1 //===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
10 // both before and after the DAG is legalized.
12 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is
13 // primarily intended to handle simplification opportunities that are implicit
14 // in the LLVM IR and exposed by the various codegen lowering phases.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/IntervalMap.h"
23 #include "llvm/ADT/None.h"
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SetVector.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Analysis/AliasAnalysis.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/CodeGen/DAGCombine.h"
34 #include "llvm/CodeGen/ISDOpcodes.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/RuntimeLibcalls.h"
39 #include "llvm/CodeGen/SelectionDAG.h"
40 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
41 #include "llvm/CodeGen/SelectionDAGNodes.h"
42 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Attributes.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CodeGen.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/KnownBits.h"
61 #include "llvm/Support/MachineValueType.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include "llvm/Target/TargetOptions.h"
77 #define DEBUG_TYPE "dagcombine"
79 STATISTIC(NodesCombined
, "Number of dag nodes combined");
80 STATISTIC(PreIndexedNodes
, "Number of pre-indexed nodes created");
81 STATISTIC(PostIndexedNodes
, "Number of post-indexed nodes created");
82 STATISTIC(OpsNarrowed
, "Number of load/op/store narrowed");
83 STATISTIC(LdStFP2Int
, "Number of fp load/store pairs transformed to int");
84 STATISTIC(SlicedLoads
, "Number of load sliced");
85 STATISTIC(NumFPLogicOpsConv
, "Number of logic ops converted to fp ops");
88 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden
,
89 cl::desc("Enable DAG combiner's use of IR alias analysis"));
92 UseTBAA("combiner-use-tbaa", cl::Hidden
, cl::init(true),
93 cl::desc("Enable DAG combiner's use of TBAA"));
96 static cl::opt
<std::string
>
97 CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden
,
98 cl::desc("Only use DAG-combiner alias analysis in this"
102 /// Hidden option to stress test load slicing, i.e., when this option
103 /// is enabled, load slicing bypasses most of its profitability guards.
105 StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden
,
106 cl::desc("Bypass the profitability model of load slicing"),
110 MaySplitLoadIndex("combiner-split-load-index", cl::Hidden
, cl::init(true),
111 cl::desc("DAG combiner may split indexing from loads"));
114 EnableStoreMerging("combiner-store-merging", cl::Hidden
, cl::init(true),
115 cl::desc("DAG combiner enable merging multiple stores "
116 "into a wider store"));
118 static cl::opt
<unsigned> TokenFactorInlineLimit(
119 "combiner-tokenfactor-inline-limit", cl::Hidden
, cl::init(2048),
120 cl::desc("Limit the number of operands to inline for Token Factors"));
122 static cl::opt
<unsigned> StoreMergeDependenceLimit(
123 "combiner-store-merge-dependence-limit", cl::Hidden
, cl::init(10),
124 cl::desc("Limit the number of times for the same StoreNode and RootNode "
125 "to bail out in store merging dependence check"));
131 const TargetLowering
&TLI
;
133 CodeGenOpt::Level OptLevel
;
134 bool LegalOperations
= false;
135 bool LegalTypes
= false;
138 /// Worklist of all of the nodes that need to be simplified.
140 /// This must behave as a stack -- new nodes to process are pushed onto the
141 /// back and when processing we pop off of the back.
143 /// The worklist will not contain duplicates but may contain null entries
144 /// due to nodes being deleted from the underlying DAG.
145 SmallVector
<SDNode
*, 64> Worklist
;
147 /// Mapping from an SDNode to its position on the worklist.
149 /// This is used to find and remove nodes from the worklist (by nulling
150 /// them) when they are deleted from the underlying DAG. It relies on
151 /// stable indices of nodes within the worklist.
152 DenseMap
<SDNode
*, unsigned> WorklistMap
;
153 /// This records all nodes attempted to add to the worklist since we
154 /// considered a new worklist entry. As we keep do not add duplicate nodes
155 /// in the worklist, this is different from the tail of the worklist.
156 SmallSetVector
<SDNode
*, 32> PruningList
;
158 /// Set of nodes which have been combined (at least once).
160 /// This is used to allow us to reliably add any operands of a DAG node
161 /// which have not yet been combined to the worklist.
162 SmallPtrSet
<SDNode
*, 32> CombinedNodes
;
164 /// Map from candidate StoreNode to the pair of RootNode and count.
165 /// The count is used to track how many times we have seen the StoreNode
166 /// with the same RootNode bail out in dependence check. If we have seen
167 /// the bail out for the same pair many times over a limit, we won't
168 /// consider the StoreNode with the same RootNode as store merging
170 DenseMap
<SDNode
*, std::pair
<SDNode
*, unsigned>> StoreRootCountMap
;
172 // AA - Used for DAG load/store alias analysis.
175 /// When an instruction is simplified, add all users of the instruction to
176 /// the work lists because they might get more simplified now.
177 void AddUsersToWorklist(SDNode
*N
) {
178 for (SDNode
*Node
: N
->uses())
182 // Prune potentially dangling nodes. This is called after
183 // any visit to a node, but should also be called during a visit after any
184 // failed combine which may have created a DAG node.
185 void clearAddedDanglingWorklistEntries() {
186 // Check any nodes added to the worklist to see if they are prunable.
187 while (!PruningList
.empty()) {
188 auto *N
= PruningList
.pop_back_val();
190 recursivelyDeleteUnusedNodes(N
);
194 SDNode
*getNextWorklistEntry() {
195 // Before we do any work, remove nodes that are not in use.
196 clearAddedDanglingWorklistEntries();
198 // The Worklist holds the SDNodes in order, but it may contain null
200 while (!N
&& !Worklist
.empty()) {
201 N
= Worklist
.pop_back_val();
205 bool GoodWorklistEntry
= WorklistMap
.erase(N
);
206 (void)GoodWorklistEntry
;
207 assert(GoodWorklistEntry
&&
208 "Found a worklist entry without a corresponding map entry!");
213 /// Call the node-specific routine that folds each particular type of node.
214 SDValue
visit(SDNode
*N
);
217 DAGCombiner(SelectionDAG
&D
, AliasAnalysis
*AA
, CodeGenOpt::Level OL
)
218 : DAG(D
), TLI(D
.getTargetLoweringInfo()), Level(BeforeLegalizeTypes
),
219 OptLevel(OL
), AA(AA
) {
220 ForCodeSize
= DAG
.getMachineFunction().getFunction().hasOptSize();
222 MaximumLegalStoreInBits
= 0;
223 for (MVT VT
: MVT::all_valuetypes())
224 if (EVT(VT
).isSimple() && VT
!= MVT::Other
&&
225 TLI
.isTypeLegal(EVT(VT
)) &&
226 VT
.getSizeInBits() >= MaximumLegalStoreInBits
)
227 MaximumLegalStoreInBits
= VT
.getSizeInBits();
230 void ConsiderForPruning(SDNode
*N
) {
231 // Mark this for potential pruning.
232 PruningList
.insert(N
);
235 /// Add to the worklist making sure its instance is at the back (next to be
237 void AddToWorklist(SDNode
*N
) {
238 assert(N
->getOpcode() != ISD::DELETED_NODE
&&
239 "Deleted Node added to Worklist");
241 // Skip handle nodes as they can't usefully be combined and confuse the
242 // zero-use deletion strategy.
243 if (N
->getOpcode() == ISD::HANDLENODE
)
246 ConsiderForPruning(N
);
248 if (WorklistMap
.insert(std::make_pair(N
, Worklist
.size())).second
)
249 Worklist
.push_back(N
);
252 /// Remove all instances of N from the worklist.
253 void removeFromWorklist(SDNode
*N
) {
254 CombinedNodes
.erase(N
);
255 PruningList
.remove(N
);
256 StoreRootCountMap
.erase(N
);
258 auto It
= WorklistMap
.find(N
);
259 if (It
== WorklistMap
.end())
260 return; // Not in the worklist.
262 // Null out the entry rather than erasing it to avoid a linear operation.
263 Worklist
[It
->second
] = nullptr;
264 WorklistMap
.erase(It
);
267 void deleteAndRecombine(SDNode
*N
);
268 bool recursivelyDeleteUnusedNodes(SDNode
*N
);
270 /// Replaces all uses of the results of one DAG node with new values.
271 SDValue
CombineTo(SDNode
*N
, const SDValue
*To
, unsigned NumTo
,
274 /// Replaces all uses of the results of one DAG node with new values.
275 SDValue
CombineTo(SDNode
*N
, SDValue Res
, bool AddTo
= true) {
276 return CombineTo(N
, &Res
, 1, AddTo
);
279 /// Replaces all uses of the results of one DAG node with new values.
280 SDValue
CombineTo(SDNode
*N
, SDValue Res0
, SDValue Res1
,
282 SDValue To
[] = { Res0
, Res1
};
283 return CombineTo(N
, To
, 2, AddTo
);
286 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&TLO
);
289 unsigned MaximumLegalStoreInBits
;
291 /// Check the specified integer node value to see if it can be simplified or
292 /// if things it uses can be simplified by bit propagation.
293 /// If so, return true.
294 bool SimplifyDemandedBits(SDValue Op
) {
295 unsigned BitWidth
= Op
.getScalarValueSizeInBits();
296 APInt DemandedBits
= APInt::getAllOnesValue(BitWidth
);
297 return SimplifyDemandedBits(Op
, DemandedBits
);
300 bool SimplifyDemandedBits(SDValue Op
, const APInt
&DemandedBits
) {
301 EVT VT
= Op
.getValueType();
302 unsigned NumElts
= VT
.isVector() ? VT
.getVectorNumElements() : 1;
303 APInt DemandedElts
= APInt::getAllOnesValue(NumElts
);
304 return SimplifyDemandedBits(Op
, DemandedBits
, DemandedElts
);
307 /// Check the specified vector node value to see if it can be simplified or
308 /// if things it uses can be simplified as it only uses some of the
309 /// elements. If so, return true.
310 bool SimplifyDemandedVectorElts(SDValue Op
) {
311 unsigned NumElts
= Op
.getValueType().getVectorNumElements();
312 APInt DemandedElts
= APInt::getAllOnesValue(NumElts
);
313 return SimplifyDemandedVectorElts(Op
, DemandedElts
);
316 bool SimplifyDemandedBits(SDValue Op
, const APInt
&DemandedBits
,
317 const APInt
&DemandedElts
);
318 bool SimplifyDemandedVectorElts(SDValue Op
, const APInt
&DemandedElts
,
319 bool AssumeSingleUse
= false);
321 bool CombineToPreIndexedLoadStore(SDNode
*N
);
322 bool CombineToPostIndexedLoadStore(SDNode
*N
);
323 SDValue
SplitIndexingFromLoad(LoadSDNode
*LD
);
324 bool SliceUpLoad(SDNode
*N
);
326 // Scalars have size 0 to distinguish from singleton vectors.
327 SDValue
ForwardStoreValueToDirectLoad(LoadSDNode
*LD
);
328 bool getTruncatedStoreValue(StoreSDNode
*ST
, SDValue
&Val
);
329 bool extendLoadedValueToExtension(LoadSDNode
*LD
, SDValue
&Val
);
331 /// Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed
334 /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced.
335 /// \param InVecVT type of the input vector to EVE with bitcasts resolved.
336 /// \param EltNo index of the vector element to load.
337 /// \param OriginalLoad load that EVE came from to be replaced.
338 /// \returns EVE on success SDValue() on failure.
339 SDValue
scalarizeExtractedVectorLoad(SDNode
*EVE
, EVT InVecVT
,
341 LoadSDNode
*OriginalLoad
);
342 void ReplaceLoadWithPromotedLoad(SDNode
*Load
, SDNode
*ExtLoad
);
343 SDValue
PromoteOperand(SDValue Op
, EVT PVT
, bool &Replace
);
344 SDValue
SExtPromoteOperand(SDValue Op
, EVT PVT
);
345 SDValue
ZExtPromoteOperand(SDValue Op
, EVT PVT
);
346 SDValue
PromoteIntBinOp(SDValue Op
);
347 SDValue
PromoteIntShiftOp(SDValue Op
);
348 SDValue
PromoteExtend(SDValue Op
);
349 bool PromoteLoad(SDValue Op
);
351 /// Call the node-specific routine that knows how to fold each
352 /// particular type of node. If that doesn't do anything, try the
353 /// target-specific DAG combines.
354 SDValue
combine(SDNode
*N
);
356 // Visitation implementation - Implement dag node combining for different
357 // node types. The semantics are as follows:
359 // SDValue.getNode() == 0 - No change was made
360 // SDValue.getNode() == N - N was replaced, is dead and has been handled.
361 // otherwise - N should be replaced by the returned Operand.
