Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Transforms / Scalar / LoopStrengthReduce.cpp
bloba1533019128131ed65653520c7a8872020953abe
1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into forms suitable for efficient execution
11 // on the target.
13 // This pass performs a strength reduction on array references inside loops that
14 // have as one or more of their components the loop induction variable, it
15 // rewrites expressions to take advantage of scaled-index addressing modes
16 // available on the target, and it performs a variety of other optimizations
17 // related to loop induction variables.
19 // Terminology note: this code has a lot of handling for "post-increment" or
20 // "post-inc" users. This is not talking about post-increment addressing modes;
21 // it is instead talking about code like this:
23 // %i = phi [ 0, %entry ], [ %i.next, %latch ]
24 // ...
25 // %i.next = add %i, 1
26 // %c = icmp eq %i.next, %n
28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29 // it's useful to think about these as the same register, with some uses using
30 // the value of the register before the add and some using it after. In this
31 // example, the icmp is a post-increment user, since it uses %i.next, which is
32 // the value of the induction variable after the increment. The other common
33 // case of post-increment users is users outside the loop.
35 // TODO: More sophistication in the way Formulae are generated and filtered.
37 // TODO: Handle multiple loops at a time.
39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
40 // of a GlobalValue?
42 // TODO: When truncation is free, truncate ICmp users' operands to make it a
43 // smaller encoding (on x86 at least).
45 // TODO: When a negated register is used by an add (such as in a list of
46 // multiple base registers, or as the increment expression in an addrec),
47 // we may not actually need both reg and (-1 * reg) in registers; the
48 // negation can be implemented by using a sub instead of an add. The
49 // lack of support for taking this into consideration when making
50 // register pressure decisions is partly worked around by the "Special"
51 // use kind.
53 //===----------------------------------------------------------------------===//
55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56 #include "llvm/ADT/APInt.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseSet.h"
59 #include "llvm/ADT/Hashing.h"
60 #include "llvm/ADT/PointerIntPair.h"
61 #include "llvm/ADT/STLExtras.h"
62 #include "llvm/ADT/SetVector.h"
63 #include "llvm/ADT/SmallBitVector.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/SmallSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/iterator_range.h"
68 #include "llvm/Analysis/IVUsers.h"
69 #include "llvm/Analysis/LoopAnalysisManager.h"
70 #include "llvm/Analysis/LoopInfo.h"
71 #include "llvm/Analysis/LoopPass.h"
72 #include "llvm/Analysis/ScalarEvolution.h"
73 #include "llvm/Analysis/ScalarEvolutionExpander.h"
74 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
75 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
76 #include "llvm/Analysis/TargetTransformInfo.h"
77 #include "llvm/Transforms/Utils/Local.h"
78 #include "llvm/Config/llvm-config.h"
79 #include "llvm/IR/BasicBlock.h"
80 #include "llvm/IR/Constant.h"
81 #include "llvm/IR/Constants.h"
82 #include "llvm/IR/DerivedTypes.h"
83 #include "llvm/IR/Dominators.h"
84 #include "llvm/IR/GlobalValue.h"
85 #include "llvm/IR/IRBuilder.h"
86 #include "llvm/IR/InstrTypes.h"
87 #include "llvm/IR/Instruction.h"
88 #include "llvm/IR/Instructions.h"
89 #include "llvm/IR/IntrinsicInst.h"
90 #include "llvm/IR/Intrinsics.h"
91 #include "llvm/IR/Module.h"
92 #include "llvm/IR/OperandTraits.h"
93 #include "llvm/IR/Operator.h"
94 #include "llvm/IR/PassManager.h"
95 #include "llvm/IR/Type.h"
96 #include "llvm/IR/Use.h"
97 #include "llvm/IR/User.h"
98 #include "llvm/IR/Value.h"
99 #include "llvm/IR/ValueHandle.h"
100 #include "llvm/Pass.h"
101 #include "llvm/Support/Casting.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Compiler.h"
104 #include "llvm/Support/Debug.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Transforms/Scalar.h"
109 #include "llvm/Transforms/Utils.h"
110 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
111 #include <algorithm>
112 #include <cassert>
113 #include <cstddef>
114 #include <cstdint>
115 #include <cstdlib>
116 #include <iterator>
117 #include <limits>
118 #include <map>
119 #include <utility>
121 using namespace llvm;
123 #define DEBUG_TYPE "loop-reduce"
125 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
126 /// bail out. This threshold is far beyond the number of users that LSR can
127 /// conceivably solve, so it should not affect generated code, but catches the
128 /// worst cases before LSR burns too much compile time and stack space.
129 static const unsigned MaxIVUsers = 200;
131 // Temporary flag to cleanup congruent phis after LSR phi expansion.
132 // It's currently disabled until we can determine whether it's truly useful or
133 // not. The flag should be removed after the v3.0 release.
134 // This is now needed for ivchains.
135 static cl::opt<bool> EnablePhiElim(
136 "enable-lsr-phielim", cl::Hidden, cl::init(true),
137 cl::desc("Enable LSR phi elimination"));
139 // The flag adds instruction count to solutions cost comparision.
140 static cl::opt<bool> InsnsCost(
141 "lsr-insns-cost", cl::Hidden, cl::init(true),
142 cl::desc("Add instruction count to a LSR cost model"));
144 // Flag to choose how to narrow complex lsr solution
145 static cl::opt<bool> LSRExpNarrow(
146 "lsr-exp-narrow", cl::Hidden, cl::init(false),
147 cl::desc("Narrow LSR complex solution using"
148 " expectation of registers number"));
150 // Flag to narrow search space by filtering non-optimal formulae with
151 // the same ScaledReg and Scale.
152 static cl::opt<bool> FilterSameScaledReg(
153 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
154 cl::desc("Narrow LSR search space by filtering non-optimal formulae"
155 " with the same ScaledReg and Scale"));
157 static cl::opt<bool> EnableBackedgeIndexing(
158 "lsr-backedge-indexing", cl::Hidden, cl::init(true),
159 cl::desc("Enable the generation of cross iteration indexed memops"));
161 static cl::opt<unsigned> ComplexityLimit(
162 "lsr-complexity-limit", cl::Hidden,
163 cl::init(std::numeric_limits<uint16_t>::max()),
164 cl::desc("LSR search space complexity limit"));
166 #ifndef NDEBUG
167 // Stress test IV chain generation.
168 static cl::opt<bool> StressIVChain(
169 "stress-ivchain", cl::Hidden, cl::init(false),
170 cl::desc("Stress test LSR IV chains"));
171 #else
172 static bool StressIVChain = false;
173 #endif
175 namespace {
177 struct MemAccessTy {
178 /// Used in situations where the accessed memory type is unknown.
179 static const unsigned UnknownAddressSpace =
180 std::numeric_limits<unsigned>::max();
182 Type *MemTy = nullptr;
183 unsigned AddrSpace = UnknownAddressSpace;
185 MemAccessTy() = default;
186 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
188 bool operator==(MemAccessTy Other) const {
189 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
192 bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
194 static MemAccessTy getUnknown(LLVMContext &Ctx,
195 unsigned AS = UnknownAddressSpace) {
196 return MemAccessTy(Type::getVoidTy(Ctx), AS);
199 Type *getType() { return MemTy; }
202 /// This class holds data which is used to order reuse candidates.
203 class RegSortData {
204 public:
205 /// This represents the set of LSRUse indices which reference
206 /// a particular register.
207 SmallBitVector UsedByIndices;
209 void print(raw_ostream &OS) const;
210 void dump() const;
213 } // end anonymous namespace
215 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
216 void RegSortData::print(raw_ostream &OS) const {
217 OS << "[NumUses=" << UsedByIndices.count() << ']';
220 LLVM_DUMP_METHOD void RegSortData::dump() const {
221 print(errs()); errs() << '\n';
223 #endif
225 namespace {
227 /// Map register candidates to information about how they are used.
228 class RegUseTracker {
229 using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
231 RegUsesTy RegUsesMap;
232 SmallVector<const SCEV *, 16> RegSequence;
234 public:
235 void countRegister(const SCEV *Reg, size_t LUIdx);
236 void dropRegister(const SCEV *Reg, size_t LUIdx);
237 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
239 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
241 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
243 void clear();
245 using iterator = SmallVectorImpl<const SCEV *>::iterator;
246 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
248 iterator begin() { return RegSequence.begin(); }
249 iterator end() { return RegSequence.end(); }
250 const_iterator begin() const { return RegSequence.begin(); }
251 const_iterator end() const { return RegSequence.end(); }
254 } // end anonymous namespace
256 void
257 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
258 std::pair<RegUsesTy::iterator, bool> Pair =
259 RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
260 RegSortData &RSD = Pair.first->second;
261 if (Pair.second)
262 RegSequence.push_back(Reg);
263 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
264 RSD.UsedByIndices.set(LUIdx);
267 void
268 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
269 RegUsesTy::iterator It = RegUsesMap.find(Reg);
270 assert(It != RegUsesMap.end());
271 RegSortData &RSD = It->second;
272 assert(RSD.UsedByIndices.size() > LUIdx);
273 RSD.UsedByIndices.reset(LUIdx);
276 void
277 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
278 assert(LUIdx <= LastLUIdx);
280 // Update RegUses. The data structure is not optimized for this purpose;
281 // we must iterate through it and update each of the bit vectors.
282 for (auto &Pair : RegUsesMap) {
283 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
284 if (LUIdx < UsedByIndices.size())
285 UsedByIndices[LUIdx] =
286 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
287 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
291 bool
292 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
293 RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
294 if (I == RegUsesMap.end())
295 return false;
296 const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
297 int i = UsedByIndices.find_first();
298 if (i == -1) return false;
299 if ((size_t)i != LUIdx) return true;
300 return UsedByIndices.find_next(i) != -1;
303 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
304 RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
305 assert(I != RegUsesMap.end() && "Unknown register!");
306 return I->second.UsedByIndices;
309 void RegUseTracker::clear() {
310 RegUsesMap.clear();
311 RegSequence.clear();
314 namespace {
316 /// This class holds information that describes a formula for computing
317 /// satisfying a use. It may include broken-out immediates and scaled registers.
318 struct Formula {
319 /// Global base address used for complex addressing.
320 GlobalValue *BaseGV = nullptr;
322 /// Base offset for complex addressing.
323 int64_t BaseOffset = 0;
325 /// Whether any complex addressing has a base register.
326 bool HasBaseReg = false;
328 /// The scale of any complex addressing.
329 int64_t Scale = 0;
331 /// The list of "base" registers for this use. When this is non-empty. The
332 /// canonical representation of a formula is
333 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
334 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
335 /// 3. The reg containing recurrent expr related with currect loop in the
336 /// formula should be put in the ScaledReg.
337 /// #1 enforces that the scaled register is always used when at least two
338 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
339 /// #2 enforces that 1 * reg is reg.
340 /// #3 ensures invariant regs with respect to current loop can be combined
341 /// together in LSR codegen.
342 /// This invariant can be temporarily broken while building a formula.
343 /// However, every formula inserted into the LSRInstance must be in canonical
344 /// form.
345 SmallVector<const SCEV *, 4> BaseRegs;
347 /// The 'scaled' register for this use. This should be non-null when Scale is
348 /// not zero.
349 const SCEV *ScaledReg = nullptr;
351 /// An additional constant offset which added near the use. This requires a
352 /// temporary register, but the offset itself can live in an add immediate
353 /// field rather than a register.
354 int64_t UnfoldedOffset = 0;
356 Formula() = default;
358 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
360 bool isCanonical(const Loop &L) const;
362 void canonicalize(const Loop &L);
364 bool unscale();
366 bool hasZeroEnd() const;
368 size_t getNumRegs() const;
369 Type *getType() const;
371 void deleteBaseReg(const SCEV *&S);
373 bool referencesReg(const SCEV *S) const;
374 bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
375 const RegUseTracker &RegUses) const;
377 void print(raw_ostream &OS) const;
378 void dump() const;
381 } // end anonymous namespace
383 /// Recursion helper for initialMatch.
384 static void DoInitialMatch(const SCEV *S, Loop *L,
385 SmallVectorImpl<const SCEV *> &Good,
386 SmallVectorImpl<const SCEV *> &Bad,
387 ScalarEvolution &SE) {
388 // Collect expressions which properly dominate the loop header.
389 if (SE.properlyDominates(S, L->getHeader())) {
390 Good.push_back(S);
391 return;
394 // Look at add operands.
395 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
396 for (const SCEV *S : Add->operands())
397 DoInitialMatch(S, L, Good, Bad, SE);
398 return;
401 // Look at addrec operands.
402 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
403 if (!AR->getStart()->isZero() && AR->isAffine()) {
404 DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
405 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
406 AR->getStepRecurrence(SE),
407 // FIXME: AR->getNoWrapFlags()
408 AR->getLoop(), SCEV::FlagAnyWrap),
409 L, Good, Bad, SE);
410 return;
413 // Handle a multiplication by -1 (negation) if it didn't fold.
414 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
415 if (Mul->getOperand(0)->isAllOnesValue()) {
416 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
417 const SCEV *NewMul = SE.getMulExpr(Ops);
419 SmallVector<const SCEV *, 4> MyGood;
420 SmallVector<const SCEV *, 4> MyBad;
421 DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
422 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
423 SE.getEffectiveSCEVType(NewMul->getType())));
424 for (const SCEV *S : MyGood)
425 Good.push_back(SE.getMulExpr(NegOne, S));
426 for (const SCEV *S : MyBad)
427 Bad.push_back(SE.getMulExpr(NegOne, S));
428 return;
431 // Ok, we can't do anything interesting. Just stuff the whole thing into a
432 // register and hope for the best.
433 Bad.push_back(S);
436 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
437 /// all loop-invariant and loop-computable values in a single base register.
438 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
439 SmallVector<const SCEV *, 4> Good;
440 SmallVector<const SCEV *, 4> Bad;
441 DoInitialMatch(S, L, Good, Bad, SE);
442 if (!Good.empty()) {
443 const SCEV *Sum = SE.getAddExpr(Good);
444 if (!Sum->isZero())
445 BaseRegs.push_back(Sum);
446 HasBaseReg = true;
448 if (!Bad.empty()) {
449 const SCEV *Sum = SE.getAddExpr(Bad);
450 if (!Sum->isZero())
451 BaseRegs.push_back(Sum);
452 HasBaseReg = true;
454 canonicalize(*L);
457 /// Check whether or not this formula satisfies the canonical
458 /// representation.
459 /// \see Formula::BaseRegs.
460 bool Formula::isCanonical(const Loop &L) const {
461 if (!ScaledReg)
462 return BaseRegs.size() <= 1;
464 if (Scale != 1)
465 return true;
467 if (Scale == 1 && BaseRegs.empty())
468 return false;
470 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
471 if (SAR && SAR->getLoop() == &L)
472 return true;
474 // If ScaledReg is not a recurrent expr, or it is but its loop is not current
475 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
476 // loop, we want to swap the reg in BaseRegs with ScaledReg.
477 auto I =
478 find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) {
479 return isa<const SCEVAddRecExpr>(S) &&
480 (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
482 return I == BaseRegs.end();
485 /// Helper method to morph a formula into its canonical representation.
486 /// \see Formula::BaseRegs.
487 /// Every formula having more than one base register, must use the ScaledReg
488 /// field. Otherwise, we would have to do special cases everywhere in LSR
489 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
490 /// On the other hand, 1*reg should be canonicalized into reg.
491 void Formula::canonicalize(const Loop &L) {
492 if (isCanonical(L))
493 return;
494 // So far we did not need this case. This is easy to implement but it is
495 // useless to maintain dead code. Beside it could hurt compile time.
496 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
498 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
499 if (!ScaledReg) {
500 ScaledReg = BaseRegs.back();
501 BaseRegs.pop_back();
502 Scale = 1;
505 // If ScaledReg is an invariant with respect to L, find the reg from
506 // BaseRegs containing the recurrent expr related with Loop L. Swap the
507 // reg with ScaledReg.
508 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
509 if (!SAR || SAR->getLoop() != &L) {
510 auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()),
511 [&](const SCEV *S) {
512 return isa<const SCEVAddRecExpr>(S) &&
513 (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
515 if (I != BaseRegs.end())
516 std::swap(ScaledReg, *I);
520 /// Get rid of the scale in the formula.
521 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
522 /// \return true if it was possible to get rid of the scale, false otherwise.
523 /// \note After this operation the formula may not be in the canonical form.
524 bool Formula::unscale() {
525 if (Scale != 1)
526 return false;
527 Scale = 0;
528 BaseRegs.push_back(ScaledReg);
529 ScaledReg = nullptr;
530 return true;
533 bool Formula::hasZeroEnd() const {
534 if (UnfoldedOffset || BaseOffset)
535 return false;
536 if (BaseRegs.size() != 1 || ScaledReg)
537 return false;
538 return true;
541 /// Return the total number of register operands used by this formula. This does
542 /// not include register uses implied by non-constant addrec strides.
543 size_t Formula::getNumRegs() const {
544 return !!ScaledReg + BaseRegs.size();
547 /// Return the type of this formula, if it has one, or null otherwise. This type
548 /// is meaningless except for the bit size.
549 Type *Formula::getType() const {
550 return !BaseRegs.empty() ? BaseRegs.front()->getType() :
551 ScaledReg ? ScaledReg->getType() :
552 BaseGV ? BaseGV->getType() :
553 nullptr;
556 /// Delete the given base reg from the BaseRegs list.
557 void Formula::deleteBaseReg(const SCEV *&S) {
558 if (&S != &BaseRegs.back())
559 std::swap(S, BaseRegs.back());
560 BaseRegs.pop_back();
563 /// Test if this formula references the given register.
564 bool Formula::referencesReg(const SCEV *S) const {
565 return S == ScaledReg || is_contained(BaseRegs, S);
568 /// Test whether this formula uses registers which are used by uses other than
569 /// the use with the given index.
570 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
571 const RegUseTracker &RegUses) const {
572 if (ScaledReg)
573 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
574 return true;
575 for (const SCEV *BaseReg : BaseRegs)
576 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
577 return true;
578 return false;
581 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
582 void Formula::print(raw_ostream &OS) const {
583 bool First = true;
584 if (BaseGV) {
585 if (!First) OS << " + "; else First = false;
586 BaseGV->printAsOperand(OS, /*PrintType=*/false);
588 if (BaseOffset != 0) {
589 if (!First) OS << " + "; else First = false;
590 OS << BaseOffset;
592 for (const SCEV *BaseReg : BaseRegs) {
593 if (!First) OS << " + "; else First = false;
594 OS << "reg(" << *BaseReg << ')';
596 if (HasBaseReg && BaseRegs.empty()) {
597 if (!First) OS << " + "; else First = false;
598 OS << "**error: HasBaseReg**";
599 } else if (!HasBaseReg && !BaseRegs.empty()) {
600 if (!First) OS << " + "; else First = false;
601 OS << "**error: !HasBaseReg**";
603 if (Scale != 0) {
604 if (!First) OS << " + "; else First = false;
605 OS << Scale << "*reg(";
606 if (ScaledReg)
607 OS << *ScaledReg;
608 else
609 OS << "<unknown>";
610 OS << ')';
612 if (UnfoldedOffset != 0) {
613 if (!First) OS << " + ";
614 OS << "imm(" << UnfoldedOffset << ')';
618 LLVM_DUMP_METHOD void Formula::dump() const {
619 print(errs()); errs() << '\n';
621 #endif
623 /// Return true if the given addrec can be sign-extended without changing its
624 /// value.
625 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
626 Type *WideTy =
627 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
628 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
631 /// Return true if the given add can be sign-extended without changing its
632 /// value.
633 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
634 Type *WideTy =
635 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
636 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
639 /// Return true if the given mul can be sign-extended without changing its
640 /// value.
641 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
642 Type *WideTy =
643 IntegerType::get(SE.getContext(),
644 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
645 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
648 /// Return an expression for LHS /s RHS, if it can be determined and if the
649 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
650 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
651 /// the multiplication may overflow, which is useful when the result will be
652 /// used in a context where the most significant bits are ignored.
653 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
654 ScalarEvolution &SE,
655 bool IgnoreSignificantBits = false) {
656 // Handle the trivial case, which works for any SCEV type.
657 if (LHS == RHS)
658 return SE.getConstant(LHS->getType(), 1);
660 // Handle a few RHS special cases.
661 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
662 if (RC) {
663 const APInt &RA = RC->getAPInt();
664 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
665 // some folding.
666 if (RA.isAllOnesValue())
667 return SE.getMulExpr(LHS, RC);
668 // Handle x /s 1 as x.
669 if (RA == 1)
670 return LHS;
673 // Check for a division of a constant by a constant.
674 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
675 if (!RC)
676 return nullptr;
677 const APInt &LA = C->getAPInt();
678 const APInt &RA = RC->getAPInt();
679 if (LA.srem(RA) != 0)
680 return nullptr;
681 return SE.getConstant(LA.sdiv(RA));
684 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
685 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
686 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
687 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
688 IgnoreSignificantBits);
689 if (!Step) return nullptr;
690 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
691 IgnoreSignificantBits);
692 if (!Start) return nullptr;
693 // FlagNW is independent of the start value, step direction, and is
694 // preserved with smaller magnitude steps.
695 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
696 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
698 return nullptr;
701 // Distribute the sdiv over add operands, if the add doesn't overflow.
702 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
703 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
704 SmallVector<const SCEV *, 8> Ops;
705 for (const SCEV *S : Add->operands()) {
706 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
707 if (!Op) return nullptr;
708 Ops.push_back(Op);
710 return SE.getAddExpr(Ops);
712 return nullptr;
715 // Check for a multiply operand that we can pull RHS out of.
716 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
717 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
718 SmallVector<const SCEV *, 4> Ops;
719 bool Found = false;
720 for (const SCEV *S : Mul->operands()) {
721 if (!Found)
722 if (const SCEV *Q = getExactSDiv(S, RHS, SE,
723 IgnoreSignificantBits)) {
724 S = Q;
725 Found = true;
727 Ops.push_back(S);
729 return Found ? SE.getMulExpr(Ops) : nullptr;
731 return nullptr;
734 // Otherwise we don't know.
735 return nullptr;
738 /// If S involves the addition of a constant integer value, return that integer
739 /// value, and mutate S to point to a new SCEV with that value excluded.
