[ARM] MVE compare vector splat combine
[llvm-complete.git] / lib / Target / PowerPC / PPCInstrInfo.cpp
blobc2eef8bd635f8e4917c7abf77548b58ee84aa234
1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "PPCInstrInfo.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCHazardRecognizers.h"
17 #include "PPCInstrBuilder.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/LiveIntervals.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/PseudoSourceValue.h"
29 #include "llvm/CodeGen/ScheduleDAG.h"
30 #include "llvm/CodeGen/SlotIndexes.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/TargetRegistry.h"
38 #include "llvm/Support/raw_ostream.h"
40 using namespace llvm;
42 #define DEBUG_TYPE "ppc-instr-info"
44 #define GET_INSTRMAP_INFO
45 #define GET_INSTRINFO_CTOR_DTOR
46 #include "PPCGenInstrInfo.inc"
48 STATISTIC(NumStoreSPILLVSRRCAsVec,
49 "Number of spillvsrrc spilled to stack as vec");
50 STATISTIC(NumStoreSPILLVSRRCAsGpr,
51 "Number of spillvsrrc spilled to stack as gpr");
52 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
53 STATISTIC(CmpIselsConverted,
54 "Number of ISELs that depend on comparison of constants converted");
55 STATISTIC(MissedConvertibleImmediateInstrs,
56 "Number of compare-immediate instructions fed by constants");
57 STATISTIC(NumRcRotatesConvertedToRcAnd,
58 "Number of record-form rotates converted to record-form andi");
60 static cl::
61 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
62 cl::desc("Disable analysis for CTR loops"));
64 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
65 cl::desc("Disable compare instruction optimization"), cl::Hidden);
67 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
68 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
69 cl::Hidden);
71 static cl::opt<bool>
72 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
73 cl::desc("Use the old (incorrect) instruction latency calculation"));
75 // Index into the OpcodesForSpill array.
76 enum SpillOpcodeKey {
77 SOK_Int4Spill,
78 SOK_Int8Spill,
79 SOK_Float8Spill,
80 SOK_Float4Spill,
81 SOK_CRSpill,
82 SOK_CRBitSpill,
83 SOK_VRVectorSpill,
84 SOK_VSXVectorSpill,
85 SOK_VectorFloat8Spill,
86 SOK_VectorFloat4Spill,
87 SOK_VRSaveSpill,
88 SOK_QuadFloat8Spill,
89 SOK_QuadFloat4Spill,
90 SOK_QuadBitSpill,
91 SOK_SpillToVSR,
92 SOK_SPESpill,
93 SOK_SPE4Spill,
94 SOK_LastOpcodeSpill // This must be last on the enum.
97 // Pin the vtable to this file.
98 void PPCInstrInfo::anchor() {}
100 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
101 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
102 /* CatchRetOpcode */ -1,
103 STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
104 Subtarget(STI), RI(STI.getTargetMachine()) {}
106 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
107 /// this target when scheduling the DAG.
108 ScheduleHazardRecognizer *
109 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
110 const ScheduleDAG *DAG) const {
111 unsigned Directive =
112 static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
113 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
114 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
115 const InstrItineraryData *II =
116 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
117 return new ScoreboardHazardRecognizer(II, DAG);
120 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
123 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
124 /// to use for this target when scheduling the DAG.
125 ScheduleHazardRecognizer *
126 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
127 const ScheduleDAG *DAG) const {
128 unsigned Directive =
129 DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective();
131 // FIXME: Leaving this as-is until we have POWER9 scheduling info
132 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
133 return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
135 // Most subtargets use a PPC970 recognizer.
136 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
137 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
138 assert(DAG->TII && "No InstrInfo?");
140 return new PPCHazardRecognizer970(*DAG);
143 return new ScoreboardHazardRecognizer(II, DAG);
146 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
147 const MachineInstr &MI,
148 unsigned *PredCost) const {
149 if (!ItinData || UseOldLatencyCalc)
150 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
152 // The default implementation of getInstrLatency calls getStageLatency, but
153 // getStageLatency does not do the right thing for us. While we have
154 // itinerary, most cores are fully pipelined, and so the itineraries only
155 // express the first part of the pipeline, not every stage. Instead, we need
156 // to use the listed output operand cycle number (using operand 0 here, which
157 // is an output).
159 unsigned Latency = 1;
160 unsigned DefClass = MI.getDesc().getSchedClass();
161 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
162 const MachineOperand &MO = MI.getOperand(i);
163 if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
164 continue;
166 int Cycle = ItinData->getOperandCycle(DefClass, i);
167 if (Cycle < 0)
168 continue;
170 Latency = std::max(Latency, (unsigned) Cycle);
173 return Latency;
176 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
177 const MachineInstr &DefMI, unsigned DefIdx,
178 const MachineInstr &UseMI,
179 unsigned UseIdx) const {
180 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
181 UseMI, UseIdx);
183 if (!DefMI.getParent())
184 return Latency;
186 const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
187 unsigned Reg = DefMO.getReg();
189 bool IsRegCR;
190 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
191 const MachineRegisterInfo *MRI =
192 &DefMI.getParent()->getParent()->getRegInfo();
193 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
194 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
195 } else {
196 IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
197 PPC::CRBITRCRegClass.contains(Reg);
200 if (UseMI.isBranch() && IsRegCR) {
201 if (Latency < 0)
202 Latency = getInstrLatency(ItinData, DefMI);
204 // On some cores, there is an additional delay between writing to a condition
205 // register, and using it from a branch.
206 unsigned Directive = Subtarget.getDarwinDirective();
207 switch (Directive) {
208 default: break;
209 case PPC::DIR_7400:
210 case PPC::DIR_750:
211 case PPC::DIR_970:
212 case PPC::DIR_E5500:
213 case PPC::DIR_PWR4:
214 case PPC::DIR_PWR5:
215 case PPC::DIR_PWR5X:
216 case PPC::DIR_PWR6:
217 case PPC::DIR_PWR6X:
218 case PPC::DIR_PWR7:
219 case PPC::DIR_PWR8:
220 // FIXME: Is this needed for POWER9?
221 Latency += 2;
222 break;
226 return Latency;
229 // This function does not list all associative and commutative operations, but
230 // only those worth feeding through the machine combiner in an attempt to
231 // reduce the critical path. Mostly, this means floating-point operations,
232 // because they have high latencies (compared to other operations, such and
233 // and/or, which are also associative and commutative, but have low latencies).
234 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
235 switch (Inst.getOpcode()) {
236 // FP Add:
237 case PPC::FADD:
238 case PPC::FADDS:
239 // FP Multiply:
240 case PPC::FMUL:
241 case PPC::FMULS:
242 // Altivec Add:
243 case PPC::VADDFP:
244 // VSX Add:
245 case PPC::XSADDDP:
246 case PPC::XVADDDP:
247 case PPC::XVADDSP:
248 case PPC::XSADDSP:
249 // VSX Multiply:
250 case PPC::XSMULDP:
251 case PPC::XVMULDP:
252 case PPC::XVMULSP:
253 case PPC::XSMULSP:
254 // QPX Add:
255 case PPC::QVFADD:
256 case PPC::QVFADDS:
257 case PPC::QVFADDSs:
258 // QPX Multiply:
259 case PPC::QVFMUL:
260 case PPC::QVFMULS:
261 case PPC::QVFMULSs:
262 return true;
263 default:
264 return false;
268 bool PPCInstrInfo::getMachineCombinerPatterns(
269 MachineInstr &Root,
270 SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
271 // Using the machine combiner in this way is potentially expensive, so
272 // restrict to when aggressive optimizations are desired.
273 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
274 return false;
276 // FP reassociation is only legal when we don't need strict IEEE semantics.
277 if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath)
278 return false;
280 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
283 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
284 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
285 unsigned &SrcReg, unsigned &DstReg,
286 unsigned &SubIdx) const {
287 switch (MI.getOpcode()) {
288 default: return false;
289 case PPC::EXTSW:
290 case PPC::EXTSW_32:
291 case PPC::EXTSW_32_64:
292 SrcReg = MI.getOperand(1).getReg();
293 DstReg = MI.getOperand(0).getReg();
294 SubIdx = PPC::sub_32;
295 return true;
299 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
300 int &FrameIndex) const {
301 unsigned Opcode = MI.getOpcode();
302 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
303 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
305 if (End != std::find(OpcodesForSpill, End, Opcode)) {
306 // Check for the operands added by addFrameReference (the immediate is the
307 // offset which defaults to 0).
308 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
309 MI.getOperand(2).isFI()) {
310 FrameIndex = MI.getOperand(2).getIndex();
311 return MI.getOperand(0).getReg();
314 return 0;
317 // For opcodes with the ReMaterializable flag set, this function is called to
318 // verify the instruction is really rematable.
319 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
320 AliasAnalysis *AA) const {
321 switch (MI.getOpcode()) {
322 default:
323 // This function should only be called for opcodes with the ReMaterializable
324 // flag set.
325 llvm_unreachable("Unknown rematerializable operation!");
326 break;
327 case PPC::LI:
328 case PPC::LI8:
329 case PPC::LIS:
330 case PPC::LIS8:
331 case PPC::QVGPCI:
332 case PPC::ADDIStocHA8:
333 case PPC::ADDItocL:
334 case PPC::LOAD_STACK_GUARD:
335 case PPC::XXLXORz:
336 case PPC::XXLXORspz:
337 case PPC::XXLXORdpz:
338 case PPC::V_SET0B:
339 case PPC::V_SET0H:
340 case PPC::V_SET0:
341 case PPC::V_SETALLONESB:
342 case PPC::V_SETALLONESH:
343 case PPC::V_SETALLONES:
344 case PPC::CRSET:
345 case PPC::CRUNSET:
346 return true;
348 return false;
351 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
352 int &FrameIndex) const {
353 unsigned Opcode = MI.getOpcode();
354 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
355 const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
357 if (End != std::find(OpcodesForSpill, End, Opcode)) {
358 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
359 MI.getOperand(2).isFI()) {
360 FrameIndex = MI.getOperand(2).getIndex();
361 return MI.getOperand(0).getReg();
364 return 0;
367 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
368 unsigned OpIdx1,
369 unsigned OpIdx2) const {
370 MachineFunction &MF = *MI.getParent()->getParent();
372 // Normal instructions can be commuted the obvious way.
373 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo)
374 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
375 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
376 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
377 // changing the relative order of the mask operands might change what happens
378 // to the high-bits of the mask (and, thus, the result).
380 // Cannot commute if it has a non-zero rotate count.
381 if (MI.getOperand(3).getImm() != 0)
382 return nullptr;
384 // If we have a zero rotate count, we have:
385 // M = mask(MB,ME)
386 // Op0 = (Op1 & ~M) | (Op2 & M)
387 // Change this to:
388 // M = mask((ME+1)&31, (MB-1)&31)
389 // Op0 = (Op2 & ~M) | (Op1 & M)
391 // Swap op1/op2
392 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
393 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo.");
394 Register Reg0 = MI.getOperand(0).getReg();
395 Register Reg1 = MI.getOperand(1).getReg();
396 Register Reg2 = MI.getOperand(2).getReg();
397 unsigned SubReg1 = MI.getOperand(1).getSubReg();
398 unsigned SubReg2 = MI.getOperand(2).getSubReg();
399 bool Reg1IsKill = MI.getOperand(1).isKill();
400 bool Reg2IsKill = MI.getOperand(2).isKill();
401 bool ChangeReg0 = false;
402 // If machine instrs are no longer in two-address forms, update
403 // destination register as well.
404 if (Reg0 == Reg1) {
405 // Must be two address instruction!
406 assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
407 "Expecting a two-address instruction!");
408 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
409 Reg2IsKill = false;
410 ChangeReg0 = true;
413 // Masks.
414 unsigned MB = MI.getOperand(4).getImm();
415 unsigned ME = MI.getOperand(5).getImm();
417 // We can't commute a trivial mask (there is no way to represent an all-zero
418 // mask).
419 if (MB == 0 && ME == 31)
420 return nullptr;
422 if (NewMI) {
423 // Create a new instruction.
424 Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
425 bool Reg0IsDead = MI.getOperand(0).isDead();
426 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
427 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
428 .addReg(Reg2, getKillRegState(Reg2IsKill))
429 .addReg(Reg1, getKillRegState(Reg1IsKill))
430 .addImm((ME + 1) & 31)
431 .addImm((MB - 1) & 31);
434 if (ChangeReg0) {
435 MI.getOperand(0).setReg(Reg2);
436 MI.getOperand(0).setSubReg(SubReg2);
438 MI.getOperand(2).setReg(Reg1);
439 MI.getOperand(1).setReg(Reg2);
440 MI.getOperand(2).setSubReg(SubReg1);
441 MI.getOperand(1).setSubReg(SubReg2);
442 MI.getOperand(2).setIsKill(Reg1IsKill);
443 MI.getOperand(1).setIsKill(Reg2IsKill);
445 // Swap the mask around.
446 MI.getOperand(4).setImm((ME + 1) & 31);
447 MI.getOperand(5).setImm((MB - 1) & 31);
448 return &MI;
451 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
452 unsigned &SrcOpIdx2) const {
453 // For VSX A-Type FMA instructions, it is the first two operands that can be
454 // commuted, however, because the non-encoded tied input operand is listed
455 // first, the operands to swap are actually the second and third.
457 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
458 if (AltOpc == -1)
459 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
461 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
462 // and SrcOpIdx2.
463 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
466 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
467 MachineBasicBlock::iterator MI) const {
468 // This function is used for scheduling, and the nop wanted here is the type
469 // that terminates dispatch groups on the POWER cores.
470 unsigned Directive = Subtarget.getDarwinDirective();
471 unsigned Opcode;
472 switch (Directive) {
473 default: Opcode = PPC::NOP; break;
474 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
475 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
476 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
477 // FIXME: Update when POWER9 scheduling model is ready.
478 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
481 DebugLoc DL;
482 BuildMI(MBB, MI, DL, get(Opcode));
485 /// Return the noop instruction to use for a noop.
486 void PPCInstrInfo::getNoop(MCInst &NopInst) const {
487 NopInst.setOpcode(PPC::NOP);
490 // Branch analysis.
491 // Note: If the condition register is set to CTR or CTR8 then this is a
492 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
493 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
494 MachineBasicBlock *&TBB,
495 MachineBasicBlock *&FBB,
496 SmallVectorImpl<MachineOperand> &Cond,
497 bool AllowModify) const {
498 bool isPPC64 = Subtarget.isPPC64();
500 // If the block has no terminators, it just falls into the block after it.
501 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
502 if (I == MBB.end())
503 return false;
505 if (!isUnpredicatedTerminator(*I))
506 return false;
508 if (AllowModify) {
509 // If the BB ends with an unconditional branch to the fallthrough BB,
510 // we eliminate the branch instruction.
511 if (I->getOpcode() == PPC::B &&
512 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
513 I->eraseFromParent();
515 // We update iterator after deleting the last branch.
516 I = MBB.getLastNonDebugInstr();
517 if (I == MBB.end() || !isUnpredicatedTerminator(*I))
518 return false;
522 // Get the last instruction in the block.
523 MachineInstr &LastInst = *I;
525 // If there is only one terminator instruction, process it.
526 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
527 if (LastInst.getOpcode() == PPC::B) {
528 if (!LastInst.getOperand(0).isMBB())
529 return true;
530 TBB = LastInst.getOperand(0).getMBB();
531 return false;
532 } else if (LastInst.getOpcode() == PPC::BCC) {
533 if (!LastInst.getOperand(2).isMBB())
534 return true;
535 // Block ends with fall-through condbranch.
536 TBB = LastInst.getOperand(2).getMBB();
537 Cond.push_back(LastInst.getOperand(0));
538 Cond.push_back(LastInst.getOperand(1));
539 return false;
540 } else if (LastInst.getOpcode() == PPC::BC) {
541 if (!LastInst.getOperand(1).isMBB())
542 return true;
543 // Block ends with fall-through condbranch.
544 TBB = LastInst.getOperand(1).getMBB();
545 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
546 Cond.push_back(LastInst.getOperand(0));
547 return false;
548 } else if (LastInst.getOpcode() == PPC::BCn) {
549 if (!LastInst.getOperand(1).isMBB())
550 return true;
551 // Block ends with fall-through condbranch.
552 TBB = LastInst.getOperand(1).getMBB();
553 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
554 Cond.push_back(LastInst.getOperand(0));
555 return false;
556 } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
557 LastInst.getOpcode() == PPC::BDNZ) {
558 if (!LastInst.getOperand(0).isMBB())
559 return true;
560 if (DisableCTRLoopAnal)
561 return true;
562 TBB = LastInst.getOperand(0).getMBB();
563 Cond.push_back(MachineOperand::CreateImm(1));
564 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
565 true));
566 return false;
567 } else if (LastInst.getOpcode() == PPC::BDZ8 ||
568 LastInst.getOpcode() == PPC::BDZ) {
569 if (!LastInst.getOperand(0).isMBB())
570 return true;
571 if (DisableCTRLoopAnal)
572 return true;
573 TBB = LastInst.getOperand(0).getMBB();
574 Cond.push_back(MachineOperand::CreateImm(0));
575 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
576 true));
577 return false;
580 // Otherwise, don't know what this is.
581 return true;
584 // Get the instruction before it if it's a terminator.
585 MachineInstr &SecondLastInst = *I;
587 // If there are three terminators, we don't know what sort of block this is.
588 if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
589 return true;
591 // If the block ends with PPC::B and PPC:BCC, handle it.
