Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Transforms / Scalar / Reassociate.cpp
blob6da95712d6444a3b49997763a81ea221b9356a46
1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass reassociates commutative expressions in an order that is designed
10 // to promote better constant propagation, GCSE, LICM, PRE, etc.
12 // For example: 4 + (x + 5) -> x + (4 + 5)
14 // In the implementation of this algorithm, constants are assigned rank = 0,
15 // function arguments are rank = 1, and other values are assigned ranks
16 // corresponding to the reverse post order traversal of current function
17 // (starting at 2), which effectively gives values in deep loops higher rank
18 // than values not in loops.
20 //===----------------------------------------------------------------------===//
22 #include "llvm/Transforms/Scalar/Reassociate.h"
23 #include "llvm/ADT/APFloat.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/GlobalsModRef.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Operator.h"
47 #include "llvm/IR/PassManager.h"
48 #include "llvm/IR/PatternMatch.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/IR/ValueHandle.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Scalar.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <utility>
63 using namespace llvm;
64 using namespace reassociate;
65 using namespace PatternMatch;
67 #define DEBUG_TYPE "reassociate"
69 STATISTIC(NumChanged, "Number of insts reassociated");
70 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
71 STATISTIC(NumFactor , "Number of multiplies factored");
73 #ifndef NDEBUG
74 /// Print out the expression identified in the Ops list.
75 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
76 Module *M = I->getModule();
77 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
78 << *Ops[0].Op->getType() << '\t';
79 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
80 dbgs() << "[ ";
81 Ops[i].Op->printAsOperand(dbgs(), false, M);
82 dbgs() << ", #" << Ops[i].Rank << "] ";
85 #endif
87 /// Utility class representing a non-constant Xor-operand. We classify
88 /// non-constant Xor-Operands into two categories:
89 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0
90 /// C2)
91 /// C2.1) The operand is in the form of "X | C", where C is a non-zero
92 /// constant.
93 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
94 /// operand as "E | 0"
95 class llvm::reassociate::XorOpnd {
96 public:
97 XorOpnd(Value *V);
99 bool isInvalid() const { return SymbolicPart == nullptr; }
100 bool isOrExpr() const { return isOr; }
101 Value *getValue() const { return OrigVal; }
102 Value *getSymbolicPart() const { return SymbolicPart; }
103 unsigned getSymbolicRank() const { return SymbolicRank; }
104 const APInt &getConstPart() const { return ConstPart; }
106 void Invalidate() { SymbolicPart = OrigVal = nullptr; }
107 void setSymbolicRank(unsigned R) { SymbolicRank = R; }
109 private:
110 Value *OrigVal;
111 Value *SymbolicPart;
112 APInt ConstPart;
113 unsigned SymbolicRank;
114 bool isOr;
117 XorOpnd::XorOpnd(Value *V) {
118 assert(!isa<ConstantInt>(V) && "No ConstantInt");
119 OrigVal = V;
120 Instruction *I = dyn_cast<Instruction>(V);
121 SymbolicRank = 0;
123 if (I && (I->getOpcode() == Instruction::Or ||
124 I->getOpcode() == Instruction::And)) {
125 Value *V0 = I->getOperand(0);
126 Value *V1 = I->getOperand(1);
127 const APInt *C;
128 if (match(V0, m_APInt(C)))
129 std::swap(V0, V1);
131 if (match(V1, m_APInt(C))) {
132 ConstPart = *C;
133 SymbolicPart = V0;
134 isOr = (I->getOpcode() == Instruction::Or);
135 return;
139 // view the operand as "V | 0"
140 SymbolicPart = V;
141 ConstPart = APInt::getNullValue(V->getType()->getScalarSizeInBits());
142 isOr = true;
145 /// Return true if V is an instruction of the specified opcode and if it
146 /// only has one use.
147 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
148 auto *I = dyn_cast<Instruction>(V);
149 if (I && I->hasOneUse() && I->getOpcode() == Opcode)
150 if (!isa<FPMathOperator>(I) || I->isFast())
151 return cast<BinaryOperator>(I);
152 return nullptr;
155 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
156 unsigned Opcode2) {
157 auto *I = dyn_cast<Instruction>(V);
158 if (I && I->hasOneUse() &&
159 (I->getOpcode() == Opcode1 || I->getOpcode() == Opcode2))
160 if (!isa<FPMathOperator>(I) || I->isFast())
161 return cast<BinaryOperator>(I);
162 return nullptr;
165 void ReassociatePass::BuildRankMap(Function &F,
166 ReversePostOrderTraversal<Function*> &RPOT) {
167 unsigned Rank = 2;
169 // Assign distinct ranks to function arguments.
170 for (auto &Arg : F.args()) {
171 ValueRankMap[&Arg] = ++Rank;
172 LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank
173 << "\n");
176 // Traverse basic blocks in ReversePostOrder
177 for (BasicBlock *BB : RPOT) {
178 unsigned BBRank = RankMap[BB] = ++Rank << 16;
180 // Walk the basic block, adding precomputed ranks for any instructions that
181 // we cannot move. This ensures that the ranks for these instructions are
182 // all different in the block.
183 for (Instruction &I : *BB)
184 if (mayBeMemoryDependent(I))
185 ValueRankMap[&I] = ++BBRank;
189 unsigned ReassociatePass::getRank(Value *V) {
190 Instruction *I = dyn_cast<Instruction>(V);
191 if (!I) {
192 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
193 return 0; // Otherwise it's a global or constant, rank 0.
196 if (unsigned Rank = ValueRankMap[I])
197 return Rank; // Rank already known?
199 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
200 // we can reassociate expressions for code motion! Since we do not recurse
201 // for PHI nodes, we cannot have infinite recursion here, because there
202 // cannot be loops in the value graph that do not go through PHI nodes.
203 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
204 for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i)
205 Rank = std::max(Rank, getRank(I->getOperand(i)));
207 // If this is a 'not' or 'neg' instruction, do not count it for rank. This
208 // assures us that X and ~X will have the same rank.
209 if (!match(I, m_Not(m_Value())) && !match(I, m_Neg(m_Value())) &&
210 !match(I, m_FNeg(m_Value())))
211 ++Rank;
213 LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank
214 << "\n");
216 return ValueRankMap[I] = Rank;
219 // Canonicalize constants to RHS. Otherwise, sort the operands by rank.
220 void ReassociatePass::canonicalizeOperands(Instruction *I) {
221 assert(isa<BinaryOperator>(I) && "Expected binary operator.");
222 assert(I->isCommutative() && "Expected commutative operator.");
224 Value *LHS = I->getOperand(0);
225 Value *RHS = I->getOperand(1);
226 if (LHS == RHS || isa<Constant>(RHS))
227 return;
228 if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS))
229 cast<BinaryOperator>(I)->swapOperands();
232 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
233 Instruction *InsertBefore, Value *FlagsOp) {
234 if (S1->getType()->isIntOrIntVectorTy())
235 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
236 else {
237 BinaryOperator *Res =
238 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
239 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
240 return Res;
244 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
245 Instruction *InsertBefore, Value *FlagsOp) {
246 if (S1->getType()->isIntOrIntVectorTy())
247 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
248 else {
249 BinaryOperator *Res =
250 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
251 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
252 return Res;
256 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
257 Instruction *InsertBefore, Value *FlagsOp) {
258 if (S1->getType()->isIntOrIntVectorTy())
259 return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
260 else {
261 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
262 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
263 return Res;
267 /// Replace 0-X with X*-1.
268 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
269 Type *Ty = Neg->getType();
270 Constant *NegOne = Ty->isIntOrIntVectorTy() ?
271 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
273 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
274 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
275 Res->takeName(Neg);
276 Neg->replaceAllUsesWith(Res);
277 Res->setDebugLoc(Neg->getDebugLoc());
278 return Res;
281 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
282 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
283 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
284 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
285 /// even x in Bitwidth-bit arithmetic.
286 static unsigned CarmichaelShift(unsigned Bitwidth) {
287 if (Bitwidth < 3)
288 return Bitwidth - 1;
289 return Bitwidth - 2;
292 /// Add the extra weight 'RHS' to the existing weight 'LHS',
293 /// reducing the combined weight using any special properties of the operation.
294 /// The existing weight LHS represents the computation X op X op ... op X where
295 /// X occurs LHS times. The combined weight represents X op X op ... op X with
296 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined
297 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
298 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
299 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
300 // If we were working with infinite precision arithmetic then the combined
301 // weight would be LHS + RHS. But we are using finite precision arithmetic,
302 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
303 // for nilpotent operations and addition, but not for idempotent operations
304 // and multiplication), so it is important to correctly reduce the combined
305 // weight back into range if wrapping would be wrong.
307 // If RHS is zero then the weight didn't change.
308 if (RHS.isMinValue())
309 return;
310 // If LHS is zero then the combined weight is RHS.
311 if (LHS.isMinValue()) {
312 LHS = RHS;
313 return;
315 // From this point on we know that neither LHS nor RHS is zero.
317 if (Instruction::isIdempotent(Opcode)) {
318 // Idempotent means X op X === X, so any non-zero weight is equivalent to a
319 // weight of 1. Keeping weights at zero or one also means that wrapping is
320 // not a problem.
321 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
322 return; // Return a weight of 1.
324 if (Instruction::isNilpotent(Opcode)) {
325 // Nilpotent means X op X === 0, so reduce weights modulo 2.
326 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
327 LHS = 0; // 1 + 1 === 0 modulo 2.
328 return;
330 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
331 // TODO: Reduce the weight by exploiting nsw/nuw?
332 LHS += RHS;
333 return;
336 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
337 "Unknown associative operation!");
338 unsigned Bitwidth = LHS.getBitWidth();
339 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
340 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
341 // bit number x, since either x is odd in which case x^CM = 1, or x is even in
342 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
343 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
344 // which by a happy accident means that they can always be represented using
345 // Bitwidth bits.
346 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
347 // the Carmichael number).