740 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
741 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
742 if (C->getAPInt().getMinSignedBits() <= 64) {
743 S = SE.getConstant(C->getType(), 0);
744 return C->getValue()->getSExtValue();
746 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
747 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
748 int64_t Result = ExtractImmediate(NewOps.front(), SE);
749 if (Result != 0)
750 S = SE.getAddExpr(NewOps);
751 return Result;
752 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
753 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
754 int64_t Result = ExtractImmediate(NewOps.front(), SE);
755 if (Result != 0)
756 S = SE.getAddRecExpr(NewOps, AR->getLoop(),
757 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
758 SCEV::FlagAnyWrap);
759 return Result;
761 return 0;
764 /// If S involves the addition of a GlobalValue address, return that symbol, and
765 /// mutate S to point to a new SCEV with that value excluded.
766 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
767 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
768 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
769 S = SE.getConstant(GV->getType(), 0);
770 return GV;
772 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
773 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
774 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
775 if (Result)
776 S = SE.getAddExpr(NewOps);
777 return Result;
778 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
779 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
780 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
781 if (Result)
782 S = SE.getAddRecExpr(NewOps, AR->getLoop(),
783 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
784 SCEV::FlagAnyWrap);
785 return Result;
787 return nullptr;
790 /// Returns true if the specified instruction is using the specified value as an
791 /// address.
792 static bool isAddressUse(const TargetTransformInfo &TTI,
793 Instruction *Inst, Value *OperandVal) {
794 bool isAddress = isa<LoadInst>(Inst);
795 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
796 if (SI->getPointerOperand() == OperandVal)
797 isAddress = true;
798 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
799 // Addressing modes can also be folded into prefetches and a variety
800 // of intrinsics.
801 switch (II->getIntrinsicID()) {
802 case Intrinsic::memset:
803 case Intrinsic::prefetch:
804 if (II->getArgOperand(0) == OperandVal)
805 isAddress = true;
806 break;
807 case Intrinsic::memmove:
808 case Intrinsic::memcpy:
809 if (II->getArgOperand(0) == OperandVal ||
810 II->getArgOperand(1) == OperandVal)
811 isAddress = true;
812 break;
813 default: {
814 MemIntrinsicInfo IntrInfo;
815 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
816 if (IntrInfo.PtrVal == OperandVal)
817 isAddress = true;
821 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
822 if (RMW->getPointerOperand() == OperandVal)
823 isAddress = true;
824 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
825 if (CmpX->getPointerOperand() == OperandVal)
826 isAddress = true;
828 return isAddress;
831 /// Return the type of the memory being accessed.
832 static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
833 Instruction *Inst, Value *OperandVal) {
834 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
835 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
836 AccessTy.MemTy = SI->getOperand(0)->getType();
837 AccessTy.AddrSpace = SI->getPointerAddressSpace();
838 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
839 AccessTy.AddrSpace = LI->getPointerAddressSpace();
840 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
841 AccessTy.AddrSpace = RMW->getPointerAddressSpace();
842 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
843 AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
844 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
845 switch (II->getIntrinsicID()) {
846 case Intrinsic::prefetch:
847 case Intrinsic::memset:
848 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
849 AccessTy.MemTy = OperandVal->getType();
850 break;
851 case Intrinsic::memmove:
852 case Intrinsic::memcpy:
853 AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
854 AccessTy.MemTy = OperandVal->getType();
855 break;
856 default: {
857 MemIntrinsicInfo IntrInfo;
858 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
859 AccessTy.AddrSpace
860 = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
863 break;
868 // All pointers have the same requirements, so canonicalize them to an
869 // arbitrary pointer type to minimize variation.
870 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
871 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
872 PTy->getAddressSpace());
874 return AccessTy;
877 /// Return true if this AddRec is already a phi in its loop.
878 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
879 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
880 if (SE.isSCEVable(PN.getType()) &&
881 (SE.getEffectiveSCEVType(PN.getType()) ==
882 SE.getEffectiveSCEVType(AR->getType())) &&
883 SE.getSCEV(&PN) == AR)
884 return true;
886 return false;
889 /// Check if expanding this expression is likely to incur significant cost. This
890 /// is tricky because SCEV doesn't track which expressions are actually computed
891 /// by the current IR.
893 /// We currently allow expansion of IV increments that involve adds,
894 /// multiplication by constants, and AddRecs from existing phis.
896 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
897 /// obvious multiple of the UDivExpr.
898 static bool isHighCostExpansion(const SCEV *S,
899 SmallPtrSetImpl<const SCEV*> &Processed,
900 ScalarEvolution &SE) {
901 // Zero/One operand expressions
902 switch (S->getSCEVType()) {
903 case scUnknown:
904 case scConstant:
905 return false;
906 case scTruncate:
907 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
908 Processed, SE);
909 case scZeroExtend:
910 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
911 Processed, SE);
912 case scSignExtend:
913 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
914 Processed, SE);
917 if (!Processed.insert(S).second)
918 return false;
920 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
921 for (const SCEV *S : Add->operands()) {
922 if (isHighCostExpansion(S, Processed, SE))
923 return true;
925 return false;
928 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
929 if (Mul->getNumOperands() == 2) {
930 // Multiplication by a constant is ok
931 if (isa<SCEVConstant>(Mul->getOperand(0)))
932 return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
934 // If we have the value of one operand, check if an existing
935 // multiplication already generates this expression.
936 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
937 Value *UVal = U->getValue();
938 for (User *UR : UVal->users()) {
939 // If U is a constant, it may be used by a ConstantExpr.
940 Instruction *UI = dyn_cast<Instruction>(UR);
941 if (UI && UI->getOpcode() == Instruction::Mul &&
942 SE.isSCEVable(UI->getType())) {
943 return SE.getSCEV(UI) == Mul;
950 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
951 if (isExistingPhi(AR, SE))
952 return false;
955 // Fow now, consider any other type of expression (div/mul/min/max) high cost.
956 return true;
959 /// If any of the instructions in the specified set are trivially dead, delete
960 /// them and see if this makes any of their operands subsequently dead.
961 static bool
962 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
963 bool Changed = false;
965 while (!DeadInsts.empty()) {
966 Value *V = DeadInsts.pop_back_val();
967 Instruction *I = dyn_cast_or_null<Instruction>(V);
969 if (!I || !isInstructionTriviallyDead(I))
970 continue;
972 for (Use &O : I->operands())
973 if (Instruction *U = dyn_cast<Instruction>(O)) {
974 O = nullptr;
975 if (U->use_empty())
976 DeadInsts.emplace_back(U);
979 I->eraseFromParent();
980 Changed = true;
983 return Changed;
986 namespace {
988 class LSRUse;
990 } // end anonymous namespace
992 /// Check if the addressing mode defined by \p F is completely
993 /// folded in \p LU at isel time.
994 /// This includes address-mode folding and special icmp tricks.
995 /// This function returns true if \p LU can accommodate what \p F
996 /// defines and up to 1 base + 1 scaled + offset.
997 /// In other words, if \p F has several base registers, this function may
998 /// still return true. Therefore, users still need to account for
999 /// additional base registers and/or unfolded offsets to derive an
1000 /// accurate cost model.
1001 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1002 const LSRUse &LU, const Formula &F);
1004 // Get the cost of the scaling factor used in F for LU.
1005 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1006 const LSRUse &LU, const Formula &F,
1007 const Loop &L);
1009 namespace {
1011 /// This class is used to measure and compare candidate formulae.
1012 class Cost {
1013 TargetTransformInfo::LSRCost C;
1015 public:
1016 Cost() {
1017 C.Insns = 0;
1018 C.NumRegs = 0;
1019 C.AddRecCost = 0;
1020 C.NumIVMuls = 0;
1021 C.NumBaseAdds = 0;
1022 C.ImmCost = 0;
1023 C.SetupCost = 0;
1024 C.ScaleCost = 0;
1027 bool isLess(Cost &Other, const TargetTransformInfo &TTI);
1029 void Lose();
1031 #ifndef NDEBUG
1032 // Once any of the metrics loses, they must all remain losers.
1033 bool isValid() {
1034 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1035 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1036 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1037 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1039 #endif
1041 bool isLoser() {
1042 assert(isValid() && "invalid cost");
1043 return C.NumRegs == ~0u;
1046 void RateFormula(const TargetTransformInfo &TTI,
1047 const Formula &F,
1048 SmallPtrSetImpl<const SCEV *> &Regs,
1049 const DenseSet<const SCEV *> &VisitedRegs,
1050 const Loop *L,
1051 ScalarEvolution &SE, DominatorTree &DT,
1052 const LSRUse &LU,
1053 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1055 void print(raw_ostream &OS) const;
1056 void dump() const;
1058 private:
1059 void RateRegister(const Formula &F, const SCEV *Reg,
1060 SmallPtrSetImpl<const SCEV *> &Regs,
1061 const Loop *L,
1062 ScalarEvolution &SE, DominatorTree &DT,
1063 const TargetTransformInfo &TTI);
1064 void RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1065 SmallPtrSetImpl<const SCEV *> &Regs,
1066 const Loop *L,
1067 ScalarEvolution &SE, DominatorTree &DT,
1068 SmallPtrSetImpl<const SCEV *> *LoserRegs,
1069 const TargetTransformInfo &TTI);
1072 /// An operand value in an instruction which is to be replaced with some
1073 /// equivalent, possibly strength-reduced, replacement.
1074 struct LSRFixup {
1075 /// The instruction which will be updated.
1076 Instruction *UserInst = nullptr;
1078 /// The operand of the instruction which will be replaced. The operand may be
1079 /// used more than once; every instance will be replaced.
1080 Value *OperandValToReplace = nullptr;
1082 /// If this user is to use the post-incremented value of an induction
1083 /// variable, this set is non-empty and holds the loops associated with the
1084 /// induction variable.
1085 PostIncLoopSet PostIncLoops;
1087 /// A constant offset to be added to the LSRUse expression. This allows
1088 /// multiple fixups to share the same LSRUse with different offsets, for
1089 /// example in an unrolled loop.
1090 int64_t Offset = 0;
1092 LSRFixup() = default;
1094 bool isUseFullyOutsideLoop(const Loop *L) const;
1096 void print(raw_ostream &OS) const;
1097 void dump() const;
1100 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1101 /// SmallVectors of const SCEV*.
1102 struct UniquifierDenseMapInfo {
1103 static SmallVector<const SCEV *, 4> getEmptyKey() {
1104 SmallVector<const SCEV *, 4> V;
1105 V.push_back(reinterpret_cast<const SCEV *>(-1));
1106 return V;
1109 static SmallVector<const SCEV *, 4> getTombstoneKey() {
1110 SmallVector<const SCEV *, 4> V;
1111 V.push_back(reinterpret_cast<const SCEV *>(-2));
1112 return V;
1115 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1116 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1119 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1120 const SmallVector<const SCEV *, 4> &RHS) {
1121 return LHS == RHS;
1125 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1126 /// as uses invented by LSR itself. It includes information about what kinds of
1127 /// things can be folded into the user, information about the user itself, and
1128 /// information about how the use may be satisfied. TODO: Represent multiple
1129 /// users of the same expression in common?
1130 class LSRUse {
1131 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1133 public:
1134 /// An enum for a kind of use, indicating what types of scaled and immediate
1135 /// operands it might support.
1136 enum KindType {
1137 Basic, ///< A normal use, with no folding.
1138 Special, ///< A special case of basic, allowing -1 scales.
1139 Address, ///< An address use; folding according to TargetLowering
1140 ICmpZero ///< An equality icmp with both operands folded into one.
1141 // TODO: Add a generic icmp too?
1144 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1146 KindType Kind;
1147 MemAccessTy AccessTy;
1149 /// The list of operands which are to be replaced.
1150 SmallVector<LSRFixup, 8> Fixups;
1152 /// Keep track of the min and max offsets of the fixups.
1153 int64_t MinOffset = std::numeric_limits<int64_t>::max();
1154 int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1156 /// This records whether all of the fixups using this LSRUse are outside of
1157 /// the loop, in which case some special-case heuristics may be used.
1158 bool AllFixupsOutsideLoop = true;
1160 /// RigidFormula is set to true to guarantee that this use will be associated
1161 /// with a single formula--the one that initially matched. Some SCEV
1162 /// expressions cannot be expanded. This allows LSR to consider the registers
1163 /// used by those expressions without the need to expand them later after
1164 /// changing the formula.
1165 bool RigidFormula = false;
1167 /// This records the widest use type for any fixup using this
1168 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1169 /// fixup widths to be equivalent, because the narrower one may be relying on
1170 /// the implicit truncation to truncate away bogus bits.
1171 Type *WidestFixupType = nullptr;
1173 /// A list of ways to build a value that can satisfy this user. After the
1174 /// list is populated, one of these is selected heuristically and used to
1175 /// formulate a replacement for OperandValToReplace in UserInst.
1176 SmallVector<Formula, 12> Formulae;
1178 /// The set of register candidates used by all formulae in this LSRUse.
1179 SmallPtrSet<const SCEV *, 4> Regs;
1181 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1183 LSRFixup &getNewFixup() {
1184 Fixups.push_back(LSRFixup());
1185 return Fixups.back();
1188 void pushFixup(LSRFixup &f) {
1189 Fixups.push_back(f);
1190 if (f.Offset > MaxOffset)
1191 MaxOffset = f.Offset;
1192 if (f.Offset < MinOffset)
1193 MinOffset = f.Offset;
1196 bool HasFormulaWithSameRegs(const Formula &F) const;
1197 float getNotSelectedProbability(const SCEV *Reg) const;
1198 bool InsertFormula(const Formula &F, const Loop &L);
1199 void DeleteFormula(Formula &F);
1200 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1202 void print(raw_ostream &OS) const;
1203 void dump() const;
1206 } // end anonymous namespace
1208 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1209 LSRUse::KindType Kind, MemAccessTy AccessTy,
1210 GlobalValue *BaseGV, int64_t BaseOffset,
1211 bool HasBaseReg, int64_t Scale,
1212 Instruction *Fixup = nullptr);
1214 /// Tally up interesting quantities from the given register.
1215 void Cost::RateRegister(const Formula &F, const SCEV *Reg,
1216 SmallPtrSetImpl<const SCEV *> &Regs,
1217 const Loop *L,
1218 ScalarEvolution &SE, DominatorTree &DT,
1219 const TargetTransformInfo &TTI) {
1220 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1221 // If this is an addrec for another loop, it should be an invariant
1222 // with respect to L since L is the innermost loop (at least
1223 // for now LSR only handles innermost loops).
1224 if (AR->getLoop() != L) {
1225 // If the AddRec exists, consider it's register free and leave it alone.
1226 if (isExistingPhi(AR, SE))
1227 return;
1229 // It is bad to allow LSR for current loop to add induction variables
1230 // for its sibling loops.
1231 if (!AR->getLoop()->contains(L)) {
1232 Lose();
1233 return;
1236 // Otherwise, it will be an invariant with respect to Loop L.
1237 ++C.NumRegs;
1238 return;
1241 unsigned LoopCost = 1;
1242 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
1243 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
1245 // If the step size matches the base offset, we could use pre-indexed
1246 // addressing.
1247 if (TTI.shouldFavorBackedgeIndex(L)) {
1248 if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
1249 if (Step->getAPInt() == F.BaseOffset)
1250 LoopCost = 0;
1253 if (TTI.shouldFavorPostInc()) {
1254 const SCEV *LoopStep = AR->getStepRecurrence(SE);
1255 if (isa<SCEVConstant>(LoopStep)) {
1256 const SCEV *LoopStart = AR->getStart();
1257 if (!isa<SCEVConstant>(LoopStart) &&
1258 SE.isLoopInvariant(LoopStart, L))
1259 LoopCost = 0;
1263 C.AddRecCost += LoopCost;
1265 // Add the step value register, if it needs one.
1266 // TODO: The non-affine case isn't precisely modeled here.
1267 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1268 if (!Regs.count(AR->getOperand(1))) {
1269 RateRegister(F, AR->getOperand(1), Regs, L, SE, DT, TTI);
1270 if (isLoser())
1271 return;
1275 ++C.NumRegs;
1277 // Rough heuristic; favor registers which don't require extra setup
1278 // instructions in the preheader.
1279 if (!isa<SCEVUnknown>(Reg) &&
1280 !isa<SCEVConstant>(Reg) &&
1281 !(isa<SCEVAddRecExpr>(Reg) &&
1282 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
1283 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
1284 ++C.SetupCost;
1286 C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1287 SE.hasComputableLoopEvolution(Reg, L);
1290 /// Record this register in the set. If we haven't seen it before, rate
1291 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1292 /// one of those regs an instant loser.
1293 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1294 SmallPtrSetImpl<const SCEV *> &Regs,
1295 const Loop *L,
1296 ScalarEvolution &SE, DominatorTree &DT,
1297 SmallPtrSetImpl<const SCEV *> *LoserRegs,
1298 const TargetTransformInfo &TTI) {
1299 if (LoserRegs && LoserRegs->count(Reg)) {
1300 Lose();
1301 return;
1303 if (Regs.insert(Reg).second) {
1304 RateRegister(F, Reg, Regs, L, SE, DT, TTI);
1305 if (LoserRegs && isLoser())
1306 LoserRegs->insert(Reg);
1310 void Cost::RateFormula(const TargetTransformInfo &TTI,
1311 const Formula &F,
1312 SmallPtrSetImpl<const SCEV *> &Regs,
1313 const DenseSet<const SCEV *> &VisitedRegs,
1314 const Loop *L,
1315 ScalarEvolution &SE, DominatorTree &DT,
1316 const LSRUse &LU,
1317 SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1318 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1319 // Tally up the registers.
1320 unsigned PrevAddRecCost = C.AddRecCost;
1321 unsigned PrevNumRegs = C.NumRegs;
1322 unsigned PrevNumBaseAdds = C.NumBaseAdds;
1323 if (const SCEV *ScaledReg = F.ScaledReg) {
1324 if (VisitedRegs.count(ScaledReg)) {
1325 Lose();
1326 return;
1328 RatePrimaryRegister(F, ScaledReg, Regs, L, SE, DT, LoserRegs, TTI);
1329 if (isLoser())
1330 return;
1332 for (const SCEV *BaseReg : F.BaseRegs) {
1333 if (VisitedRegs.count(BaseReg)) {
1334 Lose();
1335 return;
1337 RatePrimaryRegister(F, BaseReg, Regs, L, SE, DT, LoserRegs, TTI);
1338 if (isLoser())
1339 return;
1342 // Determine how many (unfolded) adds we'll need inside the loop.
1343 size_t NumBaseParts = F.getNumRegs();
1344 if (NumBaseParts > 1)
1345 // Do not count the base and a possible second register if the target
1346 // allows to fold 2 registers.
1347 C.NumBaseAdds +=
1348 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F)));
1349 C.NumBaseAdds += (F.UnfoldedOffset != 0);
1351 // Accumulate non-free scaling amounts.
1352 C.ScaleCost += getScalingFactorCost(TTI, LU, F, *L);
1354 // Tally up the non-zero immediates.
1355 for (const LSRFixup &Fixup : LU.Fixups) {
1356 int64_t O = Fixup.Offset;
1357 int64_t Offset = (uint64_t)O + F.BaseOffset;
1358 if (F.BaseGV)
1359 C.ImmCost += 64; // Handle symbolic values conservatively.
1360 // TODO: This should probably be the pointer size.
1361 else if (Offset != 0)
1362 C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
1364 // Check with target if this offset with this instruction is
1365 // specifically not supported.
1366 if (LU.Kind == LSRUse::Address && Offset != 0 &&
1367 !isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1368 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1369 C.NumBaseAdds++;
1372 // If we don't count instruction cost exit here.
1373 if (!InsnsCost) {
1374 assert(isValid() && "invalid cost");
1375 return;
1378 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1379 // additional instruction (at least fill).
1380 unsigned TTIRegNum = TTI.getNumberOfRegisters(false) - 1;
1381 if (C.NumRegs > TTIRegNum) {
1382 // Cost already exceeded TTIRegNum, then only newly added register can add
1383 // new instructions.
1384 if (PrevNumRegs > TTIRegNum)
1385 C.Insns += (C.NumRegs - PrevNumRegs);
1386 else
1387 C.Insns += (C.NumRegs - TTIRegNum);
1390 // If ICmpZero formula ends with not 0, it could not be replaced by
1391 // just add or sub. We'll need to compare final result of AddRec.
1392 // That means we'll need an additional instruction. But if the target can
1393 // macro-fuse a compare with a branch, don't count this extra instruction.
1394 // For -10 + {0, +, 1}:
1395 // i = i + 1;
1396 // cmp i, 10
1398 // For {-10, +, 1}:
1399 // i = i + 1;
1400 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && !TTI.canMacroFuseCmp())
1401 C.Insns++;
1402 // Each new AddRec adds 1 instruction to calculation.
1403 C.Insns += (C.AddRecCost - PrevAddRecCost);
1405 // BaseAdds adds instructions for unfolded registers.
1406 if (LU.Kind != LSRUse::ICmpZero)
1407 C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1408 assert(isValid() && "invalid cost");
1411 /// Set this cost to a losing value.
1412 void Cost::Lose() {
1413 C.Insns = std::numeric_limits<unsigned>::max();
1414 C.NumRegs = std::numeric_limits<unsigned>::max();
1415 C.AddRecCost = std::numeric_limits<unsigned>::max();
1416 C.NumIVMuls = std::numeric_limits<unsigned>::max();
1417 C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1418 C.ImmCost = std::numeric_limits<unsigned>::max();
1419 C.SetupCost = std::numeric_limits<unsigned>::max();
1420 C.ScaleCost = std::numeric_limits<unsigned>::max();
1423 /// Choose the lower cost.
1424 bool Cost::isLess(Cost &Other, const TargetTransformInfo &TTI) {
1425 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1426 C.Insns != Other.C.Insns)
1427 return C.Insns < Other.C.Insns;
1428 return TTI.isLSRCostLess(C, Other.C);
1431 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1432 void Cost::print(raw_ostream &OS) const {
1433 if (InsnsCost)
1434 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1435 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1436 if (C.AddRecCost != 0)
1437 OS << ", with addrec cost " << C.AddRecCost;
1438 if (C.NumIVMuls != 0)
1439 OS << ", plus " << C.NumIVMuls << " IV mul"
1440 << (C.NumIVMuls == 1 ? "" : "s");
1441 if (C.NumBaseAdds != 0)
1442 OS << ", plus " << C.NumBaseAdds << " base add"
1443 << (C.NumBaseAdds == 1 ? "" : "s");
1444 if (C.ScaleCost != 0)
1445 OS << ", plus " << C.ScaleCost << " scale cost";
1446 if (C.ImmCost != 0)
1447 OS << ", plus " << C.ImmCost << " imm cost";
1448 if (C.SetupCost != 0)
1449 OS << ", plus " << C.SetupCost << " setup cost";
1452 LLVM_DUMP_METHOD void Cost::dump() const {
1453 print(errs()); errs() << '\n';
1455 #endif
1457 /// Test whether this fixup always uses its value outside of the given loop.