592 if (SecondLastInst.getOpcode() == PPC::BCC &&
593 LastInst.getOpcode() == PPC::B) {
594 if (!SecondLastInst.getOperand(2).isMBB() ||
595 !LastInst.getOperand(0).isMBB())
596 return true;
597 TBB = SecondLastInst.getOperand(2).getMBB();
598 Cond.push_back(SecondLastInst.getOperand(0));
599 Cond.push_back(SecondLastInst.getOperand(1));
600 FBB = LastInst.getOperand(0).getMBB();
601 return false;
602 } else if (SecondLastInst.getOpcode() == PPC::BC &&
603 LastInst.getOpcode() == PPC::B) {
604 if (!SecondLastInst.getOperand(1).isMBB() ||
605 !LastInst.getOperand(0).isMBB())
606 return true;
607 TBB = SecondLastInst.getOperand(1).getMBB();
608 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
609 Cond.push_back(SecondLastInst.getOperand(0));
610 FBB = LastInst.getOperand(0).getMBB();
611 return false;
612 } else if (SecondLastInst.getOpcode() == PPC::BCn &&
613 LastInst.getOpcode() == PPC::B) {
614 if (!SecondLastInst.getOperand(1).isMBB() ||
615 !LastInst.getOperand(0).isMBB())
616 return true;
617 TBB = SecondLastInst.getOperand(1).getMBB();
618 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
619 Cond.push_back(SecondLastInst.getOperand(0));
620 FBB = LastInst.getOperand(0).getMBB();
621 return false;
622 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
623 SecondLastInst.getOpcode() == PPC::BDNZ) &&
624 LastInst.getOpcode() == PPC::B) {
625 if (!SecondLastInst.getOperand(0).isMBB() ||
626 !LastInst.getOperand(0).isMBB())
627 return true;
628 if (DisableCTRLoopAnal)
629 return true;
630 TBB = SecondLastInst.getOperand(0).getMBB();
631 Cond.push_back(MachineOperand::CreateImm(1));
632 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
633 true));
634 FBB = LastInst.getOperand(0).getMBB();
635 return false;
636 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
637 SecondLastInst.getOpcode() == PPC::BDZ) &&
638 LastInst.getOpcode() == PPC::B) {
639 if (!SecondLastInst.getOperand(0).isMBB() ||
640 !LastInst.getOperand(0).isMBB())
641 return true;
642 if (DisableCTRLoopAnal)
643 return true;
644 TBB = SecondLastInst.getOperand(0).getMBB();
645 Cond.push_back(MachineOperand::CreateImm(0));
646 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
647 true));
648 FBB = LastInst.getOperand(0).getMBB();
649 return false;
652 // If the block ends with two PPC:Bs, handle it. The second one is not
653 // executed, so remove it.
654 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
655 if (!SecondLastInst.getOperand(0).isMBB())
656 return true;
657 TBB = SecondLastInst.getOperand(0).getMBB();
658 I = LastInst;
659 if (AllowModify)
660 I->eraseFromParent();
661 return false;
664 // Otherwise, can't handle this.
665 return true;
668 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
669 int *BytesRemoved) const {
670 assert(!BytesRemoved && "code size not handled");
672 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
673 if (I == MBB.end())
674 return 0;
676 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
677 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
678 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
679 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ)
680 return 0;
682 // Remove the branch.
683 I->eraseFromParent();
685 I = MBB.end();
687 if (I == MBB.begin()) return 1;
688 --I;
689 if (I->getOpcode() != PPC::BCC &&
690 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
691 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
692 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ)
693 return 1;
695 // Remove the branch.
696 I->eraseFromParent();
697 return 2;
700 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
701 MachineBasicBlock *TBB,
702 MachineBasicBlock *FBB,
703 ArrayRef<MachineOperand> Cond,
704 const DebugLoc &DL,
705 int *BytesAdded) const {
706 // Shouldn't be a fall through.
707 assert(TBB && "insertBranch must not be told to insert a fallthrough");
708 assert((Cond.size() == 2 || Cond.size() == 0) &&
709 "PPC branch conditions have two components!");
710 assert(!BytesAdded && "code size not handled");
712 bool isPPC64 = Subtarget.isPPC64();
714 // One-way branch.
715 if (!FBB) {
716 if (Cond.empty()) // Unconditional branch
717 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
718 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
719 BuildMI(&MBB, DL, get(Cond[0].getImm() ?
720 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
721 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB);
722 else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
723 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
724 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
725 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
726 else // Conditional branch
727 BuildMI(&MBB, DL, get(PPC::BCC))
728 .addImm(Cond[0].getImm())
729 .add(Cond[1])
730 .addMBB(TBB);
731 return 1;
734 // Two-way Conditional Branch.
735 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
736 BuildMI(&MBB, DL, get(Cond[0].getImm() ?
737 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
738 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB);
739 else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
740 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
741 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
742 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
743 else
744 BuildMI(&MBB, DL, get(PPC::BCC))
745 .addImm(Cond[0].getImm())
746 .add(Cond[1])
747 .addMBB(TBB);
748 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
749 return 2;
752 // Select analysis.
753 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
754 ArrayRef<MachineOperand> Cond,
755 unsigned TrueReg, unsigned FalseReg,
756 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
757 if (Cond.size() != 2)
758 return false;
760 // If this is really a bdnz-like condition, then it cannot be turned into a
761 // select.
762 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
763 return false;
765 // Check register classes.
766 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
767 const TargetRegisterClass *RC =
768 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
769 if (!RC)
770 return false;
772 // isel is for regular integer GPRs only.
773 if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
774 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
775 !PPC::G8RCRegClass.hasSubClassEq(RC) &&
776 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
777 return false;
779 // FIXME: These numbers are for the A2, how well they work for other cores is
780 // an open question. On the A2, the isel instruction has a 2-cycle latency
781 // but single-cycle throughput. These numbers are used in combination with
782 // the MispredictPenalty setting from the active SchedMachineModel.
783 CondCycles = 1;
784 TrueCycles = 1;
785 FalseCycles = 1;
787 return true;
790 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
791 MachineBasicBlock::iterator MI,
792 const DebugLoc &dl, unsigned DestReg,
793 ArrayRef<MachineOperand> Cond, unsigned TrueReg,
794 unsigned FalseReg) const {
795 assert(Cond.size() == 2 &&
796 "PPC branch conditions have two components!");
798 // Get the register classes.
799 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
800 const TargetRegisterClass *RC =
801 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
802 assert(RC && "TrueReg and FalseReg must have overlapping register classes");
804 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
805 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
806 assert((Is64Bit ||
807 PPC::GPRCRegClass.hasSubClassEq(RC) ||
808 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
809 "isel is for regular integer GPRs only");
811 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
812 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
814 unsigned SubIdx = 0;
815 bool SwapOps = false;
816 switch (SelectPred) {
817 case PPC::PRED_EQ:
818 case PPC::PRED_EQ_MINUS:
819 case PPC::PRED_EQ_PLUS:
820 SubIdx = PPC::sub_eq; SwapOps = false; break;
821 case PPC::PRED_NE:
822 case PPC::PRED_NE_MINUS:
823 case PPC::PRED_NE_PLUS:
824 SubIdx = PPC::sub_eq; SwapOps = true; break;
825 case PPC::PRED_LT:
826 case PPC::PRED_LT_MINUS:
827 case PPC::PRED_LT_PLUS:
828 SubIdx = PPC::sub_lt; SwapOps = false; break;
829 case PPC::PRED_GE:
830 case PPC::PRED_GE_MINUS:
831 case PPC::PRED_GE_PLUS:
832 SubIdx = PPC::sub_lt; SwapOps = true; break;
833 case PPC::PRED_GT:
834 case PPC::PRED_GT_MINUS:
835 case PPC::PRED_GT_PLUS:
836 SubIdx = PPC::sub_gt; SwapOps = false; break;
837 case PPC::PRED_LE:
838 case PPC::PRED_LE_MINUS:
839 case PPC::PRED_LE_PLUS:
840 SubIdx = PPC::sub_gt; SwapOps = true; break;
841 case PPC::PRED_UN:
842 case PPC::PRED_UN_MINUS:
843 case PPC::PRED_UN_PLUS:
844 SubIdx = PPC::sub_un; SwapOps = false; break;
845 case PPC::PRED_NU:
846 case PPC::PRED_NU_MINUS:
847 case PPC::PRED_NU_PLUS:
848 SubIdx = PPC::sub_un; SwapOps = true; break;
849 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break;
850 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
853 unsigned FirstReg = SwapOps ? FalseReg : TrueReg,
854 SecondReg = SwapOps ? TrueReg : FalseReg;
856 // The first input register of isel cannot be r0. If it is a member
857 // of a register class that can be r0, then copy it first (the
858 // register allocator should eliminate the copy).
859 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
860 MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
861 const TargetRegisterClass *FirstRC =
862 MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
863 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
864 unsigned OldFirstReg = FirstReg;
865 FirstReg = MRI.createVirtualRegister(FirstRC);
866 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
867 .addReg(OldFirstReg);
870 BuildMI(MBB, MI, dl, get(OpCode), DestReg)
871 .addReg(FirstReg).addReg(SecondReg)
872 .addReg(Cond[1].getReg(), 0, SubIdx);
875 static unsigned getCRBitValue(unsigned CRBit) {
876 unsigned Ret = 4;
877 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
878 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
879 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
880 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
881 Ret = 3;
882 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
883 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
884 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
885 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
886 Ret = 2;
887 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
888 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
889 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
890 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
891 Ret = 1;
892 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
893 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
894 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
895 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
896 Ret = 0;
898 assert(Ret != 4 && "Invalid CR bit register");
899 return Ret;
902 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
903 MachineBasicBlock::iterator I,
904 const DebugLoc &DL, unsigned DestReg,
905 unsigned SrcReg, bool KillSrc) const {
906 // We can end up with self copies and similar things as a result of VSX copy
907 // legalization. Promote them here.
908 const TargetRegisterInfo *TRI = &getRegisterInfo();
909 if (PPC::F8RCRegClass.contains(DestReg) &&
910 PPC::VSRCRegClass.contains(SrcReg)) {
911 unsigned SuperReg =
912 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
914 if (VSXSelfCopyCrash && SrcReg == SuperReg)
915 llvm_unreachable("nop VSX copy");
917 DestReg = SuperReg;
918 } else if (PPC::F8RCRegClass.contains(SrcReg) &&
919 PPC::VSRCRegClass.contains(DestReg)) {
920 unsigned SuperReg =
921 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
923 if (VSXSelfCopyCrash && DestReg == SuperReg)
924 llvm_unreachable("nop VSX copy");
926 SrcReg = SuperReg;
929 // Different class register copy
930 if (PPC::CRBITRCRegClass.contains(SrcReg) &&
931 PPC::GPRCRegClass.contains(DestReg)) {
932 unsigned CRReg = getCRFromCRBit(SrcReg);
933 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
934 getKillRegState(KillSrc);
935 // Rotate the CR bit in the CR fields to be the least significant bit and
936 // then mask with 0x1 (MB = ME = 31).
937 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
938 .addReg(DestReg, RegState::Kill)
939 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
940 .addImm(31)
941 .addImm(31);
942 return;
943 } else if (PPC::CRRCRegClass.contains(SrcReg) &&
944 PPC::G8RCRegClass.contains(DestReg)) {
945 BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg);
946 getKillRegState(KillSrc);
947 return;
948 } else if (PPC::CRRCRegClass.contains(SrcReg) &&
949 PPC::GPRCRegClass.contains(DestReg)) {
950 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg);
951 getKillRegState(KillSrc);
952 return;
953 } else if (PPC::G8RCRegClass.contains(SrcReg) &&
954 PPC::VSFRCRegClass.contains(DestReg)) {
955 assert(Subtarget.hasDirectMove() &&
956 "Subtarget doesn't support directmove, don't know how to copy.");
957 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
958 NumGPRtoVSRSpill++;
959 getKillRegState(KillSrc);
960 return;
961 } else if (PPC::VSFRCRegClass.contains(SrcReg) &&
962 PPC::G8RCRegClass.contains(DestReg)) {
963 assert(Subtarget.hasDirectMove() &&
964 "Subtarget doesn't support directmove, don't know how to copy.");
965 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
966 getKillRegState(KillSrc);
967 return;
968 } else if (PPC::SPERCRegClass.contains(SrcReg) &&
969 PPC::SPE4RCRegClass.contains(DestReg)) {
970 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg);
971 getKillRegState(KillSrc);
972 return;
973 } else if (PPC::SPE4RCRegClass.contains(SrcReg) &&
974 PPC::SPERCRegClass.contains(DestReg)) {
975 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg);
976 getKillRegState(KillSrc);
977 return;
980 unsigned Opc;
981 if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
982 Opc = PPC::OR;
983 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
984 Opc = PPC::OR8;
985 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
986 Opc = PPC::FMR;
987 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
988 Opc = PPC::MCRF;
989 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
990 Opc = PPC::VOR;
991 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
992 // There are two different ways this can be done:
993 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
994 // issue in VSU pipeline 0.
995 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
996 // can go to either pipeline.
997 // We'll always use xxlor here, because in practically all cases where
998 // copies are generated, they are close enough to some use that the
999 // lower-latency form is preferable.