363 SDValue
visitTokenFactor(SDNode
*N
);
364 SDValue
visitMERGE_VALUES(SDNode
*N
);
365 SDValue
visitADD(SDNode
*N
);
366 SDValue
visitADDLike(SDNode
*N
);
367 SDValue
visitADDLikeCommutative(SDValue N0
, SDValue N1
, SDNode
*LocReference
);
368 SDValue
visitSUB(SDNode
*N
);
369 SDValue
visitADDSAT(SDNode
*N
);
370 SDValue
visitSUBSAT(SDNode
*N
);
371 SDValue
visitADDC(SDNode
*N
);
372 SDValue
visitADDO(SDNode
*N
);
373 SDValue
visitUADDOLike(SDValue N0
, SDValue N1
, SDNode
*N
);
374 SDValue
visitSUBC(SDNode
*N
);
375 SDValue
visitSUBO(SDNode
*N
);
376 SDValue
visitADDE(SDNode
*N
);
377 SDValue
visitADDCARRY(SDNode
*N
);
378 SDValue
visitADDCARRYLike(SDValue N0
, SDValue N1
, SDValue CarryIn
, SDNode
*N
);
379 SDValue
visitSUBE(SDNode
*N
);
380 SDValue
visitSUBCARRY(SDNode
*N
);
381 SDValue
visitMUL(SDNode
*N
);
382 SDValue
visitMULFIX(SDNode
*N
);
383 SDValue
useDivRem(SDNode
*N
);
384 SDValue
visitSDIV(SDNode
*N
);
385 SDValue
visitSDIVLike(SDValue N0
, SDValue N1
, SDNode
*N
);
386 SDValue
visitUDIV(SDNode
*N
);
387 SDValue
visitUDIVLike(SDValue N0
, SDValue N1
, SDNode
*N
);
388 SDValue
visitREM(SDNode
*N
);
389 SDValue
visitMULHU(SDNode
*N
);
390 SDValue
visitMULHS(SDNode
*N
);
391 SDValue
visitSMUL_LOHI(SDNode
*N
);
392 SDValue
visitUMUL_LOHI(SDNode
*N
);
393 SDValue
visitMULO(SDNode
*N
);
394 SDValue
visitIMINMAX(SDNode
*N
);
395 SDValue
visitAND(SDNode
*N
);
396 SDValue
visitANDLike(SDValue N0
, SDValue N1
, SDNode
*N
);
397 SDValue
visitOR(SDNode
*N
);
398 SDValue
visitORLike(SDValue N0
, SDValue N1
, SDNode
*N
);
399 SDValue
visitXOR(SDNode
*N
);
400 SDValue
SimplifyVBinOp(SDNode
*N
);
401 SDValue
visitSHL(SDNode
*N
);
402 SDValue
visitSRA(SDNode
*N
);
403 SDValue
visitSRL(SDNode
*N
);
404 SDValue
visitFunnelShift(SDNode
*N
);
405 SDValue
visitRotate(SDNode
*N
);
406 SDValue
visitABS(SDNode
*N
);
407 SDValue
visitBSWAP(SDNode
*N
);
408 SDValue
visitBITREVERSE(SDNode
*N
);
409 SDValue
visitCTLZ(SDNode
*N
);
410 SDValue
visitCTLZ_ZERO_UNDEF(SDNode
*N
);
411 SDValue
visitCTTZ(SDNode
*N
);
412 SDValue
visitCTTZ_ZERO_UNDEF(SDNode
*N
);
413 SDValue
visitCTPOP(SDNode
*N
);
414 SDValue
visitSELECT(SDNode
*N
);
415 SDValue
visitVSELECT(SDNode
*N
);
416 SDValue
visitSELECT_CC(SDNode
*N
);
417 SDValue
visitSETCC(SDNode
*N
);
418 SDValue
visitSETCCCARRY(SDNode
*N
);
419 SDValue
visitSIGN_EXTEND(SDNode
*N
);
420 SDValue
visitZERO_EXTEND(SDNode
*N
);
421 SDValue
visitANY_EXTEND(SDNode
*N
);
422 SDValue
visitAssertExt(SDNode
*N
);
423 SDValue
visitSIGN_EXTEND_INREG(SDNode
*N
);
424 SDValue
visitSIGN_EXTEND_VECTOR_INREG(SDNode
*N
);
425 SDValue
visitZERO_EXTEND_VECTOR_INREG(SDNode
*N
);
426 SDValue
visitTRUNCATE(SDNode
*N
);
427 SDValue
visitBITCAST(SDNode
*N
);
428 SDValue
visitBUILD_PAIR(SDNode
*N
);
429 SDValue
visitFADD(SDNode
*N
);
430 SDValue
visitFSUB(SDNode
*N
);
431 SDValue
visitFMUL(SDNode
*N
);
432 SDValue
visitFMA(SDNode
*N
);
433 SDValue
visitFDIV(SDNode
*N
);
434 SDValue
visitFREM(SDNode
*N
);
435 SDValue
visitFSQRT(SDNode
*N
);
436 SDValue
visitFCOPYSIGN(SDNode
*N
);
437 SDValue
visitFPOW(SDNode
*N
);
438 SDValue
visitSINT_TO_FP(SDNode
*N
);
439 SDValue
visitUINT_TO_FP(SDNode
*N
);
440 SDValue
visitFP_TO_SINT(SDNode
*N
);
441 SDValue
visitFP_TO_UINT(SDNode
*N
);
442 SDValue
visitFP_ROUND(SDNode
*N
);
443 SDValue
visitFP_ROUND_INREG(SDNode
*N
);
444 SDValue
visitFP_EXTEND(SDNode
*N
);
445 SDValue
visitFNEG(SDNode
*N
);
446 SDValue
visitFABS(SDNode
*N
);
447 SDValue
visitFCEIL(SDNode
*N
);
448 SDValue
visitFTRUNC(SDNode
*N
);
449 SDValue
visitFFLOOR(SDNode
*N
);
450 SDValue
visitFMINNUM(SDNode
*N
);
451 SDValue
visitFMAXNUM(SDNode
*N
);
452 SDValue
visitFMINIMUM(SDNode
*N
);
453 SDValue
visitFMAXIMUM(SDNode
*N
);
454 SDValue
visitBRCOND(SDNode
*N
);
455 SDValue
visitBR_CC(SDNode
*N
);
456 SDValue
visitLOAD(SDNode
*N
);
458 SDValue
replaceStoreChain(StoreSDNode
*ST
, SDValue BetterChain
);
459 SDValue
replaceStoreOfFPConstant(StoreSDNode
*ST
);
461 SDValue
visitSTORE(SDNode
*N
);
462 SDValue
visitLIFETIME_END(SDNode
*N
);
463 SDValue
visitINSERT_VECTOR_ELT(SDNode
*N
);
464 SDValue
visitEXTRACT_VECTOR_ELT(SDNode
*N
);
465 SDValue
visitBUILD_VECTOR(SDNode
*N
);
466 SDValue
visitCONCAT_VECTORS(SDNode
*N
);
467 SDValue
visitEXTRACT_SUBVECTOR(SDNode
*N
);
468 SDValue
visitVECTOR_SHUFFLE(SDNode
*N
);
469 SDValue
visitSCALAR_TO_VECTOR(SDNode
*N
);
470 SDValue
visitINSERT_SUBVECTOR(SDNode
*N
);
471 SDValue
visitMLOAD(SDNode
*N
);
472 SDValue
visitMSTORE(SDNode
*N
);
473 SDValue
visitMGATHER(SDNode
*N
);
474 SDValue
visitMSCATTER(SDNode
*N
);
475 SDValue
visitFP_TO_FP16(SDNode
*N
);
476 SDValue
visitFP16_TO_FP(SDNode
*N
);
477 SDValue
visitVECREDUCE(SDNode
*N
);
479 SDValue
visitFADDForFMACombine(SDNode
*N
);
480 SDValue
visitFSUBForFMACombine(SDNode
*N
);
481 SDValue
visitFMULForFMADistributiveCombine(SDNode
*N
);
483 SDValue
XformToShuffleWithZero(SDNode
*N
);
484 bool reassociationCanBreakAddressingModePattern(unsigned Opc
,
485 const SDLoc
&DL
, SDValue N0
,
487 SDValue
reassociateOpsCommutative(unsigned Opc
, const SDLoc
&DL
, SDValue N0
,
489 SDValue
reassociateOps(unsigned Opc
, const SDLoc
&DL
, SDValue N0
,
490 SDValue N1
, SDNodeFlags Flags
);
492 SDValue
visitShiftByConstant(SDNode
*N
, ConstantSDNode
*Amt
);
494 SDValue
foldSelectOfConstants(SDNode
*N
);
495 SDValue
foldVSelectOfConstants(SDNode
*N
);
496 SDValue
foldBinOpIntoSelect(SDNode
*BO
);
497 bool SimplifySelectOps(SDNode
*SELECT
, SDValue LHS
, SDValue RHS
);
498 SDValue
hoistLogicOpWithSameOpcodeHands(SDNode
*N
);
499 SDValue
SimplifySelect(const SDLoc
&DL
, SDValue N0
, SDValue N1
, SDValue N2
);
500 SDValue
SimplifySelectCC(const SDLoc
&DL
, SDValue N0
, SDValue N1
,
501 SDValue N2
, SDValue N3
, ISD::CondCode CC
,
502 bool NotExtCompare
= false);
503 SDValue
convertSelectOfFPConstantsToLoadOffset(
504 const SDLoc
&DL
, SDValue N0
, SDValue N1
, SDValue N2
, SDValue N3
,
506 SDValue
foldSelectCCToShiftAnd(const SDLoc
&DL
, SDValue N0
, SDValue N1
,
507 SDValue N2
, SDValue N3
, ISD::CondCode CC
);
508 SDValue
foldLogicOfSetCCs(bool IsAnd
, SDValue N0
, SDValue N1
,
510 SDValue
unfoldMaskedMerge(SDNode
*N
);
511 SDValue
unfoldExtremeBitClearingToShifts(SDNode
*N
);
512 SDValue
SimplifySetCC(EVT VT
, SDValue N0
, SDValue N1
, ISD::CondCode Cond
,
513 const SDLoc
&DL
, bool foldBooleans
);
514 SDValue
rebuildSetCC(SDValue N
);
516 bool isSetCCEquivalent(SDValue N
, SDValue
&LHS
, SDValue
&RHS
,
518 bool isOneUseSetCC(SDValue N
) const;
520 SDValue
SimplifyNodeWithTwoResults(SDNode
*N
, unsigned LoOp
,
522 SDValue
CombineConsecutiveLoads(SDNode
*N
, EVT VT
);
523 SDValue
CombineExtLoad(SDNode
*N
);
524 SDValue
CombineZExtLogicopShiftLoad(SDNode
*N
);
525 SDValue
combineRepeatedFPDivisors(SDNode
*N
);
526 SDValue
combineInsertEltToShuffle(SDNode
*N
, unsigned InsIndex
);
527 SDValue
ConstantFoldBITCASTofBUILD_VECTOR(SDNode
*, EVT
);
528 SDValue
BuildSDIV(SDNode
*N
);
529 SDValue
BuildSDIVPow2(SDNode
*N
);
530 SDValue
BuildUDIV(SDNode
*N
);
531 SDValue
BuildLogBase2(SDValue V
, const SDLoc
&DL
);
532 SDValue
BuildReciprocalEstimate(SDValue Op
, SDNodeFlags Flags
);
533 SDValue
buildRsqrtEstimate(SDValue Op
, SDNodeFlags Flags
);
534 SDValue
buildSqrtEstimate(SDValue Op
, SDNodeFlags Flags
);
535 SDValue
buildSqrtEstimateImpl(SDValue Op
, SDNodeFlags Flags
, bool Recip
);
536 SDValue
buildSqrtNROneConst(SDValue Arg
, SDValue Est
, unsigned Iterations
,
537 SDNodeFlags Flags
, bool Reciprocal
);
538 SDValue
buildSqrtNRTwoConst(SDValue Arg
, SDValue Est
, unsigned Iterations
,
539 SDNodeFlags Flags
, bool Reciprocal
);
540 SDValue
MatchBSwapHWordLow(SDNode
*N
, SDValue N0
, SDValue N1
,
541 bool DemandHighBits
= true);
542 SDValue
MatchBSwapHWord(SDNode
*N
, SDValue N0
, SDValue N1
);
543 SDNode
*MatchRotatePosNeg(SDValue Shifted
, SDValue Pos
, SDValue Neg
,
544 SDValue InnerPos
, SDValue InnerNeg
,
545 unsigned PosOpcode
, unsigned NegOpcode
,
547 SDNode
*MatchRotate(SDValue LHS
, SDValue RHS
, const SDLoc
&DL
);
548 SDValue
MatchLoadCombine(SDNode
*N
);
549 SDValue
MatchStoreCombine(StoreSDNode
*N
);
550 SDValue
ReduceLoadWidth(SDNode
*N
);
551 SDValue
ReduceLoadOpStoreWidth(SDNode
*N
);
552 SDValue
splitMergedValStore(StoreSDNode
*ST
);
553 SDValue
TransformFPLoadStorePair(SDNode
*N
);
554 SDValue
convertBuildVecZextToZext(SDNode
*N
);
555 SDValue
reduceBuildVecExtToExtBuildVec(SDNode
*N
);
556 SDValue
reduceBuildVecToShuffle(SDNode
*N
);
557 SDValue
createBuildVecShuffle(const SDLoc
&DL
, SDNode
*N
,
558 ArrayRef
<int> VectorMask
, SDValue VecIn1
,
559 SDValue VecIn2
, unsigned LeftIdx
,
561 SDValue
matchVSelectOpSizesWithSetCC(SDNode
*Cast
);
563 /// Walk up chain skipping non-aliasing memory nodes,
564 /// looking for aliasing nodes and adding them to the Aliases vector.
565 void GatherAllAliases(SDNode
*N
, SDValue OriginalChain
,
566 SmallVectorImpl
<SDValue
> &Aliases
);
568 /// Return true if there is any possibility that the two addresses overlap.
569 bool isAlias(SDNode
*Op0
, SDNode
*Op1
) const;
571 /// Walk up chain skipping non-aliasing memory nodes, looking for a better
572 /// chain (aliasing node.)
573 SDValue
FindBetterChain(SDNode
*N
, SDValue Chain
);
575 /// Try to replace a store and any possibly adjacent stores on
576 /// consecutive chains with better chains. Return true only if St is
579 /// Notice that other chains may still be replaced even if the function
581 bool findBetterNeighborChains(StoreSDNode
*St
);
583 // Helper for findBetterNeighborChains. Walk up store chain add additional
584 // chained stores that do not overlap and can be parallelized.
585 bool parallelizeChainedStores(StoreSDNode
*St
);
587 /// Holds a pointer to an LSBaseSDNode as well as information on where it
588 /// is located in a sequence of memory operations connected by a chain.
590 // Ptr to the mem node.
591 LSBaseSDNode
*MemNode
;
593 // Offset from the base ptr.
594 int64_t OffsetFromBase
;
596 MemOpLink(LSBaseSDNode
*N
, int64_t Offset
)
597 : MemNode(N
), OffsetFromBase(Offset
) {}
600 /// This is a helper function for visitMUL to check the profitability
601 /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
602 /// MulNode is the original multiply, AddNode is (add x, c1),
603 /// and ConstNode is c2.
604 bool isMulAddWithConstProfitable(SDNode
*MulNode
,
608 /// This is a helper function for visitAND and visitZERO_EXTEND. Returns
609 /// true if the (and (load x) c) pattern matches an extload. ExtVT returns
610 /// the type of the loaded value to be extended.
611 bool isAndLoadExtLoad(ConstantSDNode
*AndC
, LoadSDNode
*LoadN
,
612 EVT LoadResultTy
, EVT
&ExtVT
);
614 /// Helper function to calculate whether the given Load/Store can have its
615 /// width reduced to ExtVT.
616 bool isLegalNarrowLdSt(LSBaseSDNode
*LDSTN
, ISD::LoadExtType ExtType
,
617 EVT
&MemVT
, unsigned ShAmt
= 0);
619 /// Used by BackwardsPropagateMask to find suitable loads.
620 bool SearchForAndLoads(SDNode
*N
, SmallVectorImpl
<LoadSDNode
*> &Loads
,
621 SmallPtrSetImpl
<SDNode
*> &NodesWithConsts
,
622 ConstantSDNode
*Mask
, SDNode
*&NodeToMask
);
623 /// Attempt to propagate a given AND node back to load leaves so that they
624 /// can be combined into narrow loads.
625 bool BackwardsPropagateMask(SDNode
*N
, SelectionDAG
&DAG
);
627 /// Helper function for MergeConsecutiveStores which merges the
628 /// component store chains.
629 SDValue
getMergeStoreChains(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
632 /// This is a helper function for MergeConsecutiveStores. When the
633 /// source elements of the consecutive stores are all constants or
634 /// all extracted vector elements, try to merge them into one
635 /// larger store introducing bitcasts if necessary. \return True
636 /// if a merged store was created.
637 bool MergeStoresOfConstantsOrVecElts(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
638 EVT MemVT
, unsigned NumStores
,
639 bool IsConstantSrc
, bool UseVector
,
642 /// This is a helper function for MergeConsecutiveStores. Stores
643 /// that potentially may be merged with St are placed in
644 /// StoreNodes. RootNode is a chain predecessor to all store
646 void getStoreMergeCandidates(StoreSDNode
*St
,
647 SmallVectorImpl
<MemOpLink
> &StoreNodes
,
650 /// Helper function for MergeConsecutiveStores. Checks if
651 /// candidate stores have indirect dependency through their
652 /// operands. RootNode is the predecessor to all stores calculated
653 /// by getStoreMergeCandidates and is used to prune the dependency check.
654 /// \return True if safe to merge.
655 bool checkMergeStoreCandidatesForDependencies(
656 SmallVectorImpl
<MemOpLink
> &StoreNodes
, unsigned NumStores
,
659 /// Merge consecutive store operations into a wide store.
660 /// This optimization uses wide integers or vectors when possible.
661 /// \return number of stores that were merged into a merged store (the
662 /// affected nodes are stored as a prefix in \p StoreNodes).
663 bool MergeConsecutiveStores(StoreSDNode
*St
);
665 /// Try to transform a truncation where C is a constant:
666 /// (trunc (and X, C)) -> (and (trunc X), (trunc C))
668 /// \p N needs to be a truncation and its first operand an AND. Other
669 /// requirements are checked by the function (e.g. that trunc is
670 /// single-use) and if missed an empty SDValue is returned.
671 SDValue
distributeTruncateThroughAnd(SDNode
*N
);
673 /// Helper function to determine whether the target supports operation
674 /// given by \p Opcode for type \p VT, that is, whether the operation
675 /// is legal or custom before legalizing operations, and whether is
676 /// legal (but not custom) after legalization.