1458 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1459 // PHI nodes use their value in their incoming blocks.
1460 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1461 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1462 if (PN->getIncomingValue(i) == OperandValToReplace &&
1463 L->contains(PN->getIncomingBlock(i)))
1464 return false;
1465 return true;
1468 return !L->contains(UserInst);
1471 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1472 void LSRFixup::print(raw_ostream &OS) const {
1473 OS << "UserInst=";
1474 // Store is common and interesting enough to be worth special-casing.
1475 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1476 OS << "store ";
1477 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1478 } else if (UserInst->getType()->isVoidTy())
1479 OS << UserInst->getOpcodeName();
1480 else
1481 UserInst->printAsOperand(OS, /*PrintType=*/false);
1483 OS << ", OperandValToReplace=";
1484 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1486 for (const Loop *PIL : PostIncLoops) {
1487 OS << ", PostIncLoop=";
1488 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1491 if (Offset != 0)
1492 OS << ", Offset=" << Offset;
1495 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1496 print(errs()); errs() << '\n';
1498 #endif
1500 /// Test whether this use as a formula which has the same registers as the given
1501 /// formula.
1502 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1503 SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1504 if (F.ScaledReg) Key.push_back(F.ScaledReg);
1505 // Unstable sort by host order ok, because this is only used for uniquifying.
1506 llvm::sort(Key);
1507 return Uniquifier.count(Key);
1510 /// The function returns a probability of selecting formula without Reg.
1511 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1512 unsigned FNum = 0;
1513 for (const Formula &F : Formulae)
1514 if (F.referencesReg(Reg))
1515 FNum++;
1516 return ((float)(Formulae.size() - FNum)) / Formulae.size();
1519 /// If the given formula has not yet been inserted, add it to the list, and
1520 /// return true. Return false otherwise. The formula must be in canonical form.
1521 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1522 assert(F.isCanonical(L) && "Invalid canonical representation");
1524 if (!Formulae.empty() && RigidFormula)
1525 return false;
1527 SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1528 if (F.ScaledReg) Key.push_back(F.ScaledReg);
1529 // Unstable sort by host order ok, because this is only used for uniquifying.
1530 llvm::sort(Key);
1532 if (!Uniquifier.insert(Key).second)
1533 return false;
1535 // Using a register to hold the value of 0 is not profitable.
1536 assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1537 "Zero allocated in a scaled register!");
1538 #ifndef NDEBUG
1539 for (const SCEV *BaseReg : F.BaseRegs)
1540 assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1541 #endif
1543 // Add the formula to the list.
1544 Formulae.push_back(F);
1546 // Record registers now being used by this use.
1547 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1548 if (F.ScaledReg)
1549 Regs.insert(F.ScaledReg);
1551 return true;
1554 /// Remove the given formula from this use's list.
1555 void LSRUse::DeleteFormula(Formula &F) {
1556 if (&F != &Formulae.back())
1557 std::swap(F, Formulae.back());
1558 Formulae.pop_back();
1561 /// Recompute the Regs field, and update RegUses.
1562 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1563 // Now that we've filtered out some formulae, recompute the Regs set.
1564 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1565 Regs.clear();
1566 for (const Formula &F : Formulae) {
1567 if (F.ScaledReg) Regs.insert(F.ScaledReg);
1568 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1571 // Update the RegTracker.
1572 for (const SCEV *S : OldRegs)
1573 if (!Regs.count(S))
1574 RegUses.dropRegister(S, LUIdx);
1577 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1578 void LSRUse::print(raw_ostream &OS) const {
1579 OS << "LSR Use: Kind=";
1580 switch (Kind) {
1581 case Basic: OS << "Basic"; break;
1582 case Special: OS << "Special"; break;
1583 case ICmpZero: OS << "ICmpZero"; break;
1584 case Address:
1585 OS << "Address of ";
1586 if (AccessTy.MemTy->isPointerTy())
1587 OS << "pointer"; // the full pointer type could be really verbose
1588 else {
1589 OS << *AccessTy.MemTy;
1592 OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1595 OS << ", Offsets={";
1596 bool NeedComma = false;
1597 for (const LSRFixup &Fixup : Fixups) {
1598 if (NeedComma) OS << ',';
1599 OS << Fixup.Offset;
1600 NeedComma = true;
1602 OS << '}';
1604 if (AllFixupsOutsideLoop)
1605 OS << ", all-fixups-outside-loop";
1607 if (WidestFixupType)
1608 OS << ", widest fixup type: " << *WidestFixupType;
1611 LLVM_DUMP_METHOD void LSRUse::dump() const {
1612 print(errs()); errs() << '\n';
1614 #endif
1616 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1617 LSRUse::KindType Kind, MemAccessTy AccessTy,
1618 GlobalValue *BaseGV, int64_t BaseOffset,
1619 bool HasBaseReg, int64_t Scale,
1620 Instruction *Fixup/*= nullptr*/) {
1621 switch (Kind) {
1622 case LSRUse::Address:
1623 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1624 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1626 case LSRUse::ICmpZero:
1627 // There's not even a target hook for querying whether it would be legal to
1628 // fold a GV into an ICmp.
1629 if (BaseGV)
1630 return false;
1632 // ICmp only has two operands; don't allow more than two non-trivial parts.
1633 if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1634 return false;
1636 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1637 // putting the scaled register in the other operand of the icmp.
1638 if (Scale != 0 && Scale != -1)
1639 return false;
1641 // If we have low-level target information, ask the target if it can fold an
1642 // integer immediate on an icmp.
1643 if (BaseOffset != 0) {
1644 // We have one of:
1645 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1646 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1647 // Offs is the ICmp immediate.
1648 if (Scale == 0)
1649 // The cast does the right thing with
1650 // std::numeric_limits<int64_t>::min().
1651 BaseOffset = -(uint64_t)BaseOffset;
1652 return TTI.isLegalICmpImmediate(BaseOffset);
1655 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1656 return true;
1658 case LSRUse::Basic:
1659 // Only handle single-register values.
1660 return !BaseGV && Scale == 0 && BaseOffset == 0;
1662 case LSRUse::Special:
1663 // Special case Basic to handle -1 scales.
1664 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1667 llvm_unreachable("Invalid LSRUse Kind!");
1670 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1671 int64_t MinOffset, int64_t MaxOffset,
1672 LSRUse::KindType Kind, MemAccessTy AccessTy,
1673 GlobalValue *BaseGV, int64_t BaseOffset,
1674 bool HasBaseReg, int64_t Scale) {
1675 // Check for overflow.
1676 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1677 (MinOffset > 0))
1678 return false;
1679 MinOffset = (uint64_t)BaseOffset + MinOffset;
1680 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1681 (MaxOffset > 0))
1682 return false;
1683 MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1685 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1686 HasBaseReg, Scale) &&
1687 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1688 HasBaseReg, Scale);
1691 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1692 int64_t MinOffset, int64_t MaxOffset,
1693 LSRUse::KindType Kind, MemAccessTy AccessTy,
1694 const Formula &F, const Loop &L) {
1695 // For the purpose of isAMCompletelyFolded either having a canonical formula
1696 // or a scale not equal to zero is correct.
1697 // Problems may arise from non canonical formulae having a scale == 0.
1698 // Strictly speaking it would best to just rely on canonical formulae.
1699 // However, when we generate the scaled formulae, we first check that the
1700 // scaling factor is profitable before computing the actual ScaledReg for
1701 // compile time sake.
1702 assert((F.isCanonical(L) || F.Scale != 0));
1703 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1704 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1707 /// Test whether we know how to expand the current formula.
1708 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1709 int64_t MaxOffset, LSRUse::KindType Kind,
1710 MemAccessTy AccessTy, GlobalValue *BaseGV,
1711 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1712 // We know how to expand completely foldable formulae.
1713 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1714 BaseOffset, HasBaseReg, Scale) ||
1715 // Or formulae that use a base register produced by a sum of base
1716 // registers.
1717 (Scale == 1 &&
1718 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1719 BaseGV, BaseOffset, true, 0));
1722 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1723 int64_t MaxOffset, LSRUse::KindType Kind,
1724 MemAccessTy AccessTy, const Formula &F) {
1725 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1726 F.BaseOffset, F.HasBaseReg, F.Scale);
1729 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1730 const LSRUse &LU, const Formula &F) {
1731 // Target may want to look at the user instructions.
1732 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1733 for (const LSRFixup &Fixup : LU.Fixups)
1734 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1735 (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1736 F.Scale, Fixup.UserInst))
1737 return false;
1738 return true;
1741 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1742 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1743 F.Scale);
1746 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1747 const LSRUse &LU, const Formula &F,
1748 const Loop &L) {
1749 if (!F.Scale)
1750 return 0;
1752 // If the use is not completely folded in that instruction, we will have to
1753 // pay an extra cost only for scale != 1.
1754 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1755 LU.AccessTy, F, L))
1756 return F.Scale != 1;
1758 switch (LU.Kind) {
1759 case LSRUse::Address: {
1760 // Check the scaling factor cost with both the min and max offsets.
1761 int ScaleCostMinOffset = TTI.getScalingFactorCost(
1762 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1763 F.Scale, LU.AccessTy.AddrSpace);
1764 int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1765 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1766 F.Scale, LU.AccessTy.AddrSpace);
1768 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1769 "Legal addressing mode has an illegal cost!");
1770 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1772 case LSRUse::ICmpZero:
1773 case LSRUse::Basic:
1774 case LSRUse::Special:
1775 // The use is completely folded, i.e., everything is folded into the
1776 // instruction.
1777 return 0;
1780 llvm_unreachable("Invalid LSRUse Kind!");
1783 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1784 LSRUse::KindType Kind, MemAccessTy AccessTy,
1785 GlobalValue *BaseGV, int64_t BaseOffset,
1786 bool HasBaseReg) {
1787 // Fast-path: zero is always foldable.
1788 if (BaseOffset == 0 && !BaseGV) return true;
1790 // Conservatively, create an address with an immediate and a
1791 // base and a scale.
1792 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1794 // Canonicalize a scale of 1 to a base register if the formula doesn't
1795 // already have a base register.
1796 if (!HasBaseReg && Scale == 1) {
1797 Scale = 0;
1798 HasBaseReg = true;
1801 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1802 HasBaseReg, Scale);
1805 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1806 ScalarEvolution &SE, int64_t MinOffset,
1807 int64_t MaxOffset, LSRUse::KindType Kind,
1808 MemAccessTy AccessTy, const SCEV *S,
1809 bool HasBaseReg) {
1810 // Fast-path: zero is always foldable.
1811 if (S->isZero()) return true;
1813 // Conservatively, create an address with an immediate and a
1814 // base and a scale.
1815 int64_t BaseOffset = ExtractImmediate(S, SE);
1816 GlobalValue *BaseGV = ExtractSymbol(S, SE);
1818 // If there's anything else involved, it's not foldable.
1819 if (!S->isZero()) return false;
1821 // Fast-path: zero is always foldable.
1822 if (BaseOffset == 0 && !BaseGV) return true;
1824 // Conservatively, create an address with an immediate and a
1825 // base and a scale.
1826 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1828 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1829 BaseOffset, HasBaseReg, Scale);
1832 namespace {
1834 /// An individual increment in a Chain of IV increments. Relate an IV user to
1835 /// an expression that computes the IV it uses from the IV used by the previous
1836 /// link in the Chain.
1838 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1839 /// original IVOperand. The head of the chain's IVOperand is only valid during
1840 /// chain collection, before LSR replaces IV users. During chain generation,
1841 /// IncExpr can be used to find the new IVOperand that computes the same
1842 /// expression.
1843 struct IVInc {
1844 Instruction *UserInst;
1845 Value* IVOperand;
1846 const SCEV *IncExpr;
1848 IVInc(Instruction *U, Value *O, const SCEV *E)
1849 : UserInst(U), IVOperand(O), IncExpr(E) {}
1852 // The list of IV increments in program order. We typically add the head of a
1853 // chain without finding subsequent links.
1854 struct IVChain {
1855 SmallVector<IVInc, 1> Incs;
1856 const SCEV *ExprBase = nullptr;
1858 IVChain() = default;
1859 IVChain(const IVInc &Head, const SCEV *Base)
1860 : Incs(1, Head), ExprBase(Base) {}
1862 using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1864 // Return the first increment in the chain.
1865 const_iterator begin() const {
1866 assert(!Incs.empty());
1867 return std::next(Incs.begin());
1869 const_iterator end() const {
1870 return Incs.end();
1873 // Returns true if this chain contains any increments.
1874 bool hasIncs() const { return Incs.size() >= 2; }
1876 // Add an IVInc to the end of this chain.
1877 void add(const IVInc &X) { Incs.push_back(X); }
1879 // Returns the last UserInst in the chain.
1880 Instruction *tailUserInst() const { return Incs.back().UserInst; }
1882 // Returns true if IncExpr can be profitably added to this chain.
1883 bool isProfitableIncrement(const SCEV *OperExpr,
1884 const SCEV *IncExpr,
1885 ScalarEvolution&);
1888 /// Helper for CollectChains to track multiple IV increment uses. Distinguish
1889 /// between FarUsers that definitely cross IV increments and NearUsers that may
1890 /// be used between IV increments.
1891 struct ChainUsers {
1892 SmallPtrSet<Instruction*, 4> FarUsers;
1893 SmallPtrSet<Instruction*, 4> NearUsers;
1896 /// This class holds state for the main loop strength reduction logic.
1897 class LSRInstance {
1898 IVUsers &IU;
1899 ScalarEvolution &SE;
1900 DominatorTree &DT;
1901 LoopInfo &LI;
1902 const TargetTransformInfo &TTI;
1903 Loop *const L;
1904 bool FavorBackedgeIndex = false;
1905 bool Changed = false;
1907 /// This is the insert position that the current loop's induction variable
1908 /// increment should be placed. In simple loops, this is the latch block's
1909 /// terminator. But in more complicated cases, this is a position which will
1910 /// dominate all the in-loop post-increment users.
1911 Instruction *IVIncInsertPos = nullptr;
1913 /// Interesting factors between use strides.
1915 /// We explicitly use a SetVector which contains a SmallSet, instead of the
1916 /// default, a SmallDenseSet, because we need to use the full range of
1917 /// int64_ts, and there's currently no good way of doing that with
1918 /// SmallDenseSet.
1919 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1921 /// Interesting use types, to facilitate truncation reuse.
1922 SmallSetVector<Type *, 4> Types;
1924 /// The list of interesting uses.
1925 SmallVector<LSRUse, 16> Uses;
1927 /// Track which uses use which register candidates.
1928 RegUseTracker RegUses;
1930 // Limit the number of chains to avoid quadratic behavior. We don't expect to
1931 // have more than a few IV increment chains in a loop. Missing a Chain falls
1932 // back to normal LSR behavior for those uses.
1933 static const unsigned MaxChains = 8;
1935 /// IV users can form a chain of IV increments.
1936 SmallVector<IVChain, MaxChains> IVChainVec;
1938 /// IV users that belong to profitable IVChains.
1939 SmallPtrSet<Use*, MaxChains> IVIncSet;
1941 void OptimizeShadowIV();
1942 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1943 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1944 void OptimizeLoopTermCond();
1946 void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1947 SmallVectorImpl<ChainUsers> &ChainUsersVec);
1948 void FinalizeChain(IVChain &Chain);
1949 void CollectChains();
1950 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1951 SmallVectorImpl<WeakTrackingVH> &DeadInsts);
1953 void CollectInterestingTypesAndFactors();
1954 void CollectFixupsAndInitialFormulae();
1956 // Support for sharing of LSRUses between LSRFixups.
1957 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
1958 UseMapTy UseMap;
1960 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1961 LSRUse::KindType Kind, MemAccessTy AccessTy);
1963 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1964 MemAccessTy AccessTy);
1966 void DeleteUse(LSRUse &LU, size_t LUIdx);
1968 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1970 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1971 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1972 void CountRegisters(const Formula &F, size_t LUIdx);
1973 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1975 void CollectLoopInvariantFixupsAndFormulae();
1977 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1978 unsigned Depth = 0);
1980 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1981 const Formula &Base, unsigned Depth,
1982 size_t Idx, bool IsScaledReg = false);
1983 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1984 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1985 const Formula &Base, size_t Idx,
1986 bool IsScaledReg = false);
1987 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1988 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1989 const Formula &Base,
1990 const SmallVectorImpl<int64_t> &Worklist,
1991 size_t Idx, bool IsScaledReg = false);
1992 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1993 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1994 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1995 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1996 void GenerateCrossUseConstantOffsets();
1997 void GenerateAllReuseFormulae();
1999 void FilterOutUndesirableDedicatedRegisters();
2001 size_t EstimateSearchSpaceComplexity() const;
2002 void NarrowSearchSpaceByDetectingSupersets();
2003 void NarrowSearchSpaceByCollapsingUnrolledCode();
2004 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
2005 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
2006 void NarrowSearchSpaceByDeletingCostlyFormulas();
2007 void NarrowSearchSpaceByPickingWinnerRegs();
2008 void NarrowSearchSpaceUsingHeuristics();
2010 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2011 Cost &SolutionCost,
2012 SmallVectorImpl<const Formula *> &Workspace,
2013 const Cost &CurCost,
2014 const SmallPtrSet<const SCEV *, 16> &CurRegs,
2015 DenseSet<const SCEV *> &VisitedRegs) const;
2016 void Solve(SmallVectorImpl<const Formula *> &Solution) const;
2018 BasicBlock::iterator
2019 HoistInsertPosition(BasicBlock::iterator IP,
2020 const SmallVectorImpl<Instruction *> &Inputs) const;
2021 BasicBlock::iterator
2022 AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2023 const LSRFixup &LF,
2024 const LSRUse &LU,
2025 SCEVExpander &Rewriter) const;
2027 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2028 BasicBlock::iterator IP, SCEVExpander &Rewriter,
2029 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2030 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
2031 const Formula &F, SCEVExpander &Rewriter,
2032 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2033 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2034 SCEVExpander &Rewriter,
2035 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2036 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
2038 public:
2039 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
2040 LoopInfo &LI, const TargetTransformInfo &TTI);
2042 bool getChanged() const { return Changed; }
2044 void print_factors_and_types(raw_ostream &OS) const;
2045 void print_fixups(raw_ostream &OS) const;
2046 void print_uses(raw_ostream &OS) const;
2047 void print(raw_ostream &OS) const;
2048 void dump() const;
2051 } // end anonymous namespace
2053 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
2054 /// the cast operation.
2055 void LSRInstance::OptimizeShadowIV() {
2056 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2057 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2058 return;
2060 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2061 UI != E; /* empty */) {
2062 IVUsers::const_iterator CandidateUI = UI;
2063 ++UI;
2064 Instruction *ShadowUse = CandidateUI->getUser();
2065 Type *DestTy = nullptr;
2066 bool IsSigned = false;
2068 /* If shadow use is a int->float cast then insert a second IV
2069 to eliminate this cast.
2071 for (unsigned i = 0; i < n; ++i)
2072 foo((double)i);
2074 is transformed into
2076 double d = 0.0;
2077 for (unsigned i = 0; i < n; ++i, ++d)
2078 foo(d);
2080 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2081 IsSigned = false;
2082 DestTy = UCast->getDestTy();
2084 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2085 IsSigned = true;
2086 DestTy = SCast->getDestTy();
2088 if (!DestTy) continue;
2090 // If target does not support DestTy natively then do not apply
2091 // this transformation.
2092 if (!TTI.isTypeLegal(DestTy)) continue;
2094 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2095 if (!PH) continue;
2096 if (PH->getNumIncomingValues() != 2) continue;
2098 // If the calculation in integers overflows, the result in FP type will
2099 // differ. So we only can do this transformation if we are guaranteed to not
2100 // deal with overflowing values
2101 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2102 if (!AR) continue;
2103 if (IsSigned && !AR->hasNoSignedWrap()) continue;
2104 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2106 Type *SrcTy = PH->getType();
2107 int Mantissa = DestTy->getFPMantissaWidth();
2108 if (Mantissa == -1) continue;
2109 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2110 continue;
2112 unsigned Entry, Latch;
2113 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2114 Entry = 0;
2115 Latch = 1;
2116 } else {
2117 Entry = 1;
2118 Latch = 0;
2121 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2122 if (!Init) continue;
2123 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2124 (double)Init->getSExtValue() :
2125 (double)Init->getZExtValue());
2127 BinaryOperator *Incr =
2128 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2129 if (!Incr) continue;
2130 if (Incr->getOpcode() != Instruction::Add
2131 && Incr->getOpcode() != Instruction::Sub)
2132 continue;
2134 /* Initialize new IV, double d = 0.0 in above example. */
2135 ConstantInt *C = nullptr;
2136 if (Incr->getOperand(0) == PH)
2137 C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2138 else if (Incr->getOperand(1) == PH)
2139 C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2140 else
2141 continue;
2143 if (!C) continue;
2145 // Ignore negative constants, as the code below doesn't handle them
2146 // correctly. TODO: Remove this restriction.
2147 if (!C->getValue().isStrictlyPositive()) continue;
2149 /* Add new PHINode. */
2150 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2152 /* create new increment. '++d' in above example. */
2153 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2154 BinaryOperator *NewIncr =
2155 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2156 Instruction::FAdd : Instruction::FSub,
2157 NewPH, CFP, "IV.S.next.", Incr);
2159 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2160 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2162 /* Remove cast operation */
2163 ShadowUse->replaceAllUsesWith(NewPH);
2164 ShadowUse->eraseFromParent();
2165 Changed = true;
2166 break;
2170 /// If Cond has an operand that is an expression of an IV, set the IV user and
2171 /// stride information and return true, otherwise return false.
2172 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2173 for (IVStrideUse &U : IU)
2174 if (U.getUser() == Cond) {
2175 // NOTE: we could handle setcc instructions with multiple uses here, but
2176 // InstCombine does it as well for simple uses, it's not clear that it
2177 // occurs enough in real life to handle.
