The opcode type (i.e., how many bytes it has).
72 * @param insnContext - The context for the instruction, as returned by
73 * contextForAttrs.
74 * @param opcode - The last byte of the instruction's opcode, not counting
75 * ModR/M extensions and escapes.
76 * @return - true if the ModR/M byte is required, false otherwise.
78 static int modRMRequired(OpcodeType type,
79 InstructionContext insnContext,
80 uint16_t opcode) {
81 const struct ContextDecision* decision = nullptr;
83 switch (type) {
84 case ONEBYTE:
85 decision = &ONEBYTE_SYM;
86 break;
87 case TWOBYTE:
88 decision = &TWOBYTE_SYM;
89 break;
90 case THREEBYTE_38:
91 decision = &THREEBYTE38_SYM;
92 break;
93 case THREEBYTE_3A:
94 decision = &THREEBYTE3A_SYM;
95 break;
96 case XOP8_MAP:
97 decision = &XOP8_MAP_SYM;
98 break;
99 case XOP9_MAP:
100 decision = &XOP9_MAP_SYM;
101 break;
102 case XOPA_MAP:
103 decision = &XOPA_MAP_SYM;
104 break;
105 case THREEDNOW_MAP:
106 decision = &THREEDNOW_MAP_SYM;
107 break;
110 return decision->opcodeDecisions[insnContext].modRMDecisions[opcode].
111 modrm_type != MODRM_ONEENTRY;
115 * decode - Reads the appropriate instruction table to obtain the unique ID of
116 * an instruction.
118 * @param type - See modRMRequired().
119 * @param insnContext - See modRMRequired().
120 * @param opcode - See modRMRequired().
121 * @param modRM - The ModR/M byte if required, or any value if not.
122 * @return - The UID of the instruction, or 0 on failure.
124 static InstrUID decode(OpcodeType type,
125 InstructionContext insnContext,
126 uint8_t opcode,
127 uint8_t modRM) {
128 const struct ModRMDecision* dec = nullptr;
130 switch (type) {
131 case ONEBYTE:
132 dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
133 break;
134 case TWOBYTE:
135 dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
136 break;
137 case THREEBYTE_38:
138 dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
139 break;
140 case THREEBYTE_3A:
141 dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
142 break;
143 case XOP8_MAP:
144 dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
145 break;
146 case XOP9_MAP:
147 dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
148 break;
149 case XOPA_MAP:
150 dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
151 break;
152 case THREEDNOW_MAP:
153 dec = &THREEDNOW_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
154 break;
157 switch (dec->modrm_type) {
158 default:
159 debug("Corrupt table! Unknown modrm_type");
160 return 0;
161 case MODRM_ONEENTRY:
162 return modRMTable[dec->instructionIDs];
163 case MODRM_SPLITRM:
164 if (modFromModRM(modRM) == 0x3)
165 return modRMTable[dec->instructionIDs+1];
166 return modRMTable[dec->instructionIDs];
167 case MODRM_SPLITREG:
168 if (modFromModRM(modRM) == 0x3)
169 return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)+8];
170 return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
171 case MODRM_SPLITMISC:
172 if (modFromModRM(modRM) == 0x3)
173 return modRMTable[dec->instructionIDs+(modRM & 0x3f)+8];
174 return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
175 case MODRM_FULL:
176 return modRMTable[dec->instructionIDs+modRM];
181 * specifierForUID - Given a UID, returns the name and operand specification for
182 * that instruction.
184 * @param uid - The unique ID for the instruction. This should be returned by
185 * decode(); specifierForUID will not check bounds.
186 * @return - A pointer to the specification for that instruction.
188 static const struct InstructionSpecifier *specifierForUID(InstrUID uid) {
189 return &INSTRUCTIONS_SYM[uid];
193 * consumeByte - Uses the reader function provided by the user to consume one
194 * byte from the instruction's memory and advance the cursor.
196 * @param insn - The instruction with the reader function to use. The cursor
197 * for this instruction is advanced.
198 * @param byte - A pointer to a pre-allocated memory buffer to be populated
199 * with the data read.
200 * @return - 0 if the read was successful; nonzero otherwise.
202 static int consumeByte(struct InternalInstruction* insn, uint8_t* byte) {
203 int ret = insn->reader(insn->readerArg, byte, insn->readerCursor);
205 if (!ret)
206 ++(insn->readerCursor);
208 return ret;
212 * lookAtByte - Like consumeByte, but does not advance the cursor.
214 * @param insn - See consumeByte().
215 * @param byte - See consumeByte().
216 * @return - See consumeByte().
218 static int lookAtByte(struct InternalInstruction* insn, uint8_t* byte) {
219 return insn->reader(insn->readerArg, byte, insn->readerCursor);
222 static void unconsumeByte(struct InternalInstruction* insn) {
223 insn->readerCursor--;
226 #define CONSUME_FUNC(name, type) \
227 static int name(struct InternalInstruction* insn, type* ptr) { \
228 type combined = 0; \
229 unsigned offset; \
230 for (offset = 0; offset < sizeof(type); ++offset) { \
231 uint8_t byte; \
232 int ret = insn->reader(insn->readerArg, \
233 &byte, \
234 insn->readerCursor + offset); \
235 if (ret) \
236 return ret; \
237 combined = combined | ((uint64_t)byte << (offset * 8)); \
239 *ptr = combined; \
240 insn->readerCursor += sizeof(type); \
241 return 0; \
245 * consume* - Use the reader function provided by the user to consume data
246 * values of various sizes from the instruction's memory and advance the
247 * cursor appropriately. These readers perform endian conversion.
249 * @param insn - See consumeByte().
250 * @param ptr - A pointer to a pre-allocated memory of appropriate size to
251 * be populated with the data read.
252 * @return - See consumeByte().
254 CONSUME_FUNC(consumeInt8, int8_t)
255 CONSUME_FUNC(consumeInt16, int16_t)
256 CONSUME_FUNC(consumeInt32, int32_t)
257 CONSUME_FUNC(consumeUInt16, uint16_t)
258 CONSUME_FUNC(consumeUInt32, uint32_t)
259 CONSUME_FUNC(consumeUInt64, uint64_t)
262 * dbgprintf - Uses the logging function provided by the user to log a single
263 * message, typically without a carriage-return.
265 * @param insn - The instruction containing the logging function.
266 * @param format - See printf().
267 * @param ... - See printf().
269 static void dbgprintf(struct InternalInstruction* insn,
270 const char* format,
271 ...) {
272 char buffer[256];
273 va_list ap;
275 if (!insn->dlog)
276 return;
278 va_start(ap, format);
279 (void)vsnprintf(buffer, sizeof(buffer), format, ap);
280 va_end(ap);
282 insn->dlog(insn->dlogArg, buffer);
285 static bool isREX(struct InternalInstruction *insn, uint8_t prefix) {
286 if (insn->mode == MODE_64BIT)
287 return prefix >= 0x40 && prefix <= 0x4f;
288 return false;
292 * setPrefixPresent - Marks that a particular prefix is present as mandatory
294 * @param insn - The instruction to be marked as having the prefix.
295 * @param prefix - The prefix that is present.