348 if (Bitwidth > 3) {
349 /// CM - The value of Carmichael's lambda function.
350 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
351 // Any weight W >= Threshold can be replaced with W - CM.
352 APInt Threshold = CM + Bitwidth;
353 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
354 // For Bitwidth 4 or more the following sum does not overflow.
355 LHS += RHS;
356 while (LHS.uge(Threshold))
357 LHS -= CM;
358 } else {
359 // To avoid problems with overflow do everything the same as above but using
360 // a larger type.
361 unsigned CM = 1U << CarmichaelShift(Bitwidth);
362 unsigned Threshold = CM + Bitwidth;
363 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
364 "Weights not reduced!");
365 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
366 while (Total >= Threshold)
367 Total -= CM;
368 LHS = Total;
372 using RepeatedValue = std::pair<Value*, APInt>;
374 /// Given an associative binary expression, return the leaf
375 /// nodes in Ops along with their weights (how many times the leaf occurs). The
376 /// original expression is the same as
377 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
378 /// op
379 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
380 /// op
381 /// ...
382 /// op
383 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
385 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
387 /// This routine may modify the function, in which case it returns 'true'. The
388 /// changes it makes may well be destructive, changing the value computed by 'I'
389 /// to something completely different. Thus if the routine returns 'true' then
390 /// you MUST either replace I with a new expression computed from the Ops array,
391 /// or use RewriteExprTree to put the values back in.
393 /// A leaf node is either not a binary operation of the same kind as the root
394 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
395 /// opcode), or is the same kind of binary operator but has a use which either
396 /// does not belong to the expression, or does belong to the expression but is
397 /// a leaf node. Every leaf node has at least one use that is a non-leaf node
398 /// of the expression, while for non-leaf nodes (except for the root 'I') every
399 /// use is a non-leaf node of the expression.
401 /// For example:
402 /// expression graph node names
404 /// + | I
405 /// / \ |
406 /// + + | A, B
407 /// / \ / \ |
408 /// * + * | C, D, E
409 /// / \ / \ / \ |
410 /// + * | F, G
412 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
413 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
415 /// The expression is maximal: if some instruction is a binary operator of the
416 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
417 /// then the instruction also belongs to the expression, is not a leaf node of
418 /// it, and its operands also belong to the expression (but may be leaf nodes).
420 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
421 /// order to ensure that every non-root node in the expression has *exactly one*
422 /// use by a non-leaf node of the expression. This destruction means that the
423 /// caller MUST either replace 'I' with a new expression or use something like
424 /// RewriteExprTree to put the values back in if the routine indicates that it
425 /// made a change by returning 'true'.
427 /// In the above example either the right operand of A or the left operand of B
428 /// will be replaced by undef. If it is B's operand then this gives:
430 /// + | I
431 /// / \ |
432 /// + + | A, B - operand of B replaced with undef
433 /// / \ \ |
434 /// * + * | C, D, E
435 /// / \ / \ / \ |
436 /// + * | F, G
438 /// Note that such undef operands can only be reached by passing through 'I'.
439 /// For example, if you visit operands recursively starting from a leaf node
440 /// then you will never see such an undef operand unless you get back to 'I',
441 /// which requires passing through a phi node.
443 /// Note that this routine may also mutate binary operators of the wrong type
444 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
445 /// of the expression) if it can turn them into binary operators of the right
446 /// type and thus make the expression bigger.
447 static bool LinearizeExprTree(BinaryOperator *I,
448 SmallVectorImpl<RepeatedValue> &Ops) {
449 LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
450 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
451 unsigned Opcode = I->getOpcode();
452 assert(I->isAssociative() && I->isCommutative() &&
453 "Expected an associative and commutative operation!");
455 // Visit all operands of the expression, keeping track of their weight (the
456 // number of paths from the expression root to the operand, or if you like
457 // the number of times that operand occurs in the linearized expression).
458 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
459 // while A has weight two.
461 // Worklist of non-leaf nodes (their operands are in the expression too) along
462 // with their weights, representing a certain number of paths to the operator.
463 // If an operator occurs in the worklist multiple times then we found multiple
464 // ways to get to it.
465 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
466 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
467 bool Changed = false;
469 // Leaves of the expression are values that either aren't the right kind of
470 // operation (eg: a constant, or a multiply in an add tree), or are, but have
471 // some uses that are not inside the expression. For example, in I = X + X,
472 // X = A + B, the value X has two uses (by I) that are in the expression. If
473 // X has any other uses, for example in a return instruction, then we consider
474 // X to be a leaf, and won't analyze it further. When we first visit a value,
475 // if it has more than one use then at first we conservatively consider it to
476 // be a leaf. Later, as the expression is explored, we may discover some more
477 // uses of the value from inside the expression. If all uses turn out to be
478 // from within the expression (and the value is a binary operator of the right
479 // kind) then the value is no longer considered to be a leaf, and its operands
480 // are explored.
482 // Leaves - Keeps track of the set of putative leaves as well as the number of
483 // paths to each leaf seen so far.
484 using LeafMap = DenseMap<Value *, APInt>;
485 LeafMap Leaves; // Leaf -> Total weight so far.
486 SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order.
488 #ifndef NDEBUG
489 SmallPtrSet<Value *, 8> Visited; // For sanity checking the iteration scheme.
490 #endif
491 while (!Worklist.empty()) {
492 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
493 I = P.first; // We examine the operands of this binary operator.
495 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
496 Value *Op = I->getOperand(OpIdx);
497 APInt Weight = P.second; // Number of paths to this operand.
498 LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
499 assert(!Op->use_empty() && "No uses, so how did we get to it?!");
501 // If this is a binary operation of the right kind with only one use then
502 // add its operands to the expression.
503 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
504 assert(Visited.insert(Op).second && "Not first visit!");
505 LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
506 Worklist.push_back(std::make_pair(BO, Weight));
507 continue;
510 // Appears to be a leaf. Is the operand already in the set of leaves?
511 LeafMap::iterator It = Leaves.find(Op);
512 if (It == Leaves.end()) {
513 // Not in the leaf map. Must be the first time we saw this operand.
514 assert(Visited.insert(Op).second && "Not first visit!");
515 if (!Op->hasOneUse()) {
516 // This value has uses not accounted for by the expression, so it is
517 // not safe to modify. Mark it as being a leaf.
518 LLVM_DEBUG(dbgs()
519 << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
520 LeafOrder.push_back(Op);
521 Leaves[Op] = Weight;
522 continue;
524 // No uses outside the expression, try morphing it.
525 } else {
526 // Already in the leaf map.
527 assert(It != Leaves.end() && Visited.count(Op) &&
528 "In leaf map but not visited!");
530 // Update the number of paths to the leaf.
531 IncorporateWeight(It->second, Weight, Opcode);
533 #if 0 // TODO: Re-enable once PR13021 is fixed.
534 // The leaf already has one use from inside the expression. As we want
535 // exactly one such use, drop this new use of the leaf.
536 assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
537 I->setOperand(OpIdx, UndefValue::get(I->getType()));
538 Changed = true;
540 // If the leaf is a binary operation of the right kind and we now see
541 // that its multiple original uses were in fact all by nodes belonging
542 // to the expression, then no longer consider it to be a leaf and add
543 // its operands to the expression.
544 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
545 LLVM_DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
546 Worklist.push_back(std::make_pair(BO, It->second));
547 Leaves.erase(It);
548 continue;
550 #endif
552 // If we still have uses that are not accounted for by the expression
553 // then it is not safe to modify the value.
554 if (!Op->hasOneUse())
555 continue;
557 // No uses outside the expression, try morphing it.
558 Weight = It->second;
559 Leaves.erase(It); // Since the value may be morphed below.
562 // At this point we have a value which, first of all, is not a binary
563 // expression of the right kind, and secondly, is only used inside the
564 // expression. This means that it can safely be modified. See if we
565 // can usefully morph it into an expression of the right kind.
566 assert((!isa<Instruction>(Op) ||
567 cast<Instruction>(Op)->getOpcode() != Opcode
568 || (isa<FPMathOperator>(Op) &&
569 !cast<Instruction>(Op)->isFast())) &&
570 "Should have been handled above!");
571 assert(Op->hasOneUse() && "Has uses outside the expression tree!");
573 // If this is a multiply expression, turn any internal negations into
574 // multiplies by -1 so they can be reassociated.
575 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
576 if ((Opcode == Instruction::Mul && match(BO, m_Neg(m_Value()))) ||
577 (Opcode == Instruction::FMul && match(BO, m_FNeg(m_Value())))) {
578 LLVM_DEBUG(dbgs()
579 << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
580 BO = LowerNegateToMultiply(BO);
581 LLVM_DEBUG(dbgs() << *BO << '\n');
582 Worklist.push_back(std::make_pair(BO, Weight));
583 Changed = true;
584 continue;
587 // Failed to morph into an expression of the right type. This really is
588 // a leaf.
589 LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
590 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
591 LeafOrder.push_back(Op);
592 Leaves[Op] = Weight;
596 // The leaves, repeated according to their weights, represent the linearized
597 // form of the expression.
598 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
599 Value *V = LeafOrder[i];
600 LeafMap::iterator It = Leaves.find(V);
601 if (It == Leaves.end())
602 // Node initially thought to be a leaf wasn't.
603 continue;
604 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
605 APInt Weight = It->second;
606 if (Weight.isMinValue())
607 // Leaf already output or weight reduction eliminated it.
608 continue;
609 // Ensure the leaf is only output once.
610 It->second = 0;
611 Ops.push_back(std::make_pair(V, Weight));
614 // For nilpotent operations or addition there may be no operands, for example
615 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
616 // in both cases the weight reduces to 0 causing the value to be skipped.
617 if (Ops.empty()) {
618 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
619 assert(Identity && "Associative operation without identity!");
620 Ops.emplace_back(Identity, APInt(Bitwidth, 1));
623 return Changed;
626 /// Now that the operands for this expression tree are
627 /// linearized and optimized, emit them in-order.
