Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Target / X86 / X86FixupLEAs.cpp
blob273173efd623f8a3c2535d946b3a071403a6a1f7
1 //===-- X86FixupLEAs.cpp - use or replace LEA instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the pass that finds instructions that can be
10 // re-written as LEA instructions in order to reduce pipeline delays.
11 // When optimizing for size it replaces suitable LEAs with INC or DEC.
13 //===----------------------------------------------------------------------===//
15 #include "X86.h"
16 #include "X86InstrInfo.h"
17 #include "X86Subtarget.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/MachineFunctionPass.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/Passes.h"
22 #include "llvm/CodeGen/TargetSchedule.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/raw_ostream.h"
25 using namespace llvm;
27 #define FIXUPLEA_DESC "X86 LEA Fixup"
28 #define FIXUPLEA_NAME "x86-fixup-LEAs"
30 #define DEBUG_TYPE FIXUPLEA_NAME
32 STATISTIC(NumLEAs, "Number of LEA instructions created");
34 namespace {
35 class FixupLEAPass : public MachineFunctionPass {
36 enum RegUsageState { RU_NotUsed, RU_Write, RU_Read };
38 /// Loop over all of the instructions in the basic block
39 /// replacing applicable instructions with LEA instructions,
40 /// where appropriate.
41 bool processBasicBlock(MachineFunction &MF, MachineFunction::iterator MFI,
42 bool IsSlowLEA, bool IsSlow3OpsLEA);
44 /// Given a machine register, look for the instruction
45 /// which writes it in the current basic block. If found,
46 /// try to replace it with an equivalent LEA instruction.
47 /// If replacement succeeds, then also process the newly created
48 /// instruction.
49 void seekLEAFixup(MachineOperand &p, MachineBasicBlock::iterator &I,
50 MachineFunction::iterator MFI);
52 /// Given a memory access or LEA instruction
53 /// whose address mode uses a base and/or index register, look for
54 /// an opportunity to replace the instruction which sets the base or index
55 /// register with an equivalent LEA instruction.
56 void processInstruction(MachineBasicBlock::iterator &I,
57 MachineFunction::iterator MFI);
59 /// Given a LEA instruction which is unprofitable
60 /// on SlowLEA targets try to replace it with an equivalent ADD instruction.
61 void processInstructionForSlowLEA(MachineBasicBlock::iterator &I,
62 MachineFunction::iterator MFI);
64 /// Given a LEA instruction which is unprofitable
65 /// on SNB+ try to replace it with other instructions.
66 /// According to Intel's Optimization Reference Manual:
67 /// " For LEA instructions with three source operands and some specific
68 /// situations, instruction latency has increased to 3 cycles, and must
69 /// dispatch via port 1:
70 /// - LEA that has all three source operands: base, index, and offset
71 /// - LEA that uses base and index registers where the base is EBP, RBP,
72 /// or R13
73 /// - LEA that uses RIP relative addressing mode
74 /// - LEA that uses 16-bit addressing mode "
75 /// This function currently handles the first 2 cases only.
76 MachineInstr *processInstrForSlow3OpLEA(MachineInstr &MI,
77 MachineFunction::iterator MFI);
79 /// Look for LEAs that add 1 to reg or subtract 1 from reg
80 /// and convert them to INC or DEC respectively.
81 bool fixupIncDec(MachineBasicBlock::iterator &I,
82 MachineFunction::iterator MFI) const;
84 /// Determine if an instruction references a machine register
85 /// and, if so, whether it reads or writes the register.
86 RegUsageState usesRegister(MachineOperand &p, MachineBasicBlock::iterator I);
88 /// Step backwards through a basic block, looking
89 /// for an instruction which writes a register within
90 /// a maximum of INSTR_DISTANCE_THRESHOLD instruction latency cycles.
91 MachineBasicBlock::iterator searchBackwards(MachineOperand &p,
92 MachineBasicBlock::iterator &I,
93 MachineFunction::iterator MFI);
95 /// if an instruction can be converted to an
96 /// equivalent LEA, insert the new instruction into the basic block
97 /// and return a pointer to it. Otherwise, return zero.