677 bool hasOperation(unsigned Opcode
, EVT VT
) {
679 return TLI
.isOperationLegal(Opcode
, VT
);
680 return TLI
.isOperationLegalOrCustom(Opcode
, VT
);
684 /// Runs the dag combiner on all nodes in the work list
685 void Run(CombineLevel AtLevel
);
687 SelectionDAG
&getDAG() const { return DAG
; }
689 /// Returns a type large enough to hold any valid shift amount - before type
690 /// legalization these can be huge.
691 EVT
getShiftAmountTy(EVT LHSTy
) {
692 assert(LHSTy
.isInteger() && "Shift amount is not an integer type!");
693 return TLI
.getShiftAmountTy(LHSTy
, DAG
.getDataLayout(), LegalTypes
);
696 /// This method returns true if we are running before type legalization or
697 /// if the specified VT is legal.
698 bool isTypeLegal(const EVT
&VT
) {
699 if (!LegalTypes
) return true;
700 return TLI
.isTypeLegal(VT
);
703 /// Convenience wrapper around TargetLowering::getSetCCResultType
704 EVT
getSetCCResultType(EVT VT
) const {
705 return TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
708 void ExtendSetCCUses(const SmallVectorImpl
<SDNode
*> &SetCCs
,
709 SDValue OrigLoad
, SDValue ExtLoad
,
710 ISD::NodeType ExtType
);
713 /// This class is a DAGUpdateListener that removes any deleted
714 /// nodes from the worklist.
715 class WorklistRemover
: public SelectionDAG::DAGUpdateListener
{
719 explicit WorklistRemover(DAGCombiner
&dc
)
720 : SelectionDAG::DAGUpdateListener(dc
.getDAG()), DC(dc
) {}
722 void NodeDeleted(SDNode
*N
, SDNode
*E
) override
{
723 DC
.removeFromWorklist(N
);
727 class WorklistInserter
: public SelectionDAG::DAGUpdateListener
{
731 explicit WorklistInserter(DAGCombiner
&dc
)
732 : SelectionDAG::DAGUpdateListener(dc
.getDAG()), DC(dc
) {}
734 // FIXME: Ideally we could add N to the worklist, but this causes exponential
735 // compile time costs in large DAGs, e.g. Halide.
736 void NodeInserted(SDNode
*N
) override
{ DC
.ConsiderForPruning(N
); }
739 } // end anonymous namespace
741 //===----------------------------------------------------------------------===//
742 // TargetLowering::DAGCombinerInfo implementation
743 //===----------------------------------------------------------------------===//
745 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode
*N
) {
746 ((DAGCombiner
*)DC
)->AddToWorklist(N
);
749 SDValue
TargetLowering::DAGCombinerInfo::
750 CombineTo(SDNode
*N
, ArrayRef
<SDValue
> To
, bool AddTo
) {
751 return ((DAGCombiner
*)DC
)->CombineTo(N
, &To
[0], To
.size(), AddTo
);
754 SDValue
TargetLowering::DAGCombinerInfo::
755 CombineTo(SDNode
*N
, SDValue Res
, bool AddTo
) {
756 return ((DAGCombiner
*)DC
)->CombineTo(N
, Res
, AddTo
);
759 SDValue
TargetLowering::DAGCombinerInfo::
760 CombineTo(SDNode
*N
, SDValue Res0
, SDValue Res1
, bool AddTo
) {
761 return ((DAGCombiner
*)DC
)->CombineTo(N
, Res0
, Res1
, AddTo
);
764 void TargetLowering::DAGCombinerInfo::
765 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&TLO
) {
766 return ((DAGCombiner
*)DC
)->CommitTargetLoweringOpt(TLO
);
769 //===----------------------------------------------------------------------===//
771 //===----------------------------------------------------------------------===//
773 void DAGCombiner::deleteAndRecombine(SDNode
*N
) {
774 removeFromWorklist(N
);
776 // If the operands of this node are only used by the node, they will now be
777 // dead. Make sure to re-visit them and recursively delete dead nodes.
778 for (const SDValue
&Op
: N
->ops())
779 // For an operand generating multiple values, one of the values may
780 // become dead allowing further simplification (e.g. split index
781 // arithmetic from an indexed load).
782 if (Op
->hasOneUse() || Op
->getNumValues() > 1)
783 AddToWorklist(Op
.getNode());
788 /// Return 1 if we can compute the negated form of the specified expression for
789 /// the same cost as the expression itself, or 2 if we can compute the negated
790 /// form more cheaply than the expression itself.
791 static char isNegatibleForFree(SDValue Op
, bool LegalOperations
,
792 const TargetLowering
&TLI
,
793 const TargetOptions
*Options
,
795 unsigned Depth
= 0) {
796 // fneg is removable even if it has multiple uses.
797 if (Op
.getOpcode() == ISD::FNEG
)
800 // Don't allow anything with multiple uses unless we know it is free.
801 EVT VT
= Op
.getValueType();
802 const SDNodeFlags Flags
= Op
->getFlags();
803 if (!Op
.hasOneUse() &&
804 !(Op
.getOpcode() == ISD::FP_EXTEND
&&
805 TLI
.isFPExtFree(VT
, Op
.getOperand(0).getValueType())))
808 // Don't recurse exponentially.
812 switch (Op
.getOpcode()) {
813 default: return false;
814 case ISD::ConstantFP
: {
815 if (!LegalOperations
)
818 // Don't invert constant FP values after legalization unless the target says
819 // the negated constant is legal.
820 return TLI
.isOperationLegal(ISD::ConstantFP
, VT
) ||
821 TLI
.isFPImmLegal(neg(cast
<ConstantFPSDNode
>(Op
)->getValueAPF()), VT
,
824 case ISD::BUILD_VECTOR
: {
825 // Only permit BUILD_VECTOR of constants.
826 if (llvm::any_of(Op
->op_values(), [&](SDValue N
) {
827 return !N
.isUndef() && !isa
<ConstantFPSDNode
>(N
);
830 if (!LegalOperations
)
832 if (TLI
.isOperationLegal(ISD::ConstantFP
, VT
) &&
833 TLI
.isOperationLegal(ISD::BUILD_VECTOR
, VT
))
835 return llvm::all_of(Op
->op_values(), [&](SDValue N
) {
836 return N
.isUndef() ||
837 TLI
.isFPImmLegal(neg(cast
<ConstantFPSDNode
>(N
)->getValueAPF()), VT
,
842 if (!Options
->NoSignedZerosFPMath
&& !Flags
.hasNoSignedZeros())
845 // After operation legalization, it might not be legal to create new FSUBs.
846 if (LegalOperations
&& !TLI
.isOperationLegalOrCustom(ISD::FSUB
, VT
))
849 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
850 if (char V
= isNegatibleForFree(Op
.getOperand(0), LegalOperations
, TLI
,
851 Options
, ForCodeSize
, Depth
+ 1))
853 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
854 return isNegatibleForFree(Op
.getOperand(1), LegalOperations
, TLI
, Options
,
855 ForCodeSize
, Depth
+ 1);
857 // We can't turn -(A-B) into B-A when we honor signed zeros.
858 if (!Options
->NoSignedZerosFPMath
&& !Flags
.hasNoSignedZeros())
861 // fold (fneg (fsub A, B)) -> (fsub B, A)
866 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
867 if (char V
= isNegatibleForFree(Op
.getOperand(0), LegalOperations
, TLI
,
868 Options
, ForCodeSize
, Depth
+ 1))
871 // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
872 if (auto *C
= isConstOrConstSplatFP(Op
.getOperand(1)))
873 if (C
->isExactlyValue(2.0) && Op
.getOpcode() == ISD::FMUL
)
876 return isNegatibleForFree(Op
.getOperand(1), LegalOperations
, TLI
, Options
,
877 ForCodeSize
, Depth
+ 1);
882 return isNegatibleForFree(Op
.getOperand(0), LegalOperations
, TLI
, Options
,
883 ForCodeSize
, Depth
+ 1);
887 /// If isNegatibleForFree returns true, return the newly negated expression.
888 static SDValue
GetNegatedExpression(SDValue Op
, SelectionDAG
&DAG
,
889 bool LegalOperations
, bool ForCodeSize
,
890 unsigned Depth
= 0) {
891 // fneg is removable even if it has multiple uses.
892 if (Op
.getOpcode() == ISD::FNEG
)
893 return Op
.getOperand(0);
895 assert(Depth
<= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
896 const TargetOptions
&Options
= DAG
.getTarget().Options
;
897 const SDNodeFlags Flags
= Op
->getFlags();
899 switch (Op
.getOpcode()) {
900 default: llvm_unreachable("Unknown code");
901 case ISD::ConstantFP
: {
902 APFloat V
= cast
<ConstantFPSDNode
>(Op
)->getValueAPF();
904 return DAG
.getConstantFP(V
, SDLoc(Op
), Op
.getValueType());
906 case ISD::BUILD_VECTOR
: {
907 SmallVector
<SDValue
, 4> Ops
;
908 for (SDValue C
: Op
->op_values()) {
913 APFloat V
= cast
<ConstantFPSDNode
>(C
)->getValueAPF();
915 Ops
.push_back(DAG
.getConstantFP(V
, SDLoc(Op
), C
.getValueType()));
917 return DAG
.getBuildVector(Op
.getValueType(), SDLoc(Op
), Ops
);
920 assert(Options
.NoSignedZerosFPMath
|| Flags
.hasNoSignedZeros());
922 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
923 if (isNegatibleForFree(Op
.getOperand(0), LegalOperations
,
924 DAG
.getTargetLoweringInfo(), &Options
, ForCodeSize
,
926 return DAG
.getNode(ISD::FSUB
, SDLoc(Op
), Op
.getValueType(),
927 GetNegatedExpression(Op
.getOperand(0), DAG
,
928 LegalOperations
, ForCodeSize
,
930 Op
.getOperand(1), Flags
);
931 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
932 return DAG
.getNode(ISD::FSUB
, SDLoc(Op
), Op
.getValueType(),
933 GetNegatedExpression(Op
.getOperand(1), DAG
,
934 LegalOperations
, ForCodeSize
,
936 Op
.getOperand(0), Flags
);
938 // fold (fneg (fsub 0, B)) -> B
939 if (ConstantFPSDNode
*N0CFP
=
940 isConstOrConstSplatFP(Op
.getOperand(0), /*AllowUndefs*/ true))
942 return Op
.getOperand(1);
944 // fold (fneg (fsub A, B)) -> (fsub B, A)
945 return DAG
.getNode(ISD::FSUB
, SDLoc(Op
), Op
.getValueType(),
946 Op
.getOperand(1), Op
.getOperand(0), Flags
);
950 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
951 if (isNegatibleForFree(Op
.getOperand(0), LegalOperations
,
952 DAG
.getTargetLoweringInfo(), &Options
, ForCodeSize
,
954 return DAG
.getNode(Op
.getOpcode(), SDLoc(Op
), Op
.getValueType(),
955 GetNegatedExpression(Op
.getOperand(0), DAG
,
956 LegalOperations
, ForCodeSize
,
958 Op
.getOperand(1), Flags
);
960 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
961 return DAG
.getNode(Op
.getOpcode(), SDLoc(Op
), Op
.getValueType(),
963 GetNegatedExpression(Op
.getOperand(1), DAG
,
964 LegalOperations
, ForCodeSize
,
969 return DAG
.getNode(Op
.getOpcode(), SDLoc(Op
), Op
.getValueType(),
970 GetNegatedExpression(Op
.getOperand(0), DAG
,
971 LegalOperations
, ForCodeSize
,
974 return DAG
.getNode(ISD::FP_ROUND
, SDLoc(Op
), Op
.getValueType(),
975 GetNegatedExpression(Op
.getOperand(0), DAG
,
976 LegalOperations
, ForCodeSize
,
982 // APInts must be the same size for most operations, this helper
983 // function zero extends the shorter of the pair so that they match.
984 // We provide an Offset so that we can create bitwidths that won't overflow.
985 static void zeroExtendToMatch(APInt
&LHS
, APInt
&RHS
, unsigned Offset
= 0) {
986 unsigned Bits
= Offset
+ std::max(LHS
.getBitWidth(), RHS
.getBitWidth());
987 LHS
= LHS
.zextOrSelf(Bits
);
988 RHS
= RHS
.zextOrSelf(Bits
);
991 // Return true if this node is a setcc, or is a select_cc
992 // that selects between the target values used for true and false, making it
993 // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to
994 // the appropriate nodes based on the type of node we are checking. This
995 // simplifies life a bit for the callers.
996 bool DAGCombiner::isSetCCEquivalent(SDValue N
, SDValue
&LHS
, SDValue
&RHS
,
998 if (N
.getOpcode() == ISD::SETCC
) {
999 LHS
= N
.getOperand(0);
1000 RHS
= N
.getOperand(1);
1001 CC
= N
.getOperand(2);
1005 if (N
.getOpcode() != ISD::SELECT_CC
||
1006 !TLI
.isConstTrueVal(N
.getOperand(2).getNode()) ||
1007 !TLI
.isConstFalseVal(N
.getOperand(3).getNode()))
1010 if (TLI
.getBooleanContents(N
.getValueType()) ==
1011 TargetLowering::UndefinedBooleanContent
)
1014 LHS
= N
.getOperand(0);
1015 RHS
= N
.getOperand(1);
1016 CC
= N
.getOperand(4);
1020 /// Return true if this is a SetCC-equivalent operation with only one use.
1021 /// If this is true, it allows the users to invert the operation for free when
1022 /// it is profitable to do so.
1023 bool DAGCombiner::isOneUseSetCC(SDValue N
) const {
1025 if (isSetCCEquivalent(N
, N0
, N1
, N2
) && N
.getNode()->hasOneUse())
1030 // Returns the SDNode if it is a constant float BuildVector
1031 // or constant float.
1032 static SDNode
*isConstantFPBuildVectorOrConstantFP(SDValue N
) {
1033 if (isa
<ConstantFPSDNode
>(N
))
1035 if (ISD::isBuildVectorOfConstantFPSDNodes(N
.getNode()))
1040 // Determines if it is a constant integer or a build vector of constant
1041 // integers (and undefs).
1042 // Do not permit build vector implicit truncation.
1043 static bool isConstantOrConstantVector(SDValue N
, bool NoOpaques
= false) {
1044 if (ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(N
))
1045 return !(Const
->isOpaque() && NoOpaques
);
1046 if (N
.getOpcode() != ISD::BUILD_VECTOR
)
1048 unsigned BitWidth
= N
.getScalarValueSizeInBits();
1049 for (const SDValue
&Op
: N
->op_values()) {
1052 ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(Op
);
1053 if (!Const
|| Const
->getAPIntValue().getBitWidth() != BitWidth
||
1054 (Const
->isOpaque() && NoOpaques
))
1060 // Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with
1062 static bool isAnyConstantBuildVector(SDValue V
, bool NoOpaques
= false) {
1063 if (V
.getOpcode() != ISD::BUILD_VECTOR
)
1065 return isConstantOrConstantVector(V
, NoOpaques
) ||
1066 ISD::isBuildVectorOfConstantFPSDNodes(V
.getNode());
1069 bool DAGCombiner::reassociationCanBreakAddressingModePattern(unsigned Opc
,
1073 // Currently this only tries to ensure we don't undo the GEP splits done by
1074 // CodeGenPrepare when shouldConsiderGEPOffsetSplit is true. To ensure this,
1075 // we check if the following transformation would be problematic:
1076 // (load/store (add, (add, x, offset1), offset2)) ->
1077 // (load/store (add, x, offset1+offset2)).