2178 CondUse = &U;
2179 return true;
2181 return false;
2184 /// Rewrite the loop's terminating condition if it uses a max computation.
2186 /// This is a narrow solution to a specific, but acute, problem. For loops
2187 /// like this:
2189 /// i = 0;
2190 /// do {
2191 /// p[i] = 0.0;
2192 /// } while (++i < n);
2194 /// the trip count isn't just 'n', because 'n' might not be positive. And
2195 /// unfortunately this can come up even for loops where the user didn't use
2196 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2197 /// will commonly be lowered like this:
2199 /// if (n > 0) {
2200 /// i = 0;
2201 /// do {
2202 /// p[i] = 0.0;
2203 /// } while (++i < n);
2204 /// }
2206 /// and then it's possible for subsequent optimization to obscure the if
2207 /// test in such a way that indvars can't find it.
2209 /// When indvars can't find the if test in loops like this, it creates a
2210 /// max expression, which allows it to give the loop a canonical
2211 /// induction variable:
2213 /// i = 0;
2214 /// max = n < 1 ? 1 : n;
2215 /// do {
2216 /// p[i] = 0.0;
2217 /// } while (++i != max);
2219 /// Canonical induction variables are necessary because the loop passes
2220 /// are designed around them. The most obvious example of this is the
2221 /// LoopInfo analysis, which doesn't remember trip count values. It
2222 /// expects to be able to rediscover the trip count each time it is
2223 /// needed, and it does this using a simple analysis that only succeeds if
2224 /// the loop has a canonical induction variable.
2226 /// However, when it comes time to generate code, the maximum operation
2227 /// can be quite costly, especially if it's inside of an outer loop.
2229 /// This function solves this problem by detecting this type of loop and
2230 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2231 /// the instructions for the maximum computation.
2232 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2233 // Check that the loop matches the pattern we're looking for.
2234 if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2235 Cond->getPredicate() != CmpInst::ICMP_NE)
2236 return Cond;
2238 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2239 if (!Sel || !Sel->hasOneUse()) return Cond;
2241 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2242 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2243 return Cond;
2244 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2246 // Add one to the backedge-taken count to get the trip count.
2247 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2248 if (IterationCount != SE.getSCEV(Sel)) return Cond;
2250 // Check for a max calculation that matches the pattern. There's no check
2251 // for ICMP_ULE here because the comparison would be with zero, which
2252 // isn't interesting.
2253 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2254 const SCEVNAryExpr *Max = nullptr;
2255 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2256 Pred = ICmpInst::ICMP_SLE;
2257 Max = S;
2258 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2259 Pred = ICmpInst::ICMP_SLT;
2260 Max = S;
2261 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2262 Pred = ICmpInst::ICMP_ULT;
2263 Max = U;
2264 } else {
2265 // No match; bail.
2266 return Cond;
2269 // To handle a max with more than two operands, this optimization would
2270 // require additional checking and setup.
2271 if (Max->getNumOperands() != 2)
2272 return Cond;
2274 const SCEV *MaxLHS = Max->getOperand(0);
2275 const SCEV *MaxRHS = Max->getOperand(1);
2277 // ScalarEvolution canonicalizes constants to the left. For < and >, look
2278 // for a comparison with 1. For <= and >=, a comparison with zero.
2279 if (!MaxLHS ||
2280 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2281 return Cond;
2283 // Check the relevant induction variable for conformance to
2284 // the pattern.
2285 const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2286 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2287 if (!AR || !AR->isAffine() ||
2288 AR->getStart() != One ||
2289 AR->getStepRecurrence(SE) != One)
2290 return Cond;
2292 assert(AR->getLoop() == L &&
2293 "Loop condition operand is an addrec in a different loop!");
2295 // Check the right operand of the select, and remember it, as it will
2296 // be used in the new comparison instruction.
2297 Value *NewRHS = nullptr;
2298 if (ICmpInst::isTrueWhenEqual(Pred)) {
2299 // Look for n+1, and grab n.
2300 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2301 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2302 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2303 NewRHS = BO->getOperand(0);
2304 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2305 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2306 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2307 NewRHS = BO->getOperand(0);
2308 if (!NewRHS)
2309 return Cond;
2310 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2311 NewRHS = Sel->getOperand(1);
2312 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2313 NewRHS = Sel->getOperand(2);
2314 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2315 NewRHS = SU->getValue();
2316 else
2317 // Max doesn't match expected pattern.
2318 return Cond;
2320 // Determine the new comparison opcode. It may be signed or unsigned,
2321 // and the original comparison may be either equality or inequality.
2322 if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2323 Pred = CmpInst::getInversePredicate(Pred);
2325 // Ok, everything looks ok to change the condition into an SLT or SGE and
2326 // delete the max calculation.
2327 ICmpInst *NewCond =
2328 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2330 // Delete the max calculation instructions.
2331 Cond->replaceAllUsesWith(NewCond);
2332 CondUse->setUser(NewCond);
2333 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2334 Cond->eraseFromParent();
2335 Sel->eraseFromParent();
2336 if (Cmp->use_empty())
2337 Cmp->eraseFromParent();
2338 return NewCond;
2341 /// Change loop terminating condition to use the postinc iv when possible.
2342 void
2343 LSRInstance::OptimizeLoopTermCond() {
2344 SmallPtrSet<Instruction *, 4> PostIncs;
2346 // We need a different set of heuristics for rotated and non-rotated loops.
2347 // If a loop is rotated then the latch is also the backedge, so inserting
2348 // post-inc expressions just before the latch is ideal. To reduce live ranges
2349 // it also makes sense to rewrite terminating conditions to use post-inc
2350 // expressions.
2352 // If the loop is not rotated then the latch is not a backedge; the latch
2353 // check is done in the loop head. Adding post-inc expressions before the
2354 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2355 // in the loop body. In this case we do *not* want to use post-inc expressions
2356 // in the latch check, and we want to insert post-inc expressions before
2357 // the backedge.
2358 BasicBlock *LatchBlock = L->getLoopLatch();
2359 SmallVector<BasicBlock*, 8> ExitingBlocks;
2360 L->getExitingBlocks(ExitingBlocks);
2361 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2362 return LatchBlock != BB;
2363 })) {
2364 // The backedge doesn't exit the loop; treat this as a head-tested loop.
2365 IVIncInsertPos = LatchBlock->getTerminator();
2366 return;
2369 // Otherwise treat this as a rotated loop.
2370 for (BasicBlock *ExitingBlock : ExitingBlocks) {
2371 // Get the terminating condition for the loop if possible. If we
2372 // can, we want to change it to use a post-incremented version of its
2373 // induction variable, to allow coalescing the live ranges for the IV into
2374 // one register value.
2376 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2377 if (!TermBr)
2378 continue;
2379 // FIXME: Overly conservative, termination condition could be an 'or' etc..
2380 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2381 continue;
2383 // Search IVUsesByStride to find Cond's IVUse if there is one.
2384 IVStrideUse *CondUse = nullptr;
2385 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2386 if (!FindIVUserForCond(Cond, CondUse))
2387 continue;
2389 // If the trip count is computed in terms of a max (due to ScalarEvolution
2390 // being unable to find a sufficient guard, for example), change the loop
2391 // comparison to use SLT or ULT instead of NE.
2392 // One consequence of doing this now is that it disrupts the count-down
2393 // optimization. That's not always a bad thing though, because in such
2394 // cases it may still be worthwhile to avoid a max.
2395 Cond = OptimizeMax(Cond, CondUse);
2397 // If this exiting block dominates the latch block, it may also use
2398 // the post-inc value if it won't be shared with other uses.
2399 // Check for dominance.
2400 if (!DT.dominates(ExitingBlock, LatchBlock))
2401 continue;
2403 // Conservatively avoid trying to use the post-inc value in non-latch
2404 // exits if there may be pre-inc users in intervening blocks.
2405 if (LatchBlock != ExitingBlock)
2406 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2407 // Test if the use is reachable from the exiting block. This dominator
2408 // query is a conservative approximation of reachability.
2409 if (&*UI != CondUse &&
2410 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2411 // Conservatively assume there may be reuse if the quotient of their
2412 // strides could be a legal scale.
2413 const SCEV *A = IU.getStride(*CondUse, L);
2414 const SCEV *B = IU.getStride(*UI, L);
2415 if (!A || !B) continue;
2416 if (SE.getTypeSizeInBits(A->getType()) !=
2417 SE.getTypeSizeInBits(B->getType())) {
2418 if (SE.getTypeSizeInBits(A->getType()) >
2419 SE.getTypeSizeInBits(B->getType()))
2420 B = SE.getSignExtendExpr(B, A->getType());
2421 else
2422 A = SE.getSignExtendExpr(A, B->getType());
2424 if (const SCEVConstant *D =
2425 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2426 const ConstantInt *C = D->getValue();
2427 // Stride of one or negative one can have reuse with non-addresses.
2428 if (C->isOne() || C->isMinusOne())
2429 goto decline_post_inc;
2430 // Avoid weird situations.
2431 if (C->getValue().getMinSignedBits() >= 64 ||
2432 C->getValue().isMinSignedValue())
2433 goto decline_post_inc;
2434 // Check for possible scaled-address reuse.
2435 if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) {
2436 MemAccessTy AccessTy = getAccessType(
2437 TTI, UI->getUser(), UI->getOperandValToReplace());
2438 int64_t Scale = C->getSExtValue();
2439 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2440 /*BaseOffset=*/0,
2441 /*HasBaseReg=*/false, Scale,
2442 AccessTy.AddrSpace))
2443 goto decline_post_inc;
2444 Scale = -Scale;
2445 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2446 /*BaseOffset=*/0,
2447 /*HasBaseReg=*/false, Scale,
2448 AccessTy.AddrSpace))
2449 goto decline_post_inc;
2454 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: "
2455 << *Cond << '\n');
2457 // It's possible for the setcc instruction to be anywhere in the loop, and
2458 // possible for it to have multiple users. If it is not immediately before
2459 // the exiting block branch, move it.
2460 if (&*++BasicBlock::iterator(Cond) != TermBr) {
2461 if (Cond->hasOneUse()) {
2462 Cond->moveBefore(TermBr);
2463 } else {
2464 // Clone the terminating condition and insert into the loopend.
2465 ICmpInst *OldCond = Cond;
2466 Cond = cast<ICmpInst>(Cond->clone());
2467 Cond->setName(L->getHeader()->getName() + ".termcond");
2468 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2470 // Clone the IVUse, as the old use still exists!
2471 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2472 TermBr->replaceUsesOfWith(OldCond, Cond);
2476 // If we get to here, we know that we can transform the setcc instruction to
2477 // use the post-incremented version of the IV, allowing us to coalesce the
2478 // live ranges for the IV correctly.
2479 CondUse->transformToPostInc(L);
2480 Changed = true;
2482 PostIncs.insert(Cond);
2483 decline_post_inc:;
2486 // Determine an insertion point for the loop induction variable increment. It
2487 // must dominate all the post-inc comparisons we just set up, and it must
2488 // dominate the loop latch edge.
2489 IVIncInsertPos = L->getLoopLatch()->getTerminator();
2490 for (Instruction *Inst : PostIncs) {
2491 BasicBlock *BB =
2492 DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2493 Inst->getParent());
2494 if (BB == Inst->getParent())
2495 IVIncInsertPos = Inst;
2496 else if (BB != IVIncInsertPos->getParent())
2497 IVIncInsertPos = BB->getTerminator();
2501 /// Determine if the given use can accommodate a fixup at the given offset and
2502 /// other details. If so, update the use and return true.
2503 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2504 bool HasBaseReg, LSRUse::KindType Kind,
2505 MemAccessTy AccessTy) {
2506 int64_t NewMinOffset = LU.MinOffset;
2507 int64_t NewMaxOffset = LU.MaxOffset;
2508 MemAccessTy NewAccessTy = AccessTy;
2510 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2511 // something conservative, however this can pessimize in the case that one of
2512 // the uses will have all its uses outside the loop, for example.
2513 if (LU.Kind != Kind)
2514 return false;
2516 // Check for a mismatched access type, and fall back conservatively as needed.
2517 // TODO: Be less conservative when the type is similar and can use the same
2518 // addressing modes.
2519 if (Kind == LSRUse::Address) {
2520 if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2521 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2522 AccessTy.AddrSpace);
2526 // Conservatively assume HasBaseReg is true for now.
2527 if (NewOffset < LU.MinOffset) {
2528 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2529 LU.MaxOffset - NewOffset, HasBaseReg))
2530 return false;
2531 NewMinOffset = NewOffset;
2532 } else if (NewOffset > LU.MaxOffset) {
2533 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2534 NewOffset - LU.MinOffset, HasBaseReg))
2535 return false;
2536 NewMaxOffset = NewOffset;
2539 // Update the use.
2540 LU.MinOffset = NewMinOffset;
2541 LU.MaxOffset = NewMaxOffset;
2542 LU.AccessTy = NewAccessTy;
2543 return true;
2546 /// Return an LSRUse index and an offset value for a fixup which needs the given
2547 /// expression, with the given kind and optional access type. Either reuse an
2548 /// existing use or create a new one, as needed.
2549 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2550 LSRUse::KindType Kind,
2551 MemAccessTy AccessTy) {
2552 const SCEV *Copy = Expr;
2553 int64_t Offset = ExtractImmediate(Expr, SE);
2555 // Basic uses can't accept any offset, for example.
2556 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2557 Offset, /*HasBaseReg=*/ true)) {
2558 Expr = Copy;
2559 Offset = 0;
2562 std::pair<UseMapTy::iterator, bool> P =
2563 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2564 if (!P.second) {
2565 // A use already existed with this base.
2566 size_t LUIdx = P.first->second;
2567 LSRUse &LU = Uses[LUIdx];
2568 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2569 // Reuse this use.
2570 return std::make_pair(LUIdx, Offset);
2573 // Create a new use.
2574 size_t LUIdx = Uses.size();
2575 P.first->second = LUIdx;
2576 Uses.push_back(LSRUse(Kind, AccessTy));
2577 LSRUse &LU = Uses[LUIdx];
2579 LU.MinOffset = Offset;
2580 LU.MaxOffset = Offset;
2581 return std::make_pair(LUIdx, Offset);
2584 /// Delete the given use from the Uses list.
2585 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2586 if (&LU != &Uses.back())
2587 std::swap(LU, Uses.back());
2588 Uses.pop_back();
2590 // Update RegUses.
2591 RegUses.swapAndDropUse(LUIdx, Uses.size());
2594 /// Look for a use distinct from OrigLU which is has a formula that has the same
2595 /// registers as the given formula.
2596 LSRUse *
2597 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2598 const LSRUse &OrigLU) {
2599 // Search all uses for the formula. This could be more clever.
2600 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2601 LSRUse &LU = Uses[LUIdx];
2602 // Check whether this use is close enough to OrigLU, to see whether it's
2603 // worthwhile looking through its formulae.
2604 // Ignore ICmpZero uses because they may contain formulae generated by
2605 // GenerateICmpZeroScales, in which case adding fixup offsets may
2606 // be invalid.
2607 if (&LU != &OrigLU &&
2608 LU.Kind != LSRUse::ICmpZero &&
2609 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2610 LU.WidestFixupType == OrigLU.WidestFixupType &&
2611 LU.HasFormulaWithSameRegs(OrigF)) {
2612 // Scan through this use's formulae.
2613 for (const Formula &F : LU.Formulae) {
2614 // Check to see if this formula has the same registers and symbols
2615 // as OrigF.
2616 if (F.BaseRegs == OrigF.BaseRegs &&
2617 F.ScaledReg == OrigF.ScaledReg &&
2618 F.BaseGV == OrigF.BaseGV &&
2619 F.Scale == OrigF.Scale &&
2620 F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2621 if (F.BaseOffset == 0)
2622 return &LU;
2623 // This is the formula where all the registers and symbols matched;
2624 // there aren't going to be any others. Since we declined it, we
2625 // can skip the rest of the formulae and proceed to the next LSRUse.
2626 break;
2632 // Nothing looked good.
2633 return nullptr;
2636 void LSRInstance::CollectInterestingTypesAndFactors() {
2637 SmallSetVector<const SCEV *, 4> Strides;
2639 // Collect interesting types and strides.
2640 SmallVector<const SCEV *, 4> Worklist;
2641 for (const IVStrideUse &U : IU) {
2642 const SCEV *Expr = IU.getExpr(U);
2644 // Collect interesting types.
2645 Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2647 // Add strides for mentioned loops.
2648 Worklist.push_back(Expr);
2649 do {
2650 const SCEV *S = Worklist.pop_back_val();
2651 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2652 if (AR->getLoop() == L)
2653 Strides.insert(AR->getStepRecurrence(SE));
2654 Worklist.push_back(AR->getStart());
2655 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2656 Worklist.append(Add->op_begin(), Add->op_end());
2658 } while (!Worklist.empty());
2661 // Compute interesting factors from the set of interesting strides.
2662 for (SmallSetVector<const SCEV *, 4>::const_iterator
2663 I = Strides.begin(), E = Strides.end(); I != E; ++I)
2664 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2665 std::next(I); NewStrideIter != E; ++NewStrideIter) {
2666 const SCEV *OldStride = *I;
2667 const SCEV *NewStride = *NewStrideIter;
2669 if (SE.getTypeSizeInBits(OldStride->getType()) !=
2670 SE.getTypeSizeInBits(NewStride->getType())) {
2671 if (SE.getTypeSizeInBits(OldStride->getType()) >
2672 SE.getTypeSizeInBits(NewStride->getType()))
2673 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2674 else
2675 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2677 if (const SCEVConstant *Factor =
2678 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2679 SE, true))) {
2680 if (Factor->getAPInt().getMinSignedBits() <= 64)
2681 Factors.insert(Factor->getAPInt().getSExtValue());
2682 } else if (const SCEVConstant *Factor =
2683 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2684 NewStride,
2685 SE, true))) {
2686 if (Factor->getAPInt().getMinSignedBits() <= 64)
2687 Factors.insert(Factor->getAPInt().getSExtValue());
2691 // If all uses use the same type, don't bother looking for truncation-based
2692 // reuse.
2693 if (Types.size() == 1)
2694 Types.clear();
2696 LLVM_DEBUG(print_factors_and_types(dbgs()));
2699 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2700 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2701 /// IVStrideUses, we could partially skip this.
2702 static User::op_iterator
2703 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2704 Loop *L, ScalarEvolution &SE) {
2705 for(; OI != OE; ++OI) {
2706 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2707 if (!SE.isSCEVable(Oper->getType()))
2708 continue;
2710 if (const SCEVAddRecExpr *AR =
2711 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2712 if (AR->getLoop() == L)
2713 break;
2717 return OI;
2720 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2721 /// a convenient helper.
2722 static Value *getWideOperand(Value *Oper) {
2723 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2724 return Trunc->getOperand(0);
2725 return Oper;
2728 /// Return true if we allow an IV chain to include both types.
2729 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2730 Type *LType = LVal->getType();
2731 Type *RType = RVal->getType();
2732 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2733 // Different address spaces means (possibly)
2734 // different types of the pointer implementation,
2735 // e.g. i16 vs i32 so disallow that.
2736 (LType->getPointerAddressSpace() ==
2737 RType->getPointerAddressSpace()));
2740 /// Return an approximation of this SCEV expression's "base", or NULL for any
2741 /// constant. Returning the expression itself is conservative. Returning a
2742 /// deeper subexpression is more precise and valid as long as it isn't less
2743 /// complex than another subexpression. For expressions involving multiple
2744 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2745 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2746 /// IVInc==b-a.
2748 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2749 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2750 static const SCEV *getExprBase(const SCEV *S) {
2751 switch (S->getSCEVType()) {
2752 default: // uncluding scUnknown.
2753 return S;
2754 case scConstant:
2755 return nullptr;
2756 case scTruncate:
2757 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2758 case scZeroExtend:
2759 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2760 case scSignExtend:
2761 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2762 case scAddExpr: {
2763 // Skip over scaled operands (scMulExpr) to follow add operands as long as
2764 // there's nothing more complex.
2765 // FIXME: not sure if we want to recognize negation.
2766 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2767 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2768 E(Add->op_begin()); I != E; ++I) {
2769 const SCEV *SubExpr = *I;
2770 if (SubExpr->getSCEVType() == scAddExpr)
2771 return getExprBase(SubExpr);
2773 if (SubExpr->getSCEVType() != scMulExpr)
2774 return SubExpr;
2776 return S; // all operands are scaled, be conservative.
2778 case scAddRecExpr:
2779 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2783 /// Return true if the chain increment is profitable to expand into a loop
2784 /// invariant value, which may require its own register. A profitable chain
2785 /// increment will be an offset relative to the same base. We allow such offsets
2786 /// to potentially be used as chain increment as long as it's not obviously
2787 /// expensive to expand using real instructions.
2788 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2789 const SCEV *IncExpr,
2790 ScalarEvolution &SE) {
2791 // Aggressively form chains when -stress-ivchain.
2792 if (StressIVChain)
2793 return true;
2795 // Do not replace a constant offset from IV head with a nonconstant IV
2796 // increment.
2797 if (!isa<SCEVConstant>(IncExpr)) {
2798 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2799 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2800 return false;
2803 SmallPtrSet<const SCEV*, 8> Processed;
2804 return !isHighCostExpansion(IncExpr, Processed, SE);
2807 /// Return true if the number of registers needed for the chain is estimated to
2808 /// be less than the number required for the individual IV users. First prohibit
2809 /// any IV users that keep the IV live across increments (the Users set should
2810 /// be empty). Next count the number and type of increments in the chain.
2812 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2813 /// effectively use postinc addressing modes. Only consider it profitable it the
2814 /// increments can be computed in fewer registers when chained.
2816 /// TODO: Consider IVInc free if it's already used in another chains.
2817 static bool
2818 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
2819 ScalarEvolution &SE) {
2820 if (StressIVChain)
2821 return true;
2823 if (!Chain.hasIncs())
2824 return false;
2826 if (!Users.empty()) {
2827 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2828 for (Instruction *Inst
2829 : Users) { dbgs() << " " << *Inst << "\n"; });
2830 return false;
2832 assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2834 // The chain itself may require a register, so intialize cost to 1.
2835 int cost = 1;
2837 // A complete chain likely eliminates the need for keeping the original IV in
2838 // a register. LSR does not currently know how to form a complete chain unless
2839 // the header phi already exists.