628 void ReassociatePass::RewriteExprTree(BinaryOperator *I,
629 SmallVectorImpl<ValueEntry> &Ops) {
630 assert(Ops.size() > 1 && "Single values should be used directly!");
632 // Since our optimizations should never increase the number of operations, the
633 // new expression can usually be written reusing the existing binary operators
634 // from the original expression tree, without creating any new instructions,
635 // though the rewritten expression may have a completely different topology.
636 // We take care to not change anything if the new expression will be the same
637 // as the original. If more than trivial changes (like commuting operands)
638 // were made then we are obliged to clear out any optional subclass data like
639 // nsw flags.
641 /// NodesToRewrite - Nodes from the original expression available for writing
642 /// the new expression into.
643 SmallVector<BinaryOperator*, 8> NodesToRewrite;
644 unsigned Opcode = I->getOpcode();
645 BinaryOperator *Op = I;
647 /// NotRewritable - The operands being written will be the leaves of the new
648 /// expression and must not be used as inner nodes (via NodesToRewrite) by
649 /// mistake. Inner nodes are always reassociable, and usually leaves are not
650 /// (if they were they would have been incorporated into the expression and so
651 /// would not be leaves), so most of the time there is no danger of this. But
652 /// in rare cases a leaf may become reassociable if an optimization kills uses
653 /// of it, or it may momentarily become reassociable during rewriting (below)
654 /// due it being removed as an operand of one of its uses. Ensure that misuse
655 /// of leaf nodes as inner nodes cannot occur by remembering all of the future
656 /// leaves and refusing to reuse any of them as inner nodes.
657 SmallPtrSet<Value*, 8> NotRewritable;
658 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
659 NotRewritable.insert(Ops[i].Op);
661 // ExpressionChanged - Non-null if the rewritten expression differs from the
662 // original in some non-trivial way, requiring the clearing of optional flags.
663 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
664 BinaryOperator *ExpressionChanged = nullptr;
665 for (unsigned i = 0; ; ++i) {
666 // The last operation (which comes earliest in the IR) is special as both
667 // operands will come from Ops, rather than just one with the other being
668 // a subexpression.
669 if (i+2 == Ops.size()) {
670 Value *NewLHS = Ops[i].Op;
671 Value *NewRHS = Ops[i+1].Op;
672 Value *OldLHS = Op->getOperand(0);
673 Value *OldRHS = Op->getOperand(1);
675 if (NewLHS == OldLHS && NewRHS == OldRHS)
676 // Nothing changed, leave it alone.
677 break;
679 if (NewLHS == OldRHS && NewRHS == OldLHS) {
680 // The order of the operands was reversed. Swap them.
681 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
682 Op->swapOperands();
683 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
684 MadeChange = true;
685 ++NumChanged;
686 break;
689 // The new operation differs non-trivially from the original. Overwrite
690 // the old operands with the new ones.
691 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
692 if (NewLHS != OldLHS) {
693 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
694 if (BO && !NotRewritable.count(BO))
695 NodesToRewrite.push_back(BO);
696 Op->setOperand(0, NewLHS);
698 if (NewRHS != OldRHS) {
699 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
700 if (BO && !NotRewritable.count(BO))
701 NodesToRewrite.push_back(BO);
702 Op->setOperand(1, NewRHS);
704 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
706 ExpressionChanged = Op;
707 MadeChange = true;
708 ++NumChanged;
710 break;
713 // Not the last operation. The left-hand side will be a sub-expression
714 // while the right-hand side will be the current element of Ops.
715 Value *NewRHS = Ops[i].Op;
716 if (NewRHS != Op->getOperand(1)) {
717 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
718 if (NewRHS == Op->getOperand(0)) {
719 // The new right-hand side was already present as the left operand. If
720 // we are lucky then swapping the operands will sort out both of them.
721 Op->swapOperands();
722 } else {
723 // Overwrite with the new right-hand side.
724 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
725 if (BO && !NotRewritable.count(BO))
726 NodesToRewrite.push_back(BO);
727 Op->setOperand(1, NewRHS);
728 ExpressionChanged = Op;
730 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
731 MadeChange = true;
732 ++NumChanged;
735 // Now deal with the left-hand side. If this is already an operation node
736 // from the original expression then just rewrite the rest of the expression
737 // into it.
738 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
739 if (BO && !NotRewritable.count(BO)) {
740 Op = BO;
741 continue;
744 // Otherwise, grab a spare node from the original expression and use that as
745 // the left-hand side. If there are no nodes left then the optimizers made
746 // an expression with more nodes than the original! This usually means that
747 // they did something stupid but it might mean that the problem was just too
748 // hard (finding the mimimal number of multiplications needed to realize a
749 // multiplication expression is NP-complete). Whatever the reason, smart or
750 // stupid, create a new node if there are none left.
751 BinaryOperator *NewOp;
752 if (NodesToRewrite.empty()) {
753 Constant *Undef = UndefValue::get(I->getType());
754 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
755 Undef, Undef, "", I);
756 if (NewOp->getType()->isFPOrFPVectorTy())
757 NewOp->setFastMathFlags(I->getFastMathFlags());
758 } else {
759 NewOp = NodesToRewrite.pop_back_val();
762 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
763 Op->setOperand(0, NewOp);
764 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
765 ExpressionChanged = Op;
766 MadeChange = true;
767 ++NumChanged;
768 Op = NewOp;
771 // If the expression changed non-trivially then clear out all subclass data
772 // starting from the operator specified in ExpressionChanged, and compactify
773 // the operators to just before the expression root to guarantee that the
774 // expression tree is dominated by all of Ops.
775 if (ExpressionChanged)
776 do {
777 // Preserve FastMathFlags.
778 if (isa<FPMathOperator>(I)) {
779 FastMathFlags Flags = I->getFastMathFlags();
780 ExpressionChanged->clearSubclassOptionalData();
781 ExpressionChanged->setFastMathFlags(Flags);
782 } else
783 ExpressionChanged->clearSubclassOptionalData();
785 if (ExpressionChanged == I)
786 break;
788 // Discard any debug info related to the expressions that has changed (we
789 // can leave debug infor related to the root, since the result of the
790 // expression tree should be the same even after reassociation).
791 replaceDbgUsesWithUndef(ExpressionChanged);
793 ExpressionChanged->moveBefore(I);
794 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
795 } while (true);
797 // Throw away any left over nodes from the original expression.
798 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
799 RedoInsts.insert(NodesToRewrite[i]);
802 /// Insert instructions before the instruction pointed to by BI,
803 /// that computes the negative version of the value specified. The negative
804 /// version of the value is returned, and BI is left pointing at the instruction
805 /// that should be processed next by the reassociation pass.
806 /// Also add intermediate instructions to the redo list that are modified while
807 /// pushing the negates through adds. These will be revisited to see if
808 /// additional opportunities have been exposed.
809 static Value *NegateValue(Value *V, Instruction *BI,
810 ReassociatePass::OrderedSet &ToRedo) {
811 if (auto *C = dyn_cast<Constant>(V))
812 return C->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C) :
813 ConstantExpr::getNeg(C);
815 // We are trying to expose opportunity for reassociation. One of the things
816 // that we want to do to achieve this is to push a negation as deep into an
817 // expression chain as possible, to expose the add instructions. In practice,
818 // this means that we turn this:
819 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
820 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
821 // the constants. We assume that instcombine will clean up the mess later if
822 // we introduce tons of unnecessary negation instructions.
824 if (BinaryOperator *I =
825 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
826 // Push the negates through the add.
827 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
828 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
829 if (I->getOpcode() == Instruction::Add) {
830 I->setHasNoUnsignedWrap(false);
831 I->setHasNoSignedWrap(false);
834 // We must move the add instruction here, because the neg instructions do
835 // not dominate the old add instruction in general. By moving it, we are
836 // assured that the neg instructions we just inserted dominate the
837 // instruction we are about to insert after them.
839 I->moveBefore(BI);
840 I->setName(I->getName()+".neg");
842 // Add the intermediate negates to the redo list as processing them later
843 // could expose more reassociating opportunities.
844 ToRedo.insert(I);
845 return I;
848 // Okay, we need to materialize a negated version of V with an instruction.
849 // Scan the use lists of V to see if we have one already.
850 for (User *U : V->users()) {
851 if (!match(U, m_Neg(m_Value())) && !match(U, m_FNeg(m_Value())))
852 continue;
854 // We found one! Now we have to make sure that the definition dominates
855 // this use. We do this by moving it to the entry block (if it is a
856 // non-instruction value) or right after the definition. These negates will
857 // be zapped by reassociate later, so we don't need much finesse here.
858 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
860 // Verify that the negate is in this function, V might be a constant expr.
861 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
862 continue;
864 BasicBlock::iterator InsertPt;
865 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
866 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
867 InsertPt = II->getNormalDest()->begin();
868 } else {
869 InsertPt = ++InstInput->getIterator();
871 while (isa<PHINode>(InsertPt)) ++InsertPt;
872 } else {
873 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
875 TheNeg->moveBefore(&*InsertPt);
876 if (TheNeg->getOpcode() == Instruction::Sub) {
877 TheNeg->setHasNoUnsignedWrap(false);
878 TheNeg->setHasNoSignedWrap(false);
879 } else {
880 TheNeg->andIRFlags(BI);
882 ToRedo.insert(TheNeg);
883 return TheNeg;
886 // Insert a 'neg' instruction that subtracts the value from zero to get the
887 // negation.
888 BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
889 ToRedo.insert(NewNeg);
890 return NewNeg;
893 /// Return true if we should break up this subtract of X-Y into (X + -Y).
894 static bool ShouldBreakUpSubtract(Instruction *Sub) {
895 // If this is a negation, we can't split it up!
896 if (match(Sub, m_Neg(m_Value())) || match(Sub, m_FNeg(m_Value())))
897 return false;
899 // Don't breakup X - undef.