1000 Opc = PPC::XXLOR;
1001 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
1002 PPC::VSSRCRegClass.contains(DestReg, SrcReg))
1003 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf;
1004 else if (PPC::QFRCRegClass.contains(DestReg, SrcReg))
1005 Opc = PPC::QVFMR;
1006 else if (PPC::QSRCRegClass.contains(DestReg, SrcReg))
1007 Opc = PPC::QVFMRs;
1008 else if (PPC::QBRCRegClass.contains(DestReg, SrcReg))
1009 Opc = PPC::QVFMRb;
1010 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
1011 Opc = PPC::CROR;
1012 else if (PPC::SPE4RCRegClass.contains(DestReg, SrcReg))
1013 Opc = PPC::OR;
1014 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg))
1015 Opc = PPC::EVOR;
1016 else
1017 llvm_unreachable("Impossible reg-to-reg copy");
1019 const MCInstrDesc &MCID = get(Opc);
1020 if (MCID.getNumOperands() == 3)
1021 BuildMI(MBB, I, DL, MCID, DestReg)
1022 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1023 else
1024 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
1027 unsigned PPCInstrInfo::getStoreOpcodeForSpill(unsigned Reg,
1028 const TargetRegisterClass *RC)
1029 const {
1030 const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
1031 int OpcodeIndex = 0;
1033 if (RC != nullptr) {
1034 if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1035 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1036 OpcodeIndex = SOK_Int4Spill;
1037 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1038 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1039 OpcodeIndex = SOK_Int8Spill;
1040 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1041 OpcodeIndex = SOK_Float8Spill;
1042 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1043 OpcodeIndex = SOK_Float4Spill;
1044 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1045 OpcodeIndex = SOK_SPESpill;
1046 } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) {
1047 OpcodeIndex = SOK_SPE4Spill;
1048 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1049 OpcodeIndex = SOK_CRSpill;
1050 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1051 OpcodeIndex = SOK_CRBitSpill;
1052 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1053 OpcodeIndex = SOK_VRVectorSpill;
1054 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1055 OpcodeIndex = SOK_VSXVectorSpill;
1056 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1057 OpcodeIndex = SOK_VectorFloat8Spill;
1058 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1059 OpcodeIndex = SOK_VectorFloat4Spill;
1060 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1061 OpcodeIndex = SOK_VRSaveSpill;
1062 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1063 OpcodeIndex = SOK_QuadFloat8Spill;
1064 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1065 OpcodeIndex = SOK_QuadFloat4Spill;
1066 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1067 OpcodeIndex = SOK_QuadBitSpill;
1068 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1069 OpcodeIndex = SOK_SpillToVSR;
1070 } else {
1071 llvm_unreachable("Unknown regclass!");
1073 } else {
1074 if (PPC::GPRCRegClass.contains(Reg) ||
1075 PPC::GPRC_NOR0RegClass.contains(Reg)) {
1076 OpcodeIndex = SOK_Int4Spill;
1077 } else if (PPC::G8RCRegClass.contains(Reg) ||
1078 PPC::G8RC_NOX0RegClass.contains(Reg)) {
1079 OpcodeIndex = SOK_Int8Spill;
1080 } else if (PPC::F8RCRegClass.contains(Reg)) {
1081 OpcodeIndex = SOK_Float8Spill;
1082 } else if (PPC::F4RCRegClass.contains(Reg)) {
1083 OpcodeIndex = SOK_Float4Spill;
1084 } else if (PPC::SPERCRegClass.contains(Reg)) {
1085 OpcodeIndex = SOK_SPESpill;
1086 } else if (PPC::SPE4RCRegClass.contains(Reg)) {
1087 OpcodeIndex = SOK_SPE4Spill;
1088 } else if (PPC::CRRCRegClass.contains(Reg)) {
1089 OpcodeIndex = SOK_CRSpill;
1090 } else if (PPC::CRBITRCRegClass.contains(Reg)) {
1091 OpcodeIndex = SOK_CRBitSpill;
1092 } else if (PPC::VRRCRegClass.contains(Reg)) {
1093 OpcodeIndex = SOK_VRVectorSpill;
1094 } else if (PPC::VSRCRegClass.contains(Reg)) {
1095 OpcodeIndex = SOK_VSXVectorSpill;
1096 } else if (PPC::VSFRCRegClass.contains(Reg)) {
1097 OpcodeIndex = SOK_VectorFloat8Spill;
1098 } else if (PPC::VSSRCRegClass.contains(Reg)) {
1099 OpcodeIndex = SOK_VectorFloat4Spill;
1100 } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
1101 OpcodeIndex = SOK_VRSaveSpill;
1102 } else if (PPC::QFRCRegClass.contains(Reg)) {
1103 OpcodeIndex = SOK_QuadFloat8Spill;
1104 } else if (PPC::QSRCRegClass.contains(Reg)) {
1105 OpcodeIndex = SOK_QuadFloat4Spill;
1106 } else if (PPC::QBRCRegClass.contains(Reg)) {
1107 OpcodeIndex = SOK_QuadBitSpill;
1108 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
1109 OpcodeIndex = SOK_SpillToVSR;
1110 } else {
1111 llvm_unreachable("Unknown regclass!");
1114 return OpcodesForSpill[OpcodeIndex];
1117 unsigned
1118 PPCInstrInfo::getLoadOpcodeForSpill(unsigned Reg,
1119 const TargetRegisterClass *RC) const {
1120 const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
1121 int OpcodeIndex = 0;
1123 if (RC != nullptr) {
1124 if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1125 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1126 OpcodeIndex = SOK_Int4Spill;
1127 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1128 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1129 OpcodeIndex = SOK_Int8Spill;
1130 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1131 OpcodeIndex = SOK_Float8Spill;
1132 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1133 OpcodeIndex = SOK_Float4Spill;
1134 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1135 OpcodeIndex = SOK_SPESpill;
1136 } else if (PPC::SPE4RCRegClass.hasSubClassEq(RC)) {
1137 OpcodeIndex = SOK_SPE4Spill;
1138 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1139 OpcodeIndex = SOK_CRSpill;
1140 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1141 OpcodeIndex = SOK_CRBitSpill;
1142 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1143 OpcodeIndex = SOK_VRVectorSpill;
1144 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1145 OpcodeIndex = SOK_VSXVectorSpill;
1146 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1147 OpcodeIndex = SOK_VectorFloat8Spill;
1148 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1149 OpcodeIndex = SOK_VectorFloat4Spill;
1150 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1151 OpcodeIndex = SOK_VRSaveSpill;
1152 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1153 OpcodeIndex = SOK_QuadFloat8Spill;
1154 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1155 OpcodeIndex = SOK_QuadFloat4Spill;
1156 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1157 OpcodeIndex = SOK_QuadBitSpill;
1158 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1159 OpcodeIndex = SOK_SpillToVSR;
1160 } else {
1161 llvm_unreachable("Unknown regclass!");
1163 } else {
1164 if (PPC::GPRCRegClass.contains(Reg) ||
1165 PPC::GPRC_NOR0RegClass.contains(Reg)) {
1166 OpcodeIndex = SOK_Int4Spill;
1167 } else if (PPC::G8RCRegClass.contains(Reg) ||
1168 PPC::G8RC_NOX0RegClass.contains(Reg)) {
1169 OpcodeIndex = SOK_Int8Spill;
1170 } else if (PPC::F8RCRegClass.contains(Reg)) {
1171 OpcodeIndex = SOK_Float8Spill;
1172 } else if (PPC::F4RCRegClass.contains(Reg)) {
1173 OpcodeIndex = SOK_Float4Spill;
1174 } else if (PPC::SPERCRegClass.contains(Reg)) {
1175 OpcodeIndex = SOK_SPESpill;
1176 } else if (PPC::SPE4RCRegClass.contains(Reg)) {
1177 OpcodeIndex = SOK_SPE4Spill;
1178 } else if (PPC::CRRCRegClass.contains(Reg)) {
1179 OpcodeIndex = SOK_CRSpill;
1180 } else if (PPC::CRBITRCRegClass.contains(Reg)) {
1181 OpcodeIndex = SOK_CRBitSpill;
1182 } else if (PPC::VRRCRegClass.contains(Reg)) {
1183 OpcodeIndex = SOK_VRVectorSpill;
1184 } else if (PPC::VSRCRegClass.contains(Reg)) {
1185 OpcodeIndex = SOK_VSXVectorSpill;
1186 } else if (PPC::VSFRCRegClass.contains(Reg)) {
1187 OpcodeIndex = SOK_VectorFloat8Spill;
1188 } else if (PPC::VSSRCRegClass.contains(Reg)) {
1189 OpcodeIndex = SOK_VectorFloat4Spill;
1190 } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
1191 OpcodeIndex = SOK_VRSaveSpill;
1192 } else if (PPC::QFRCRegClass.contains(Reg)) {
1193 OpcodeIndex = SOK_QuadFloat8Spill;
1194 } else if (PPC::QSRCRegClass.contains(Reg)) {
1195 OpcodeIndex = SOK_QuadFloat4Spill;
1196 } else if (PPC::QBRCRegClass.contains(Reg)) {
1197 OpcodeIndex = SOK_QuadBitSpill;
1198 } else if (PPC::SPILLTOVSRRCRegClass.contains(Reg)) {
1199 OpcodeIndex = SOK_SpillToVSR;
1200 } else {
1201 llvm_unreachable("Unknown regclass!");
1204 return OpcodesForSpill[OpcodeIndex];
1207 void PPCInstrInfo::StoreRegToStackSlot(
1208 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx,
1209 const TargetRegisterClass *RC,
1210 SmallVectorImpl<MachineInstr *> &NewMIs) const {
1211 unsigned Opcode = getStoreOpcodeForSpill(PPC::NoRegister, RC);
1212 DebugLoc DL;
1214 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1215 FuncInfo->setHasSpills();
1217 NewMIs.push_back(addFrameReference(
1218 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)),
1219 FrameIdx));
1221 if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1222 PPC::CRBITRCRegClass.hasSubClassEq(RC))
1223 FuncInfo->setSpillsCR();
1225 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1226 FuncInfo->setSpillsVRSAVE();
1228 if (isXFormMemOp(Opcode))
1229 FuncInfo->setHasNonRISpills();
1232 void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1233 MachineBasicBlock::iterator MI,
1234 unsigned SrcReg, bool isKill,
1235 int FrameIdx,
1236 const TargetRegisterClass *RC,
1237 const TargetRegisterInfo *TRI) const {
1238 MachineFunction &MF = *MBB.getParent();
1239 SmallVector<MachineInstr *, 4> NewMIs;
1241 // We need to avoid a situation in which the value from a VRRC register is
1242 // spilled using an Altivec instruction and reloaded into a VSRC register
1243 // using a VSX instruction. The issue with this is that the VSX
1244 // load/store instructions swap the doublewords in the vector and the Altivec
1245 // ones don't. The register classes on the spill/reload may be different if
1246 // the register is defined using an Altivec instruction and is then used by a
1247 // VSX instruction.
1248 RC = updatedRC(RC);
1250 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs);
1252 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1253 MBB.insert(MI, NewMIs[i]);
1255 const MachineFrameInfo &MFI = MF.getFrameInfo();
1256 MachineMemOperand *MMO = MF.getMachineMemOperand(
1257 MachinePointerInfo::getFixedStack(MF, FrameIdx),
1258 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1259 MFI.getObjectAlignment(FrameIdx));
1260 NewMIs.back()->addMemOperand(MF, MMO);
1263 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1264 unsigned DestReg, int FrameIdx,
1265 const TargetRegisterClass *RC,
1266 SmallVectorImpl<MachineInstr *> &NewMIs)
1267 const {
1268 unsigned Opcode = getLoadOpcodeForSpill(PPC::NoRegister, RC);
1269 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg),
1270 FrameIdx));
1271 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1273 if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1274 PPC::CRBITRCRegClass.hasSubClassEq(RC))
1275 FuncInfo->setSpillsCR();
1277 if (PPC::VRSAVERCRegClass.hasSubClassEq(RC))
1278 FuncInfo->setSpillsVRSAVE();
1280 if (isXFormMemOp(Opcode))
1281 FuncInfo->setHasNonRISpills();
1284 void
1285 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1286 MachineBasicBlock::iterator MI,
1287 unsigned DestReg, int FrameIdx,
1288 const TargetRegisterClass *RC,
1289 const TargetRegisterInfo *TRI) const {
1290 MachineFunction &MF = *MBB.getParent();
1291 SmallVector<MachineInstr*, 4> NewMIs;
1292 DebugLoc DL;
1293 if (MI != MBB.end()) DL = MI->getDebugLoc();
1295 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1296 FuncInfo->setHasSpills();
1298 // We need to avoid a situation in which the value from a VRRC register is
1299 // spilled using an Altivec instruction and reloaded into a VSRC register
1300 // using a VSX instruction. The issue with this is that the VSX
1301 // load/store instructions swap the doublewords in the vector and the Altivec
1302 // ones don't. The register classes on the spill/reload may be different if
1303 // the register is defined using an Altivec instruction and is then used by a
1304 // VSX instruction.
1305 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
1306 RC = &PPC::VSRCRegClass;
1308 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
1310 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1311 MBB.insert(MI, NewMIs[i]);
1313 const MachineFrameInfo &MFI = MF.getFrameInfo();
1314 MachineMemOperand *MMO = MF.getMachineMemOperand(
1315 MachinePointerInfo::getFixedStack(MF, FrameIdx),
1316 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
1317 MFI.getObjectAlignment(FrameIdx));
1318 NewMIs.back()->addMemOperand(MF, MMO);
1321 bool PPCInstrInfo::
1322 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1323 assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
1324 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
1325 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
1326 else
1327 // Leave the CR# the same, but invert the condition.
1328 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
1329 return false;
1332 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1333 unsigned Reg, MachineRegisterInfo *MRI) const {
1334 // For some instructions, it is legal to fold ZERO into the RA register field.
1335 // A zero immediate should always be loaded with a single li.
1336 unsigned DefOpc = DefMI.getOpcode();
1337 if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
1338 return false;
1339 if (!DefMI.getOperand(1).isImm())
1340 return false;
1341 if (DefMI.getOperand(1).getImm() != 0)
1342 return false;
1344 // Note that we cannot here invert the arguments of an isel in order to fold
1345 // a ZERO into what is presented as the second argument. All we have here
1346 // is the condition bit, and that might come from a CR-logical bit operation.
1348 const MCInstrDesc &UseMCID = UseMI.getDesc();
1350 // Only fold into real machine instructions.
1351 if (UseMCID.isPseudo())
1352 return false;
1354 unsigned UseIdx;
1355 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
1356 if (UseMI.getOperand(UseIdx).isReg() &&
1357 UseMI.getOperand(UseIdx).getReg() == Reg)
1358 break;
1360 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
1361 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1363 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1365 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1366 // register (which might also be specified as a pointer class kind).
1367 if (UseInfo->isLookupPtrRegClass()) {
1368 if (UseInfo->RegClass /* Kind */ != 1)
1369 return false;
1370 } else {
1371 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1372 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1373 return false;
1376 // Make sure this is not tied to an output register (or otherwise
1377 // constrained). This is true for ST?UX registers, for example, which
1378 // are tied to their output registers.
1379 if (UseInfo->Constraints != 0)
1380 return false;
1382 unsigned ZeroReg;
1383 if (UseInfo->isLookupPtrRegClass()) {
1384 bool isPPC64 = Subtarget.isPPC64();
1385 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1386 } else {
1387 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1388 PPC::ZERO8 : PPC::ZERO;
1391 bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1392 UseMI.getOperand(UseIdx).setReg(ZeroReg);
1394 if (DeleteDef)
1395 DefMI.eraseFromParent();
1397 return true;
1400 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1401 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1402 I != IE; ++I)
1403 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1404 return true;
1405 return false;
1408 // We should make sure that, if we're going to predicate both sides of a
1409 // condition (a diamond), that both sides don't define the counter register. We
1410 // can predicate counter-decrement-based branches, but while that predicates
1411 // the branching, it does not predicate the counter decrement. If we tried to
1412 // merge the triangle into one predicated block, we'd decrement the counter
1413 // twice.
1414 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1415 unsigned NumT, unsigned ExtraT,
1416 MachineBasicBlock &FMBB,
1417 unsigned NumF, unsigned ExtraF,
1418 BranchProbability Probability) const {
1419 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1423 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
1424 // The predicated branches are identified by their type, not really by the
1425 // explicit presence of a predicate. Furthermore, some of them can be
1426 // predicated more than once. Because if conversion won't try to predicate
1427 // any instruction which already claims to be predicated (by returning true
1428 // here), always return false. In doing so, we let isPredicable() be the
1429 // final word on whether not the instruction can be (further) predicated.
1431 return false;
1434 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
1435 if (!MI.isTerminator())
1436 return false;
1438 // Conditional branch is a special case.
1439 if (MI.isBranch() && !MI.isBarrier())
1440 return true;
1442 return !isPredicated(MI);
1445 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
1446 ArrayRef<MachineOperand> Pred) const {
1447 unsigned OpC = MI.getOpcode();
1448 if (OpC == PPC::BLR || OpC == PPC::BLR8) {
1449 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1450 bool isPPC64 = Subtarget.isPPC64();
1451 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
1452 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
1453 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1454 MI.setDesc(get(PPC::BCLR));
1455 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1456 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1457 MI.setDesc(get(PPC::BCLRn));
1458 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1459 } else {
1460 MI.setDesc(get(PPC::BCCLR));
1461 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1462 .addImm(Pred[0].getImm())
1463 .add(Pred[1]);
1466 return true;
1467 } else if (OpC == PPC::B) {
1468 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1469 bool isPPC64 = Subtarget.isPPC64();
1470 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
1471 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
1472 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1473 MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1474 MI.RemoveOperand(0);
1476 MI.setDesc(get(PPC::BC));
1477 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1478 .add(Pred[1])
1479 .addMBB(MBB);
1480 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1481 MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1482 MI.RemoveOperand(0);
1484 MI.setDesc(get(PPC::BCn));
1485 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1486 .add(Pred[1])
1487 .addMBB(MBB);
1488 } else {
1489 MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
1490 MI.RemoveOperand(0);
1492 MI.setDesc(get(PPC::BCC));
1493 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1494 .addImm(Pred[0].getImm())
1495 .add(Pred[1])
1496 .addMBB(MBB);
1499 return true;
1500 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL ||
1501 OpC == PPC::BCTRL8) {
1502 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1503 llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1505 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1506 bool isPPC64 = Subtarget.isPPC64();
1508 if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1509 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
1510 : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
1511 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1512 return true;
1513 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1514 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
1515 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
1516 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
1517 return true;
1520 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
1521 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
1522 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
1523 .addImm(Pred[0].getImm())
1524 .add(Pred[1]);
1525 return true;
1528 return false;
1531 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1532 ArrayRef<MachineOperand> Pred2) const {
1533 assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1534 assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1536 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1537 return false;
1538 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1539 return false;
1541 // P1 can only subsume P2 if they test the same condition register.
1542 if (Pred1[1].getReg() != Pred2[1].getReg())
1543 return false;
1545 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1546 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1548 if (P1 == P2)
1549 return true;
1551 // Does P1 subsume P2, e.g. GE subsumes GT.
1552 if (P1 == PPC::PRED_LE &&
1553 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1554 return true;
1555 if (P1 == PPC::PRED_GE &&
1556 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1557 return true;
1559 return false;
1562 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI,
1563 std::vector<MachineOperand> &Pred) const {
1564 // Note: At the present time, the contents of Pred from this function is
1565 // unused by IfConversion. This implementation follows ARM by pushing the
1566 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1567 // predicate, instructions defining CTR or CTR8 are also included as
1568 // predicate-defining instructions.
1570 const TargetRegisterClass *RCs[] =
1571 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1572 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1574 bool Found = false;
1575 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1576 const MachineOperand &MO = MI.getOperand(i);
1577 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1578 const TargetRegisterClass *RC = RCs[c];
1579 if (MO.isReg()) {
1580 if (MO.isDef() && RC->contains(MO.getReg())) {
1581 Pred.push_back(MO);
1582 Found = true;
1584 } else if (MO.isRegMask()) {
1585 for (TargetRegisterClass::iterator I = RC->begin(),
1586 IE = RC->end(); I != IE; ++I)
1587 if (MO.clobbersPhysReg(*I)) {
1588 Pred.push_back(MO);
1589 Found = true;
1595 return Found;
1598 bool PPCInstrInfo::isPredicable(const MachineInstr &MI) const {
1599 unsigned OpC = MI.getOpcode();
1600 switch (OpC) {
1601 default:
1602 return false;
1603 case PPC::B:
1604 case PPC::BLR:
1605 case PPC::BLR8:
1606 case PPC::BCTR:
1607 case PPC::BCTR8:
1608 case PPC::BCTRL:
1609 case PPC::BCTRL8:
1610 return true;
1614 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1615 unsigned &SrcReg2, int &Mask,
1616 int &Value) const {
1617 unsigned Opc = MI.getOpcode();
1619 switch (Opc) {
1620 default: return false;
1621 case PPC::CMPWI:
1622 case PPC::CMPLWI:
1623 case PPC::CMPDI:
1624 case PPC::CMPLDI:
1625 SrcReg = MI.getOperand(1).getReg();
1626 SrcReg2 = 0;
1627 Value = MI.getOperand(2).getImm();
1628 Mask = 0xFFFF;
1629 return true;
1630 case PPC::CMPW:
1631 case PPC::CMPLW:
1632 case PPC::CMPD:
1633 case PPC::CMPLD:
1634 case PPC::FCMPUS:
1635 case PPC::FCMPUD:
1636 SrcReg = MI.getOperand(1).getReg();
1637 SrcReg2 = MI.getOperand(2).getReg();
1638 Value = 0;
1639 Mask = 0;
1640 return true;
1644 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
1645 unsigned SrcReg2, int Mask, int Value,
1646 const MachineRegisterInfo *MRI) const {
1647 if (DisableCmpOpt)
1648 return false;
1650 int OpC = CmpInstr.getOpcode();
1651 unsigned CRReg = CmpInstr.getOperand(0).getReg();
1653 // FP record forms set CR1 based on the exception status bits, not a
1654 // comparison with zero.
