Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Transforms / IPO / WholeProgramDevirt.cpp
blob6b6dd6194e179ca8aef3c572480633bd92c56691
1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements whole program optimization of virtual calls in cases
10 // where we know (via !type metadata) that the list of callees is fixed. This
11 // includes the following:
12 // - Single implementation devirtualization: if a virtual call has a single
13 // possible callee, replace all calls with a direct call to that callee.
14 // - Virtual constant propagation: if the virtual function's return type is an
15 // integer <=64 bits and all possible callees are readnone, for each class and
16 // each list of constant arguments: evaluate the function, store the return
17 // value alongside the virtual table, and rewrite each virtual call as a load
18 // from the virtual table.
19 // - Uniform return value optimization: if the conditions for virtual constant
20 // propagation hold and each function returns the same constant value, replace
21 // each virtual call with that constant.
22 // - Unique return value optimization for i1 return values: if the conditions
23 // for virtual constant propagation hold and a single vtable's function
24 // returns 0, or a single vtable's function returns 1, replace each virtual
25 // call with a comparison of the vptr against that vtable's address.
27 // This pass is intended to be used during the regular and thin LTO pipelines.
28 // During regular LTO, the pass determines the best optimization for each
29 // virtual call and applies the resolutions directly to virtual calls that are
30 // eligible for virtual call optimization (i.e. calls that use either of the
31 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics). During
32 // ThinLTO, the pass operates in two phases:
33 // - Export phase: this is run during the thin link over a single merged module
34 // that contains all vtables with !type metadata that participate in the link.
35 // The pass computes a resolution for each virtual call and stores it in the
36 // type identifier summary.
37 // - Import phase: this is run during the thin backends over the individual
38 // modules. The pass applies the resolutions previously computed during the
39 // import phase to each eligible virtual call.
41 //===----------------------------------------------------------------------===//
43 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
44 #include "llvm/ADT/ArrayRef.h"
45 #include "llvm/ADT/DenseMap.h"
46 #include "llvm/ADT/DenseMapInfo.h"
47 #include "llvm/ADT/DenseSet.h"
48 #include "llvm/ADT/MapVector.h"
49 #include "llvm/ADT/SmallVector.h"
50 #include "llvm/ADT/iterator_range.h"
51 #include "llvm/Analysis/AliasAnalysis.h"
52 #include "llvm/Analysis/BasicAliasAnalysis.h"
53 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
54 #include "llvm/Analysis/TypeMetadataUtils.h"
55 #include "llvm/IR/CallSite.h"
56 #include "llvm/IR/Constants.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/DebugLoc.h"
59 #include "llvm/IR/DerivedTypes.h"
60 #include "llvm/IR/Dominators.h"
61 #include "llvm/IR/Function.h"
62 #include "llvm/IR/GlobalAlias.h"
63 #include "llvm/IR/GlobalVariable.h"
64 #include "llvm/IR/IRBuilder.h"
65 #include "llvm/IR/InstrTypes.h"
66 #include "llvm/IR/Instruction.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/LLVMContext.h"
70 #include "llvm/IR/Metadata.h"
71 #include "llvm/IR/Module.h"
72 #include "llvm/IR/ModuleSummaryIndexYAML.h"
73 #include "llvm/Pass.h"
74 #include "llvm/PassRegistry.h"
75 #include "llvm/PassSupport.h"
76 #include "llvm/Support/Casting.h"
77 #include "llvm/Support/Error.h"
78 #include "llvm/Support/FileSystem.h"
79 #include "llvm/Support/MathExtras.h"
80 #include "llvm/Transforms/IPO.h"
81 #include "llvm/Transforms/IPO/FunctionAttrs.h"
82 #include "llvm/Transforms/Utils/Evaluator.h"
83 #include <algorithm>
84 #include <cstddef>
85 #include <map>
86 #include <set>
87 #include <string>
89 using namespace llvm;
90 using namespace wholeprogramdevirt;
92 #define DEBUG_TYPE "wholeprogramdevirt"
94 static cl::opt<PassSummaryAction> ClSummaryAction(
95 "wholeprogramdevirt-summary-action",
96 cl::desc("What to do with the summary when running this pass"),
97 cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
98 clEnumValN(PassSummaryAction::Import, "import",
99 "Import typeid resolutions from summary and globals"),
100 clEnumValN(PassSummaryAction::Export, "export",
101 "Export typeid resolutions to summary and globals")),
102 cl::Hidden);
104 static cl::opt<std::string> ClReadSummary(
105 "wholeprogramdevirt-read-summary",
106 cl::desc("Read summary from given YAML file before running pass"),
107 cl::Hidden);
109 static cl::opt<std::string> ClWriteSummary(
110 "wholeprogramdevirt-write-summary",
111 cl::desc("Write summary to given YAML file after running pass"),
112 cl::Hidden);
114 static cl::opt<unsigned>
115 ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden,
116 cl::init(10), cl::ZeroOrMore,
117 cl::desc("Maximum number of call targets per "
118 "call site to enable branch funnels"));
120 // Find the minimum offset that we may store a value of size Size bits at. If
121 // IsAfter is set, look for an offset before the object, otherwise look for an
122 // offset after the object.
123 uint64_t
124 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
125 bool IsAfter, uint64_t Size) {
126 // Find a minimum offset taking into account only vtable sizes.
127 uint64_t MinByte = 0;
128 for (const VirtualCallTarget &Target : Targets) {
129 if (IsAfter)
130 MinByte = std::max(MinByte, Target.minAfterBytes());
131 else
132 MinByte = std::max(MinByte, Target.minBeforeBytes());
135 // Build a vector of arrays of bytes covering, for each target, a slice of the
136 // used region (see AccumBitVector::BytesUsed in
137 // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
138 // this aligns the used regions to start at MinByte.
140 // In this example, A, B and C are vtables, # is a byte already allocated for
141 // a virtual function pointer, AAAA... (etc.) are the used regions for the
142 // vtables and Offset(X) is the value computed for the Offset variable below
143 // for X.
145 // Offset(A)
146 // | |
147 // |MinByte
148 // A: ################AAAAAAAA|AAAAAAAA
149 // B: ########BBBBBBBBBBBBBBBB|BBBB
150 // C: ########################|CCCCCCCCCCCCCCCC
151 // | Offset(B) |
153 // This code produces the slices of A, B and C that appear after the divider
154 // at MinByte.
155 std::vector<ArrayRef<uint8_t>> Used;
156 for (const VirtualCallTarget &Target : Targets) {
157 ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed
158 : Target.TM->Bits->Before.BytesUsed;
159 uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
160 : MinByte - Target.minBeforeBytes();
162 // Disregard used regions that are smaller than Offset. These are
163 // effectively all-free regions that do not need to be checked.
164 if (VTUsed.size() > Offset)
165 Used.push_back(VTUsed.slice(Offset));
168 if (Size == 1) {
169 // Find a free bit in each member of Used.
170 for (unsigned I = 0;; ++I) {
171 uint8_t BitsUsed = 0;
172 for (auto &&B : Used)
173 if (I < B.size())
174 BitsUsed |= B[I];
175 if (BitsUsed != 0xff)
176 return (MinByte + I) * 8 +
177 countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
179 } else {
180 // Find a free (Size/8) byte region in each member of Used.
181 // FIXME: see if alignment helps.