2840 if (isa<PHINode>(Chain.tailUserInst())
2841 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2842 --cost;
2844 const SCEV *LastIncExpr = nullptr;
2845 unsigned NumConstIncrements = 0;
2846 unsigned NumVarIncrements = 0;
2847 unsigned NumReusedIncrements = 0;
2848 for (const IVInc &Inc : Chain) {
2849 if (Inc.IncExpr->isZero())
2850 continue;
2852 // Incrementing by zero or some constant is neutral. We assume constants can
2853 // be folded into an addressing mode or an add's immediate operand.
2854 if (isa<SCEVConstant>(Inc.IncExpr)) {
2855 ++NumConstIncrements;
2856 continue;
2859 if (Inc.IncExpr == LastIncExpr)
2860 ++NumReusedIncrements;
2861 else
2862 ++NumVarIncrements;
2864 LastIncExpr = Inc.IncExpr;
2866 // An IV chain with a single increment is handled by LSR's postinc
2867 // uses. However, a chain with multiple increments requires keeping the IV's
2868 // value live longer than it needs to be if chained.
2869 if (NumConstIncrements > 1)
2870 --cost;
2872 // Materializing increment expressions in the preheader that didn't exist in
2873 // the original code may cost a register. For example, sign-extended array
2874 // indices can produce ridiculous increments like this:
2875 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2876 cost += NumVarIncrements;
2878 // Reusing variable increments likely saves a register to hold the multiple of
2879 // the stride.
2880 cost -= NumReusedIncrements;
2882 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2883 << "\n");
2885 return cost < 0;
2888 /// Add this IV user to an existing chain or make it the head of a new chain.
2889 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2890 SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2891 // When IVs are used as types of varying widths, they are generally converted
2892 // to a wider type with some uses remaining narrow under a (free) trunc.
2893 Value *const NextIV = getWideOperand(IVOper);
2894 const SCEV *const OperExpr = SE.getSCEV(NextIV);
2895 const SCEV *const OperExprBase = getExprBase(OperExpr);
2897 // Visit all existing chains. Check if its IVOper can be computed as a
2898 // profitable loop invariant increment from the last link in the Chain.
2899 unsigned ChainIdx = 0, NChains = IVChainVec.size();
2900 const SCEV *LastIncExpr = nullptr;
2901 for (; ChainIdx < NChains; ++ChainIdx) {
2902 IVChain &Chain = IVChainVec[ChainIdx];
2904 // Prune the solution space aggressively by checking that both IV operands
2905 // are expressions that operate on the same unscaled SCEVUnknown. This
2906 // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2907 // first avoids creating extra SCEV expressions.
2908 if (!StressIVChain && Chain.ExprBase != OperExprBase)
2909 continue;
2911 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2912 if (!isCompatibleIVType(PrevIV, NextIV))
2913 continue;
2915 // A phi node terminates a chain.
2916 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2917 continue;
2919 // The increment must be loop-invariant so it can be kept in a register.
2920 const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2921 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2922 if (!SE.isLoopInvariant(IncExpr, L))
2923 continue;
2925 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2926 LastIncExpr = IncExpr;
2927 break;
2930 // If we haven't found a chain, create a new one, unless we hit the max. Don't
2931 // bother for phi nodes, because they must be last in the chain.
2932 if (ChainIdx == NChains) {
2933 if (isa<PHINode>(UserInst))
2934 return;
2935 if (NChains >= MaxChains && !StressIVChain) {
2936 LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
2937 return;
2939 LastIncExpr = OperExpr;
2940 // IVUsers may have skipped over sign/zero extensions. We don't currently
2941 // attempt to form chains involving extensions unless they can be hoisted
2942 // into this loop's AddRec.
2943 if (!isa<SCEVAddRecExpr>(LastIncExpr))
2944 return;
2945 ++NChains;
2946 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2947 OperExprBase));
2948 ChainUsersVec.resize(NChains);
2949 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2950 << ") IV=" << *LastIncExpr << "\n");
2951 } else {
2952 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst
2953 << ") IV+" << *LastIncExpr << "\n");
2954 // Add this IV user to the end of the chain.
2955 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2957 IVChain &Chain = IVChainVec[ChainIdx];
2959 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2960 // This chain's NearUsers become FarUsers.
2961 if (!LastIncExpr->isZero()) {
2962 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2963 NearUsers.end());
2964 NearUsers.clear();
2967 // All other uses of IVOperand become near uses of the chain.
2968 // We currently ignore intermediate values within SCEV expressions, assuming
2969 // they will eventually be used be the current chain, or can be computed
2970 // from one of the chain increments. To be more precise we could
2971 // transitively follow its user and only add leaf IV users to the set.
2972 for (User *U : IVOper->users()) {
2973 Instruction *OtherUse = dyn_cast<Instruction>(U);
2974 if (!OtherUse)
2975 continue;
2976 // Uses in the chain will no longer be uses if the chain is formed.
2977 // Include the head of the chain in this iteration (not Chain.begin()).
2978 IVChain::const_iterator IncIter = Chain.Incs.begin();
2979 IVChain::const_iterator IncEnd = Chain.Incs.end();
2980 for( ; IncIter != IncEnd; ++IncIter) {
2981 if (IncIter->UserInst == OtherUse)
2982 break;
2984 if (IncIter != IncEnd)
2985 continue;
2987 if (SE.isSCEVable(OtherUse->getType())
2988 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
2989 && IU.isIVUserOrOperand(OtherUse)) {
2990 continue;
2992 NearUsers.insert(OtherUse);
2995 // Since this user is part of the chain, it's no longer considered a use
2996 // of the chain.
2997 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
3000 /// Populate the vector of Chains.
3002 /// This decreases ILP at the architecture level. Targets with ample registers,
3003 /// multiple memory ports, and no register renaming probably don't want
3004 /// this. However, such targets should probably disable LSR altogether.
3006 /// The job of LSR is to make a reasonable choice of induction variables across
3007 /// the loop. Subsequent passes can easily "unchain" computation exposing more
3008 /// ILP *within the loop* if the target wants it.
3010 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
3011 /// will not reorder memory operations, it will recognize this as a chain, but
3012 /// will generate redundant IV increments. Ideally this would be corrected later
3013 /// by a smart scheduler:
3014 /// = A[i]
3015 /// = A[i+x]
3016 /// A[i] =
3017 /// A[i+x] =
3019 /// TODO: Walk the entire domtree within this loop, not just the path to the
3020 /// loop latch. This will discover chains on side paths, but requires
3021 /// maintaining multiple copies of the Chains state.
3022 void LSRInstance::CollectChains() {
3023 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3024 SmallVector<ChainUsers, 8> ChainUsersVec;
3026 SmallVector<BasicBlock *,8> LatchPath;
3027 BasicBlock *LoopHeader = L->getHeader();
3028 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
3029 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
3030 LatchPath.push_back(Rung->getBlock());
3032 LatchPath.push_back(LoopHeader);
3034 // Walk the instruction stream from the loop header to the loop latch.
3035 for (BasicBlock *BB : reverse(LatchPath)) {
3036 for (Instruction &I : *BB) {
3037 // Skip instructions that weren't seen by IVUsers analysis.
3038 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
3039 continue;
3041 // Ignore users that are part of a SCEV expression. This way we only
3042 // consider leaf IV Users. This effectively rediscovers a portion of
3043 // IVUsers analysis but in program order this time.
3044 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
3045 continue;
3047 // Remove this instruction from any NearUsers set it may be in.
3048 for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3049 ChainIdx < NChains; ++ChainIdx) {
3050 ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3052 // Search for operands that can be chained.
3053 SmallPtrSet<Instruction*, 4> UniqueOperands;
3054 User::op_iterator IVOpEnd = I.op_end();
3055 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3056 while (IVOpIter != IVOpEnd) {
3057 Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3058 if (UniqueOperands.insert(IVOpInst).second)
3059 ChainInstruction(&I, IVOpInst, ChainUsersVec);
3060 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3062 } // Continue walking down the instructions.
3063 } // Continue walking down the domtree.
3064 // Visit phi backedges to determine if the chain can generate the IV postinc.
3065 for (PHINode &PN : L->getHeader()->phis()) {
3066 if (!SE.isSCEVable(PN.getType()))
3067 continue;
3069 Instruction *IncV =
3070 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3071 if (IncV)
3072 ChainInstruction(&PN, IncV, ChainUsersVec);
3074 // Remove any unprofitable chains.
3075 unsigned ChainIdx = 0;
3076 for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3077 UsersIdx < NChains; ++UsersIdx) {
3078 if (!isProfitableChain(IVChainVec[UsersIdx],
3079 ChainUsersVec[UsersIdx].FarUsers, SE))
3080 continue;
3081 // Preserve the chain at UsesIdx.
3082 if (ChainIdx != UsersIdx)
3083 IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3084 FinalizeChain(IVChainVec[ChainIdx]);
3085 ++ChainIdx;
3087 IVChainVec.resize(ChainIdx);
3090 void LSRInstance::FinalizeChain(IVChain &Chain) {
3091 assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3092 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3094 for (const IVInc &Inc : Chain) {
3095 LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n");
3096 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3097 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3098 IVIncSet.insert(UseI);
3102 /// Return true if the IVInc can be folded into an addressing mode.
3103 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3104 Value *Operand, const TargetTransformInfo &TTI) {
3105 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3106 if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
3107 return false;
3109 if (IncConst->getAPInt().getMinSignedBits() > 64)
3110 return false;
3112 MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand);
3113 int64_t IncOffset = IncConst->getValue()->getSExtValue();
3114 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3115 IncOffset, /*HaseBaseReg=*/false))
3116 return false;
3118 return true;
3121 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3122 /// user's operand from the previous IV user's operand.
3123 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
3124 SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3125 // Find the new IVOperand for the head of the chain. It may have been replaced
3126 // by LSR.
3127 const IVInc &Head = Chain.Incs[0];
3128 User::op_iterator IVOpEnd = Head.UserInst->op_end();
3129 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3130 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3131 IVOpEnd, L, SE);
3132 Value *IVSrc = nullptr;
3133 while (IVOpIter != IVOpEnd) {
3134 IVSrc = getWideOperand(*IVOpIter);
3136 // If this operand computes the expression that the chain needs, we may use
3137 // it. (Check this after setting IVSrc which is used below.)
3139 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3140 // narrow for the chain, so we can no longer use it. We do allow using a
3141 // wider phi, assuming the LSR checked for free truncation. In that case we
3142 // should already have a truncate on this operand such that
3143 // getSCEV(IVSrc) == IncExpr.
3144 if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3145 || SE.getSCEV(IVSrc) == Head.IncExpr) {
3146 break;
3148 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3150 if (IVOpIter == IVOpEnd) {
3151 // Gracefully give up on this chain.
3152 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3153 return;
3156 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3157 Type *IVTy = IVSrc->getType();
3158 Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3159 const SCEV *LeftOverExpr = nullptr;
3160 for (const IVInc &Inc : Chain) {
3161 Instruction *InsertPt = Inc.UserInst;
3162 if (isa<PHINode>(InsertPt))
3163 InsertPt = L->getLoopLatch()->getTerminator();
3165 // IVOper will replace the current IV User's operand. IVSrc is the IV
3166 // value currently held in a register.
3167 Value *IVOper = IVSrc;
3168 if (!Inc.IncExpr->isZero()) {
3169 // IncExpr was the result of subtraction of two narrow values, so must
3170 // be signed.
3171 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3172 LeftOverExpr = LeftOverExpr ?
3173 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3175 if (LeftOverExpr && !LeftOverExpr->isZero()) {
3176 // Expand the IV increment.
3177 Rewriter.clearPostInc();
3178 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3179 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3180 SE.getUnknown(IncV));
3181 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3183 // If an IV increment can't be folded, use it as the next IV value.
3184 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3185 assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3186 IVSrc = IVOper;
3187 LeftOverExpr = nullptr;
3190 Type *OperTy = Inc.IVOperand->getType();
3191 if (IVTy != OperTy) {
3192 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3193 "cannot extend a chained IV");
3194 IRBuilder<> Builder(InsertPt);
3195 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3197 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3198 DeadInsts.emplace_back(Inc.IVOperand);
3200 // If LSR created a new, wider phi, we may also replace its postinc. We only
3201 // do this if we also found a wide value for the head of the chain.
3202 if (isa<PHINode>(Chain.tailUserInst())) {
3203 for (PHINode &Phi : L->getHeader()->phis()) {
3204 if (!isCompatibleIVType(&Phi, IVSrc))
3205 continue;
3206 Instruction *PostIncV = dyn_cast<Instruction>(
3207 Phi.getIncomingValueForBlock(L->getLoopLatch()));
3208 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3209 continue;
3210 Value *IVOper = IVSrc;
3211 Type *PostIncTy = PostIncV->getType();
3212 if (IVTy != PostIncTy) {
3213 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3214 IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3215 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3216 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3218 Phi.replaceUsesOfWith(PostIncV, IVOper);
3219 DeadInsts.emplace_back(PostIncV);
3224 void LSRInstance::CollectFixupsAndInitialFormulae() {
3225 for (const IVStrideUse &U : IU) {
3226 Instruction *UserInst = U.getUser();
3227 // Skip IV users that are part of profitable IV Chains.
3228 User::op_iterator UseI =
3229 find(UserInst->operands(), U.getOperandValToReplace());
3230 assert(UseI != UserInst->op_end() && "cannot find IV operand");
3231 if (IVIncSet.count(UseI)) {
3232 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3233 continue;
3236 LSRUse::KindType Kind = LSRUse::Basic;
3237 MemAccessTy AccessTy;
3238 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3239 Kind = LSRUse::Address;
3240 AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace());
3243 const SCEV *S = IU.getExpr(U);
3244 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3246 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3247 // (N - i == 0), and this allows (N - i) to be the expression that we work
3248 // with rather than just N or i, so we can consider the register
3249 // requirements for both N and i at the same time. Limiting this code to
3250 // equality icmps is not a problem because all interesting loops use
3251 // equality icmps, thanks to IndVarSimplify.
3252 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst))
3253 if (CI->isEquality()) {
3254 // Swap the operands if needed to put the OperandValToReplace on the
3255 // left, for consistency.
3256 Value *NV = CI->getOperand(1);
3257 if (NV == U.getOperandValToReplace()) {
3258 CI->setOperand(1, CI->getOperand(0));
3259 CI->setOperand(0, NV);
3260 NV = CI->getOperand(1);
3261 Changed = true;
3264 // x == y --> x - y == 0
3265 const SCEV *N = SE.getSCEV(NV);
3266 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
3267 // S is normalized, so normalize N before folding it into S
3268 // to keep the result normalized.
3269 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3270 Kind = LSRUse::ICmpZero;
3271 S = SE.getMinusSCEV(N, S);
3274 // -1 and the negations of all interesting strides (except the negation
3275 // of -1) are now also interesting.
3276 for (size_t i = 0, e = Factors.size(); i != e; ++i)
3277 if (Factors[i] != -1)
3278 Factors.insert(-(uint64_t)Factors[i]);
3279 Factors.insert(-1);
3282 // Get or create an LSRUse.
3283 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3284 size_t LUIdx = P.first;
3285 int64_t Offset = P.second;
3286 LSRUse &LU = Uses[LUIdx];
3288 // Record the fixup.
3289 LSRFixup &LF = LU.getNewFixup();
3290 LF.UserInst = UserInst;
3291 LF.OperandValToReplace = U.getOperandValToReplace();
3292 LF.PostIncLoops = TmpPostIncLoops;
3293 LF.Offset = Offset;
3294 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3296 if (!LU.WidestFixupType ||
3297 SE.getTypeSizeInBits(LU.WidestFixupType) <
3298 SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3299 LU.WidestFixupType = LF.OperandValToReplace->getType();
3301 // If this is the first use of this LSRUse, give it a formula.
3302 if (LU.Formulae.empty()) {
3303 InsertInitialFormula(S, LU, LUIdx);
3304 CountRegisters(LU.Formulae.back(), LUIdx);
3308 LLVM_DEBUG(print_fixups(dbgs()));
3311 /// Insert a formula for the given expression into the given use, separating out
3312 /// loop-variant portions from loop-invariant and loop-computable portions.
3313 void
3314 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3315 // Mark uses whose expressions cannot be expanded.
3316 if (!isSafeToExpand(S, SE))
3317 LU.RigidFormula = true;
3319 Formula F;
3320 F.initialMatch(S, L, SE);
3321 bool Inserted = InsertFormula(LU, LUIdx, F);
3322 assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3325 /// Insert a simple single-register formula for the given expression into the
3326 /// given use.
3327 void
3328 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3329 LSRUse &LU, size_t LUIdx) {
3330 Formula F;
3331 F.BaseRegs.push_back(S);
3332 F.HasBaseReg = true;
3333 bool Inserted = InsertFormula(LU, LUIdx, F);
3334 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3337 /// Note which registers are used by the given formula, updating RegUses.
3338 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3339 if (F.ScaledReg)
3340 RegUses.countRegister(F.ScaledReg, LUIdx);
3341 for (const SCEV *BaseReg : F.BaseRegs)
3342 RegUses.countRegister(BaseReg, LUIdx);
3345 /// If the given formula has not yet been inserted, add it to the list, and
3346 /// return true. Return false otherwise.
3347 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3348 // Do not insert formula that we will not be able to expand.
3349 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3350 "Formula is illegal");
3352 if (!LU.InsertFormula(F, *L))
3353 return false;
3355 CountRegisters(F, LUIdx);
3356 return true;
3359 /// Check for other uses of loop-invariant values which we're tracking. These
3360 /// other uses will pin these values in registers, making them less profitable
3361 /// for elimination.
3362 /// TODO: This currently misses non-constant addrec step registers.
3363 /// TODO: Should this give more weight to users inside the loop?
3364 void
3365 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3366 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3367 SmallPtrSet<const SCEV *, 32> Visited;
3369 while (!Worklist.empty()) {
3370 const SCEV *S = Worklist.pop_back_val();
3372 // Don't process the same SCEV twice
3373 if (!Visited.insert(S).second)
3374 continue;
3376 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3377 Worklist.append(N->op_begin(), N->op_end());
3378 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3379 Worklist.push_back(C->getOperand());
3380 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3381 Worklist.push_back(D->getLHS());
3382 Worklist.push_back(D->getRHS());
3383 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3384 const Value *V = US->getValue();
3385 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3386 // Look for instructions defined outside the loop.
3387 if (L->contains(Inst)) continue;
3388 } else if (isa<UndefValue>(V))
3389 // Undef doesn't have a live range, so it doesn't matter.
3390 continue;
3391 for (const Use &U : V->uses()) {
3392 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3393 // Ignore non-instructions.
3394 if (!UserInst)
3395 continue;
3396 // Ignore instructions in other functions (as can happen with
3397 // Constants).
3398 if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3399 continue;
3400 // Ignore instructions not dominated by the loop.
3401 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3402 UserInst->getParent() :
3403 cast<PHINode>(UserInst)->getIncomingBlock(
3404 PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3405 if (!DT.dominates(L->getHeader(), UseBB))
3406 continue;
3407 // Don't bother if the instruction is in a BB which ends in an EHPad.
3408 if (UseBB->getTerminator()->isEHPad())
3409 continue;
3410 // Don't bother rewriting PHIs in catchswitch blocks.
3411 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3412 continue;
3413 // Ignore uses which are part of other SCEV expressions, to avoid
3414 // analyzing them multiple times.
3415 if (SE.isSCEVable(UserInst->getType())) {
3416 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3417 // If the user is a no-op, look through to its uses.
3418 if (!isa<SCEVUnknown>(UserS))
3419 continue;
3420 if (UserS == US) {
3421 Worklist.push_back(
3422 SE.getUnknown(const_cast<Instruction *>(UserInst)));
3423 continue;
3426 // Ignore icmp instructions which are already being analyzed.
3427 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3428 unsigned OtherIdx = !U.getOperandNo();
3429 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3430 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3431 continue;
3434 std::pair<size_t, int64_t> P = getUse(
3435 S, LSRUse::Basic, MemAccessTy());
3436 size_t LUIdx = P.first;
3437 int64_t Offset = P.second;
3438 LSRUse &LU = Uses[LUIdx];
3439 LSRFixup &LF = LU.getNewFixup();
3440 LF.UserInst = const_cast<Instruction *>(UserInst);
3441 LF.OperandValToReplace = U;
3442 LF.Offset = Offset;
3443 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3444 if (!LU.WidestFixupType ||
3445 SE.getTypeSizeInBits(LU.WidestFixupType) <
3446 SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3447 LU.WidestFixupType = LF.OperandValToReplace->getType();
3448 InsertSupplementalFormula(US, LU, LUIdx);
3449 CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3450 break;
3456 /// Split S into subexpressions which can be pulled out into separate
3457 /// registers. If C is non-null, multiply each subexpression by C.
3459 /// Return remainder expression after factoring the subexpressions captured by
3460 /// Ops. If Ops is complete, return NULL.
3461 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3462 SmallVectorImpl<const SCEV *> &Ops,
3463 const Loop *L,
3464 ScalarEvolution &SE,
3465 unsigned Depth = 0) {
3466 // Arbitrarily cap recursion to protect compile time.
3467 if (Depth >= 3)
3468 return S;
3470 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3471 // Break out add operands.
3472 for (const SCEV *S : Add->operands()) {
3473 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3474 if (Remainder)
3475 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3477 return nullptr;
3478 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3479 // Split a non-zero base out of an addrec.
3480 if (AR->getStart()->isZero() || !AR->isAffine())
3481 return S;
3483 const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3484 C, Ops, L, SE, Depth+1);
3485 // Split the non-zero AddRec unless it is part of a nested recurrence that
3486 // does not pertain to this loop.
3487 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3488 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3489 Remainder = nullptr;
3491 if (Remainder != AR->getStart()) {
3492 if (!Remainder)
3493 Remainder = SE.getConstant(AR->getType(), 0);
3494 return SE.getAddRecExpr(Remainder,
3495 AR->getStepRecurrence(SE),
3496 AR->getLoop(),
3497 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3498 SCEV::FlagAnyWrap);
3500 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3501 // Break (C * (a + b + c)) into C*a + C*b + C*c.
3502 if (Mul->getNumOperands() != 2)
3503 return S;
3504 if (const SCEVConstant *Op0 =
3505 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3506 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3507 const SCEV *Remainder =
3508 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3509 if (Remainder)
3510 Ops.push_back(SE.getMulExpr(C, Remainder));
3511 return nullptr;
3514 return S;
3517 /// Return true if the SCEV represents a value that may end up as a
3518 /// post-increment operation.
