1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass implements whole program optimization of virtual calls in cases
10 // where we know (via !type metadata) that the list of callees is fixed. This
11 // includes the following:
12 // - Single implementation devirtualization: if a virtual call has a single
13 // possible callee, replace all calls with a direct call to that callee.
14 // - Virtual constant propagation: if the virtual function's return type is an
15 // integer <=64 bits and all possible callees are readnone, for each class and
16 // each list of constant arguments: evaluate the function, store the return
17 // value alongside the virtual table, and rewrite each virtual call as a load
18 // from the virtual table.
19 // - Uniform return value optimization: if the conditions for virtual constant
20 // propagation hold and each function returns the same constant value, replace
21 // each virtual call with that constant.
22 // - Unique return value optimization for i1 return values: if the conditions
23 // for virtual constant propagation hold and a single vtable's function
24 // returns 0, or a single vtable's function returns 1, replace each virtual
25 // call with a comparison of the vptr against that vtable's address.
27 // This pass is intended to be used during the regular and thin LTO pipelines.
28 // During regular LTO, the pass determines the best optimization for each
29 // virtual call and applies the resolutions directly to virtual calls that are
30 // eligible for virtual call optimization (i.e. calls that use either of the
31 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics). During
32 // ThinLTO, the pass operates in two phases:
33 // - Export phase: this is run during the thin link over a single merged module
34 // that contains all vtables with !type metadata that participate in the link.
35 // The pass computes a resolution for each virtual call and stores it in the
36 // type identifier summary.
37 // - Import phase: this is run during the thin backends over the individual
38 // modules. The pass applies the resolutions previously computed during the
39 // import phase to each eligible virtual call.
41 //===----------------------------------------------------------------------===//
43 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
44 #include "llvm/ADT/ArrayRef.h"
45 #include "llvm/ADT/DenseMap.h"
46 #include "llvm/ADT/DenseMapInfo.h"
47 #include "llvm/ADT/DenseSet.h"
48 #include "llvm/ADT/MapVector.h"
49 #include "llvm/ADT/SmallVector.h"
50 #include "llvm/ADT/iterator_range.h"
51 #include "llvm/Analysis/AliasAnalysis.h"
52 #include "llvm/Analysis/BasicAliasAnalysis.h"
53 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
54 #include "llvm/Analysis/TypeMetadataUtils.h"
55 #include "llvm/IR/CallSite.h"
56 #include "llvm/IR/Constants.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/DebugLoc.h"
59 #include "llvm/IR/DerivedTypes.h"
60 #include "llvm/IR/Dominators.h"
61 #include "llvm/IR/Function.h"
62 #include "llvm/IR/GlobalAlias.h"
63 #include "llvm/IR/GlobalVariable.h"
64 #include "llvm/IR/IRBuilder.h"
65 #include "llvm/IR/InstrTypes.h"
66 #include "llvm/IR/Instruction.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/LLVMContext.h"
70 #include "llvm/IR/Metadata.h"
71 #include "llvm/IR/Module.h"
72 #include "llvm/IR/ModuleSummaryIndexYAML.h"
73 #include "llvm/Pass.h"
74 #include "llvm/PassRegistry.h"
75 #include "llvm/PassSupport.h"
76 #include "llvm/Support/Casting.h"
77 #include "llvm/Support/Error.h"
78 #include "llvm/Support/FileSystem.h"
79 #include "llvm/Support/MathExtras.h"
80 #include "llvm/Transforms/IPO.h"
81 #include "llvm/Transforms/IPO/FunctionAttrs.h"
82 #include "llvm/Transforms/Utils/Evaluator.h"
90 using namespace wholeprogramdevirt
;
92 #define DEBUG_TYPE "wholeprogramdevirt"
94 static cl::opt
<PassSummaryAction
> ClSummaryAction(
95 "wholeprogramdevirt-summary-action",
96 cl::desc("What to do with the summary when running this pass"),
97 cl::values(clEnumValN(PassSummaryAction::None
, "none", "Do nothing"),
98 clEnumValN(PassSummaryAction::Import
, "import",
99 "Import typeid resolutions from summary and globals"),
100 clEnumValN(PassSummaryAction::Export
, "export",
101 "Export typeid resolutions to summary and globals")),
104 static cl::opt
<std::string
> ClReadSummary(
105 "wholeprogramdevirt-read-summary",
106 cl::desc("Read summary from given YAML file before running pass"),
109 static cl::opt
<std::string
> ClWriteSummary(
110 "wholeprogramdevirt-write-summary",
111 cl::desc("Write summary to given YAML file after running pass"),
114 static cl::opt
<unsigned>
115 ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden
,
116 cl::init(10), cl::ZeroOrMore
,
117 cl::desc("Maximum number of call targets per "
118 "call site to enable branch funnels"));
120 // Find the minimum offset that we may store a value of size Size bits at. If
121 // IsAfter is set, look for an offset before the object, otherwise look for an
122 // offset after the object.
124 wholeprogramdevirt::findLowestOffset(ArrayRef
<VirtualCallTarget
> Targets
,
125 bool IsAfter
, uint64_t Size
) {
126 // Find a minimum offset taking into account only vtable sizes.
127 uint64_t MinByte
= 0;
128 for (const VirtualCallTarget
&Target
: Targets
) {
130 MinByte
= std::max(MinByte
, Target
.minAfterBytes());
132 MinByte
= std::max(MinByte
, Target
.minBeforeBytes());
135 // Build a vector of arrays of bytes covering, for each target, a slice of the
136 // used region (see AccumBitVector::BytesUsed in
137 // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
138 // this aligns the used regions to start at MinByte.
140 // In this example, A, B and C are vtables, # is a byte already allocated for
141 // a virtual function pointer, AAAA... (etc.) are the used regions for the
142 // vtables and Offset(X) is the value computed for the Offset variable below
148 // A: ################AAAAAAAA|AAAAAAAA
149 // B: ########BBBBBBBBBBBBBBBB|BBBB
150 // C: ########################|CCCCCCCCCCCCCCCC
153 // This code produces the slices of A, B and C that appear after the divider
155 std::vector
<ArrayRef
<uint8_t>> Used
;
156 for (const VirtualCallTarget
&Target
: Targets
) {
157 ArrayRef
<uint8_t> VTUsed
= IsAfter
? Target
.TM
->Bits
->After
.BytesUsed
158 : Target
.TM
->Bits
->Before
.BytesUsed
;
159 uint64_t Offset
= IsAfter
? MinByte
- Target
.minAfterBytes()
160 : MinByte
- Target
.minBeforeBytes();
162 // Disregard used regions that are smaller than Offset. These are
163 // effectively all-free regions that do not need to be checked.
164 if (VTUsed
.size() > Offset
)
165 Used
.push_back(VTUsed
.slice(Offset
));
169 // Find a free bit in each member of Used.
170 for (unsigned I
= 0;; ++I
) {
171 uint8_t BitsUsed
= 0;
172 for (auto &&B
: Used
)
175 if (BitsUsed
!= 0xff)
176 return (MinByte
+ I
) * 8 +
177 countTrailingZeros(uint8_t(~BitsUsed
), ZB_Undefined
);
180 // Find a free (Size/8) byte region in each member of Used.
181 // FIXME: see if alignment helps.
182 for (unsigned I
= 0;; ++I
) {
183 for (auto &&B
: Used
) {
185 while ((I
+ Byte
) < B
.size() && Byte
< (Size
/ 8)) {
191 return (MinByte
+ I
) * 8;
197 void wholeprogramdevirt::setBeforeReturnValues(
198 MutableArrayRef
<VirtualCallTarget
> Targets
, uint64_t AllocBefore
,
199 unsigned BitWidth
, int64_t &OffsetByte
, uint64_t &OffsetBit
) {
201 OffsetByte
= -(AllocBefore
/ 8 + 1);
203 OffsetByte
= -((AllocBefore
+ 7) / 8 + (BitWidth
+ 7) / 8);
204 OffsetBit
= AllocBefore
% 8;
206 for (VirtualCallTarget
&Target
: Targets
) {
208 Target
.setBeforeBit(AllocBefore
);
210 Target
.setBeforeBytes(AllocBefore
, (BitWidth
+ 7) / 8);
214 void wholeprogramdevirt::setAfterReturnValues(
215 MutableArrayRef
<VirtualCallTarget
> Targets
, uint64_t AllocAfter
,
216 unsigned BitWidth
, int64_t &OffsetByte
, uint64_t &OffsetBit
) {
218 OffsetByte
= AllocAfter
/ 8;
220 OffsetByte
= (AllocAfter
+ 7) / 8;
221 OffsetBit
= AllocAfter
% 8;
223 for (VirtualCallTarget
&Target
: Targets
) {
225 Target
.setAfterBit(AllocAfter
);
227 Target
.setAfterBytes(AllocAfter
, (BitWidth
+ 7) / 8);
231 VirtualCallTarget::VirtualCallTarget(Function
*Fn
, const TypeMemberInfo
*TM
)
233 IsBigEndian(Fn
->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {}
237 // A slot in a set of virtual tables. The TypeID identifies the set of virtual
238 // tables, and the ByteOffset is the offset in bytes from the address point to
239 // the virtual function pointer.