1079 if (Opc
!= ISD::ADD
|| N0
.getOpcode() != ISD::ADD
)
1085 auto *C1
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
1086 auto *C2
= dyn_cast
<ConstantSDNode
>(N1
);
1090 const APInt
&C1APIntVal
= C1
->getAPIntValue();
1091 const APInt
&C2APIntVal
= C2
->getAPIntValue();
1092 if (C1APIntVal
.getBitWidth() > 64 || C2APIntVal
.getBitWidth() > 64)
1095 const APInt CombinedValueIntVal
= C1APIntVal
+ C2APIntVal
;
1096 if (CombinedValueIntVal
.getBitWidth() > 64)
1098 const int64_t CombinedValue
= CombinedValueIntVal
.getSExtValue();
1100 for (SDNode
*Node
: N0
->uses()) {
1101 auto LoadStore
= dyn_cast
<MemSDNode
>(Node
);
1103 // Is x[offset2] already not a legal addressing mode? If so then
1104 // reassociating the constants breaks nothing (we test offset2 because
1105 // that's the one we hope to fold into the load or store).
1106 TargetLoweringBase::AddrMode AM
;
1107 AM
.HasBaseReg
= true;
1108 AM
.BaseOffs
= C2APIntVal
.getSExtValue();
1109 EVT VT
= LoadStore
->getMemoryVT();
1110 unsigned AS
= LoadStore
->getAddressSpace();
1111 Type
*AccessTy
= VT
.getTypeForEVT(*DAG
.getContext());
1112 if (!TLI
.isLegalAddressingMode(DAG
.getDataLayout(), AM
, AccessTy
, AS
))
1115 // Would x[offset1+offset2] still be a legal addressing mode?
1116 AM
.BaseOffs
= CombinedValue
;
1117 if (!TLI
.isLegalAddressingMode(DAG
.getDataLayout(), AM
, AccessTy
, AS
))
1125 // Helper for DAGCombiner::reassociateOps. Try to reassociate an expression
1126 // such as (Opc N0, N1), if \p N0 is the same kind of operation as \p Opc.
1127 SDValue
DAGCombiner::reassociateOpsCommutative(unsigned Opc
, const SDLoc
&DL
,
1128 SDValue N0
, SDValue N1
) {
1129 EVT VT
= N0
.getValueType();
1131 if (N0
.getOpcode() != Opc
)
1134 // Don't reassociate reductions.
1135 if (N0
->getFlags().hasVectorReduction())
1138 if (SDNode
*C1
= DAG
.isConstantIntBuildVectorOrConstantInt(N0
.getOperand(1))) {
1139 if (SDNode
*C2
= DAG
.isConstantIntBuildVectorOrConstantInt(N1
)) {
1140 // Reassociate: (op (op x, c1), c2) -> (op x, (op c1, c2))
1141 if (SDValue OpNode
= DAG
.FoldConstantArithmetic(Opc
, DL
, VT
, C1
, C2
))
1142 return DAG
.getNode(Opc
, DL
, VT
, N0
.getOperand(0), OpNode
);
1145 if (N0
.hasOneUse()) {
1146 // Reassociate: (op (op x, c1), y) -> (op (op x, y), c1)
1147 // iff (op x, c1) has one use
1148 SDValue OpNode
= DAG
.getNode(Opc
, SDLoc(N0
), VT
, N0
.getOperand(0), N1
);
1149 if (!OpNode
.getNode())
1151 AddToWorklist(OpNode
.getNode());
1152 return DAG
.getNode(Opc
, DL
, VT
, OpNode
, N0
.getOperand(1));
1158 // Try to reassociate commutative binops.
1159 SDValue
DAGCombiner::reassociateOps(unsigned Opc
, const SDLoc
&DL
, SDValue N0
,
1160 SDValue N1
, SDNodeFlags Flags
) {
1161 assert(TLI
.isCommutativeBinOp(Opc
) && "Operation not commutative.");
1162 // Don't reassociate reductions.
1163 if (Flags
.hasVectorReduction())
1166 // Floating-point reassociation is not allowed without loose FP math.
1167 if (N0
.getValueType().isFloatingPoint() ||
1168 N1
.getValueType().isFloatingPoint())
1169 if (!Flags
.hasAllowReassociation() || !Flags
.hasNoSignedZeros())
1172 if (SDValue Combined
= reassociateOpsCommutative(Opc
, DL
, N0
, N1
))
1174 if (SDValue Combined
= reassociateOpsCommutative(Opc
, DL
, N1
, N0
))
1179 SDValue
DAGCombiner::CombineTo(SDNode
*N
, const SDValue
*To
, unsigned NumTo
,
1181 assert(N
->getNumValues() == NumTo
&& "Broken CombineTo call!");
1183 LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N
->dump(&DAG
); dbgs() << "\nWith: ";
1184 To
[0].getNode()->dump(&DAG
);
1185 dbgs() << " and " << NumTo
- 1 << " other values\n");
1186 for (unsigned i
= 0, e
= NumTo
; i
!= e
; ++i
)
1187 assert((!To
[i
].getNode() ||
1188 N
->getValueType(i
) == To
[i
].getValueType()) &&
1189 "Cannot combine value to value of different type!");
1191 WorklistRemover
DeadNodes(*this);
1192 DAG
.ReplaceAllUsesWith(N
, To
);
1194 // Push the new nodes and any users onto the worklist
1195 for (unsigned i
= 0, e
= NumTo
; i
!= e
; ++i
) {
1196 if (To
[i
].getNode()) {
1197 AddToWorklist(To
[i
].getNode());
1198 AddUsersToWorklist(To
[i
].getNode());
1203 // Finally, if the node is now dead, remove it from the graph. The node
1204 // may not be dead if the replacement process recursively simplified to
1205 // something else needing this node.
1207 deleteAndRecombine(N
);
1208 return SDValue(N
, 0);
1212 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&TLO
) {
1213 // Replace all uses. If any nodes become isomorphic to other nodes and
1214 // are deleted, make sure to remove them from our worklist.
1215 WorklistRemover
DeadNodes(*this);
1216 DAG
.ReplaceAllUsesOfValueWith(TLO
.Old
, TLO
.New
);
1218 // Push the new node and any (possibly new) users onto the worklist.
1219 AddToWorklist(TLO
.New
.getNode());
1220 AddUsersToWorklist(TLO
.New
.getNode());
1222 // Finally, if the node is now dead, remove it from the graph. The node
1223 // may not be dead if the replacement process recursively simplified to
1224 // something else needing this node.
1225 if (TLO
.Old
.getNode()->use_empty())
1226 deleteAndRecombine(TLO
.Old
.getNode());
1229 /// Check the specified integer node value to see if it can be simplified or if
1230 /// things it uses can be simplified by bit propagation. If so, return true.
1231 bool DAGCombiner::SimplifyDemandedBits(SDValue Op
, const APInt
&DemandedBits
,
1232 const APInt
&DemandedElts
) {
1233 TargetLowering::TargetLoweringOpt
TLO(DAG
, LegalTypes
, LegalOperations
);
1235 if (!TLI
.SimplifyDemandedBits(Op
, DemandedBits
, DemandedElts
, Known
, TLO
))
1238 // Revisit the node.
1239 AddToWorklist(Op
.getNode());
1241 // Replace the old value with the new one.
1243 LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO
.Old
.getNode()->dump(&DAG
);
1244 dbgs() << "\nWith: "; TLO
.New
.getNode()->dump(&DAG
);
1247 CommitTargetLoweringOpt(TLO
);
1251 /// Check the specified vector node value to see if it can be simplified or
1252 /// if things it uses can be simplified as it only uses some of the elements.
1253 /// If so, return true.
1254 bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op
,
1255 const APInt
&DemandedElts
,
1256 bool AssumeSingleUse
) {
1257 TargetLowering::TargetLoweringOpt
TLO(DAG
, LegalTypes
, LegalOperations
);
1258 APInt KnownUndef
, KnownZero
;
1259 if (!TLI
.SimplifyDemandedVectorElts(Op
, DemandedElts
, KnownUndef
, KnownZero
,
1260 TLO
, 0, AssumeSingleUse
))
1263 // Revisit the node.
1264 AddToWorklist(Op
.getNode());
1266 // Replace the old value with the new one.
1268 LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO
.Old
.getNode()->dump(&DAG
);
1269 dbgs() << "\nWith: "; TLO
.New
.getNode()->dump(&DAG
);
1272 CommitTargetLoweringOpt(TLO
);
1276 void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode
*Load
, SDNode
*ExtLoad
) {
1278 EVT VT
= Load
->getValueType(0);
1279 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, SDValue(ExtLoad
, 0));
1281 LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load
->dump(&DAG
); dbgs() << "\nWith: ";
1282 Trunc
.getNode()->dump(&DAG
); dbgs() << '\n');
1283 WorklistRemover
DeadNodes(*this);
1284 DAG
.ReplaceAllUsesOfValueWith(SDValue(Load
, 0), Trunc
);
1285 DAG
.ReplaceAllUsesOfValueWith(SDValue(Load
, 1), SDValue(ExtLoad
, 1));
1286 deleteAndRecombine(Load
);
1287 AddToWorklist(Trunc
.getNode());
1290 SDValue
DAGCombiner::PromoteOperand(SDValue Op
, EVT PVT
, bool &Replace
) {
1293 if (ISD::isUNINDEXEDLoad(Op
.getNode())) {
1294 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
1295 EVT MemVT
= LD
->getMemoryVT();
1296 ISD::LoadExtType ExtType
= ISD::isNON_EXTLoad(LD
) ? ISD::EXTLOAD
1297 : LD
->getExtensionType();
1299 return DAG
.getExtLoad(ExtType
, DL
, PVT
,
1300 LD
->getChain(), LD
->getBasePtr(),
1301 MemVT
, LD
->getMemOperand());
1304 unsigned Opc
= Op
.getOpcode();
1307 case ISD::AssertSext
:
1308 if (SDValue Op0
= SExtPromoteOperand(Op
.getOperand(0), PVT
))
1309 return DAG
.getNode(ISD::AssertSext
, DL
, PVT
, Op0
, Op
.getOperand(1));
1311 case ISD::AssertZext
:
1312 if (SDValue Op0
= ZExtPromoteOperand(Op
.getOperand(0), PVT
))
1313 return DAG
.getNode(ISD::AssertZext
, DL
, PVT
, Op0
, Op
.getOperand(1));
1315 case ISD::Constant
: {
1317 Op
.getValueType().isByteSized() ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
1318 return DAG
.getNode(ExtOpc
, DL
, PVT
, Op
);
1322 if (!TLI
.isOperationLegal(ISD::ANY_EXTEND
, PVT
))
1324 return DAG
.getNode(ISD::ANY_EXTEND
, DL
, PVT
, Op
);
1327 SDValue
DAGCombiner::SExtPromoteOperand(SDValue Op
, EVT PVT
) {
1328 if (!TLI
.isOperationLegal(ISD::SIGN_EXTEND_INREG
, PVT
))
1330 EVT OldVT
= Op
.getValueType();
1332 bool Replace
= false;
1333 SDValue NewOp
= PromoteOperand(Op
, PVT
, Replace
);
1334 if (!NewOp
.getNode())
1336 AddToWorklist(NewOp
.getNode());
1339 ReplaceLoadWithPromotedLoad(Op
.getNode(), NewOp
.getNode());
1340 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, NewOp
.getValueType(), NewOp
,
1341 DAG
.getValueType(OldVT
));
1344 SDValue
DAGCombiner::ZExtPromoteOperand(SDValue Op
, EVT PVT
) {
1345 EVT OldVT
= Op
.getValueType();
1347 bool Replace
= false;
1348 SDValue NewOp
= PromoteOperand(Op
, PVT
, Replace
);
1349 if (!NewOp
.getNode())
1351 AddToWorklist(NewOp
.getNode());
1354 ReplaceLoadWithPromotedLoad(Op
.getNode(), NewOp
.getNode());
1355 return DAG
.getZeroExtendInReg(NewOp
, DL
, OldVT
);
1358 /// Promote the specified integer binary operation if the target indicates it is
1359 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to
1360 /// i32 since i16 instructions are longer.
1361 SDValue
DAGCombiner::PromoteIntBinOp(SDValue Op
) {
1362 if (!LegalOperations
)
1365 EVT VT
= Op
.getValueType();
1366 if (VT
.isVector() || !VT
.isInteger())
1369 // If operation type is 'undesirable', e.g. i16 on x86, consider
1371 unsigned Opc
= Op
.getOpcode();
1372 if (TLI
.isTypeDesirableForOp(Opc
, VT
))
1376 // Consult target whether it is a good idea to promote this operation and
1377 // what's the right type to promote it to.
1378 if (TLI
.IsDesirableToPromoteOp(Op
, PVT
)) {
1379 assert(PVT
!= VT
&& "Don't know what type to promote to!");
1381 LLVM_DEBUG(dbgs() << "\nPromoting "; Op
.getNode()->dump(&DAG
));
1383 bool Replace0
= false;
1384 SDValue N0
= Op
.getOperand(0);
1385 SDValue NN0
= PromoteOperand(N0
, PVT
, Replace0
);
1387 bool Replace1
= false;
1388 SDValue N1
= Op
.getOperand(1);
1389 SDValue NN1
= PromoteOperand(N1
, PVT
, Replace1
);
1393 DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, DAG
.getNode(Opc
, DL
, PVT
, NN0
, NN1
));
1395 // We are always replacing N0/N1's use in N and only need
1396 // additional replacements if there are additional uses.
1397 Replace0
&= !N0
->hasOneUse();
1398 Replace1
&= (N0
!= N1
) && !N1
->hasOneUse();
1400 // Combine Op here so it is preserved past replacements.
1401 CombineTo(Op
.getNode(), RV
);
1403 // If operands have a use ordering, make sure we deal with
1404 // predecessor first.
1405 if (Replace0
&& Replace1
&& N0
.getNode()->isPredecessorOf(N1
.getNode())) {
1407 std::swap(NN0
, NN1
);
1411 AddToWorklist(NN0
.getNode());
1412 ReplaceLoadWithPromotedLoad(N0
.getNode(), NN0
.getNode());
1415 AddToWorklist(NN1
.getNode());
1416 ReplaceLoadWithPromotedLoad(N1
.getNode(), NN1
.getNode());
1423 /// Promote the specified integer shift operation if the target indicates it is
1424 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to
1425 /// i32 since i16 instructions are longer.
1426 SDValue
DAGCombiner::PromoteIntShiftOp(SDValue Op
) {
1427 if (!LegalOperations
)
1430 EVT VT
= Op
.getValueType();
1431 if (VT
.isVector() || !VT
.isInteger())
1434 // If operation type is 'undesirable', e.g. i16 on x86, consider
1436 unsigned Opc
= Op
.getOpcode();
1437 if (TLI
.isTypeDesirableForOp(Opc
, VT
))
1441 // Consult target whether it is a good idea to promote this operation and
1442 // what's the right type to promote it to.
1443 if (TLI
.IsDesirableToPromoteOp(Op
, PVT
)) {
1444 assert(PVT
!= VT
&& "Don't know what type to promote to!");
1446 LLVM_DEBUG(dbgs() << "\nPromoting "; Op
.getNode()->dump(&DAG
));
1448 bool Replace
= false;
1449 SDValue N0
= Op
.getOperand(0);
1450 SDValue N1
= Op
.getOperand(1);
1451 if (Opc
== ISD::SRA
)
1452 N0
= SExtPromoteOperand(N0
, PVT
);
1453 else if (Opc
== ISD::SRL
)
1454 N0
= ZExtPromoteOperand(N0
, PVT
);
1456 N0
= PromoteOperand(N0
, PVT
, Replace
);
1463 DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, DAG
.getNode(Opc
, DL
, PVT
, N0
, N1
));
1465 AddToWorklist(N0
.getNode());
1467 ReplaceLoadWithPromotedLoad(Op
.getOperand(0).getNode(), N0
.getNode());
1469 // Deal with Op being deleted.
1470 if (Op
&& Op
.getOpcode() != ISD::DELETED_NODE
)
1476 SDValue
DAGCombiner::PromoteExtend(SDValue Op
) {
1477 if (!LegalOperations
)
1480 EVT VT
= Op
.getValueType();
1481 if (VT
.isVector() || !VT
.isInteger())
1484 // If operation type is 'undesirable', e.g. i16 on x86, consider
1486 unsigned Opc
= Op
.getOpcode();
1487 if (TLI
.isTypeDesirableForOp(Opc
, VT
))
1491 // Consult target whether it is a good idea to promote this operation and
1492 // what's the right type to promote it to.