3519 static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
3520 LSRUse &LU, const SCEV *S, const Loop *L,
3521 ScalarEvolution &SE) {
3522 if (LU.Kind != LSRUse::Address ||
3523 !LU.AccessTy.getType()->isIntOrIntVectorTy())
3524 return false;
3525 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
3526 if (!AR)
3527 return false;
3528 const SCEV *LoopStep = AR->getStepRecurrence(SE);
3529 if (!isa<SCEVConstant>(LoopStep))
3530 return false;
3531 if (LU.AccessTy.getType()->getScalarSizeInBits() !=
3532 LoopStep->getType()->getScalarSizeInBits())
3533 return false;
3534 // Check if a post-indexed load/store can be used.
3535 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
3536 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
3537 const SCEV *LoopStart = AR->getStart();
3538 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
3539 return true;
3541 return false;
3544 /// Helper function for LSRInstance::GenerateReassociations.
3545 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3546 const Formula &Base,
3547 unsigned Depth, size_t Idx,
3548 bool IsScaledReg) {
3549 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3550 // Don't generate reassociations for the base register of a value that
3551 // may generate a post-increment operator. The reason is that the
3552 // reassociations cause extra base+register formula to be created,
3553 // and possibly chosen, but the post-increment is more efficient.
3554 if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
3555 return;
3556 SmallVector<const SCEV *, 8> AddOps;
3557 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3558 if (Remainder)
3559 AddOps.push_back(Remainder);
3561 if (AddOps.size() == 1)
3562 return;
3564 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3565 JE = AddOps.end();
3566 J != JE; ++J) {
3567 // Loop-variant "unknown" values are uninteresting; we won't be able to
3568 // do anything meaningful with them.
3569 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3570 continue;
3572 // Don't pull a constant into a register if the constant could be folded
3573 // into an immediate field.
3574 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3575 LU.AccessTy, *J, Base.getNumRegs() > 1))
3576 continue;
3578 // Collect all operands except *J.
3579 SmallVector<const SCEV *, 8> InnerAddOps(
3580 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3581 InnerAddOps.append(std::next(J),
3582 ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3584 // Don't leave just a constant behind in a register if the constant could
3585 // be folded into an immediate field.
3586 if (InnerAddOps.size() == 1 &&
3587 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3588 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3589 continue;
3591 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3592 if (InnerSum->isZero())
3593 continue;
3594 Formula F = Base;
3596 // Add the remaining pieces of the add back into the new formula.
3597 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3598 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3599 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3600 InnerSumSC->getValue()->getZExtValue())) {
3601 F.UnfoldedOffset =
3602 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3603 if (IsScaledReg)
3604 F.ScaledReg = nullptr;
3605 else
3606 F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3607 } else if (IsScaledReg)
3608 F.ScaledReg = InnerSum;
3609 else
3610 F.BaseRegs[Idx] = InnerSum;
3612 // Add J as its own register, or an unfolded immediate.
3613 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3614 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3615 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3616 SC->getValue()->getZExtValue()))
3617 F.UnfoldedOffset =
3618 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3619 else
3620 F.BaseRegs.push_back(*J);
3621 // We may have changed the number of register in base regs, adjust the
3622 // formula accordingly.
3623 F.canonicalize(*L);
3625 if (InsertFormula(LU, LUIdx, F))
3626 // If that formula hadn't been seen before, recurse to find more like
3627 // it.
3628 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
3629 // Because just Depth is not enough to bound compile time.
3630 // This means that every time AddOps.size() is greater 16^x we will add
3631 // x to Depth.
3632 GenerateReassociations(LU, LUIdx, LU.Formulae.back(),
3633 Depth + 1 + (Log2_32(AddOps.size()) >> 2));
3637 /// Split out subexpressions from adds and the bases of addrecs.
3638 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3639 Formula Base, unsigned Depth) {
3640 assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3641 // Arbitrarily cap recursion to protect compile time.
3642 if (Depth >= 3)
3643 return;
3645 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3646 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3648 if (Base.Scale == 1)
3649 GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3650 /* Idx */ -1, /* IsScaledReg */ true);
3653 /// Generate a formula consisting of all of the loop-dominating registers added
3654 /// into a single register.
3655 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3656 Formula Base) {
3657 // This method is only interesting on a plurality of registers.
3658 if (Base.BaseRegs.size() + (Base.Scale == 1) +
3659 (Base.UnfoldedOffset != 0) <= 1)
3660 return;
3662 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3663 // processing the formula.
3664 Base.unscale();
3665 SmallVector<const SCEV *, 4> Ops;
3666 Formula NewBase = Base;
3667 NewBase.BaseRegs.clear();
3668 Type *CombinedIntegerType = nullptr;
3669 for (const SCEV *BaseReg : Base.BaseRegs) {
3670 if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3671 !SE.hasComputableLoopEvolution(BaseReg, L)) {
3672 if (!CombinedIntegerType)
3673 CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType());
3674 Ops.push_back(BaseReg);
3676 else
3677 NewBase.BaseRegs.push_back(BaseReg);
3680 // If no register is relevant, we're done.
3681 if (Ops.size() == 0)
3682 return;
3684 // Utility function for generating the required variants of the combined
3685 // registers.
3686 auto GenerateFormula = [&](const SCEV *Sum) {
3687 Formula F = NewBase;
3689 // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3690 // opportunity to fold something. For now, just ignore such cases
3691 // rather than proceed with zero in a register.
3692 if (Sum->isZero())
3693 return;
3695 F.BaseRegs.push_back(Sum);
3696 F.canonicalize(*L);
3697 (void)InsertFormula(LU, LUIdx, F);
3700 // If we collected at least two registers, generate a formula combining them.
3701 if (Ops.size() > 1) {
3702 SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops.
3703 GenerateFormula(SE.getAddExpr(OpsCopy));
3706 // If we have an unfolded offset, generate a formula combining it with the
3707 // registers collected.
3708 if (NewBase.UnfoldedOffset) {
3709 assert(CombinedIntegerType && "Missing a type for the unfolded offset");
3710 Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset,
3711 true));
3712 NewBase.UnfoldedOffset = 0;
3713 GenerateFormula(SE.getAddExpr(Ops));
3717 /// Helper function for LSRInstance::GenerateSymbolicOffsets.
3718 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3719 const Formula &Base, size_t Idx,
3720 bool IsScaledReg) {
3721 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3722 GlobalValue *GV = ExtractSymbol(G, SE);
3723 if (G->isZero() || !GV)
3724 return;
3725 Formula F = Base;
3726 F.BaseGV = GV;
3727 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3728 return;
3729 if (IsScaledReg)
3730 F.ScaledReg = G;
3731 else
3732 F.BaseRegs[Idx] = G;
3733 (void)InsertFormula(LU, LUIdx, F);
3736 /// Generate reuse formulae using symbolic offsets.
3737 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3738 Formula Base) {
3739 // We can't add a symbolic offset if the address already contains one.
3740 if (Base.BaseGV) return;
3742 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3743 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3744 if (Base.Scale == 1)
3745 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3746 /* IsScaledReg */ true);
3749 /// Helper function for LSRInstance::GenerateConstantOffsets.
3750 void LSRInstance::GenerateConstantOffsetsImpl(
3751 LSRUse &LU, unsigned LUIdx, const Formula &Base,
3752 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3754 auto GenerateOffset = [&](const SCEV *G, int64_t Offset) {
3755 Formula F = Base;
3756 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3758 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3759 LU.AccessTy, F)) {
3760 // Add the offset to the base register.
3761 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3762 // If it cancelled out, drop the base register, otherwise update it.
3763 if (NewG->isZero()) {
3764 if (IsScaledReg) {
3765 F.Scale = 0;
3766 F.ScaledReg = nullptr;
3767 } else
3768 F.deleteBaseReg(F.BaseRegs[Idx]);
3769 F.canonicalize(*L);
3770 } else if (IsScaledReg)
3771 F.ScaledReg = NewG;
3772 else
3773 F.BaseRegs[Idx] = NewG;
3775 (void)InsertFormula(LU, LUIdx, F);
3779 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3781 // With constant offsets and constant steps, we can generate pre-inc
3782 // accesses by having the offset equal the step. So, for access #0 with a
3783 // step of 8, we generate a G - 8 base which would require the first access
3784 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
3785 // for itself and hopefully becomes the base for other accesses. This means
3786 // means that a single pre-indexed access can be generated to become the new
3787 // base pointer for each iteration of the loop, resulting in no extra add/sub
3788 // instructions for pointer updating.
3789 if (FavorBackedgeIndex && LU.Kind == LSRUse::Address) {
3790 if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) {
3791 if (auto *StepRec =
3792 dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) {
3793 const APInt &StepInt = StepRec->getAPInt();
3794 int64_t Step = StepInt.isNegative() ?
3795 StepInt.getSExtValue() : StepInt.getZExtValue();
3797 for (int64_t Offset : Worklist) {
3798 Offset -= Step;
3799 GenerateOffset(G, Offset);
3804 for (int64_t Offset : Worklist)
3805 GenerateOffset(G, Offset);
3807 int64_t Imm = ExtractImmediate(G, SE);
3808 if (G->isZero() || Imm == 0)
3809 return;
3810 Formula F = Base;
3811 F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3812 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3813 return;
3814 if (IsScaledReg)
3815 F.ScaledReg = G;
3816 else
3817 F.BaseRegs[Idx] = G;
3818 (void)InsertFormula(LU, LUIdx, F);
3821 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3822 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3823 Formula Base) {
3824 // TODO: For now, just add the min and max offset, because it usually isn't
3825 // worthwhile looking at everything inbetween.
3826 SmallVector<int64_t, 2> Worklist;
3827 Worklist.push_back(LU.MinOffset);
3828 if (LU.MaxOffset != LU.MinOffset)
3829 Worklist.push_back(LU.MaxOffset);
3831 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3832 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3833 if (Base.Scale == 1)
3834 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3835 /* IsScaledReg */ true);
3838 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3839 /// == y -> x*c == y*c.
3840 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3841 Formula Base) {
3842 if (LU.Kind != LSRUse::ICmpZero) return;
3844 // Determine the integer type for the base formula.
3845 Type *IntTy = Base.getType();
3846 if (!IntTy) return;
3847 if (SE.getTypeSizeInBits(IntTy) > 64) return;
3849 // Don't do this if there is more than one offset.
3850 if (LU.MinOffset != LU.MaxOffset) return;
3852 // Check if transformation is valid. It is illegal to multiply pointer.
3853 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3854 return;
3855 for (const SCEV *BaseReg : Base.BaseRegs)
3856 if (BaseReg->getType()->isPointerTy())
3857 return;
3858 assert(!Base.BaseGV && "ICmpZero use is not legal!");
3860 // Check each interesting stride.
3861 for (int64_t Factor : Factors) {
3862 // Check that the multiplication doesn't overflow.
3863 if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
3864 continue;
3865 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3866 if (NewBaseOffset / Factor != Base.BaseOffset)
3867 continue;
3868 // If the offset will be truncated at this use, check that it is in bounds.
3869 if (!IntTy->isPointerTy() &&
3870 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3871 continue;
3873 // Check that multiplying with the use offset doesn't overflow.
3874 int64_t Offset = LU.MinOffset;
3875 if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
3876 continue;
3877 Offset = (uint64_t)Offset * Factor;
3878 if (Offset / Factor != LU.MinOffset)
3879 continue;
3880 // If the offset will be truncated at this use, check that it is in bounds.
3881 if (!IntTy->isPointerTy() &&
3882 !ConstantInt::isValueValidForType(IntTy, Offset))
3883 continue;
3885 Formula F = Base;
3886 F.BaseOffset = NewBaseOffset;
3888 // Check that this scale is legal.
3889 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3890 continue;
3892 // Compensate for the use having MinOffset built into it.
3893 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3895 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3897 // Check that multiplying with each base register doesn't overflow.
3898 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3899 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3900 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3901 goto next;
3904 // Check that multiplying with the scaled register doesn't overflow.
3905 if (F.ScaledReg) {
3906 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3907 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3908 continue;
3911 // Check that multiplying with the unfolded offset doesn't overflow.
3912 if (F.UnfoldedOffset != 0) {
3913 if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
3914 Factor == -1)
3915 continue;
3916 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3917 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3918 continue;
3919 // If the offset will be truncated, check that it is in bounds.
3920 if (!IntTy->isPointerTy() &&
3921 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3922 continue;
3925 // If we make it here and it's legal, add it.
3926 (void)InsertFormula(LU, LUIdx, F);
3927 next:;
3931 /// Generate stride factor reuse formulae by making use of scaled-offset address
3932 /// modes, for example.
3933 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3934 // Determine the integer type for the base formula.
3935 Type *IntTy = Base.getType();
3936 if (!IntTy) return;
3938 // If this Formula already has a scaled register, we can't add another one.
3939 // Try to unscale the formula to generate a better scale.
3940 if (Base.Scale != 0 && !Base.unscale())
3941 return;
3943 assert(Base.Scale == 0 && "unscale did not did its job!");
3945 // Check each interesting stride.
3946 for (int64_t Factor : Factors) {
3947 Base.Scale = Factor;
3948 Base.HasBaseReg = Base.BaseRegs.size() > 1;
3949 // Check whether this scale is going to be legal.
3950 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3951 Base)) {
3952 // As a special-case, handle special out-of-loop Basic users specially.
3953 // TODO: Reconsider this special case.
3954 if (LU.Kind == LSRUse::Basic &&
3955 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3956 LU.AccessTy, Base) &&
3957 LU.AllFixupsOutsideLoop)
3958 LU.Kind = LSRUse::Special;
3959 else
3960 continue;
3962 // For an ICmpZero, negating a solitary base register won't lead to
3963 // new solutions.
3964 if (LU.Kind == LSRUse::ICmpZero &&
3965 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3966 continue;
3967 // For each addrec base reg, if its loop is current loop, apply the scale.
3968 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3969 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
3970 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
3971 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3972 if (FactorS->isZero())
3973 continue;
3974 // Divide out the factor, ignoring high bits, since we'll be
3975 // scaling the value back up in the end.
3976 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3977 // TODO: This could be optimized to avoid all the copying.
3978 Formula F = Base;
3979 F.ScaledReg = Quotient;
3980 F.deleteBaseReg(F.BaseRegs[i]);
3981 // The canonical representation of 1*reg is reg, which is already in
3982 // Base. In that case, do not try to insert the formula, it will be
3983 // rejected anyway.
3984 if (F.Scale == 1 && (F.BaseRegs.empty() ||
3985 (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
3986 continue;
3987 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
3988 // non canonical Formula with ScaledReg's loop not being L.
3989 if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
3990 F.canonicalize(*L);
3991 (void)InsertFormula(LU, LUIdx, F);
3998 /// Generate reuse formulae from different IV types.
3999 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
4000 // Don't bother truncating symbolic values.
4001 if (Base.BaseGV) return;
4003 // Determine the integer type for the base formula.
4004 Type *DstTy = Base.getType();
4005 if (!DstTy) return;
4006 DstTy = SE.getEffectiveSCEVType(DstTy);
4008 for (Type *SrcTy : Types) {
4009 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
4010 Formula F = Base;
4012 // Sometimes SCEV is able to prove zero during ext transform. It may
4013 // happen if SCEV did not do all possible transforms while creating the
4014 // initial node (maybe due to depth limitations), but it can do them while
4015 // taking ext.
4016 if (F.ScaledReg) {
4017 const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
4018 if (NewScaledReg->isZero())
4019 continue;
4020 F.ScaledReg = NewScaledReg;
4022 bool HasZeroBaseReg = false;
4023 for (const SCEV *&BaseReg : F.BaseRegs) {
4024 const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
4025 if (NewBaseReg->isZero()) {
4026 HasZeroBaseReg = true;
4027 break;
4029 BaseReg = NewBaseReg;
4031 if (HasZeroBaseReg)
4032 continue;
4034 // TODO: This assumes we've done basic processing on all uses and
4035 // have an idea what the register usage is.
4036 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
4037 continue;
4039 F.canonicalize(*L);
4040 (void)InsertFormula(LU, LUIdx, F);
4045 namespace {
4047 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4048 /// modifications so that the search phase doesn't have to worry about the data
4049 /// structures moving underneath it.
4050 struct WorkItem {
4051 size_t LUIdx;
4052 int64_t Imm;
4053 const SCEV *OrigReg;
4055 WorkItem(size_t LI, int64_t I, const SCEV *R)
4056 : LUIdx(LI), Imm(I), OrigReg(R) {}
4058 void print(raw_ostream &OS) const;
4059 void dump() const;
4062 } // end anonymous namespace
4064 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4065 void WorkItem::print(raw_ostream &OS) const {
4066 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
4067 << " , add offset " << Imm;
4070 LLVM_DUMP_METHOD void WorkItem::dump() const {
4071 print(errs()); errs() << '\n';
4073 #endif
4075 /// Look for registers which are a constant distance apart and try to form reuse
4076 /// opportunities between them.
4077 void LSRInstance::GenerateCrossUseConstantOffsets() {
4078 // Group the registers by their value without any added constant offset.
4079 using ImmMapTy = std::map<int64_t, const SCEV *>;
4081 DenseMap<const SCEV *, ImmMapTy> Map;
4082 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
4083 SmallVector<const SCEV *, 8> Sequence;
4084 for (const SCEV *Use : RegUses) {
4085 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
4086 int64_t Imm = ExtractImmediate(Reg, SE);
4087 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
4088 if (Pair.second)
4089 Sequence.push_back(Reg);
4090 Pair.first->second.insert(std::make_pair(Imm, Use));
4091 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
4094 // Now examine each set of registers with the same base value. Build up
4095 // a list of work to do and do the work in a separate step so that we're
4096 // not adding formulae and register counts while we're searching.
4097 SmallVector<WorkItem, 32> WorkItems;
4098 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
4099 for (const SCEV *Reg : Sequence) {
4100 const ImmMapTy &Imms = Map.find(Reg)->second;
4102 // It's not worthwhile looking for reuse if there's only one offset.
4103 if (Imms.size() == 1)
4104 continue;
4106 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
4107 for (const auto &Entry
4108 : Imms) dbgs()
4109 << ' ' << Entry.first;
4110 dbgs() << '\n');
4112 // Examine each offset.
4113 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
4114 J != JE; ++J) {
4115 const SCEV *OrigReg = J->second;
4117 int64_t JImm = J->first;
4118 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
4120 if (!isa<SCEVConstant>(OrigReg) &&
4121 UsedByIndicesMap[Reg].count() == 1) {
4122 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4123 << '\n');
4124 continue;
4127 // Conservatively examine offsets between this orig reg a few selected
4128 // other orig regs.
4129 ImmMapTy::const_iterator OtherImms[] = {
4130 Imms.begin(), std::prev(Imms.end()),
4131 Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) /
4134 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
4135 ImmMapTy::const_iterator M = OtherImms[i];
4136 if (M == J || M == JE) continue;
4138 // Compute the difference between the two.
4139 int64_t Imm = (uint64_t)JImm - M->first;
4140 for (unsigned LUIdx : UsedByIndices.set_bits())
4141 // Make a memo of this use, offset, and register tuple.
4142 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
4143 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
4148 Map.clear();
4149 Sequence.clear();
4150 UsedByIndicesMap.clear();
4151 UniqueItems.clear();
4153 // Now iterate through the worklist and add new formulae.
4154 for (const WorkItem &WI : WorkItems) {
4155 size_t LUIdx = WI.LUIdx;
4156 LSRUse &LU = Uses[LUIdx];
4157 int64_t Imm = WI.Imm;
4158 const SCEV *OrigReg = WI.OrigReg;
4160 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
4161 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
4162 unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
4164 // TODO: Use a more targeted data structure.
4165 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4166 Formula F = LU.Formulae[L];
4167 // FIXME: The code for the scaled and unscaled registers looks
4168 // very similar but slightly different. Investigate if they
4169 // could be merged. That way, we would not have to unscale the
4170 // Formula.
4171 F.unscale();
4172 // Use the immediate in the scaled register.
4173 if (F.ScaledReg == OrigReg) {
4174 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
4175 // Don't create 50 + reg(-50).
4176 if (F.referencesReg(SE.getSCEV(
4177 ConstantInt::get(IntTy, -(uint64_t)Offset))))
4178 continue;
4179 Formula NewF = F;
4180 NewF.BaseOffset = Offset;
4181 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4182 NewF))
4183 continue;
4184 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4186 // If the new scale is a constant in a register, and adding the constant
4187 // value to the immediate would produce a value closer to zero than the
4188 // immediate itself, then the formula isn't worthwhile.
4189 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4190 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4191 (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4192 .ule(std::abs(NewF.BaseOffset)))
4193 continue;
4195 // OK, looks good.
4196 NewF.canonicalize(*this->L);
4197 (void)InsertFormula(LU, LUIdx, NewF);
4198 } else {
4199 // Use the immediate in a base register.
4200 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4201 const SCEV *BaseReg = F.BaseRegs[N];
4202 if (BaseReg != OrigReg)
4203 continue;
4204 Formula NewF = F;
4205 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4206 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4207 LU.Kind, LU.AccessTy, NewF)) {
4208 if (TTI.shouldFavorPostInc() &&
4209 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
4210 continue;
4211 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4212 continue;
4213 NewF = F;
4214 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4216 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4218 // If the new formula has a constant in a register, and adding the
4219 // constant value to the immediate would produce a value closer to
4220 // zero than the immediate itself, then the formula isn't worthwhile.
4221 for (const SCEV *NewReg : NewF.BaseRegs)
4222 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4223 if ((C->getAPInt() + NewF.BaseOffset)
4224 .abs()
4225 .slt(std::abs(NewF.BaseOffset)) &&
4226 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
4227 countTrailingZeros<uint64_t>(NewF.BaseOffset))
4228 goto skip_formula;
4230 // Ok, looks good.
4231 NewF.canonicalize(*this->L);
4232 (void)InsertFormula(LU, LUIdx, NewF);
4233 break;
4234 skip_formula:;
4241 /// Generate formulae for each use.
4242 void
4243 LSRInstance::GenerateAllReuseFormulae() {
4244 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4245 // queries are more precise.