900 if (isa<UndefValue>(Sub->getOperand(1)))
901 return false;
903 // Don't bother to break this up unless either the LHS is an associable add or
904 // subtract or if this is only used by one.
905 Value *V0 = Sub->getOperand(0);
906 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
907 isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
908 return true;
909 Value *V1 = Sub->getOperand(1);
910 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
911 isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
912 return true;
913 Value *VB = Sub->user_back();
914 if (Sub->hasOneUse() &&
915 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
916 isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
917 return true;
919 return false;
922 /// If we have (X-Y), and if either X is an add, or if this is only used by an
923 /// add, transform this into (X+(0-Y)) to promote better reassociation.
924 static BinaryOperator *BreakUpSubtract(Instruction *Sub,
925 ReassociatePass::OrderedSet &ToRedo) {
926 // Convert a subtract into an add and a neg instruction. This allows sub
927 // instructions to be commuted with other add instructions.
929 // Calculate the negative value of Operand 1 of the sub instruction,
930 // and set it as the RHS of the add instruction we just made.
931 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
932 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
933 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
934 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
935 New->takeName(Sub);
937 // Everyone now refers to the add instruction.
938 Sub->replaceAllUsesWith(New);
939 New->setDebugLoc(Sub->getDebugLoc());
941 LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n');
942 return New;
945 /// If this is a shift of a reassociable multiply or is used by one, change
946 /// this into a multiply by a constant to assist with further reassociation.
947 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
948 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
949 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
951 BinaryOperator *Mul =
952 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
953 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
954 Mul->takeName(Shl);
956 // Everyone now refers to the mul instruction.
957 Shl->replaceAllUsesWith(Mul);
958 Mul->setDebugLoc(Shl->getDebugLoc());
960 // We can safely preserve the nuw flag in all cases. It's also safe to turn a
961 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special
962 // handling.
963 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
964 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
965 if (NSW && NUW)
966 Mul->setHasNoSignedWrap(true);
967 Mul->setHasNoUnsignedWrap(NUW);
968 return Mul;
971 /// Scan backwards and forwards among values with the same rank as element i
972 /// to see if X exists. If X does not exist, return i. This is useful when
973 /// scanning for 'x' when we see '-x' because they both get the same rank.
974 static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops,
975 unsigned i, Value *X) {
976 unsigned XRank = Ops[i].Rank;
977 unsigned e = Ops.size();
978 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
979 if (Ops[j].Op == X)
980 return j;
981 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
982 if (Instruction *I2 = dyn_cast<Instruction>(X))
983 if (I1->isIdenticalTo(I2))
984 return j;
986 // Scan backwards.
987 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
988 if (Ops[j].Op == X)
989 return j;
990 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
991 if (Instruction *I2 = dyn_cast<Instruction>(X))
992 if (I1->isIdenticalTo(I2))
993 return j;
995 return i;
998 /// Emit a tree of add instructions, summing Ops together
999 /// and returning the result. Insert the tree before I.
1000 static Value *EmitAddTreeOfValues(Instruction *I,
1001 SmallVectorImpl<WeakTrackingVH> &Ops) {
1002 if (Ops.size() == 1) return Ops.back();
1004 Value *V1 = Ops.back();
1005 Ops.pop_back();
1006 Value *V2 = EmitAddTreeOfValues(I, Ops);
1007 return CreateAdd(V2, V1, "reass.add", I, I);
1010 /// If V is an expression tree that is a multiplication sequence,
1011 /// and if this sequence contains a multiply by Factor,
1012 /// remove Factor from the tree and return the new tree.
1013 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
1014 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1015 if (!BO)
1016 return nullptr;
1018 SmallVector<RepeatedValue, 8> Tree;
1019 MadeChange |= LinearizeExprTree(BO, Tree);
1020 SmallVector<ValueEntry, 8> Factors;
1021 Factors.reserve(Tree.size());
1022 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1023 RepeatedValue E = Tree[i];
1024 Factors.append(E.second.getZExtValue(),
1025 ValueEntry(getRank(E.first), E.first));
1028 bool FoundFactor = false;
1029 bool NeedsNegate = false;
1030 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1031 if (Factors[i].Op == Factor) {
1032 FoundFactor = true;
1033 Factors.erase(Factors.begin()+i);
1034 break;
1037 // If this is a negative version of this factor, remove it.
1038 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
1039 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1040 if (FC1->getValue() == -FC2->getValue()) {
1041 FoundFactor = NeedsNegate = true;
1042 Factors.erase(Factors.begin()+i);
1043 break;
1045 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1046 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1047 const APFloat &F1 = FC1->getValueAPF();
1048 APFloat F2(FC2->getValueAPF());
1049 F2.changeSign();
1050 if (F1.compare(F2) == APFloat::cmpEqual) {
1051 FoundFactor = NeedsNegate = true;
1052 Factors.erase(Factors.begin() + i);
1053 break;
1059 if (!FoundFactor) {
1060 // Make sure to restore the operands to the expression tree.
1061 RewriteExprTree(BO, Factors);
1062 return nullptr;
1065 BasicBlock::iterator InsertPt = ++BO->getIterator();
1067 // If this was just a single multiply, remove the multiply and return the only
1068 // remaining operand.
1069 if (Factors.size() == 1) {
1070 RedoInsts.insert(BO);
1071 V = Factors[0].Op;
1072 } else {
1073 RewriteExprTree(BO, Factors);
1074 V = BO;
1077 if (NeedsNegate)
1078 V = CreateNeg(V, "neg", &*InsertPt, BO);
1080 return V;
1083 /// If V is a single-use multiply, recursively add its operands as factors,
1084 /// otherwise add V to the list of factors.
1086 /// Ops is the top-level list of add operands we're trying to factor.
1087 static void FindSingleUseMultiplyFactors(Value *V,
1088 SmallVectorImpl<Value*> &Factors) {
1089 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1090 if (!BO) {
1091 Factors.push_back(V);
1092 return;
1095 // Otherwise, add the LHS and RHS to the list of factors.
1096 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
1097 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
1100 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1101 /// This optimizes based on identities. If it can be reduced to a single Value,
1102 /// it is returned, otherwise the Ops list is mutated as necessary.
1103 static Value *OptimizeAndOrXor(unsigned Opcode,
1104 SmallVectorImpl<ValueEntry> &Ops) {
1105 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1106 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1107 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1108 // First, check for X and ~X in the operand list.
1109 assert(i < Ops.size());
1110 Value *X;
1111 if (match(Ops[i].Op, m_Not(m_Value(X)))) { // Cannot occur for ^.
1112 unsigned FoundX = FindInOperandList(Ops, i, X);
1113 if (FoundX != i) {
1114 if (Opcode == Instruction::And) // ...&X&~X = 0
1115 return Constant::getNullValue(X->getType());
1117 if (Opcode == Instruction::Or) // ...|X|~X = -1
1118 return Constant::getAllOnesValue(X->getType());
1122 // Next, check for duplicate pairs of values, which we assume are next to
1123 // each other, due to our sorting criteria.
1124 assert(i < Ops.size());
1125 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1126 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1127 // Drop duplicate values for And and Or.
1128 Ops.erase(Ops.begin()+i);
1129 --i; --e;
1130 ++NumAnnihil;
1131 continue;
1134 // Drop pairs of values for Xor.
1135 assert(Opcode == Instruction::Xor);
1136 if (e == 2)
1137 return Constant::getNullValue(Ops[0].Op->getType());
1139 // Y ^ X^X -> Y
1140 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1141 i -= 1; e -= 2;
1142 ++NumAnnihil;
1145 return nullptr;
1148 /// Helper function of CombineXorOpnd(). It creates a bitwise-and
1149 /// instruction with the given two operands, and return the resulting
1150 /// instruction. There are two special cases: 1) if the constant operand is 0,
1151 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1152 /// be returned.
1153 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1154 const APInt &ConstOpnd) {
1155 if (ConstOpnd.isNullValue())
1156 return nullptr;
1158 if (ConstOpnd.isAllOnesValue())
1159 return Opnd;
1161 Instruction *I = BinaryOperator::CreateAnd(
1162 Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra",
1163 InsertBefore);
1164 I->setDebugLoc(InsertBefore->getDebugLoc());
1165 return I;
1168 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1169 // into "R ^ C", where C would be 0, and R is a symbolic value.
1171 // If it was successful, true is returned, and the "R" and "C" is returned
1172 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1173 // and both "Res" and "ConstOpnd" remain unchanged.
1174 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1175 APInt &ConstOpnd, Value *&Res) {
1176 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1177 // = ((x | c1) ^ c1) ^ (c1 ^ c2)
1178 // = (x & ~c1) ^ (c1 ^ c2)
1179 // It is useful only when c1 == c2.
1180 if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isNullValue())
1181 return false;
1183 if (!Opnd1->getValue()->hasOneUse())
1184 return false;
1186 const APInt &C1 = Opnd1->getConstPart();
1187 if (C1 != ConstOpnd)
1188 return false;
1190 Value *X = Opnd1->getSymbolicPart();
1191 Res = createAndInstr(I, X, ~C1);
1192 // ConstOpnd was C2, now C1 ^ C2.
1193 ConstOpnd ^= C1;
1195 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1196 RedoInsts.insert(T);
1197 return true;
1200 // Helper function of OptimizeXor(). It tries to simplify
1201 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1202 // symbolic value.
1204 // If it was successful, true is returned, and the "R" and "C" is returned
1205 // via "Res" and "ConstOpnd", respectively (If the entire expression is
1206 // evaluated to a constant, the Res is set to NULL); otherwise, false is
1207 // returned, and both "Res" and "ConstOpnd" remain unchanged.
1208 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1209 XorOpnd *Opnd2, APInt &ConstOpnd,
1210 Value *&Res) {
1211 Value *X = Opnd1->getSymbolicPart();
1212 if (X != Opnd2->getSymbolicPart())
1213 return false;
1215 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1216 int DeadInstNum = 1;
1217 if (Opnd1->getValue()->hasOneUse())
1218 DeadInstNum++;
1219 if (Opnd2->getValue()->hasOneUse())
1220 DeadInstNum++;
1222 // Xor-Rule 2:
1223 // (x | c1) ^ (x & c2)
1224 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1225 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
1226 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
1228 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1229 if (Opnd2->isOrExpr())
1230 std::swap(Opnd1, Opnd2);
1232 const APInt &C1 = Opnd1->getConstPart();
1233 const APInt &C2 = Opnd2->getConstPart();
1234 APInt C3((~C1) ^ C2);
1236 // Do not increase code size!
1237 if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1238 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1239 if (NewInstNum > DeadInstNum)
1240 return false;
1243 Res = createAndInstr(I, X, C3);
1244 ConstOpnd ^= C1;
1245 } else if (Opnd1->isOrExpr()) {
1246 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1248 const APInt &C1 = Opnd1->getConstPart();
1249 const APInt &C2 = Opnd2->getConstPart();
1250 APInt C3 = C1 ^ C2;
1252 // Do not increase code size
1253 if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1254 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1255 if (NewInstNum > DeadInstNum)
1256 return false;
1259 Res = createAndInstr(I, X, C3);
1260 ConstOpnd ^= C3;
1261 } else {
1262 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1264 const APInt &C1 = Opnd1->getConstPart();
1265 const APInt &C2 = Opnd2->getConstPart();
1266 APInt C3 = C1 ^ C2;
1267 Res = createAndInstr(I, X, C3);
1270 // Put the original operands in the Redo list; hope they will be deleted
1271 // as dead code.
1272 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1273 RedoInsts.insert(T);
1274 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1275 RedoInsts.insert(T);
1277 return true;
1280 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1281 /// to a single Value, it is returned, otherwise the Ops list is mutated as
1282 /// necessary.
1283 Value *ReassociatePass::OptimizeXor(Instruction *I,
1284 SmallVectorImpl<ValueEntry> &Ops) {
1285 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1286 return V;
1288 if (Ops.size() == 1)
1289 return nullptr;
1291 SmallVector<XorOpnd, 8> Opnds;
1292 SmallVector<XorOpnd*, 8> OpndPtrs;
1293 Type *Ty = Ops[0].Op->getType();
1294 APInt ConstOpnd(Ty->getScalarSizeInBits(), 0);
1296 // Step 1: Convert ValueEntry to XorOpnd
1297 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1298 Value *V = Ops[i].Op;
1299 const APInt *C;
1300 // TODO: Support non-splat vectors.
1301 if (match(V, m_APInt(C))) {
1302 ConstOpnd ^= *C;
1303 } else {
1304 XorOpnd O(V);
1305 O.setSymbolicRank(getRank(O.getSymbolicPart()));
1306 Opnds.push_back(O);
1310 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1311 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1312 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1313 // with the previous loop --- the iterator of the "Opnds" may be invalidated
1314 // when new elements are added to the vector.
1315 for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1316 OpndPtrs.push_back(&Opnds[i]);
1318 // Step 2: Sort the Xor-Operands in a way such that the operands containing
1319 // the same symbolic value cluster together. For instance, the input operand
1320 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1321 // ("x | 123", "x & 789", "y & 456").
1323 // The purpose is twofold:
1324 // 1) Cluster together the operands sharing the same symbolic-value.
1325 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
1326 // could potentially shorten crital path, and expose more loop-invariants.
1327 // Note that values' rank are basically defined in RPO order (FIXME).
1328 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1329 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1330 // "z" in the order of X-Y-Z is better than any other orders.
1331 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(),
1332 [](XorOpnd *LHS, XorOpnd *RHS) {
1333 return LHS->getSymbolicRank() < RHS->getSymbolicRank();
1336 // Step 3: Combine adjacent operands
1337 XorOpnd *PrevOpnd = nullptr;
1338 bool Changed = false;
1339 for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1340 XorOpnd *CurrOpnd = OpndPtrs[i];
1341 // The combined value
1342 Value *CV;
1344 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1345 if (!ConstOpnd.isNullValue() &&
1346 CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1347 Changed = true;
1348 if (CV)
1349 *CurrOpnd = XorOpnd(CV);
1350 else {
1351 CurrOpnd->Invalidate();
1352 continue;
1356 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1357 PrevOpnd = CurrOpnd;
1358 continue;
1361 // step 3.2: When previous and current operands share the same symbolic
1362 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1363 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1364 // Remove previous operand
1365 PrevOpnd->Invalidate();
1366 if (CV) {
1367 *CurrOpnd = XorOpnd(CV);
1368 PrevOpnd = CurrOpnd;
1369 } else {
1370 CurrOpnd->Invalidate();
1371 PrevOpnd = nullptr;
1373 Changed = true;
1377 // Step 4: Reassemble the Ops
1378 if (Changed) {
1379 Ops.clear();
1380 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1381 XorOpnd &O = Opnds[i];
1382 if (O.isInvalid())
1383 continue;
1384 ValueEntry VE(getRank(O.getValue()), O.getValue());
1385 Ops.push_back(VE);
1387 if (!ConstOpnd.isNullValue()) {
1388 Value *C = ConstantInt::get(Ty, ConstOpnd);
1389 ValueEntry VE(getRank(C), C);
1390 Ops.push_back(VE);
1392 unsigned Sz = Ops.size();
1393 if (Sz == 1)
1394 return Ops.back().Op;
1395 if (Sz == 0) {
1396 assert(ConstOpnd.isNullValue());
1397 return ConstantInt::get(Ty, ConstOpnd);
1401 return nullptr;
1404 /// Optimize a series of operands to an 'add' instruction. This
1405 /// optimizes based on identities. If it can be reduced to a single Value, it
1406 /// is returned, otherwise the Ops list is mutated as necessary.
1407 Value *ReassociatePass::OptimizeAdd(Instruction *I,
1408 SmallVectorImpl<ValueEntry> &Ops) {
1409 // Scan the operand lists looking for X and -X pairs. If we find any, we
1410 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it,
1411 // scan for any
1412 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1414 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1415 Value *TheOp = Ops[i].Op;
1416 // Check to see if we've seen this operand before. If so, we factor all
1417 // instances of the operand together. Due to our sorting criteria, we know
1418 // that these need to be next to each other in the vector.
1419 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1420 // Rescan the list, remove all instances of this operand from the expr.
1421 unsigned NumFound = 0;
1422 do {
1423 Ops.erase(Ops.begin()+i);
1424 ++NumFound;
1425 } while (i != Ops.size() && Ops[i].Op == TheOp);
1427 LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp
1428 << '\n');
1429 ++NumFactor;
1431 // Insert a new multiply.
1432 Type *Ty = TheOp->getType();
1433 Constant *C = Ty->isIntOrIntVectorTy() ?
1434 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
1435 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
1437 // Now that we have inserted a multiply, optimize it. This allows us to
1438 // handle cases that require multiple factoring steps, such as this:
1439 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1440 RedoInsts.insert(Mul);
1442 // If every add operand was a duplicate, return the multiply.
1443 if (Ops.empty())
1444 return Mul;
1446 // Otherwise, we had some input that didn't have the dupe, such as
1447 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1448 // things being added by this operation.
1449 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1451 --i;
1452 e = Ops.size();
1453 continue;
1456 // Check for X and -X or X and ~X in the operand list.
1457 Value *X;
1458 if (!match(TheOp, m_Neg(m_Value(X))) && !match(TheOp, m_Not(m_Value(X))) &&
1459 !match(TheOp, m_FNeg(m_Value(X))))
1460 continue;
1462 unsigned FoundX = FindInOperandList(Ops, i, X);
1463 if (FoundX == i)
1464 continue;
1466 // Remove X and -X from the operand list.
1467 if (Ops.size() == 2 &&
1468 (match(TheOp, m_Neg(m_Value())) || match(TheOp, m_FNeg(m_Value()))))
1469 return Constant::getNullValue(X->getType());
1471 // Remove X and ~X from the operand list.
1472 if (Ops.size() == 2 && match(TheOp, m_Not(m_Value())))
1473 return Constant::getAllOnesValue(X->getType());
1475 Ops.erase(Ops.begin()+i);
1476 if (i < FoundX)
1477 --FoundX;
1478 else
1479 --i; // Need to back up an extra one.
1480 Ops.erase(Ops.begin()+FoundX);
1481 ++NumAnnihil;
1482 --i; // Revisit element.
1483 e -= 2; // Removed two elements.
1485 // if X and ~X we append -1 to the operand list.
1486 if (match(TheOp, m_Not(m_Value()))) {
1487 Value *V = Constant::getAllOnesValue(X->getType());
1488 Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1489 e += 1;
1493 // Scan the operand list, checking to see if there are any common factors
1494 // between operands. Consider something like A*A+A*B*C+D. We would like to
1495 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1496 // To efficiently find this, we count the number of times a factor occurs
1497 // for any ADD operands that are MULs.
1498 DenseMap<Value*, unsigned> FactorOccurrences;
1500 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1501 // where they are actually the same multiply.
1502 unsigned MaxOcc = 0;
1503 Value *MaxOccVal = nullptr;
1504 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1505 BinaryOperator *BOp =
1506 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1507 if (!BOp)
1508 continue;
1510 // Compute all of the factors of this added value.
1511 SmallVector<Value*, 8> Factors;
1512 FindSingleUseMultiplyFactors(BOp, Factors);
1513 assert(Factors.size() > 1 && "Bad linearize!");
1515 // Add one to FactorOccurrences for each unique factor in this op.
1516 SmallPtrSet<Value*, 8> Duplicates;
1517 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1518 Value *Factor = Factors[i];
1519 if (!Duplicates.insert(Factor).second)
1520 continue;
1522 unsigned Occ = ++FactorOccurrences[Factor];
1523 if (Occ > MaxOcc) {
1524 MaxOcc = Occ;
1525 MaxOccVal = Factor;
1528 // If Factor is a negative constant, add the negated value as a factor
1529 // because we can percolate the negate out. Watch for minint, which
1530 // cannot be positivified.