1493 if (TLI
.IsDesirableToPromoteOp(Op
, PVT
)) {
1494 assert(PVT
!= VT
&& "Don't know what type to promote to!");
1495 // fold (aext (aext x)) -> (aext x)
1496 // fold (aext (zext x)) -> (zext x)
1497 // fold (aext (sext x)) -> (sext x)
1498 LLVM_DEBUG(dbgs() << "\nPromoting "; Op
.getNode()->dump(&DAG
));
1499 return DAG
.getNode(Op
.getOpcode(), SDLoc(Op
), VT
, Op
.getOperand(0));
1504 bool DAGCombiner::PromoteLoad(SDValue Op
) {
1505 if (!LegalOperations
)
1508 if (!ISD::isUNINDEXEDLoad(Op
.getNode()))
1511 EVT VT
= Op
.getValueType();
1512 if (VT
.isVector() || !VT
.isInteger())
1515 // If operation type is 'undesirable', e.g. i16 on x86, consider
1517 unsigned Opc
= Op
.getOpcode();
1518 if (TLI
.isTypeDesirableForOp(Opc
, VT
))
1522 // Consult target whether it is a good idea to promote this operation and
1523 // what's the right type to promote it to.
1524 if (TLI
.IsDesirableToPromoteOp(Op
, PVT
)) {
1525 assert(PVT
!= VT
&& "Don't know what type to promote to!");
1528 SDNode
*N
= Op
.getNode();
1529 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
1530 EVT MemVT
= LD
->getMemoryVT();
1531 ISD::LoadExtType ExtType
= ISD::isNON_EXTLoad(LD
) ? ISD::EXTLOAD
1532 : LD
->getExtensionType();
1533 SDValue NewLD
= DAG
.getExtLoad(ExtType
, DL
, PVT
,
1534 LD
->getChain(), LD
->getBasePtr(),
1535 MemVT
, LD
->getMemOperand());
1536 SDValue Result
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, NewLD
);
1538 LLVM_DEBUG(dbgs() << "\nPromoting "; N
->dump(&DAG
); dbgs() << "\nTo: ";
1539 Result
.getNode()->dump(&DAG
); dbgs() << '\n');
1540 WorklistRemover
DeadNodes(*this);
1541 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
);
1542 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), NewLD
.getValue(1));
1543 deleteAndRecombine(N
);
1544 AddToWorklist(Result
.getNode());
1550 /// Recursively delete a node which has no uses and any operands for
1551 /// which it is the only use.
1553 /// Note that this both deletes the nodes and removes them from the worklist.
1554 /// It also adds any nodes who have had a user deleted to the worklist as they
1555 /// may now have only one use and subject to other combines.
1556 bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode
*N
) {
1557 if (!N
->use_empty())
1560 SmallSetVector
<SDNode
*, 16> Nodes
;
1563 N
= Nodes
.pop_back_val();
1567 if (N
->use_empty()) {
1568 for (const SDValue
&ChildN
: N
->op_values())
1569 Nodes
.insert(ChildN
.getNode());
1571 removeFromWorklist(N
);
1576 } while (!Nodes
.empty());
1580 //===----------------------------------------------------------------------===//
1581 // Main DAG Combiner implementation
1582 //===----------------------------------------------------------------------===//
1584 void DAGCombiner::Run(CombineLevel AtLevel
) {
1585 // set the instance variables, so that the various visit routines may use it.
1587 LegalOperations
= Level
>= AfterLegalizeVectorOps
;
1588 LegalTypes
= Level
>= AfterLegalizeTypes
;
1590 WorklistInserter
AddNodes(*this);
1592 // Add all the dag nodes to the worklist.
1593 for (SDNode
&Node
: DAG
.allnodes())
1594 AddToWorklist(&Node
);
1596 // Create a dummy node (which is not added to allnodes), that adds a reference
1597 // to the root node, preventing it from being deleted, and tracking any
1598 // changes of the root.
1599 HandleSDNode
Dummy(DAG
.getRoot());
1601 // While we have a valid worklist entry node, try to combine it.
1602 while (SDNode
*N
= getNextWorklistEntry()) {
1603 // If N has no uses, it is dead. Make sure to revisit all N's operands once
1604 // N is deleted from the DAG, since they too may now be dead or may have a
1605 // reduced number of uses, allowing other xforms.
1606 if (recursivelyDeleteUnusedNodes(N
))
1609 WorklistRemover
DeadNodes(*this);
1611 // If this combine is running after legalizing the DAG, re-legalize any
1612 // nodes pulled off the worklist.
1613 if (Level
== AfterLegalizeDAG
) {
1614 SmallSetVector
<SDNode
*, 16> UpdatedNodes
;
1615 bool NIsValid
= DAG
.LegalizeOp(N
, UpdatedNodes
);
1617 for (SDNode
*LN
: UpdatedNodes
) {
1619 AddUsersToWorklist(LN
);
1625 LLVM_DEBUG(dbgs() << "\nCombining: "; N
->dump(&DAG
));
1627 // Add any operands of the new node which have not yet been combined to the
1628 // worklist as well. Because the worklist uniques things already, this
1629 // won't repeatedly process the same operand.
1630 CombinedNodes
.insert(N
);
1631 for (const SDValue
&ChildN
: N
->op_values())
1632 if (!CombinedNodes
.count(ChildN
.getNode()))
1633 AddToWorklist(ChildN
.getNode());
1635 SDValue RV
= combine(N
);
1642 // If we get back the same node we passed in, rather than a new node or
1643 // zero, we know that the node must have defined multiple values and
1644 // CombineTo was used. Since CombineTo takes care of the worklist
1645 // mechanics for us, we have no work to do in this case.
1646 if (RV
.getNode() == N
)
1649 assert(N
->getOpcode() != ISD::DELETED_NODE
&&
1650 RV
.getOpcode() != ISD::DELETED_NODE
&&
1651 "Node was deleted but visit returned new node!");
1653 LLVM_DEBUG(dbgs() << " ... into: "; RV
.getNode()->dump(&DAG
));
1655 if (N
->getNumValues() == RV
.getNode()->getNumValues())
1656 DAG
.ReplaceAllUsesWith(N
, RV
.getNode());
1658 assert(N
->getValueType(0) == RV
.getValueType() &&
1659 N
->getNumValues() == 1 && "Type mismatch");
1660 DAG
.ReplaceAllUsesWith(N
, &RV
);
1663 // Push the new node and any users onto the worklist
1664 AddToWorklist(RV
.getNode());
1665 AddUsersToWorklist(RV
.getNode());
1667 // Finally, if the node is now dead, remove it from the graph. The node
1668 // may not be dead if the replacement process recursively simplified to
1669 // something else needing this node. This will also take care of adding any
1670 // operands which have lost a user to the worklist.
1671 recursivelyDeleteUnusedNodes(N
);
1674 // If the root changed (e.g. it was a dead load, update the root).
1675 DAG
.setRoot(Dummy
.getValue());
1676 DAG
.RemoveDeadNodes();
1679 SDValue
DAGCombiner::visit(SDNode
*N
) {
1680 switch (N
->getOpcode()) {
1682 case ISD::TokenFactor
: return visitTokenFactor(N
);
1683 case ISD::MERGE_VALUES
: return visitMERGE_VALUES(N
);
1684 case ISD::ADD
: return visitADD(N
);
1685 case ISD::SUB
: return visitSUB(N
);
1687 case ISD::UADDSAT
: return visitADDSAT(N
);
1689 case ISD::USUBSAT
: return visitSUBSAT(N
);
1690 case ISD::ADDC
: return visitADDC(N
);
1692 case ISD::UADDO
: return visitADDO(N
);
1693 case ISD::SUBC
: return visitSUBC(N
);
1695 case ISD::USUBO
: return visitSUBO(N
);
1696 case ISD::ADDE
: return visitADDE(N
);
1697 case ISD::ADDCARRY
: return visitADDCARRY(N
);
1698 case ISD::SUBE
: return visitSUBE(N
);
1699 case ISD::SUBCARRY
: return visitSUBCARRY(N
);
1701 case ISD::SMULFIXSAT
:
1702 case ISD::UMULFIX
: return visitMULFIX(N
);
1703 case ISD::MUL
: return visitMUL(N
);
1704 case ISD::SDIV
: return visitSDIV(N
);
1705 case ISD::UDIV
: return visitUDIV(N
);
1707 case ISD::UREM
: return visitREM(N
);
1708 case ISD::MULHU
: return visitMULHU(N
);
1709 case ISD::MULHS
: return visitMULHS(N
);
1710 case ISD::SMUL_LOHI
: return visitSMUL_LOHI(N
);
1711 case ISD::UMUL_LOHI
: return visitUMUL_LOHI(N
);
1713 case ISD::UMULO
: return visitMULO(N
);
1717 case ISD::UMAX
: return visitIMINMAX(N
);
1718 case ISD::AND
: return visitAND(N
);
1719 case ISD::OR
: return visitOR(N
);
1720 case ISD::XOR
: return visitXOR(N
);
1721 case ISD::SHL
: return visitSHL(N
);
1722 case ISD::SRA
: return visitSRA(N
);
1723 case ISD::SRL
: return visitSRL(N
);
1725 case ISD::ROTL
: return visitRotate(N
);
1727 case ISD::FSHR
: return visitFunnelShift(N
);
1728 case ISD::ABS
: return visitABS(N
);
1729 case ISD::BSWAP
: return visitBSWAP(N
);
1730 case ISD::BITREVERSE
: return visitBITREVERSE(N
);
1731 case ISD::CTLZ
: return visitCTLZ(N
);
1732 case ISD::CTLZ_ZERO_UNDEF
: return visitCTLZ_ZERO_UNDEF(N
);
1733 case ISD::CTTZ
: return visitCTTZ(N
);
1734 case ISD::CTTZ_ZERO_UNDEF
: return visitCTTZ_ZERO_UNDEF(N
);
1735 case ISD::CTPOP
: return visitCTPOP(N
);
1736 case ISD::SELECT
: return visitSELECT(N
);
1737 case ISD::VSELECT
: return visitVSELECT(N
);
1738 case ISD::SELECT_CC
: return visitSELECT_CC(N
);
1739 case ISD::SETCC
: return visitSETCC(N
);
1740 case ISD::SETCCCARRY
: return visitSETCCCARRY(N
);
1741 case ISD::SIGN_EXTEND
: return visitSIGN_EXTEND(N
);
1742 case ISD::ZERO_EXTEND
: return visitZERO_EXTEND(N
);
1743 case ISD::ANY_EXTEND
: return visitANY_EXTEND(N
);
1744 case ISD::AssertSext
:
1745 case ISD::AssertZext
: return visitAssertExt(N
);
1746 case ISD::SIGN_EXTEND_INREG
: return visitSIGN_EXTEND_INREG(N
);
1747 case ISD::SIGN_EXTEND_VECTOR_INREG
: return visitSIGN_EXTEND_VECTOR_INREG(N
);
1748 case ISD::ZERO_EXTEND_VECTOR_INREG
: return visitZERO_EXTEND_VECTOR_INREG(N
);
1749 case ISD::TRUNCATE
: return visitTRUNCATE(N
);
1750 case ISD::BITCAST
: return visitBITCAST(N
);
1751 case ISD::BUILD_PAIR
: return visitBUILD_PAIR(N
);
1752 case ISD::FADD
: return visitFADD(N
);
1753 case ISD::FSUB
: return visitFSUB(N
);
1754 case ISD::FMUL
: return visitFMUL(N
);
1755 case ISD::FMA
: return visitFMA(N
);
1756 case ISD::FDIV
: return visitFDIV(N
);
1757 case ISD::FREM
: return visitFREM(N
);
1758 case ISD::FSQRT
: return visitFSQRT(N
);
1759 case ISD::FCOPYSIGN
: return visitFCOPYSIGN(N
);
1760 case ISD::FPOW
: return visitFPOW(N
);
1761 case ISD::SINT_TO_FP
: return visitSINT_TO_FP(N
);
1762 case ISD::UINT_TO_FP
: return visitUINT_TO_FP(N
);
1763 case ISD::FP_TO_SINT
: return visitFP_TO_SINT(N
);
1764 case ISD::FP_TO_UINT
: return visitFP_TO_UINT(N
);
1765 case ISD::FP_ROUND
: return visitFP_ROUND(N
);
1766 case ISD::FP_ROUND_INREG
: return visitFP_ROUND_INREG(N
);
1767 case ISD::FP_EXTEND
: return visitFP_EXTEND(N
);
1768 case ISD::FNEG
: return visitFNEG(N
);
1769 case ISD::FABS
: return visitFABS(N
);
1770 case ISD::FFLOOR
: return visitFFLOOR(N
);
1771 case ISD::FMINNUM
: return visitFMINNUM(N
);
1772 case ISD::FMAXNUM
: return visitFMAXNUM(N
);
1773 case ISD::FMINIMUM
: return visitFMINIMUM(N
);
1774 case ISD::FMAXIMUM
: return visitFMAXIMUM(N
);
1775 case ISD::FCEIL
: return visitFCEIL(N
);
1776 case ISD::FTRUNC
: return visitFTRUNC(N
);
1777 case ISD::BRCOND
: return visitBRCOND(N
);
1778 case ISD::BR_CC
: return visitBR_CC(N
);
1779 case ISD::LOAD
: return visitLOAD(N
);
1780 case ISD::STORE
: return visitSTORE(N
);
1781 case ISD::INSERT_VECTOR_ELT
: return visitINSERT_VECTOR_ELT(N
);
1782 case ISD::EXTRACT_VECTOR_ELT
: return visitEXTRACT_VECTOR_ELT(N
);
1783 case ISD::BUILD_VECTOR
: return visitBUILD_VECTOR(N
);
1784 case ISD::CONCAT_VECTORS
: return visitCONCAT_VECTORS(N
);
1785 case ISD::EXTRACT_SUBVECTOR
: return visitEXTRACT_SUBVECTOR(N
);
1786 case ISD::VECTOR_SHUFFLE
: return visitVECTOR_SHUFFLE(N
);
1787 case ISD::SCALAR_TO_VECTOR
: return visitSCALAR_TO_VECTOR(N
);
1788 case ISD::INSERT_SUBVECTOR
: return visitINSERT_SUBVECTOR(N
);
1789 case ISD::MGATHER
: return visitMGATHER(N
);
1790 case ISD::MLOAD
: return visitMLOAD(N
);
1791 case ISD::MSCATTER
: return visitMSCATTER(N
);
1792 case ISD::MSTORE
: return visitMSTORE(N
);
1793 case ISD::LIFETIME_END
: return visitLIFETIME_END(N
);
1794 case ISD::FP_TO_FP16
: return visitFP_TO_FP16(N
);
1795 case ISD::FP16_TO_FP
: return visitFP16_TO_FP(N
);
1796 case ISD::VECREDUCE_FADD
:
1797 case ISD::VECREDUCE_FMUL
:
1798 case ISD::VECREDUCE_ADD
:
1799 case ISD::VECREDUCE_MUL
:
1800 case ISD::VECREDUCE_AND
:
1801 case ISD::VECREDUCE_OR
:
1802 case ISD::VECREDUCE_XOR
:
1803 case ISD::VECREDUCE_SMAX
:
1804 case ISD::VECREDUCE_SMIN
:
1805 case ISD::VECREDUCE_UMAX
:
1806 case ISD::VECREDUCE_UMIN
:
1807 case ISD::VECREDUCE_FMAX
:
1808 case ISD::VECREDUCE_FMIN
: return visitVECREDUCE(N
);
1813 SDValue
DAGCombiner::combine(SDNode
*N
) {
1814 SDValue RV
= visit(N
);
1816 // If nothing happened, try a target-specific DAG combine.