297 static void setPrefixPresent(struct InternalInstruction *insn, uint8_t prefix) {
298 uint8_t nextByte;
299 switch (prefix) {
300 case 0xf0:
301 insn->hasLockPrefix = true;
302 break;
303 case 0xf2:
304 case 0xf3:
305 if (lookAtByte(insn, &nextByte))
306 break;
307 // TODO:
308 // 1. There could be several 0x66
309 // 2. if (nextByte == 0x66) and nextNextByte != 0x0f then
310 // it's not mandatory prefix
311 // 3. if (nextByte >= 0x40 && nextByte <= 0x4f) it's REX and we need
312 // 0x0f exactly after it to be mandatory prefix
313 if (isREX(insn, nextByte) || nextByte == 0x0f || nextByte == 0x66)
314 // The last of 0xf2 /0xf3 is mandatory prefix
315 insn->mandatoryPrefix = prefix;
316 insn->repeatPrefix = prefix;
317 break;
318 case 0x66:
319 if (lookAtByte(insn, &nextByte))
320 break;
321 // 0x66 can't overwrite existing mandatory prefix and should be ignored
322 if (!insn->mandatoryPrefix && (nextByte == 0x0f || isREX(insn, nextByte)))
323 insn->mandatoryPrefix = prefix;
324 break;
329 * readPrefixes - Consumes all of an instruction's prefix bytes, and marks the
330 * instruction as having them. Also sets the instruction's default operand,
331 * address, and other relevant data sizes to report operands correctly.
333 * @param insn - The instruction whose prefixes are to be read.
334 * @return - 0 if the instruction could be read until the end of the prefix
335 * bytes, and no prefixes conflicted; nonzero otherwise.
337 static int readPrefixes(struct InternalInstruction* insn) {
338 bool isPrefix = true;
339 uint8_t byte = 0;
340 uint8_t nextByte;
342 dbgprintf(insn, "readPrefixes()");
344 while (isPrefix) {
345 /* If we fail reading prefixes, just stop here and let the opcode reader deal with it */
346 if (consumeByte(insn, &byte))
347 break;
350 * If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then
351 * break and let it be disassembled as a normal "instruction".
353 if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0) // LOCK
354 break;
356 if ((byte == 0xf2 || byte == 0xf3) && !lookAtByte(insn, &nextByte)) {
358 * If the byte is 0xf2 or 0xf3, and any of the following conditions are
359 * met:
360 * - it is followed by a LOCK (0xf0) prefix
361 * - it is followed by an xchg instruction
362 * then it should be disassembled as a xacquire/xrelease not repne/rep.
364 if (((nextByte == 0xf0) ||
365 ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90))) {
366 insn->xAcquireRelease = true;
367 if (!(byte == 0xf3 && nextByte == 0x90)) // PAUSE instruction support
368 break;
371 * Also if the byte is 0xf3, and the following condition is met:
372 * - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
373 * "mov mem, imm" (opcode 0xc6/0xc7) instructions.
374 * then it should be disassembled as an xrelease not rep.
376 if (byte == 0xf3 && (nextByte == 0x88 || nextByte == 0x89 ||
377 nextByte == 0xc6 || nextByte == 0xc7)) {
378 insn->xAcquireRelease = true;
379 if (nextByte != 0x90) // PAUSE instruction support
380 break;
382 if (isREX(insn, nextByte)) {
383 uint8_t nnextByte;
384 // Go to REX prefix after the current one
385 if (consumeByte(insn, &nnextByte))
386 return -1;
387 // We should be able to read next byte after REX prefix
388 if (lookAtByte(insn, &nnextByte))
389 return -1;
390 unconsumeByte(insn);
394 switch (byte) {
395 case 0xf0: /* LOCK */
396 case 0xf2: /* REPNE/REPNZ */
397 case 0xf3: /* REP or REPE/REPZ */
398 setPrefixPresent(insn, byte);
399 break;
400 case 0x2e: /* CS segment override -OR- Branch not taken */
401 case 0x36: /* SS segment override -OR- Branch taken */
402 case 0x3e: /* DS segment override */
403 case 0x26: /* ES segment override */
404 case 0x64: /* FS segment override */
405 case 0x65: /* GS segment override */
406 switch (byte) {
407 case 0x2e:
408 insn->segmentOverride = SEG_OVERRIDE_CS;
409 break;
410 case 0x36:
411 insn->segmentOverride = SEG_OVERRIDE_SS;
412 break;
413 case 0x3e:
414 insn->segmentOverride = SEG_OVERRIDE_DS;
415 break;
416 case 0x26:
417 insn->segmentOverride = SEG_OVERRIDE_ES;
418 break;
419 case 0x64:
420 insn->segmentOverride = SEG_OVERRIDE_FS;
421 break;
422 case 0x65:
423 insn->segmentOverride = SEG_OVERRIDE_GS;
424 break;
425 default:
426 debug("Unhandled override");
427 return -1;
429 setPrefixPresent(insn, byte);
430 break;
431 case 0x66: /* Operand-size override */
432 insn->hasOpSize = true;
433 setPrefixPresent(insn, byte);
434 break;
435 case 0x67: /* Address-size override */
436 insn->hasAdSize = true;
437 setPrefixPresent(insn, byte);
438 break;
439 default: /* Not a prefix byte */
440 isPrefix = false;
441 break;
444 if (isPrefix)
445 dbgprintf(insn, "Found prefix 0x%hhx", byte);
448 insn->vectorExtensionType = TYPE_NO_VEX_XOP;
450 if (byte == 0x62) {
451 uint8_t byte1, byte2;
453 if (consumeByte(insn, &byte1)) {
454 dbgprintf(insn, "Couldn't read second byte of EVEX prefix");
455 return -1;
458 if (lookAtByte(insn, &byte2)) {
459 dbgprintf(insn, "Couldn't read third byte of EVEX prefix");
460 return -1;
463 if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) &&
464 ((~byte1 & 0xc) == 0xc) && ((byte2 & 0x4) == 0x4)) {
465 insn->vectorExtensionType = TYPE_EVEX;
466 } else {
467 unconsumeByte(insn); /* unconsume byte1 */
468 unconsumeByte(insn); /* unconsume byte */
471 if (insn->vectorExtensionType == TYPE_EVEX) {
472 insn->vectorExtensionPrefix[0] = byte;
473 insn->vectorExtensionPrefix[1] = byte1;
474 if (consumeByte(insn, &insn->vectorExtensionPrefix[2])) {
475 dbgprintf(insn, "Couldn't read third byte of EVEX prefix");
476 return -1;
478 if (consumeByte(insn, &insn->vectorExtensionPrefix[3])) {
479 dbgprintf(insn, "Couldn't read fourth byte of EVEX prefix");
480 return -1;
483 /* We simulate the REX prefix for simplicity's sake */
484 if (insn->mode == MODE_64BIT) {
485 insn->rexPrefix = 0x40
486 | (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3)
487 | (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2)
488 | (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1)
489 | (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0);
492 dbgprintf(insn, "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx",
493 insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
494 insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]);
496 } else if (byte == 0xc4) {
497 uint8_t byte1;
499 if (lookAtByte(insn, &byte1)) {
500 dbgprintf(insn, "Couldn't read second byte of VEX");
501 return -1;
504 if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
505 insn->vectorExtensionType = TYPE_VEX_3B;
506 else
507 unconsumeByte(insn);
509 if (insn->vectorExtensionType == TYPE_VEX_3B) {
510 insn->vectorExtensionPrefix[0] = byte;
511 consumeByte(insn, &insn->vectorExtensionPrefix[1]);
512 consumeByte(insn, &insn->vectorExtensionPrefix[2]);
514 /* We simulate the REX prefix for simplicity's sake */
516 if (insn->mode == MODE_64BIT)
517 insn->rexPrefix = 0x40
518 | (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3)
519 | (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2)
520 | (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1)
521 | (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0);
523 dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
524 insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
525 insn->vectorExtensionPrefix[2]);
527 } else if (byte == 0xc5) {
528 uint8_t byte1;
530 if (lookAtByte(insn, &byte1)) {