1531 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
1532 if (CI->isNegative() && !CI->isMinValue(true)) {
1533 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1534 if (!Duplicates.insert(Factor).second)
1535 continue;
1536 unsigned Occ = ++FactorOccurrences[Factor];
1537 if (Occ > MaxOcc) {
1538 MaxOcc = Occ;
1539 MaxOccVal = Factor;
1542 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1543 if (CF->isNegative()) {
1544 APFloat F(CF->getValueAPF());
1545 F.changeSign();
1546 Factor = ConstantFP::get(CF->getContext(), F);
1547 if (!Duplicates.insert(Factor).second)
1548 continue;
1549 unsigned Occ = ++FactorOccurrences[Factor];
1550 if (Occ > MaxOcc) {
1551 MaxOcc = Occ;
1552 MaxOccVal = Factor;
1559 // If any factor occurred more than one time, we can pull it out.
1560 if (MaxOcc > 1) {
1561 LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal
1562 << '\n');
1563 ++NumFactor;
1565 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1566 // this, we could otherwise run into situations where removing a factor
1567 // from an expression will drop a use of maxocc, and this can cause
1568 // RemoveFactorFromExpression on successive values to behave differently.
1569 Instruction *DummyInst =
1570 I->getType()->isIntOrIntVectorTy()
1571 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1572 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1574 SmallVector<WeakTrackingVH, 4> NewMulOps;
1575 for (unsigned i = 0; i != Ops.size(); ++i) {
1576 // Only try to remove factors from expressions we're allowed to.
1577 BinaryOperator *BOp =
1578 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1579 if (!BOp)
1580 continue;
1582 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1583 // The factorized operand may occur several times. Convert them all in
1584 // one fell swoop.
1585 for (unsigned j = Ops.size(); j != i;) {
1586 --j;
1587 if (Ops[j].Op == Ops[i].Op) {
1588 NewMulOps.push_back(V);
1589 Ops.erase(Ops.begin()+j);
1592 --i;
1596 // No need for extra uses anymore.
1597 DummyInst->deleteValue();
1599 unsigned NumAddedValues = NewMulOps.size();
1600 Value *V = EmitAddTreeOfValues(I, NewMulOps);
1602 // Now that we have inserted the add tree, optimize it. This allows us to
1603 // handle cases that require multiple factoring steps, such as this:
1604 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
1605 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1606 (void)NumAddedValues;
1607 if (Instruction *VI = dyn_cast<Instruction>(V))
1608 RedoInsts.insert(VI);
1610 // Create the multiply.
1611 Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I);
1613 // Rerun associate on the multiply in case the inner expression turned into
1614 // a multiply. We want to make sure that we keep things in canonical form.
1615 RedoInsts.insert(V2);
1617 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1618 // entire result expression is just the multiply "A*(B+C)".
1619 if (Ops.empty())
1620 return V2;
1622 // Otherwise, we had some input that didn't have the factor, such as
1623 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
1624 // things being added by this operation.
1625 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1628 return nullptr;
1631 /// Build up a vector of value/power pairs factoring a product.
1633 /// Given a series of multiplication operands, build a vector of factors and
1634 /// the powers each is raised to when forming the final product. Sort them in
1635 /// the order of descending power.
1637 /// (x*x) -> [(x, 2)]
1638 /// ((x*x)*x) -> [(x, 3)]
1639 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1641 /// \returns Whether any factors have a power greater than one.
1642 static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1643 SmallVectorImpl<Factor> &Factors) {
1644 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1645 // Compute the sum of powers of simplifiable factors.
1646 unsigned FactorPowerSum = 0;
1647 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1648 Value *Op = Ops[Idx-1].Op;
1650 // Count the number of occurrences of this value.
1651 unsigned Count = 1;
1652 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1653 ++Count;
1654 // Track for simplification all factors which occur 2 or more times.
1655 if (Count > 1)
1656 FactorPowerSum += Count;
1659 // We can only simplify factors if the sum of the powers of our simplifiable
1660 // factors is 4 or higher. When that is the case, we will *always* have
1661 // a simplification. This is an important invariant to prevent cyclicly
1662 // trying to simplify already minimal formations.
1663 if (FactorPowerSum < 4)
1664 return false;
1666 // Now gather the simplifiable factors, removing them from Ops.
1667 FactorPowerSum = 0;
1668 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1669 Value *Op = Ops[Idx-1].Op;
1671 // Count the number of occurrences of this value.
1672 unsigned Count = 1;
1673 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1674 ++Count;
1675 if (Count == 1)
1676 continue;
1677 // Move an even number of occurrences to Factors.
1678 Count &= ~1U;
1679 Idx -= Count;
1680 FactorPowerSum += Count;
1681 Factors.push_back(Factor(Op, Count));
1682 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1685 // None of the adjustments above should have reduced the sum of factor powers
1686 // below our mininum of '4'.
1687 assert(FactorPowerSum >= 4);
1689 std::stable_sort(Factors.begin(), Factors.end(),
1690 [](const Factor &LHS, const Factor &RHS) {
1691 return LHS.Power > RHS.Power;
1693 return true;
1696 /// Build a tree of multiplies, computing the product of Ops.
1697 static Value *buildMultiplyTree(IRBuilder<> &Builder,
1698 SmallVectorImpl<Value*> &Ops) {
1699 if (Ops.size() == 1)
1700 return Ops.back();
1702 Value *LHS = Ops.pop_back_val();
1703 do {
1704 if (LHS->getType()->isIntOrIntVectorTy())
1705 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1706 else
1707 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
1708 } while (!Ops.empty());
1710 return LHS;
1713 /// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1715 /// Given a vector of values raised to various powers, where no two values are
1716 /// equal and the powers are sorted in decreasing order, compute the minimal
1717 /// DAG of multiplies to compute the final product, and return that product
1718 /// value.
1719 Value *
1720 ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1721 SmallVectorImpl<Factor> &Factors) {
1722 assert(Factors[0].Power);
1723 SmallVector<Value *, 4> OuterProduct;
1724 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1725 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1726 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1727 LastIdx = Idx;
1728 continue;
1731 // We want to multiply across all the factors with the same power so that
1732 // we can raise them to that power as a single entity. Build a mini tree
1733 // for that.
1734 SmallVector<Value *, 4> InnerProduct;
1735 InnerProduct.push_back(Factors[LastIdx].Base);
1736 do {
1737 InnerProduct.push_back(Factors[Idx].Base);
1738 ++Idx;
1739 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1741 // Reset the base value of the first factor to the new expression tree.
1742 // We'll remove all the factors with the same power in a second pass.
1743 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1744 if (Instruction *MI = dyn_cast<Instruction>(M))
1745 RedoInsts.insert(MI);
1747 LastIdx = Idx;
1749 // Unique factors with equal powers -- we've folded them into the first one's
1750 // base.
1751 Factors.erase(std::unique(Factors.begin(), Factors.end(),
1752 [](const Factor &LHS, const Factor &RHS) {
1753 return LHS.Power == RHS.Power;
1755 Factors.end());
1757 // Iteratively collect the base of each factor with an add power into the
1758 // outer product, and halve each power in preparation for squaring the
1759 // expression.
1760 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1761 if (Factors[Idx].Power & 1)
1762 OuterProduct.push_back(Factors[Idx].Base);
1763 Factors[Idx].Power >>= 1;
1765 if (Factors[0].Power) {
1766 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1767 OuterProduct.push_back(SquareRoot);
1768 OuterProduct.push_back(SquareRoot);
1770 if (OuterProduct.size() == 1)
1771 return OuterProduct.front();
1773 Value *V = buildMultiplyTree(Builder, OuterProduct);
1774 return V;
1777 Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
1778 SmallVectorImpl<ValueEntry> &Ops) {
1779 // We can only optimize the multiplies when there is a chain of more than
1780 // three, such that a balanced tree might require fewer total multiplies.
1781 if (Ops.size() < 4)
1782 return nullptr;
1784 // Try to turn linear trees of multiplies without other uses of the
1785 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1786 // re-use.
1787 SmallVector<Factor, 4> Factors;
1788 if (!collectMultiplyFactors(Ops, Factors))
1789 return nullptr; // All distinct factors, so nothing left for us to do.
1791 IRBuilder<> Builder(I);
1792 // The reassociate transformation for FP operations is performed only
1793 // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
1794 // to the newly generated operations.
1795 if (auto FPI = dyn_cast<FPMathOperator>(I))
1796 Builder.setFastMathFlags(FPI->getFastMathFlags());
1798 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1799 if (Ops.empty())
1800 return V;
1802 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1803 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1804 return nullptr;
1807 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
1808 SmallVectorImpl<ValueEntry> &Ops) {
1809 // Now that we have the linearized expression tree, try to optimize it.
1810 // Start by folding any constants that we found.
1811 Constant *Cst = nullptr;
1812 unsigned Opcode = I->getOpcode();
1813 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1814 Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1815 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1817 // If there was nothing but constants then we are done.
1818 if (Ops.empty())
1819 return Cst;
1821 // Put the combined constant back at the end of the operand list, except if
1822 // there is no point. For example, an add of 0 gets dropped here, while a
1823 // multiplication by zero turns the whole expression into zero.
1824 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1825 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1826 return Cst;
1827 Ops.push_back(ValueEntry(0, Cst));
1830 if (Ops.size() == 1) return Ops[0].Op;
1832 // Handle destructive annihilation due to identities between elements in the
1833 // argument list here.