98 MachineInstr *postRAConvertToLEA(MachineFunction::iterator &MFI,
99 MachineBasicBlock::iterator &MBBI) const;
101 public:
102 static char ID;
104 StringRef getPassName() const override { return FIXUPLEA_DESC; }
106 FixupLEAPass() : MachineFunctionPass(ID) {
107 initializeFixupLEAPassPass(*PassRegistry::getPassRegistry());
110 /// Loop over all of the basic blocks,
111 /// replacing instructions by equivalent LEA instructions
112 /// if needed and when possible.
113 bool runOnMachineFunction(MachineFunction &MF) override;
115 // This pass runs after regalloc and doesn't support VReg operands.
116 MachineFunctionProperties getRequiredProperties() const override {
117 return MachineFunctionProperties().set(
118 MachineFunctionProperties::Property::NoVRegs);
121 private:
122 TargetSchedModel TSM;
123 MachineFunction *MF;
124 const X86InstrInfo *TII; // Machine instruction info.
125 bool OptIncDec;
126 bool OptLEA;
130 char FixupLEAPass::ID = 0;
132 INITIALIZE_PASS(FixupLEAPass, FIXUPLEA_NAME, FIXUPLEA_DESC, false, false)
134 MachineInstr *
135 FixupLEAPass::postRAConvertToLEA(MachineFunction::iterator &MFI,
136 MachineBasicBlock::iterator &MBBI) const {
137 MachineInstr &MI = *MBBI;
138 switch (MI.getOpcode()) {
139 case X86::MOV32rr:
140 case X86::MOV64rr: {
141 const MachineOperand &Src = MI.getOperand(1);
142 const MachineOperand &Dest = MI.getOperand(0);
143 MachineInstr *NewMI =
144 BuildMI(*MF, MI.getDebugLoc(),
145 TII->get(MI.getOpcode() == X86::MOV32rr ? X86::LEA32r
146 : X86::LEA64r))
147 .add(Dest)
148 .add(Src)
149 .addImm(1)
150 .addReg(0)
151 .addImm(0)
152 .addReg(0);
153 MFI->insert(MBBI, NewMI); // Insert the new inst
154 return NewMI;
156 case X86::ADD64ri32:
157 case X86::ADD64ri8:
158 case X86::ADD64ri32_DB:
159 case X86::ADD64ri8_DB:
160 case X86::ADD32ri:
161 case X86::ADD32ri8:
162 case X86::ADD32ri_DB:
163 case X86::ADD32ri8_DB:
164 case X86::ADD16ri:
165 case X86::ADD16ri8:
166 case X86::ADD16ri_DB:
167 case X86::ADD16ri8_DB:
168 if (!MI.getOperand(2).isImm()) {
169 // convertToThreeAddress will call getImm()
170 // which requires isImm() to be true
171 return nullptr;
173 break;
174 case X86::ADD16rr:
175 case X86::ADD16rr_DB:
176 if (MI.getOperand(1).getReg() != MI.getOperand(2).getReg()) {
177 // if src1 != src2, then convertToThreeAddress will
178 // need to create a Virtual register, which we cannot do
179 // after register allocation.
180 return nullptr;
183 return TII->convertToThreeAddress(MFI, MI, nullptr);
186 FunctionPass *llvm::createX86FixupLEAs() { return new FixupLEAPass(); }
188 bool FixupLEAPass::runOnMachineFunction(MachineFunction &Func) {
189 if (skipFunction(Func.getFunction()))
190 return false;
192 MF = &Func;
193 const X86Subtarget &ST = Func.getSubtarget<X86Subtarget>();
194 bool IsSlowLEA = ST.slowLEA();
195 bool IsSlow3OpsLEA = ST.slow3OpsLEA();
197 OptIncDec = !ST.slowIncDec() || Func.getFunction().optForMinSize();
198 OptLEA = ST.LEAusesAG() || IsSlowLEA || IsSlow3OpsLEA;
200 if (!OptLEA && !OptIncDec)
201 return false;
203 TSM.init(&Func.getSubtarget());
204 TII = ST.getInstrInfo();
206 LLVM_DEBUG(dbgs() << "Start X86FixupLEAs\n";);
207 // Process all basic blocks.