531 dbgprintf(insn, "Couldn't read second byte of VEX");
532 return -1;
535 if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
536 insn->vectorExtensionType = TYPE_VEX_2B;
537 else
538 unconsumeByte(insn);
540 if (insn->vectorExtensionType == TYPE_VEX_2B) {
541 insn->vectorExtensionPrefix[0] = byte;
542 consumeByte(insn, &insn->vectorExtensionPrefix[1]);
544 if (insn->mode == MODE_64BIT)
545 insn->rexPrefix = 0x40
546 | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2);
548 switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
549 default:
550 break;
551 case VEX_PREFIX_66:
552 insn->hasOpSize = true;
553 break;
556 dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx",
557 insn->vectorExtensionPrefix[0],
558 insn->vectorExtensionPrefix[1]);
560 } else if (byte == 0x8f) {
561 uint8_t byte1;
563 if (lookAtByte(insn, &byte1)) {
564 dbgprintf(insn, "Couldn't read second byte of XOP");
565 return -1;
568 if ((byte1 & 0x38) != 0x0) /* 0 in these 3 bits is a POP instruction. */
569 insn->vectorExtensionType = TYPE_XOP;
570 else
571 unconsumeByte(insn);
573 if (insn->vectorExtensionType == TYPE_XOP) {
574 insn->vectorExtensionPrefix[0] = byte;
575 consumeByte(insn, &insn->vectorExtensionPrefix[1]);
576 consumeByte(insn, &insn->vectorExtensionPrefix[2]);
578 /* We simulate the REX prefix for simplicity's sake */
580 if (insn->mode == MODE_64BIT)
581 insn->rexPrefix = 0x40
582 | (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3)
583 | (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2)
584 | (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1)
585 | (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0);
587 switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
588 default:
589 break;
590 case VEX_PREFIX_66:
591 insn->hasOpSize = true;
592 break;
595 dbgprintf(insn, "Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
596 insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
597 insn->vectorExtensionPrefix[2]);
599 } else if (isREX(insn, byte)) {
600 if (lookAtByte(insn, &nextByte))
601 return -1;
602 insn->rexPrefix = byte;
603 dbgprintf(insn, "Found REX prefix 0x%hhx", byte);
604 } else
605 unconsumeByte(insn);
607 if (insn->mode == MODE_16BIT) {
608 insn->registerSize = (insn->hasOpSize ? 4 : 2);
609 insn->addressSize = (insn->hasAdSize ? 4 : 2);
610 insn->displacementSize = (insn->hasAdSize ? 4 : 2);
611 insn->immediateSize = (insn->hasOpSize ? 4 : 2);
612 } else if (insn->mode == MODE_32BIT) {
613 insn->registerSize = (insn->hasOpSize ? 2 : 4);
614 insn->addressSize = (insn->hasAdSize ? 2 : 4);
615 insn->displacementSize = (insn->hasAdSize ? 2 : 4);
616 insn->immediateSize = (insn->hasOpSize ? 2 : 4);
617 } else if (insn->mode == MODE_64BIT) {
618 if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
619 insn->registerSize = 8;
620 insn->addressSize = (insn->hasAdSize ? 4 : 8);
621 insn->displacementSize = 4;
622 insn->immediateSize = 4;
623 } else {
624 insn->registerSize = (insn->hasOpSize ? 2 : 4);
625 insn->addressSize = (insn->hasAdSize ? 4 : 8);
626 insn->displacementSize = (insn->hasOpSize ? 2 : 4);
627 insn->immediateSize = (insn->hasOpSize ? 2 : 4);
631 return 0;
634 static int readModRM(struct InternalInstruction* insn);
637 * readOpcode - Reads the opcode (excepting the ModR/M byte in the case of
638 * extended or escape opcodes).
640 * @param insn - The instruction whose opcode is to be read.
641 * @return - 0 if the opcode could be read successfully; nonzero otherwise.
643 static int readOpcode(struct InternalInstruction* insn) {
644 /* Determine the length of the primary opcode */
646 uint8_t current;
648 dbgprintf(insn, "readOpcode()");
650 insn->opcodeType = ONEBYTE;
652 if (insn->vectorExtensionType == TYPE_EVEX) {
653 switch (mmFromEVEX2of4(insn->vectorExtensionPrefix[1])) {
654 default:
655 dbgprintf(insn, "Unhandled mm field for instruction (0x%hhx)",
656 mmFromEVEX2of4(insn->vectorExtensionPrefix[1]));
657 return -1;
658 case VEX_LOB_0F:
659 insn->opcodeType = TWOBYTE;
660 return consumeByte(insn, &insn->opcode);
661 case VEX_LOB_0F38:
662 insn->opcodeType = THREEBYTE_38;
663 return consumeByte(insn, &insn->opcode);
664 case VEX_LOB_0F3A:
665 insn->opcodeType = THREEBYTE_3A;
666 return consumeByte(insn, &insn->opcode);
668 } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
669 switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) {
670 default:
671 dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
672 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]));
673 return -1;
674 case VEX_LOB_0F:
675 insn->opcodeType = TWOBYTE;
676 return consumeByte(insn, &insn->opcode);
677 case VEX_LOB_0F38:
678 insn->opcodeType = THREEBYTE_38;
679 return consumeByte(insn, &insn->opcode);
680 case VEX_LOB_0F3A:
681 insn->opcodeType = THREEBYTE_3A;
682 return consumeByte(insn, &insn->opcode);
684 } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
685 insn->opcodeType = TWOBYTE;
686 return consumeByte(insn, &insn->opcode);
687 } else if (insn->vectorExtensionType == TYPE_XOP) {
688 switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) {
689 default:
690 dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
691 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]));
692 return -1;
693 case XOP_MAP_SELECT_8:
694 insn->opcodeType = XOP8_MAP;
695 return consumeByte(insn, &insn->opcode);
696 case XOP_MAP_SELECT_9:
697 insn->opcodeType = XOP9_MAP;
698 return consumeByte(insn, &insn->opcode);
699 case XOP_MAP_SELECT_A:
700 insn->opcodeType = XOPA_MAP;
701 return consumeByte(insn, &insn->opcode);
705 if (consumeByte(insn, &current))
706 return -1;
708 if (current == 0x0f) {
709 dbgprintf(insn, "Found a two-byte escape prefix (0x%hhx)", current);
711 if (consumeByte(insn, &current))
712 return -1;
714 if (current == 0x38) {
715 dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
717 if (consumeByte(insn, &current))
718 return -1;
720 insn->opcodeType = THREEBYTE_38;
721 } else if (current == 0x3a) {
722 dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
724 if (consumeByte(insn, &current))
725 return -1;
727 insn->opcodeType = THREEBYTE_3A;
728 } else if (current == 0x0f) {
729 dbgprintf(insn, "Found a 3dnow escape prefix (0x%hhx)", current);
731 // Consume operands before the opcode to comply with the 3DNow encoding
732 if (readModRM(insn))
733 return -1;
735 if (consumeByte(insn, &current))
736 return -1;
738 insn->opcodeType = THREEDNOW_MAP;
739 } else {
740 dbgprintf(insn, "Didn't find a three-byte escape prefix");
742 insn->opcodeType = TWOBYTE;
744 } else if (insn->mandatoryPrefix)
745 // The opcode with mandatory prefix must start with opcode escape.
746 // If not it's legacy repeat prefix
747 insn->mandatoryPrefix = 0;
750 * At this point we have consumed the full opcode.
751 * Anything we consume from here on must be unconsumed.
754 insn->opcode = current;
756 return 0;
760 * getIDWithAttrMask - Determines the ID of an instruction, consuming
761 * the ModR/M byte as appropriate for extended and escape opcodes,
762 * and using a supplied attribute mask.
764 * @param instructionID - A pointer whose target is filled in with the ID of the
765 * instruction.
766 * @param insn - The instruction whose ID is to be determined.
767 * @param attrMask - The attribute mask to search.
768 * @return - 0 if the ModR/M could be read when needed or was not
769 * needed; nonzero otherwise.