182 for (unsigned I = 0;; ++I) {
183 for (auto &&B : Used) {
184 unsigned Byte = 0;
185 while ((I + Byte) < B.size() && Byte < (Size / 8)) {
186 if (B[I + Byte])
187 goto NextI;
188 ++Byte;
191 return (MinByte + I) * 8;
192 NextI:;
197 void wholeprogramdevirt::setBeforeReturnValues(
198 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
199 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
200 if (BitWidth == 1)
201 OffsetByte = -(AllocBefore / 8 + 1);
202 else
203 OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
204 OffsetBit = AllocBefore % 8;
206 for (VirtualCallTarget &Target : Targets) {
207 if (BitWidth == 1)
208 Target.setBeforeBit(AllocBefore);
209 else
210 Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
214 void wholeprogramdevirt::setAfterReturnValues(
215 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
216 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
217 if (BitWidth == 1)
218 OffsetByte = AllocAfter / 8;
219 else
220 OffsetByte = (AllocAfter + 7) / 8;
221 OffsetBit = AllocAfter % 8;
223 for (VirtualCallTarget &Target : Targets) {
224 if (BitWidth == 1)
225 Target.setAfterBit(AllocAfter);
226 else
227 Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
231 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM)
232 : Fn(Fn), TM(TM),
233 IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {}
235 namespace {
237 // A slot in a set of virtual tables. The TypeID identifies the set of virtual
238 // tables, and the ByteOffset is the offset in bytes from the address point to
239 // the virtual function pointer.
240 struct VTableSlot {
241 Metadata *TypeID;
242 uint64_t ByteOffset;
245 } // end anonymous namespace
247 namespace llvm {
249 template <> struct DenseMapInfo<VTableSlot> {
250 static VTableSlot getEmptyKey() {
251 return {DenseMapInfo<Metadata *>::getEmptyKey(),
252 DenseMapInfo<uint64_t>::getEmptyKey()};
254 static VTableSlot getTombstoneKey() {
255 return {DenseMapInfo<Metadata *>::getTombstoneKey(),
256 DenseMapInfo<uint64_t>::getTombstoneKey()};
258 static unsigned getHashValue(const VTableSlot &I) {
259 return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^
260 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
262 static bool isEqual(const VTableSlot &LHS,
263 const VTableSlot &RHS) {
264 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
268 } // end namespace llvm
270 namespace {
272 // A virtual call site. VTable is the loaded virtual table pointer, and CS is
273 // the indirect virtual call.
274 struct VirtualCallSite {
275 Value *VTable;
276 CallSite CS;
278 // If non-null, this field points to the associated unsafe use count stored in
279 // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
280 // of that field for details.
281 unsigned *NumUnsafeUses;
283 void
284 emitRemark(const StringRef OptName, const StringRef TargetName,
285 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
286 Function *F = CS.getCaller();
287 DebugLoc DLoc = CS->getDebugLoc();
288 BasicBlock *Block = CS.getParent();
290 using namespace ore;
291 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block)
292 << NV("Optimization", OptName)
293 << ": devirtualized a call to "
294 << NV("FunctionName", TargetName));
297 void replaceAndErase(
298 const StringRef OptName, const StringRef TargetName, bool RemarksEnabled,
299 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
300 Value *New) {
301 if (RemarksEnabled)
302 emitRemark(OptName, TargetName, OREGetter);
303 CS->replaceAllUsesWith(New);
304 if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) {
305 BranchInst::Create(II->getNormalDest(), CS.getInstruction());
306 II->getUnwindDest()->removePredecessor(II->getParent());
308 CS->eraseFromParent();
309 // This use is no longer unsafe.
310 if (NumUnsafeUses)
311 --*NumUnsafeUses;
315 // Call site information collected for a specific VTableSlot and possibly a list
316 // of constant integer arguments. The grouping by arguments is handled by the
317 // VTableSlotInfo class.
318 struct CallSiteInfo {
319 /// The set of call sites for this slot. Used during regular LTO and the
320 /// import phase of ThinLTO (as well as the export phase of ThinLTO for any
321 /// call sites that appear in the merged module itself); in each of these
322 /// cases we are directly operating on the call sites at the IR level.
323 std::vector<VirtualCallSite> CallSites;
325 /// Whether all call sites represented by this CallSiteInfo, including those
326 /// in summaries, have been devirtualized. This starts off as true because a
327 /// default constructed CallSiteInfo represents no call sites.
328 bool AllCallSitesDevirted = true;
330 // These fields are used during the export phase of ThinLTO and reflect
331 // information collected from function summaries.
333 /// Whether any function summary contains an llvm.assume(llvm.type.test) for
334 /// this slot.
335 bool SummaryHasTypeTestAssumeUsers = false;
337 /// CFI-specific: a vector containing the list of function summaries that use
338 /// the llvm.type.checked.load intrinsic and therefore will require
339 /// resolutions for llvm.type.test in order to implement CFI checks if
340 /// devirtualization was unsuccessful. If devirtualization was successful, the
341 /// pass will clear this vector by calling markDevirt(). If at the end of the
342 /// pass the vector is non-empty, we will need to add a use of llvm.type.test
343 /// to each of the function summaries in the vector.
344 std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers;
346 bool isExported() const {
347 return SummaryHasTypeTestAssumeUsers ||
348 !SummaryTypeCheckedLoadUsers.empty();
351 void markSummaryHasTypeTestAssumeUsers() {
352 SummaryHasTypeTestAssumeUsers = true;
353 AllCallSitesDevirted = false;
356 void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) {
357 SummaryTypeCheckedLoadUsers.push_back(FS);
358 AllCallSitesDevirted = false;
361 void markDevirt() {
362 AllCallSitesDevirted = true;
364 // As explained in the comment for SummaryTypeCheckedLoadUsers.
365 SummaryTypeCheckedLoadUsers.clear();
369 // Call site information collected for a specific VTableSlot.
370 struct VTableSlotInfo {
371 // The set of call sites which do not have all constant integer arguments
372 // (excluding "this").
373 CallSiteInfo CSInfo;
375 // The set of call sites with all constant integer arguments (excluding
376 // "this"), grouped by argument list.
377 std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo;
379 void addCallSite(Value *VTable, CallSite CS, unsigned *NumUnsafeUses);
381 private:
382 CallSiteInfo &findCallSiteInfo(CallSite CS);
385 CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallSite CS) {
386 std::vector<uint64_t> Args;
387 auto *CI = dyn_cast<IntegerType>(CS.getType());
388 if (!CI || CI->getBitWidth() > 64 || CS.arg_empty())
389 return CSInfo;
390 for (auto &&Arg : make_range(CS.arg_begin() + 1, CS.arg_end())) {
391 auto *CI = dyn_cast<ConstantInt>(Arg);
392 if (!CI || CI->getBitWidth() > 64)
393 return CSInfo;
394 Args.push_back(CI->getZExtValue());
396 return ConstCSInfo[Args];
399 void VTableSlotInfo::addCallSite(Value *VTable, CallSite CS,
400 unsigned *NumUnsafeUses) {
401 auto &CSI = findCallSiteInfo(CS);
402 CSI.AllCallSitesDevirted = false;
403 CSI.CallSites.push_back({VTable, CS, NumUnsafeUses});
406 struct DevirtModule {
407 Module &M;
408 function_ref<AAResults &(Function &)> AARGetter;
409 function_ref<DominatorTree &(Function &)> LookupDomTree;
411 ModuleSummaryIndex *ExportSummary;
412 const ModuleSummaryIndex *ImportSummary;
414 IntegerType *Int8Ty;
415 PointerType *Int8PtrTy;
416 IntegerType *Int32Ty;
417 IntegerType *Int64Ty;
418 IntegerType *IntPtrTy;
420 bool RemarksEnabled;
421 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter;
423 MapVector<VTableSlot, VTableSlotInfo> CallSlots;
425 // This map keeps track of the number of "unsafe" uses of a loaded function
426 // pointer. The key is the associated llvm.type.test intrinsic call generated
427 // by this pass. An unsafe use is one that calls the loaded function pointer
428 // directly. Every time we eliminate an unsafe use (for example, by
429 // devirtualizing it or by applying virtual constant propagation), we
430 // decrement the value stored in this map. If a value reaches zero, we can
431 // eliminate the type check by RAUWing the associated llvm.type.test call with
432 // true.