208 for (MachineFunction::iterator I = Func.begin(), E = Func.end(); I != E; ++I)
209 processBasicBlock(Func, I, IsSlowLEA, IsSlow3OpsLEA);
210 LLVM_DEBUG(dbgs() << "End X86FixupLEAs\n";);
212 return true;
215 FixupLEAPass::RegUsageState
216 FixupLEAPass::usesRegister(MachineOperand &p, MachineBasicBlock::iterator I) {
217 RegUsageState RegUsage = RU_NotUsed;
218 MachineInstr &MI = *I;
220 for (unsigned int i = 0; i < MI.getNumOperands(); ++i) {
221 MachineOperand &opnd = MI.getOperand(i);
222 if (opnd.isReg() && opnd.getReg() == p.getReg()) {
223 if (opnd.isDef())
224 return RU_Write;
225 RegUsage = RU_Read;
228 return RegUsage;
231 /// getPreviousInstr - Given a reference to an instruction in a basic
232 /// block, return a reference to the previous instruction in the block,
233 /// wrapping around to the last instruction of the block if the block
234 /// branches to itself.
235 static inline bool getPreviousInstr(MachineBasicBlock::iterator &I,
236 MachineFunction::iterator MFI) {
237 if (I == MFI->begin()) {
238 if (MFI->isPredecessor(&*MFI)) {
239 I = --MFI->end();
240 return true;
241 } else
242 return false;
244 --I;
245 return true;
248 MachineBasicBlock::iterator
249 FixupLEAPass::searchBackwards(MachineOperand &p, MachineBasicBlock::iterator &I,
250 MachineFunction::iterator MFI) {
251 int InstrDistance = 1;
252 MachineBasicBlock::iterator CurInst;
253 static const int INSTR_DISTANCE_THRESHOLD = 5;
255 CurInst = I;
256 bool Found;
257 Found = getPreviousInstr(CurInst, MFI);
258 while (Found && I != CurInst) {
259 if (CurInst->isCall() || CurInst->isInlineAsm())
260 break;
261 if (InstrDistance > INSTR_DISTANCE_THRESHOLD)
262 break; // too far back to make a difference
263 if (usesRegister(p, CurInst) == RU_Write) {
264 return CurInst;
266 InstrDistance += TSM.computeInstrLatency(&*CurInst);
267 Found = getPreviousInstr(CurInst, MFI);
269 return MachineBasicBlock::iterator();
272 static inline bool isLEA(const int Opcode) {
273 return Opcode == X86::LEA16r || Opcode == X86::LEA32r ||
274 Opcode == X86::LEA64r || Opcode == X86::LEA64_32r;
277 static inline bool isInefficientLEAReg(unsigned int Reg) {
278 return Reg == X86::EBP || Reg == X86::RBP ||
279 Reg == X86::R13D || Reg == X86::R13;
282 static inline bool isRegOperand(const MachineOperand &Op) {
283 return Op.isReg() && Op.getReg() != X86::NoRegister;
286 /// Returns true if this LEA uses base an index registers, and the base register
287 /// is known to be inefficient for the subtarget.
288 // TODO: use a variant scheduling class to model the latency profile
289 // of LEA instructions, and implement this logic as a scheduling predicate.
290 static inline bool hasInefficientLEABaseReg(const MachineOperand &Base,
291 const MachineOperand &Index) {
292 return Base.isReg() && isInefficientLEAReg(Base.getReg()) &&
293 isRegOperand(Index);
296 static inline bool hasLEAOffset(const MachineOperand &Offset) {
297 return (Offset.isImm() && Offset.getImm() != 0) || Offset.isGlobal();
300 static inline int getADDrrFromLEA(int LEAOpcode) {
301 switch (LEAOpcode) {
302 default:
303 llvm_unreachable("Unexpected LEA instruction");
304 case X86::LEA16r:
305 return X86::ADD16rr;
306 case X86::LEA32r:
307 return X86::ADD32rr;