771 static int getIDWithAttrMask(uint16_t* instructionID,
772 struct InternalInstruction* insn,
773 uint16_t attrMask) {
774 bool hasModRMExtension;
776 InstructionContext instructionClass = contextForAttrs(attrMask);
778 hasModRMExtension = modRMRequired(insn->opcodeType,
779 instructionClass,
780 insn->opcode);
782 if (hasModRMExtension) {
783 if (readModRM(insn))
784 return -1;
786 *instructionID = decode(insn->opcodeType,
787 instructionClass,
788 insn->opcode,
789 insn->modRM);
790 } else {
791 *instructionID = decode(insn->opcodeType,
792 instructionClass,
793 insn->opcode,
797 return 0;
801 * is16BitEquivalent - Determines whether two instruction names refer to
802 * equivalent instructions but one is 16-bit whereas the other is not.
804 * @param orig - The instruction that is not 16-bit
805 * @param equiv - The instruction that is 16-bit
807 static bool is16BitEquivalent(const char *orig, const char *equiv) {
808 off_t i;
810 for (i = 0;; i++) {
811 if (orig[i] == '\0' && equiv[i] == '\0')
812 return true;
813 if (orig[i] == '\0' || equiv[i] == '\0')
814 return false;
815 if (orig[i] != equiv[i]) {
816 if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
817 continue;
818 if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
819 continue;
820 if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
821 continue;
822 return false;
828 * is64Bit - Determines whether this instruction is a 64-bit instruction.
830 * @param name - The instruction that is not 16-bit
832 static bool is64Bit(const char *name) {
833 off_t i;
835 for (i = 0;; ++i) {
836 if (name[i] == '\0')
837 return false;
838 if (name[i] == '6' && name[i+1] == '4')
839 return true;
844 * getID - Determines the ID of an instruction, consuming the ModR/M byte as
845 * appropriate for extended and escape opcodes. Determines the attributes and
846 * context for the instruction before doing so.
848 * @param insn - The instruction whose ID is to be determined.
849 * @return - 0 if the ModR/M could be read when needed or was not needed;
850 * nonzero otherwise.
852 static int getID(struct InternalInstruction* insn, const void *miiArg) {
853 uint16_t attrMask;
854 uint16_t instructionID;
856 dbgprintf(insn, "getID()");
858 attrMask = ATTR_NONE;
860 if (insn->mode == MODE_64BIT)
861 attrMask |= ATTR_64BIT;
863 if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
864 attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX;
866 if (insn->vectorExtensionType == TYPE_EVEX) {
867 switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) {
868 case VEX_PREFIX_66:
869 attrMask |= ATTR_OPSIZE;
870 break;
871 case VEX_PREFIX_F3:
872 attrMask |= ATTR_XS;
873 break;
874 case VEX_PREFIX_F2:
875 attrMask |= ATTR_XD;
876 break;
879 if (zFromEVEX4of4(insn->vectorExtensionPrefix[3]))
880 attrMask |= ATTR_EVEXKZ;
881 if (bFromEVEX4of4(insn->vectorExtensionPrefix[3]))
882 attrMask |= ATTR_EVEXB;
883 if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]))
884 attrMask |= ATTR_EVEXK;
885 if (lFromEVEX4of4(insn->vectorExtensionPrefix[3]))
886 attrMask |= ATTR_EVEXL;
887 if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
888 attrMask |= ATTR_EVEXL2;
889 } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
890 switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
891 case VEX_PREFIX_66:
892 attrMask |= ATTR_OPSIZE;
893 break;
894 case VEX_PREFIX_F3:
895 attrMask |= ATTR_XS;
896 break;
897 case VEX_PREFIX_F2:
898 attrMask |= ATTR_XD;
899 break;
902 if (lFromVEX3of3(insn->vectorExtensionPrefix[2]))
903 attrMask |= ATTR_VEXL;
904 } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
905 switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
906 case VEX_PREFIX_66:
907 attrMask |= ATTR_OPSIZE;
908 break;
909 case VEX_PREFIX_F3:
910 attrMask |= ATTR_XS;
911 break;
912 case VEX_PREFIX_F2:
913 attrMask |= ATTR_XD;
914 break;
917 if (lFromVEX2of2(insn->vectorExtensionPrefix[1]))
918 attrMask |= ATTR_VEXL;
919 } else if (insn->vectorExtensionType == TYPE_XOP) {
920 switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
921 case VEX_PREFIX_66:
922 attrMask |= ATTR_OPSIZE;
923 break;
924 case VEX_PREFIX_F3:
925 attrMask |= ATTR_XS;
926 break;
927 case VEX_PREFIX_F2:
928 attrMask |= ATTR_XD;
929 break;
932 if (lFromXOP3of3(insn->vectorExtensionPrefix[2]))
933 attrMask |= ATTR_VEXL;
934 } else {
935 return -1;
937 } else if (!insn->mandatoryPrefix) {
938 // If we don't have mandatory prefix we should use legacy prefixes here
939 if (insn->hasOpSize && (insn->mode != MODE_16BIT))
940 attrMask |= ATTR_OPSIZE;
941 if (insn->hasAdSize)
942 attrMask |= ATTR_ADSIZE;
943 if (insn->opcodeType == ONEBYTE) {
944 if (insn->repeatPrefix == 0xf3 && (insn->opcode == 0x90))
945 // Special support for PAUSE
946 attrMask |= ATTR_XS;
947 } else {
948 if (insn->repeatPrefix == 0xf2)
949 attrMask |= ATTR_XD;
950 else if (insn->repeatPrefix == 0xf3)
951 attrMask |= ATTR_XS;
953 } else {
954 switch (insn->mandatoryPrefix) {
955 case 0xf2:
956 attrMask |= ATTR_XD;
957 break;
958 case 0xf3:
959 attrMask |= ATTR_XS;
960 break;
961 case 0x66:
962 if (insn->mode != MODE_16BIT)
963 attrMask |= ATTR_OPSIZE;
964 break;
965 case 0x67:
966 attrMask |= ATTR_ADSIZE;
967 break;
972 if (insn->rexPrefix & 0x08) {
973 attrMask |= ATTR_REXW;
974 attrMask &= ~ATTR_ADSIZE;
978 * JCXZ/JECXZ need special handling for 16-bit mode because the meaning
979 * of the AdSize prefix is inverted w.r.t. 32-bit mode.
981 if (insn->mode == MODE_16BIT && insn->opcodeType == ONEBYTE &&
982 insn->opcode == 0xE3)
983 attrMask ^= ATTR_ADSIZE;
985 // If we're in 16-bit mode and this is one of the relative jumps and opsize
986 // prefix isn't present, we need to force the opsize attribute since the
987 // prefix is inverted relative to 32-bit mode.
988 if (insn->mode == MODE_16BIT && !insn->hasOpSize &&
989 insn->opcodeType == ONEBYTE &&
990 (insn->opcode == 0xE8 || insn->opcode == 0xE9))
991 attrMask |= ATTR_OPSIZE;
993 if (insn->mode == MODE_16BIT && !insn->hasOpSize &&
994 insn->opcodeType == TWOBYTE &&
995 insn->opcode >= 0x80 && insn->opcode <= 0x8F)
996 attrMask |= ATTR_OPSIZE;
998 if (getIDWithAttrMask(&instructionID, insn, attrMask))
999 return -1;
1001 /* The following clauses compensate for limitations of the tables. */
1003 if (insn->mode != MODE_64BIT &&
1004 insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
1006 * The tables can't distinquish between cases where the W-bit is used to
1007 * select register size and cases where its a required part of the opcode.