1655 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1656 return false;
1658 const TargetRegisterInfo *TRI = &getRegisterInfo();
1659 // The record forms set the condition register based on a signed comparison
1660 // with zero (so says the ISA manual). This is not as straightforward as it
1661 // seems, however, because this is always a 64-bit comparison on PPC64, even
1662 // for instructions that are 32-bit in nature (like slw for example).
1663 // So, on PPC32, for unsigned comparisons, we can use the record forms only
1664 // for equality checks (as those don't depend on the sign). On PPC64,
1665 // we are restricted to equality for unsigned 64-bit comparisons and for
1666 // signed 32-bit comparisons the applicability is more restricted.
1667 bool isPPC64 = Subtarget.isPPC64();
1668 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW;
1669 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1670 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1672 // Look through copies unless that gets us to a physical register.
1673 unsigned ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI);
1674 if (TargetRegisterInfo::isVirtualRegister(ActualSrc))
1675 SrcReg = ActualSrc;
1677 // Get the unique definition of SrcReg.
1678 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1679 if (!MI) return false;
1681 bool equalityOnly = false;
1682 bool noSub = false;
1683 if (isPPC64) {
1684 if (is32BitSignedCompare) {
1685 // We can perform this optimization only if MI is sign-extending.
1686 if (isSignExtended(*MI))
1687 noSub = true;
1688 else
1689 return false;
1690 } else if (is32BitUnsignedCompare) {
1691 // We can perform this optimization, equality only, if MI is
1692 // zero-extending.
1693 if (isZeroExtended(*MI)) {
1694 noSub = true;
1695 equalityOnly = true;
1696 } else
1697 return false;
1698 } else
1699 equalityOnly = is64BitUnsignedCompare;
1700 } else
1701 equalityOnly = is32BitUnsignedCompare;
1703 if (equalityOnly) {
1704 // We need to check the uses of the condition register in order to reject
1705 // non-equality comparisons.
1706 for (MachineRegisterInfo::use_instr_iterator
1707 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1708 I != IE; ++I) {
1709 MachineInstr *UseMI = &*I;
1710 if (UseMI->getOpcode() == PPC::BCC) {
1711 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1712 unsigned PredCond = PPC::getPredicateCondition(Pred);
1713 // We ignore hint bits when checking for non-equality comparisons.
1714 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
1715 return false;
1716 } else if (UseMI->getOpcode() == PPC::ISEL ||
1717 UseMI->getOpcode() == PPC::ISEL8) {
1718 unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1719 if (SubIdx != PPC::sub_eq)
1720 return false;
1721 } else
1722 return false;
1726 MachineBasicBlock::iterator I = CmpInstr;
1728 // Scan forward to find the first use of the compare.
1729 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
1730 ++I) {
1731 bool FoundUse = false;
1732 for (MachineRegisterInfo::use_instr_iterator
1733 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
1734 J != JE; ++J)
1735 if (&*J == &*I) {
1736 FoundUse = true;
1737 break;
1740 if (FoundUse)
1741 break;
1744 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1745 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1747 // There are two possible candidates which can be changed to set CR[01].
1748 // One is MI, the other is a SUB instruction.
1749 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1750 MachineInstr *Sub = nullptr;
1751 if (SrcReg2 != 0)
1752 // MI is not a candidate for CMPrr.
1753 MI = nullptr;
1754 // FIXME: Conservatively refuse to convert an instruction which isn't in the
1755 // same BB as the comparison. This is to allow the check below to avoid calls
1756 // (and other explicit clobbers); instead we should really check for these
1757 // more explicitly (in at least a few predecessors).
1758 else if (MI->getParent() != CmpInstr.getParent())
1759 return false;
1760 else if (Value != 0) {
1761 // The record-form instructions set CR bit based on signed comparison
1762 // against 0. We try to convert a compare against 1 or -1 into a compare
1763 // against 0 to exploit record-form instructions. For example, we change
1764 // the condition "greater than -1" into "greater than or equal to 0"
1765 // and "less than 1" into "less than or equal to 0".
1767 // Since we optimize comparison based on a specific branch condition,
1768 // we don't optimize if condition code is used by more than once.
1769 if (equalityOnly || !MRI->hasOneUse(CRReg))
1770 return false;
1772 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
1773 if (UseMI->getOpcode() != PPC::BCC)
1774 return false;
1776 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
1777 unsigned PredCond = PPC::getPredicateCondition(Pred);
1778 unsigned PredHint = PPC::getPredicateHint(Pred);
1779 int16_t Immed = (int16_t)Value;
1781 // When modifying the condition in the predicate, we propagate hint bits
1782 // from the original predicate to the new one.
1783 if (Immed == -1 && PredCond == PPC::PRED_GT)
1784 // We convert "greater than -1" into "greater than or equal to 0",
1785 // since we are assuming signed comparison by !equalityOnly
1786 Pred = PPC::getPredicate(PPC::PRED_GE, PredHint);
1787 else if (Immed == -1 && PredCond == PPC::PRED_LE)
1788 // We convert "less than or equal to -1" into "less than 0".
1789 Pred = PPC::getPredicate(PPC::PRED_LT, PredHint);
1790 else if (Immed == 1 && PredCond == PPC::PRED_LT)
1791 // We convert "less than 1" into "less than or equal to 0".
1792 Pred = PPC::getPredicate(PPC::PRED_LE, PredHint);
1793 else if (Immed == 1 && PredCond == PPC::PRED_GE)
1794 // We convert "greater than or equal to 1" into "greater than 0".
1795 Pred = PPC::getPredicate(PPC::PRED_GT, PredHint);
1796 else
1797 return false;
1799 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred));
1802 // Search for Sub.
1803 --I;
1805 // Get ready to iterate backward from CmpInstr.
1806 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
1808 for (; I != E && !noSub; --I) {
1809 const MachineInstr &Instr = *I;
1810 unsigned IOpC = Instr.getOpcode();
1812 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
1813 Instr.readsRegister(PPC::CR0, TRI)))
1814 // This instruction modifies or uses the record condition register after
1815 // the one we want to change. While we could do this transformation, it
1816 // would likely not be profitable. This transformation removes one
1817 // instruction, and so even forcing RA to generate one move probably
1818 // makes it unprofitable.
1819 return false;
1821 // Check whether CmpInstr can be made redundant by the current instruction.
1822 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
1823 OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
1824 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
1825 ((Instr.getOperand(1).getReg() == SrcReg &&
1826 Instr.getOperand(2).getReg() == SrcReg2) ||
1827 (Instr.getOperand(1).getReg() == SrcReg2 &&
1828 Instr.getOperand(2).getReg() == SrcReg))) {
1829 Sub = &*I;
1830 break;
1833 if (I == B)
1834 // The 'and' is below the comparison instruction.
1835 return false;
1838 // Return false if no candidates exist.
1839 if (!MI && !Sub)
1840 return false;
1842 // The single candidate is called MI.
1843 if (!MI) MI = Sub;
1845 int NewOpC = -1;
1846 int MIOpC = MI->getOpcode();
1847 if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8 ||
1848 MIOpC == PPC::ANDISo || MIOpC == PPC::ANDISo8)
1849 NewOpC = MIOpC;
1850 else {
1851 NewOpC = PPC::getRecordFormOpcode(MIOpC);
1852 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
1853 NewOpC = MIOpC;
1856 // FIXME: On the non-embedded POWER architectures, only some of the record
1857 // forms are fast, and we should use only the fast ones.
1859 // The defining instruction has a record form (or is already a record
1860 // form). It is possible, however, that we'll need to reverse the condition
1861 // code of the users.
1862 if (NewOpC == -1)
1863 return false;
1865 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1866 // needs to be updated to be based on SUB. Push the condition code
1867 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the
1868 // condition code of these operands will be modified.
1869 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
1870 // comparison against 0, which may modify predicate.
1871 bool ShouldSwap = false;
1872 if (Sub && Value == 0) {
1873 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
1874 Sub->getOperand(2).getReg() == SrcReg;
1876 // The operands to subf are the opposite of sub, so only in the fixed-point
1877 // case, invert the order.
1878 ShouldSwap = !ShouldSwap;
1881 if (ShouldSwap)
1882 for (MachineRegisterInfo::use_instr_iterator
1883 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1884 I != IE; ++I) {
1885 MachineInstr *UseMI = &*I;
1886 if (UseMI->getOpcode() == PPC::BCC) {
1887 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
1888 unsigned PredCond = PPC::getPredicateCondition(Pred);
1889 assert((!equalityOnly ||
1890 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
1891 "Invalid predicate for equality-only optimization");
1892 (void)PredCond; // To suppress warning in release build.
1893 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1894 PPC::getSwappedPredicate(Pred)));
1895 } else if (UseMI->getOpcode() == PPC::ISEL ||
1896 UseMI->getOpcode() == PPC::ISEL8) {
1897 unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
1898 assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
1899 "Invalid CR bit for equality-only optimization");
1901 if (NewSubReg == PPC::sub_lt)
1902 NewSubReg = PPC::sub_gt;
1903 else if (NewSubReg == PPC::sub_gt)
1904 NewSubReg = PPC::sub_lt;
1906 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
1907 NewSubReg));
1908 } else // We need to abort on a user we don't understand.
1909 return false;
1911 assert(!(Value != 0 && ShouldSwap) &&
1912 "Non-zero immediate support and ShouldSwap"
1913 "may conflict in updating predicate");
1915 // Create a new virtual register to hold the value of the CR set by the
1916 // record-form instruction. If the instruction was not previously in
1917 // record form, then set the kill flag on the CR.
1918 CmpInstr.eraseFromParent();
1920 MachineBasicBlock::iterator MII = MI;
1921 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
1922 get(TargetOpcode::COPY), CRReg)
1923 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
1925 // Even if CR0 register were dead before, it is alive now since the
1926 // instruction we just built uses it.
1927 MI->clearRegisterDeads(PPC::CR0);
1929 if (MIOpC != NewOpC) {
1930 // We need to be careful here: we're replacing one instruction with
1931 // another, and we need to make sure that we get all of the right
1932 // implicit uses and defs. On the other hand, the caller may be holding
1933 // an iterator to this instruction, and so we can't delete it (this is
1934 // specifically the case if this is the instruction directly after the
1935 // compare).
1937 // Rotates are expensive instructions. If we're emitting a record-form
1938 // rotate that can just be an andi/andis, we should just emit that.
1939 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) {
1940 unsigned GPRRes = MI->getOperand(0).getReg();
1941 int64_t SH = MI->getOperand(2).getImm();
1942 int64_t MB = MI->getOperand(3).getImm();
1943 int64_t ME = MI->getOperand(4).getImm();
1944 // We can only do this if both the start and end of the mask are in the
1945 // same halfword.
1946 bool MBInLoHWord = MB >= 16;
1947 bool MEInLoHWord = ME >= 16;
1948 uint64_t Mask = ~0LLU;
1950 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) {
1951 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
1952 // The mask value needs to shift right 16 if we're emitting andis.
1953 Mask >>= MBInLoHWord ? 0 : 16;
1954 NewOpC = MIOpC == PPC::RLWINM ?
1955 (MBInLoHWord ? PPC::ANDIo : PPC::ANDISo) :
1956 (MBInLoHWord ? PPC::ANDIo8 :PPC::ANDISo8);
1957 } else if (MRI->use_empty(GPRRes) && (ME == 31) &&
1958 (ME - MB + 1 == SH) && (MB >= 16)) {
1959 // If we are rotating by the exact number of bits as are in the mask
1960 // and the mask is in the least significant bits of the register,
1961 // that's just an andis. (as long as the GPR result has no uses).
1962 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1);
1963 Mask >>= 16;
1964 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDISo :PPC::ANDISo8;
1966 // If we've set the mask, we can transform.
1967 if (Mask != ~0LLU) {
1968 MI->RemoveOperand(4);
1969 MI->RemoveOperand(3);
1970 MI->getOperand(2).setImm(Mask);
1971 NumRcRotatesConvertedToRcAnd++;
1973 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
1974 int64_t MB = MI->getOperand(3).getImm();
1975 if (MB >= 48) {
1976 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
1977 NewOpC = PPC::ANDIo8;
1978 MI->RemoveOperand(3);
1979 MI->getOperand(2).setImm(Mask);
1980 NumRcRotatesConvertedToRcAnd++;
1984 const MCInstrDesc &NewDesc = get(NewOpC);
1985 MI->setDesc(NewDesc);
1987 if (NewDesc.ImplicitDefs)
1988 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
1989 *ImpDefs; ++ImpDefs)
1990 if (!MI->definesRegister(*ImpDefs))
1991 MI->addOperand(*MI->getParent()->getParent(),
1992 MachineOperand::CreateReg(*ImpDefs, true, true));
1993 if (NewDesc.ImplicitUses)
1994 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
1995 *ImpUses; ++ImpUses)
1996 if (!MI->readsRegister(*ImpUses))
1997 MI->addOperand(*MI->getParent()->getParent(),
1998 MachineOperand::CreateReg(*ImpUses, false, true));
2000 assert(MI->definesRegister(PPC::CR0) &&
2001 "Record-form instruction does not define cr0?");
2003 // Modify the condition code of operands in OperandsToUpdate.
2004 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2005 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2006 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
2007 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
2009 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
2010 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
2012 return true;
2015 /// GetInstSize - Return the number of bytes of code the specified
2016 /// instruction may be. This returns the maximum number of bytes.
2018 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
2019 unsigned Opcode = MI.getOpcode();
2021 if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) {
2022 const MachineFunction *MF = MI.getParent()->getParent();
2023 const char *AsmStr = MI.getOperand(0).getSymbolName();
2024 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
2025 } else if (Opcode == TargetOpcode::STACKMAP) {
2026 StackMapOpers Opers(&MI);
2027 return Opers.getNumPatchBytes();
2028 } else if (Opcode == TargetOpcode::PATCHPOINT) {
2029 PatchPointOpers Opers(&MI);
2030 return Opers.getNumPatchBytes();
2031 } else {
2032 return get(Opcode).getSize();
2036 std::pair<unsigned, unsigned>
2037 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
2038 const unsigned Mask = PPCII::MO_ACCESS_MASK;
2039 return std::make_pair(TF & Mask, TF & ~Mask);
2042 ArrayRef<std::pair<unsigned, const char *>>
2043 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2044 using namespace PPCII;
2045 static const std::pair<unsigned, const char *> TargetFlags[] = {
2046 {MO_LO, "ppc-lo"},
2047 {MO_HA, "ppc-ha"},
2048 {MO_TPREL_LO, "ppc-tprel-lo"},
2049 {MO_TPREL_HA, "ppc-tprel-ha"},
2050 {MO_DTPREL_LO, "ppc-dtprel-lo"},
2051 {MO_TLSLD_LO, "ppc-tlsld-lo"},
2052 {MO_TOC_LO, "ppc-toc-lo"},
2053 {MO_TLS, "ppc-tls"}};
2054 return makeArrayRef(TargetFlags);
2057 ArrayRef<std::pair<unsigned, const char *>>
2058 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
2059 using namespace PPCII;
2060 static const std::pair<unsigned, const char *> TargetFlags[] = {
2061 {MO_PLT, "ppc-plt"},
2062 {MO_PIC_FLAG, "ppc-pic"},
2063 {MO_NLP_FLAG, "ppc-nlp"},
2064 {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}};
2065 return makeArrayRef(TargetFlags);
2068 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
2069 // The VSX versions have the advantage of a full 64-register target whereas
2070 // the FP ones have the advantage of lower latency and higher throughput. So
2071 // what we are after is using the faster instructions in low register pressure
2072 // situations and using the larger register file in high register pressure
2073 // situations.
2074 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
2075 unsigned UpperOpcode, LowerOpcode;
2076 switch (MI.getOpcode()) {
2077 case PPC::DFLOADf32:
2078 UpperOpcode = PPC::LXSSP;
2079 LowerOpcode = PPC::LFS;
2080 break;
2081 case PPC::DFLOADf64:
2082 UpperOpcode = PPC::LXSD;
2083 LowerOpcode = PPC::LFD;
2084 break;
2085 case PPC::DFSTOREf32:
2086 UpperOpcode = PPC::STXSSP;
2087 LowerOpcode = PPC::STFS;
2088 break;
2089 case PPC::DFSTOREf64:
2090 UpperOpcode = PPC::STXSD;
2091 LowerOpcode = PPC::STFD;
2092 break;
2093 case PPC::XFLOADf32:
2094 UpperOpcode = PPC::LXSSPX;
2095 LowerOpcode = PPC::LFSX;
2096 break;
2097 case PPC::XFLOADf64:
2098 UpperOpcode = PPC::LXSDX;
2099 LowerOpcode = PPC::LFDX;
2100 break;
2101 case PPC::XFSTOREf32:
2102 UpperOpcode = PPC::STXSSPX;
2103 LowerOpcode = PPC::STFSX;
2104 break;
2105 case PPC::XFSTOREf64:
2106 UpperOpcode = PPC::STXSDX;
2107 LowerOpcode = PPC::STFDX;
2108 break;
2109 case PPC::LIWAX:
2110 UpperOpcode = PPC::LXSIWAX;
2111 LowerOpcode = PPC::LFIWAX;
2112 break;
2113 case PPC::LIWZX:
2114 UpperOpcode = PPC::LXSIWZX;
2115 LowerOpcode = PPC::LFIWZX;
2116 break;
2117 case PPC::STIWX:
2118 UpperOpcode = PPC::STXSIWX;
2119 LowerOpcode = PPC::STFIWX;
2120 break;
2121 default:
2122 llvm_unreachable("Unknown Operation!");
2125 unsigned TargetReg = MI.getOperand(0).getReg();
2126 unsigned Opcode;
2127 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
2128 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
2129 Opcode = LowerOpcode;
2130 else
2131 Opcode = UpperOpcode;
2132 MI.setDesc(get(Opcode));
2133 return true;
2136 static bool isAnImmediateOperand(const MachineOperand &MO) {
2137 return MO.isCPI() || MO.isGlobal() || MO.isImm();
2140 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
2141 auto &MBB = *MI.getParent();
2142 auto DL = MI.getDebugLoc();
2144 switch (MI.getOpcode()) {
2145 case TargetOpcode::LOAD_STACK_GUARD: {
2146 assert(Subtarget.isTargetLinux() &&
2147 "Only Linux target is expected to contain LOAD_STACK_GUARD");
2148 const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
2149 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
2150 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
2151 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2152 .addImm(Offset)
2153 .addReg(Reg);
2154 return true;
2156 case PPC::DFLOADf32:
2157 case PPC::DFLOADf64:
2158 case PPC::DFSTOREf32:
2159 case PPC::DFSTOREf64: {
2160 assert(Subtarget.hasP9Vector() &&
2161 "Invalid D-Form Pseudo-ops on Pre-P9 target.");
2162 assert(MI.getOperand(2).isReg() &&
2163 isAnImmediateOperand(MI.getOperand(1)) &&
2164 "D-form op must have register and immediate operands");
2165 return expandVSXMemPseudo(MI);
2167 case PPC::XFLOADf32:
2168 case PPC::XFSTOREf32:
2169 case PPC::LIWAX:
2170 case PPC::LIWZX:
2171 case PPC::STIWX: {
2172 assert(Subtarget.hasP8Vector() &&
2173 "Invalid X-Form Pseudo-ops on Pre-P8 target.");
2174 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2175 "X-form op must have register and register operands");
2176 return expandVSXMemPseudo(MI);
2178 case PPC::XFLOADf64:
2179 case PPC::XFSTOREf64: {
2180 assert(Subtarget.hasVSX() &&
2181 "Invalid X-Form Pseudo-ops on target that has no VSX.");
2182 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
2183 "X-form op must have register and register operands");
2184 return expandVSXMemPseudo(MI);
2186 case PPC::SPILLTOVSR_LD: {
2187 unsigned TargetReg = MI.getOperand(0).getReg();
2188 if (PPC::VSFRCRegClass.contains(TargetReg)) {
2189 MI.setDesc(get(PPC::DFLOADf64));
2190 return expandPostRAPseudo(MI);
2192 else
2193 MI.setDesc(get(PPC::LD));
2194 return true;
2196 case PPC::SPILLTOVSR_ST: {
2197 unsigned SrcReg = MI.getOperand(0).getReg();
2198 if (PPC::VSFRCRegClass.contains(SrcReg)) {
2199 NumStoreSPILLVSRRCAsVec++;
2200 MI.setDesc(get(PPC::DFSTOREf64));
2201 return expandPostRAPseudo(MI);
2202 } else {
2203 NumStoreSPILLVSRRCAsGpr++;
2204 MI.setDesc(get(PPC::STD));
2206 return true;
2208 case PPC::SPILLTOVSR_LDX: {
2209 unsigned TargetReg = MI.getOperand(0).getReg();
2210 if (PPC::VSFRCRegClass.contains(TargetReg))
2211 MI.setDesc(get(PPC::LXSDX));
2212 else
2213 MI.setDesc(get(PPC::LDX));
2214 return true;
2216 case PPC::SPILLTOVSR_STX: {
2217 unsigned SrcReg = MI.getOperand(0).getReg();
2218 if (PPC::VSFRCRegClass.contains(SrcReg)) {
2219 NumStoreSPILLVSRRCAsVec++;
2220 MI.setDesc(get(PPC::STXSDX));
2221 } else {
2222 NumStoreSPILLVSRRCAsGpr++;
2223 MI.setDesc(get(PPC::STDX));
2225 return true;
2228 case PPC::CFENCE8: {
2229 auto Val = MI.getOperand(0).getReg();
2230 BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val);
2231 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
2232 .addImm(PPC::PRED_NE_MINUS)
2233 .addReg(PPC::CR7)
2234 .addImm(1);
2235 MI.setDesc(get(PPC::ISYNC));
2236 MI.RemoveOperand(0);
2237 return true;
2240 return false;
2243 // Essentially a compile-time implementation of a compare->isel sequence.
2244 // It takes two constants to compare, along with the true/false registers
2245 // and the comparison type (as a subreg to a CR field) and returns one
2246 // of the true/false registers, depending on the comparison results.
2247 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
2248 unsigned TrueReg, unsigned FalseReg,
2249 unsigned CRSubReg) {
2250 // Signed comparisons. The immediates are assumed to be sign-extended.
2251 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
2252 switch (CRSubReg) {
2253 default: llvm_unreachable("Unknown integer comparison type.");
2254 case PPC::sub_lt:
2255 return Imm1 < Imm2 ? TrueReg : FalseReg;
2256 case PPC::sub_gt:
2257 return Imm1 > Imm2 ? TrueReg : FalseReg;
2258 case PPC::sub_eq:
2259 return Imm1 == Imm2 ? TrueReg : FalseReg;
2262 // Unsigned comparisons.
2263 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
2264 switch (CRSubReg) {
2265 default: llvm_unreachable("Unknown integer comparison type.");
2266 case PPC::sub_lt:
2267 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
2268 case PPC::sub_gt:
2269 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
2270 case PPC::sub_eq:
2271 return Imm1 == Imm2 ? TrueReg : FalseReg;
2274 return PPC::NoRegister;
2277 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI,
2278 unsigned OpNo,
2279 int64_t Imm) const {
2280 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG");
2281 // Replace the REG with the Immediate.
2282 unsigned InUseReg = MI.getOperand(OpNo).getReg();
2283 MI.getOperand(OpNo).ChangeToImmediate(Imm);
2285 if (empty(MI.implicit_operands()))
2286 return;
2288 // We need to make sure that the MI didn't have any implicit use
2289 // of this REG any more.
2290 const TargetRegisterInfo *TRI = &getRegisterInfo();
2291 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI);
2292 if (UseOpIdx >= 0) {
2293 MachineOperand &MO = MI.getOperand(UseOpIdx);
2294 if (MO.isImplicit())
2295 // The operands must always be in the following order:
2296 // - explicit reg defs,
2297 // - other explicit operands (reg uses, immediates, etc.),
2298 // - implicit reg defs
2299 // - implicit reg uses
2300 // Therefore, removing the implicit operand won't change the explicit
2301 // operands layout.
2302 MI.RemoveOperand(UseOpIdx);
2306 // Replace an instruction with one that materializes a constant (and sets
2307 // CR0 if the original instruction was a record-form instruction).
2308 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
2309 const LoadImmediateInfo &LII) const {
2310 // Remove existing operands.
2311 int OperandToKeep = LII.SetCR ? 1 : 0;
2312 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
2313 MI.RemoveOperand(i);
2315 // Replace the instruction.
2316 if (LII.SetCR) {
2317 MI.setDesc(get(LII.Is64Bit ? PPC::ANDIo8 : PPC::ANDIo));
2318 // Set the immediate.
2319 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2320 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
2321 return;
2323 else
2324 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));
2326 // Set the immediate.
2327 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2328 .addImm(LII.Imm);
2331 MachineInstr *PPCInstrInfo::getForwardingDefMI(
2332 MachineInstr &MI,
2333 unsigned &OpNoForForwarding,
2334 bool &SeenIntermediateUse) const {
2335 OpNoForForwarding = ~0U;
2336 MachineInstr *DefMI = nullptr;
2337 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
2338 const TargetRegisterInfo *TRI = &getRegisterInfo();
2339 // If we're in SSA, get the defs through the MRI. Otherwise, only look
2340 // within the basic block to see if the register is defined using an LI/LI8.
2341 if (MRI->isSSA()) {
2342 for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2343 if (!MI.getOperand(i).isReg())
2344 continue;
2345 unsigned Reg = MI.getOperand(i).getReg();
2346 if (!TargetRegisterInfo::isVirtualRegister(Reg))
2347 continue;
2348 unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI);
2349 if (TargetRegisterInfo::isVirtualRegister(TrueReg)) {
2350 DefMI = MRI->getVRegDef(TrueReg);
2351 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) {
2352 OpNoForForwarding = i;
2353 break;
2357 } else {
2358 // Looking back through the definition for each operand could be expensive,
2359 // so exit early if this isn't an instruction that either has an immediate
2360 // form or is already an immediate form that we can handle.
2361 ImmInstrInfo III;
2362 unsigned Opc = MI.getOpcode();
2363 bool ConvertibleImmForm =
2364 Opc == PPC::CMPWI || Opc == PPC::CMPLWI ||
2365 Opc == PPC::CMPDI || Opc == PPC::CMPLDI ||
2366 Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
2367 Opc == PPC::ORI || Opc == PPC::ORI8 ||
2368 Opc == PPC::XORI || Opc == PPC::XORI8 ||
2369 Opc == PPC::RLDICL || Opc == PPC::RLDICLo ||
2370 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
2371 Opc == PPC::RLWINM || Opc == PPC::RLWINMo ||
2372 Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o;
2373 bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg())
2374 ? isVFRegister(MI.getOperand(0).getReg())
2375 : false;
2376 if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true))
2377 return nullptr;
2379 // Don't convert or %X, %Y, %Y since that's just a register move.
2380 if ((Opc == PPC::OR || Opc == PPC::OR8) &&
2381 MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
2382 return nullptr;
2383 for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
2384 MachineOperand &MO = MI.getOperand(i);
2385 SeenIntermediateUse = false;
2386 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
2387 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
2388 It++;
2389 unsigned Reg = MI.getOperand(i).getReg();
2391 // Is this register defined by some form of add-immediate (including
2392 // load-immediate) within this basic block?
2393 for ( ; It != E; ++It) {
2394 if (It->modifiesRegister(Reg, &getRegisterInfo())) {
2395 switch (It->getOpcode()) {
2396 default: break;
2397 case PPC::LI:
2398 case PPC::LI8:
2399 case PPC::ADDItocL:
2400 case PPC::ADDI:
2401 case PPC::ADDI8:
2402 OpNoForForwarding = i;
2403 return &*It;
2405 break;
2406 } else if (It->readsRegister(Reg, &getRegisterInfo()))
2407 // If we see another use of this reg between the def and the MI,
2408 // we want to flat it so the def isn't deleted.
2409 SeenIntermediateUse = true;
2414 return OpNoForForwarding == ~0U ? nullptr : DefMI;
2417 const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const {
2418 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
2419 // Power 8
2420 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
2421 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX,
2422 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
2423 PPC::SPILLTOVSR_ST, PPC::EVSTDD, PPC::SPESTW},
2424 // Power 9
2425 {PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR,
2426 PPC::SPILL_CRBIT, PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32,
2427 PPC::SPILL_VRSAVE, PPC::QVSTFDX, PPC::QVSTFSXs, PPC::QVSTFDXb,
2428 PPC::SPILLTOVSR_ST}};
2430 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
2433 const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const {
2434 static const unsigned OpcodesForSpill[2][SOK_LastOpcodeSpill] = {
2435 // Power 8
2436 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
2437 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX,
2438 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
2439 PPC::SPILLTOVSR_LD, PPC::EVLDD, PPC::SPELWZ},
2440 // Power 9
2441 {PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,
2442 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, PPC::DFLOADf32,
2443 PPC::RESTORE_VRSAVE, PPC::QVLFDX, PPC::QVLFSXs, PPC::QVLFDXb,
2444 PPC::SPILLTOVSR_LD}};
2446 return OpcodesForSpill[(Subtarget.hasP9Vector()) ? 1 : 0];
2449 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr &StartMI, MachineInstr &EndMI,
2450 unsigned RegNo) const {
2451 const MachineRegisterInfo &MRI =
2452 StartMI.getParent()->getParent()->getRegInfo();
2453 if (MRI.isSSA())
2454 return;
2456 // Instructions between [StartMI, EndMI] should be in same basic block.
2457 assert((StartMI.getParent() == EndMI.getParent()) &&
2458 "Instructions are not in same basic block");
2460 bool IsKillSet = false;
2462 auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) {
2463 MachineOperand &MO = MI.getOperand(Index);
2464 if (MO.isReg() && MO.isUse() && MO.isKill() &&
2465 getRegisterInfo().regsOverlap(MO.getReg(), RegNo))
2466 MO.setIsKill(false);
2469 // Set killed flag for EndMI.
2470 // No need to do anything if EndMI defines RegNo.
2471 int UseIndex =
2472 EndMI.findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo());
2473 if (UseIndex != -1) {
2474 EndMI.getOperand(UseIndex).setIsKill(true);
2475 IsKillSet = true;
2476 // Clear killed flag for other EndMI operands related to RegNo. In some
2477 // upexpected cases, killed may be set multiple times for same register
2478 // operand in same MI.
2479 for (int i = 0, e = EndMI.getNumOperands(); i != e; ++i)
2480 if (i != UseIndex)
2481 clearOperandKillInfo(EndMI, i);
2484 // Walking the inst in reverse order (EndMI -> StartMI].
2485 MachineBasicBlock::reverse_iterator It = EndMI;
2486 MachineBasicBlock::reverse_iterator E = EndMI.getParent()->rend();
2487 // EndMI has been handled above, skip it here.
2488 It++;
2489 MachineOperand *MO = nullptr;
2490 for (; It != E; ++It) {
2491 // Skip insturctions which could not be a def/use of RegNo.
2492 if (It->isDebugInstr() || It->isPosition())
2493 continue;
2495 // Clear killed flag for all It operands related to RegNo. In some
2496 // upexpected cases, killed may be set multiple times for same register
2497 // operand in same MI.
2498 for (int i = 0, e = It->getNumOperands(); i != e; ++i)
2499 clearOperandKillInfo(*It, i);
2501 // If killed is not set, set killed for its last use or set dead for its def
2502 // if no use found.
2503 if (!IsKillSet) {
2504 if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) {
2505 // Use found, set it killed.
2506 IsKillSet = true;
2507 MO->setIsKill(true);
2508 continue;
2509 } else if ((MO = It->findRegisterDefOperand(RegNo, false, true,
2510 &getRegisterInfo()))) {
2511 // No use found, set dead for its def.
2512 assert(&*It == &StartMI && "No new def between StartMI and EndMI.");
2513 MO->setIsDead(true);
2514 break;
2518 if ((&*It) == &StartMI)
2519 break;
2521 // Ensure RegMo liveness is killed after EndMI.
2522 assert((IsKillSet || (MO && MO->isDead())) &&
2523 "RegNo should be killed or dead");
2526 // If this instruction has an immediate form and one of its operands is a
2527 // result of a load-immediate or an add-immediate, convert it to
2528 // the immediate form if the constant is in range.
2529 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
2530 MachineInstr **KilledDef) const {
2531 MachineFunction *MF = MI.getParent()->getParent();
2532 MachineRegisterInfo *MRI = &MF->getRegInfo();
2533 bool PostRA = !MRI->isSSA();
2534 bool SeenIntermediateUse = true;
2535 unsigned ForwardingOperand = ~0U;
2536 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand,
2537 SeenIntermediateUse);
2538 if (!DefMI)
2539 return false;
2540 assert(ForwardingOperand < MI.getNumOperands() &&
2541 "The forwarding operand needs to be valid at this point");
2542 bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill();
2543 bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled;
2544 unsigned ForwardingOperandReg = MI.getOperand(ForwardingOperand).getReg();
2545 if (KilledDef && KillFwdDefMI)
2546 *KilledDef = DefMI;
2548 ImmInstrInfo III;
2549 bool IsVFReg = MI.getOperand(0).isReg()
2550 ? isVFRegister(MI.getOperand(0).getReg())
2551 : false;
2552 bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA);
2553 // If this is a reg+reg instruction that has a reg+imm form,
2554 // and one of the operands is produced by an add-immediate,
2555 // try to convert it.
2556 if (HasImmForm &&
2557 transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI,
2558 KillFwdDefMI))
2559 return true;
2561 if ((DefMI->getOpcode() != PPC::LI && DefMI->getOpcode() != PPC::LI8) ||
2562 !DefMI->getOperand(1).isImm())
2563 return false;
2565 int64_t Immediate = DefMI->getOperand(1).getImm();
2566 // Sign-extend to 64-bits.
2567 int64_t SExtImm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
2568 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
2570 // If this is a reg+reg instruction that has a reg+imm form,
2571 // and one of the operands is produced by LI, convert it now.
2572 if (HasImmForm)
2573 return transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI, SExtImm);
2575 bool ReplaceWithLI = false;
2576 bool Is64BitLI = false;
2577 int64_t NewImm = 0;
2578 bool SetCR = false;
2579 unsigned Opc = MI.getOpcode();
2580 switch (Opc) {
2581 default: return false;
2583 // FIXME: Any branches conditional on such a comparison can be made
2584 // unconditional. At this time, this happens too infrequently to be worth
2585 // the implementation effort, but if that ever changes, we could convert
2586 // such a pattern here.
2587 case PPC::CMPWI:
2588 case PPC::CMPLWI:
2589 case PPC::CMPDI:
2590 case PPC::CMPLDI: {
2591 // Doing this post-RA would require dataflow analysis to reliably find uses
2592 // of the CR register set by the compare.
2593 // No need to fixup killed/dead flag since this transformation is only valid
2594 // before RA.
2595 if (PostRA)
2596 return false;
2597 // If a compare-immediate is fed by an immediate and is itself an input of
2598 // an ISEL (the most common case) into a COPY of the correct register.