308 case X86::LEA64_32r:
309 case X86::LEA64r:
310 return X86::ADD64rr;
314 static inline int getADDriFromLEA(int LEAOpcode, const MachineOperand &Offset) {
315 bool IsInt8 = Offset.isImm() && isInt<8>(Offset.getImm());
316 switch (LEAOpcode) {
317 default:
318 llvm_unreachable("Unexpected LEA instruction");
319 case X86::LEA16r:
320 return IsInt8 ? X86::ADD16ri8 : X86::ADD16ri;
321 case X86::LEA32r:
322 case X86::LEA64_32r:
323 return IsInt8 ? X86::ADD32ri8 : X86::ADD32ri;
324 case X86::LEA64r:
325 return IsInt8 ? X86::ADD64ri8 : X86::ADD64ri32;
329 /// isLEASimpleIncOrDec - Does this LEA have one these forms:
330 /// lea %reg, 1(%reg)
331 /// lea %reg, -1(%reg)
332 static inline bool isLEASimpleIncOrDec(MachineInstr &LEA) {
333 unsigned SrcReg = LEA.getOperand(1 + X86::AddrBaseReg).getReg();
334 unsigned DstReg = LEA.getOperand(0).getReg();
335 const MachineOperand &AddrDisp = LEA.getOperand(1 + X86::AddrDisp);
336 return SrcReg == DstReg &&
337 LEA.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
338 LEA.getOperand(1 + X86::AddrSegmentReg).getReg() == 0 &&
339 AddrDisp.isImm() &&
340 (AddrDisp.getImm() == 1 || AddrDisp.getImm() == -1);
343 bool FixupLEAPass::fixupIncDec(MachineBasicBlock::iterator &I,
344 MachineFunction::iterator MFI) const {
345 MachineInstr &MI = *I;
346 int Opcode = MI.getOpcode();
347 if (!isLEA(Opcode))
348 return false;
350 if (isLEASimpleIncOrDec(MI) && TII->isSafeToClobberEFLAGS(*MFI, I)) {
351 int NewOpcode;
352 bool isINC = MI.getOperand(1 + X86::AddrDisp).getImm() == 1;
353 switch (Opcode) {
354 case X86::LEA16r:
355 NewOpcode = isINC ? X86::INC16r : X86::DEC16r;
356 break;
357 case X86::LEA32r:
358 case X86::LEA64_32r:
359 NewOpcode = isINC ? X86::INC32r : X86::DEC32r;
360 break;
361 case X86::LEA64r:
362 NewOpcode = isINC ? X86::INC64r : X86::DEC64r;
363 break;
366 MachineInstr *NewMI =
367 BuildMI(*MFI, I, MI.getDebugLoc(), TII->get(NewOpcode))
368 .add(MI.getOperand(0))
369 .add(MI.getOperand(1 + X86::AddrBaseReg));
370 MFI->erase(I);
371 I = static_cast<MachineBasicBlock::iterator>(NewMI);
372 return true;
374 return false;
377 void FixupLEAPass::processInstruction(MachineBasicBlock::iterator &I,
378 MachineFunction::iterator MFI) {
379 // Process a load, store, or LEA instruction.
380 MachineInstr &MI = *I;
381 const MCInstrDesc &Desc = MI.getDesc();
382 int AddrOffset = X86II::getMemoryOperandNo(Desc.TSFlags);
383 if (AddrOffset >= 0) {
384 AddrOffset += X86II::getOperandBias(Desc);
385 MachineOperand &p = MI.getOperand(AddrOffset + X86::AddrBaseReg);
386 if (p.isReg() && p.getReg() != X86::ESP) {
387 seekLEAFixup(p, I, MFI);
389 MachineOperand &q = MI.getOperand(AddrOffset + X86::AddrIndexReg);
390 if (q.isReg() && q.getReg() != X86::ESP) {
391 seekLEAFixup(q, I, MFI);
396 void FixupLEAPass::seekLEAFixup(MachineOperand &p,
397 MachineBasicBlock::iterator &I,
398 MachineFunction::iterator MFI) {
399 MachineBasicBlock::iterator MBI = searchBackwards(p, I, MFI);
400 if (MBI != MachineBasicBlock::iterator()) {
401 MachineInstr *NewMI = postRAConvertToLEA(MFI, MBI);
402 if (NewMI) {
403 ++NumLEAs;
404 LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MBI->dump(););
405 // now to replace with an equivalent LEA...