1834 unsigned NumOps = Ops.size();
1835 switch (Opcode) {
1836 default: break;
1837 case Instruction::And:
1838 case Instruction::Or:
1839 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1840 return Result;
1841 break;
1843 case Instruction::Xor:
1844 if (Value *Result = OptimizeXor(I, Ops))
1845 return Result;
1846 break;
1848 case Instruction::Add:
1849 case Instruction::FAdd:
1850 if (Value *Result = OptimizeAdd(I, Ops))
1851 return Result;
1852 break;
1854 case Instruction::Mul:
1855 case Instruction::FMul:
1856 if (Value *Result = OptimizeMul(I, Ops))
1857 return Result;
1858 break;
1861 if (Ops.size() != NumOps)
1862 return OptimizeExpression(I, Ops);
1863 return nullptr;
1866 // Remove dead instructions and if any operands are trivially dead add them to
1867 // Insts so they will be removed as well.
1868 void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I,
1869 OrderedSet &Insts) {
1870 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1871 SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end());
1872 ValueRankMap.erase(I);
1873 Insts.remove(I);
1874 RedoInsts.remove(I);
1875 I->eraseFromParent();
1876 for (auto Op : Ops)
1877 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1878 if (OpInst->use_empty())
1879 Insts.insert(OpInst);
1882 /// Zap the given instruction, adding interesting operands to the work list.
1883 void ReassociatePass::EraseInst(Instruction *I) {
1884 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1885 LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I->dump());
1887 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1888 // Erase the dead instruction.
1889 ValueRankMap.erase(I);
1890 RedoInsts.remove(I);
1891 I->eraseFromParent();
1892 // Optimize its operands.
1893 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
1894 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1895 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1896 // If this is a node in an expression tree, climb to the expression root
1897 // and add that since that's where optimization actually happens.
1898 unsigned Opcode = Op->getOpcode();
1899 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
1900 Visited.insert(Op).second)
1901 Op = Op->user_back();
1903 // The instruction we're going to push may be coming from a
1904 // dead block, and Reassociate skips the processing of unreachable
1905 // blocks because it's a waste of time and also because it can
1906 // lead to infinite loop due to LLVM's non-standard definition
1907 // of dominance.
1908 if (ValueRankMap.find(Op) != ValueRankMap.end())
1909 RedoInsts.insert(Op);
1912 MadeChange = true;
1915 // Canonicalize expressions of the following form:
1916 // x + (-Constant * y) -> x - (Constant * y)
1917 // x - (-Constant * y) -> x + (Constant * y)
1918 Instruction *ReassociatePass::canonicalizeNegConstExpr(Instruction *I) {
1919 if (!I->hasOneUse() || I->getType()->isVectorTy())
1920 return nullptr;
1922 // Must be a fmul or fdiv instruction.
1923 unsigned Opcode = I->getOpcode();
1924 if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv)
1925 return nullptr;
1927 auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
1928 auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
1930 // Both operands are constant, let it get constant folded away.
1931 if (C0 && C1)
1932 return nullptr;
1934 ConstantFP *CF = C0 ? C0 : C1;
1936 // Must have one constant operand.
1937 if (!CF)
1938 return nullptr;
1940 // Must be a negative ConstantFP.
1941 if (!CF->isNegative())
1942 return nullptr;
1944 // User must be a binary operator with one or more uses.
1945 Instruction *User = I->user_back();
1946 if (!isa<BinaryOperator>(User) || User->use_empty())
1947 return nullptr;
1949 unsigned UserOpcode = User->getOpcode();
1950 if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub)
1951 return nullptr;
1953 // Subtraction is not commutative. Explicitly, the following transform is
1954 // not valid: (-Constant * y) - x -> x + (Constant * y)
1955 if (!User->isCommutative() && User->getOperand(1) != I)
1956 return nullptr;
1958 // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the
1959 // resulting subtract will be broken up later. This can get us into an
1960 // infinite loop during reassociation.
1961 if (UserOpcode == Instruction::FAdd && ShouldBreakUpSubtract(User))
1962 return nullptr;
1964 // Change the sign of the constant.
1965 APFloat Val = CF->getValueAPF();
1966 Val.changeSign();
1967 I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val));
1969 // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
1970 // ((-Const*y) + x) -> (x + (-Const*y)).
1971 if (User->getOperand(0) == I && User->isCommutative())
1972 cast<BinaryOperator>(User)->swapOperands();
1974 Value *Op0 = User->getOperand(0);
1975 Value *Op1 = User->getOperand(1);
1976 BinaryOperator *NI;
1977 switch (UserOpcode) {
1978 default:
1979 llvm_unreachable("Unexpected Opcode!");
1980 case Instruction::FAdd:
1981 NI = BinaryOperator::CreateFSub(Op0, Op1);
1982 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1983 break;
1984 case Instruction::FSub:
1985 NI = BinaryOperator::CreateFAdd(Op0, Op1);
1986 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1987 break;
1990 NI->insertBefore(User);
1991 NI->setName(User->getName());
1992 User->replaceAllUsesWith(NI);
1993 NI->setDebugLoc(I->getDebugLoc());
1994 RedoInsts.insert(I);
1995 MadeChange = true;
1996 return NI;
1999 /// Inspect and optimize the given instruction. Note that erasing
2000 /// instructions is not allowed.
2001 void ReassociatePass::OptimizeInst(Instruction *I) {
2002 // Only consider operations that we understand.
2003 if (!isa<BinaryOperator>(I))
2004 return;
2006 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
2007 // If an operand of this shift is a reassociable multiply, or if the shift
2008 // is used by a reassociable multiply or add, turn into a multiply.
2009 if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
2010 (I->hasOneUse() &&
2011 (isReassociableOp(I->user_back(), Instruction::Mul) ||
2012 isReassociableOp(I->user_back(), Instruction::Add)))) {
2013 Instruction *NI = ConvertShiftToMul(I);
2014 RedoInsts.insert(I);
2015 MadeChange = true;
2016 I = NI;
2019 // Canonicalize negative constants out of expressions.
2020 if (Instruction *Res = canonicalizeNegConstExpr(I))
2021 I = Res;
2023 // Commute binary operators, to canonicalize the order of their operands.
2024 // This can potentially expose more CSE opportunities, and makes writing other
2025 // transformations simpler.
2026 if (I->isCommutative())
2027 canonicalizeOperands(I);
2029 // Don't optimize floating-point instructions unless they are 'fast'.
2030 if (I->getType()->isFPOrFPVectorTy() && !I->isFast())
2031 return;
2033 // Do not reassociate boolean (i1) expressions. We want to preserve the
2034 // original order of evaluation for short-circuited comparisons that
2035 // SimplifyCFG has folded to AND/OR expressions. If the expression
2036 // is not further optimized, it is likely to be transformed back to a
2037 // short-circuited form for code gen, and the source order may have been
2038 // optimized for the most likely conditions.
2039 if (I->getType()->isIntegerTy(1))
2040 return;
2042 // If this is a subtract instruction which is not already in negate form,
2043 // see if we can convert it to X+-Y.
2044 if (I->getOpcode() == Instruction::Sub) {
2045 if (ShouldBreakUpSubtract(I)) {
2046 Instruction *NI = BreakUpSubtract(I, RedoInsts);
2047 RedoInsts.insert(I);
2048 MadeChange = true;
2049 I = NI;
2050 } else if (match(I, m_Neg(m_Value()))) {
2051 // Otherwise, this is a negation. See if the operand is a multiply tree
2052 // and if this is not an inner node of a multiply tree.
2053 if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2054 (!I->hasOneUse() ||
2055 !isReassociableOp(I->user_back(), Instruction::Mul))) {
2056 Instruction *NI = LowerNegateToMultiply(I);
2057 // If the negate was simplified, revisit the users to see if we can
2058 // reassociate further.
2059 for (User *U : NI->users()) {
2060 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2061 RedoInsts.insert(Tmp);
2063 RedoInsts.insert(I);
2064 MadeChange = true;
2065 I = NI;
2068 } else if (I->getOpcode() == Instruction::FSub) {
2069 if (ShouldBreakUpSubtract(I)) {
2070 Instruction *NI = BreakUpSubtract(I, RedoInsts);
2071 RedoInsts.insert(I);
2072 MadeChange = true;
2073 I = NI;
2074 } else if (match(I, m_FNeg(m_Value()))) {
2075 // Otherwise, this is a negation. See if the operand is a multiply tree
2076 // and if this is not an inner node of a multiply tree.
2077 if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
2078 (!I->hasOneUse() ||
2079 !isReassociableOp(I->user_back(), Instruction::FMul))) {
2080 // If the negate was simplified, revisit the users to see if we can
2081 // reassociate further.
2082 Instruction *NI = LowerNegateToMultiply(I);
2083 for (User *U : NI->users()) {
2084 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2085 RedoInsts.insert(Tmp);
2087 RedoInsts.insert(I);
2088 MadeChange = true;
2089 I = NI;
2094 // If this instruction is an associative binary operator, process it.
2095 if (!I->isAssociative()) return;
2096 BinaryOperator *BO = cast<BinaryOperator>(I);
2098 // If this is an interior node of a reassociable tree, ignore it until we
2099 // get to the root of the tree, to avoid N^2 analysis.
2100 unsigned Opcode = BO->getOpcode();
2101 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2102 // During the initial run we will get to the root of the tree.
2103 // But if we get here while we are redoing instructions, there is no
2104 // guarantee that the root will be visited. So Redo later
2105 if (BO->user_back() != BO &&
2106 BO->getParent() == BO->user_back()->getParent())
2107 RedoInsts.insert(BO->user_back());
2108 return;
2111 // If this is an add tree that is used by a sub instruction, ignore it
2112 // until we process the subtract.
2113 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
2114 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
2115 return;
2116 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2117 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2118 return;
2120 ReassociateExpression(BO);
2123 void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
2124 // First, walk the expression tree, linearizing the tree, collecting the
2125 // operand information.
2126 SmallVector<RepeatedValue, 8> Tree;
2127 MadeChange |= LinearizeExprTree(I, Tree);
2128 SmallVector<ValueEntry, 8> Ops;
2129 Ops.reserve(Tree.size());
2130 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2131 RepeatedValue E = Tree[i];
2132 Ops.append(E.second.getZExtValue(),
2133 ValueEntry(getRank(E.first), E.first));
2136 LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2138 // Now that we have linearized the tree to a list and have gathered all of
2139 // the operands and their ranks, sort the operands by their rank. Use a
2140 // stable_sort so that values with equal ranks will have their relative
2141 // positions maintained (and so the compiler is deterministic). Note that
2142 // this sorts so that the highest ranking values end up at the beginning of
2143 // the vector.