433 std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest;
435 DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter,
436 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
437 function_ref<DominatorTree &(Function &)> LookupDomTree,
438 ModuleSummaryIndex *ExportSummary,
439 const ModuleSummaryIndex *ImportSummary)
440 : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree),
441 ExportSummary(ExportSummary), ImportSummary(ImportSummary),
442 Int8Ty(Type::getInt8Ty(M.getContext())),
443 Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
444 Int32Ty(Type::getInt32Ty(M.getContext())),
445 Int64Ty(Type::getInt64Ty(M.getContext())),
446 IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)),
447 RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) {
448 assert(!(ExportSummary && ImportSummary));
451 bool areRemarksEnabled();
453 void scanTypeTestUsers(Function *TypeTestFunc, Function *AssumeFunc);
454 void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc);
456 void buildTypeIdentifierMap(
457 std::vector<VTableBits> &Bits,
458 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
459 Constant *getPointerAtOffset(Constant *I, uint64_t Offset);
460 bool
461 tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
462 const std::set<TypeMemberInfo> &TypeMemberInfos,
463 uint64_t ByteOffset);
465 void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn,
466 bool &IsExported);
467 bool trySingleImplDevirt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
468 VTableSlotInfo &SlotInfo,
469 WholeProgramDevirtResolution *Res);
471 void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT,
472 bool &IsExported);
473 void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
474 VTableSlotInfo &SlotInfo,
475 WholeProgramDevirtResolution *Res, VTableSlot Slot);
477 bool tryEvaluateFunctionsWithArgs(
478 MutableArrayRef<VirtualCallTarget> TargetsForSlot,
479 ArrayRef<uint64_t> Args);
481 void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
482 uint64_t TheRetVal);
483 bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
484 CallSiteInfo &CSInfo,
485 WholeProgramDevirtResolution::ByArg *Res);
487 // Returns the global symbol name that is used to export information about the
488 // given vtable slot and list of arguments.
489 std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args,
490 StringRef Name);
492 bool shouldExportConstantsAsAbsoluteSymbols();
494 // This function is called during the export phase to create a symbol
495 // definition containing information about the given vtable slot and list of
496 // arguments.
497 void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
498 Constant *C);
499 void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
500 uint32_t Const, uint32_t &Storage);
502 // This function is called during the import phase to create a reference to
503 // the symbol definition created during the export phase.
504 Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
505 StringRef Name);
506 Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
507 StringRef Name, IntegerType *IntTy,
508 uint32_t Storage);
510 Constant *getMemberAddr(const TypeMemberInfo *M);
512 void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne,
513 Constant *UniqueMemberAddr);
514 bool tryUniqueRetValOpt(unsigned BitWidth,
515 MutableArrayRef<VirtualCallTarget> TargetsForSlot,
516 CallSiteInfo &CSInfo,
517 WholeProgramDevirtResolution::ByArg *Res,
518 VTableSlot Slot, ArrayRef<uint64_t> Args);
520 void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
521 Constant *Byte, Constant *Bit);
522 bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
523 VTableSlotInfo &SlotInfo,
524 WholeProgramDevirtResolution *Res, VTableSlot Slot);
526 void rebuildGlobal(VTableBits &B);
528 // Apply the summary resolution for Slot to all virtual calls in SlotInfo.
529 void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo);
531 // If we were able to eliminate all unsafe uses for a type checked load,
532 // eliminate the associated type tests by replacing them with true.
533 void removeRedundantTypeTests();
535 bool run();
537 // Lower the module using the action and summary passed as command line
538 // arguments. For testing purposes only.
539 static bool
540 runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter,
541 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
542 function_ref<DominatorTree &(Function &)> LookupDomTree);
545 struct WholeProgramDevirt : public ModulePass {
546 static char ID;
548 bool UseCommandLine = false;
550 ModuleSummaryIndex *ExportSummary;
551 const ModuleSummaryIndex *ImportSummary;
553 WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) {
554 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
557 WholeProgramDevirt(ModuleSummaryIndex *ExportSummary,
558 const ModuleSummaryIndex *ImportSummary)
559 : ModulePass(ID), ExportSummary(ExportSummary),
560 ImportSummary(ImportSummary) {
561 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
564 bool runOnModule(Module &M) override {
565 if (skipModule(M))
566 return false;
568 // In the new pass manager, we can request the optimization
569 // remark emitter pass on a per-function-basis, which the
570 // OREGetter will do for us.
571 // In the old pass manager, this is harder, so we just build
572 // an optimization remark emitter on the fly, when we need it.
573 std::unique_ptr<OptimizationRemarkEmitter> ORE;
574 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
575 ORE = make_unique<OptimizationRemarkEmitter>(F);
576 return *ORE;
579 auto LookupDomTree = [this](Function &F) -> DominatorTree & {
580 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
583 if (UseCommandLine)
584 return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter,
585 LookupDomTree);
587 return DevirtModule(M, LegacyAARGetter(*this), OREGetter, LookupDomTree,
588 ExportSummary, ImportSummary)
589 .run();
592 void getAnalysisUsage(AnalysisUsage &AU) const override {
593 AU.addRequired<AssumptionCacheTracker>();
594 AU.addRequired<TargetLibraryInfoWrapperPass>();
595 AU.addRequired<DominatorTreeWrapperPass>();
599 } // end anonymous namespace
601 INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt",
602 "Whole program devirtualization", false, false)
603 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
604 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
605 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
606 INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt",
607 "Whole program devirtualization", false, false)
608 char WholeProgramDevirt::ID = 0;
610 ModulePass *
611 llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary,
612 const ModuleSummaryIndex *ImportSummary) {
613 return new WholeProgramDevirt(ExportSummary, ImportSummary);
616 PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
617 ModuleAnalysisManager &AM) {
618 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
619 auto AARGetter = [&](Function &F) -> AAResults & {
620 return FAM.getResult<AAManager>(F);
622 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
623 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
625 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & {
626 return FAM.getResult<DominatorTreeAnalysis>(F);
628 if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary,
629 ImportSummary)
630 .run())
631 return PreservedAnalyses::all();
632 return PreservedAnalyses::none();
635 bool DevirtModule::runForTesting(
636 Module &M, function_ref<AAResults &(Function &)> AARGetter,
637 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
638 function_ref<DominatorTree &(Function &)> LookupDomTree) {
639 ModuleSummaryIndex Summary(/*HaveGVs=*/false);
641 // Handle the command-line summary arguments. This code is for testing
642 // purposes only, so we handle errors directly.