406 LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: "; NewMI->dump(););
407 MFI->erase(MBI);
408 MachineBasicBlock::iterator J =
409 static_cast<MachineBasicBlock::iterator>(NewMI);
410 processInstruction(J, MFI);
415 void FixupLEAPass::processInstructionForSlowLEA(MachineBasicBlock::iterator &I,
416 MachineFunction::iterator MFI) {
417 MachineInstr &MI = *I;
418 const int Opcode = MI.getOpcode();
419 if (!isLEA(Opcode))
420 return;
422 const MachineOperand &Dst = MI.getOperand(0);
423 const MachineOperand &Base = MI.getOperand(1 + X86::AddrBaseReg);
424 const MachineOperand &Scale = MI.getOperand(1 + X86::AddrScaleAmt);
425 const MachineOperand &Index = MI.getOperand(1 + X86::AddrIndexReg);
426 const MachineOperand &Offset = MI.getOperand(1 + X86::AddrDisp);
427 const MachineOperand &Segment = MI.getOperand(1 + X86::AddrSegmentReg);
429 if (Segment.getReg() != 0 || !Offset.isImm() ||
430 !TII->isSafeToClobberEFLAGS(*MFI, I))
431 return;
432 const unsigned DstR = Dst.getReg();
433 const unsigned SrcR1 = Base.getReg();
434 const unsigned SrcR2 = Index.getReg();
435 if ((SrcR1 == 0 || SrcR1 != DstR) && (SrcR2 == 0 || SrcR2 != DstR))
436 return;
437 if (Scale.getImm() > 1)
438 return;
439 LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; I->dump(););
440 LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: ";);
441 MachineInstr *NewMI = nullptr;
442 // Make ADD instruction for two registers writing to LEA's destination
443 if (SrcR1 != 0 && SrcR2 != 0) {
444 const MCInstrDesc &ADDrr = TII->get(getADDrrFromLEA(Opcode));
445 const MachineOperand &Src = SrcR1 == DstR ? Index : Base;
446 NewMI =
447 BuildMI(*MFI, I, MI.getDebugLoc(), ADDrr, DstR).addReg(DstR).add(Src);
448 LLVM_DEBUG(NewMI->dump(););
450 // Make ADD instruction for immediate
451 if (Offset.getImm() != 0) {
452 const MCInstrDesc &ADDri =
453 TII->get(getADDriFromLEA(Opcode, Offset));
454 const MachineOperand &SrcR = SrcR1 == DstR ? Base : Index;
455 NewMI = BuildMI(*MFI, I, MI.getDebugLoc(), ADDri, DstR)
456 .add(SrcR)
457 .addImm(Offset.getImm());
458 LLVM_DEBUG(NewMI->dump(););
460 if (NewMI) {
461 MFI->erase(I);
462 I = NewMI;
466 MachineInstr *
467 FixupLEAPass::processInstrForSlow3OpLEA(MachineInstr &MI,
468 MachineFunction::iterator MFI) {
470 const int LEAOpcode = MI.getOpcode();
471 if (!isLEA(LEAOpcode))
472 return nullptr;
474 const MachineOperand &Dst = MI.getOperand(0);
475 const MachineOperand &Base = MI.getOperand(1 + X86::AddrBaseReg);
476 const MachineOperand &Scale = MI.getOperand(1 + X86::AddrScaleAmt);
477 const MachineOperand &Index = MI.getOperand(1 + X86::AddrIndexReg);
478 const MachineOperand &Offset = MI.getOperand(1 + X86::AddrDisp);
479 const MachineOperand &Segment = MI.getOperand(1 + X86::AddrSegmentReg);
481 if (!(TII->isThreeOperandsLEA(MI) ||
482 hasInefficientLEABaseReg(Base, Index)) ||
483 !TII->isSafeToClobberEFLAGS(*MFI, MI) ||
484 Segment.getReg() != X86::NoRegister)
485 return nullptr;
487 unsigned int DstR = Dst.getReg();
488 unsigned int BaseR = Base.getReg();
489 unsigned int IndexR = Index.getReg();
490 unsigned SSDstR =
491 (LEAOpcode == X86::LEA64_32r) ? getX86SubSuperRegister(DstR, 64) : DstR;
492 bool IsScale1 = Scale.getImm() == 1;
493 bool IsInefficientBase = isInefficientLEAReg(BaseR);
494 bool IsInefficientIndex = isInefficientLEAReg(IndexR);
496 // Skip these cases since it takes more than 2 instructions
497 // to replace the LEA instruction.