1817 if (!RV
.getNode()) {
1818 assert(N
->getOpcode() != ISD::DELETED_NODE
&&
1819 "Node was deleted but visit returned NULL!");
1821 if (N
->getOpcode() >= ISD::BUILTIN_OP_END
||
1822 TLI
.hasTargetDAGCombine((ISD::NodeType
)N
->getOpcode())) {
1824 // Expose the DAG combiner to the target combiner impls.
1825 TargetLowering::DAGCombinerInfo
1826 DagCombineInfo(DAG
, Level
, false, this);
1828 RV
= TLI
.PerformDAGCombine(N
, DagCombineInfo
);
1832 // If nothing happened still, try promoting the operation.
1833 if (!RV
.getNode()) {
1834 switch (N
->getOpcode()) {
1842 RV
= PromoteIntBinOp(SDValue(N
, 0));
1847 RV
= PromoteIntShiftOp(SDValue(N
, 0));
1849 case ISD::SIGN_EXTEND
:
1850 case ISD::ZERO_EXTEND
:
1851 case ISD::ANY_EXTEND
:
1852 RV
= PromoteExtend(SDValue(N
, 0));
1855 if (PromoteLoad(SDValue(N
, 0)))
1861 // If N is a commutative binary node, try to eliminate it if the commuted
1862 // version is already present in the DAG.
1863 if (!RV
.getNode() && TLI
.isCommutativeBinOp(N
->getOpcode()) &&
1864 N
->getNumValues() == 1) {
1865 SDValue N0
= N
->getOperand(0);
1866 SDValue N1
= N
->getOperand(1);
1868 // Constant operands are canonicalized to RHS.
1869 if (N0
!= N1
&& (isa
<ConstantSDNode
>(N0
) || !isa
<ConstantSDNode
>(N1
))) {
1870 SDValue Ops
[] = {N1
, N0
};
1871 SDNode
*CSENode
= DAG
.getNodeIfExists(N
->getOpcode(), N
->getVTList(), Ops
,
1874 return SDValue(CSENode
, 0);
1881 /// Given a node, return its input chain if it has one, otherwise return a null
1883 static SDValue
getInputChainForNode(SDNode
*N
) {
1884 if (unsigned NumOps
= N
->getNumOperands()) {
1885 if (N
->getOperand(0).getValueType() == MVT::Other
)
1886 return N
->getOperand(0);
1887 if (N
->getOperand(NumOps
-1).getValueType() == MVT::Other
)
1888 return N
->getOperand(NumOps
-1);
1889 for (unsigned i
= 1; i
< NumOps
-1; ++i
)
1890 if (N
->getOperand(i
).getValueType() == MVT::Other
)
1891 return N
->getOperand(i
);
1896 SDValue
DAGCombiner::visitTokenFactor(SDNode
*N
) {
1897 // If N has two operands, where one has an input chain equal to the other,
1898 // the 'other' chain is redundant.
1899 if (N
->getNumOperands() == 2) {
1900 if (getInputChainForNode(N
->getOperand(0).getNode()) == N
->getOperand(1))
1901 return N
->getOperand(0);
1902 if (getInputChainForNode(N
->getOperand(1).getNode()) == N
->getOperand(0))
1903 return N
->getOperand(1);
1906 // Don't simplify token factors if optnone.
1907 if (OptLevel
== CodeGenOpt::None
)
1910 // If the sole user is a token factor, we should make sure we have a
1911 // chance to merge them together. This prevents TF chains from inhibiting
1913 if (N
->hasOneUse() && N
->use_begin()->getOpcode() == ISD::TokenFactor
)
1914 AddToWorklist(*(N
->use_begin()));
1916 SmallVector
<SDNode
*, 8> TFs
; // List of token factors to visit.
1917 SmallVector
<SDValue
, 8> Ops
; // Ops for replacing token factor.
1918 SmallPtrSet
<SDNode
*, 16> SeenOps
;
1919 bool Changed
= false; // If we should replace this token factor.
1921 // Start out with this token factor.
1924 // Iterate through token factors. The TFs grows when new token factors are
1926 for (unsigned i
= 0; i
< TFs
.size(); ++i
) {
1927 // Limit number of nodes to inline, to avoid quadratic compile times.
1928 // We have to add the outstanding Token Factors to Ops, otherwise we might
1929 // drop Ops from the resulting Token Factors.
1930 if (Ops
.size() > TokenFactorInlineLimit
) {
1931 for (unsigned j
= i
; j
< TFs
.size(); j
++)
1932 Ops
.emplace_back(TFs
[j
], 0);
1933 // Drop unprocessed Token Factors from TFs, so we do not add them to the
1934 // combiner worklist later.
1939 SDNode
*TF
= TFs
[i
];
1940 // Check each of the operands.
1941 for (const SDValue
&Op
: TF
->op_values()) {
1942 switch (Op
.getOpcode()) {
1943 case ISD::EntryToken
:
1944 // Entry tokens don't need to be added to the list. They are
1949 case ISD::TokenFactor
:
1950 if (Op
.hasOneUse() && !is_contained(TFs
, Op
.getNode())) {
1951 // Queue up for processing.
1952 TFs
.push_back(Op
.getNode());
1959 // Only add if it isn't already in the list.
1960 if (SeenOps
.insert(Op
.getNode()).second
)
1969 // Re-visit inlined Token Factors, to clean them up in case they have been
1970 // removed. Skip the first Token Factor, as this is the current node.
1971 for (unsigned i
= 1, e
= TFs
.size(); i
< e
; i
++)
1972 AddToWorklist(TFs
[i
]);
1974 // Remove Nodes that are chained to another node in the list. Do so
1975 // by walking up chains breath-first stopping when we've seen
1976 // another operand. In general we must climb to the EntryNode, but we can exit
1977 // early if we find all remaining work is associated with just one operand as
1978 // no further pruning is possible.
1980 // List of nodes to search through and original Ops from which they originate.
1981 SmallVector
<std::pair
<SDNode
*, unsigned>, 8> Worklist
;
1982 SmallVector
<unsigned, 8> OpWorkCount
; // Count of work for each Op.
1983 SmallPtrSet
<SDNode
*, 16> SeenChains
;
1984 bool DidPruneOps
= false;
1986 unsigned NumLeftToConsider
= 0;
1987 for (const SDValue
&Op
: Ops
) {
1988 Worklist
.push_back(std::make_pair(Op
.getNode(), NumLeftToConsider
++));
1989 OpWorkCount
.push_back(1);
1992 auto AddToWorklist
= [&](unsigned CurIdx
, SDNode
*Op
, unsigned OpNumber
) {
1993 // If this is an Op, we can remove the op from the list. Remark any
1994 // search associated with it as from the current OpNumber.
1995 if (SeenOps
.count(Op
) != 0) {
1998 unsigned OrigOpNumber
= 0;
1999 while (OrigOpNumber
< Ops
.size() && Ops
[OrigOpNumber
].getNode() != Op
)
2001 assert((OrigOpNumber
!= Ops
.size()) &&
2002 "expected to find TokenFactor Operand");
2003 // Re-mark worklist from OrigOpNumber to OpNumber
2004 for (unsigned i
= CurIdx
+ 1; i
< Worklist
.size(); ++i
) {
2005 if (Worklist
[i
].second
== OrigOpNumber
) {
2006 Worklist
[i
].second
= OpNumber
;
2009 OpWorkCount
[OpNumber
] += OpWorkCount
[OrigOpNumber
];
2010 OpWorkCount
[OrigOpNumber
] = 0;
2011 NumLeftToConsider
--;
2013 // Add if it's a new chain
2014 if (SeenChains
.insert(Op
).second
) {
2015 OpWorkCount
[OpNumber
]++;
2016 Worklist
.push_back(std::make_pair(Op
, OpNumber
));
2020 for (unsigned i
= 0; i
< Worklist
.size() && i
< 1024; ++i
) {
2021 // We need at least be consider at least 2 Ops to prune.
2022 if (NumLeftToConsider
<= 1)
2024 auto CurNode
= Worklist
[i
].first
;
2025 auto CurOpNumber
= Worklist
[i
].second
;
2026 assert((OpWorkCount
[CurOpNumber
] > 0) &&
2027 "Node should not appear in worklist");
2028 switch (CurNode
->getOpcode()) {
2029 case ISD::EntryToken
:
2030 // Hitting EntryToken is the only way for the search to terminate without
2032 // another operand's search. Prevent us from marking this operand
2034 NumLeftToConsider
++;
2036 case ISD::TokenFactor
:
2037 for (const SDValue
&Op
: CurNode
->op_values())
2038 AddToWorklist(i
, Op
.getNode(), CurOpNumber
);
2040 case ISD::LIFETIME_START
:
2041 case ISD::LIFETIME_END
:
2042 case ISD::CopyFromReg
:
2043 case ISD::CopyToReg
:
2044 AddToWorklist(i
, CurNode
->getOperand(0).getNode(), CurOpNumber
);
2047 if (auto *MemNode
= dyn_cast
<MemSDNode
>(CurNode
))
2048 AddToWorklist(i
, MemNode
->getChain().getNode(), CurOpNumber
);
2051 OpWorkCount
[CurOpNumber
]--;
2052 if (OpWorkCount
[CurOpNumber
] == 0)
2053 NumLeftToConsider
--;
2056 // If we've changed things around then replace token factor.
2060 // The entry token is the only possible outcome.
2061 Result
= DAG
.getEntryNode();
2064 SmallVector
<SDValue
, 8> PrunedOps
;
2066 for (const SDValue
&Op
: Ops
) {
2067 if (SeenChains
.count(Op
.getNode()) == 0)
2068 PrunedOps
.push_back(Op
);
2070 Result
= DAG
.getTokenFactor(SDLoc(N
), PrunedOps
);
2072 Result
= DAG
.getTokenFactor(SDLoc(N
), Ops
);
2080 /// MERGE_VALUES can always be eliminated.
2081 SDValue
DAGCombiner::visitMERGE_VALUES(SDNode
*N
) {
2082 WorklistRemover
DeadNodes(*this);
2083 // Replacing results may cause a different MERGE_VALUES to suddenly
2084 // be CSE'd with N, and carry its uses with it. Iterate until no
2085 // uses remain, to ensure that the node can be safely deleted.
2086 // First add the users of this node to the work list so that they
2087 // can be tried again once they have new operands.
2088 AddUsersToWorklist(N
);
2090 // Do as a single replacement to avoid rewalking use lists.
2091 SmallVector
<SDValue
, 8> Ops
;
2092 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
2093 Ops
.push_back(N
->getOperand(i
));
2094 DAG
.ReplaceAllUsesWith(N
, Ops
.data());
2095 } while (!N
->use_empty());
2096 deleteAndRecombine(N
);
2097 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
2100 /// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a
2101 /// ConstantSDNode pointer else nullptr.
2102 static ConstantSDNode
*getAsNonOpaqueConstant(SDValue N
) {
2103 ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(N
);
2104 return Const
!= nullptr && !Const
->isOpaque() ? Const
: nullptr;
2107 SDValue
DAGCombiner::foldBinOpIntoSelect(SDNode
*BO
) {
2108 assert(TLI
.isBinOp(BO
->getOpcode()) && BO
->getNumValues() == 1 &&
2109 "Unexpected binary operator");
2111 // Don't do this unless the old select is going away. We want to eliminate the
2112 // binary operator, not replace a binop with a select.
2113 // TODO: Handle ISD::SELECT_CC.
2114 unsigned SelOpNo
= 0;
2115 SDValue Sel
= BO
->getOperand(0);
2116 if (Sel
.getOpcode() != ISD::SELECT
|| !Sel
.hasOneUse()) {
2118 Sel
= BO
->getOperand(1);
2121 if (Sel
.getOpcode() != ISD::SELECT
|| !Sel
.hasOneUse())
2124 SDValue CT
= Sel
.getOperand(1);
2125 if (!isConstantOrConstantVector(CT
, true) &&
2126 !isConstantFPBuildVectorOrConstantFP(CT
))
2129 SDValue CF
= Sel
.getOperand(2);
2130 if (!isConstantOrConstantVector(CF
, true) &&
2131 !isConstantFPBuildVectorOrConstantFP(CF
))
2134 // Bail out if any constants are opaque because we can't constant fold those.
2135 // The exception is "and" and "or" with either 0 or -1 in which case we can
2136 // propagate non constant operands into select. I.e.:
2137 // and (select Cond, 0, -1), X --> select Cond, 0, X
2138 // or X, (select Cond, -1, 0) --> select Cond, -1, X
2139 auto BinOpcode
= BO
->getOpcode();
2140 bool CanFoldNonConst
=
2141 (BinOpcode
== ISD::AND
|| BinOpcode
== ISD::OR
) &&
2142 (isNullOrNullSplat(CT
) || isAllOnesOrAllOnesSplat(CT
)) &&
2143 (isNullOrNullSplat(CF
) || isAllOnesOrAllOnesSplat(CF
));
2145 SDValue CBO
= BO
->getOperand(SelOpNo
^ 1);
2146 if (!CanFoldNonConst
&&
2147 !isConstantOrConstantVector(CBO
, true) &&
2148 !isConstantFPBuildVectorOrConstantFP(CBO
))
2151 EVT VT
= Sel
.getValueType();
2153 // In case of shift value and shift amount may have different VT. For instance
2154 // on x86 shift amount is i8 regardles of LHS type. Bail out if we have
2155 // swapped operands and value types do not match. NB: x86 is fine if operands
2156 // are not swapped with shift amount VT being not bigger than shifted value.
2157 // TODO: that is possible to check for a shift operation, correct VTs and
2158 // still perform optimization on x86 if needed.
2159 if (SelOpNo
&& VT
!= CBO
.getValueType())
2162 // We have a select-of-constants followed by a binary operator with a
2163 // constant. Eliminate the binop by pulling the constant math into the select.
2164 // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO
2166 SDValue NewCT
= SelOpNo
? DAG
.getNode(BinOpcode
, DL
, VT
, CBO
, CT
)
2167 : DAG
.getNode(BinOpcode
, DL
, VT
, CT
, CBO
);
2168 if (!CanFoldNonConst
&& !NewCT
.isUndef() &&
2169 !isConstantOrConstantVector(NewCT
, true) &&
2170 !isConstantFPBuildVectorOrConstantFP(NewCT
))
2173 SDValue NewCF
= SelOpNo
? DAG
.getNode(BinOpcode
, DL
, VT
, CBO
, CF
)
2174 : DAG
.getNode(BinOpcode
, DL
, VT
, CF
, CBO
);
2175 if (!CanFoldNonConst
&& !NewCF
.isUndef() &&
2176 !isConstantOrConstantVector(NewCF
, true) &&
2177 !isConstantFPBuildVectorOrConstantFP(NewCF
))
2180 SDValue SelectOp
= DAG
.getSelect(DL
, VT
, Sel
.getOperand(0), NewCT
, NewCF
);
2181 SelectOp
->setFlags(BO
->getFlags());
2185 static SDValue
foldAddSubBoolOfMaskedVal(SDNode
*N
, SelectionDAG
&DAG
) {
2186 assert((N
->getOpcode() == ISD::ADD
|| N
->getOpcode() == ISD::SUB
) &&
2187 "Expecting add or sub");
2189 // Match a constant operand and a zext operand for the math instruction:
2192 bool IsAdd
= N
->getOpcode() == ISD::ADD
;
2193 SDValue C
= IsAdd
? N
->getOperand(1) : N
->getOperand(0);
2194 SDValue Z
= IsAdd
? N
->getOperand(0) : N
->getOperand(1);
2195 auto *CN
= dyn_cast
<ConstantSDNode
>(C
);
2196 if (!CN
|| Z
.getOpcode() != ISD::ZERO_EXTEND
)
2199 // Match the zext operand as a setcc of a boolean.