245 } // end anonymous namespace
249 template <> struct DenseMapInfo
<VTableSlot
> {
250 static VTableSlot
getEmptyKey() {
251 return {DenseMapInfo
<Metadata
*>::getEmptyKey(),
252 DenseMapInfo
<uint64_t>::getEmptyKey()};
254 static VTableSlot
getTombstoneKey() {
255 return {DenseMapInfo
<Metadata
*>::getTombstoneKey(),
256 DenseMapInfo
<uint64_t>::getTombstoneKey()};
258 static unsigned getHashValue(const VTableSlot
&I
) {
259 return DenseMapInfo
<Metadata
*>::getHashValue(I
.TypeID
) ^
260 DenseMapInfo
<uint64_t>::getHashValue(I
.ByteOffset
);
262 static bool isEqual(const VTableSlot
&LHS
,
263 const VTableSlot
&RHS
) {
264 return LHS
.TypeID
== RHS
.TypeID
&& LHS
.ByteOffset
== RHS
.ByteOffset
;
268 } // end namespace llvm
272 // A virtual call site. VTable is the loaded virtual table pointer, and CS is
273 // the indirect virtual call.
274 struct VirtualCallSite
{
278 // If non-null, this field points to the associated unsafe use count stored in
279 // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
280 // of that field for details.
281 unsigned *NumUnsafeUses
;
284 emitRemark(const StringRef OptName
, const StringRef TargetName
,
285 function_ref
<OptimizationRemarkEmitter
&(Function
*)> OREGetter
) {
286 Function
*F
= CS
.getCaller();
287 DebugLoc DLoc
= CS
->getDebugLoc();
288 BasicBlock
*Block
= CS
.getParent();
291 OREGetter(F
).emit(OptimizationRemark(DEBUG_TYPE
, OptName
, DLoc
, Block
)
292 << NV("Optimization", OptName
)
293 << ": devirtualized a call to "
294 << NV("FunctionName", TargetName
));
297 void replaceAndErase(
298 const StringRef OptName
, const StringRef TargetName
, bool RemarksEnabled
,
299 function_ref
<OptimizationRemarkEmitter
&(Function
*)> OREGetter
,
302 emitRemark(OptName
, TargetName
, OREGetter
);
303 CS
->replaceAllUsesWith(New
);
304 if (auto II
= dyn_cast
<InvokeInst
>(CS
.getInstruction())) {
305 BranchInst::Create(II
->getNormalDest(), CS
.getInstruction());
306 II
->getUnwindDest()->removePredecessor(II
->getParent());
308 CS
->eraseFromParent();
309 // This use is no longer unsafe.
315 // Call site information collected for a specific VTableSlot and possibly a list
316 // of constant integer arguments. The grouping by arguments is handled by the
317 // VTableSlotInfo class.
318 struct CallSiteInfo
{
319 /// The set of call sites for this slot. Used during regular LTO and the
320 /// import phase of ThinLTO (as well as the export phase of ThinLTO for any
321 /// call sites that appear in the merged module itself); in each of these
322 /// cases we are directly operating on the call sites at the IR level.
323 std::vector
<VirtualCallSite
> CallSites
;
325 /// Whether all call sites represented by this CallSiteInfo, including those
326 /// in summaries, have been devirtualized. This starts off as true because a
327 /// default constructed CallSiteInfo represents no call sites.
328 bool AllCallSitesDevirted
= true;
330 // These fields are used during the export phase of ThinLTO and reflect
331 // information collected from function summaries.
333 /// Whether any function summary contains an llvm.assume(llvm.type.test) for
335 bool SummaryHasTypeTestAssumeUsers
= false;
337 /// CFI-specific: a vector containing the list of function summaries that use
338 /// the llvm.type.checked.load intrinsic and therefore will require
339 /// resolutions for llvm.type.test in order to implement CFI checks if
340 /// devirtualization was unsuccessful. If devirtualization was successful, the
341 /// pass will clear this vector by calling markDevirt(). If at the end of the
342 /// pass the vector is non-empty, we will need to add a use of llvm.type.test
343 /// to each of the function summaries in the vector.
344 std::vector
<FunctionSummary
*> SummaryTypeCheckedLoadUsers
;
346 bool isExported() const {
347 return SummaryHasTypeTestAssumeUsers
||
348 !SummaryTypeCheckedLoadUsers
.empty();
351 void markSummaryHasTypeTestAssumeUsers() {
352 SummaryHasTypeTestAssumeUsers
= true;
353 AllCallSitesDevirted
= false;
356 void addSummaryTypeCheckedLoadUser(FunctionSummary
*FS
) {
357 SummaryTypeCheckedLoadUsers
.push_back(FS
);
358 AllCallSitesDevirted
= false;
362 AllCallSitesDevirted
= true;
364 // As explained in the comment for SummaryTypeCheckedLoadUsers.
365 SummaryTypeCheckedLoadUsers
.clear();
369 // Call site information collected for a specific VTableSlot.
370 struct VTableSlotInfo
{
371 // The set of call sites which do not have all constant integer arguments
372 // (excluding "this").
375 // The set of call sites with all constant integer arguments (excluding
376 // "this"), grouped by argument list.
377 std::map
<std::vector
<uint64_t>, CallSiteInfo
> ConstCSInfo
;
379 void addCallSite(Value
*VTable
, CallSite CS
, unsigned *NumUnsafeUses
);
382 CallSiteInfo
&findCallSiteInfo(CallSite CS
);
385 CallSiteInfo
&VTableSlotInfo::findCallSiteInfo(CallSite CS
) {
386 std::vector
<uint64_t> Args
;
387 auto *CI
= dyn_cast
<IntegerType
>(CS
.getType());
388 if (!CI
|| CI
->getBitWidth() > 64 || CS
.arg_empty())
390 for (auto &&Arg
: make_range(CS
.arg_begin() + 1, CS
.arg_end())) {
391 auto *CI
= dyn_cast
<ConstantInt
>(Arg
);
392 if (!CI
|| CI
->getBitWidth() > 64)
394 Args
.push_back(CI
->getZExtValue());
396 return ConstCSInfo
[Args
];
399 void VTableSlotInfo::addCallSite(Value
*VTable
, CallSite CS
,
400 unsigned *NumUnsafeUses
) {
401 auto &CSI
= findCallSiteInfo(CS
);
402 CSI
.AllCallSitesDevirted
= false;
403 CSI
.CallSites
.push_back({VTable
, CS
, NumUnsafeUses
});
406 struct DevirtModule
{
408 function_ref
<AAResults
&(Function
&)> AARGetter
;
409 function_ref
<DominatorTree
&(Function
&)> LookupDomTree
;
411 ModuleSummaryIndex
*ExportSummary
;
412 const ModuleSummaryIndex
*ImportSummary
;
415 PointerType
*Int8PtrTy
;
416 IntegerType
*Int32Ty
;
417 IntegerType
*Int64Ty
;
418 IntegerType
*IntPtrTy
;
421 function_ref
<OptimizationRemarkEmitter
&(Function
*)> OREGetter
;
423 MapVector
<VTableSlot
, VTableSlotInfo
> CallSlots
;
425 // This map keeps track of the number of "unsafe" uses of a loaded function
426 // pointer. The key is the associated llvm.type.test intrinsic call generated
427 // by this pass. An unsafe use is one that calls the loaded function pointer
428 // directly. Every time we eliminate an unsafe use (for example, by
429 // devirtualizing it or by applying virtual constant propagation), we
430 // decrement the value stored in this map. If a value reaches zero, we can
431 // eliminate the type check by RAUWing the associated llvm.type.test call with
433 std::map
<CallInst
*, unsigned> NumUnsafeUsesForTypeTest
;
435 DevirtModule(Module
&M
, function_ref
<AAResults
&(Function
&)> AARGetter
,
436 function_ref
<OptimizationRemarkEmitter
&(Function
*)> OREGetter
,
437 function_ref
<DominatorTree
&(Function
&)> LookupDomTree
,
438 ModuleSummaryIndex
*ExportSummary
,
439 const ModuleSummaryIndex
*ImportSummary
)
440 : M(M
), AARGetter(AARGetter
), LookupDomTree(LookupDomTree
),
441 ExportSummary(ExportSummary
), ImportSummary(ImportSummary
),
442 Int8Ty(Type::getInt8Ty(M
.getContext())),
443 Int8PtrTy(Type::getInt8PtrTy(M
.getContext())),
444 Int32Ty(Type::getInt32Ty(M
.getContext())),
445 Int64Ty(Type::getInt64Ty(M
.getContext())),
446 IntPtrTy(M
.getDataLayout().getIntPtrType(M
.getContext(), 0)),
447 RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter
) {
448 assert(!(ExportSummary
&& ImportSummary
));
451 bool areRemarksEnabled();
453 void scanTypeTestUsers(Function
*TypeTestFunc
, Function
*AssumeFunc
);
454 void scanTypeCheckedLoadUsers(Function
*TypeCheckedLoadFunc
);
456 void buildTypeIdentifierMap(
457 std::vector
<VTableBits
> &Bits
,
458 DenseMap
<Metadata
*, std::set
<TypeMemberInfo
>> &TypeIdMap
);
459 Constant
*getPointerAtOffset(Constant
*I
, uint64_t Offset
);
461 tryFindVirtualCallTargets(std::vector
<VirtualCallTarget
> &TargetsForSlot
,
462 const std::set
<TypeMemberInfo
> &TypeMemberInfos
,
463 uint64_t ByteOffset
);
465 void applySingleImplDevirt(VTableSlotInfo
&SlotInfo
, Constant
*TheFn
,
467 bool trySingleImplDevirt(MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
468 VTableSlotInfo
&SlotInfo
,
469 WholeProgramDevirtResolution
*Res
);
471 void applyICallBranchFunnel(VTableSlotInfo
&SlotInfo
, Constant
*JT
,
473 void tryICallBranchFunnel(MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
474 VTableSlotInfo
&SlotInfo
,
475 WholeProgramDevirtResolution
*Res
, VTableSlot Slot
);
477 bool tryEvaluateFunctionsWithArgs(
478 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
479 ArrayRef
<uint64_t> Args
);
481 void applyUniformRetValOpt(CallSiteInfo
&CSInfo
, StringRef FnName
,
483 bool tryUniformRetValOpt(MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
484 CallSiteInfo
&CSInfo
,
485 WholeProgramDevirtResolution::ByArg
*Res
);
487 // Returns the global symbol name that is used to export information about the
488 // given vtable slot and list of arguments.
489 std::string
getGlobalName(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
492 bool shouldExportConstantsAsAbsoluteSymbols();
494 // This function is called during the export phase to create a symbol
495 // definition containing information about the given vtable slot and list of
497 void exportGlobal(VTableSlot Slot
, ArrayRef
<uint64_t> Args
, StringRef Name
,
499 void exportConstant(VTableSlot Slot
, ArrayRef
<uint64_t> Args
, StringRef Name
,
500 uint32_t Const
, uint32_t &Storage
);
502 // This function is called during the import phase to create a reference to
503 // the symbol definition created during the export phase.
504 Constant
*importGlobal(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
506 Constant
*importConstant(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
507 StringRef Name
, IntegerType
*IntTy
,
510 Constant
*getMemberAddr(const TypeMemberInfo
*M
);
512 void applyUniqueRetValOpt(CallSiteInfo
&CSInfo
, StringRef FnName
, bool IsOne
,
513 Constant
*UniqueMemberAddr
);
514 bool tryUniqueRetValOpt(unsigned BitWidth
,
515 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
516 CallSiteInfo
&CSInfo
,
517 WholeProgramDevirtResolution::ByArg
*Res
,
518 VTableSlot Slot
, ArrayRef
<uint64_t> Args
);
520 void applyVirtualConstProp(CallSiteInfo
&CSInfo
, StringRef FnName
,
521 Constant
*Byte
, Constant
*Bit
);
522 bool tryVirtualConstProp(MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
523 VTableSlotInfo
&SlotInfo
,
524 WholeProgramDevirtResolution
*Res
, VTableSlot Slot
);
526 void rebuildGlobal(VTableBits
&B
);
528 // Apply the summary resolution for Slot to all virtual calls in SlotInfo.
529 void importResolution(VTableSlot Slot
, VTableSlotInfo
&SlotInfo
);
531 // If we were able to eliminate all unsafe uses for a type checked load,
532 // eliminate the associated type tests by replacing them with true.
533 void removeRedundantTypeTests();
537 // Lower the module using the action and summary passed as command line
538 // arguments. For testing purposes only.
540 runForTesting(Module
&M
, function_ref
<AAResults
&(Function
&)> AARGetter
,
541 function_ref
<OptimizationRemarkEmitter
&(Function
*)> OREGetter
,
542 function_ref
<DominatorTree
&(Function
&)> LookupDomTree
);
545 struct WholeProgramDevirt
: public ModulePass
{
548 bool UseCommandLine
= false;
550 ModuleSummaryIndex
*ExportSummary
;
551 const ModuleSummaryIndex
*ImportSummary
;
553 WholeProgramDevirt() : ModulePass(ID
), UseCommandLine(true) {
554 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
557 WholeProgramDevirt(ModuleSummaryIndex
*ExportSummary
,
558 const ModuleSummaryIndex
*ImportSummary
)
559 : ModulePass(ID
), ExportSummary(ExportSummary
),
560 ImportSummary(ImportSummary
) {
561 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
564 bool runOnModule(Module
&M
) override
{
568 // In the new pass manager, we can request the optimization
569 // remark emitter pass on a per-function-basis, which the
570 // OREGetter will do for us.
571 // In the old pass manager, this is harder, so we just build
572 // an optimization remark emitter on the fly, when we need it.
573 std::unique_ptr
<OptimizationRemarkEmitter
> ORE
;
574 auto OREGetter
= [&](Function
*F
) -> OptimizationRemarkEmitter
& {
575 ORE
= make_unique
<OptimizationRemarkEmitter
>(F
);
579 auto LookupDomTree
= [this](Function
&F
) -> DominatorTree
& {
580 return this->getAnalysis
<DominatorTreeWrapperPass
>(F
).getDomTree();
584 return DevirtModule::runForTesting(M
, LegacyAARGetter(*this), OREGetter
,
587 return DevirtModule(M
, LegacyAARGetter(*this), OREGetter
, LookupDomTree
,
588 ExportSummary
, ImportSummary
)
592 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
593 AU
.addRequired
<AssumptionCacheTracker
>();
594 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
595 AU
.addRequired
<DominatorTreeWrapperPass
>();
599 } // end anonymous namespace
601 INITIALIZE_PASS_BEGIN(WholeProgramDevirt
, "wholeprogramdevirt",
602 "Whole program devirtualization", false, false)
603 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
604 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
605 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
606 INITIALIZE_PASS_END(WholeProgramDevirt
, "wholeprogramdevirt",
607 "Whole program devirtualization", false, false)
608 char WholeProgramDevirt::ID
= 0;
611 llvm::createWholeProgramDevirtPass(ModuleSummaryIndex
*ExportSummary
,
612 const ModuleSummaryIndex
*ImportSummary
) {
613 return new WholeProgramDevirt(ExportSummary
, ImportSummary
);
616 PreservedAnalyses
WholeProgramDevirtPass::run(Module
&M
,
617 ModuleAnalysisManager
&AM
) {
618 auto &FAM
= AM
.getResult
<FunctionAnalysisManagerModuleProxy
>(M
).getManager();
619 auto AARGetter
= [&](Function
&F
) -> AAResults
& {
620 return FAM
.getResult
<AAManager
>(F
);
622 auto OREGetter
= [&](Function
*F
) -> OptimizationRemarkEmitter
& {
623 return FAM
.getResult
<OptimizationRemarkEmitterAnalysis
>(*F
);
625 auto LookupDomTree
= [&FAM
](Function
&F
) -> DominatorTree
& {
626 return FAM
.getResult
<DominatorTreeAnalysis
>(F
);
628 if (!DevirtModule(M
, AARGetter
, OREGetter
, LookupDomTree
, ExportSummary
,
631 return PreservedAnalyses::all();
632 return PreservedAnalyses::none();
635 bool DevirtModule::runForTesting(
636 Module
&M
, function_ref
<AAResults
&(Function
&)> AARGetter
,
637 function_ref
<OptimizationRemarkEmitter
&(Function
*)> OREGetter
,
638 function_ref
<DominatorTree
&(Function
&)> LookupDomTree
) {
639 ModuleSummaryIndex
Summary(/*HaveGVs=*/false);
641 // Handle the command-line summary arguments. This code is for testing
642 // purposes only, so we handle errors directly.
643 if (!ClReadSummary
.empty()) {
644 ExitOnError
ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary
+
646 auto ReadSummaryFile
=
647 ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary
)));
649 yaml::Input
In(ReadSummaryFile
->getBuffer());
651 ExitOnErr(errorCodeToError(In
.error()));
656 M
, AARGetter
, OREGetter
, LookupDomTree
,
657 ClSummaryAction
== PassSummaryAction::Export
? &Summary
: nullptr,
658 ClSummaryAction
== PassSummaryAction::Import
? &Summary
: nullptr)
661 if (!ClWriteSummary
.empty()) {
662 ExitOnError
ExitOnErr(
663 "-wholeprogramdevirt-write-summary: " + ClWriteSummary
+ ": ");
665 raw_fd_ostream
OS(ClWriteSummary
, EC
, sys::fs::F_Text
);
666 ExitOnErr(errorCodeToError(EC
));
668 yaml::Output
Out(OS
);
675 void DevirtModule::buildTypeIdentifierMap(
676 std::vector
<VTableBits
> &Bits
,
677 DenseMap
<Metadata
*, std::set
<TypeMemberInfo
>> &TypeIdMap
) {
678 DenseMap
<GlobalVariable
*, VTableBits
*> GVToBits
;
679 Bits
.reserve(M
.getGlobalList().size());
680 SmallVector
<MDNode
*, 2> Types
;
681 for (GlobalVariable
&GV
: M
.globals()) {
683 GV
.getMetadata(LLVMContext::MD_type
, Types
);
684 if (GV
.isDeclaration() || Types
.empty())
687 VTableBits
*&BitsPtr
= GVToBits
[&GV
];
690 Bits
.back().GV
= &GV
;
691 Bits
.back().ObjectSize
=
692 M
.getDataLayout().getTypeAllocSize(GV
.getInitializer()->getType());
693 BitsPtr
= &Bits
.back();
696 for (MDNode
*Type
: Types
) {
697 auto TypeID
= Type
->getOperand(1).get();
701 cast
<ConstantAsMetadata
>(Type
->getOperand(0))->getValue())
704 TypeIdMap
[TypeID
].insert({BitsPtr
, Offset
});
709 Constant
*DevirtModule::getPointerAtOffset(Constant
*I
, uint64_t Offset
) {
710 if (I
->getType()->isPointerTy()) {
716 const DataLayout
&DL
= M
.getDataLayout();
718 if (auto *C
= dyn_cast
<ConstantStruct
>(I
)) {
719 const StructLayout
*SL
= DL
.getStructLayout(C
->getType());
720 if (Offset
>= SL
->getSizeInBytes())
723 unsigned Op
= SL
->getElementContainingOffset(Offset
);
724 return getPointerAtOffset(cast
<Constant
>(I
->getOperand(Op
)),
725 Offset
- SL
->getElementOffset(Op
));
727 if (auto *C
= dyn_cast
<ConstantArray
>(I
)) {
728 ArrayType
*VTableTy
= C
->getType();
729 uint64_t ElemSize
= DL
.getTypeAllocSize(VTableTy
->getElementType());
731 unsigned Op
= Offset
/ ElemSize
;
732 if (Op
>= C
->getNumOperands())
735 return getPointerAtOffset(cast
<Constant
>(I
->getOperand(Op
)),
741 bool DevirtModule::tryFindVirtualCallTargets(
742 std::vector
<VirtualCallTarget
> &TargetsForSlot
,
743 const std::set
<TypeMemberInfo
> &TypeMemberInfos
, uint64_t ByteOffset
) {
744 for (const TypeMemberInfo
&TM
: TypeMemberInfos
) {
745 if (!TM
.Bits
->GV
->isConstant())
748 Constant
*Ptr
= getPointerAtOffset(TM
.Bits
->GV
->getInitializer(),
749 TM
.Offset
+ ByteOffset
);
753 auto Fn
= dyn_cast
<Function
>(Ptr
->stripPointerCasts());
757 // We can disregard __cxa_pure_virtual as a possible call target, as
758 // calls to pure virtuals are UB.
759 if (Fn
->getName() == "__cxa_pure_virtual")
762 TargetsForSlot
.push_back({Fn
, &TM
});
765 // Give up if we couldn't find any targets.
766 return !TargetsForSlot
.empty();
769 void DevirtModule::applySingleImplDevirt(VTableSlotInfo
&SlotInfo
,
770 Constant
*TheFn
, bool &IsExported
) {
771 auto Apply
= [&](CallSiteInfo
&CSInfo
) {
772 for (auto &&VCallSite
: CSInfo
.CallSites
) {
774 VCallSite
.emitRemark("single-impl",
775 TheFn
->stripPointerCasts()->getName(), OREGetter
);
776 VCallSite
.CS
.setCalledFunction(ConstantExpr::getBitCast(
777 TheFn
, VCallSite
.CS
.getCalledValue()->getType()));
778 // This use is no longer unsafe.
779 if (VCallSite
.NumUnsafeUses
)
780 --*VCallSite
.NumUnsafeUses
;
782 if (CSInfo
.isExported())
786 Apply(SlotInfo
.CSInfo
);
787 for (auto &P
: SlotInfo
.ConstCSInfo
)
791 bool DevirtModule::trySingleImplDevirt(
792 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
793 VTableSlotInfo
&SlotInfo
, WholeProgramDevirtResolution
*Res
) {
794 // See if the program contains a single implementation of this virtual
796 Function
*TheFn
= TargetsForSlot
[0].Fn
;
797 for (auto &&Target
: TargetsForSlot
)
798 if (TheFn
!= Target
.Fn
)
801 // If so, update each call site to call that implementation directly.
803 TargetsForSlot
[0].WasDevirt
= true;
805 bool IsExported
= false;
806 applySingleImplDevirt(SlotInfo
, TheFn
, IsExported
);
810 // If the only implementation has local linkage, we must promote to external
811 // to make it visible to thin LTO objects. We can only get here during the
812 // ThinLTO export phase.
813 if (TheFn
->hasLocalLinkage()) {
814 std::string NewName
= (TheFn
->getName() + "$merged").str();
816 // Since we are renaming the function, any comdats with the same name must
817 // also be renamed. This is required when targeting COFF, as the comdat name
818 // must match one of the names of the symbols in the comdat.
819 if (Comdat
*C
= TheFn
->getComdat()) {
820 if (C
->getName() == TheFn
->getName()) {
821 Comdat
*NewC
= M
.getOrInsertComdat(NewName
);
822 NewC
->setSelectionKind(C
->getSelectionKind());
823 for (GlobalObject
&GO
: M
.global_objects())
824 if (GO
.getComdat() == C
)
829 TheFn
->setLinkage(GlobalValue::ExternalLinkage
);
830 TheFn
->setVisibility(GlobalValue::HiddenVisibility
);
831 TheFn
->setName(NewName
);
834 Res
->TheKind
= WholeProgramDevirtResolution::SingleImpl
;
835 Res
->SingleImplName
= TheFn
->getName();
840 void DevirtModule::tryICallBranchFunnel(
841 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
, VTableSlotInfo
&SlotInfo
,
842 WholeProgramDevirtResolution
*Res
, VTableSlot Slot
) {
843 Triple
T(M
.getTargetTriple());
844 if (T
.getArch() != Triple::x86_64
)
847 if (TargetsForSlot
.size() > ClThreshold
)
850 bool HasNonDevirt
= !SlotInfo
.CSInfo
.AllCallSitesDevirted
;
852 for (auto &P
: SlotInfo
.ConstCSInfo
)
853 if (!P
.second
.AllCallSitesDevirted
) {
862 FunctionType::get(Type::getVoidTy(M
.getContext()), {Int8PtrTy
}, true);
864 if (isa
<MDString
>(Slot
.TypeID
)) {
865 JT
= Function::Create(FT
, Function::ExternalLinkage
,
866 M
.getDataLayout().getProgramAddressSpace(),
867 getGlobalName(Slot
, {}, "branch_funnel"), &M
);
868 JT
->setVisibility(GlobalValue::HiddenVisibility
);
870 JT
= Function::Create(FT
, Function::InternalLinkage
,
871 M
.getDataLayout().getProgramAddressSpace(),
872 "branch_funnel", &M
);
874 JT
->addAttribute(1, Attribute::Nest
);
876 std::vector
<Value
*> JTArgs
;
877 JTArgs
.push_back(JT
->arg_begin());
878 for (auto &T
: TargetsForSlot
) {
879 JTArgs
.push_back(getMemberAddr(T
.TM
));
880 JTArgs
.push_back(T
.Fn
);
883 BasicBlock
*BB
= BasicBlock::Create(M
.getContext(), "", JT
, nullptr);
885 Intrinsic::getDeclaration(&M
, llvm::Intrinsic::icall_branch_funnel
, {});
887 auto *CI
= CallInst::Create(Intr
, JTArgs
, "", BB
);
888 CI
->setTailCallKind(CallInst::TCK_MustTail
);
889 ReturnInst::Create(M
.getContext(), nullptr, BB
);
891 bool IsExported
= false;
892 applyICallBranchFunnel(SlotInfo
, JT
, IsExported
);
894 Res
->TheKind
= WholeProgramDevirtResolution::BranchFunnel
;
897 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo
&SlotInfo
,
898 Constant
*JT
, bool &IsExported
) {
899 auto Apply
= [&](CallSiteInfo
&CSInfo
) {
900 if (CSInfo
.isExported())
902 if (CSInfo
.AllCallSitesDevirted
)
904 for (auto &&VCallSite
: CSInfo
.CallSites
) {
905 CallSite CS
= VCallSite
.CS
;
907 // Jump tables are only profitable if the retpoline mitigation is enabled.
908 Attribute FSAttr
= CS
.getCaller()->getFnAttribute("target-features");
909 if (FSAttr
.hasAttribute(Attribute::None
) ||
910 !FSAttr
.getValueAsString().contains("+retpoline"))
914 VCallSite
.emitRemark("branch-funnel",
915 JT
->stripPointerCasts()->getName(), OREGetter
);
917 // Pass the address of the vtable in the nest register, which is r10 on
919 std::vector
<Type
*> NewArgs
;
920 NewArgs
.push_back(Int8PtrTy
);
921 for (Type
*T
: CS
.getFunctionType()->params())
922 NewArgs
.push_back(T
);
923 FunctionType
*NewFT
=
924 FunctionType::get(CS
.getFunctionType()->getReturnType(), NewArgs
,
925 CS
.getFunctionType()->isVarArg());
926 PointerType
*NewFTPtr
= PointerType::getUnqual(NewFT
);
928 IRBuilder
<> IRB(CS
.getInstruction());
929 std::vector
<Value
*> Args
;
930 Args
.push_back(IRB
.CreateBitCast(VCallSite
.VTable
, Int8PtrTy
));
931 for (unsigned I
= 0; I
!= CS
.getNumArgOperands(); ++I
)
932 Args
.push_back(CS
.getArgOperand(I
));
936 NewCS
= IRB
.CreateCall(NewFT
, IRB
.CreateBitCast(JT
, NewFTPtr
), Args
);
938 NewCS
= IRB
.CreateInvoke(
939 NewFT
, IRB
.CreateBitCast(JT
, NewFTPtr
),
940 cast
<InvokeInst
>(CS
.getInstruction())->getNormalDest(),
941 cast
<InvokeInst
>(CS
.getInstruction())->getUnwindDest(), Args
);
942 NewCS
.setCallingConv(CS
.getCallingConv());
944 AttributeList Attrs
= CS
.getAttributes();
945 std::vector
<AttributeSet
> NewArgAttrs
;
946 NewArgAttrs
.push_back(AttributeSet::get(
947 M
.getContext(), ArrayRef
<Attribute
>{Attribute::get(
948 M
.getContext(), Attribute::Nest
)}));
949 for (unsigned I
= 0; I
+ 2 < Attrs
.getNumAttrSets(); ++I
)
950 NewArgAttrs
.push_back(Attrs
.getParamAttributes(I
));
952 AttributeList::get(M
.getContext(), Attrs
.getFnAttributes(),
953 Attrs
.getRetAttributes(), NewArgAttrs
));
955 CS
->replaceAllUsesWith(NewCS
.getInstruction());
956 CS
->eraseFromParent();
958 // This use is no longer unsafe.
959 if (VCallSite
.NumUnsafeUses
)
960 --*VCallSite
.NumUnsafeUses
;
962 // Don't mark as devirtualized because there may be callers compiled without
963 // retpoline mitigation, which would mean that they are lowered to
964 // llvm.type.test and therefore require an llvm.type.test resolution for the
967 Apply(SlotInfo
.CSInfo
);
968 for (auto &P
: SlotInfo
.ConstCSInfo
)
972 bool DevirtModule::tryEvaluateFunctionsWithArgs(
973 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
974 ArrayRef
<uint64_t> Args
) {
975 // Evaluate each function and store the result in each target's RetVal
977 for (VirtualCallTarget
&Target
: TargetsForSlot
) {
978 if (Target
.Fn
->arg_size() != Args
.size() + 1)
981 Evaluator
Eval(M
.getDataLayout(), nullptr);
982 SmallVector
<Constant
*, 2> EvalArgs
;
984 Constant::getNullValue(Target
.Fn
->getFunctionType()->getParamType(0)));
985 for (unsigned I
= 0; I
!= Args
.size(); ++I
) {
986 auto *ArgTy
= dyn_cast
<IntegerType
>(
987 Target
.Fn
->getFunctionType()->getParamType(I
+ 1));
990 EvalArgs
.push_back(ConstantInt::get(ArgTy
, Args
[I
]));
994 if (!Eval
.EvaluateFunction(Target
.Fn
, RetVal
, EvalArgs
) ||
995 !isa
<ConstantInt
>(RetVal
))
997 Target
.RetVal
= cast
<ConstantInt
>(RetVal
)->getZExtValue();
1002 void DevirtModule::applyUniformRetValOpt(CallSiteInfo
&CSInfo
, StringRef FnName
,
1003 uint64_t TheRetVal
) {
1004 for (auto Call
: CSInfo
.CallSites
)
1005 Call
.replaceAndErase(
1006 "uniform-ret-val", FnName
, RemarksEnabled
, OREGetter
,
1007 ConstantInt::get(cast
<IntegerType
>(Call
.CS
.getType()), TheRetVal
));
1008 CSInfo
.markDevirt();
1011 bool DevirtModule::tryUniformRetValOpt(
1012 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
, CallSiteInfo
&CSInfo
,
1013 WholeProgramDevirtResolution::ByArg
*Res
) {
1014 // Uniform return value optimization. If all functions return the same
1015 // constant, replace all calls with that constant.
1016 uint64_t TheRetVal
= TargetsForSlot
[0].RetVal
;
1017 for (const VirtualCallTarget
&Target
: TargetsForSlot
)
1018 if (Target
.RetVal
!= TheRetVal
)
1021 if (CSInfo
.isExported()) {
1022 Res
->TheKind
= WholeProgramDevirtResolution::ByArg::UniformRetVal
;
1023 Res
->Info
= TheRetVal
;
1026 applyUniformRetValOpt(CSInfo
, TargetsForSlot
[0].Fn
->getName(), TheRetVal
);
1028 for (auto &&Target
: TargetsForSlot
)
1029 Target
.WasDevirt
= true;
1033 std::string
DevirtModule::getGlobalName(VTableSlot Slot
,
1034 ArrayRef
<uint64_t> Args
,
1036 std::string FullName
= "__typeid_";
1037 raw_string_ostream
OS(FullName
);
1038 OS
<< cast
<MDString
>(Slot
.TypeID
)->getString() << '_' << Slot
.ByteOffset
;
1039 for (uint64_t Arg
: Args
)
1045 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
1046 Triple
T(M
.getTargetTriple());
1047 return (T
.getArch() == Triple::x86
|| T
.getArch() == Triple::x86_64
) &&
1048 T
.getObjectFormat() == Triple::ELF
;
1051 void DevirtModule::exportGlobal(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
1052 StringRef Name
, Constant
*C
) {
1053 GlobalAlias
*GA
= GlobalAlias::create(Int8Ty
, 0, GlobalValue::ExternalLinkage
,
1054 getGlobalName(Slot
, Args
, Name
), C
, &M
);
1055 GA
->setVisibility(GlobalValue::HiddenVisibility
);
1058 void DevirtModule::exportConstant(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
1059 StringRef Name
, uint32_t Const
,
1060 uint32_t &Storage
) {
1061 if (shouldExportConstantsAsAbsoluteSymbols()) {
1064 ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty
, Const
), Int8PtrTy
));
1071 Constant
*DevirtModule::importGlobal(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
1073 Constant
*C
= M
.getOrInsertGlobal(getGlobalName(Slot
, Args
, Name
), Int8Ty
);
1074 auto *GV
= dyn_cast
<GlobalVariable
>(C
);
1076 GV
->setVisibility(GlobalValue::HiddenVisibility
);
1080 Constant
*DevirtModule::importConstant(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
1081 StringRef Name
, IntegerType
*IntTy
,
1083 if (!shouldExportConstantsAsAbsoluteSymbols())
1084 return ConstantInt::get(IntTy
, Storage
);
1086 Constant
*C
= importGlobal(Slot
, Args
, Name
);
1087 auto *GV
= cast
<GlobalVariable
>(C
->stripPointerCasts());
1088 C
= ConstantExpr::getPtrToInt(C
, IntTy
);
1090 // We only need to set metadata if the global is newly created, in which
1091 // case it would not have hidden visibility.
1092 if (GV
->hasMetadata(LLVMContext::MD_absolute_symbol
))
1095 auto SetAbsRange
= [&](uint64_t Min
, uint64_t Max
) {
1096 auto *MinC
= ConstantAsMetadata::get(ConstantInt::get(IntPtrTy
, Min
));
1097 auto *MaxC
= ConstantAsMetadata::get(ConstantInt::get(IntPtrTy
, Max
));
1098 GV
->setMetadata(LLVMContext::MD_absolute_symbol
,
1099 MDNode::get(M
.getContext(), {MinC
, MaxC
}));
1101 unsigned AbsWidth
= IntTy
->getBitWidth();
1102 if (AbsWidth
== IntPtrTy
->getBitWidth())
1103 SetAbsRange(~0ull, ~0ull); // Full set.
1105 SetAbsRange(0, 1ull << AbsWidth
);
1109 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo
&CSInfo
, StringRef FnName
,
1111 Constant
*UniqueMemberAddr
) {
1112 for (auto &&Call
: CSInfo
.CallSites
) {
1113 IRBuilder
<> B(Call
.CS
.getInstruction());
1115 B
.CreateICmp(IsOne
? ICmpInst::ICMP_EQ
: ICmpInst::ICMP_NE
,
1116 B
.CreateBitCast(Call
.VTable
, Int8PtrTy
), UniqueMemberAddr
);
1117 Cmp
= B
.CreateZExt(Cmp
, Call
.CS
->getType());
1118 Call
.replaceAndErase("unique-ret-val", FnName
, RemarksEnabled
, OREGetter
,
1121 CSInfo
.markDevirt();
1124 Constant
*DevirtModule::getMemberAddr(const TypeMemberInfo
*M
) {
1125 Constant
*C
= ConstantExpr::getBitCast(M
->Bits
->GV
, Int8PtrTy
);
1126 return ConstantExpr::getGetElementPtr(Int8Ty
, C
,
1127 ConstantInt::get(Int64Ty
, M
->Offset
));
1130 bool DevirtModule::tryUniqueRetValOpt(
1131 unsigned BitWidth
, MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
1132 CallSiteInfo
&CSInfo
, WholeProgramDevirtResolution::ByArg
*Res
,
1133 VTableSlot Slot
, ArrayRef
<uint64_t> Args
) {
1134 // IsOne controls whether we look for a 0 or a 1.
1135 auto tryUniqueRetValOptFor
= [&](bool IsOne
) {
1136 const TypeMemberInfo
*UniqueMember
= nullptr;
1137 for (const VirtualCallTarget
&Target
: TargetsForSlot
) {
1138 if (Target
.RetVal
== (IsOne
? 1 : 0)) {
1141 UniqueMember
= Target
.TM
;
1145 // We should have found a unique member or bailed out by now. We already
1146 // checked for a uniform return value in tryUniformRetValOpt.
1147 assert(UniqueMember
);
1149 Constant
*UniqueMemberAddr
= getMemberAddr(UniqueMember
);
1150 if (CSInfo
.isExported()) {
1151 Res
->TheKind
= WholeProgramDevirtResolution::ByArg::UniqueRetVal
;
1154 exportGlobal(Slot
, Args
, "unique_member", UniqueMemberAddr
);
1157 // Replace each call with the comparison.
1158 applyUniqueRetValOpt(CSInfo
, TargetsForSlot
[0].Fn
->getName(), IsOne
,
1161 // Update devirtualization statistics for targets.
1163 for (auto &&Target
: TargetsForSlot
)
1164 Target
.WasDevirt
= true;
1169 if (BitWidth
== 1) {
1170 if (tryUniqueRetValOptFor(true))
1172 if (tryUniqueRetValOptFor(false))
1178 void DevirtModule::applyVirtualConstProp(CallSiteInfo
&CSInfo
, StringRef FnName
,
1179 Constant
*Byte
, Constant
*Bit
) {
1180 for (auto Call
: CSInfo
.CallSites
) {
1181 auto *RetType
= cast
<IntegerType
>(Call
.CS
.getType());
1182 IRBuilder
<> B(Call
.CS
.getInstruction());
1184 B
.CreateGEP(Int8Ty
, B
.CreateBitCast(Call
.VTable
, Int8PtrTy
), Byte
);
1185 if (RetType
->getBitWidth() == 1) {
1186 Value
*Bits
= B
.CreateLoad(Int8Ty
, Addr
);
1187 Value
*BitsAndBit
= B
.CreateAnd(Bits
, Bit
);
1188 auto IsBitSet
= B
.CreateICmpNE(BitsAndBit
, ConstantInt::get(Int8Ty
, 0));
1189 Call
.replaceAndErase("virtual-const-prop-1-bit", FnName
, RemarksEnabled
,
1190 OREGetter
, IsBitSet
);
1192 Value
*ValAddr
= B
.CreateBitCast(Addr
, RetType
->getPointerTo());
1193 Value
*Val
= B
.CreateLoad(RetType
, ValAddr
);
1194 Call
.replaceAndErase("virtual-const-prop", FnName
, RemarksEnabled
,
1198 CSInfo
.markDevirt();
1201 bool DevirtModule::tryVirtualConstProp(
1202 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
, VTableSlotInfo
&SlotInfo
,
1203 WholeProgramDevirtResolution
*Res
, VTableSlot Slot
) {
1204 // This only works if the function returns an integer.
1205 auto RetType
= dyn_cast
<IntegerType
>(TargetsForSlot
[0].Fn
->getReturnType());
1208 unsigned BitWidth
= RetType
->getBitWidth();
1212 // Make sure that each function is defined, does not access memory, takes at
1213 // least one argument, does not use its first argument (which we assume is
1214 // 'this'), and has the same return type.
1216 // Note that we test whether this copy of the function is readnone, rather
1217 // than testing function attributes, which must hold for any copy of the
1218 // function, even a less optimized version substituted at link time. This is
1219 // sound because the virtual constant propagation optimizations effectively
1220 // inline all implementations of the virtual function into each call site,
1221 // rather than using function attributes to perform local optimization.
1222 for (VirtualCallTarget
&Target
: TargetsForSlot
) {
1223 if (Target
.Fn
->isDeclaration() ||
1224 computeFunctionBodyMemoryAccess(*Target
.Fn
, AARGetter(*Target
.Fn
)) !=
1226 Target
.Fn
->arg_empty() || !Target
.Fn
->arg_begin()->use_empty() ||
1227 Target
.Fn
->getReturnType() != RetType
)
1231 for (auto &&CSByConstantArg
: SlotInfo
.ConstCSInfo
) {
1232 if (!tryEvaluateFunctionsWithArgs(TargetsForSlot
, CSByConstantArg
.first
))
1235 WholeProgramDevirtResolution::ByArg
*ResByArg
= nullptr;
1237 ResByArg
= &Res
->ResByArg
[CSByConstantArg
.first
];
1239 if (tryUniformRetValOpt(TargetsForSlot
, CSByConstantArg
.second
, ResByArg
))
1242 if (tryUniqueRetValOpt(BitWidth
, TargetsForSlot
, CSByConstantArg
.second
,
1243 ResByArg
, Slot
, CSByConstantArg
.first
))
1246 // Find an allocation offset in bits in all vtables associated with the
1248 uint64_t AllocBefore
=
1249 findLowestOffset(TargetsForSlot
, /*IsAfter=*/false, BitWidth
);
1250 uint64_t AllocAfter
=
1251 findLowestOffset(TargetsForSlot
, /*IsAfter=*/true, BitWidth
);
1253 // Calculate the total amount of padding needed to store a value at both
1254 // ends of the object.
1255 uint64_t TotalPaddingBefore
= 0, TotalPaddingAfter
= 0;
1256 for (auto &&Target
: TargetsForSlot
) {
1257 TotalPaddingBefore
+= std::max
<int64_t>(
1258 (AllocBefore
+ 7) / 8 - Target
.allocatedBeforeBytes() - 1, 0);
1259 TotalPaddingAfter
+= std::max
<int64_t>(
1260 (AllocAfter
+ 7) / 8 - Target
.allocatedAfterBytes() - 1, 0);
1263 // If the amount of padding is too large, give up.
1264 // FIXME: do something smarter here.
1265 if (std::min(TotalPaddingBefore
, TotalPaddingAfter
) > 128)
1268 // Calculate the offset to the value as a (possibly negative) byte offset
1269 // and (if applicable) a bit offset, and store the values in the targets.
1272 if (TotalPaddingBefore
<= TotalPaddingAfter
)
1273 setBeforeReturnValues(TargetsForSlot
, AllocBefore
, BitWidth
, OffsetByte
,
1276 setAfterReturnValues(TargetsForSlot
, AllocAfter
, BitWidth
, OffsetByte
,
1280 for (auto &&Target
: TargetsForSlot
)
1281 Target
.WasDevirt
= true;
1284 if (CSByConstantArg
.second
.isExported()) {
1285 ResByArg
->TheKind
= WholeProgramDevirtResolution::ByArg::VirtualConstProp
;
1286 exportConstant(Slot
, CSByConstantArg
.first
, "byte", OffsetByte
,
1288 exportConstant(Slot
, CSByConstantArg
.first
, "bit", 1ULL << OffsetBit
,
1292 // Rewrite each call to a load from OffsetByte/OffsetBit.
1293 Constant
*ByteConst
= ConstantInt::get(Int32Ty
, OffsetByte
);
1294 Constant
*BitConst
= ConstantInt::get(Int8Ty
, 1ULL << OffsetBit
);
1295 applyVirtualConstProp(CSByConstantArg
.second
,
1296 TargetsForSlot
[0].Fn
->getName(), ByteConst
, BitConst
);
1301 void DevirtModule::rebuildGlobal(VTableBits
&B
) {
1302 if (B
.Before
.Bytes
.empty() && B
.After
.Bytes
.empty())
1305 // Align each byte array to pointer width.
1306 unsigned PointerSize
= M
.getDataLayout().getPointerSize();
1307 B
.Before
.Bytes
.resize(alignTo(B
.Before
.Bytes
.size(), PointerSize
));
1308 B
.After
.Bytes
.resize(alignTo(B
.After
.Bytes
.size(), PointerSize
));
1310 // Before was stored in reverse order; flip it now.
1311 for (size_t I
= 0, Size
= B
.Before
.Bytes
.size(); I
!= Size
/ 2; ++I
)
1312 std::swap(B
.Before
.Bytes
[I
], B
.Before
.Bytes
[Size
- 1 - I
]);
1314 // Build an anonymous global containing the before bytes, followed by the
1315 // original initializer, followed by the after bytes.
1316 auto NewInit
= ConstantStruct::getAnon(
1317 {ConstantDataArray::get(M
.getContext(), B
.Before
.Bytes
),
1318 B
.GV
->getInitializer(),
1319 ConstantDataArray::get(M
.getContext(), B
.After
.Bytes
)});
1321 new GlobalVariable(M
, NewInit
->getType(), B
.GV
->isConstant(),
1322 GlobalVariable::PrivateLinkage
, NewInit
, "", B
.GV
);
1323 NewGV
->setSection(B
.GV
->getSection());
1324 NewGV
->setComdat(B
.GV
->getComdat());
1326 // Copy the original vtable's metadata to the anonymous global, adjusting
1327 // offsets as required.
1328 NewGV
->copyMetadata(B
.GV
, B
.Before
.Bytes
.size());
1330 // Build an alias named after the original global, pointing at the second
1331 // element (the original initializer).
1332 auto Alias
= GlobalAlias::create(
1333 B
.GV
->getInitializer()->getType(), 0, B
.GV
->getLinkage(), "",
1334 ConstantExpr::getGetElementPtr(
1335 NewInit
->getType(), NewGV
,
1336 ArrayRef
<Constant
*>{ConstantInt::get(Int32Ty
, 0),
1337 ConstantInt::get(Int32Ty
, 1)}),
1339 Alias
->setVisibility(B
.GV
->getVisibility());
1340 Alias
->takeName(B
.GV
);
1342 B
.GV
->replaceAllUsesWith(Alias
);
1343 B
.GV
->eraseFromParent();
1346 bool DevirtModule::areRemarksEnabled() {
1347 const auto &FL
= M
.getFunctionList();
1348 for (const Function
&Fn
: FL
) {
1349 const auto &BBL
= Fn
.getBasicBlockList();
1352 auto DI
= OptimizationRemark(DEBUG_TYPE
, "", DebugLoc(), &BBL
.front());
1353 return DI
.isEnabled();
1358 void DevirtModule::scanTypeTestUsers(Function
*TypeTestFunc
,
1359 Function
*AssumeFunc
) {
1360 // Find all virtual calls via a virtual table pointer %p under an assumption
1361 // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
1362 // points to a member of the type identifier %md. Group calls by (type ID,
1363 // offset) pair (effectively the identity of the virtual function) and store
1365 DenseSet
<CallSite
> SeenCallSites
;
1366 for (auto I
= TypeTestFunc
->use_begin(), E
= TypeTestFunc
->use_end();
1368 auto CI
= dyn_cast
<CallInst
>(I
->getUser());
1373 // Search for virtual calls based on %p and add them to DevirtCalls.
1374 SmallVector
<DevirtCallSite
, 1> DevirtCalls
;
1375 SmallVector
<CallInst
*, 1> Assumes
;
1376 auto &DT
= LookupDomTree(*CI
->getFunction());
1377 findDevirtualizableCallsForTypeTest(DevirtCalls
, Assumes
, CI
, DT
);
1379 // If we found any, add them to CallSlots.
1380 if (!Assumes
.empty()) {
1382 cast
<MetadataAsValue
>(CI
->getArgOperand(1))->getMetadata();
1383 Value
*Ptr
= CI
->getArgOperand(0)->stripPointerCasts();
1384 for (DevirtCallSite Call
: DevirtCalls
) {
1385 // Only add this CallSite if we haven't seen it before. The vtable
1386 // pointer may have been CSE'd with pointers from other call sites,
1387 // and we don't want to process call sites multiple times. We can't
1388 // just skip the vtable Ptr if it has been seen before, however, since
1389 // it may be shared by type tests that dominate different calls.
1390 if (SeenCallSites
.insert(Call
.CS
).second
)
1391 CallSlots
[{TypeId
, Call
.Offset
}].addCallSite(Ptr
, Call
.CS
, nullptr);
1395 // We no longer need the assumes or the type test.
1396 for (auto Assume
: Assumes
)
1397 Assume
->eraseFromParent();
1398 // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
1399 // may use the vtable argument later.
1400 if (CI
->use_empty())
1401 CI
->eraseFromParent();
1405 void DevirtModule::scanTypeCheckedLoadUsers(Function
*TypeCheckedLoadFunc
) {
1406 Function
*TypeTestFunc
= Intrinsic::getDeclaration(&M
, Intrinsic::type_test
);
1408 for (auto I
= TypeCheckedLoadFunc
->use_begin(),
1409 E
= TypeCheckedLoadFunc
->use_end();
1411 auto CI
= dyn_cast
<CallInst
>(I
->getUser());
1416 Value
*Ptr
= CI
->getArgOperand(0);
1417 Value
*Offset
= CI
->getArgOperand(1);
1418 Value
*TypeIdValue
= CI
->getArgOperand(2);
1419 Metadata
*TypeId
= cast
<MetadataAsValue
>(TypeIdValue
)->getMetadata();
1421 SmallVector
<DevirtCallSite
, 1> DevirtCalls
;
1422 SmallVector
<Instruction
*, 1> LoadedPtrs
;
1423 SmallVector
<Instruction
*, 1> Preds
;
1424 bool HasNonCallUses
= false;
1425 auto &DT
= LookupDomTree(*CI
->getFunction());
1426 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls
, LoadedPtrs
, Preds
,
1427 HasNonCallUses
, CI
, DT
);
1429 // Start by generating "pessimistic" code that explicitly loads the function
1430 // pointer from the vtable and performs the type check. If possible, we will
1431 // eliminate the load and the type check later.
1433 // If possible, only generate the load at the point where it is used.
1434 // This helps avoid unnecessary spills.
1436 (LoadedPtrs
.size() == 1 && !HasNonCallUses
) ? LoadedPtrs
[0] : CI
);
1437 Value
*GEP
= LoadB
.CreateGEP(Int8Ty
, Ptr
, Offset
);
1438 Value
*GEPPtr
= LoadB
.CreateBitCast(GEP
, PointerType::getUnqual(Int8PtrTy
));
1439 Value
*LoadedValue
= LoadB
.CreateLoad(Int8PtrTy
, GEPPtr
);
1441 for (Instruction
*LoadedPtr
: LoadedPtrs
) {
1442 LoadedPtr
->replaceAllUsesWith(LoadedValue
);
1443 LoadedPtr
->eraseFromParent();
1446 // Likewise for the type test.
1447 IRBuilder
<> CallB((Preds
.size() == 1 && !HasNonCallUses
) ? Preds
[0] : CI
);
1448 CallInst
*TypeTestCall
= CallB
.CreateCall(TypeTestFunc
, {Ptr
, TypeIdValue
});
1450 for (Instruction
*Pred
: Preds
) {
1451 Pred
->replaceAllUsesWith(TypeTestCall
);
1452 Pred
->eraseFromParent();
1455 // We have already erased any extractvalue instructions that refer to the
1456 // intrinsic call, but the intrinsic may have other non-extractvalue uses
1457 // (although this is unlikely). In that case, explicitly build a pair and
1459 if (!CI
->use_empty()) {
1460 Value
*Pair
= UndefValue::get(CI
->getType());
1462 Pair
= B
.CreateInsertValue(Pair
, LoadedValue
, {0});
1463 Pair
= B
.CreateInsertValue(Pair
, TypeTestCall
, {1});
1464 CI
->replaceAllUsesWith(Pair
);
1467 // The number of unsafe uses is initially the number of uses.
1468 auto &NumUnsafeUses
= NumUnsafeUsesForTypeTest
[TypeTestCall
];
1469 NumUnsafeUses
= DevirtCalls
.size();
1471 // If the function pointer has a non-call user, we cannot eliminate the type
1472 // check, as one of those users may eventually call the pointer. Increment
1473 // the unsafe use count to make sure it cannot reach zero.
1476 for (DevirtCallSite Call
: DevirtCalls
) {
1477 CallSlots
[{TypeId
, Call
.Offset
}].addCallSite(Ptr
, Call
.CS
,
1481 CI
->eraseFromParent();
1485 void DevirtModule::importResolution(VTableSlot Slot
, VTableSlotInfo
&SlotInfo
) {
1486 const TypeIdSummary
*TidSummary
=
1487 ImportSummary
->getTypeIdSummary(cast
<MDString
>(Slot
.TypeID
)->getString());
1490 auto ResI
= TidSummary
->WPDRes
.find(Slot
.ByteOffset
);
1491 if (ResI
== TidSummary
->WPDRes
.end())
1493 const WholeProgramDevirtResolution
&Res
= ResI
->second
;
1495 if (Res
.TheKind
== WholeProgramDevirtResolution::SingleImpl
) {
1496 // The type of the function in the declaration is irrelevant because every
1497 // call site will cast it to the correct type.
1498 Constant
*SingleImpl
=
1499 cast
<Constant
>(M
.getOrInsertFunction(Res
.SingleImplName
,
1500 Type::getVoidTy(M
.getContext()))
1503 // This is the import phase so we should not be exporting anything.
1504 bool IsExported
= false;
1505 applySingleImplDevirt(SlotInfo
, SingleImpl
, IsExported
);
1506 assert(!IsExported
);
1509 for (auto &CSByConstantArg
: SlotInfo
.ConstCSInfo
) {
1510 auto I
= Res
.ResByArg
.find(CSByConstantArg
.first
);
1511 if (I
== Res
.ResByArg
.end())
1513 auto &ResByArg
= I
->second
;
1514 // FIXME: We should figure out what to do about the "function name" argument
1515 // to the apply* functions, as the function names are unavailable during the
1516 // importing phase. For now we just pass the empty string. This does not
1517 // impact correctness because the function names are just used for remarks.