2144 std::stable_sort(Ops.begin(), Ops.end());
2146 // Now that we have the expression tree in a convenient
2147 // sorted form, optimize it globally if possible.
2148 if (Value *V = OptimizeExpression(I, Ops)) {
2149 if (V == I)
2150 // Self-referential expression in unreachable code.
2151 return;
2152 // This expression tree simplified to something that isn't a tree,
2153 // eliminate it.
2154 LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
2155 I->replaceAllUsesWith(V);
2156 if (Instruction *VI = dyn_cast<Instruction>(V))
2157 if (I->getDebugLoc())
2158 VI->setDebugLoc(I->getDebugLoc());
2159 RedoInsts.insert(I);
2160 ++NumAnnihil;
2161 return;
2164 // We want to sink immediates as deeply as possible except in the case where
2165 // this is a multiply tree used only by an add, and the immediate is a -1.
2166 // In this case we reassociate to put the negation on the outside so that we
2167 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
2168 if (I->hasOneUse()) {
2169 if (I->getOpcode() == Instruction::Mul &&
2170 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2171 isa<ConstantInt>(Ops.back().Op) &&
2172 cast<ConstantInt>(Ops.back().Op)->isMinusOne()) {
2173 ValueEntry Tmp = Ops.pop_back_val();
2174 Ops.insert(Ops.begin(), Tmp);
2175 } else if (I->getOpcode() == Instruction::FMul &&
2176 cast<Instruction>(I->user_back())->getOpcode() ==
2177 Instruction::FAdd &&
2178 isa<ConstantFP>(Ops.back().Op) &&
2179 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2180 ValueEntry Tmp = Ops.pop_back_val();
2181 Ops.insert(Ops.begin(), Tmp);
2185 LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
2187 if (Ops.size() == 1) {
2188 if (Ops[0].Op == I)
2189 // Self-referential expression in unreachable code.
2190 return;
2192 // This expression tree simplified to something that isn't a tree,
2193 // eliminate it.
2194 I->replaceAllUsesWith(Ops[0].Op);
2195 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2196 OI->setDebugLoc(I->getDebugLoc());
2197 RedoInsts.insert(I);
2198 return;
2201 if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) {
2202 // Find the pair with the highest count in the pairmap and move it to the
2203 // back of the list so that it can later be CSE'd.
2204 // example:
2205 // a*b*c*d*e
2206 // if c*e is the most "popular" pair, we can express this as
2207 // (((c*e)*d)*b)*a
2208 unsigned Max = 1;
2209 unsigned BestRank = 0;
2210 std::pair<unsigned, unsigned> BestPair;
2211 unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin;
2212 for (unsigned i = 0; i < Ops.size() - 1; ++i)
2213 for (unsigned j = i + 1; j < Ops.size(); ++j) {
2214 unsigned Score = 0;
2215 Value *Op0 = Ops[i].Op;
2216 Value *Op1 = Ops[j].Op;
2217 if (std::less<Value *>()(Op1, Op0))
2218 std::swap(Op0, Op1);
2219 auto it = PairMap[Idx].find({Op0, Op1});
2220 if (it != PairMap[Idx].end())
2221 Score += it->second;
2223 unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank);
2224 if (Score > Max || (Score == Max && MaxRank < BestRank)) {
2225 BestPair = {i, j};
2226 Max = Score;
2227 BestRank = MaxRank;
2230 if (Max > 1) {
2231 auto Op0 = Ops[BestPair.first];
2232 auto Op1 = Ops[BestPair.second];
2233 Ops.erase(&Ops[BestPair.second]);
2234 Ops.erase(&Ops[BestPair.first]);
2235 Ops.push_back(Op0);
2236 Ops.push_back(Op1);
2239 // Now that we ordered and optimized the expressions, splat them back into
2240 // the expression tree, removing any unneeded nodes.
2241 RewriteExprTree(I, Ops);
2244 void
2245 ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) {
2246 // Make a "pairmap" of how often each operand pair occurs.
2247 for (BasicBlock *BI : RPOT) {
2248 for (Instruction &I : *BI) {
2249 if (!I.isAssociative())
2250 continue;
2252 // Ignore nodes that aren't at the root of trees.
2253 if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode())
2254 continue;
2256 // Collect all operands in a single reassociable expression.
2257 // Since Reassociate has already been run once, we can assume things
2258 // are already canonical according to Reassociation's regime.
2259 SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) };
2260 SmallVector<Value *, 8> Ops;
2261 while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) {
2262 Value *Op = Worklist.pop_back_val();
2263 Instruction *OpI = dyn_cast<Instruction>(Op);
2264 if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) {
2265 Ops.push_back(Op);
2266 continue;
2268 // Be paranoid about self-referencing expressions in unreachable code.
2269 if (OpI->getOperand(0) != OpI)
2270 Worklist.push_back(OpI->getOperand(0));
2271 if (OpI->getOperand(1) != OpI)
2272 Worklist.push_back(OpI->getOperand(1));
2274 // Skip extremely long expressions.
2275 if (Ops.size() > GlobalReassociateLimit)
2276 continue;
2278 // Add all pairwise combinations of operands to the pair map.
2279 unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin;
2280 SmallSet<std::pair<Value *, Value*>, 32> Visited;
2281 for (unsigned i = 0; i < Ops.size() - 1; ++i) {
2282 for (unsigned j = i + 1; j < Ops.size(); ++j) {
2283 // Canonicalize operand orderings.
2284 Value *Op0 = Ops[i];
2285 Value *Op1 = Ops[j];
2286 if (std::less<Value *>()(Op1, Op0))
2287 std::swap(Op0, Op1);
2288 if (!Visited.insert({Op0, Op1}).second)
2289 continue;
2290 auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, 1});
2291 if (!res.second)
2292 ++res.first->second;
2299 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
2300 // Get the functions basic blocks in Reverse Post Order. This order is used by
2301 // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
2302 // blocks (it has been seen that the analysis in this pass could hang when
2303 // analysing dead basic blocks).
2304 ReversePostOrderTraversal<Function *> RPOT(&F);
2306 // Calculate the rank map for F.
2307 BuildRankMap(F, RPOT);
2309 // Build the pair map before running reassociate.
2310 // Technically this would be more accurate if we did it after one round
2311 // of reassociation, but in practice it doesn't seem to help much on
2312 // real-world code, so don't waste the compile time running reassociate
2313 // twice.
2314 // If a user wants, they could expicitly run reassociate twice in their
2315 // pass pipeline for further potential gains.
2316 // It might also be possible to update the pair map during runtime, but the
2317 // overhead of that may be large if there's many reassociable chains.
2318 BuildPairMap(RPOT);
2320 MadeChange = false;
2322 // Traverse the same blocks that were analysed by BuildRankMap.
2323 for (BasicBlock *BI : RPOT) {
2324 assert(RankMap.count(&*BI) && "BB should be ranked.");
2325 // Optimize every instruction in the basic block.
2326 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
2327 if (isInstructionTriviallyDead(&*II)) {
2328 EraseInst(&*II++);
2329 } else {
2330 OptimizeInst(&*II);
2331 assert(II->getParent() == &*BI && "Moved to a different block!");
2332 ++II;
2335 // Make a copy of all the instructions to be redone so we can remove dead
2336 // instructions.
2337 OrderedSet ToRedo(RedoInsts);
2338 // Iterate over all instructions to be reevaluated and remove trivially dead
2339 // instructions. If any operand of the trivially dead instruction becomes
2340 // dead mark it for deletion as well. Continue this process until all
2341 // trivially dead instructions have been removed.
2342 while (!ToRedo.empty()) {
2343 Instruction *I = ToRedo.pop_back_val();
2344 if (isInstructionTriviallyDead(I)) {
2345 RecursivelyEraseDeadInsts(I, ToRedo);
2346 MadeChange = true;
2350 // Now that we have removed dead instructions, we can reoptimize the
2351 // remaining instructions.
2352 while (!RedoInsts.empty()) {
2353 Instruction *I = RedoInsts.front();
2354 RedoInsts.erase(RedoInsts.begin());
2355 if (isInstructionTriviallyDead(I))
2356 EraseInst(I);
2357 else
2358 OptimizeInst(I);
2362 // We are done with the rank map and pair map.
2363 RankMap.clear();
2364 ValueRankMap.clear();
2365 for (auto &Entry : PairMap)
2366 Entry.clear();
2368 if (MadeChange) {
2369 PreservedAnalyses PA;
2370 PA.preserveSet<CFGAnalyses>();
2371 PA.preserve<GlobalsAA>();
2372 return PA;
2375 return PreservedAnalyses::all();
2378 namespace {
2380 class ReassociateLegacyPass : public FunctionPass {
2381 ReassociatePass Impl;
2383 public:
2384 static char ID; // Pass identification, replacement for typeid
2386 ReassociateLegacyPass() : FunctionPass(ID) {
2387 initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2390 bool runOnFunction(Function &F) override {
2391 if (skipFunction(F))
2392 return false;
2394 FunctionAnalysisManager DummyFAM;
2395 auto PA = Impl.run(F, DummyFAM);
2396 return !PA.areAllPreserved();
2399 void getAnalysisUsage(AnalysisUsage &AU) const override {
2400 AU.setPreservesCFG();
2401 AU.addPreserved<GlobalsAAWrapperPass>();
2405 } // end anonymous namespace
2407 char ReassociateLegacyPass::ID = 0;
2409 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
2410 "Reassociate expressions", false, false)
2412 // Public interface to the Reassociate pass
2413 FunctionPass *llvm::createReassociatePass() {
2414 return new ReassociateLegacyPass();