4246 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4247 LSRUse &LU = Uses[LUIdx];
4248 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4249 GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4250 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4251 GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4253 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4254 LSRUse &LU = Uses[LUIdx];
4255 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4256 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4257 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4258 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4259 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4260 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4261 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4262 GenerateScales(LU, LUIdx, LU.Formulae[i]);
4264 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4265 LSRUse &LU = Uses[LUIdx];
4266 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4267 GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4270 GenerateCrossUseConstantOffsets();
4272 LLVM_DEBUG(dbgs() << "\n"
4273 "After generating reuse formulae:\n";
4274 print_uses(dbgs()));
4277 /// If there are multiple formulae with the same set of registers used
4278 /// by other uses, pick the best one and delete the others.
4279 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4280 DenseSet<const SCEV *> VisitedRegs;
4281 SmallPtrSet<const SCEV *, 16> Regs;
4282 SmallPtrSet<const SCEV *, 16> LoserRegs;
4283 #ifndef NDEBUG
4284 bool ChangedFormulae = false;
4285 #endif
4287 // Collect the best formula for each unique set of shared registers. This
4288 // is reset for each use.
4289 using BestFormulaeTy =
4290 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4292 BestFormulaeTy BestFormulae;
4294 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4295 LSRUse &LU = Uses[LUIdx];
4296 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4297 dbgs() << '\n');
4299 bool Any = false;
4300 for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4301 FIdx != NumForms; ++FIdx) {
4302 Formula &F = LU.Formulae[FIdx];
4304 // Some formulas are instant losers. For example, they may depend on
4305 // nonexistent AddRecs from other loops. These need to be filtered
4306 // immediately, otherwise heuristics could choose them over others leading
4307 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4308 // avoids the need to recompute this information across formulae using the
4309 // same bad AddRec. Passing LoserRegs is also essential unless we remove
4310 // the corresponding bad register from the Regs set.
4311 Cost CostF;
4312 Regs.clear();
4313 CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs);
4314 if (CostF.isLoser()) {
4315 // During initial formula generation, undesirable formulae are generated
4316 // by uses within other loops that have some non-trivial address mode or
4317 // use the postinc form of the IV. LSR needs to provide these formulae
4318 // as the basis of rediscovering the desired formula that uses an AddRec
4319 // corresponding to the existing phi. Once all formulae have been
4320 // generated, these initial losers may be pruned.
4321 LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs());
4322 dbgs() << "\n");
4324 else {
4325 SmallVector<const SCEV *, 4> Key;
4326 for (const SCEV *Reg : F.BaseRegs) {
4327 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4328 Key.push_back(Reg);
4330 if (F.ScaledReg &&
4331 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4332 Key.push_back(F.ScaledReg);
4333 // Unstable sort by host order ok, because this is only used for
4334 // uniquifying.
4335 llvm::sort(Key);
4337 std::pair<BestFormulaeTy::const_iterator, bool> P =
4338 BestFormulae.insert(std::make_pair(Key, FIdx));
4339 if (P.second)
4340 continue;
4342 Formula &Best = LU.Formulae[P.first->second];
4344 Cost CostBest;
4345 Regs.clear();
4346 CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU);
4347 if (CostF.isLess(CostBest, TTI))
4348 std::swap(F, Best);
4349 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
4350 dbgs() << "\n"
4351 " in favor of formula ";
4352 Best.print(dbgs()); dbgs() << '\n');
4354 #ifndef NDEBUG
4355 ChangedFormulae = true;
4356 #endif
4357 LU.DeleteFormula(F);
4358 --FIdx;
4359 --NumForms;
4360 Any = true;
4363 // Now that we've filtered out some formulae, recompute the Regs set.
4364 if (Any)
4365 LU.RecomputeRegs(LUIdx, RegUses);
4367 // Reset this to prepare for the next use.
4368 BestFormulae.clear();
4371 LLVM_DEBUG(if (ChangedFormulae) {
4372 dbgs() << "\n"
4373 "After filtering out undesirable candidates:\n";
4374 print_uses(dbgs());
4378 /// Estimate the worst-case number of solutions the solver might have to
4379 /// consider. It almost never considers this many solutions because it prune the
4380 /// search space, but the pruning isn't always sufficient.
4381 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4382 size_t Power = 1;
4383 for (const LSRUse &LU : Uses) {
4384 size_t FSize = LU.Formulae.size();
4385 if (FSize >= ComplexityLimit) {
4386 Power = ComplexityLimit;
4387 break;
4389 Power *= FSize;
4390 if (Power >= ComplexityLimit)
4391 break;
4393 return Power;
4396 /// When one formula uses a superset of the registers of another formula, it
4397 /// won't help reduce register pressure (though it may not necessarily hurt
4398 /// register pressure); remove it to simplify the system.
4399 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4400 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4401 LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4403 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4404 "which use a superset of registers used by other "
4405 "formulae.\n");
4407 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4408 LSRUse &LU = Uses[LUIdx];
4409 bool Any = false;
4410 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4411 Formula &F = LU.Formulae[i];
4412 // Look for a formula with a constant or GV in a register. If the use
4413 // also has a formula with that same value in an immediate field,
4414 // delete the one that uses a register.
4415 for (SmallVectorImpl<const SCEV *>::const_iterator
4416 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4417 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4418 Formula NewF = F;
4419 NewF.BaseOffset += C->getValue()->getSExtValue();
4420 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4421 (I - F.BaseRegs.begin()));
4422 if (LU.HasFormulaWithSameRegs(NewF)) {
4423 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs());
4424 dbgs() << '\n');
4425 LU.DeleteFormula(F);
4426 --i;
4427 --e;
4428 Any = true;
4429 break;
4431 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4432 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4433 if (!F.BaseGV) {
4434 Formula NewF = F;
4435 NewF.BaseGV = GV;
4436 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4437 (I - F.BaseRegs.begin()));
4438 if (LU.HasFormulaWithSameRegs(NewF)) {
4439 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs());
4440 dbgs() << '\n');
4441 LU.DeleteFormula(F);
4442 --i;
4443 --e;
4444 Any = true;
4445 break;
4451 if (Any)
4452 LU.RecomputeRegs(LUIdx, RegUses);
4455 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4459 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4460 /// allocate a single register for them.
4461 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4462 if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4463 return;
4465 LLVM_DEBUG(
4466 dbgs() << "The search space is too complex.\n"
4467 "Narrowing the search space by assuming that uses separated "
4468 "by a constant offset will use the same registers.\n");
4470 // This is especially useful for unrolled loops.
4472 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4473 LSRUse &LU = Uses[LUIdx];
4474 for (const Formula &F : LU.Formulae) {
4475 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4476 continue;
4478 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4479 if (!LUThatHas)
4480 continue;
4482 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4483 LU.Kind, LU.AccessTy))
4484 continue;
4486 LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4488 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4490 // Transfer the fixups of LU to LUThatHas.
4491 for (LSRFixup &Fixup : LU.Fixups) {
4492 Fixup.Offset += F.BaseOffset;
4493 LUThatHas->pushFixup(Fixup);
4494 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4497 // Delete formulae from the new use which are no longer legal.
4498 bool Any = false;
4499 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4500 Formula &F = LUThatHas->Formulae[i];
4501 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4502 LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4503 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
4504 LUThatHas->DeleteFormula(F);
4505 --i;
4506 --e;
4507 Any = true;
4511 if (Any)
4512 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4514 // Delete the old use.
4515 DeleteUse(LU, LUIdx);
4516 --LUIdx;
4517 --NumUses;
4518 break;
4522 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4525 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4526 /// we've done more filtering, as it may be able to find more formulae to
4527 /// eliminate.
4528 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4529 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4530 LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4532 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4533 "undesirable dedicated registers.\n");
4535 FilterOutUndesirableDedicatedRegisters();
4537 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4541 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4542 /// Pick the best one and delete the others.
4543 /// This narrowing heuristic is to keep as many formulae with different
4544 /// Scale and ScaledReg pair as possible while narrowing the search space.
4545 /// The benefit is that it is more likely to find out a better solution
4546 /// from a formulae set with more Scale and ScaledReg variations than
4547 /// a formulae set with the same Scale and ScaledReg. The picking winner
4548 /// reg heuristic will often keep the formulae with the same Scale and
4549 /// ScaledReg and filter others, and we want to avoid that if possible.
4550 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4551 if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4552 return;
4554 LLVM_DEBUG(
4555 dbgs() << "The search space is too complex.\n"
4556 "Narrowing the search space by choosing the best Formula "
4557 "from the Formulae with the same Scale and ScaledReg.\n");
4559 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4560 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4562 BestFormulaeTy BestFormulae;
4563 #ifndef NDEBUG
4564 bool ChangedFormulae = false;
4565 #endif
4566 DenseSet<const SCEV *> VisitedRegs;
4567 SmallPtrSet<const SCEV *, 16> Regs;
4569 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4570 LSRUse &LU = Uses[LUIdx];
4571 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4572 dbgs() << '\n');
4574 // Return true if Formula FA is better than Formula FB.
4575 auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4576 // First we will try to choose the Formula with fewer new registers.
4577 // For a register used by current Formula, the more the register is
4578 // shared among LSRUses, the less we increase the register number
4579 // counter of the formula.
4580 size_t FARegNum = 0;
4581 for (const SCEV *Reg : FA.BaseRegs) {
4582 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4583 FARegNum += (NumUses - UsedByIndices.count() + 1);
4585 size_t FBRegNum = 0;
4586 for (const SCEV *Reg : FB.BaseRegs) {
4587 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4588 FBRegNum += (NumUses - UsedByIndices.count() + 1);
4590 if (FARegNum != FBRegNum)
4591 return FARegNum < FBRegNum;
4593 // If the new register numbers are the same, choose the Formula with
4594 // less Cost.
4595 Cost CostFA, CostFB;
4596 Regs.clear();
4597 CostFA.RateFormula(TTI, FA, Regs, VisitedRegs, L, SE, DT, LU);
4598 Regs.clear();
4599 CostFB.RateFormula(TTI, FB, Regs, VisitedRegs, L, SE, DT, LU);
4600 return CostFA.isLess(CostFB, TTI);
4603 bool Any = false;
4604 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4605 ++FIdx) {
4606 Formula &F = LU.Formulae[FIdx];
4607 if (!F.ScaledReg)
4608 continue;
4609 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4610 if (P.second)
4611 continue;
4613 Formula &Best = LU.Formulae[P.first->second];
4614 if (IsBetterThan(F, Best))
4615 std::swap(F, Best);
4616 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
4617 dbgs() << "\n"
4618 " in favor of formula ";
4619 Best.print(dbgs()); dbgs() << '\n');
4620 #ifndef NDEBUG
4621 ChangedFormulae = true;
4622 #endif
4623 LU.DeleteFormula(F);
4624 --FIdx;
4625 --NumForms;
4626 Any = true;
4628 if (Any)
4629 LU.RecomputeRegs(LUIdx, RegUses);
4631 // Reset this to prepare for the next use.
4632 BestFormulae.clear();
4635 LLVM_DEBUG(if (ChangedFormulae) {
4636 dbgs() << "\n"
4637 "After filtering out undesirable candidates:\n";
4638 print_uses(dbgs());
4642 /// The function delete formulas with high registers number expectation.
4643 /// Assuming we don't know the value of each formula (already delete
4644 /// all inefficient), generate probability of not selecting for each
4645 /// register.
4646 /// For example,
4647 /// Use1:
4648 /// reg(a) + reg({0,+,1})
4649 /// reg(a) + reg({-1,+,1}) + 1
4650 /// reg({a,+,1})
4651 /// Use2:
4652 /// reg(b) + reg({0,+,1})
4653 /// reg(b) + reg({-1,+,1}) + 1
4654 /// reg({b,+,1})
4655 /// Use3:
4656 /// reg(c) + reg(b) + reg({0,+,1})
4657 /// reg(c) + reg({b,+,1})
4659 /// Probability of not selecting
4660 /// Use1 Use2 Use3
4661 /// reg(a) (1/3) * 1 * 1
4662 /// reg(b) 1 * (1/3) * (1/2)
4663 /// reg({0,+,1}) (2/3) * (2/3) * (1/2)
4664 /// reg({-1,+,1}) (2/3) * (2/3) * 1
4665 /// reg({a,+,1}) (2/3) * 1 * 1
4666 /// reg({b,+,1}) 1 * (2/3) * (2/3)
4667 /// reg(c) 1 * 1 * 0
4669 /// Now count registers number mathematical expectation for each formula:
4670 /// Note that for each use we exclude probability if not selecting for the use.
4671 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4672 /// probabilty 1/3 of not selecting for Use1).
4673 /// Use1:
4674 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted
4675 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted
4676 /// reg({a,+,1}) 1
4677 /// Use2:
4678 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted
4679 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted
4680 /// reg({b,+,1}) 2/3
4681 /// Use3:
4682 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4683 /// reg(c) + reg({b,+,1}) 1 + 2/3
4684 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4685 if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4686 return;
4687 // Ok, we have too many of formulae on our hands to conveniently handle.
4688 // Use a rough heuristic to thin out the list.
4690 // Set of Regs wich will be 100% used in final solution.
4691 // Used in each formula of a solution (in example above this is reg(c)).
4692 // We can skip them in calculations.
4693 SmallPtrSet<const SCEV *, 4> UniqRegs;
4694 LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4696 // Map each register to probability of not selecting
4697 DenseMap <const SCEV *, float> RegNumMap;
4698 for (const SCEV *Reg : RegUses) {
4699 if (UniqRegs.count(Reg))
4700 continue;
4701 float PNotSel = 1;
4702 for (const LSRUse &LU : Uses) {
4703 if (!LU.Regs.count(Reg))
4704 continue;
4705 float P = LU.getNotSelectedProbability(Reg);
4706 if (P != 0.0)
4707 PNotSel *= P;
4708 else
4709 UniqRegs.insert(Reg);
4711 RegNumMap.insert(std::make_pair(Reg, PNotSel));
4714 LLVM_DEBUG(
4715 dbgs() << "Narrowing the search space by deleting costly formulas\n");
4717 // Delete formulas where registers number expectation is high.
4718 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4719 LSRUse &LU = Uses[LUIdx];
4720 // If nothing to delete - continue.
4721 if (LU.Formulae.size() < 2)
4722 continue;
4723 // This is temporary solution to test performance. Float should be
4724 // replaced with round independent type (based on integers) to avoid
4725 // different results for different target builds.
4726 float FMinRegNum = LU.Formulae[0].getNumRegs();
4727 float FMinARegNum = LU.Formulae[0].getNumRegs();
4728 size_t MinIdx = 0;
4729 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4730 Formula &F = LU.Formulae[i];
4731 float FRegNum = 0;
4732 float FARegNum = 0;
4733 for (const SCEV *BaseReg : F.BaseRegs) {
4734 if (UniqRegs.count(BaseReg))
4735 continue;
4736 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4737 if (isa<SCEVAddRecExpr>(BaseReg))
4738 FARegNum +=
4739 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4741 if (const SCEV *ScaledReg = F.ScaledReg) {
4742 if (!UniqRegs.count(ScaledReg)) {
4743 FRegNum +=
4744 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4745 if (isa<SCEVAddRecExpr>(ScaledReg))
4746 FARegNum +=
4747 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4750 if (FMinRegNum > FRegNum ||
4751 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4752 FMinRegNum = FRegNum;
4753 FMinARegNum = FARegNum;
4754 MinIdx = i;
4757 LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs());
4758 dbgs() << " with min reg num " << FMinRegNum << '\n');
4759 if (MinIdx != 0)
4760 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4761 while (LU.Formulae.size() != 1) {
4762 LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs());
4763 dbgs() << '\n');
4764 LU.Formulae.pop_back();
4766 LU.RecomputeRegs(LUIdx, RegUses);
4767 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
4768 Formula &F = LU.Formulae[0];
4769 LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n');
4770 // When we choose the formula, the regs become unique.
4771 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4772 if (F.ScaledReg)
4773 UniqRegs.insert(F.ScaledReg);
4775 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4778 /// Pick a register which seems likely to be profitable, and then in any use
4779 /// which has any reference to that register, delete all formulae which do not
4780 /// reference that register.
4781 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4782 // With all other options exhausted, loop until the system is simple
4783 // enough to handle.
4784 SmallPtrSet<const SCEV *, 4> Taken;
4785 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4786 // Ok, we have too many of formulae on our hands to conveniently handle.
4787 // Use a rough heuristic to thin out the list.
4788 LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4790 // Pick the register which is used by the most LSRUses, which is likely
4791 // to be a good reuse register candidate.
4792 const SCEV *Best = nullptr;
4793 unsigned BestNum = 0;
4794 for (const SCEV *Reg : RegUses) {
4795 if (Taken.count(Reg))
4796 continue;
4797 if (!Best) {
4798 Best = Reg;
4799 BestNum = RegUses.getUsedByIndices(Reg).count();
4800 } else {
4801 unsigned Count = RegUses.getUsedByIndices(Reg).count();
4802 if (Count > BestNum) {
4803 Best = Reg;
4804 BestNum = Count;
4809 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4810 << " will yield profitable reuse.\n");
4811 Taken.insert(Best);
4813 // In any use with formulae which references this register, delete formulae
4814 // which don't reference it.
4815 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4816 LSRUse &LU = Uses[LUIdx];
4817 if (!LU.Regs.count(Best)) continue;
4819 bool Any = false;
4820 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4821 Formula &F = LU.Formulae[i];
4822 if (!F.referencesReg(Best)) {
4823 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
4824 LU.DeleteFormula(F);
4825 --e;
4826 --i;
4827 Any = true;
4828 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4829 continue;
4833 if (Any)
4834 LU.RecomputeRegs(LUIdx, RegUses);
4837 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4841 /// If there are an extraordinary number of formulae to choose from, use some
4842 /// rough heuristics to prune down the number of formulae. This keeps the main
4843 /// solver from taking an extraordinary amount of time in some worst-case
4844 /// scenarios.
4845 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4846 NarrowSearchSpaceByDetectingSupersets();
4847 NarrowSearchSpaceByCollapsingUnrolledCode();
4848 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4849 if (FilterSameScaledReg)
4850 NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
4851 if (LSRExpNarrow)
4852 NarrowSearchSpaceByDeletingCostlyFormulas();
4853 else
4854 NarrowSearchSpaceByPickingWinnerRegs();
4857 /// This is the recursive solver.
4858 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4859 Cost &SolutionCost,
4860 SmallVectorImpl<const Formula *> &Workspace,
4861 const Cost &CurCost,
4862 const SmallPtrSet<const SCEV *, 16> &CurRegs,
4863 DenseSet<const SCEV *> &VisitedRegs) const {
4864 // Some ideas:
4865 // - prune more:
4866 // - use more aggressive filtering
4867 // - sort the formula so that the most profitable solutions are found first
4868 // - sort the uses too
4869 // - search faster:
4870 // - don't compute a cost, and then compare. compare while computing a cost
4871 // and bail early.
4872 // - track register sets with SmallBitVector
4874 const LSRUse &LU = Uses[Workspace.size()];
4876 // If this use references any register that's already a part of the
4877 // in-progress solution, consider it a requirement that a formula must
4878 // reference that register in order to be considered. This prunes out
4879 // unprofitable searching.
4880 SmallSetVector<const SCEV *, 4> ReqRegs;
4881 for (const SCEV *S : CurRegs)
4882 if (LU.Regs.count(S))
4883 ReqRegs.insert(S);
4885 SmallPtrSet<const SCEV *, 16> NewRegs;
4886 Cost NewCost;
4887 for (const Formula &F : LU.Formulae) {
4888 // Ignore formulae which may not be ideal in terms of register reuse of
4889 // ReqRegs. The formula should use all required registers before
4890 // introducing new ones.
4891 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4892 for (const SCEV *Reg : ReqRegs) {
4893 if ((F.ScaledReg && F.ScaledReg == Reg) ||
4894 is_contained(F.BaseRegs, Reg)) {
4895 --NumReqRegsToFind;
4896 if (NumReqRegsToFind == 0)
4897 break;
4900 if (NumReqRegsToFind != 0) {
4901 // If none of the formulae satisfied the required registers, then we could
4902 // clear ReqRegs and try again. Currently, we simply give up in this case.
4903 continue;
4906 // Evaluate the cost of the current formula. If it's already worse than
4907 // the current best, prune the search at that point.
4908 NewCost = CurCost;
4909 NewRegs = CurRegs;
4910 NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU);
4911 if (NewCost.isLess(SolutionCost, TTI)) {
4912 Workspace.push_back(&F);
4913 if (Workspace.size() != Uses.size()) {
4914 SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4915 NewRegs, VisitedRegs);
4916 if (F.getNumRegs() == 1 && Workspace.size() == 1)
4917 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4918 } else {
4919 LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4920 dbgs() << ".\n Regs:"; for (const SCEV *S
4921 : NewRegs) dbgs()
4922 << ' ' << *S;
4923 dbgs() << '\n');
4925 SolutionCost = NewCost;
4926 Solution = Workspace;
4928 Workspace.pop_back();
4933 /// Choose one formula from each use. Return the results in the given Solution
4934 /// vector.
4935 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4936 SmallVector<const Formula *, 8> Workspace;
4937 Cost SolutionCost;
4938 SolutionCost.Lose();
4939 Cost CurCost;
4940 SmallPtrSet<const SCEV *, 16> CurRegs;
4941 DenseSet<const SCEV *> VisitedRegs;
4942 Workspace.reserve(Uses.size());
4944 // SolveRecurse does all the work.
4945 SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4946 CurRegs, VisitedRegs);
4947 if (Solution.empty()) {
4948 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4949 return;
4952 // Ok, we've now made all our decisions.
4953 LLVM_DEBUG(dbgs() << "\n"
4954 "The chosen solution requires ";
4955 SolutionCost.print(dbgs()); dbgs() << ":\n";
4956 for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4957 dbgs() << " ";
4958 Uses[i].print(dbgs());
4959 dbgs() << "\n"
4960 " ";
4961 Solution[i]->print(dbgs());
4962 dbgs() << '\n';
4965 assert(Solution.size() == Uses.size() && "Malformed solution!");
4968 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
4969 /// we can go while still being dominated by the input positions. This helps
4970 /// canonicalize the insert position, which encourages sharing.
4971 BasicBlock::iterator
4972 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
4973 const SmallVectorImpl<Instruction *> &Inputs)
4974 const {
4975 Instruction *Tentative = &*IP;
4976 while (true) {
4977 bool AllDominate = true;
4978 Instruction *BetterPos = nullptr;
4979 // Don't bother attempting to insert before a catchswitch, their basic block
4980 // cannot have other non-PHI instructions.