2599 bool Changed = false;
2600 unsigned DefReg = MI.getOperand(0).getReg();
2601 int64_t Comparand = MI.getOperand(2).getImm();
2602 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 ?
2603 (Comparand | 0xFFFFFFFFFFFF0000) : Comparand;
2605 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
2606 unsigned UseOpc = CompareUseMI.getOpcode();
2607 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
2608 continue;
2609 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
2610 unsigned TrueReg = CompareUseMI.getOperand(1).getReg();
2611 unsigned FalseReg = CompareUseMI.getOperand(2).getReg();
2612 unsigned RegToCopy = selectReg(SExtImm, SExtComparand, Opc, TrueReg,
2613 FalseReg, CRSubReg);
2614 if (RegToCopy == PPC::NoRegister)
2615 continue;
2616 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
2617 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
2618 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
2619 replaceInstrOperandWithImm(CompareUseMI, 1, 0);
2620 CompareUseMI.RemoveOperand(3);
2621 CompareUseMI.RemoveOperand(2);
2622 continue;
2624 LLVM_DEBUG(
2625 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
2626 LLVM_DEBUG(DefMI->dump(); MI.dump(); CompareUseMI.dump());
2627 LLVM_DEBUG(dbgs() << "Is converted to:\n");
2628 // Convert to copy and remove unneeded operands.
2629 CompareUseMI.setDesc(get(PPC::COPY));
2630 CompareUseMI.RemoveOperand(3);
2631 CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1);
2632 CmpIselsConverted++;
2633 Changed = true;
2634 LLVM_DEBUG(CompareUseMI.dump());
2636 if (Changed)
2637 return true;
2638 // This may end up incremented multiple times since this function is called
2639 // during a fixed-point transformation, but it is only meant to indicate the
2640 // presence of this opportunity.
2641 MissedConvertibleImmediateInstrs++;
2642 return false;
2645 // Immediate forms - may simply be convertable to an LI.
2646 case PPC::ADDI:
2647 case PPC::ADDI8: {
2648 // Does the sum fit in a 16-bit signed field?
2649 int64_t Addend = MI.getOperand(2).getImm();
2650 if (isInt<16>(Addend + SExtImm)) {
2651 ReplaceWithLI = true;
2652 Is64BitLI = Opc == PPC::ADDI8;
2653 NewImm = Addend + SExtImm;
2654 break;
2656 return false;
2658 case PPC::RLDICL:
2659 case PPC::RLDICLo:
2660 case PPC::RLDICL_32:
2661 case PPC::RLDICL_32_64: {
2662 // Use APInt's rotate function.
2663 int64_t SH = MI.getOperand(2).getImm();
2664 int64_t MB = MI.getOperand(3).getImm();
2665 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICLo) ?
2666 64 : 32, SExtImm, true);
2667 InVal = InVal.rotl(SH);
2668 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
2669 InVal &= Mask;
2670 // Can't replace negative values with an LI as that will sign-extend
2671 // and not clear the left bits. If we're setting the CR bit, we will use
2672 // ANDIo which won't sign extend, so that's safe.
2673 if (isUInt<15>(InVal.getSExtValue()) ||
2674 (Opc == PPC::RLDICLo && isUInt<16>(InVal.getSExtValue()))) {
2675 ReplaceWithLI = true;
2676 Is64BitLI = Opc != PPC::RLDICL_32;
2677 NewImm = InVal.getSExtValue();
2678 SetCR = Opc == PPC::RLDICLo;
2679 break;
2681 return false;
2683 case PPC::RLWINM:
2684 case PPC::RLWINM8:
2685 case PPC::RLWINMo:
2686 case PPC::RLWINM8o: {
2687 int64_t SH = MI.getOperand(2).getImm();
2688 int64_t MB = MI.getOperand(3).getImm();
2689 int64_t ME = MI.getOperand(4).getImm();
2690 APInt InVal(32, SExtImm, true);
2691 InVal = InVal.rotl(SH);
2692 // Set the bits ( MB + 32 ) to ( ME + 32 ).
2693 uint64_t Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
2694 InVal &= Mask;
2695 // Can't replace negative values with an LI as that will sign-extend
2696 // and not clear the left bits. If we're setting the CR bit, we will use
2697 // ANDIo which won't sign extend, so that's safe.
2698 bool ValueFits = isUInt<15>(InVal.getSExtValue());
2699 ValueFits |= ((Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o) &&
2700 isUInt<16>(InVal.getSExtValue()));
2701 if (ValueFits) {
2702 ReplaceWithLI = true;
2703 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8o;
2704 NewImm = InVal.getSExtValue();
2705 SetCR = Opc == PPC::RLWINMo || Opc == PPC::RLWINM8o;
2706 break;
2708 return false;
2710 case PPC::ORI:
2711 case PPC::ORI8:
2712 case PPC::XORI:
2713 case PPC::XORI8: {
2714 int64_t LogicalImm = MI.getOperand(2).getImm();
2715 int64_t Result = 0;
2716 if (Opc == PPC::ORI || Opc == PPC::ORI8)
2717 Result = LogicalImm | SExtImm;
2718 else
2719 Result = LogicalImm ^ SExtImm;
2720 if (isInt<16>(Result)) {
2721 ReplaceWithLI = true;
2722 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
2723 NewImm = Result;
2724 break;
2726 return false;
2730 if (ReplaceWithLI) {
2731 // We need to be careful with CR-setting instructions we're replacing.
2732 if (SetCR) {
2733 // We don't know anything about uses when we're out of SSA, so only
2734 // replace if the new immediate will be reproduced.
2735 bool ImmChanged = (SExtImm & NewImm) != NewImm;
2736 if (PostRA && ImmChanged)
2737 return false;
2739 if (!PostRA) {
2740 // If the defining load-immediate has no other uses, we can just replace
2741 // the immediate with the new immediate.
2742 if (MRI->hasOneUse(DefMI->getOperand(0).getReg()))
2743 DefMI->getOperand(1).setImm(NewImm);
2745 // If we're not using the GPR result of the CR-setting instruction, we
2746 // just need to and with zero/non-zero depending on the new immediate.
2747 else if (MRI->use_empty(MI.getOperand(0).getReg())) {
2748 if (NewImm) {
2749 assert(Immediate && "Transformation converted zero to non-zero?");
2750 NewImm = Immediate;
2753 else if (ImmChanged)
2754 return false;
2758 LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
2759 LLVM_DEBUG(MI.dump());
2760 LLVM_DEBUG(dbgs() << "Fed by:\n");
2761 LLVM_DEBUG(DefMI->dump());
2762 LoadImmediateInfo LII;
2763 LII.Imm = NewImm;
2764 LII.Is64Bit = Is64BitLI;
2765 LII.SetCR = SetCR;
2766 // If we're setting the CR, the original load-immediate must be kept (as an
2767 // operand to ANDIo/ANDI8o).
2768 if (KilledDef && SetCR)
2769 *KilledDef = nullptr;
2770 replaceInstrWithLI(MI, LII);
2772 // Fixup killed/dead flag after transformation.
2773 // Pattern:
2774 // ForwardingOperandReg = LI imm1
2775 // y = op2 imm2, ForwardingOperandReg(killed)
2776 if (IsForwardingOperandKilled)
2777 fixupIsDeadOrKill(*DefMI, MI, ForwardingOperandReg);
2779 LLVM_DEBUG(dbgs() << "With:\n");
2780 LLVM_DEBUG(MI.dump());
2781 return true;
2783 return false;
2786 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg,
2787 ImmInstrInfo &III, bool PostRA) const {
2788 // The vast majority of the instructions would need their operand 2 replaced
2789 // with an immediate when switching to the reg+imm form. A marked exception
2790 // are the update form loads/stores for which a constant operand 2 would need
2791 // to turn into a displacement and move operand 1 to the operand 2 position.
2792 III.ImmOpNo = 2;
2793 III.OpNoForForwarding = 2;
2794 III.ImmWidth = 16;
2795 III.ImmMustBeMultipleOf = 1;
2796 III.TruncateImmTo = 0;
2797 III.IsSummingOperands = false;
2798 switch (Opc) {
2799 default: return false;
2800 case PPC::ADD4:
2801 case PPC::ADD8:
2802 III.SignedImm = true;
2803 III.ZeroIsSpecialOrig = 0;
2804 III.ZeroIsSpecialNew = 1;
2805 III.IsCommutative = true;
2806 III.IsSummingOperands = true;
2807 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
2808 break;
2809 case PPC::ADDC:
2810 case PPC::ADDC8:
2811 III.SignedImm = true;
2812 III.ZeroIsSpecialOrig = 0;
2813 III.ZeroIsSpecialNew = 0;
2814 III.IsCommutative = true;
2815 III.IsSummingOperands = true;
2816 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
2817 break;
2818 case PPC::ADDCo:
2819 III.SignedImm = true;
2820 III.ZeroIsSpecialOrig = 0;
2821 III.ZeroIsSpecialNew = 0;
2822 III.IsCommutative = true;
2823 III.IsSummingOperands = true;
2824 III.ImmOpcode = PPC::ADDICo;
2825 break;
2826 case PPC::SUBFC:
2827 case PPC::SUBFC8:
2828 III.SignedImm = true;
2829 III.ZeroIsSpecialOrig = 0;
2830 III.ZeroIsSpecialNew = 0;
2831 III.IsCommutative = false;
2832 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
2833 break;
2834 case PPC::CMPW:
2835 case PPC::CMPD:
2836 III.SignedImm = true;
2837 III.ZeroIsSpecialOrig = 0;
2838 III.ZeroIsSpecialNew = 0;
2839 III.IsCommutative = false;
2840 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
2841 break;
2842 case PPC::CMPLW:
2843 case PPC::CMPLD:
2844 III.SignedImm = false;
2845 III.ZeroIsSpecialOrig = 0;
2846 III.ZeroIsSpecialNew = 0;
2847 III.IsCommutative = false;
2848 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
2849 break;
2850 case PPC::ANDo:
2851 case PPC::AND8o:
2852 case PPC::OR:
2853 case PPC::OR8:
2854 case PPC::XOR:
2855 case PPC::XOR8:
2856 III.SignedImm = false;
2857 III.ZeroIsSpecialOrig = 0;
2858 III.ZeroIsSpecialNew = 0;
2859 III.IsCommutative = true;
2860 switch(Opc) {
2861 default: llvm_unreachable("Unknown opcode");
2862 case PPC::ANDo: III.ImmOpcode = PPC::ANDIo; break;
2863 case PPC::AND8o: III.ImmOpcode = PPC::ANDIo8; break;
2864 case PPC::OR: III.ImmOpcode = PPC::ORI; break;
2865 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
2866 case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
2867 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
2869 break;
2870 case PPC::RLWNM:
2871 case PPC::RLWNM8:
2872 case PPC::RLWNMo:
2873 case PPC::RLWNM8o:
2874 case PPC::SLW:
2875 case PPC::SLW8:
2876 case PPC::SLWo:
2877 case PPC::SLW8o:
2878 case PPC::SRW:
2879 case PPC::SRW8:
2880 case PPC::SRWo:
2881 case PPC::SRW8o:
2882 case PPC::SRAW:
2883 case PPC::SRAWo:
2884 III.SignedImm = false;
2885 III.ZeroIsSpecialOrig = 0;
2886 III.ZeroIsSpecialNew = 0;
2887 III.IsCommutative = false;
2888 // This isn't actually true, but the instructions ignore any of the
2889 // upper bits, so any immediate loaded with an LI is acceptable.
2890 // This does not apply to shift right algebraic because a value
2891 // out of range will produce a -1/0.
2892 III.ImmWidth = 16;
2893 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 ||
2894 Opc == PPC::RLWNMo || Opc == PPC::RLWNM8o)
2895 III.TruncateImmTo = 5;
2896 else
2897 III.TruncateImmTo = 6;
2898 switch(Opc) {
2899 default: llvm_unreachable("Unknown opcode");
2900 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
2901 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
2902 case PPC::RLWNMo: III.ImmOpcode = PPC::RLWINMo; break;
2903 case PPC::RLWNM8o: III.ImmOpcode = PPC::RLWINM8o; break;
2904 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
2905 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
2906 case PPC::SLWo: III.ImmOpcode = PPC::RLWINMo; break;
2907 case PPC::SLW8o: III.ImmOpcode = PPC::RLWINM8o; break;
2908 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
2909 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
2910 case PPC::SRWo: III.ImmOpcode = PPC::RLWINMo; break;
2911 case PPC::SRW8o: III.ImmOpcode = PPC::RLWINM8o; break;
2912 case PPC::SRAW:
2913 III.ImmWidth = 5;
2914 III.TruncateImmTo = 0;
2915 III.ImmOpcode = PPC::SRAWI;
2916 break;
2917 case PPC::SRAWo:
2918 III.ImmWidth = 5;
2919 III.TruncateImmTo = 0;
2920 III.ImmOpcode = PPC::SRAWIo;
2921 break;
2923 break;
2924 case PPC::RLDCL:
2925 case PPC::RLDCLo:
2926 case PPC::RLDCR:
2927 case PPC::RLDCRo:
2928 case PPC::SLD:
2929 case PPC::SLDo:
2930 case PPC::SRD:
2931 case PPC::SRDo:
2932 case PPC::SRAD:
2933 case PPC::SRADo:
2934 III.SignedImm = false;
2935 III.ZeroIsSpecialOrig = 0;
2936 III.ZeroIsSpecialNew = 0;
2937 III.IsCommutative = false;
2938 // This isn't actually true, but the instructions ignore any of the
2939 // upper bits, so any immediate loaded with an LI is acceptable.
2940 // This does not apply to shift right algebraic because a value
2941 // out of range will produce a -1/0.
2942 III.ImmWidth = 16;
2943 if (Opc == PPC::RLDCL || Opc == PPC::RLDCLo ||
2944 Opc == PPC::RLDCR || Opc == PPC::RLDCRo)
2945 III.TruncateImmTo = 6;
2946 else
2947 III.TruncateImmTo = 7;
2948 switch(Opc) {
2949 default: llvm_unreachable("Unknown opcode");
2950 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
2951 case PPC::RLDCLo: III.ImmOpcode = PPC::RLDICLo; break;
2952 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
2953 case PPC::RLDCRo: III.ImmOpcode = PPC::RLDICRo; break;
2954 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
2955 case PPC::SLDo: III.ImmOpcode = PPC::RLDICRo; break;
2956 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
2957 case PPC::SRDo: III.ImmOpcode = PPC::RLDICLo; break;
2958 case PPC::SRAD:
2959 III.ImmWidth = 6;
2960 III.TruncateImmTo = 0;
2961 III.ImmOpcode = PPC::SRADI;
2962 break;
2963 case PPC::SRADo:
2964 III.ImmWidth = 6;
2965 III.TruncateImmTo = 0;
2966 III.ImmOpcode = PPC::SRADIo;
2967 break;
2969 break;
2970 // Loads and stores:
2971 case PPC::LBZX:
2972 case PPC::LBZX8:
2973 case PPC::LHZX:
2974 case PPC::LHZX8:
2975 case PPC::LHAX:
2976 case PPC::LHAX8:
2977 case PPC::LWZX:
2978 case PPC::LWZX8:
2979 case PPC::LWAX:
2980 case PPC::LDX:
2981 case PPC::LFSX:
2982 case PPC::LFDX:
2983 case PPC::STBX:
2984 case PPC::STBX8:
2985 case PPC::STHX:
2986 case PPC::STHX8:
2987 case PPC::STWX:
2988 case PPC::STWX8:
2989 case PPC::STDX:
2990 case PPC::STFSX:
2991 case PPC::STFDX:
2992 III.SignedImm = true;
2993 III.ZeroIsSpecialOrig = 1;
2994 III.ZeroIsSpecialNew = 2;
2995 III.IsCommutative = true;
2996 III.IsSummingOperands = true;
2997 III.ImmOpNo = 1;
2998 III.OpNoForForwarding = 2;
2999 switch(Opc) {
3000 default: llvm_unreachable("Unknown opcode");
3001 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
3002 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
3003 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
3004 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
3005 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
3006 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
3007 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
3008 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
3009 case PPC::LWAX:
3010 III.ImmOpcode = PPC::LWA;
3011 III.ImmMustBeMultipleOf = 4;
3012 break;
3013 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
3014 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
3015 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
3016 case PPC::STBX: III.ImmOpcode = PPC::STB; break;
3017 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
3018 case PPC::STHX: III.ImmOpcode = PPC::STH; break;
3019 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
3020 case PPC::STWX: III.ImmOpcode = PPC::STW; break;
3021 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
3022 case PPC::STDX:
3023 III.ImmOpcode = PPC::STD;
3024 III.ImmMustBeMultipleOf = 4;
3025 break;
3026 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
3027 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
3029 break;
3030 case PPC::LBZUX:
3031 case PPC::LBZUX8:
3032 case PPC::LHZUX:
3033 case PPC::LHZUX8:
3034 case PPC::LHAUX:
3035 case PPC::LHAUX8:
3036 case PPC::LWZUX:
3037 case PPC::LWZUX8:
3038 case PPC::LDUX:
3039 case PPC::LFSUX:
3040 case PPC::LFDUX:
3041 case PPC::STBUX:
3042 case PPC::STBUX8:
3043 case PPC::STHUX:
3044 case PPC::STHUX8:
3045 case PPC::STWUX:
3046 case PPC::STWUX8:
3047 case PPC::STDUX:
3048 case PPC::STFSUX:
3049 case PPC::STFDUX:
3050 III.SignedImm = true;
3051 III.ZeroIsSpecialOrig = 2;
3052 III.ZeroIsSpecialNew = 3;
3053 III.IsCommutative = false;
3054 III.IsSummingOperands = true;
3055 III.ImmOpNo = 2;
3056 III.OpNoForForwarding = 3;
3057 switch(Opc) {
3058 default: llvm_unreachable("Unknown opcode");
3059 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
3060 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
3061 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
3062 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
3063 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
3064 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
3065 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
3066 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
3067 case PPC::LDUX:
3068 III.ImmOpcode = PPC::LDU;
3069 III.ImmMustBeMultipleOf = 4;
3070 break;
3071 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
3072 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
3073 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
3074 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
3075 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
3076 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
3077 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
3078 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
3079 case PPC::STDUX:
3080 III.ImmOpcode = PPC::STDU;
3081 III.ImmMustBeMultipleOf = 4;
3082 break;
3083 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
3084 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
3086 break;
3087 // Power9 and up only. For some of these, the X-Form version has access to all
3088 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those
3089 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded
3090 // into or stored from is one of the VR registers.