1009 if ((insn->vectorExtensionType == TYPE_EVEX &&
1010 wFromEVEX3of4(insn->vectorExtensionPrefix[2])) ||
1011 (insn->vectorExtensionType == TYPE_VEX_3B &&
1012 wFromVEX3of3(insn->vectorExtensionPrefix[2])) ||
1013 (insn->vectorExtensionType == TYPE_XOP &&
1014 wFromXOP3of3(insn->vectorExtensionPrefix[2]))) {
1016 uint16_t instructionIDWithREXW;
1017 if (getIDWithAttrMask(&instructionIDWithREXW,
1018 insn, attrMask | ATTR_REXW)) {
1019 insn->instructionID = instructionID;
1020 insn->spec = specifierForUID(instructionID);
1021 return 0;
1024 auto SpecName = GetInstrName(instructionIDWithREXW, miiArg);
1025 // If not a 64-bit instruction. Switch the opcode.
1026 if (!is64Bit(SpecName.data())) {
1027 insn->instructionID = instructionIDWithREXW;
1028 insn->spec = specifierForUID(instructionIDWithREXW);
1029 return 0;
1035 * Absolute moves, umonitor, and movdir64b need special handling.
1036 * -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are
1037 * inverted w.r.t.
1038 * -For 32-bit mode we need to ensure the ADSIZE prefix is observed in
1039 * any position.
1041 if ((insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) ||
1042 (insn->opcodeType == TWOBYTE && (insn->opcode == 0xAE)) ||
1043 (insn->opcodeType == THREEBYTE_38 && insn->opcode == 0xF8)) {
1044 /* Make sure we observed the prefixes in any position. */
1045 if (insn->hasAdSize)
1046 attrMask |= ATTR_ADSIZE;
1047 if (insn->hasOpSize)
1048 attrMask |= ATTR_OPSIZE;
1050 /* In 16-bit, invert the attributes. */
1051 if (insn->mode == MODE_16BIT) {
1052 attrMask ^= ATTR_ADSIZE;
1054 /* The OpSize attribute is only valid with the absolute moves. */
1055 if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0))
1056 attrMask ^= ATTR_OPSIZE;
1059 if (getIDWithAttrMask(&instructionID, insn, attrMask))
1060 return -1;
1062 insn->instructionID = instructionID;
1063 insn->spec = specifierForUID(instructionID);
1064 return 0;
1067 if ((insn->mode == MODE_16BIT || insn->hasOpSize) &&
1068 !(attrMask & ATTR_OPSIZE)) {
1070 * The instruction tables make no distinction between instructions that
1071 * allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
1072 * particular spot (i.e., many MMX operations). In general we're
1073 * conservative, but in the specific case where OpSize is present but not
1074 * in the right place we check if there's a 16-bit operation.
1077 const struct InstructionSpecifier *spec;
1078 uint16_t instructionIDWithOpsize;
1079 llvm::StringRef specName, specWithOpSizeName;
1081 spec = specifierForUID(instructionID);
1083 if (getIDWithAttrMask(&instructionIDWithOpsize,
1084 insn,
1085 attrMask | ATTR_OPSIZE)) {
1087 * ModRM required with OpSize but not present; give up and return version
1088 * without OpSize set
1091 insn->instructionID = instructionID;
1092 insn->spec = spec;
1093 return 0;
1096 specName = GetInstrName(instructionID, miiArg);
1097 specWithOpSizeName = GetInstrName(instructionIDWithOpsize, miiArg);
1099 if (is16BitEquivalent(specName.data(), specWithOpSizeName.data()) &&
1100 (insn->mode == MODE_16BIT) ^ insn->hasOpSize) {
1101 insn->instructionID = instructionIDWithOpsize;
1102 insn->spec = specifierForUID(instructionIDWithOpsize);
1103 } else {
1104 insn->instructionID = instructionID;
1105 insn->spec = spec;
1107 return 0;
1110 if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
1111 insn->rexPrefix & 0x01) {
1113 * NOOP shouldn't decode as NOOP if REX.b is set. Instead
1114 * it should decode as XCHG %r8, %eax.
1117 const struct InstructionSpecifier *spec;
1118 uint16_t instructionIDWithNewOpcode;
1119 const struct InstructionSpecifier *specWithNewOpcode;
1121 spec = specifierForUID(instructionID);
1123 /* Borrow opcode from one of the other XCHGar opcodes */
1124 insn->opcode = 0x91;
1126 if (getIDWithAttrMask(&instructionIDWithNewOpcode,
1127 insn,
1128 attrMask)) {
1129 insn->opcode = 0x90;
1131 insn->instructionID = instructionID;
1132 insn->spec = spec;
1133 return 0;
1136 specWithNewOpcode = specifierForUID(instructionIDWithNewOpcode);
1138 /* Change back */
1139 insn->opcode = 0x90;
1141 insn->instructionID = instructionIDWithNewOpcode;
1142 insn->spec = specWithNewOpcode;
1144 return 0;
1147 insn->instructionID = instructionID;
1148 insn->spec = specifierForUID(insn->instructionID);
1150 return 0;
1154 * readSIB - Consumes the SIB byte to determine addressing information for an
1155 * instruction.
1157 * @param insn - The instruction whose SIB byte is to be read.
1158 * @return - 0 if the SIB byte was successfully read; nonzero otherwise.
1160 static int readSIB(struct InternalInstruction* insn) {
1161 SIBBase sibBaseBase = SIB_BASE_NONE;
1162 uint8_t index, base;
1164 dbgprintf(insn, "readSIB()");
1166 if (insn->consumedSIB)
1167 return 0;
1169 insn->consumedSIB = true;
1171 switch (insn->addressSize) {
1172 case 2:
1173 dbgprintf(insn, "SIB-based addressing doesn't work in 16-bit mode");
1174 return -1;
1175 case 4:
1176 insn->sibIndexBase = SIB_INDEX_EAX;
1177 sibBaseBase = SIB_BASE_EAX;
1178 break;
1179 case 8:
1180 insn->sibIndexBase = SIB_INDEX_RAX;
1181 sibBaseBase = SIB_BASE_RAX;
1182 break;
1185 if (consumeByte(insn, &insn->sib))
1186 return -1;
1188 index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);
1190 if (index == 0x4) {
1191 insn->sibIndex = SIB_INDEX_NONE;
1192 } else {
1193 insn->sibIndex = (SIBIndex)(insn->sibIndexBase + index);
1196 insn->sibScale = 1 << scaleFromSIB(insn->sib);
1198 base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);
1200 switch (base) {
1201 case 0x5:
1202 case 0xd:
1203 switch (modFromModRM(insn->modRM)) {
1204 case 0x0:
1205 insn->eaDisplacement = EA_DISP_32;
1206 insn->sibBase = SIB_BASE_NONE;
1207 break;
1208 case 0x1:
1209 insn->eaDisplacement = EA_DISP_8;
1210 insn->sibBase = (SIBBase)(sibBaseBase + base);
1211 break;
1212 case 0x2:
1213 insn->eaDisplacement = EA_DISP_32;
1214 insn->sibBase = (SIBBase)(sibBaseBase + base);
1215 break;
1216 case 0x3:
1217 debug("Cannot have Mod = 0b11 and a SIB byte");
1218 return -1;
1220 break;
1221 default:
1222 insn->sibBase = (SIBBase)(sibBaseBase + base);
1223 break;
1226 return 0;
1230 * readDisplacement - Consumes the displacement of an instruction.
1232 * @param insn - The instruction whose displacement is to be read.
1233 * @return - 0 if the displacement byte was successfully read; nonzero
1234 * otherwise.
1236 static int readDisplacement(struct InternalInstruction* insn) {
1237 int8_t d8;
1238 int16_t d16;
1239 int32_t d32;
1241 dbgprintf(insn, "readDisplacement()");
1243 if (insn->consumedDisplacement)
1244 return 0;
1246 insn->consumedDisplacement = true;
1247 insn->displacementOffset = insn->readerCursor - insn->startLocation;
1249 switch (insn->eaDisplacement) {
1250 case EA_DISP_NONE:
1251 insn->consumedDisplacement = false;
1252 break;
1253 case EA_DISP_8:
1254 if (consumeInt8(insn, &d8))
1255 return -1;
1256 insn->displacement = d8;
1257 break;
1258 case EA_DISP_16:
1259 if (consumeInt16(insn, &d16))
1260 return -1;
1261 insn->displacement = d16;
1262 break;
1263 case EA_DISP_32:
1264 if (consumeInt32(insn, &d32))
1265 return -1;
1266 insn->displacement = d32;
1267 break;
1270 insn->consumedDisplacement = true;
1271 return 0;
1275 * readModRM - Consumes all addressing information (ModR/M byte, SIB byte, and
1276 * displacement) for an instruction and interprets it.
1278 * @param insn - The instruction whose addressing information is to be read.
1279 * @return - 0 if the information was successfully read; nonzero otherwise.
1281 static int readModRM(struct InternalInstruction* insn) {
1282 uint8_t mod, rm, reg, evexrm;
1284 dbgprintf(insn, "readModRM()");
1286 if (insn->consumedModRM)
1287 return 0;
1289 if (consumeByte(insn, &insn->modRM))
1290 return -1;
1291 insn->consumedModRM = true;
1293 mod = modFromModRM(insn->modRM);
1294 rm = rmFromModRM(insn->modRM);
1295 reg = regFromModRM(insn->modRM);
1298 * This goes by insn->registerSize to pick the correct register, which messes
1299 * up if we're using (say) XMM or 8-bit register operands. That gets fixed in
1300 * fixupReg().
1302 switch (insn->registerSize) {
1303 case 2:
1304 insn->regBase = MODRM_REG_AX;
1305 insn->eaRegBase = EA_REG_AX;
1306 break;
1307 case 4:
1308 insn->regBase = MODRM_REG_EAX;
1309 insn->eaRegBase = EA_REG_EAX;
1310 break;
1311 case 8:
1312 insn->regBase = MODRM_REG_RAX;
1313 insn->eaRegBase = EA_REG_RAX;
1314 break;
1317 reg |= rFromREX(insn->rexPrefix) << 3;
1318 rm |= bFromREX(insn->rexPrefix) << 3;
1320 evexrm = 0;
1321 if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT) {
1322 reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
1323 evexrm = xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
1326 insn->reg = (Reg)(insn->regBase + reg);
1328 switch (insn->addressSize) {
1329 case 2: {
1330 EABase eaBaseBase = EA_BASE_BX_SI;
1332 switch (mod) {
1333 case 0x0:
1334 if (rm == 0x6) {
1335 insn->eaBase = EA_BASE_NONE;
1336 insn->eaDisplacement = EA_DISP_16;
1337 if (readDisplacement(insn))
1338 return -1;
1339 } else {
1340 insn->eaBase = (EABase)(eaBaseBase + rm);
1341 insn->eaDisplacement = EA_DISP_NONE;
1343 break;
1344 case 0x1:
1345 insn->eaBase = (EABase)(eaBaseBase + rm);
1346 insn->eaDisplacement = EA_DISP_8;
1347 insn->displacementSize = 1;
1348 if (readDisplacement(insn))
1349 return -1;
1350 break;
1351 case 0x2:
1352 insn->eaBase = (EABase)(eaBaseBase + rm);
1353 insn->eaDisplacement = EA_DISP_16;
1354 if (readDisplacement(insn))
1355 return -1;
1356 break;
1357 case 0x3:
1358 insn->eaBase = (EABase)(insn->eaRegBase + rm);
1359 if (readDisplacement(insn))
1360 return -1;
1361 break;
1363 break;
1365 case 4:
1366 case 8: {
1367 EABase eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
1369 switch (mod) {
1370 case 0x0:
1371 insn->eaDisplacement = EA_DISP_NONE; /* readSIB may override this */
1372 // In determining whether RIP-relative mode is used (rm=5),
1373 // or whether a SIB byte is present (rm=4),
1374 // the extension bits (REX.b and EVEX.x) are ignored.
1375 switch (rm & 7) {
1376 case 0x4: // SIB byte is present
1377 insn->eaBase = (insn->addressSize == 4 ?
1378 EA_BASE_sib : EA_BASE_sib64);
1379 if (readSIB(insn) || readDisplacement(insn))
1380 return -1;
1381 break;
1382 case 0x5: // RIP-relative
1383 insn->eaBase = EA_BASE_NONE;
1384 insn->eaDisplacement = EA_DISP_32;
1385 if (readDisplacement(insn))
1386 return -1;
1387 break;
1388 default:
1389 insn->eaBase = (EABase)(eaBaseBase + rm);
1390 break;
1392 break;
1393 case 0x1:
1394 insn->displacementSize = 1;
1395 LLVM_FALLTHROUGH;
1396 case 0x2:
1397 insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
1398 switch (rm & 7) {
1399 case 0x4: // SIB byte is present
1400 insn->eaBase = EA_BASE_sib;
1401 if (readSIB(insn) || readDisplacement(insn))
1402 return -1;
1403 break;
1404 default:
1405 insn->eaBase = (EABase)(eaBaseBase + rm);
1406 if (readDisplacement(insn))
1407 return -1;
1408 break;
1410 break;
1411 case 0x3:
1412 insn->eaDisplacement = EA_DISP_NONE;
1413 insn->eaBase = (EABase)(insn->eaRegBase + rm + evexrm);
1414 break;
1416 break;
1418 } /* switch (insn->addressSize) */
1420 return 0;
1423 #define GENERIC_FIXUP_FUNC(name, base, prefix, mask) \
1424 static uint16_t name(struct InternalInstruction *insn, \
1425 OperandType type, \
1426 uint8_t index, \
1427 uint8_t *valid) { \
1428 *valid = 1; \
1429 switch (type) { \
1430 default: \
1431 debug("Unhandled register type"); \
1432 *valid = 0; \
1433 return 0; \
1434 case TYPE_Rv: \
1435 return base + index; \
1436 case TYPE_R8: \
1437 index &= mask; \
1438 if (index > 0xf) \
1439 *valid = 0; \
1440 if (insn->rexPrefix && \
1441 index >= 4 && index <= 7) { \
1442 return prefix##_SPL + (index - 4); \
1443 } else { \
1444 return prefix##_AL + index; \
1446 case TYPE_R16: \
1447 index &= mask; \
1448 if (index > 0xf) \
1449 *valid = 0; \
1450 return prefix##_AX + index; \
1451 case TYPE_R32: \
1452 index &= mask; \
1453 if (index > 0xf) \
1454 *valid = 0; \
1455 return prefix##_EAX + index; \
1456 case TYPE_R64: \
1457 index &= mask; \
1458 if (index > 0xf) \
1459 *valid = 0; \
1460 return prefix##_RAX + index; \
1461 case TYPE_ZMM: \
1462 return prefix##_ZMM0 + index; \
1463 case TYPE_YMM: \
1464 return prefix##_YMM0 + index; \
1465 case TYPE_XMM: \
1466 return prefix##_XMM0 + index; \
1467 case TYPE_VK: \
1468 index &= 0xf; \
1469 if (index > 7) \
1470 *valid = 0; \
1471 return prefix##_K0 + index; \
1472 case TYPE_MM64: \
1473 return prefix##_MM0 + (index & 0x7); \
1474 case TYPE_SEGMENTREG: \
1475 if ((index & 7) > 5) \
1476 *valid = 0; \
1477 return prefix##_ES + (index & 7); \
1478 case TYPE_DEBUGREG: \
1479 return prefix##_DR0 + index; \
1480 case TYPE_CONTROLREG: \
1481 return prefix##_CR0 + index; \
1482 case TYPE_BNDR: \
1483 if (index > 3) \
1484 *valid = 0; \
1485 return prefix##_BND0 + index; \
1486 case TYPE_MVSIBX: \
1487 return prefix##_XMM0 + index; \
1488 case TYPE_MVSIBY: \
1489 return prefix##_YMM0 + index; \
1490 case TYPE_MVSIBZ: \
1491 return prefix##_ZMM0 + index; \
1496 * fixup*Value - Consults an operand type to determine the meaning of the
1497 * reg or R/M field. If the operand is an XMM operand, for example, an
1498 * operand would be XMM0 instead of AX, which readModRM() would otherwise
1499 * misinterpret it as.
1501 * @param insn - The instruction containing the operand.
1502 * @param type - The operand type.
1503 * @param index - The existing value of the field as reported by readModRM().
1504 * @param valid - The address of a uint8_t. The target is set to 1 if the
1505 * field is valid for the register class; 0 if not.
1506 * @return - The proper value.
1508 GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG, 0x1f)
1509 GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG, 0xf)
1512 * fixupReg - Consults an operand specifier to determine which of the
1513 * fixup*Value functions to use in correcting readModRM()'ss interpretation.
1515 * @param insn - See fixup*Value().
1516 * @param op - The operand specifier.
1517 * @return - 0 if fixup was successful; -1 if the register returned was
1518 * invalid for its class.
1520 static int fixupReg(struct InternalInstruction *insn,
1521 const struct OperandSpecifier *op) {
1522 uint8_t valid;
1524 dbgprintf(insn, "fixupReg()");
1526 switch ((OperandEncoding)op->encoding) {
1527 default:
1528 debug("Expected a REG or R/M encoding in fixupReg");
1529 return -1;
1530 case ENCODING_VVVV:
1531 insn->vvvv = (Reg)fixupRegValue(insn,
1532 (OperandType)op->type,
1533 insn->vvvv,
1534 &valid);
1535 if (!valid)
1536 return -1;
1537 break;
1538 case ENCODING_REG:
1539 insn->reg = (Reg)fixupRegValue(insn,
1540 (OperandType)op->type,
1541 insn->reg - insn->regBase,
1542 &valid);
1543 if (!valid)
1544 return -1;
1545 break;
1546 CASE_ENCODING_RM:
1547 if (insn->eaBase >= insn->eaRegBase) {
1548 insn->eaBase = (EABase)fixupRMValue(insn,
1549 (OperandType)op->type,
1550 insn->eaBase - insn->eaRegBase,
1551 &valid);
1552 if (!valid)
1553 return -1;
1555 break;
1558 return 0;
1562 * readOpcodeRegister - Reads an operand from the opcode field of an
1563 * instruction and interprets it appropriately given the operand width.
1564 * Handles AddRegFrm instructions.
1566 * @param insn - the instruction whose opcode field is to be read.
1567 * @param size - The width (in bytes) of the register being specified.
1568 * 1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
1569 * RAX.
1570 * @return - 0 on success; nonzero otherwise.
1572 static int readOpcodeRegister(struct InternalInstruction* insn, uint8_t size) {
1573 dbgprintf(insn, "readOpcodeRegister()");
1575 if (size == 0)
1576 size = insn->registerSize;
1578 switch (size) {
1579 case 1:
1580 insn->opcodeRegister = (Reg)(MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3)
1581 | (insn->opcode & 7)));
1582 if (insn->rexPrefix &&
1583 insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
1584 insn->opcodeRegister < MODRM_REG_AL + 0x8) {
1585 insn->opcodeRegister = (Reg)(MODRM_REG_SPL
1586 + (insn->opcodeRegister - MODRM_REG_AL - 4));
1589 break;
1590 case 2:
1591 insn->opcodeRegister = (Reg)(MODRM_REG_AX
1592 + ((bFromREX(insn->rexPrefix) << 3)
1593 | (insn->opcode & 7)));
1594 break;
1595 case 4:
1596 insn->opcodeRegister = (Reg)(MODRM_REG_EAX
1597 + ((bFromREX(insn->rexPrefix) << 3)
1598 | (insn->opcode & 7)));
1599 break;
1600 case 8:
1601 insn->opcodeRegister = (Reg)(MODRM_REG_RAX
1602 + ((bFromREX(insn->rexPrefix) << 3)
1603 | (insn->opcode & 7)));
1604 break;
1607 return 0;
1611 * readImmediate - Consumes an immediate operand from an instruction, given the
1612 * desired operand size.
1614 * @param insn - The instruction whose operand is to be read.
1615 * @param size - The width (in bytes) of the operand.
1616 * @return - 0 if the immediate was successfully consumed; nonzero
1617 * otherwise.
1619 static int readImmediate(struct InternalInstruction* insn, uint8_t size) {
1620 uint8_t imm8;
1621 uint16_t imm16;
1622 uint32_t imm32;
1623 uint64_t imm64;
1625 dbgprintf(insn, "readImmediate()");
1627 if (insn->numImmediatesConsumed == 2) {
1628 debug("Already consumed two immediates");
1629 return -1;
1632 if (size == 0)
1633 size = insn->immediateSize;
1634 else
1635 insn->immediateSize = size;
1636 insn->immediateOffset = insn->readerCursor - insn->startLocation;
1638 switch (size) {
1639 case 1:
1640 if (consumeByte(insn, &imm8))
1641 return -1;
1642 insn->immediates[insn->numImmediatesConsumed] = imm8;
1643 break;
1644 case 2:
1645 if (consumeUInt16(insn, &imm16))
1646 return -1;
1647 insn->immediates[insn->numImmediatesConsumed] = imm16;
1648 break;
1649 case 4:
1650 if (consumeUInt32(insn, &imm32))
1651 return -1;
1652 insn->immediates[insn->numImmediatesConsumed] = imm32;
1653 break;
1654 case 8:
1655 if (consumeUInt64(insn, &imm64))
1656 return -1;
1657 insn->immediates[insn->numImmediatesConsumed] = imm64;
1658 break;
1661 insn->numImmediatesConsumed++;
1663 return 0;
1667 * readVVVV - Consumes vvvv from an instruction if it has a VEX prefix.
1669 * @param insn - The instruction whose operand is to be read.
1670 * @return - 0 if the vvvv was successfully consumed; nonzero
1671 * otherwise.
1673 static int readVVVV(struct InternalInstruction* insn) {
1674 dbgprintf(insn, "readVVVV()");
1676 int vvvv;
1677 if (insn->vectorExtensionType == TYPE_EVEX)
1678 vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 |
1679 vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2]));
1680 else if (insn->vectorExtensionType == TYPE_VEX_3B)
1681 vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]);
1682 else if (insn->vectorExtensionType == TYPE_VEX_2B)
1683 vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]);
1684 else if (insn->vectorExtensionType == TYPE_XOP)
1685 vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]);
1686 else
1687 return -1;
1689 if (insn->mode != MODE_64BIT)
1690 vvvv &= 0xf; // Can only clear bit 4. Bit 3 must be cleared later.
1692 insn->vvvv = static_cast<Reg>(vvvv);
1693 return 0;
1697 * readMaskRegister - Reads an mask register from the opcode field of an
1698 * instruction.
1700 * @param insn - The instruction whose opcode field is to be read.
1701 * @return - 0 on success; nonzero otherwise.
1703 static int readMaskRegister(struct InternalInstruction* insn) {
1704 dbgprintf(insn, "readMaskRegister()");
1706 if (insn->vectorExtensionType != TYPE_EVEX)
1707 return -1;
1709 insn->writemask =
1710 static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]));
1711 return 0;
1715 * readOperands - Consults the specifier for an instruction and consumes all
1716 * operands for that instruction, interpreting them as it goes.
1718 * @param insn - The instruction whose operands are to be read and interpreted.
1719 * @return - 0 if all operands could be read; nonzero otherwise.
1721 static int readOperands(struct InternalInstruction* insn) {
1722 int hasVVVV, needVVVV;
1723 int sawRegImm = 0;
1725 dbgprintf(insn, "readOperands()");
1727 /* If non-zero vvvv specified, need to make sure one of the operands
1728 uses it. */
1729 hasVVVV = !readVVVV(insn);
1730 needVVVV = hasVVVV && (insn->vvvv != 0);
1732 for (const auto &Op : x86OperandSets[insn->spec->operands]) {
1733 switch (Op.encoding) {
1734 case ENCODING_NONE:
1735 case ENCODING_SI:
1736 case ENCODING_DI:
1737 break;
1738 CASE_ENCODING_VSIB:
1739 // VSIB can use the V2 bit so check only the other bits.
1740 if (needVVVV)
1741 needVVVV = hasVVVV & ((insn->vvvv & 0xf) != 0);
1742 if (readModRM(insn))
1743 return -1;
1745 // Reject if SIB wasn't used.
1746 if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
1747 return -1;
1749 // If sibIndex was set to SIB_INDEX_NONE, index offset is 4.
1750 if (insn->sibIndex == SIB_INDEX_NONE)
1751 insn->sibIndex = (SIBIndex)(insn->sibIndexBase + 4);
1753 // If EVEX.v2 is set this is one of the 16-31 registers.
1754 if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT &&
1755 v2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
1756 insn->sibIndex = (SIBIndex)(insn->sibIndex + 16);
1758 // Adjust the index register to the correct size.
1759 switch ((OperandType)Op.type) {
1760 default:
1761 debug("Unhandled VSIB index type");
1762 return -1;
1763 case TYPE_MVSIBX:
1764 insn->sibIndex = (SIBIndex)(SIB_INDEX_XMM0 +
1765 (insn->sibIndex - insn->sibIndexBase));
1766 break;
1767 case TYPE_MVSIBY:
1768 insn->sibIndex = (SIBIndex)(SIB_INDEX_YMM0 +
1769 (insn->sibIndex - insn->sibIndexBase));
1770 break;
1771 case TYPE_MVSIBZ:
1772 insn->sibIndex = (SIBIndex)(SIB_INDEX_ZMM0 +
1773 (insn->sibIndex - insn->sibIndexBase));
1774 break;
1777 // Apply the AVX512 compressed displacement scaling factor.
1778 if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1779 insn->displacement *= 1 << (Op.encoding - ENCODING_VSIB);
1780 break;
1781 case ENCODING_REG:
1782 CASE_ENCODING_RM:
1783 if (readModRM(insn))
1784 return -1;
1785 if (fixupReg(insn, &Op))
1786 return -1;
1787 // Apply the AVX512 compressed displacement scaling factor.
1788 if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1789 insn->displacement *= 1 << (Op.encoding - ENCODING_RM);
1790 break;
1791 case ENCODING_IB:
1792 if (sawRegImm) {
1793 /* Saw a register immediate so don't read again and instead split the
1794 previous immediate. FIXME: This is a hack. */
1795 insn->immediates[insn->numImmediatesConsumed] =
1796 insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
1797 ++insn->numImmediatesConsumed;
1798 break;
1800 if (readImmediate(insn, 1))
1801 return -1;
1802 if (Op.type == TYPE_XMM || Op.type == TYPE_YMM)
1803 sawRegImm = 1;
1804 break;
1805 case ENCODING_IW:
1806 if (readImmediate(insn, 2))
1807 return -1;
1808 break;
1809 case ENCODING_ID:
1810 if (readImmediate(insn, 4))
1811 return -1;
1812 break;
1813 case ENCODING_IO:
1814 if (readImmediate(insn, 8))
1815 return -1;
1816 break;
1817 case ENCODING_Iv:
1818 if (readImmediate(insn, insn->immediateSize))
1819 return -1;
1820 break;
1821 case ENCODING_Ia:
1822 if (readImmediate(insn, insn->addressSize))
1823 return -1;
1824 break;
1825 case ENCODING_IRC:
1826 insn->RC = (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 1) |
1827 lFromEVEX4of4(insn->vectorExtensionPrefix[3]);
1828 break;
1829 case ENCODING_RB:
1830 if (readOpcodeRegister(insn, 1))
1831 return -1;
1832 break;
1833 case ENCODING_RW:
1834 if (readOpcodeRegister(insn, 2))
1835 return -1;
1836 break;
1837 case ENCODING_RD:
1838 if (readOpcodeRegister(insn, 4))
1839 return -1;
1840 break;
1841 case ENCODING_RO:
1842 if (readOpcodeRegister(insn, 8))
1843 return -1;
1844 break;
1845 case ENCODING_Rv:
1846 if (readOpcodeRegister(insn, 0))
1847 return -1;
1848 break;
1849 case ENCODING_FP:
1850 break;
1851 case ENCODING_VVVV:
1852 needVVVV = 0; /* Mark that we have found a VVVV operand. */
1853 if (!hasVVVV)
1854 return -1;
1855 if (insn->mode != MODE_64BIT)
1856 insn->vvvv = static_cast<Reg>(insn->vvvv & 0x7);
1857 if (fixupReg(insn, &Op))
1858 return -1;
1859 break;
1860 case ENCODING_WRITEMASK:
1861 if (readMaskRegister(insn))
1862 return -1;
1863 break;
1864 case ENCODING_DUP:
1865 break;
1866 default:
1867 dbgprintf(insn, "Encountered an operand with an unknown encoding.");
1868 return -1;
1872 /* If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail */
1873 if (needVVVV) return -1;
1875 return 0;
1879 * decodeInstruction - Reads and interprets a full instruction provided by the
1880 * user.
1882 * @param insn - A pointer to the instruction to be populated. Must be
1883 * pre-allocated.
1884 * @param reader - The function to be used to read the instruction's bytes.
1885 * @param readerArg - A generic argument to be passed to the reader to store
1886 * any internal state.
1887 * @param logger - If non-NULL, the function to be used to write log messages
1888 * and warnings.
1889 * @param loggerArg - A generic argument to be passed to the logger to store
1890 * any internal state.
1891 * @param startLoc - The address (in the reader's address space) of the first
1892 * byte in the instruction.
1893 * @param mode - The mode (real mode, IA-32e, or IA-32e in 64-bit mode) to
1894 * decode the instruction in.
1895 * @return - 0 if the instruction's memory could be read; nonzero if
1896 * not.
1898 int llvm::X86Disassembler::decodeInstruction(
1899 struct InternalInstruction *insn, byteReader_t reader,
1900 const void *readerArg, dlog_t logger, void *loggerArg, const void *miiArg,
1901 uint64_t startLoc, DisassemblerMode mode) {
1902 memset(insn, 0, sizeof(struct InternalInstruction));
1904 insn->reader = reader;
1905 insn->readerArg = readerArg;
1906 insn->dlog = logger;
1907 insn->dlogArg = loggerArg;
1908 insn->startLocation = startLoc;
1909 insn->readerCursor = startLoc;
1910 insn->mode = mode;
1911 insn->numImmediatesConsumed = 0;
1913 if (readPrefixes(insn) ||
1914 readOpcode(insn) ||
1915 getID(insn, miiArg) ||
1916 insn->instructionID == 0 ||
1917 readOperands(insn))
1918 return -1;
1920 insn->operands = x86OperandSets[insn->spec->operands];
1922 insn->length = insn->readerCursor - insn->startLocation;
1924 dbgprintf(insn, "Read from 0x%llx to 0x%llx: length %zu",
1925 startLoc, insn->readerCursor, insn->length);
1927 if (insn->length > 15)
1928 dbgprintf(insn, "Instruction exceeds 15-byte limit");
1930 return 0;