643 if (!ClReadSummary.empty()) {
644 ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary +
645 ": ");
646 auto ReadSummaryFile =
647 ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
649 yaml::Input In(ReadSummaryFile->getBuffer());
650 In >> Summary;
651 ExitOnErr(errorCodeToError(In.error()));
654 bool Changed =
655 DevirtModule(
656 M, AARGetter, OREGetter, LookupDomTree,
657 ClSummaryAction == PassSummaryAction::Export ? &Summary : nullptr,
658 ClSummaryAction == PassSummaryAction::Import ? &Summary : nullptr)
659 .run();
661 if (!ClWriteSummary.empty()) {
662 ExitOnError ExitOnErr(
663 "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": ");
664 std::error_code EC;
665 raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::F_Text);
666 ExitOnErr(errorCodeToError(EC));
668 yaml::Output Out(OS);
669 Out << Summary;
672 return Changed;
675 void DevirtModule::buildTypeIdentifierMap(
676 std::vector<VTableBits> &Bits,
677 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
678 DenseMap<GlobalVariable *, VTableBits *> GVToBits;
679 Bits.reserve(M.getGlobalList().size());
680 SmallVector<MDNode *, 2> Types;
681 for (GlobalVariable &GV : M.globals()) {
682 Types.clear();
683 GV.getMetadata(LLVMContext::MD_type, Types);
684 if (GV.isDeclaration() || Types.empty())
685 continue;
687 VTableBits *&BitsPtr = GVToBits[&GV];
688 if (!BitsPtr) {
689 Bits.emplace_back();
690 Bits.back().GV = &GV;
691 Bits.back().ObjectSize =
692 M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType());
693 BitsPtr = &Bits.back();
696 for (MDNode *Type : Types) {
697 auto TypeID = Type->getOperand(1).get();
699 uint64_t Offset =
700 cast<ConstantInt>(
701 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
702 ->getZExtValue();
704 TypeIdMap[TypeID].insert({BitsPtr, Offset});
709 Constant *DevirtModule::getPointerAtOffset(Constant *I, uint64_t Offset) {
710 if (I->getType()->isPointerTy()) {
711 if (Offset == 0)
712 return I;
713 return nullptr;
716 const DataLayout &DL = M.getDataLayout();
718 if (auto *C = dyn_cast<ConstantStruct>(I)) {
719 const StructLayout *SL = DL.getStructLayout(C->getType());
720 if (Offset >= SL->getSizeInBytes())
721 return nullptr;
723 unsigned Op = SL->getElementContainingOffset(Offset);
724 return getPointerAtOffset(cast<Constant>(I->getOperand(Op)),
725 Offset - SL->getElementOffset(Op));
727 if (auto *C = dyn_cast<ConstantArray>(I)) {
728 ArrayType *VTableTy = C->getType();
729 uint64_t ElemSize = DL.getTypeAllocSize(VTableTy->getElementType());
731 unsigned Op = Offset / ElemSize;
732 if (Op >= C->getNumOperands())
733 return nullptr;
735 return getPointerAtOffset(cast<Constant>(I->getOperand(Op)),
736 Offset % ElemSize);
738 return nullptr;
741 bool DevirtModule::tryFindVirtualCallTargets(
742 std::vector<VirtualCallTarget> &TargetsForSlot,
743 const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) {
744 for (const TypeMemberInfo &TM : TypeMemberInfos) {
745 if (!TM.Bits->GV->isConstant())
746 return false;
748 Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(),
749 TM.Offset + ByteOffset);
750 if (!Ptr)
751 return false;
753 auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts());
754 if (!Fn)
755 return false;
757 // We can disregard __cxa_pure_virtual as a possible call target, as
758 // calls to pure virtuals are UB.
759 if (Fn->getName() == "__cxa_pure_virtual")
760 continue;
762 TargetsForSlot.push_back({Fn, &TM});
765 // Give up if we couldn't find any targets.
766 return !TargetsForSlot.empty();
769 void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo,
770 Constant *TheFn, bool &IsExported) {
771 auto Apply = [&](CallSiteInfo &CSInfo) {
772 for (auto &&VCallSite : CSInfo.CallSites) {
773 if (RemarksEnabled)
774 VCallSite.emitRemark("single-impl",
775 TheFn->stripPointerCasts()->getName(), OREGetter);
776 VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast(
777 TheFn, VCallSite.CS.getCalledValue()->getType()));
778 // This use is no longer unsafe.
779 if (VCallSite.NumUnsafeUses)
780 --*VCallSite.NumUnsafeUses;
782 if (CSInfo.isExported())
783 IsExported = true;
784 CSInfo.markDevirt();
786 Apply(SlotInfo.CSInfo);
787 for (auto &P : SlotInfo.ConstCSInfo)
788 Apply(P.second);
791 bool DevirtModule::trySingleImplDevirt(
792 MutableArrayRef<VirtualCallTarget> TargetsForSlot,
793 VTableSlotInfo &SlotInfo, WholeProgramDevirtResolution *Res) {
794 // See if the program contains a single implementation of this virtual
795 // function.
796 Function *TheFn = TargetsForSlot[0].Fn;
797 for (auto &&Target : TargetsForSlot)
798 if (TheFn != Target.Fn)
799 return false;
801 // If so, update each call site to call that implementation directly.
802 if (RemarksEnabled)
803 TargetsForSlot[0].WasDevirt = true;
805 bool IsExported = false;
806 applySingleImplDevirt(SlotInfo, TheFn, IsExported);
807 if (!IsExported)
808 return false;
810 // If the only implementation has local linkage, we must promote to external
811 // to make it visible to thin LTO objects. We can only get here during the
812 // ThinLTO export phase.
813 if (TheFn->hasLocalLinkage()) {
814 std::string NewName = (TheFn->getName() + "$merged").str();
816 // Since we are renaming the function, any comdats with the same name must
817 // also be renamed. This is required when targeting COFF, as the comdat name
818 // must match one of the names of the symbols in the comdat.
819 if (Comdat *C = TheFn->getComdat()) {
820 if (C->getName() == TheFn->getName()) {
821 Comdat *NewC = M.getOrInsertComdat(NewName);
822 NewC->setSelectionKind(C->getSelectionKind());
823 for (GlobalObject &GO : M.global_objects())
824 if (GO.getComdat() == C)
825 GO.setComdat(NewC);
829 TheFn->setLinkage(GlobalValue::ExternalLinkage);
830 TheFn->setVisibility(GlobalValue::HiddenVisibility);
831 TheFn->setName(NewName);
834 Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
835 Res->SingleImplName = TheFn->getName();
837 return true;
840 void DevirtModule::tryICallBranchFunnel(
841 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
842 WholeProgramDevirtResolution *Res, VTableSlot Slot) {
843 Triple T(M.getTargetTriple());
844 if (T.getArch() != Triple::x86_64)
845 return;
847 if (TargetsForSlot.size() > ClThreshold)
848 return;
850 bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted;
851 if (!HasNonDevirt)
852 for (auto &P : SlotInfo.ConstCSInfo)
853 if (!P.second.AllCallSitesDevirted) {
854 HasNonDevirt = true;
855 break;
858 if (!HasNonDevirt)
859 return;
861 FunctionType *FT =
862 FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true);
863 Function *JT;
864 if (isa<MDString>(Slot.TypeID)) {
865 JT = Function::Create(FT, Function::ExternalLinkage,
866 M.getDataLayout().getProgramAddressSpace(),
867 getGlobalName(Slot, {}, "branch_funnel"), &M);
868 JT->setVisibility(GlobalValue::HiddenVisibility);
869 } else {
870 JT = Function::Create(FT, Function::InternalLinkage,
871 M.getDataLayout().getProgramAddressSpace(),
872 "branch_funnel", &M);
874 JT->addAttribute(1, Attribute::Nest);
876 std::vector<Value *> JTArgs;
877 JTArgs.push_back(JT->arg_begin());
878 for (auto &T : TargetsForSlot) {
879 JTArgs.push_back(getMemberAddr(T.TM));
880 JTArgs.push_back(T.Fn);
883 BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr);
884 Function *Intr =
885 Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {});
887 auto *CI = CallInst::Create(Intr, JTArgs, "", BB);
888 CI->setTailCallKind(CallInst::TCK_MustTail);
889 ReturnInst::Create(M.getContext(), nullptr, BB);
891 bool IsExported = false;
892 applyICallBranchFunnel(SlotInfo, JT, IsExported);
893 if (IsExported)
894 Res->TheKind = WholeProgramDevirtResolution::BranchFunnel;
897 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo,
898 Constant *JT, bool &IsExported) {
899 auto Apply = [&](CallSiteInfo &CSInfo) {
900 if (CSInfo.isExported())
901 IsExported = true;
902 if (CSInfo.AllCallSitesDevirted)
903 return;
904 for (auto &&VCallSite : CSInfo.CallSites) {
905 CallSite CS = VCallSite.CS;
907 // Jump tables are only profitable if the retpoline mitigation is enabled.