3091 case PPC::LXVX:
3092 case PPC::LXSSPX:
3093 case PPC::LXSDX:
3094 case PPC::STXVX:
3095 case PPC::STXSSPX:
3096 case PPC::STXSDX:
3097 case PPC::XFLOADf32:
3098 case PPC::XFLOADf64:
3099 case PPC::XFSTOREf32:
3100 case PPC::XFSTOREf64:
3101 if (!Subtarget.hasP9Vector())
3102 return false;
3103 III.SignedImm = true;
3104 III.ZeroIsSpecialOrig = 1;
3105 III.ZeroIsSpecialNew = 2;
3106 III.IsCommutative = true;
3107 III.IsSummingOperands = true;
3108 III.ImmOpNo = 1;
3109 III.OpNoForForwarding = 2;
3110 III.ImmMustBeMultipleOf = 4;
3111 switch(Opc) {
3112 default: llvm_unreachable("Unknown opcode");
3113 case PPC::LXVX:
3114 III.ImmOpcode = PPC::LXV;
3115 III.ImmMustBeMultipleOf = 16;
3116 break;
3117 case PPC::LXSSPX:
3118 if (PostRA) {
3119 if (IsVFReg)
3120 III.ImmOpcode = PPC::LXSSP;
3121 else {
3122 III.ImmOpcode = PPC::LFS;
3123 III.ImmMustBeMultipleOf = 1;
3125 break;
3127 LLVM_FALLTHROUGH;
3128 case PPC::XFLOADf32:
3129 III.ImmOpcode = PPC::DFLOADf32;
3130 break;
3131 case PPC::LXSDX:
3132 if (PostRA) {
3133 if (IsVFReg)
3134 III.ImmOpcode = PPC::LXSD;
3135 else {
3136 III.ImmOpcode = PPC::LFD;
3137 III.ImmMustBeMultipleOf = 1;
3139 break;
3141 LLVM_FALLTHROUGH;
3142 case PPC::XFLOADf64:
3143 III.ImmOpcode = PPC::DFLOADf64;
3144 break;
3145 case PPC::STXVX:
3146 III.ImmOpcode = PPC::STXV;
3147 III.ImmMustBeMultipleOf = 16;
3148 break;
3149 case PPC::STXSSPX:
3150 if (PostRA) {
3151 if (IsVFReg)
3152 III.ImmOpcode = PPC::STXSSP;
3153 else {
3154 III.ImmOpcode = PPC::STFS;
3155 III.ImmMustBeMultipleOf = 1;
3157 break;
3159 LLVM_FALLTHROUGH;
3160 case PPC::XFSTOREf32:
3161 III.ImmOpcode = PPC::DFSTOREf32;
3162 break;
3163 case PPC::STXSDX:
3164 if (PostRA) {
3165 if (IsVFReg)
3166 III.ImmOpcode = PPC::STXSD;
3167 else {
3168 III.ImmOpcode = PPC::STFD;
3169 III.ImmMustBeMultipleOf = 1;
3171 break;
3173 LLVM_FALLTHROUGH;
3174 case PPC::XFSTOREf64:
3175 III.ImmOpcode = PPC::DFSTOREf64;
3176 break;
3178 break;
3180 return true;
3183 // Utility function for swaping two arbitrary operands of an instruction.
3184 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
3185 assert(Op1 != Op2 && "Cannot swap operand with itself.");
3187 unsigned MaxOp = std::max(Op1, Op2);
3188 unsigned MinOp = std::min(Op1, Op2);
3189 MachineOperand MOp1 = MI.getOperand(MinOp);
3190 MachineOperand MOp2 = MI.getOperand(MaxOp);
3191 MI.RemoveOperand(std::max(Op1, Op2));
3192 MI.RemoveOperand(std::min(Op1, Op2));
3194 // If the operands we are swapping are the two at the end (the common case)
3195 // we can just remove both and add them in the opposite order.
3196 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
3197 MI.addOperand(MOp2);
3198 MI.addOperand(MOp1);
3199 } else {
3200 // Store all operands in a temporary vector, remove them and re-add in the
3201 // right order.
3202 SmallVector<MachineOperand, 2> MOps;
3203 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
3204 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
3205 MOps.push_back(MI.getOperand(i));
3206 MI.RemoveOperand(i);
3208 // MOp2 needs to be added next.
3209 MI.addOperand(MOp2);
3210 // Now add the rest.
3211 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
3212 if (i == MaxOp)
3213 MI.addOperand(MOp1);
3214 else {
3215 MI.addOperand(MOps.back());
3216 MOps.pop_back();
3222 // Check if the 'MI' that has the index OpNoForForwarding
3223 // meets the requirement described in the ImmInstrInfo.
3224 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI,
3225 const ImmInstrInfo &III,
3226 unsigned OpNoForForwarding
3227 ) const {
3228 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8
3229 // would not work pre-RA, we can only do the check post RA.
3230 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3231 if (MRI.isSSA())
3232 return false;
3234 // Cannot do the transform if MI isn't summing the operands.
3235 if (!III.IsSummingOperands)
3236 return false;
3238 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
3239 if (!III.ZeroIsSpecialOrig)
3240 return false;
3242 // We cannot do the transform if the operand we are trying to replace
3243 // isn't the same as the operand the instruction allows.
3244 if (OpNoForForwarding != III.OpNoForForwarding)
3245 return false;
3247 // Check if the instruction we are trying to transform really has
3248 // the special zero register as its operand.
3249 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO &&
3250 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8)
3251 return false;
3253 // This machine instruction is convertible if it is,
3254 // 1. summing the operands.
3255 // 2. one of the operands is special zero register.
3256 // 3. the operand we are trying to replace is allowed by the MI.
3257 return true;
3260 // Check if the DefMI is the add inst and set the ImmMO and RegMO
3261 // accordingly.
3262 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI,
3263 const ImmInstrInfo &III,
3264 MachineOperand *&ImmMO,
3265 MachineOperand *&RegMO) const {
3266 unsigned Opc = DefMI.getOpcode();
3267 if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8)
3268 return false;
3270 assert(DefMI.getNumOperands() >= 3 &&
3271 "Add inst must have at least three operands");
3272 RegMO = &DefMI.getOperand(1);
3273 ImmMO = &DefMI.getOperand(2);
3275 // This DefMI is elgible for forwarding if it is:
3276 // 1. add inst
3277 // 2. one of the operands is Imm/CPI/Global.
3278 return isAnImmediateOperand(*ImmMO);
3281 bool PPCInstrInfo::isRegElgibleForForwarding(
3282 const MachineOperand &RegMO, const MachineInstr &DefMI,
3283 const MachineInstr &MI, bool KillDefMI,
3284 bool &IsFwdFeederRegKilled) const {
3285 // x = addi y, imm
3286 // ...
3287 // z = lfdx 0, x -> z = lfd imm(y)
3288 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF
3289 // of "y" between the DEF of "x" and "z".
3290 // The query is only valid post RA.
3291 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3292 if (MRI.isSSA())
3293 return false;
3295 unsigned Reg = RegMO.getReg();
3297 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
3298 MachineBasicBlock::const_reverse_iterator It = MI;
3299 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend();
3300 It++;
3301 for (; It != E; ++It) {
3302 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3303 return false;
3304 else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
3305 IsFwdFeederRegKilled = true;
3306 // Made it to DefMI without encountering a clobber.
3307 if ((&*It) == &DefMI)
3308 break;
3310 assert((&*It) == &DefMI && "DefMI is missing");
3312 // If DefMI also defines the register to be forwarded, we can only forward it
3313 // if DefMI is being erased.
3314 if (DefMI.modifiesRegister(Reg, &getRegisterInfo()))
3315 return KillDefMI;
3317 return true;
3320 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO,
3321 const MachineInstr &DefMI,
3322 const ImmInstrInfo &III,
3323 int64_t &Imm) const {
3324 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate");
3325 if (DefMI.getOpcode() == PPC::ADDItocL) {
3326 // The operand for ADDItocL is CPI, which isn't imm at compiling time,
3327 // However, we know that, it is 16-bit width, and has the alignment of 4.
3328 // Check if the instruction met the requirement.
3329 if (III.ImmMustBeMultipleOf > 4 ||
3330 III.TruncateImmTo || III.ImmWidth != 16)
3331 return false;
3333 // Going from XForm to DForm loads means that the displacement needs to be
3334 // not just an immediate but also a multiple of 4, or 16 depending on the
3335 // load. A DForm load cannot be represented if it is a multiple of say 2.
3336 // XForm loads do not have this restriction.
3337 if (ImmMO.isGlobal() &&
3338 ImmMO.getGlobal()->getAlignment() < III.ImmMustBeMultipleOf)
3339 return false;
3341 return true;
3344 if (ImmMO.isImm()) {
3345 // It is Imm, we need to check if the Imm fit the range.
3346 int64_t Immediate = ImmMO.getImm();
3347 // Sign-extend to 64-bits.
3348 Imm = ((uint64_t)Immediate & ~0x7FFFuLL) != 0 ?
3349 (Immediate | 0xFFFFFFFFFFFF0000) : Immediate;
3351 if (Imm % III.ImmMustBeMultipleOf)
3352 return false;
3353 if (III.TruncateImmTo)
3354 Imm &= ((1 << III.TruncateImmTo) - 1);
3355 if (III.SignedImm) {
3356 APInt ActualValue(64, Imm, true);
3357 if (!ActualValue.isSignedIntN(III.ImmWidth))
3358 return false;
3359 } else {
3360 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3361 if ((uint64_t)Imm > UnsignedMax)
3362 return false;
3365 else
3366 return false;
3368 // This ImmMO is forwarded if it meets the requriement describle
3369 // in ImmInstrInfo
3370 return true;
3373 // If an X-Form instruction is fed by an add-immediate and one of its operands
3374 // is the literal zero, attempt to forward the source of the add-immediate to
3375 // the corresponding D-Form instruction with the displacement coming from
3376 // the immediate being added.
3377 bool PPCInstrInfo::transformToImmFormFedByAdd(
3378 MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding,
3379 MachineInstr &DefMI, bool KillDefMI) const {
3380 // RegMO ImmMO
3381 // | |
3382 // x = addi reg, imm <----- DefMI
3383 // y = op 0 , x <----- MI
3384 // |
3385 // OpNoForForwarding
3386 // Check if the MI meet the requirement described in the III.
3387 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding))
3388 return false;
3390 // Check if the DefMI meet the requirement
3391 // described in the III. If yes, set the ImmMO and RegMO accordingly.
3392 MachineOperand *ImmMO = nullptr;
3393 MachineOperand *RegMO = nullptr;
3394 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
3395 return false;
3396 assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
3398 // As we get the Imm operand now, we need to check if the ImmMO meet
3399 // the requirement described in the III. If yes set the Imm.
3400 int64_t Imm = 0;
3401 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm))
3402 return false;
3404 bool IsFwdFeederRegKilled = false;
3405 // Check if the RegMO can be forwarded to MI.
3406 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI,
3407 IsFwdFeederRegKilled))
3408 return false;
3410 // Get killed info in case fixup needed after transformation.
3411 unsigned ForwardKilledOperandReg = ~0U;
3412 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3413 bool PostRA = !MRI.isSSA();
3414 if (PostRA && MI.getOperand(OpNoForForwarding).isKill())
3415 ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg();
3417 // We know that, the MI and DefMI both meet the pattern, and
3418 // the Imm also meet the requirement with the new Imm-form.
3419 // It is safe to do the transformation now.
3420 LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
3421 LLVM_DEBUG(MI.dump());
3422 LLVM_DEBUG(dbgs() << "Fed by:\n");
3423 LLVM_DEBUG(DefMI.dump());
3425 // Update the base reg first.
3426 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(),
3427 false, false,
3428 RegMO->isKill());
3430 // Then, update the imm.
3431 if (ImmMO->isImm()) {
3432 // If the ImmMO is Imm, change the operand that has ZERO to that Imm
3433 // directly.
3434 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm);
3436 else {
3437 // Otherwise, it is Constant Pool Index(CPI) or Global,
3438 // which is relocation in fact. We need to replace the special zero
3439 // register with ImmMO.
3440 // Before that, we need to fixup the target flags for imm.
3441 // For some reason, we miss to set the flag for the ImmMO if it is CPI.
3442 if (DefMI.getOpcode() == PPC::ADDItocL)
3443 ImmMO->setTargetFlags(PPCII::MO_TOC_LO);
3445 // MI didn't have the interface such as MI.setOperand(i) though
3446 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with
3447 // ImmMO, we need to remove ZERO operand and all the operands behind it,
3448 // and, add the ImmMO, then, move back all the operands behind ZERO.
3449 SmallVector<MachineOperand, 2> MOps;
3450 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) {
3451 MOps.push_back(MI.getOperand(i));
3452 MI.RemoveOperand(i);
3455 // Remove the last MO in the list, which is ZERO operand in fact.
3456 MOps.pop_back();
3457 // Add the imm operand.
3458 MI.addOperand(*ImmMO);
3459 // Now add the rest back.
3460 for (auto &MO : MOps)
3461 MI.addOperand(MO);
3464 // Update the opcode.
3465 MI.setDesc(get(III.ImmOpcode));
3467 // Fix up killed/dead flag after transformation.
3468 // Pattern 1:
3469 // x = ADD KilledFwdFeederReg, imm
3470 // n = opn KilledFwdFeederReg(killed), regn
3471 // y = XOP 0, x
3472 // Pattern 2:
3473 // x = ADD reg(killed), imm
3474 // y = XOP 0, x
3475 if (IsFwdFeederRegKilled || RegMO->isKill())
3476 fixupIsDeadOrKill(DefMI, MI, RegMO->getReg());
3477 // Pattern 3:
3478 // ForwardKilledOperandReg = ADD reg, imm
3479 // y = XOP 0, ForwardKilledOperandReg(killed)
3480 if (ForwardKilledOperandReg != ~0U)
3481 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg);
3483 LLVM_DEBUG(dbgs() << "With:\n");
3484 LLVM_DEBUG(MI.dump());
3486 return true;
3489 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI,
3490 const ImmInstrInfo &III,
3491 unsigned ConstantOpNo,
3492 MachineInstr &DefMI,
3493 int64_t Imm) const {
3494 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3495 bool PostRA = !MRI.isSSA();
3496 // Exit early if we can't convert this.
3497 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative)
3498 return false;
3499 if (Imm % III.ImmMustBeMultipleOf)
3500 return false;
3501 if (III.TruncateImmTo)
3502 Imm &= ((1 << III.TruncateImmTo) - 1);
3503 if (III.SignedImm) {
3504 APInt ActualValue(64, Imm, true);
3505 if (!ActualValue.isSignedIntN(III.ImmWidth))
3506 return false;
3507 } else {
3508 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
3509 if ((uint64_t)Imm > UnsignedMax)
3510 return false;
3513 // If we're post-RA, the instructions don't agree on whether register zero is
3514 // special, we can transform this as long as the register operand that will
3515 // end up in the location where zero is special isn't R0.
3516 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
3517 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
3518 III.ZeroIsSpecialNew + 1;
3519 unsigned OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
3520 unsigned NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
3521 // If R0 is in the operand where zero is special for the new instruction,
3522 // it is unsafe to transform if the constant operand isn't that operand.
3523 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
3524 ConstantOpNo != III.ZeroIsSpecialNew)
3525 return false;
3526 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
3527 ConstantOpNo != PosForOrigZero)
3528 return false;
3531 // Get killed info in case fixup needed after transformation.
3532 unsigned ForwardKilledOperandReg = ~0U;
3533 if (PostRA && MI.getOperand(ConstantOpNo).isKill())
3534 ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg();
3536 unsigned Opc = MI.getOpcode();
3537 bool SpecialShift32 =
3538 Opc == PPC::SLW || Opc == PPC::SLWo || Opc == PPC::SRW || Opc == PPC::SRWo;
3539 bool SpecialShift64 =
3540 Opc == PPC::SLD || Opc == PPC::SLDo || Opc == PPC::SRD || Opc == PPC::SRDo;
3541 bool SetCR = Opc == PPC::SLWo || Opc == PPC::SRWo ||
3542 Opc == PPC::SLDo || Opc == PPC::SRDo;
3543 bool RightShift =
3544 Opc == PPC::SRW || Opc == PPC::SRWo || Opc == PPC::SRD || Opc == PPC::SRDo;
3546 MI.setDesc(get(III.ImmOpcode));
3547 if (ConstantOpNo == III.OpNoForForwarding) {
3548 // Converting shifts to immediate form is a bit tricky since they may do
3549 // one of three things:
3550 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
3551 // 2. If the shift amount is zero, the result is unchanged (save for maybe
3552 // setting CR0)
3553 // 3. If the shift amount is in [1, OpSize), it's just a shift
3554 if (SpecialShift32 || SpecialShift64) {
3555 LoadImmediateInfo LII;
3556 LII.Imm = 0;
3557 LII.SetCR = SetCR;
3558 LII.Is64Bit = SpecialShift64;
3559 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
3560 if (Imm & (SpecialShift32 ? 0x20 : 0x40))
3561 replaceInstrWithLI(MI, LII);
3562 // Shifts by zero don't change the value. If we don't need to set CR0,
3563 // just convert this to a COPY. Can't do this post-RA since we've already
3564 // cleaned up the copies.