2200 if (Z
.getOperand(0).getOpcode() != ISD::SETCC
||
2201 Z
.getOperand(0).getValueType() != MVT::i1
)
2204 // Match the compare as: setcc (X & 1), 0, eq.
2205 SDValue SetCC
= Z
.getOperand(0);
2206 ISD::CondCode CC
= cast
<CondCodeSDNode
>(SetCC
->getOperand(2))->get();
2207 if (CC
!= ISD::SETEQ
|| !isNullConstant(SetCC
.getOperand(1)) ||
2208 SetCC
.getOperand(0).getOpcode() != ISD::AND
||
2209 !isOneConstant(SetCC
.getOperand(0).getOperand(1)))
2212 // We are adding/subtracting a constant and an inverted low bit. Turn that
2213 // into a subtract/add of the low bit with incremented/decremented constant:
2214 // add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1))
2215 // sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1))
2216 EVT VT
= C
.getValueType();
2218 SDValue LowBit
= DAG
.getZExtOrTrunc(SetCC
.getOperand(0), DL
, VT
);
2219 SDValue C1
= IsAdd
? DAG
.getConstant(CN
->getAPIntValue() + 1, DL
, VT
) :
2220 DAG
.getConstant(CN
->getAPIntValue() - 1, DL
, VT
);
2221 return DAG
.getNode(IsAdd
? ISD::SUB
: ISD::ADD
, DL
, VT
, C1
, LowBit
);
2224 /// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into
2225 /// a shift and add with a different constant.
2226 static SDValue
foldAddSubOfSignBit(SDNode
*N
, SelectionDAG
&DAG
) {
2227 assert((N
->getOpcode() == ISD::ADD
|| N
->getOpcode() == ISD::SUB
) &&
2228 "Expecting add or sub");
2230 // We need a constant operand for the add/sub, and the other operand is a
2231 // logical shift right: add (srl), C or sub C, (srl).
2232 // TODO - support non-uniform vector amounts.
2233 bool IsAdd
= N
->getOpcode() == ISD::ADD
;
2234 SDValue ConstantOp
= IsAdd
? N
->getOperand(1) : N
->getOperand(0);
2235 SDValue ShiftOp
= IsAdd
? N
->getOperand(0) : N
->getOperand(1);
2236 ConstantSDNode
*C
= isConstOrConstSplat(ConstantOp
);
2237 if (!C
|| ShiftOp
.getOpcode() != ISD::SRL
)
2240 // The shift must be of a 'not' value.
2241 SDValue Not
= ShiftOp
.getOperand(0);
2242 if (!Not
.hasOneUse() || !isBitwiseNot(Not
))
2245 // The shift must be moving the sign bit to the least-significant-bit.
2246 EVT VT
= ShiftOp
.getValueType();
2247 SDValue ShAmt
= ShiftOp
.getOperand(1);
2248 ConstantSDNode
*ShAmtC
= isConstOrConstSplat(ShAmt
);
2249 if (!ShAmtC
|| ShAmtC
->getAPIntValue() != (VT
.getScalarSizeInBits() - 1))
2252 // Eliminate the 'not' by adjusting the shift and add/sub constant:
2253 // add (srl (not X), 31), C --> add (sra X, 31), (C + 1)
2254 // sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1)
2256 auto ShOpcode
= IsAdd
? ISD::SRA
: ISD::SRL
;
2257 SDValue NewShift
= DAG
.getNode(ShOpcode
, DL
, VT
, Not
.getOperand(0), ShAmt
);
2258 APInt NewC
= IsAdd
? C
->getAPIntValue() + 1 : C
->getAPIntValue() - 1;
2259 return DAG
.getNode(ISD::ADD
, DL
, VT
, NewShift
, DAG
.getConstant(NewC
, DL
, VT
));
2262 /// Try to fold a node that behaves like an ADD (note that N isn't necessarily
2263 /// an ISD::ADD here, it could for example be an ISD::OR if we know that there
2264 /// are no common bits set in the operands).
2265 SDValue
DAGCombiner::visitADDLike(SDNode
*N
) {
2266 SDValue N0
= N
->getOperand(0);
2267 SDValue N1
= N
->getOperand(1);
2268 EVT VT
= N0
.getValueType();
2272 if (VT
.isVector()) {
2273 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
2276 // fold (add x, 0) -> x, vector edition
2277 if (ISD::isBuildVectorAllZeros(N1
.getNode()))
2279 if (ISD::isBuildVectorAllZeros(N0
.getNode()))
2283 // fold (add x, undef) -> undef
2290 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
)) {
2291 // canonicalize constant to RHS
2292 if (!DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
2293 return DAG
.getNode(ISD::ADD
, DL
, VT
, N1
, N0
);
2294 // fold (add c1, c2) -> c1+c2
2295 return DAG
.FoldConstantArithmetic(ISD::ADD
, DL
, VT
, N0
.getNode(),
2299 // fold (add x, 0) -> x
2300 if (isNullConstant(N1
))
2303 if (isConstantOrConstantVector(N1
, /* NoOpaque */ true)) {
2304 // fold ((A-c1)+c2) -> (A+(c2-c1))
2305 if (N0
.getOpcode() == ISD::SUB
&&
2306 isConstantOrConstantVector(N0
.getOperand(1), /* NoOpaque */ true)) {
2307 SDValue Sub
= DAG
.FoldConstantArithmetic(ISD::SUB
, DL
, VT
, N1
.getNode(),
2308 N0
.getOperand(1).getNode());
2309 assert(Sub
&& "Constant folding failed");
2310 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0), Sub
);
2313 // fold ((c1-A)+c2) -> (c1+c2)-A
2314 if (N0
.getOpcode() == ISD::SUB
&&
2315 isConstantOrConstantVector(N0
.getOperand(0), /* NoOpaque */ true)) {
2316 SDValue Add
= DAG
.FoldConstantArithmetic(ISD::ADD
, DL
, VT
, N1
.getNode(),
2317 N0
.getOperand(0).getNode());
2318 assert(Add
&& "Constant folding failed");
2319 return DAG
.getNode(ISD::SUB
, DL
, VT
, Add
, N0
.getOperand(1));
2322 // add (sext i1 X), 1 -> zext (not i1 X)
2323 // We don't transform this pattern:
2324 // add (zext i1 X), -1 -> sext (not i1 X)
2325 // because most (?) targets generate better code for the zext form.
2326 if (N0
.getOpcode() == ISD::SIGN_EXTEND
&& N0
.hasOneUse() &&
2327 isOneOrOneSplat(N1
)) {
2328 SDValue X
= N0
.getOperand(0);
2329 if ((!LegalOperations
||
2330 (TLI
.isOperationLegal(ISD::XOR
, X
.getValueType()) &&
2331 TLI
.isOperationLegal(ISD::ZERO_EXTEND
, VT
))) &&
2332 X
.getScalarValueSizeInBits() == 1) {
2333 SDValue Not
= DAG
.getNOT(DL
, X
, X
.getValueType());
2334 return DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Not
);
2338 // Undo the add -> or combine to merge constant offsets from a frame index.
2339 if (N0
.getOpcode() == ISD::OR
&&
2340 isa
<FrameIndexSDNode
>(N0
.getOperand(0)) &&
2341 isa
<ConstantSDNode
>(N0
.getOperand(1)) &&
2342 DAG
.haveNoCommonBitsSet(N0
.getOperand(0), N0
.getOperand(1))) {
2343 SDValue Add0
= DAG
.getNode(ISD::ADD
, DL
, VT
, N1
, N0
.getOperand(1));
2344 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0), Add0
);
2348 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
2352 if (!reassociationCanBreakAddressingModePattern(ISD::ADD
, DL
, N0
, N1
)) {
2353 if (SDValue RADD
= reassociateOps(ISD::ADD
, DL
, N0
, N1
, N
->getFlags()))
2356 // fold ((0-A) + B) -> B-A
2357 if (N0
.getOpcode() == ISD::SUB
&& isNullOrNullSplat(N0
.getOperand(0)))
2358 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
, N0
.getOperand(1));
2360 // fold (A + (0-B)) -> A-B
2361 if (N1
.getOpcode() == ISD::SUB
&& isNullOrNullSplat(N1
.getOperand(0)))
2362 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, N1
.getOperand(1));
2364 // fold (A+(B-A)) -> B
2365 if (N1
.getOpcode() == ISD::SUB
&& N0
== N1
.getOperand(1))
2366 return N1
.getOperand(0);
2368 // fold ((B-A)+A) -> B
2369 if (N0
.getOpcode() == ISD::SUB
&& N1
== N0
.getOperand(1))
2370 return N0
.getOperand(0);
2372 // fold ((A-B)+(C-A)) -> (C-B)
2373 if (N0
.getOpcode() == ISD::SUB
&& N1
.getOpcode() == ISD::SUB
&&
2374 N0
.getOperand(0) == N1
.getOperand(1))
2375 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
.getOperand(0),
2378 // fold ((A-B)+(B-C)) -> (A-C)
2379 if (N0
.getOpcode() == ISD::SUB
&& N1
.getOpcode() == ISD::SUB
&&
2380 N0
.getOperand(1) == N1
.getOperand(0))
2381 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(0),
2384 // fold (A+(B-(A+C))) to (B-C)
2385 if (N1
.getOpcode() == ISD::SUB
&& N1
.getOperand(1).getOpcode() == ISD::ADD
&&
2386 N0
== N1
.getOperand(1).getOperand(0))
2387 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
.getOperand(0),
2388 N1
.getOperand(1).getOperand(1));
2390 // fold (A+(B-(C+A))) to (B-C)
2391 if (N1
.getOpcode() == ISD::SUB
&& N1
.getOperand(1).getOpcode() == ISD::ADD
&&
2392 N0
== N1
.getOperand(1).getOperand(1))
2393 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
.getOperand(0),
2394 N1
.getOperand(1).getOperand(0));
2396 // fold (A+((B-A)+or-C)) to (B+or-C)
2397 if ((N1
.getOpcode() == ISD::SUB
|| N1
.getOpcode() == ISD::ADD
) &&
2398 N1
.getOperand(0).getOpcode() == ISD::SUB
&&
2399 N0
== N1
.getOperand(0).getOperand(1))
2400 return DAG
.getNode(N1
.getOpcode(), DL
, VT
, N1
.getOperand(0).getOperand(0),
2403 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
2404 if (N0
.getOpcode() == ISD::SUB
&& N1
.getOpcode() == ISD::SUB
) {
2405 SDValue N00
= N0
.getOperand(0);
2406 SDValue N01
= N0
.getOperand(1);
2407 SDValue N10
= N1
.getOperand(0);
2408 SDValue N11
= N1
.getOperand(1);
2410 if (isConstantOrConstantVector(N00
) || isConstantOrConstantVector(N10
))
2411 return DAG
.getNode(ISD::SUB
, DL
, VT
,
2412 DAG
.getNode(ISD::ADD
, SDLoc(N0
), VT
, N00
, N10
),
2413 DAG
.getNode(ISD::ADD
, SDLoc(N1
), VT
, N01
, N11
));
2416 // fold (add (umax X, C), -C) --> (usubsat X, C)
2417 if (N0
.getOpcode() == ISD::UMAX
&& hasOperation(ISD::USUBSAT
, VT
)) {
2418 auto MatchUSUBSAT
= [](ConstantSDNode
*Max
, ConstantSDNode
*Op
) {
2419 return (!Max
&& !Op
) ||
2420 (Max
&& Op
&& Max
->getAPIntValue() == (-Op
->getAPIntValue()));
2422 if (ISD::matchBinaryPredicate(N0
.getOperand(1), N1
, MatchUSUBSAT
,
2423 /*AllowUndefs*/ true))
2424 return DAG
.getNode(ISD::USUBSAT
, DL
, VT
, N0
.getOperand(0),
2428 if (SimplifyDemandedBits(SDValue(N
, 0)))
2429 return SDValue(N
, 0);
2431 if (isOneOrOneSplat(N1
)) {
2432 // fold (add (xor a, -1), 1) -> (sub 0, a)
2433 if (isBitwiseNot(N0
))
2434 return DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
),
2437 // fold (add (add (xor a, -1), b), 1) -> (sub b, a)
2438 if (N0
.getOpcode() == ISD::ADD
||
2439 N0
.getOpcode() == ISD::UADDO
||
2440 N0
.getOpcode() == ISD::SADDO
) {
2443 if (isBitwiseNot(N0
.getOperand(0))) {
2444 A
= N0
.getOperand(1);
2445 Xor
= N0
.getOperand(0);
2446 } else if (isBitwiseNot(N0
.getOperand(1))) {
2447 A
= N0
.getOperand(0);
2448 Xor
= N0
.getOperand(1);
2452 return DAG
.getNode(ISD::SUB
, DL
, VT
, A
, Xor
.getOperand(0));
2456 // add (add x, y), 1
2457 // And if the target does not like this form then turn into:
2458 // sub y, (xor x, -1)
2459 if (!TLI
.preferIncOfAddToSubOfNot(VT
) && N0
.hasOneUse() &&
2460 N0
.getOpcode() == ISD::ADD
) {
2461 SDValue Not
= DAG
.getNode(ISD::XOR
, DL
, VT
, N0
.getOperand(0),
2462 DAG
.getAllOnesConstant(DL
, VT
));
2463 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(1), Not
);
2467 // (x - y) + -1 -> add (xor y, -1), x
2468 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::SUB
&&
2469 isAllOnesOrAllOnesSplat(N1
)) {
2470 SDValue Xor
= DAG
.getNode(ISD::XOR
, DL
, VT
, N0
.getOperand(1), N1
);
2471 return DAG
.getNode(ISD::ADD
, DL
, VT
, Xor
, N0
.getOperand(0));
2474 if (SDValue Combined
= visitADDLikeCommutative(N0
, N1
, N
))
2477 if (SDValue Combined
= visitADDLikeCommutative(N1
, N0
, N
))
2483 SDValue
DAGCombiner::visitADD(SDNode
*N
) {
2484 SDValue N0
= N
->getOperand(0);
2485 SDValue N1
= N
->getOperand(1);
2486 EVT VT
= N0
.getValueType();
2489 if (SDValue Combined
= visitADDLike(N
))
2492 if (SDValue V
= foldAddSubBoolOfMaskedVal(N
, DAG
))
2495 if (SDValue V
= foldAddSubOfSignBit(N
, DAG
))
2498 // fold (a+b) -> (a|b) iff a and b share no bits.
2499 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::OR
, VT
)) &&
2500 DAG
.haveNoCommonBitsSet(N0
, N1
))
2501 return DAG
.getNode(ISD::OR
, DL
, VT
, N0
, N1
);
2506 SDValue
DAGCombiner::visitADDSAT(SDNode
*N
) {
2507 unsigned Opcode
= N
->getOpcode();
2508 SDValue N0
= N
->getOperand(0);
2509 SDValue N1
= N
->getOperand(1);
2510 EVT VT
= N0
.getValueType();
2514 if (VT
.isVector()) {
2515 // TODO SimplifyVBinOp
2517 // fold (add_sat x, 0) -> x, vector edition
2518 if (ISD::isBuildVectorAllZeros(N1
.getNode()))
2520 if (ISD::isBuildVectorAllZeros(N0
.getNode()))
2524 // fold (add_sat x, undef) -> -1
2525 if (N0
.isUndef() || N1
.isUndef())
2526 return DAG
.getAllOnesConstant(DL
, VT
);
2528 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
)) {
2529 // canonicalize constant to RHS
2530 if (!DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
2531 return DAG
.getNode(Opcode
, DL
, VT
, N1
, N0
);
2532 // fold (add_sat c1, c2) -> c3
2533 return DAG
.FoldConstantArithmetic(Opcode
, DL
, VT
, N0
.getNode(),
2537 // fold (add_sat x, 0) -> x
2538 if (isNullConstant(N1
))
2541 // If it cannot overflow, transform into an add.