1518 switch (ResByArg
.TheKind
) {
1519 case WholeProgramDevirtResolution::ByArg::UniformRetVal
:
1520 applyUniformRetValOpt(CSByConstantArg
.second
, "", ResByArg
.Info
);
1522 case WholeProgramDevirtResolution::ByArg::UniqueRetVal
: {
1523 Constant
*UniqueMemberAddr
=
1524 importGlobal(Slot
, CSByConstantArg
.first
, "unique_member");
1525 applyUniqueRetValOpt(CSByConstantArg
.second
, "", ResByArg
.Info
,
1529 case WholeProgramDevirtResolution::ByArg::VirtualConstProp
: {
1530 Constant
*Byte
= importConstant(Slot
, CSByConstantArg
.first
, "byte",
1531 Int32Ty
, ResByArg
.Byte
);
1532 Constant
*Bit
= importConstant(Slot
, CSByConstantArg
.first
, "bit", Int8Ty
,
1534 applyVirtualConstProp(CSByConstantArg
.second
, "", Byte
, Bit
);
1542 if (Res
.TheKind
== WholeProgramDevirtResolution::BranchFunnel
) {
1543 // The type of the function is irrelevant, because it's bitcast at calls
1545 Constant
*JT
= cast
<Constant
>(
1546 M
.getOrInsertFunction(getGlobalName(Slot
, {}, "branch_funnel"),
1547 Type::getVoidTy(M
.getContext()))
1549 bool IsExported
= false;
1550 applyICallBranchFunnel(SlotInfo
, JT
, IsExported
);
1551 assert(!IsExported
);
1555 void DevirtModule::removeRedundantTypeTests() {
1556 auto True
= ConstantInt::getTrue(M
.getContext());
1557 for (auto &&U
: NumUnsafeUsesForTypeTest
) {
1558 if (U
.second
== 0) {
1559 U
.first
->replaceAllUsesWith(True
);
1560 U
.first
->eraseFromParent();
1565 bool DevirtModule::run() {
1566 // If only some of the modules were split, we cannot correctly perform
1567 // this transformation. We already checked for the presense of type tests
1568 // with partially split modules during the thin link, and would have emitted
1569 // an error if any were found, so here we can simply return.
1570 if ((ExportSummary
&& ExportSummary
->partiallySplitLTOUnits()) ||
1571 (ImportSummary
&& ImportSummary
->partiallySplitLTOUnits()))
1574 Function
*TypeTestFunc
=
1575 M
.getFunction(Intrinsic::getName(Intrinsic::type_test
));
1576 Function
*TypeCheckedLoadFunc
=
1577 M
.getFunction(Intrinsic::getName(Intrinsic::type_checked_load
));
1578 Function
*AssumeFunc
= M
.getFunction(Intrinsic::getName(Intrinsic::assume
));
1580 // Normally if there are no users of the devirtualization intrinsics in the
1581 // module, this pass has nothing to do. But if we are exporting, we also need
1582 // to handle any users that appear only in the function summaries.
1583 if (!ExportSummary
&&
1584 (!TypeTestFunc
|| TypeTestFunc
->use_empty() || !AssumeFunc
||
1585 AssumeFunc
->use_empty()) &&
1586 (!TypeCheckedLoadFunc
|| TypeCheckedLoadFunc
->use_empty()))
1589 if (TypeTestFunc
&& AssumeFunc
)
1590 scanTypeTestUsers(TypeTestFunc
, AssumeFunc
);
1592 if (TypeCheckedLoadFunc
)
1593 scanTypeCheckedLoadUsers(TypeCheckedLoadFunc
);
1595 if (ImportSummary
) {
1596 for (auto &S
: CallSlots
)
1597 importResolution(S
.first
, S
.second
);
1599 removeRedundantTypeTests();
1601 // The rest of the code is only necessary when exporting or during regular
1602 // LTO, so we are done.
1606 // Rebuild type metadata into a map for easy lookup.
1607 std::vector
<VTableBits
> Bits
;
1608 DenseMap
<Metadata
*, std::set
<TypeMemberInfo
>> TypeIdMap
;
1609 buildTypeIdentifierMap(Bits
, TypeIdMap
);
1610 if (TypeIdMap
.empty())
1613 // Collect information from summary about which calls to try to devirtualize.
1614 if (ExportSummary
) {
1615 DenseMap
<GlobalValue::GUID
, TinyPtrVector
<Metadata
*>> MetadataByGUID
;
1616 for (auto &P
: TypeIdMap
) {
1617 if (auto *TypeId
= dyn_cast
<MDString
>(P
.first
))
1618 MetadataByGUID
[GlobalValue::getGUID(TypeId
->getString())].push_back(
1622 for (auto &P
: *ExportSummary
) {
1623 for (auto &S
: P
.second
.SummaryList
) {
1624 auto *FS
= dyn_cast
<FunctionSummary
>(S
.get());
1627 // FIXME: Only add live functions.
1628 for (FunctionSummary::VFuncId VF
: FS
->type_test_assume_vcalls()) {
1629 for (Metadata
*MD
: MetadataByGUID
[VF
.GUID
]) {
1630 CallSlots
[{MD
, VF
.Offset
}]
1631 .CSInfo
.markSummaryHasTypeTestAssumeUsers();
1634 for (FunctionSummary::VFuncId VF
: FS
->type_checked_load_vcalls()) {
1635 for (Metadata
*MD
: MetadataByGUID
[VF
.GUID
]) {
1636 CallSlots
[{MD
, VF
.Offset
}].CSInfo
.addSummaryTypeCheckedLoadUser(FS
);
1639 for (const FunctionSummary::ConstVCall
&VC
:
1640 FS
->type_test_assume_const_vcalls()) {
1641 for (Metadata
*MD
: MetadataByGUID
[VC
.VFunc
.GUID
]) {
1642 CallSlots
[{MD
, VC
.VFunc
.Offset
}]
1643 .ConstCSInfo
[VC
.Args
]
1644 .markSummaryHasTypeTestAssumeUsers();
1647 for (const FunctionSummary::ConstVCall
&VC
:
1648 FS
->type_checked_load_const_vcalls()) {
1649 for (Metadata
*MD
: MetadataByGUID
[VC
.VFunc
.GUID
]) {
1650 CallSlots
[{MD
, VC
.VFunc
.Offset
}]
1651 .ConstCSInfo
[VC
.Args
]
1652 .addSummaryTypeCheckedLoadUser(FS
);
1659 // For each (type, offset) pair:
1660 bool DidVirtualConstProp
= false;
1661 std::map
<std::string
, Function
*> DevirtTargets
;
1662 for (auto &S
: CallSlots
) {
1663 // Search each of the members of the type identifier for the virtual
1664 // function implementation at offset S.first.ByteOffset, and add to
1666 std::vector
<VirtualCallTarget
> TargetsForSlot
;
1667 if (tryFindVirtualCallTargets(TargetsForSlot
, TypeIdMap
[S
.first
.TypeID
],
1668 S
.first
.ByteOffset
)) {
1669 WholeProgramDevirtResolution
*Res
= nullptr;
1670 if (ExportSummary
&& isa
<MDString
>(S
.first
.TypeID
))
1671 Res
= &ExportSummary
1672 ->getOrInsertTypeIdSummary(
1673 cast
<MDString
>(S
.first
.TypeID
)->getString())
1674 .WPDRes
[S
.first
.ByteOffset
];
1676 if (!trySingleImplDevirt(TargetsForSlot
, S
.second
, Res
)) {
1677 DidVirtualConstProp
|=
1678 tryVirtualConstProp(TargetsForSlot
, S
.second
, Res
, S
.first
);
1680 tryICallBranchFunnel(TargetsForSlot
, S
.second
, Res
, S
.first
);
1683 // Collect functions devirtualized at least for one call site for stats.
1685 for (const auto &T
: TargetsForSlot
)
1687 DevirtTargets
[T
.Fn
->getName()] = T
.Fn
;
1690 // CFI-specific: if we are exporting and any llvm.type.checked.load
1691 // intrinsics were *not* devirtualized, we need to add the resulting
1692 // llvm.type.test intrinsics to the function summaries so that the
1693 // LowerTypeTests pass will export them.
1694 if (ExportSummary
&& isa
<MDString
>(S
.first
.TypeID
)) {
1696 GlobalValue::getGUID(cast
<MDString
>(S
.first
.TypeID
)->getString());
1697 for (auto FS
: S
.second
.CSInfo
.SummaryTypeCheckedLoadUsers
)
1698 FS
->addTypeTest(GUID
);
1699 for (auto &CCS
: S
.second
.ConstCSInfo
)
1700 for (auto FS
: CCS
.second
.SummaryTypeCheckedLoadUsers
)
1701 FS
->addTypeTest(GUID
);
1705 if (RemarksEnabled
) {
1706 // Generate remarks for each devirtualized function.
1707 for (const auto &DT
: DevirtTargets
) {
1708 Function
*F
= DT
.second
;
1710 using namespace ore
;
1711 OREGetter(F
).emit(OptimizationRemark(DEBUG_TYPE
, "Devirtualized", F
)
1713 << NV("FunctionName", F
->getName()));
1717 removeRedundantTypeTests();
1719 // Rebuild each global we touched as part of virtual constant propagation to
1720 // include the before and after bytes.
1721 if (DidVirtualConstProp
)
1722 for (VTableBits
&B
: Bits
)