4981 if (isa<CatchSwitchInst>(Tentative))
4982 return IP;
4984 for (Instruction *Inst : Inputs) {
4985 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
4986 AllDominate = false;
4987 break;
4989 // Attempt to find an insert position in the middle of the block,
4990 // instead of at the end, so that it can be used for other expansions.
4991 if (Tentative->getParent() == Inst->getParent() &&
4992 (!BetterPos || !DT.dominates(Inst, BetterPos)))
4993 BetterPos = &*std::next(BasicBlock::iterator(Inst));
4995 if (!AllDominate)
4996 break;
4997 if (BetterPos)
4998 IP = BetterPos->getIterator();
4999 else
5000 IP = Tentative->getIterator();
5002 const Loop *IPLoop = LI.getLoopFor(IP->getParent());
5003 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
5005 BasicBlock *IDom;
5006 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
5007 if (!Rung) return IP;
5008 Rung = Rung->getIDom();
5009 if (!Rung) return IP;
5010 IDom = Rung->getBlock();
5012 // Don't climb into a loop though.
5013 const Loop *IDomLoop = LI.getLoopFor(IDom);
5014 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
5015 if (IDomDepth <= IPLoopDepth &&
5016 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
5017 break;
5020 Tentative = IDom->getTerminator();
5023 return IP;
5026 /// Determine an input position which will be dominated by the operands and
5027 /// which will dominate the result.
5028 BasicBlock::iterator
5029 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
5030 const LSRFixup &LF,
5031 const LSRUse &LU,
5032 SCEVExpander &Rewriter) const {
5033 // Collect some instructions which must be dominated by the
5034 // expanding replacement. These must be dominated by any operands that
5035 // will be required in the expansion.
5036 SmallVector<Instruction *, 4> Inputs;
5037 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
5038 Inputs.push_back(I);
5039 if (LU.Kind == LSRUse::ICmpZero)
5040 if (Instruction *I =
5041 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
5042 Inputs.push_back(I);
5043 if (LF.PostIncLoops.count(L)) {
5044 if (LF.isUseFullyOutsideLoop(L))
5045 Inputs.push_back(L->getLoopLatch()->getTerminator());
5046 else
5047 Inputs.push_back(IVIncInsertPos);
5049 // The expansion must also be dominated by the increment positions of any
5050 // loops it for which it is using post-inc mode.
5051 for (const Loop *PIL : LF.PostIncLoops) {
5052 if (PIL == L) continue;
5054 // Be dominated by the loop exit.
5055 SmallVector<BasicBlock *, 4> ExitingBlocks;
5056 PIL->getExitingBlocks(ExitingBlocks);
5057 if (!ExitingBlocks.empty()) {
5058 BasicBlock *BB = ExitingBlocks[0];
5059 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
5060 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
5061 Inputs.push_back(BB->getTerminator());
5065 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
5066 && !isa<DbgInfoIntrinsic>(LowestIP) &&
5067 "Insertion point must be a normal instruction");
5069 // Then, climb up the immediate dominator tree as far as we can go while
5070 // still being dominated by the input positions.
5071 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
5073 // Don't insert instructions before PHI nodes.
5074 while (isa<PHINode>(IP)) ++IP;
5076 // Ignore landingpad instructions.
5077 while (IP->isEHPad()) ++IP;
5079 // Ignore debug intrinsics.
5080 while (isa<DbgInfoIntrinsic>(IP)) ++IP;
5082 // Set IP below instructions recently inserted by SCEVExpander. This keeps the
5083 // IP consistent across expansions and allows the previously inserted
5084 // instructions to be reused by subsequent expansion.
5085 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
5086 ++IP;
5088 return IP;
5091 /// Emit instructions for the leading candidate expression for this LSRUse (this
5092 /// is called "expanding").
5093 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
5094 const Formula &F, BasicBlock::iterator IP,
5095 SCEVExpander &Rewriter,
5096 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5097 if (LU.RigidFormula)
5098 return LF.OperandValToReplace;
5100 // Determine an input position which will be dominated by the operands and
5101 // which will dominate the result.
5102 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
5103 Rewriter.setInsertPoint(&*IP);
5105 // Inform the Rewriter if we have a post-increment use, so that it can
5106 // perform an advantageous expansion.
5107 Rewriter.setPostInc(LF.PostIncLoops);
5109 // This is the type that the user actually needs.
5110 Type *OpTy = LF.OperandValToReplace->getType();
5111 // This will be the type that we'll initially expand to.
5112 Type *Ty = F.getType();
5113 if (!Ty)
5114 // No type known; just expand directly to the ultimate type.
5115 Ty = OpTy;
5116 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
5117 // Expand directly to the ultimate type if it's the right size.
5118 Ty = OpTy;
5119 // This is the type to do integer arithmetic in.
5120 Type *IntTy = SE.getEffectiveSCEVType(Ty);
5122 // Build up a list of operands to add together to form the full base.
5123 SmallVector<const SCEV *, 8> Ops;
5125 // Expand the BaseRegs portion.
5126 for (const SCEV *Reg : F.BaseRegs) {
5127 assert(!Reg->isZero() && "Zero allocated in a base register!");
5129 // If we're expanding for a post-inc user, make the post-inc adjustment.
5130 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
5131 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
5134 // Expand the ScaledReg portion.
5135 Value *ICmpScaledV = nullptr;
5136 if (F.Scale != 0) {
5137 const SCEV *ScaledS = F.ScaledReg;
5139 // If we're expanding for a post-inc user, make the post-inc adjustment.
5140 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
5141 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
5143 if (LU.Kind == LSRUse::ICmpZero) {
5144 // Expand ScaleReg as if it was part of the base regs.
5145 if (F.Scale == 1)
5146 Ops.push_back(
5147 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
5148 else {
5149 // An interesting way of "folding" with an icmp is to use a negated
5150 // scale, which we'll implement by inserting it into the other operand
5151 // of the icmp.
5152 assert(F.Scale == -1 &&
5153 "The only scale supported by ICmpZero uses is -1!");
5154 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
5156 } else {
5157 // Otherwise just expand the scaled register and an explicit scale,
5158 // which is expected to be matched as part of the address.
5160 // Flush the operand list to suppress SCEVExpander hoisting address modes.
5161 // Unless the addressing mode will not be folded.
5162 if (!Ops.empty() && LU.Kind == LSRUse::Address &&
5163 isAMCompletelyFolded(TTI, LU, F)) {
5164 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
5165 Ops.clear();
5166 Ops.push_back(SE.getUnknown(FullV));
5168 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5169 if (F.Scale != 1)
5170 ScaledS =
5171 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5172 Ops.push_back(ScaledS);
5176 // Expand the GV portion.
5177 if (F.BaseGV) {
5178 // Flush the operand list to suppress SCEVExpander hoisting.
5179 if (!Ops.empty()) {
5180 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5181 Ops.clear();
5182 Ops.push_back(SE.getUnknown(FullV));
5184 Ops.push_back(SE.getUnknown(F.BaseGV));
5187 // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5188 // unfolded offsets. LSR assumes they both live next to their uses.
5189 if (!Ops.empty()) {
5190 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5191 Ops.clear();
5192 Ops.push_back(SE.getUnknown(FullV));
5195 // Expand the immediate portion.
5196 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5197 if (Offset != 0) {
5198 if (LU.Kind == LSRUse::ICmpZero) {
5199 // The other interesting way of "folding" with an ICmpZero is to use a
5200 // negated immediate.
5201 if (!ICmpScaledV)
5202 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5203 else {
5204 Ops.push_back(SE.getUnknown(ICmpScaledV));
5205 ICmpScaledV = ConstantInt::get(IntTy, Offset);
5207 } else {
5208 // Just add the immediate values. These again are expected to be matched
5209 // as part of the address.
5210 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5214 // Expand the unfolded offset portion.
5215 int64_t UnfoldedOffset = F.UnfoldedOffset;
5216 if (UnfoldedOffset != 0) {
5217 // Just add the immediate values.
5218 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5219 UnfoldedOffset)));
5222 // Emit instructions summing all the operands.
5223 const SCEV *FullS = Ops.empty() ?
5224 SE.getConstant(IntTy, 0) :
5225 SE.getAddExpr(Ops);
5226 Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5228 // We're done expanding now, so reset the rewriter.
5229 Rewriter.clearPostInc();
5231 // An ICmpZero Formula represents an ICmp which we're handling as a
5232 // comparison against zero. Now that we've expanded an expression for that
5233 // form, update the ICmp's other operand.
5234 if (LU.Kind == LSRUse::ICmpZero) {
5235 ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5236 DeadInsts.emplace_back(CI->getOperand(1));
5237 assert(!F.BaseGV && "ICmp does not support folding a global value and "
5238 "a scale at the same time!");
5239 if (F.Scale == -1) {
5240 if (ICmpScaledV->getType() != OpTy) {
5241 Instruction *Cast =
5242 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5243 OpTy, false),
5244 ICmpScaledV, OpTy, "tmp", CI);
5245 ICmpScaledV = Cast;
5247 CI->setOperand(1, ICmpScaledV);
5248 } else {
5249 // A scale of 1 means that the scale has been expanded as part of the
5250 // base regs.
5251 assert((F.Scale == 0 || F.Scale == 1) &&
5252 "ICmp does not support folding a global value and "
5253 "a scale at the same time!");
5254 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5255 -(uint64_t)Offset);
5256 if (C->getType() != OpTy)
5257 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5258 OpTy, false),
5259 C, OpTy);
5261 CI->setOperand(1, C);
5265 return FullV;
5268 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5269 /// effectively happens in their predecessor blocks, so the expression may need
5270 /// to be expanded in multiple places.
5271 void LSRInstance::RewriteForPHI(
5272 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5273 SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5274 DenseMap<BasicBlock *, Value *> Inserted;
5275 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5276 if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5277 BasicBlock *BB = PN->getIncomingBlock(i);
5279 // If this is a critical edge, split the edge so that we do not insert
5280 // the code on all predecessor/successor paths. We do this unless this
5281 // is the canonical backedge for this loop, which complicates post-inc
5282 // users.
5283 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5284 !isa<IndirectBrInst>(BB->getTerminator()) &&
5285 !isa<CatchSwitchInst>(BB->getTerminator())) {
5286 BasicBlock *Parent = PN->getParent();
5287 Loop *PNLoop = LI.getLoopFor(Parent);
5288 if (!PNLoop || Parent != PNLoop->getHeader()) {
5289 // Split the critical edge.
5290 BasicBlock *NewBB = nullptr;
5291 if (!Parent->isLandingPad()) {
5292 NewBB = SplitCriticalEdge(BB, Parent,
5293 CriticalEdgeSplittingOptions(&DT, &LI)
5294 .setMergeIdenticalEdges()
5295 .setKeepOneInputPHIs());
5296 } else {
5297 SmallVector<BasicBlock*, 2> NewBBs;
5298 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
5299 NewBB = NewBBs[0];
5301 // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5302 // phi predecessors are identical. The simple thing to do is skip
5303 // splitting in this case rather than complicate the API.
5304 if (NewBB) {
5305 // If PN is outside of the loop and BB is in the loop, we want to
5306 // move the block to be immediately before the PHI block, not
5307 // immediately after BB.
5308 if (L->contains(BB) && !L->contains(PN))
5309 NewBB->moveBefore(PN->getParent());
5311 // Splitting the edge can reduce the number of PHI entries we have.
5312 e = PN->getNumIncomingValues();
5313 BB = NewBB;
5314 i = PN->getBasicBlockIndex(BB);
5319 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5320 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5321 if (!Pair.second)
5322 PN->setIncomingValue(i, Pair.first->second);
5323 else {
5324 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
5325 Rewriter, DeadInsts);
5327 // If this is reuse-by-noop-cast, insert the noop cast.
5328 Type *OpTy = LF.OperandValToReplace->getType();
5329 if (FullV->getType() != OpTy)
5330 FullV =
5331 CastInst::Create(CastInst::getCastOpcode(FullV, false,
5332 OpTy, false),
5333 FullV, LF.OperandValToReplace->getType(),
5334 "tmp", BB->getTerminator());
5336 PN->setIncomingValue(i, FullV);
5337 Pair.first->second = FullV;
5342 /// Emit instructions for the leading candidate expression for this LSRUse (this
5343 /// is called "expanding"), and update the UserInst to reference the newly
5344 /// expanded value.
5345 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5346 const Formula &F, SCEVExpander &Rewriter,
5347 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5348 // First, find an insertion point that dominates UserInst. For PHI nodes,
5349 // find the nearest block which dominates all the relevant uses.
5350 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5351 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
5352 } else {
5353 Value *FullV =
5354 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
5356 // If this is reuse-by-noop-cast, insert the noop cast.
5357 Type *OpTy = LF.OperandValToReplace->getType();
5358 if (FullV->getType() != OpTy) {
5359 Instruction *Cast =
5360 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5361 FullV, OpTy, "tmp", LF.UserInst);
5362 FullV = Cast;
5365 // Update the user. ICmpZero is handled specially here (for now) because
5366 // Expand may have updated one of the operands of the icmp already, and
5367 // its new value may happen to be equal to LF.OperandValToReplace, in
5368 // which case doing replaceUsesOfWith leads to replacing both operands
5369 // with the same value. TODO: Reorganize this.
5370 if (LU.Kind == LSRUse::ICmpZero)
5371 LF.UserInst->setOperand(0, FullV);
5372 else
5373 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5376 DeadInsts.emplace_back(LF.OperandValToReplace);
5379 /// Rewrite all the fixup locations with new values, following the chosen
5380 /// solution.
5381 void LSRInstance::ImplementSolution(
5382 const SmallVectorImpl<const Formula *> &Solution) {
5383 // Keep track of instructions we may have made dead, so that
5384 // we can remove them after we are done working.
5385 SmallVector<WeakTrackingVH, 16> DeadInsts;
5387 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
5388 "lsr");
5389 #ifndef NDEBUG
5390 Rewriter.setDebugType(DEBUG_TYPE);
5391 #endif
5392 Rewriter.disableCanonicalMode();
5393 Rewriter.enableLSRMode();
5394 Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
5396 // Mark phi nodes that terminate chains so the expander tries to reuse them.
5397 for (const IVChain &Chain : IVChainVec) {
5398 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5399 Rewriter.setChainedPhi(PN);
5402 // Expand the new value definitions and update the users.
5403 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5404 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5405 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
5406 Changed = true;
5409 for (const IVChain &Chain : IVChainVec) {
5410 GenerateIVChain(Chain, Rewriter, DeadInsts);
5411 Changed = true;
5413 // Clean up after ourselves. This must be done before deleting any
5414 // instructions.
5415 Rewriter.clear();
5417 Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
5420 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5421 DominatorTree &DT, LoopInfo &LI,
5422 const TargetTransformInfo &TTI)
5423 : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L),
5424 FavorBackedgeIndex(EnableBackedgeIndexing &&
5425 TTI.shouldFavorBackedgeIndex(L)) {
5426 // If LoopSimplify form is not available, stay out of trouble.
5427 if (!L->isLoopSimplifyForm())
5428 return;
5430 // If there's no interesting work to be done, bail early.
5431 if (IU.empty()) return;
5433 // If there's too much analysis to be done, bail early. We won't be able to
5434 // model the problem anyway.
5435 unsigned NumUsers = 0;
5436 for (const IVStrideUse &U : IU) {
5437 if (++NumUsers > MaxIVUsers) {
5438 (void)U;
5439 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
5440 << "\n");
5441 return;
5443 // Bail out if we have a PHI on an EHPad that gets a value from a
5444 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is
5445 // no good place to stick any instructions.
5446 if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5447 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5448 if (isa<FuncletPadInst>(FirstNonPHI) ||
5449 isa<CatchSwitchInst>(FirstNonPHI))
5450 for (BasicBlock *PredBB : PN->blocks())
5451 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5452 return;
5456 #ifndef NDEBUG
5457 // All dominating loops must have preheaders, or SCEVExpander may not be able
5458 // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
5460 // IVUsers analysis should only create users that are dominated by simple loop
5461 // headers. Since this loop should dominate all of its users, its user list
5462 // should be empty if this loop itself is not within a simple loop nest.
5463 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
5464 Rung; Rung = Rung->getIDom()) {
5465 BasicBlock *BB = Rung->getBlock();
5466 const Loop *DomLoop = LI.getLoopFor(BB);
5467 if (DomLoop && DomLoop->getHeader() == BB) {
5468 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
5471 #endif // DEBUG
5473 LLVM_DEBUG(dbgs() << "\nLSR on loop ";
5474 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5475 dbgs() << ":\n");
5477 // First, perform some low-level loop optimizations.
5478 OptimizeShadowIV();
5479 OptimizeLoopTermCond();
5481 // If loop preparation eliminates all interesting IV users, bail.
5482 if (IU.empty()) return;
5484 // Skip nested loops until we can model them better with formulae.
5485 if (!L->empty()) {
5486 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5487 return;
5490 // Start collecting data and preparing for the solver.
5491 CollectChains();
5492 CollectInterestingTypesAndFactors();
5493 CollectFixupsAndInitialFormulae();
5494 CollectLoopInvariantFixupsAndFormulae();
5496 if (Uses.empty())
5497 return;
5499 LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5500 print_uses(dbgs()));
5502 // Now use the reuse data to generate a bunch of interesting ways
5503 // to formulate the values needed for the uses.
5504 GenerateAllReuseFormulae();
5506 FilterOutUndesirableDedicatedRegisters();
5507 NarrowSearchSpaceUsingHeuristics();
5509 SmallVector<const Formula *, 8> Solution;
5510 Solve(Solution);
5512 // Release memory that is no longer needed.
5513 Factors.clear();
5514 Types.clear();
5515 RegUses.clear();
5517 if (Solution.empty())
5518 return;
5520 #ifndef NDEBUG
5521 // Formulae should be legal.
5522 for (const LSRUse &LU : Uses) {
5523 for (const Formula &F : LU.Formulae)
5524 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5525 F) && "Illegal formula generated!");
5527 #endif
5529 // Now that we've decided what we want, make it so.
5530 ImplementSolution(Solution);
5533 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5534 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5535 if (Factors.empty() && Types.empty()) return;
5537 OS << "LSR has identified the following interesting factors and types: ";
5538 bool First = true;
5540 for (int64_t Factor : Factors) {
5541 if (!First) OS << ", ";
5542 First = false;
5543 OS << '*' << Factor;
5546 for (Type *Ty : Types) {
5547 if (!First) OS << ", ";
5548 First = false;
5549 OS << '(' << *Ty << ')';
5551 OS << '\n';
5554 void LSRInstance::print_fixups(raw_ostream &OS) const {
5555 OS << "LSR is examining the following fixup sites:\n";
5556 for (const LSRUse &LU : Uses)
5557 for (const LSRFixup &LF : LU.Fixups) {
5558 dbgs() << " ";
5559 LF.print(OS);
5560 OS << '\n';
5564 void LSRInstance::print_uses(raw_ostream &OS) const {
5565 OS << "LSR is examining the following uses:\n";
5566 for (const LSRUse &LU : Uses) {
5567 dbgs() << " ";
5568 LU.print(OS);
5569 OS << '\n';
5570 for (const Formula &F : LU.Formulae) {
5571 OS << " ";
5572 F.print(OS);
5573 OS << '\n';
5578 void LSRInstance::print(raw_ostream &OS) const {
5579 print_factors_and_types(OS);
5580 print_fixups(OS);
5581 print_uses(OS);
5584 LLVM_DUMP_METHOD void LSRInstance::dump() const {
5585 print(errs()); errs() << '\n';
5587 #endif
5589 namespace {
5591 class LoopStrengthReduce : public LoopPass {
5592 public:
5593 static char ID; // Pass ID, replacement for typeid
5595 LoopStrengthReduce();
5597 private:
5598 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5599 void getAnalysisUsage(AnalysisUsage &AU) const override;
5602 } // end anonymous namespace
5604 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5605 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5608 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5609 // We split critical edges, so we change the CFG. However, we do update
5610 // many analyses if they are around.
5611 AU.addPreservedID(LoopSimplifyID);
5613 AU.addRequired<LoopInfoWrapperPass>();
5614 AU.addPreserved<LoopInfoWrapperPass>();
5615 AU.addRequiredID(LoopSimplifyID);
5616 AU.addRequired<DominatorTreeWrapperPass>();
5617 AU.addPreserved<DominatorTreeWrapperPass>();
5618 AU.addRequired<ScalarEvolutionWrapperPass>();
5619 AU.addPreserved<ScalarEvolutionWrapperPass>();
5620 // Requiring LoopSimplify a second time here prevents IVUsers from running
5621 // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5622 AU.addRequiredID(LoopSimplifyID);
5623 AU.addRequired<IVUsersWrapperPass>();
5624 AU.addPreserved<IVUsersWrapperPass>();
5625 AU.addRequired<TargetTransformInfoWrapperPass>();
5628 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5629 DominatorTree &DT, LoopInfo &LI,
5630 const TargetTransformInfo &TTI) {
5631 bool Changed = false;
5633 // Run the main LSR transformation.
5634 Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged();
5636 // Remove any extra phis created by processing inner loops.
5637 Changed |= DeleteDeadPHIs(L->getHeader());
5638 if (EnablePhiElim && L->isLoopSimplifyForm()) {
5639 SmallVector<WeakTrackingVH, 16> DeadInsts;
5640 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5641 SCEVExpander Rewriter(SE, DL, "lsr");
5642 #ifndef NDEBUG
5643 Rewriter.setDebugType(DEBUG_TYPE);
5644 #endif
5645 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
5646 if (numFolded) {
5647 Changed = true;
5648 DeleteTriviallyDeadInstructions(DeadInsts);
5649 DeleteDeadPHIs(L->getHeader());
5652 return Changed;
5655 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5656 if (skipLoop(L))
5657 return false;
5659 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
5660 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5661 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5662 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5663 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5664 *L->getHeader()->getParent());
5665 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI);
5668 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
5669 LoopStandardAnalysisResults &AR,
5670 LPMUpdater &) {
5671 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
5672 AR.DT, AR.LI, AR.TTI))
5673 return PreservedAnalyses::all();
5675 return getLoopPassPreservedAnalyses();
5678 char LoopStrengthReduce::ID = 0;
5680 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
5681 "Loop Strength Reduction", false, false)
5682 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5683 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5684 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
5685 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
5686 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
5687 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5688 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
5689 "Loop Strength Reduction", false, false)
5691 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }