Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Target / X86 / MCTargetDesc / X86AsmBackend.cpp
blob1e32d002afd8ef33f797b762fdc6b4416df6214f
1 //===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "MCTargetDesc/X86BaseInfo.h"
10 #include "MCTargetDesc/X86FixupKinds.h"
11 #include "llvm/ADT/StringSwitch.h"
12 #include "llvm/BinaryFormat/ELF.h"
13 #include "llvm/BinaryFormat/MachO.h"
14 #include "llvm/MC/MCAsmBackend.h"
15 #include "llvm/MC/MCELFObjectWriter.h"
16 #include "llvm/MC/MCExpr.h"
17 #include "llvm/MC/MCFixupKindInfo.h"
18 #include "llvm/MC/MCInst.h"
19 #include "llvm/MC/MCMachObjectWriter.h"
20 #include "llvm/MC/MCObjectWriter.h"
21 #include "llvm/MC/MCRegisterInfo.h"
22 #include "llvm/MC/MCSectionMachO.h"
23 #include "llvm/MC/MCSubtargetInfo.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/raw_ostream.h"
26 using namespace llvm;
28 static unsigned getFixupKindLog2Size(unsigned Kind) {
29 switch (Kind) {
30 default:
31 llvm_unreachable("invalid fixup kind!");
32 case FK_PCRel_1:
33 case FK_SecRel_1:
34 case FK_Data_1:
35 return 0;
36 case FK_PCRel_2:
37 case FK_SecRel_2:
38 case FK_Data_2:
39 return 1;
40 case FK_PCRel_4:
41 case X86::reloc_riprel_4byte:
42 case X86::reloc_riprel_4byte_relax:
43 case X86::reloc_riprel_4byte_relax_rex:
44 case X86::reloc_riprel_4byte_movq_load:
45 case X86::reloc_signed_4byte:
46 case X86::reloc_signed_4byte_relax:
47 case X86::reloc_global_offset_table:
48 case X86::reloc_branch_4byte_pcrel:
49 case FK_SecRel_4:
50 case FK_Data_4:
51 return 2;
52 case FK_PCRel_8:
53 case FK_SecRel_8:
54 case FK_Data_8:
55 case X86::reloc_global_offset_table8:
56 return 3;
60 namespace {
62 class X86ELFObjectWriter : public MCELFObjectTargetWriter {
63 public:
64 X86ELFObjectWriter(bool is64Bit, uint8_t OSABI, uint16_t EMachine,
65 bool HasRelocationAddend, bool foobar)
66 : MCELFObjectTargetWriter(is64Bit, OSABI, EMachine, HasRelocationAddend) {}
69 class X86AsmBackend : public MCAsmBackend {
70 const MCSubtargetInfo &STI;
71 public:
72 X86AsmBackend(const Target &T, const MCSubtargetInfo &STI)
73 : MCAsmBackend(support::little), STI(STI) {}
75 unsigned getNumFixupKinds() const override {
76 return X86::NumTargetFixupKinds;
79 const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override {
80 const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = {
81 {"reloc_riprel_4byte", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
82 {"reloc_riprel_4byte_movq_load", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
83 {"reloc_riprel_4byte_relax", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
84 {"reloc_riprel_4byte_relax_rex", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
85 {"reloc_signed_4byte", 0, 32, 0},
86 {"reloc_signed_4byte_relax", 0, 32, 0},
87 {"reloc_global_offset_table", 0, 32, 0},
88 {"reloc_global_offset_table8", 0, 64, 0},
89 {"reloc_branch_4byte_pcrel", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
92 if (Kind < FirstTargetFixupKind)
93 return MCAsmBackend::getFixupKindInfo(Kind);
95 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
96 "Invalid kind!");
97 assert(Infos[Kind - FirstTargetFixupKind].Name && "Empty fixup name!");
98 return Infos[Kind - FirstTargetFixupKind];
101 void applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
102 const MCValue &Target, MutableArrayRef<char> Data,
103 uint64_t Value, bool IsResolved,
104 const MCSubtargetInfo *STI) const override {
105 unsigned Size = 1 << getFixupKindLog2Size(Fixup.getKind());
107 assert(Fixup.getOffset() + Size <= Data.size() && "Invalid fixup offset!");
109 // Check that uppper bits are either all zeros or all ones.
110 // Specifically ignore overflow/underflow as long as the leakage is
111 // limited to the lower bits. This is to remain compatible with
112 // other assemblers.
113 assert(isIntN(Size * 8 + 1, Value) &&
114 "Value does not fit in the Fixup field");
116 for (unsigned i = 0; i != Size; ++i)
117 Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8));
120 bool mayNeedRelaxation(const MCInst &Inst,
121 const MCSubtargetInfo &STI) const override;
123 bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
124 const MCRelaxableFragment *DF,
125 const MCAsmLayout &Layout) const override;
127 void relaxInstruction(const MCInst &Inst, const MCSubtargetInfo &STI,
128 MCInst &Res) const override;
130 bool writeNopData(raw_ostream &OS, uint64_t Count) const override;
132 } // end anonymous namespace
134 static unsigned getRelaxedOpcodeBranch(const MCInst &Inst, bool is16BitMode) {
135 unsigned Op = Inst.getOpcode();
136 switch (Op) {
137 default:
138 return Op;
139 case X86::JAE_1:
140 return (is16BitMode) ? X86::JAE_2 : X86::JAE_4;
141 case X86::JA_1:
142 return (is16BitMode) ? X86::JA_2 : X86::JA_4;
143 case X86::JBE_1:
144 return (is16BitMode) ? X86::JBE_2 : X86::JBE_4;
145 case X86::JB_1:
146 return (is16BitMode) ? X86::JB_2 : X86::JB_4;
147 case X86::JE_1:
148 return (is16BitMode) ? X86::JE_2 : X86::JE_4;
149 case X86::JGE_1:
150 return (is16BitMode) ? X86::JGE_2 : X86::JGE_4;
151 case X86::JG_1:
152 return (is16BitMode) ? X86::JG_2 : X86::JG_4;
153 case X86::JLE_1:
154 return (is16BitMode) ? X86::JLE_2 : X86::JLE_4;
155 case X86::JL_1:
156 return (is16BitMode) ? X86::JL_2 : X86::JL_4;
157 case X86::JMP_1:
158 return (is16BitMode) ? X86::JMP_2 : X86::JMP_4;
159 case X86::JNE_1:
160 return (is16BitMode) ? X86::JNE_2 : X86::JNE_4;
161 case X86::JNO_1:
162 return (is16BitMode) ? X86::JNO_2 : X86::JNO_4;
163 case X86::JNP_1:
164 return (is16BitMode) ? X86::JNP_2 : X86::JNP_4;
165 case X86::JNS_1:
166 return (is16BitMode) ? X86::JNS_2 : X86::JNS_4;
167 case X86::JO_1:
168 return (is16BitMode) ? X86::JO_2 : X86::JO_4;
169 case X86::JP_1:
170 return (is16BitMode) ? X86::JP_2 : X86::JP_4;
171 case X86::JS_1:
172 return (is16BitMode) ? X86::JS_2 : X86::JS_4;
176 static unsigned getRelaxedOpcodeArith(const MCInst &Inst) {
177 unsigned Op = Inst.getOpcode();
178 switch (Op) {
179 default:
180 return Op;
182 // IMUL
183 case X86::IMUL16rri8: return X86::IMUL16rri;
184 case X86::IMUL16rmi8: return X86::IMUL16rmi;
185 case X86::IMUL32rri8: return X86::IMUL32rri;
186 case X86::IMUL32rmi8: return X86::IMUL32rmi;
187 case X86::IMUL64rri8: return X86::IMUL64rri32;
188 case X86::IMUL64rmi8: return X86::IMUL64rmi32;
190 // AND
191 case X86::AND16ri8: return X86::AND16ri;
192 case X86::AND16mi8: return X86::AND16mi;
193 case X86::AND32ri8: return X86::AND32ri;
194 case X86::AND32mi8: return X86::AND32mi;
195 case X86::AND64ri8: return X86::AND64ri32;
196 case X86::AND64mi8: return X86::AND64mi32;
198 // OR
199 case X86::OR16ri8: return X86::OR16ri;
200 case X86::OR16mi8: return X86::OR16mi;
201 case X86::OR32ri8: return X86::OR32ri;
202 case X86::OR32mi8: return X86::OR32mi;
203 case X86::OR64ri8: return X86::OR64ri32;
204 case X86::OR64mi8: return X86::OR64mi32;
206 // XOR
207 case X86::XOR16ri8: return X86::XOR16ri;
208 case X86::XOR16mi8: return X86::XOR16mi;
209 case X86::XOR32ri8: return X86::XOR32ri;
210 case X86::XOR32mi8: return X86::XOR32mi;
211 case X86::XOR64ri8: return X86::XOR64ri32;
212 case X86::XOR64mi8: return X86::XOR64mi32;
214 // ADD
215 case X86::ADD16ri8: return X86::ADD16ri;
216 case X86::ADD16mi8: return X86::ADD16mi;
217 case X86::ADD32ri8: return X86::ADD32ri;
218 case X86::ADD32mi8: return X86::ADD32mi;
219 case X86::ADD64ri8: return X86::ADD64ri32;
220 case X86::ADD64mi8: return X86::ADD64mi32;
222 // ADC
223 case X86::ADC16ri8: return X86::ADC16ri;
224 case X86::ADC16mi8: return X86::ADC16mi;
225 case X86::ADC32ri8: return X86::ADC32ri;
226 case X86::ADC32mi8: return X86::ADC32mi;
227 case X86::ADC64ri8: return X86::ADC64ri32;
228 case X86::ADC64mi8: return X86::ADC64mi32;
230 // SUB
231 case X86::SUB16ri8: return X86::SUB16ri;
232 case X86::SUB16mi8: return X86::SUB16mi;
233 case X86::SUB32ri8: return X86::SUB32ri;
234 case X86::SUB32mi8: return X86::SUB32mi;
235 case X86::SUB64ri8: return X86::SUB64ri32;
236 case X86::SUB64mi8: return X86::SUB64mi32;
238 // SBB
239 case X86::SBB16ri8: return X86::SBB16ri;
240 case X86::SBB16mi8: return X86::SBB16mi;
241 case X86::SBB32ri8: return X86::SBB32ri;
242 case X86::SBB32mi8: return X86::SBB32mi;
243 case X86::SBB64ri8: return X86::SBB64ri32;
244 case X86::SBB64mi8: return X86::SBB64mi32;
246 // CMP
247 case X86::CMP16ri8: return X86::CMP16ri;
248 case X86::CMP16mi8: return X86::CMP16mi;
249 case X86::CMP32ri8: return X86::CMP32ri;
250 case X86::CMP32mi8: return X86::CMP32mi;
251 case X86::CMP64ri8: return X86::CMP64ri32;
252 case X86::CMP64mi8: return X86::CMP64mi32;
254 // PUSH
255 case X86::PUSH32i8: return X86::PUSHi32;
256 case X86::PUSH16i8: return X86::PUSHi16;
257 case X86::PUSH64i8: return X86::PUSH64i32;
261 static unsigned getRelaxedOpcode(const MCInst &Inst, bool is16BitMode) {
262 unsigned R = getRelaxedOpcodeArith(Inst);
263 if (R != Inst.getOpcode())
264 return R;
265 return getRelaxedOpcodeBranch(Inst, is16BitMode);
268 bool X86AsmBackend::mayNeedRelaxation(const MCInst &Inst,
269 const MCSubtargetInfo &STI) const {
270 // Branches can always be relaxed in either mode.
271 if (getRelaxedOpcodeBranch(Inst, false) != Inst.getOpcode())
272 return true;
274 // Check if this instruction is ever relaxable.
275 if (getRelaxedOpcodeArith(Inst) == Inst.getOpcode())
276 return false;
279 // Check if the relaxable operand has an expression. For the current set of
280 // relaxable instructions, the relaxable operand is always the last operand.
281 unsigned RelaxableOp = Inst.getNumOperands() - 1;
282 if (Inst.getOperand(RelaxableOp).isExpr())
283 return true;
285 return false;
288 bool X86AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
289 uint64_t Value,
290 const MCRelaxableFragment *DF,
291 const MCAsmLayout &Layout) const {
292 // Relax if the value is too big for a (signed) i8.
293 return int64_t(Value) != int64_t(int8_t(Value));
296 // FIXME: Can tblgen help at all here to verify there aren't other instructions
297 // we can relax?
298 void X86AsmBackend::relaxInstruction(const MCInst &Inst,
299 const MCSubtargetInfo &STI,
300 MCInst &Res) const {
301 // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel.
302 bool is16BitMode = STI.getFeatureBits()[X86::Mode16Bit];
303 unsigned RelaxedOp = getRelaxedOpcode(Inst, is16BitMode);
305 if (RelaxedOp == Inst.getOpcode()) {
306 SmallString<256> Tmp;
307 raw_svector_ostream OS(Tmp);
308 Inst.dump_pretty(OS);
309 OS << "\n";
310 report_fatal_error("unexpected instruction to relax: " + OS.str());
313 Res = Inst;
314 Res.setOpcode(RelaxedOp);
317 /// Write a sequence of optimal nops to the output, covering \p Count
318 /// bytes.
319 /// \return - true on success, false on failure
320 bool X86AsmBackend::writeNopData(raw_ostream &OS, uint64_t Count) const {
321 static const char Nops[10][11] = {
322 // nop
323 "\x90",
324 // xchg %ax,%ax
325 "\x66\x90",
326 // nopl (%[re]ax)
327 "\x0f\x1f\x00",
328 // nopl 0(%[re]ax)
329 "\x0f\x1f\x40\x00",
330 // nopl 0(%[re]ax,%[re]ax,1)
331 "\x0f\x1f\x44\x00\x00",
332 // nopw 0(%[re]ax,%[re]ax,1)
333 "\x66\x0f\x1f\x44\x00\x00",
334 // nopl 0L(%[re]ax)
335 "\x0f\x1f\x80\x00\x00\x00\x00",
336 // nopl 0L(%[re]ax,%[re]ax,1)
337 "\x0f\x1f\x84\x00\x00\x00\x00\x00",
338 // nopw 0L(%[re]ax,%[re]ax,1)
339 "\x66\x0f\x1f\x84\x00\x00\x00\x00\x00",
340 // nopw %cs:0L(%[re]ax,%[re]ax,1)
341 "\x66\x2e\x0f\x1f\x84\x00\x00\x00\x00\x00",
344 // This CPU doesn't support long nops. If needed add more.
345 // FIXME: We could generated something better than plain 0x90.
346 if (!STI.getFeatureBits()[X86::FeatureNOPL]) {
347 for (uint64_t i = 0; i < Count; ++i)
348 OS << '\x90';
349 return true;
352 // 15-bytes is the longest single NOP instruction, but 10-bytes is
353 // commonly the longest that can be efficiently decoded.
354 uint64_t MaxNopLength = 10;
355 if (STI.getFeatureBits()[X86::ProcIntelSLM])
356 MaxNopLength = 7;
357 else if (STI.getFeatureBits()[X86::FeatureFast15ByteNOP])
358 MaxNopLength = 15;
359 else if (STI.getFeatureBits()[X86::FeatureFast11ByteNOP])
360 MaxNopLength = 11;
362 // Emit as many MaxNopLength NOPs as needed, then emit a NOP of the remaining
363 // length.
364 do {
365 const uint8_t ThisNopLength = (uint8_t) std::min(Count, MaxNopLength);
366 const uint8_t Prefixes = ThisNopLength <= 10 ? 0 : ThisNopLength - 10;
367 for (uint8_t i = 0; i < Prefixes; i++)
368 OS << '\x66';
369 const uint8_t Rest = ThisNopLength - Prefixes;
370 if (Rest != 0)
371 OS.write(Nops[Rest - 1], Rest);
372 Count -= ThisNopLength;
373 } while (Count != 0);
375 return true;
378 /* *** */
380 namespace {
382 class ELFX86AsmBackend : public X86AsmBackend {
383 public:
384 uint8_t OSABI;
385 ELFX86AsmBackend(const Target &T, uint8_t OSABI, const MCSubtargetInfo &STI)
386 : X86AsmBackend(T, STI), OSABI(OSABI) {}
389 class ELFX86_32AsmBackend : public ELFX86AsmBackend {
390 public:
391 ELFX86_32AsmBackend(const Target &T, uint8_t OSABI,
392 const MCSubtargetInfo &STI)
393 : ELFX86AsmBackend(T, OSABI, STI) {}
395 std::unique_ptr<MCObjectTargetWriter>
396 createObjectTargetWriter() const override {
397 return createX86ELFObjectWriter(/*IsELF64*/ false, OSABI, ELF::EM_386);
401 class ELFX86_X32AsmBackend : public ELFX86AsmBackend {
402 public:
403 ELFX86_X32AsmBackend(const Target &T, uint8_t OSABI,
404 const MCSubtargetInfo &STI)
405 : ELFX86AsmBackend(T, OSABI, STI) {}
407 std::unique_ptr<MCObjectTargetWriter>
408 createObjectTargetWriter() const override {
409 return createX86ELFObjectWriter(/*IsELF64*/ false, OSABI,
410 ELF::EM_X86_64);
414 class ELFX86_IAMCUAsmBackend : public ELFX86AsmBackend {
415 public:
416 ELFX86_IAMCUAsmBackend(const Target &T, uint8_t OSABI,
417 const MCSubtargetInfo &STI)
418 : ELFX86AsmBackend(T, OSABI, STI) {}
420 std::unique_ptr<MCObjectTargetWriter>
421 createObjectTargetWriter() const override {
422 return createX86ELFObjectWriter(/*IsELF64*/ false, OSABI,
423 ELF::EM_IAMCU);
427 class ELFX86_64AsmBackend : public ELFX86AsmBackend {
428 public:
429 ELFX86_64AsmBackend(const Target &T, uint8_t OSABI,
430 const MCSubtargetInfo &STI)
431 : ELFX86AsmBackend(T, OSABI, STI) {}
433 std::unique_ptr<MCObjectTargetWriter>
434 createObjectTargetWriter() const override {
435 return createX86ELFObjectWriter(/*IsELF64*/ true, OSABI, ELF::EM_X86_64);
439 class WindowsX86AsmBackend : public X86AsmBackend {
440 bool Is64Bit;
442 public:
443 WindowsX86AsmBackend(const Target &T, bool is64Bit,
444 const MCSubtargetInfo &STI)
445 : X86AsmBackend(T, STI)
446 , Is64Bit(is64Bit) {
449 Optional<MCFixupKind> getFixupKind(StringRef Name) const override {
450 return StringSwitch<Optional<MCFixupKind>>(Name)
451 .Case("dir32", FK_Data_4)
452 .Case("secrel32", FK_SecRel_4)
453 .Case("secidx", FK_SecRel_2)
454 .Default(MCAsmBackend::getFixupKind(Name));
457 std::unique_ptr<MCObjectTargetWriter>
458 createObjectTargetWriter() const override {
459 return createX86WinCOFFObjectWriter(Is64Bit);
463 namespace CU {
465 /// Compact unwind encoding values.
466 enum CompactUnwindEncodings {
467 /// [RE]BP based frame where [RE]BP is pused on the stack immediately after
468 /// the return address, then [RE]SP is moved to [RE]BP.
469 UNWIND_MODE_BP_FRAME = 0x01000000,
471 /// A frameless function with a small constant stack size.
472 UNWIND_MODE_STACK_IMMD = 0x02000000,
474 /// A frameless function with a large constant stack size.
475 UNWIND_MODE_STACK_IND = 0x03000000,
477 /// No compact unwind encoding is available.
478 UNWIND_MODE_DWARF = 0x04000000,
480 /// Mask for encoding the frame registers.
481 UNWIND_BP_FRAME_REGISTERS = 0x00007FFF,
483 /// Mask for encoding the frameless registers.
484 UNWIND_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF
487 } // end CU namespace
489 class DarwinX86AsmBackend : public X86AsmBackend {
490 const MCRegisterInfo &MRI;
492 /// Number of registers that can be saved in a compact unwind encoding.
493 enum { CU_NUM_SAVED_REGS = 6 };
495 mutable unsigned SavedRegs[CU_NUM_SAVED_REGS];
496 bool Is64Bit;
498 unsigned OffsetSize; ///< Offset of a "push" instruction.
499 unsigned MoveInstrSize; ///< Size of a "move" instruction.
500 unsigned StackDivide; ///< Amount to adjust stack size by.
501 protected:
502 /// Size of a "push" instruction for the given register.
503 unsigned PushInstrSize(unsigned Reg) const {
504 switch (Reg) {
505 case X86::EBX:
506 case X86::ECX:
507 case X86::EDX:
508 case X86::EDI:
509 case X86::ESI:
510 case X86::EBP:
511 case X86::RBX:
512 case X86::RBP:
513 return 1;
514 case X86::R12:
515 case X86::R13:
516 case X86::R14:
517 case X86::R15:
518 return 2;
520 return 1;
523 /// Implementation of algorithm to generate the compact unwind encoding
524 /// for the CFI instructions.
525 uint32_t
526 generateCompactUnwindEncodingImpl(ArrayRef<MCCFIInstruction> Instrs) const {
527 if (Instrs.empty()) return 0;
529 // Reset the saved registers.
530 unsigned SavedRegIdx = 0;
531 memset(SavedRegs, 0, sizeof(SavedRegs));
533 bool HasFP = false;
535 // Encode that we are using EBP/RBP as the frame pointer.
536 uint32_t CompactUnwindEncoding = 0;
538 unsigned SubtractInstrIdx = Is64Bit ? 3 : 2;
539 unsigned InstrOffset = 0;
540 unsigned StackAdjust = 0;
541 unsigned StackSize = 0;
542 unsigned NumDefCFAOffsets = 0;
544 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
545 const MCCFIInstruction &Inst = Instrs[i];
547 switch (Inst.getOperation()) {
548 default:
549 // Any other CFI directives indicate a frame that we aren't prepared
550 // to represent via compact unwind, so just bail out.
551 return 0;
552 case MCCFIInstruction::OpDefCfaRegister: {
553 // Defines a frame pointer. E.g.
555 // movq %rsp, %rbp
556 // L0:
557 // .cfi_def_cfa_register %rbp
559 HasFP = true;
561 // If the frame pointer is other than esp/rsp, we do not have a way to
562 // generate a compact unwinding representation, so bail out.
563 if (MRI.getLLVMRegNum(Inst.getRegister(), true) !=
564 (Is64Bit ? X86::RBP : X86::EBP))
565 return 0;
567 // Reset the counts.
568 memset(SavedRegs, 0, sizeof(SavedRegs));
569 StackAdjust = 0;
570 SavedRegIdx = 0;
571 InstrOffset += MoveInstrSize;
572 break;
574 case MCCFIInstruction::OpDefCfaOffset: {
575 // Defines a new offset for the CFA. E.g.
577 // With frame:
579 // pushq %rbp
580 // L0:
581 // .cfi_def_cfa_offset 16
583 // Without frame:
585 // subq $72, %rsp
586 // L0:
587 // .cfi_def_cfa_offset 80
589 StackSize = std::abs(Inst.getOffset()) / StackDivide;
590 ++NumDefCFAOffsets;
591 break;
593 case MCCFIInstruction::OpOffset: {
594 // Defines a "push" of a callee-saved register. E.g.
596 // pushq %r15
597 // pushq %r14
598 // pushq %rbx
599 // L0:
600 // subq $120, %rsp
601 // L1:
602 // .cfi_offset %rbx, -40
603 // .cfi_offset %r14, -32
604 // .cfi_offset %r15, -24
606 if (SavedRegIdx == CU_NUM_SAVED_REGS)
607 // If there are too many saved registers, we cannot use a compact
608 // unwind encoding.
609 return CU::UNWIND_MODE_DWARF;
611 unsigned Reg = MRI.getLLVMRegNum(Inst.getRegister(), true);
612 SavedRegs[SavedRegIdx++] = Reg;
613 StackAdjust += OffsetSize;
614 InstrOffset += PushInstrSize(Reg);
615 break;
620 StackAdjust /= StackDivide;
622 if (HasFP) {
623 if ((StackAdjust & 0xFF) != StackAdjust)
624 // Offset was too big for a compact unwind encoding.
625 return CU::UNWIND_MODE_DWARF;
627 // Get the encoding of the saved registers when we have a frame pointer.
628 uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame();
629 if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
631 CompactUnwindEncoding |= CU::UNWIND_MODE_BP_FRAME;
632 CompactUnwindEncoding |= (StackAdjust & 0xFF) << 16;
633 CompactUnwindEncoding |= RegEnc & CU::UNWIND_BP_FRAME_REGISTERS;
634 } else {
635 SubtractInstrIdx += InstrOffset;
636 ++StackAdjust;
638 if ((StackSize & 0xFF) == StackSize) {
639 // Frameless stack with a small stack size.
640 CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IMMD;
642 // Encode the stack size.
643 CompactUnwindEncoding |= (StackSize & 0xFF) << 16;
644 } else {
645 if ((StackAdjust & 0x7) != StackAdjust)
646 // The extra stack adjustments are too big for us to handle.
647 return CU::UNWIND_MODE_DWARF;
649 // Frameless stack with an offset too large for us to encode compactly.
650 CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IND;
652 // Encode the offset to the nnnnnn value in the 'subl $nnnnnn, ESP'
653 // instruction.
654 CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16;
656 // Encode any extra stack adjustments (done via push instructions).
657 CompactUnwindEncoding |= (StackAdjust & 0x7) << 13;
660 // Encode the number of registers saved. (Reverse the list first.)
661 std::reverse(&SavedRegs[0], &SavedRegs[SavedRegIdx]);
662 CompactUnwindEncoding |= (SavedRegIdx & 0x7) << 10;
664 // Get the encoding of the saved registers when we don't have a frame
665 // pointer.
666 uint32_t RegEnc = encodeCompactUnwindRegistersWithoutFrame(SavedRegIdx);
667 if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
669 // Encode the register encoding.
670 CompactUnwindEncoding |=
671 RegEnc & CU::UNWIND_FRAMELESS_STACK_REG_PERMUTATION;
674 return CompactUnwindEncoding;
677 private:
678 /// Get the compact unwind number for a given register. The number
679 /// corresponds to the enum lists in compact_unwind_encoding.h.
680 int getCompactUnwindRegNum(unsigned Reg) const {
681 static const MCPhysReg CU32BitRegs[7] = {
682 X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
684 static const MCPhysReg CU64BitRegs[] = {
685 X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
687 const MCPhysReg *CURegs = Is64Bit ? CU64BitRegs : CU32BitRegs;
688 for (int Idx = 1; *CURegs; ++CURegs, ++Idx)
689 if (*CURegs == Reg)
690 return Idx;
692 return -1;
695 /// Return the registers encoded for a compact encoding with a frame
696 /// pointer.
697 uint32_t encodeCompactUnwindRegistersWithFrame() const {
698 // Encode the registers in the order they were saved --- 3-bits per
699 // register. The list of saved registers is assumed to be in reverse
700 // order. The registers are numbered from 1 to CU_NUM_SAVED_REGS.
701 uint32_t RegEnc = 0;
702 for (int i = 0, Idx = 0; i != CU_NUM_SAVED_REGS; ++i) {
703 unsigned Reg = SavedRegs[i];
704 if (Reg == 0) break;
706 int CURegNum = getCompactUnwindRegNum(Reg);
707 if (CURegNum == -1) return ~0U;
709 // Encode the 3-bit register number in order, skipping over 3-bits for
710 // each register.
711 RegEnc |= (CURegNum & 0x7) << (Idx++ * 3);
714 assert((RegEnc & 0x3FFFF) == RegEnc &&
715 "Invalid compact register encoding!");
716 return RegEnc;
719 /// Create the permutation encoding used with frameless stacks. It is
720 /// passed the number of registers to be saved and an array of the registers
721 /// saved.
722 uint32_t encodeCompactUnwindRegistersWithoutFrame(unsigned RegCount) const {
723 // The saved registers are numbered from 1 to 6. In order to encode the
724 // order in which they were saved, we re-number them according to their
725 // place in the register order. The re-numbering is relative to the last
726 // re-numbered register. E.g., if we have registers {6, 2, 4, 5} saved in
727 // that order:
729 // Orig Re-Num
730 // ---- ------
731 // 6 6
732 // 2 2
733 // 4 3
734 // 5 3
736 for (unsigned i = 0; i < RegCount; ++i) {
737 int CUReg = getCompactUnwindRegNum(SavedRegs[i]);
738 if (CUReg == -1) return ~0U;
739 SavedRegs[i] = CUReg;
742 // Reverse the list.
743 std::reverse(&SavedRegs[0], &SavedRegs[CU_NUM_SAVED_REGS]);
745 uint32_t RenumRegs[CU_NUM_SAVED_REGS];
746 for (unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i){
747 unsigned Countless = 0;
748 for (unsigned j = CU_NUM_SAVED_REGS - RegCount; j < i; ++j)
749 if (SavedRegs[j] < SavedRegs[i])
750 ++Countless;
752 RenumRegs[i] = SavedRegs[i] - Countless - 1;
755 // Take the renumbered values and encode them into a 10-bit number.
756 uint32_t permutationEncoding = 0;
757 switch (RegCount) {
758 case 6:
759 permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1]
760 + 6 * RenumRegs[2] + 2 * RenumRegs[3]
761 + RenumRegs[4];
762 break;
763 case 5:
764 permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2]
765 + 6 * RenumRegs[3] + 2 * RenumRegs[4]
766 + RenumRegs[5];
767 break;
768 case 4:
769 permutationEncoding |= 60 * RenumRegs[2] + 12 * RenumRegs[3]
770 + 3 * RenumRegs[4] + RenumRegs[5];
771 break;
772 case 3:
773 permutationEncoding |= 20 * RenumRegs[3] + 4 * RenumRegs[4]
774 + RenumRegs[5];
775 break;
776 case 2:
777 permutationEncoding |= 5 * RenumRegs[4] + RenumRegs[5];
778 break;
779 case 1:
780 permutationEncoding |= RenumRegs[5];
781 break;
784 assert((permutationEncoding & 0x3FF) == permutationEncoding &&
785 "Invalid compact register encoding!");
786 return permutationEncoding;
789 public:
790 DarwinX86AsmBackend(const Target &T, const MCRegisterInfo &MRI,
791 const MCSubtargetInfo &STI, bool Is64Bit)
792 : X86AsmBackend(T, STI), MRI(MRI), Is64Bit(Is64Bit) {
793 memset(SavedRegs, 0, sizeof(SavedRegs));
794 OffsetSize = Is64Bit ? 8 : 4;
795 MoveInstrSize = Is64Bit ? 3 : 2;
796 StackDivide = Is64Bit ? 8 : 4;
800 class DarwinX86_32AsmBackend : public DarwinX86AsmBackend {
801 public:
802 DarwinX86_32AsmBackend(const Target &T, const MCRegisterInfo &MRI,
803 const MCSubtargetInfo &STI)
804 : DarwinX86AsmBackend(T, MRI, STI, false) {}
806 std::unique_ptr<MCObjectTargetWriter>
807 createObjectTargetWriter() const override {
808 return createX86MachObjectWriter(/*Is64Bit=*/false,
809 MachO::CPU_TYPE_I386,
810 MachO::CPU_SUBTYPE_I386_ALL);
813 /// Generate the compact unwind encoding for the CFI instructions.
814 uint32_t generateCompactUnwindEncoding(
815 ArrayRef<MCCFIInstruction> Instrs) const override {
816 return generateCompactUnwindEncodingImpl(Instrs);
820 class DarwinX86_64AsmBackend : public DarwinX86AsmBackend {
821 const MachO::CPUSubTypeX86 Subtype;
822 public:
823 DarwinX86_64AsmBackend(const Target &T, const MCRegisterInfo &MRI,
824 const MCSubtargetInfo &STI, MachO::CPUSubTypeX86 st)
825 : DarwinX86AsmBackend(T, MRI, STI, true), Subtype(st) {}
827 std::unique_ptr<MCObjectTargetWriter>
828 createObjectTargetWriter() const override {
829 return createX86MachObjectWriter(/*Is64Bit=*/true, MachO::CPU_TYPE_X86_64,
830 Subtype);
833 /// Generate the compact unwind encoding for the CFI instructions.
834 uint32_t generateCompactUnwindEncoding(
835 ArrayRef<MCCFIInstruction> Instrs) const override {
836 return generateCompactUnwindEncodingImpl(Instrs);
840 } // end anonymous namespace
842 MCAsmBackend *llvm::createX86_32AsmBackend(const Target &T,
843 const MCSubtargetInfo &STI,
844 const MCRegisterInfo &MRI,
845 const MCTargetOptions &Options) {
846 const Triple &TheTriple = STI.getTargetTriple();
847 if (TheTriple.isOSBinFormatMachO())
848 return new DarwinX86_32AsmBackend(T, MRI, STI);
850 if (TheTriple.isOSWindows() && TheTriple.isOSBinFormatCOFF())
851 return new WindowsX86AsmBackend(T, false, STI);
853 uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
855 if (TheTriple.isOSIAMCU())
856 return new ELFX86_IAMCUAsmBackend(T, OSABI, STI);
858 return new ELFX86_32AsmBackend(T, OSABI, STI);
861 MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T,
862 const MCSubtargetInfo &STI,
863 const MCRegisterInfo &MRI,
864 const MCTargetOptions &Options) {
865 const Triple &TheTriple = STI.getTargetTriple();
866 if (TheTriple.isOSBinFormatMachO()) {
867 MachO::CPUSubTypeX86 CS =
868 StringSwitch<MachO::CPUSubTypeX86>(TheTriple.getArchName())
869 .Case("x86_64h", MachO::CPU_SUBTYPE_X86_64_H)
870 .Default(MachO::CPU_SUBTYPE_X86_64_ALL);
871 return new DarwinX86_64AsmBackend(T, MRI, STI, CS);
874 if (TheTriple.isOSWindows() && TheTriple.isOSBinFormatCOFF())
875 return new WindowsX86AsmBackend(T, true, STI);
877 uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
879 if (TheTriple.getEnvironment() == Triple::GNUX32)
880 return new ELFX86_X32AsmBackend(T, OSABI, STI);
881 return new ELFX86_64AsmBackend(T, OSABI, STI);