3565 else if (!SetCR && ShAmt == 0 && !PostRA) {
3566 MI.RemoveOperand(2);
3567 MI.setDesc(get(PPC::COPY));
3568 } else {
3569 // The 32 bit and 64 bit instructions are quite different.
3570 if (SpecialShift32) {
3571 // Left shifts use (N, 0, 31-N), right shifts use (32-N, N, 31).
3572 uint64_t SH = RightShift ? 32 - ShAmt : ShAmt;
3573 uint64_t MB = RightShift ? ShAmt : 0;
3574 uint64_t ME = RightShift ? 31 : 31 - ShAmt;
3575 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
3576 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
3577 .addImm(ME);
3578 } else {
3579 // Left shifts use (N, 63-N), right shifts use (64-N, N).
3580 uint64_t SH = RightShift ? 64 - ShAmt : ShAmt;
3581 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
3582 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
3583 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
3586 } else
3587 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
3589 // Convert commutative instructions (switch the operands and convert the
3590 // desired one to an immediate.
3591 else if (III.IsCommutative) {
3592 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
3593 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding);
3594 } else
3595 llvm_unreachable("Should have exited early!");
3597 // For instructions for which the constant register replaces a different
3598 // operand than where the immediate goes, we need to swap them.
3599 if (III.OpNoForForwarding != III.ImmOpNo)
3600 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo);
3602 // If the special R0/X0 register index are different for original instruction
3603 // and new instruction, we need to fix up the register class in new
3604 // instruction.
3605 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
3606 if (III.ZeroIsSpecialNew) {
3607 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no
3608 // need to fix up register class.
3609 unsigned RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
3610 if (TargetRegisterInfo::isVirtualRegister(RegToModify)) {
3611 const TargetRegisterClass *NewRC =
3612 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
3613 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
3614 MRI.setRegClass(RegToModify, NewRC);
3619 // Fix up killed/dead flag after transformation.
3620 // Pattern:
3621 // ForwardKilledOperandReg = LI imm
3622 // y = XOP reg, ForwardKilledOperandReg(killed)
3623 if (ForwardKilledOperandReg != ~0U)
3624 fixupIsDeadOrKill(DefMI, MI, ForwardKilledOperandReg);
3625 return true;
3628 const TargetRegisterClass *
3629 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
3630 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
3631 return &PPC::VSRCRegClass;
3632 return RC;
3635 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
3636 return PPC::getRecordFormOpcode(Opcode);
3639 // This function returns true if the machine instruction
3640 // always outputs a value by sign-extending a 32 bit value,
3641 // i.e. 0 to 31-th bits are same as 32-th bit.
3642 static bool isSignExtendingOp(const MachineInstr &MI) {
3643 int Opcode = MI.getOpcode();
3644 if (Opcode == PPC::LI || Opcode == PPC::LI8 ||
3645 Opcode == PPC::LIS || Opcode == PPC::LIS8 ||
3646 Opcode == PPC::SRAW || Opcode == PPC::SRAWo ||
3647 Opcode == PPC::SRAWI || Opcode == PPC::SRAWIo ||
3648 Opcode == PPC::LWA || Opcode == PPC::LWAX ||
3649 Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 ||
3650 Opcode == PPC::LHA || Opcode == PPC::LHAX ||
3651 Opcode == PPC::LHA8 || Opcode == PPC::LHAX8 ||
3652 Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
3653 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
3654 Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
3655 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
3656 Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
3657 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 ||
3658 Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
3659 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 ||
3660 Opcode == PPC::EXTSB || Opcode == PPC::EXTSBo ||
3661 Opcode == PPC::EXTSH || Opcode == PPC::EXTSHo ||
3662 Opcode == PPC::EXTSB8 || Opcode == PPC::EXTSH8 ||
3663 Opcode == PPC::EXTSW || Opcode == PPC::EXTSWo ||
3664 Opcode == PPC::SETB || Opcode == PPC::SETB8 ||
3665 Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 ||
3666 Opcode == PPC::EXTSB8_32_64)
3667 return true;
3669 if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33)
3670 return true;
3672 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo ||
3673 Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo) &&
3674 MI.getOperand(3).getImm() > 0 &&
3675 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
3676 return true;
3678 return false;
3681 // This function returns true if the machine instruction
3682 // always outputs zeros in higher 32 bits.
3683 static bool isZeroExtendingOp(const MachineInstr &MI) {
3684 int Opcode = MI.getOpcode();
3685 // The 16-bit immediate is sign-extended in li/lis.
3686 // If the most significant bit is zero, all higher bits are zero.
3687 if (Opcode == PPC::LI || Opcode == PPC::LI8 ||
3688 Opcode == PPC::LIS || Opcode == PPC::LIS8) {
3689 int64_t Imm = MI.getOperand(1).getImm();
3690 if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
3691 return true;
3694 // We have some variations of rotate-and-mask instructions
3695 // that clear higher 32-bits.
3696 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo ||
3697 Opcode == PPC::RLDCL || Opcode == PPC::RLDCLo ||
3698 Opcode == PPC::RLDICL_32_64) &&
3699 MI.getOperand(3).getImm() >= 32)
3700 return true;
3702 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) &&
3703 MI.getOperand(3).getImm() >= 32 &&
3704 MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm())
3705 return true;
3707 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo ||
3708 Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo ||
3709 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
3710 MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
3711 return true;
3713 // There are other instructions that clear higher 32-bits.
3714 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZWo ||
3715 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZWo ||
3716 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 ||
3717 Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZDo ||
3718 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZDo ||
3719 Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW ||
3720 Opcode == PPC::SLW || Opcode == PPC::SLWo ||
3721 Opcode == PPC::SRW || Opcode == PPC::SRWo ||
3722 Opcode == PPC::SLW8 || Opcode == PPC::SRW8 ||
3723 Opcode == PPC::SLWI || Opcode == PPC::SLWIo ||
3724 Opcode == PPC::SRWI || Opcode == PPC::SRWIo ||
3725 Opcode == PPC::LWZ || Opcode == PPC::LWZX ||
3726 Opcode == PPC::LWZU || Opcode == PPC::LWZUX ||
3727 Opcode == PPC::LWBRX || Opcode == PPC::LHBRX ||
3728 Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
3729 Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
3730 Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
3731 Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
3732 Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 ||
3733 Opcode == PPC::LWZU8 || Opcode == PPC::LWZUX8 ||
3734 Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 ||
3735 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 ||
3736 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 ||
3737 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
3738 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
3739 Opcode == PPC::ANDIo || Opcode == PPC::ANDISo ||
3740 Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWIo ||
3741 Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWIo ||
3742 Opcode == PPC::MFVSRWZ)
3743 return true;
3745 return false;
3748 // This function returns true if the input MachineInstr is a TOC save
3749 // instruction.
3750 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
3751 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
3752 return false;
3753 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
3754 unsigned StackOffset = MI.getOperand(1).getImm();
3755 unsigned StackReg = MI.getOperand(2).getReg();
3756 if (StackReg == PPC::X1 && StackOffset == TOCSaveOffset)
3757 return true;
3759 return false;
3762 // We limit the max depth to track incoming values of PHIs or binary ops
3763 // (e.g. AND) to avoid excessive cost.
3764 const unsigned MAX_DEPTH = 1;
3766 bool
3767 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
3768 const unsigned Depth) const {
3769 const MachineFunction *MF = MI.getParent()->getParent();
3770 const MachineRegisterInfo *MRI = &MF->getRegInfo();
3772 // If we know this instruction returns sign- or zero-extended result,
3773 // return true.
3774 if (SignExt ? isSignExtendingOp(MI):
3775 isZeroExtendingOp(MI))
3776 return true;
3778 switch (MI.getOpcode()) {
3779 case PPC::COPY: {
3780 unsigned SrcReg = MI.getOperand(1).getReg();
3782 // In both ELFv1 and v2 ABI, method parameters and the return value
3783 // are sign- or zero-extended.
3784 if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
3785 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
3786 // We check the ZExt/SExt flags for a method parameter.
3787 if (MI.getParent()->getBasicBlock() ==
3788 &MF->getFunction().getEntryBlock()) {
3789 unsigned VReg = MI.getOperand(0).getReg();
3790 if (MF->getRegInfo().isLiveIn(VReg))
3791 return SignExt ? FuncInfo->isLiveInSExt(VReg) :
3792 FuncInfo->isLiveInZExt(VReg);
3795 // For a method return value, we check the ZExt/SExt flags in attribute.
3796 // We assume the following code sequence for method call.
3797 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
3798 // BL8_NOP @func,...
3799 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
3800 // %5 = COPY %x3; G8RC:%5
3801 if (SrcReg == PPC::X3) {
3802 const MachineBasicBlock *MBB = MI.getParent();
3803 MachineBasicBlock::const_instr_iterator II =
3804 MachineBasicBlock::const_instr_iterator(&MI);
3805 if (II != MBB->instr_begin() &&
3806 (--II)->getOpcode() == PPC::ADJCALLSTACKUP) {
3807 const MachineInstr &CallMI = *(--II);
3808 if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) {
3809 const Function *CalleeFn =
3810 dyn_cast<Function>(CallMI.getOperand(0).getGlobal());
3811 if (!CalleeFn)
3812 return false;
3813 const IntegerType *IntTy =
3814 dyn_cast<IntegerType>(CalleeFn->getReturnType());
3815 const AttributeSet &Attrs =
3816 CalleeFn->getAttributes().getRetAttributes();
3817 if (IntTy && IntTy->getBitWidth() <= 32)
3818 return Attrs.hasAttribute(SignExt ? Attribute::SExt :
3819 Attribute::ZExt);
3825 // If this is a copy from another register, we recursively check source.
3826 if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
3827 return false;
3828 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3829 if (SrcMI != NULL)
3830 return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
3832 return false;
3835 case PPC::ANDIo:
3836 case PPC::ANDISo:
3837 case PPC::ORI:
3838 case PPC::ORIS:
3839 case PPC::XORI:
3840 case PPC::XORIS:
3841 case PPC::ANDIo8:
3842 case PPC::ANDISo8:
3843 case PPC::ORI8:
3844 case PPC::ORIS8:
3845 case PPC::XORI8:
3846 case PPC::XORIS8: {
3847 // logical operation with 16-bit immediate does not change the upper bits.
3848 // So, we track the operand register as we do for register copy.
3849 unsigned SrcReg = MI.getOperand(1).getReg();
3850 if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
3851 return false;
3852 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3853 if (SrcMI != NULL)
3854 return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
3856 return false;
3859 // If all incoming values are sign-/zero-extended,
3860 // the output of OR, ISEL or PHI is also sign-/zero-extended.
3861 case PPC::OR:
3862 case PPC::OR8:
3863 case PPC::ISEL:
3864 case PPC::PHI: {
3865 if (Depth >= MAX_DEPTH)
3866 return false;
3868 // The input registers for PHI are operand 1, 3, ...
3869 // The input registers for others are operand 1 and 2.
3870 unsigned E = 3, D = 1;
3871 if (MI.getOpcode() == PPC::PHI) {
3872 E = MI.getNumOperands();
3873 D = 2;
3876 for (unsigned I = 1; I != E; I += D) {
3877 if (MI.getOperand(I).isReg()) {
3878 unsigned SrcReg = MI.getOperand(I).getReg();
3879 if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
3880 return false;
3881 const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
3882 if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1))
3883 return false;
3885 else
3886 return false;
3888 return true;
3891 // If at least one of the incoming values of an AND is zero extended
3892 // then the output is also zero-extended. If both of the incoming values
3893 // are sign-extended then the output is also sign extended.
3894 case PPC::AND:
3895 case PPC::AND8: {
3896 if (Depth >= MAX_DEPTH)
3897 return false;
3899 assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg());
3901 unsigned SrcReg1 = MI.getOperand(1).getReg();
3902 unsigned SrcReg2 = MI.getOperand(2).getReg();
3904 if (!TargetRegisterInfo::isVirtualRegister(SrcReg1) ||
3905 !TargetRegisterInfo::isVirtualRegister(SrcReg2))
3906 return false;
3908 const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1);
3909 const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2);
3910 if (!MISrc1 || !MISrc2)
3911 return false;
3913 if(SignExt)
3914 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) &&
3915 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
3916 else
3917 return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) ||
3918 isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
3921 default:
3922 break;
3924 return false;
3927 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const {
3928 return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ));
3931 bool PPCInstrInfo::analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst,
3932 MachineInstr *&CmpInst) const {
3933 MachineBasicBlock *LoopEnd = L.getBottomBlock();
3934 MachineBasicBlock::iterator I = LoopEnd->getFirstTerminator();
3935 // We really "analyze" only CTR loops right now.
3936 if (I != LoopEnd->end() && isBDNZ(I->getOpcode())) {
3937 IndVarInst = nullptr;
3938 CmpInst = &*I;
3939 return false;
3941 return true;
3944 MachineInstr *
3945 PPCInstrInfo::findLoopInstr(MachineBasicBlock &PreHeader) const {
3947 unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop);
3949 // The loop set-up instruction should be in preheader
3950 for (auto &I : PreHeader.instrs())
3951 if (I.getOpcode() == LOOPi)
3952 return &I;
3953 return nullptr;
3956 unsigned PPCInstrInfo::reduceLoopCount(
3957 MachineBasicBlock &MBB, MachineBasicBlock &PreHeader, MachineInstr *IndVar,
3958 MachineInstr &Cmp, SmallVectorImpl<MachineOperand> &Cond,
3959 SmallVectorImpl<MachineInstr *> &PrevInsts, unsigned Iter,
3960 unsigned MaxIter) const {
3961 // We expect a hardware loop currently. This means that IndVar is set
3962 // to null, and the compare is the ENDLOOP instruction.
3963 assert((!IndVar) && isBDNZ(Cmp.getOpcode()) && "Expecting a CTR loop");
3964 MachineFunction *MF = MBB.getParent();
3965 DebugLoc DL = Cmp.getDebugLoc();
3966 MachineInstr *Loop = findLoopInstr(PreHeader);
3967 if (!Loop)
3968 return 0;
3969 unsigned LoopCountReg = Loop->getOperand(0).getReg();
3970 MachineRegisterInfo &MRI = MF->getRegInfo();
3971 MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg);
3973 if (!LoopCount)
3974 return 0;
3975 // If the loop trip count is a compile-time value, then just change the
3976 // value.
3977 if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI) {
3978 int64_t Offset = LoopCount->getOperand(1).getImm();
3979 if (Offset <= 1) {
3980 LoopCount->eraseFromParent();
3981 Loop->eraseFromParent();
3982 return 0;
3984 LoopCount->getOperand(1).setImm(Offset - 1);
3985 return Offset - 1;
3988 // The loop trip count is a run-time value.
3989 // We need to subtract one from the trip count,
3990 // and insert branch later to check if we're done with the loop.
3992 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
3993 // so we don't need to generate any thing here.
3994 Cond.push_back(MachineOperand::CreateImm(0));
3995 Cond.push_back(MachineOperand::CreateReg(
3996 Subtarget.isPPC64() ? PPC::CTR8 : PPC::CTR, true));
3997 return LoopCountReg;
4000 // Return true if get the base operand, byte offset of an instruction and the
4001 // memory width. Width is the size of memory that is being loaded/stored.
4002 bool PPCInstrInfo::getMemOperandWithOffsetWidth(
4003 const MachineInstr &LdSt,
4004 const MachineOperand *&BaseReg,
4005 int64_t &Offset,
4006 unsigned &Width,
4007 const TargetRegisterInfo *TRI) const {
4008 assert(LdSt.mayLoadOrStore() && "Expected a memory operation.");
4010 // Handle only loads/stores with base register followed by immediate offset.
4011 if (LdSt.getNumExplicitOperands() != 3)
4012 return false;
4013 if (!LdSt.getOperand(1).isImm() || !LdSt.getOperand(2).isReg())
4014 return false;
4016 if (!LdSt.hasOneMemOperand())
4017 return false;
4019 Width = (*LdSt.memoperands_begin())->getSize();
4020 Offset = LdSt.getOperand(1).getImm();
4021 BaseReg = &LdSt.getOperand(2);
4022 return true;
4025 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint(
4026 const MachineInstr &MIa, const MachineInstr &MIb,
4027 AliasAnalysis * /*AA*/) const {
4028 assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
4029 assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
4031 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
4032 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
4033 return false;
4035 // Retrieve the base register, offset from the base register and width. Width
4036 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If
4037 // base registers are identical, and the offset of a lower memory access +
4038 // the width doesn't overlap the offset of a higher memory access,
4039 // then the memory accesses are different.
4040 const TargetRegisterInfo *TRI = &getRegisterInfo();
4041 const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
4042 int64_t OffsetA = 0, OffsetB = 0;
4043 unsigned int WidthA = 0, WidthB = 0;
4044 if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
4045 getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
4046 if (BaseOpA->isIdenticalTo(*BaseOpB)) {
4047 int LowOffset = std::min(OffsetA, OffsetB);
4048 int HighOffset = std::max(OffsetA, OffsetB);
4049 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
4050 if (LowOffset + LowWidth <= HighOffset)
4051 return true;
4054 return false;