498 if (IsInefficientBase && SSDstR == BaseR && !IsScale1)
499 return nullptr;
500 if (LEAOpcode == X86::LEA64_32r && IsInefficientBase &&
501 (IsInefficientIndex || !IsScale1))
502 return nullptr;
504 const DebugLoc DL = MI.getDebugLoc();
505 const MCInstrDesc &ADDrr = TII->get(getADDrrFromLEA(LEAOpcode));
506 const MCInstrDesc &ADDri = TII->get(getADDriFromLEA(LEAOpcode, Offset));
508 LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MI.dump(););
509 LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: ";);
511 // First try to replace LEA with one or two (for the 3-op LEA case)
512 // add instructions:
513 // 1.lea (%base,%index,1), %base => add %index,%base
514 // 2.lea (%base,%index,1), %index => add %base,%index
515 if (IsScale1 && (DstR == BaseR || DstR == IndexR)) {
516 const MachineOperand &Src = DstR == BaseR ? Index : Base;
517 MachineInstr *NewMI =
518 BuildMI(*MFI, MI, DL, ADDrr, DstR).addReg(DstR).add(Src);
519 LLVM_DEBUG(NewMI->dump(););
520 // Create ADD instruction for the Offset in case of 3-Ops LEA.
521 if (hasLEAOffset(Offset)) {
522 NewMI = BuildMI(*MFI, MI, DL, ADDri, DstR).addReg(DstR).add(Offset);
523 LLVM_DEBUG(NewMI->dump(););
525 return NewMI;
527 // If the base is inefficient try switching the index and base operands,
528 // otherwise just break the 3-Ops LEA inst into 2-Ops LEA + ADD instruction:
529 // lea offset(%base,%index,scale),%dst =>
530 // lea (%base,%index,scale); add offset,%dst
531 if (!IsInefficientBase || (!IsInefficientIndex && IsScale1)) {
532 MachineInstr *NewMI = BuildMI(*MFI, MI, DL, TII->get(LEAOpcode))
533 .add(Dst)
534 .add(IsInefficientBase ? Index : Base)
535 .add(Scale)
536 .add(IsInefficientBase ? Base : Index)
537 .addImm(0)
538 .add(Segment);
539 LLVM_DEBUG(NewMI->dump(););
540 // Create ADD instruction for the Offset in case of 3-Ops LEA.
541 if (hasLEAOffset(Offset)) {
542 NewMI = BuildMI(*MFI, MI, DL, ADDri, DstR).addReg(DstR).add(Offset);
543 LLVM_DEBUG(NewMI->dump(););
545 return NewMI;
547 // Handle the rest of the cases with inefficient base register:
548 assert(SSDstR != BaseR && "SSDstR == BaseR should be handled already!");
549 assert(IsInefficientBase && "efficient base should be handled already!");
551 // lea (%base,%index,1), %dst => mov %base,%dst; add %index,%dst
552 if (IsScale1 && !hasLEAOffset(Offset)) {
553 bool BIK = Base.isKill() && BaseR != IndexR;
554 TII->copyPhysReg(*MFI, MI, DL, DstR, BaseR, BIK);
555 LLVM_DEBUG(MI.getPrevNode()->dump(););
557 MachineInstr *NewMI =
558 BuildMI(*MFI, MI, DL, ADDrr, DstR).addReg(DstR).add(Index);
559 LLVM_DEBUG(NewMI->dump(););
560 return NewMI;
562 // lea offset(%base,%index,scale), %dst =>
563 // lea offset( ,%index,scale), %dst; add %base,%dst
564 MachineInstr *NewMI = BuildMI(*MFI, MI, DL, TII->get(LEAOpcode))
565 .add(Dst)
566 .addReg(0)
567 .add(Scale)
568 .add(Index)
569 .add(Offset)
570 .add(Segment);
571 LLVM_DEBUG(NewMI->dump(););
573 NewMI = BuildMI(*MFI, MI, DL, ADDrr, DstR).addReg(DstR).add(Base);
574 LLVM_DEBUG(NewMI->dump(););
575 return NewMI;
578 bool FixupLEAPass::processBasicBlock(MachineFunction &MF,
579 MachineFunction::iterator MFI,
580 bool IsSlowLEA, bool IsSlow3OpsLEA) {
581 for (MachineBasicBlock::iterator I = MFI->begin(); I != MFI->end(); ++I) {
582 if (OptIncDec)
583 if (fixupIncDec(I, MFI))
584 continue;
586 if (OptLEA) {
587 if (IsSlowLEA) {
588 processInstructionForSlowLEA(I, MFI);
589 continue;
592 if (IsSlow3OpsLEA) {
593 if (auto *NewMI = processInstrForSlow3OpLEA(*I, MFI)) {
594 MFI->erase(I);
595 I = NewMI;
597 continue;
600 processInstruction(I, MFI);
603 return false;