908 Attribute FSAttr = CS.getCaller()->getFnAttribute("target-features");
909 if (FSAttr.hasAttribute(Attribute::None) ||
910 !FSAttr.getValueAsString().contains("+retpoline"))
911 continue;
913 if (RemarksEnabled)
914 VCallSite.emitRemark("branch-funnel",
915 JT->stripPointerCasts()->getName(), OREGetter);
917 // Pass the address of the vtable in the nest register, which is r10 on
918 // x86_64.
919 std::vector<Type *> NewArgs;
920 NewArgs.push_back(Int8PtrTy);
921 for (Type *T : CS.getFunctionType()->params())
922 NewArgs.push_back(T);
923 FunctionType *NewFT =
924 FunctionType::get(CS.getFunctionType()->getReturnType(), NewArgs,
925 CS.getFunctionType()->isVarArg());
926 PointerType *NewFTPtr = PointerType::getUnqual(NewFT);
928 IRBuilder<> IRB(CS.getInstruction());
929 std::vector<Value *> Args;
930 Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy));
931 for (unsigned I = 0; I != CS.getNumArgOperands(); ++I)
932 Args.push_back(CS.getArgOperand(I));
934 CallSite NewCS;
935 if (CS.isCall())
936 NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args);
937 else
938 NewCS = IRB.CreateInvoke(
939 NewFT, IRB.CreateBitCast(JT, NewFTPtr),
940 cast<InvokeInst>(CS.getInstruction())->getNormalDest(),
941 cast<InvokeInst>(CS.getInstruction())->getUnwindDest(), Args);
942 NewCS.setCallingConv(CS.getCallingConv());
944 AttributeList Attrs = CS.getAttributes();
945 std::vector<AttributeSet> NewArgAttrs;
946 NewArgAttrs.push_back(AttributeSet::get(
947 M.getContext(), ArrayRef<Attribute>{Attribute::get(
948 M.getContext(), Attribute::Nest)}));
949 for (unsigned I = 0; I + 2 < Attrs.getNumAttrSets(); ++I)
950 NewArgAttrs.push_back(Attrs.getParamAttributes(I));
951 NewCS.setAttributes(
952 AttributeList::get(M.getContext(), Attrs.getFnAttributes(),
953 Attrs.getRetAttributes(), NewArgAttrs));
955 CS->replaceAllUsesWith(NewCS.getInstruction());
956 CS->eraseFromParent();
958 // This use is no longer unsafe.
959 if (VCallSite.NumUnsafeUses)
960 --*VCallSite.NumUnsafeUses;
962 // Don't mark as devirtualized because there may be callers compiled without
963 // retpoline mitigation, which would mean that they are lowered to
964 // llvm.type.test and therefore require an llvm.type.test resolution for the
965 // type identifier.
967 Apply(SlotInfo.CSInfo);
968 for (auto &P : SlotInfo.ConstCSInfo)
969 Apply(P.second);
972 bool DevirtModule::tryEvaluateFunctionsWithArgs(
973 MutableArrayRef<VirtualCallTarget> TargetsForSlot,
974 ArrayRef<uint64_t> Args) {
975 // Evaluate each function and store the result in each target's RetVal
976 // field.
977 for (VirtualCallTarget &Target : TargetsForSlot) {
978 if (Target.Fn->arg_size() != Args.size() + 1)
979 return false;
981 Evaluator Eval(M.getDataLayout(), nullptr);
982 SmallVector<Constant *, 2> EvalArgs;
983 EvalArgs.push_back(
984 Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
985 for (unsigned I = 0; I != Args.size(); ++I) {
986 auto *ArgTy = dyn_cast<IntegerType>(
987 Target.Fn->getFunctionType()->getParamType(I + 1));
988 if (!ArgTy)
989 return false;
990 EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I]));
993 Constant *RetVal;
994 if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
995 !isa<ConstantInt>(RetVal))
996 return false;
997 Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
999 return true;
1002 void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1003 uint64_t TheRetVal) {
1004 for (auto Call : CSInfo.CallSites)
1005 Call.replaceAndErase(
1006 "uniform-ret-val", FnName, RemarksEnabled, OREGetter,
1007 ConstantInt::get(cast<IntegerType>(Call.CS.getType()), TheRetVal));
1008 CSInfo.markDevirt();
1011 bool DevirtModule::tryUniformRetValOpt(
1012 MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo,
1013 WholeProgramDevirtResolution::ByArg *Res) {
1014 // Uniform return value optimization. If all functions return the same
1015 // constant, replace all calls with that constant.
1016 uint64_t TheRetVal = TargetsForSlot[0].RetVal;
1017 for (const VirtualCallTarget &Target : TargetsForSlot)
1018 if (Target.RetVal != TheRetVal)
1019 return false;
1021 if (CSInfo.isExported()) {
1022 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
1023 Res->Info = TheRetVal;
1026 applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal);
1027 if (RemarksEnabled)
1028 for (auto &&Target : TargetsForSlot)
1029 Target.WasDevirt = true;
1030 return true;
1033 std::string DevirtModule::getGlobalName(VTableSlot Slot,
1034 ArrayRef<uint64_t> Args,
1035 StringRef Name) {
1036 std::string FullName = "__typeid_";
1037 raw_string_ostream OS(FullName);
1038 OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset;
1039 for (uint64_t Arg : Args)
1040 OS << '_' << Arg;
1041 OS << '_' << Name;
1042 return OS.str();
1045 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
1046 Triple T(M.getTargetTriple());
1047 return (T.getArch() == Triple::x86 || T.getArch() == Triple::x86_64) &&
1048 T.getObjectFormat() == Triple::ELF;
1051 void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1052 StringRef Name, Constant *C) {
1053 GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
1054 getGlobalName(Slot, Args, Name), C, &M);
1055 GA->setVisibility(GlobalValue::HiddenVisibility);
1058 void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1059 StringRef Name, uint32_t Const,
1060 uint32_t &Storage) {
1061 if (shouldExportConstantsAsAbsoluteSymbols()) {
1062 exportGlobal(
1063 Slot, Args, Name,
1064 ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy));
1065 return;
1068 Storage = Const;
1071 Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1072 StringRef Name) {
1073 Constant *C = M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Ty);
1074 auto *GV = dyn_cast<GlobalVariable>(C);
1075 if (GV)
1076 GV->setVisibility(GlobalValue::HiddenVisibility);
1077 return C;
1080 Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1081 StringRef Name, IntegerType *IntTy,
1082 uint32_t Storage) {
1083 if (!shouldExportConstantsAsAbsoluteSymbols())
1084 return ConstantInt::get(IntTy, Storage);
1086 Constant *C = importGlobal(Slot, Args, Name);
1087 auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
1088 C = ConstantExpr::getPtrToInt(C, IntTy);
1090 // We only need to set metadata if the global is newly created, in which
1091 // case it would not have hidden visibility.
1092 if (GV->hasMetadata(LLVMContext::MD_absolute_symbol))
1093 return C;
1095 auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
1096 auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
1097 auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
1098 GV->setMetadata(LLVMContext::MD_absolute_symbol,
1099 MDNode::get(M.getContext(), {MinC, MaxC}));
1101 unsigned AbsWidth = IntTy->getBitWidth();
1102 if (AbsWidth == IntPtrTy->getBitWidth())
1103 SetAbsRange(~0ull, ~0ull); // Full set.
1104 else
1105 SetAbsRange(0, 1ull << AbsWidth);
1106 return C;
1109 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1110 bool IsOne,
1111 Constant *UniqueMemberAddr) {
1112 for (auto &&Call : CSInfo.CallSites) {
1113 IRBuilder<> B(Call.CS.getInstruction());
1114 Value *Cmp =
1115 B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
1116 B.CreateBitCast(Call.VTable, Int8PtrTy), UniqueMemberAddr);
1117 Cmp = B.CreateZExt(Cmp, Call.CS->getType());
1118 Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter,
1119 Cmp);
1121 CSInfo.markDevirt();
1124 Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) {
1125 Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy);
1126 return ConstantExpr::getGetElementPtr(Int8Ty, C,
1127 ConstantInt::get(Int64Ty, M->Offset));
1130 bool DevirtModule::tryUniqueRetValOpt(
1131 unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1132 CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res,
1133 VTableSlot Slot, ArrayRef<uint64_t> Args) {
1134 // IsOne controls whether we look for a 0 or a 1.
1135 auto tryUniqueRetValOptFor = [&](bool IsOne) {
1136 const TypeMemberInfo *UniqueMember = nullptr;
1137 for (const VirtualCallTarget &Target : TargetsForSlot) {
1138 if (Target.RetVal == (IsOne ? 1 : 0)) {
1139 if (UniqueMember)
1140 return false;
1141 UniqueMember = Target.TM;
1145 // We should have found a unique member or bailed out by now. We already
1146 // checked for a uniform return value in tryUniformRetValOpt.
1147 assert(UniqueMember);
1149 Constant *UniqueMemberAddr = getMemberAddr(UniqueMember);
1150 if (CSInfo.isExported()) {
1151 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
1152 Res->Info = IsOne;
1154 exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr);
1157 // Replace each call with the comparison.
1158 applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne,
1159 UniqueMemberAddr);
1161 // Update devirtualization statistics for targets.
1162 if (RemarksEnabled)
1163 for (auto &&Target : TargetsForSlot)
1164 Target.WasDevirt = true;
1166 return true;
1169 if (BitWidth == 1) {
1170 if (tryUniqueRetValOptFor(true))
1171 return true;
1172 if (tryUniqueRetValOptFor(false))
1173 return true;
1175 return false;
1178 void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
1179 Constant *Byte, Constant *Bit) {
1180 for (auto Call : CSInfo.CallSites) {
1181 auto *RetType = cast<IntegerType>(Call.CS.getType());
1182 IRBuilder<> B(Call.CS.getInstruction());
1183 Value *Addr =
1184 B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte);
1185 if (RetType->getBitWidth() == 1) {
1186 Value *Bits = B.CreateLoad(Int8Ty, Addr);
1187 Value *BitsAndBit = B.CreateAnd(Bits, Bit);
1188 auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
1189 Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled,
1190 OREGetter, IsBitSet);
1191 } else {
1192 Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
1193 Value *Val = B.CreateLoad(RetType, ValAddr);
1194 Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled,
1195 OREGetter, Val);
1198 CSInfo.markDevirt();
1201 bool DevirtModule::tryVirtualConstProp(
1202 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1203 WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1204 // This only works if the function returns an integer.
1205 auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
1206 if (!RetType)
1207 return false;
1208 unsigned BitWidth = RetType->getBitWidth();
1209 if (BitWidth > 64)
1210 return false;
1212 // Make sure that each function is defined, does not access memory, takes at
1213 // least one argument, does not use its first argument (which we assume is
1214 // 'this'), and has the same return type.
1216 // Note that we test whether this copy of the function is readnone, rather
1217 // than testing function attributes, which must hold for any copy of the
1218 // function, even a less optimized version substituted at link time. This is
1219 // sound because the virtual constant propagation optimizations effectively
1220 // inline all implementations of the virtual function into each call site,
1221 // rather than using function attributes to perform local optimization.
1222 for (VirtualCallTarget &Target : TargetsForSlot) {
1223 if (Target.Fn->isDeclaration() ||
1224 computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) !=
1225 MAK_ReadNone ||
1226 Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() ||
1227 Target.Fn->getReturnType() != RetType)
1228 return false;
1231 for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) {
1232 if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
1233 continue;
1235 WholeProgramDevirtResolution::ByArg *ResByArg = nullptr;
1236 if (Res)
1237 ResByArg = &Res->ResByArg[CSByConstantArg.first];
1239 if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg))
1240 continue;
1242 if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second,
1243 ResByArg, Slot, CSByConstantArg.first))
1244 continue;
1246 // Find an allocation offset in bits in all vtables associated with the
1247 // type.
1248 uint64_t AllocBefore =
1249 findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
1250 uint64_t AllocAfter =
1251 findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
1253 // Calculate the total amount of padding needed to store a value at both
1254 // ends of the object.
1255 uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
1256 for (auto &&Target : TargetsForSlot) {
1257 TotalPaddingBefore += std::max<int64_t>(
1258 (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
1259 TotalPaddingAfter += std::max<int64_t>(
1260 (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
1263 // If the amount of padding is too large, give up.
1264 // FIXME: do something smarter here.
1265 if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
1266 continue;
1268 // Calculate the offset to the value as a (possibly negative) byte offset
1269 // and (if applicable) a bit offset, and store the values in the targets.
1270 int64_t OffsetByte;
1271 uint64_t OffsetBit;
1272 if (TotalPaddingBefore <= TotalPaddingAfter)
1273 setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
1274 OffsetBit);
1275 else
1276 setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
1277 OffsetBit);
1279 if (RemarksEnabled)
1280 for (auto &&Target : TargetsForSlot)
1281 Target.WasDevirt = true;
1284 if (CSByConstantArg.second.isExported()) {
1285 ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
1286 exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte,
1287 ResByArg->Byte);
1288 exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit,
1289 ResByArg->Bit);
1292 // Rewrite each call to a load from OffsetByte/OffsetBit.
1293 Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte);
1294 Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
1295 applyVirtualConstProp(CSByConstantArg.second,
1296 TargetsForSlot[0].Fn->getName(), ByteConst, BitConst);
1298 return true;
1301 void DevirtModule::rebuildGlobal(VTableBits &B) {
1302 if (B.Before.Bytes.empty() && B.After.Bytes.empty())
1303 return;
1305 // Align each byte array to pointer width.
1306 unsigned PointerSize = M.getDataLayout().getPointerSize();
1307 B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), PointerSize));
1308 B.After.Bytes.resize(alignTo(B.After.Bytes.size(), PointerSize));
1310 // Before was stored in reverse order; flip it now.
1311 for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
1312 std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
1314 // Build an anonymous global containing the before bytes, followed by the
1315 // original initializer, followed by the after bytes.
1316 auto NewInit = ConstantStruct::getAnon(
1317 {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
1318 B.GV->getInitializer(),
1319 ConstantDataArray::get(M.getContext(), B.After.Bytes)});
1320 auto NewGV =
1321 new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
1322 GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
1323 NewGV->setSection(B.GV->getSection());
1324 NewGV->setComdat(B.GV->getComdat());
1326 // Copy the original vtable's metadata to the anonymous global, adjusting
1327 // offsets as required.
1328 NewGV->copyMetadata(B.GV, B.Before.Bytes.size());
1330 // Build an alias named after the original global, pointing at the second
1331 // element (the original initializer).
1332 auto Alias = GlobalAlias::create(
1333 B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
1334 ConstantExpr::getGetElementPtr(
1335 NewInit->getType(), NewGV,
1336 ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
1337 ConstantInt::get(Int32Ty, 1)}),
1338 &M);
1339 Alias->setVisibility(B.GV->getVisibility());
1340 Alias->takeName(B.GV);
1342 B.GV->replaceAllUsesWith(Alias);
1343 B.GV->eraseFromParent();
1346 bool DevirtModule::areRemarksEnabled() {
1347 const auto &FL = M.getFunctionList();
1348 for (const Function &Fn : FL) {
1349 const auto &BBL = Fn.getBasicBlockList();
1350 if (BBL.empty())
1351 continue;
1352 auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front());
1353 return DI.isEnabled();
1355 return false;
1358 void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc,
1359 Function *AssumeFunc) {
1360 // Find all virtual calls via a virtual table pointer %p under an assumption
1361 // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
1362 // points to a member of the type identifier %md. Group calls by (type ID,
1363 // offset) pair (effectively the identity of the virtual function) and store
1364 // to CallSlots.
1365 DenseSet<CallSite> SeenCallSites;
1366 for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end();
1367 I != E;) {
1368 auto CI = dyn_cast<CallInst>(I->getUser());
1369 ++I;
1370 if (!CI)
1371 continue;
1373 // Search for virtual calls based on %p and add them to DevirtCalls.
1374 SmallVector<DevirtCallSite, 1> DevirtCalls;
1375 SmallVector<CallInst *, 1> Assumes;
1376 auto &DT = LookupDomTree(*CI->getFunction());
1377 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
1379 // If we found any, add them to CallSlots.
1380 if (!Assumes.empty()) {
1381 Metadata *TypeId =
1382 cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
1383 Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
1384 for (DevirtCallSite Call : DevirtCalls) {
1385 // Only add this CallSite if we haven't seen it before. The vtable
1386 // pointer may have been CSE'd with pointers from other call sites,
1387 // and we don't want to process call sites multiple times. We can't
1388 // just skip the vtable Ptr if it has been seen before, however, since
1389 // it may be shared by type tests that dominate different calls.
1390 if (SeenCallSites.insert(Call.CS).second)
1391 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, nullptr);
1395 // We no longer need the assumes or the type test.
1396 for (auto Assume : Assumes)
1397 Assume->eraseFromParent();
1398 // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
1399 // may use the vtable argument later.
1400 if (CI->use_empty())
1401 CI->eraseFromParent();
1405 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) {
1406 Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test);
1408 for (auto I = TypeCheckedLoadFunc->use_begin(),
1409 E = TypeCheckedLoadFunc->use_end();
1410 I != E;) {
1411 auto CI = dyn_cast<CallInst>(I->getUser());
1412 ++I;
1413 if (!CI)
1414 continue;
1416 Value *Ptr = CI->getArgOperand(0);
1417 Value *Offset = CI->getArgOperand(1);
1418 Value *TypeIdValue = CI->getArgOperand(2);
1419 Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
1421 SmallVector<DevirtCallSite, 1> DevirtCalls;
1422 SmallVector<Instruction *, 1> LoadedPtrs;
1423 SmallVector<Instruction *, 1> Preds;
1424 bool HasNonCallUses = false;
1425 auto &DT = LookupDomTree(*CI->getFunction());
1426 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
1427 HasNonCallUses, CI, DT);
1429 // Start by generating "pessimistic" code that explicitly loads the function
1430 // pointer from the vtable and performs the type check. If possible, we will
1431 // eliminate the load and the type check later.
1433 // If possible, only generate the load at the point where it is used.
1434 // This helps avoid unnecessary spills.
1435 IRBuilder<> LoadB(
1436 (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI);
1437 Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset);
1438 Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy));
1439 Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr);
1441 for (Instruction *LoadedPtr : LoadedPtrs) {
1442 LoadedPtr->replaceAllUsesWith(LoadedValue);
1443 LoadedPtr->eraseFromParent();
1446 // Likewise for the type test.
1447 IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI);
1448 CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue});
1450 for (Instruction *Pred : Preds) {
1451 Pred->replaceAllUsesWith(TypeTestCall);
1452 Pred->eraseFromParent();
1455 // We have already erased any extractvalue instructions that refer to the
1456 // intrinsic call, but the intrinsic may have other non-extractvalue uses
1457 // (although this is unlikely). In that case, explicitly build a pair and
1458 // RAUW it.
1459 if (!CI->use_empty()) {
1460 Value *Pair = UndefValue::get(CI->getType());
1461 IRBuilder<> B(CI);
1462 Pair = B.CreateInsertValue(Pair, LoadedValue, {0});
1463 Pair = B.CreateInsertValue(Pair, TypeTestCall, {1});
1464 CI->replaceAllUsesWith(Pair);
1467 // The number of unsafe uses is initially the number of uses.
1468 auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall];
1469 NumUnsafeUses = DevirtCalls.size();
1471 // If the function pointer has a non-call user, we cannot eliminate the type
1472 // check, as one of those users may eventually call the pointer. Increment
1473 // the unsafe use count to make sure it cannot reach zero.
1474 if (HasNonCallUses)
1475 ++NumUnsafeUses;
1476 for (DevirtCallSite Call : DevirtCalls) {
1477 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS,
1478 &NumUnsafeUses);
1481 CI->eraseFromParent();
1485 void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) {
1486 const TypeIdSummary *TidSummary =
1487 ImportSummary->getTypeIdSummary(cast<MDString>(Slot.TypeID)->getString());
1488 if (!TidSummary)
1489 return;
1490 auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset);
1491 if (ResI == TidSummary->WPDRes.end())
1492 return;
1493 const WholeProgramDevirtResolution &Res = ResI->second;
1495 if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) {
1496 // The type of the function in the declaration is irrelevant because every
1497 // call site will cast it to the correct type.
1498 Constant *SingleImpl =
1499 cast<Constant>(M.getOrInsertFunction(Res.SingleImplName,
1500 Type::getVoidTy(M.getContext()))
1501 .getCallee());
1503 // This is the import phase so we should not be exporting anything.
1504 bool IsExported = false;
1505 applySingleImplDevirt(SlotInfo, SingleImpl, IsExported);
1506 assert(!IsExported);
1509 for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) {
1510 auto I = Res.ResByArg.find(CSByConstantArg.first);
1511 if (I == Res.ResByArg.end())
1512 continue;
1513 auto &ResByArg = I->second;
1514 // FIXME: We should figure out what to do about the "function name" argument
1515 // to the apply* functions, as the function names are unavailable during the
1516 // importing phase. For now we just pass the empty string. This does not
1517 // impact correctness because the function names are just used for remarks.
1518 switch (ResByArg.TheKind) {
1519 case WholeProgramDevirtResolution::ByArg::UniformRetVal:
1520 applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info);
1521 break;
1522 case WholeProgramDevirtResolution::ByArg::UniqueRetVal: {
1523 Constant *UniqueMemberAddr =
1524 importGlobal(Slot, CSByConstantArg.first, "unique_member");
1525 applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info,
1526 UniqueMemberAddr);
1527 break;
1529 case WholeProgramDevirtResolution::ByArg::VirtualConstProp: {
1530 Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte",
1531 Int32Ty, ResByArg.Byte);
1532 Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty,
1533 ResByArg.Bit);
1534 applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit);
1535 break;
1537 default:
1538 break;
1542 if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) {
1543 // The type of the function is irrelevant, because it's bitcast at calls
1544 // anyhow.
1545 Constant *JT = cast<Constant>(
1546 M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"),
1547 Type::getVoidTy(M.getContext()))
1548 .getCallee());
1549 bool IsExported = false;
1550 applyICallBranchFunnel(SlotInfo, JT, IsExported);
1551 assert(!IsExported);
1555 void DevirtModule::removeRedundantTypeTests() {
1556 auto True = ConstantInt::getTrue(M.getContext());
1557 for (auto &&U : NumUnsafeUsesForTypeTest) {
1558 if (U.second == 0) {
1559 U.first->replaceAllUsesWith(True);
1560 U.first->eraseFromParent();
1565 bool DevirtModule::run() {
1566 // If only some of the modules were split, we cannot correctly perform
1567 // this transformation. We already checked for the presense of type tests
1568 // with partially split modules during the thin link, and would have emitted
1569 // an error if any were found, so here we can simply return.
1570 if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) ||
1571 (ImportSummary && ImportSummary->partiallySplitLTOUnits()))
1572 return false;
1574 Function *TypeTestFunc =
1575 M.getFunction(Intrinsic::getName(Intrinsic::type_test));
1576 Function *TypeCheckedLoadFunc =
1577 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
1578 Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
1580 // Normally if there are no users of the devirtualization intrinsics in the
1581 // module, this pass has nothing to do. But if we are exporting, we also need
1582 // to handle any users that appear only in the function summaries.
1583 if (!ExportSummary &&
1584 (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc ||
1585 AssumeFunc->use_empty()) &&
1586 (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty()))
1587 return false;
1589 if (TypeTestFunc && AssumeFunc)
1590 scanTypeTestUsers(TypeTestFunc, AssumeFunc);
1592 if (TypeCheckedLoadFunc)
1593 scanTypeCheckedLoadUsers(TypeCheckedLoadFunc);
1595 if (ImportSummary) {
1596 for (auto &S : CallSlots)
1597 importResolution(S.first, S.second);
1599 removeRedundantTypeTests();
1601 // The rest of the code is only necessary when exporting or during regular
1602 // LTO, so we are done.
1603 return true;
1606 // Rebuild type metadata into a map for easy lookup.
1607 std::vector<VTableBits> Bits;
1608 DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap;
1609 buildTypeIdentifierMap(Bits, TypeIdMap);
1610 if (TypeIdMap.empty())
1611 return true;
1613 // Collect information from summary about which calls to try to devirtualize.
1614 if (ExportSummary) {
1615 DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
1616 for (auto &P : TypeIdMap) {
1617 if (auto *TypeId = dyn_cast<MDString>(P.first))
1618 MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
1619 TypeId);
1622 for (auto &P : *ExportSummary) {
1623 for (auto &S : P.second.SummaryList) {
1624 auto *FS = dyn_cast<FunctionSummary>(S.get());
1625 if (!FS)
1626 continue;
1627 // FIXME: Only add live functions.
1628 for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
1629 for (Metadata *MD : MetadataByGUID[VF.GUID]) {
1630 CallSlots[{MD, VF.Offset}]
1631 .CSInfo.markSummaryHasTypeTestAssumeUsers();
1634 for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
1635 for (Metadata *MD : MetadataByGUID[VF.GUID]) {
1636 CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
1639 for (const FunctionSummary::ConstVCall &VC :
1640 FS->type_test_assume_const_vcalls()) {
1641 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
1642 CallSlots[{MD, VC.VFunc.Offset}]
1643 .ConstCSInfo[VC.Args]
1644 .markSummaryHasTypeTestAssumeUsers();
1647 for (const FunctionSummary::ConstVCall &VC :
1648 FS->type_checked_load_const_vcalls()) {
1649 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
1650 CallSlots[{MD, VC.VFunc.Offset}]
1651 .ConstCSInfo[VC.Args]
1652 .addSummaryTypeCheckedLoadUser(FS);
1659 // For each (type, offset) pair:
1660 bool DidVirtualConstProp = false;
1661 std::map<std::string, Function*> DevirtTargets;
1662 for (auto &S : CallSlots) {
1663 // Search each of the members of the type identifier for the virtual
1664 // function implementation at offset S.first.ByteOffset, and add to
1665 // TargetsForSlot.
1666 std::vector<VirtualCallTarget> TargetsForSlot;
1667 if (tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID],
1668 S.first.ByteOffset)) {
1669 WholeProgramDevirtResolution *Res = nullptr;
1670 if (ExportSummary && isa<MDString>(S.first.TypeID))
1671 Res = &ExportSummary
1672 ->getOrInsertTypeIdSummary(
1673 cast<MDString>(S.first.TypeID)->getString())
1674 .WPDRes[S.first.ByteOffset];
1676 if (!trySingleImplDevirt(TargetsForSlot, S.second, Res)) {
1677 DidVirtualConstProp |=
1678 tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first);
1680 tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first);
1683 // Collect functions devirtualized at least for one call site for stats.
1684 if (RemarksEnabled)
1685 for (const auto &T : TargetsForSlot)
1686 if (T.WasDevirt)
1687 DevirtTargets[T.Fn->getName()] = T.Fn;
1690 // CFI-specific: if we are exporting and any llvm.type.checked.load
1691 // intrinsics were *not* devirtualized, we need to add the resulting
1692 // llvm.type.test intrinsics to the function summaries so that the
1693 // LowerTypeTests pass will export them.
1694 if (ExportSummary && isa<MDString>(S.first.TypeID)) {
1695 auto GUID =
1696 GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString());
1697 for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers)
1698 FS->addTypeTest(GUID);
1699 for (auto &CCS : S.second.ConstCSInfo)
1700 for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers)
1701 FS->addTypeTest(GUID);
1705 if (RemarksEnabled) {
1706 // Generate remarks for each devirtualized function.
1707 for (const auto &DT : DevirtTargets) {
1708 Function *F = DT.second;
1710 using namespace ore;
1711 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F)
1712 << "devirtualized "
1713 << NV("FunctionName", F->getName()));
1717 removeRedundantTypeTests();
1719 // Rebuild each global we touched as part of virtual constant propagation to
1720 // include the before and after bytes.
1721 if (DidVirtualConstProp)
1722 for (VTableBits &B : Bits)
1723 rebuildGlobal(B);
1725 return true;