2542 if (Opcode
== ISD::UADDSAT
)
2543 if (DAG
.computeOverflowKind(N0
, N1
) == SelectionDAG::OFK_Never
)
2544 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
);
2549 static SDValue
getAsCarry(const TargetLowering
&TLI
, SDValue V
) {
2550 bool Masked
= false;
2552 // First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization.
2554 if (V
.getOpcode() == ISD::TRUNCATE
|| V
.getOpcode() == ISD::ZERO_EXTEND
) {
2555 V
= V
.getOperand(0);
2559 if (V
.getOpcode() == ISD::AND
&& isOneConstant(V
.getOperand(1))) {
2561 V
= V
.getOperand(0);
2568 // If this is not a carry, return.
2569 if (V
.getResNo() != 1)
2572 if (V
.getOpcode() != ISD::ADDCARRY
&& V
.getOpcode() != ISD::SUBCARRY
&&
2573 V
.getOpcode() != ISD::UADDO
&& V
.getOpcode() != ISD::USUBO
)
2576 EVT VT
= V
.getNode()->getValueType(0);
2577 if (!TLI
.isOperationLegalOrCustom(V
.getOpcode(), VT
))
2580 // If the result is masked, then no matter what kind of bool it is we can
2581 // return. If it isn't, then we need to make sure the bool type is either 0 or
2582 // 1 and not other values.
2584 TLI
.getBooleanContents(V
.getValueType()) ==
2585 TargetLoweringBase::ZeroOrOneBooleanContent
)
2591 /// Given the operands of an add/sub operation, see if the 2nd operand is a
2592 /// masked 0/1 whose source operand is actually known to be 0/-1. If so, invert
2593 /// the opcode and bypass the mask operation.
2594 static SDValue
foldAddSubMasked1(bool IsAdd
, SDValue N0
, SDValue N1
,
2595 SelectionDAG
&DAG
, const SDLoc
&DL
) {
2596 if (N1
.getOpcode() != ISD::AND
|| !isOneOrOneSplat(N1
->getOperand(1)))
2599 EVT VT
= N0
.getValueType();
2600 if (DAG
.ComputeNumSignBits(N1
.getOperand(0)) != VT
.getScalarSizeInBits())
2603 // add N0, (and (AssertSext X, i1), 1) --> sub N0, X
2604 // sub N0, (and (AssertSext X, i1), 1) --> add N0, X
2605 return DAG
.getNode(IsAdd
? ISD::SUB
: ISD::ADD
, DL
, VT
, N0
, N1
.getOperand(0));
2608 /// Helper for doing combines based on N0 and N1 being added to each other.
2609 SDValue
DAGCombiner::visitADDLikeCommutative(SDValue N0
, SDValue N1
,
2610 SDNode
*LocReference
) {
2611 EVT VT
= N0
.getValueType();
2612 SDLoc
DL(LocReference
);
2614 // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
2615 if (N1
.getOpcode() == ISD::SHL
&& N1
.getOperand(0).getOpcode() == ISD::SUB
&&
2616 isNullOrNullSplat(N1
.getOperand(0).getOperand(0)))
2617 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
,
2618 DAG
.getNode(ISD::SHL
, DL
, VT
,
2619 N1
.getOperand(0).getOperand(1),
2622 if (SDValue V
= foldAddSubMasked1(true, N0
, N1
, DAG
, DL
))
2626 // add (add x, 1), y
2627 // And if the target does not like this form then turn into:
2628 // sub y, (xor x, -1)
2629 if (!TLI
.preferIncOfAddToSubOfNot(VT
) && N0
.hasOneUse() &&
2630 N0
.getOpcode() == ISD::ADD
&& isOneOrOneSplat(N0
.getOperand(1))) {
2631 SDValue Not
= DAG
.getNode(ISD::XOR
, DL
, VT
, N0
.getOperand(0),
2632 DAG
.getAllOnesConstant(DL
, VT
));
2633 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
, Not
);
2636 // Hoist one-use subtraction by non-opaque constant:
2637 // (x - C) + y -> (x + y) - C
2638 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors.
2639 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::SUB
&&
2640 isConstantOrConstantVector(N0
.getOperand(1), /*NoOpaques=*/true)) {
2641 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0), N1
);
2642 return DAG
.getNode(ISD::SUB
, DL
, VT
, Add
, N0
.getOperand(1));
2644 // Hoist one-use subtraction from non-opaque constant:
2645 // (C - x) + y -> (y - x) + C
2646 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::SUB
&&
2647 isConstantOrConstantVector(N0
.getOperand(0), /*NoOpaques=*/true)) {
2648 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N1
, N0
.getOperand(1));
2649 return DAG
.getNode(ISD::ADD
, DL
, VT
, Sub
, N0
.getOperand(0));
2652 // If the target's bool is represented as 0/1, prefer to make this 'sub 0/1'
2653 // rather than 'add 0/-1' (the zext should get folded).
2654 // add (sext i1 Y), X --> sub X, (zext i1 Y)
2655 if (N0
.getOpcode() == ISD::SIGN_EXTEND
&&
2656 N0
.getOperand(0).getScalarValueSizeInBits() == 1 &&
2657 TLI
.getBooleanContents(VT
) == TargetLowering::ZeroOrOneBooleanContent
) {
2658 SDValue ZExt
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, N0
.getOperand(0));
2659 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
, ZExt
);
2662 // add X, (sextinreg Y i1) -> sub X, (and Y 1)
2663 if (N1
.getOpcode() == ISD::SIGN_EXTEND_INREG
) {
2664 VTSDNode
*TN
= cast
<VTSDNode
>(N1
.getOperand(1));
2665 if (TN
->getVT() == MVT::i1
) {
2666 SDValue ZExt
= DAG
.getNode(ISD::AND
, DL
, VT
, N1
.getOperand(0),
2667 DAG
.getConstant(1, DL
, VT
));
2668 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, ZExt
);
2672 // (add X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
2673 if (N1
.getOpcode() == ISD::ADDCARRY
&& isNullConstant(N1
.getOperand(1)) &&
2675 return DAG
.getNode(ISD::ADDCARRY
, DL
, N1
->getVTList(),
2676 N0
, N1
.getOperand(0), N1
.getOperand(2));
2678 // (add X, Carry) -> (addcarry X, 0, Carry)
2679 if (TLI
.isOperationLegalOrCustom(ISD::ADDCARRY
, VT
))
2680 if (SDValue Carry
= getAsCarry(TLI
, N1
))
2681 return DAG
.getNode(ISD::ADDCARRY
, DL
,
2682 DAG
.getVTList(VT
, Carry
.getValueType()), N0
,
2683 DAG
.getConstant(0, DL
, VT
), Carry
);
2688 SDValue
DAGCombiner::visitADDC(SDNode
*N
) {
2689 SDValue N0
= N
->getOperand(0);
2690 SDValue N1
= N
->getOperand(1);
2691 EVT VT
= N0
.getValueType();
2694 // If the flag result is dead, turn this into an ADD.
2695 if (!N
->hasAnyUseOfValue(1))
2696 return CombineTo(N
, DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
),
2697 DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
2699 // canonicalize constant to RHS.
2700 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2701 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2703 return DAG
.getNode(ISD::ADDC
, DL
, N
->getVTList(), N1
, N0
);
2705 // fold (addc x, 0) -> x + no carry out
2706 if (isNullConstant(N1
))
2707 return CombineTo(N
, N0
, DAG
.getNode(ISD::CARRY_FALSE
,
2710 // If it cannot overflow, transform into an add.
2711 if (DAG
.computeOverflowKind(N0
, N1
) == SelectionDAG::OFK_Never
)
2712 return CombineTo(N
, DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
),
2713 DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
2718 static SDValue
flipBoolean(SDValue V
, const SDLoc
&DL
,
2719 SelectionDAG
&DAG
, const TargetLowering
&TLI
) {
2720 EVT VT
= V
.getValueType();
2723 switch (TLI
.getBooleanContents(VT
)) {
2724 case TargetLowering::ZeroOrOneBooleanContent
:
2725 case TargetLowering::UndefinedBooleanContent
:
2726 Cst
= DAG
.getConstant(1, DL
, VT
);
2728 case TargetLowering::ZeroOrNegativeOneBooleanContent
:
2729 Cst
= DAG
.getAllOnesConstant(DL
, VT
);
2733 return DAG
.getNode(ISD::XOR
, DL
, VT
, V
, Cst
);
2737 * Flips a boolean if it is cheaper to compute. If the Force parameters is set,
2738 * then the flip also occurs if computing the inverse is the same cost.
2739 * This function returns an empty SDValue in case it cannot flip the boolean
2740 * without increasing the cost of the computation. If you want to flip a boolean
2741 * no matter what, use flipBoolean.
2743 static SDValue
extractBooleanFlip(SDValue V
, SelectionDAG
&DAG
,
2744 const TargetLowering
&TLI
,
2746 if (Force
&& isa
<ConstantSDNode
>(V
))
2747 return flipBoolean(V
, SDLoc(V
), DAG
, TLI
);
2749 if (V
.getOpcode() != ISD::XOR
)
2752 ConstantSDNode
*Const
= isConstOrConstSplat(V
.getOperand(1), false);
2756 EVT VT
= V
.getValueType();
2758 bool IsFlip
= false;
2759 switch(TLI
.getBooleanContents(VT
)) {
2760 case TargetLowering::ZeroOrOneBooleanContent
:
2761 IsFlip
= Const
->isOne();
2763 case TargetLowering::ZeroOrNegativeOneBooleanContent
:
2764 IsFlip
= Const
->isAllOnesValue();
2766 case TargetLowering::UndefinedBooleanContent
:
2767 IsFlip
= (Const
->getAPIntValue() & 0x01) == 1;
2772 return V
.getOperand(0);
2774 return flipBoolean(V
, SDLoc(V
), DAG
, TLI
);
2778 SDValue
DAGCombiner::visitADDO(SDNode
*N
) {
2779 SDValue N0
= N
->getOperand(0);
2780 SDValue N1
= N
->getOperand(1);
2781 EVT VT
= N0
.getValueType();
2782 bool IsSigned
= (ISD::SADDO
== N
->getOpcode());
2784 EVT CarryVT
= N
->getValueType(1);
2787 // If the flag result is dead, turn this into an ADD.
2788 if (!N
->hasAnyUseOfValue(1))
2789 return CombineTo(N
, DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
),
2790 DAG
.getUNDEF(CarryVT
));
2792 // canonicalize constant to RHS.
2793 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
2794 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
2795 return DAG
.getNode(N
->getOpcode(), DL
, N
->getVTList(), N1
, N0
);
2797 // fold (addo x, 0) -> x + no carry out
2798 if (isNullOrNullSplat(N1
))
2799 return CombineTo(N
, N0
, DAG
.getConstant(0, DL
, CarryVT
));
2802 // If it cannot overflow, transform into an add.
2803 if (DAG
.computeOverflowKind(N0
, N1
) == SelectionDAG::OFK_Never
)
2804 return CombineTo(N
, DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
),
2805 DAG
.getConstant(0, DL
, CarryVT
));
2807 // fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry.
2808 if (isBitwiseNot(N0
) && isOneOrOneSplat(N1
)) {
2809 SDValue Sub
= DAG
.getNode(ISD::USUBO
, DL
, N
->getVTList(),
2810 DAG
.getConstant(0, DL
, VT
), N0
.getOperand(0));
2811 return CombineTo(N
, Sub
,
2812 flipBoolean(Sub
.getValue(1), DL
, DAG
, TLI
));
2815 if (SDValue Combined
= visitUADDOLike(N0
, N1
, N
))
2818 if (SDValue Combined
= visitUADDOLike(N1
, N0
, N
))
2825 SDValue
DAGCombiner::visitUADDOLike(SDValue N0
, SDValue N1
, SDNode
*N
) {
2826 EVT VT
= N0
.getValueType();
2830 // (uaddo X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
2831 // If Y + 1 cannot overflow.
2832 if (N1
.getOpcode() == ISD::ADDCARRY
&& isNullConstant(N1
.getOperand(1))) {
2833 SDValue Y
= N1
.getOperand(0);
2834 SDValue One
= DAG
.getConstant(1, SDLoc(N
), Y
.getValueType());
2835 if (DAG
.computeOverflowKind(Y
, One
) == SelectionDAG::OFK_Never
)
2836 return DAG
.getNode(ISD::ADDCARRY
, SDLoc(N
), N
->getVTList(), N0
, Y
,
2840 // (uaddo X, Carry) -> (addcarry X, 0, Carry)
2841 if (TLI
.isOperationLegalOrCustom(ISD::ADDCARRY
, VT
))
2842 if (SDValue Carry
= getAsCarry(TLI
, N1
))
2843 return DAG
.getNode(ISD::ADDCARRY
, SDLoc(N
), N
->getVTList(), N0
,
2844 DAG
.getConstant(0, SDLoc(N
), VT
), Carry
);
2849 SDValue
DAGCombiner::visitADDE(SDNode
*N
) {
2850 SDValue N0
= N
->getOperand(0);
2851 SDValue N1
= N
->getOperand(1);
2852 SDValue CarryIn
= N
->getOperand(2);
2854 // canonicalize constant to RHS
2855 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2856 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2858 return DAG
.getNode(ISD::ADDE
, SDLoc(N
), N
->getVTList(),
2861 // fold (adde x, y, false) -> (addc x, y)
2862 if (CarryIn
.getOpcode() == ISD::CARRY_FALSE
)
2863 return DAG
.getNode(ISD::ADDC
, SDLoc(N
), N
->getVTList(), N0
, N1
);
2868 SDValue
DAGCombiner::visitADDCARRY(SDNode
*N
) {
2869 SDValue N0
= N
->getOperand(0);
2870 SDValue N1
= N
->getOperand(1);
2871 SDValue CarryIn
= N
->getOperand(2);
2874 // canonicalize constant to RHS
2875 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2876 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2878 return DAG
.getNode(ISD::ADDCARRY
, DL
, N
->getVTList(), N1
, N0
, CarryIn
);
2880 // fold (addcarry x, y, false) -> (uaddo x, y)
2881 if (isNullConstant(CarryIn
)) {
2882 if (!LegalOperations
||
2883 TLI
.isOperationLegalOrCustom(ISD::UADDO
, N
->getValueType(0)))
2884 return DAG
.getNode(ISD::UADDO
, DL
, N
->getVTList(), N0
, N1
);
2887 // fold (addcarry 0, 0, X) -> (and (ext/trunc X), 1) and no carry.
2888 if (isNullConstant(N0
) && isNullConstant(N1
)) {
2889 EVT VT
= N0
.getValueType();
2890 EVT CarryVT
= CarryIn
.getValueType();
2891 SDValue CarryExt
= DAG
.getBoolExtOrTrunc(CarryIn
, DL
, VT
, CarryVT
);
2892 AddToWorklist(CarryExt
.getNode());
2893 return CombineTo(N
, DAG
.getNode(ISD::AND
, DL
, VT
, CarryExt
,
2894 DAG
.getConstant(1, DL
, VT
)),
2895 DAG
.getConstant(0, DL
, CarryVT
));
2898 if (SDValue Combined
= visitADDCARRYLike(N0
, N1
, CarryIn
, N
))
2901 if (SDValue Combined
= visitADDCARRYLike(N1
, N0
, CarryIn
, N
))
2908 * If we are facing some sort of diamond carry propapagtion pattern try to
2909 * break it up to generate something like:
2910 * (addcarry X, 0, (addcarry A, B, Z):Carry)
2912 * The end result is usually an increase in operation required, but because the
2913 * carry is now linearized, other tranforms can kick in and optimize the DAG.
2915 * Patterns typically look something like
2920 * | (addcarry *, 0, Z)
2924 * (addcarry X, *, *)
2926 * But numerous variation exist. Our goal is to identify A, B, X and Z and
2927 * produce a combine with a single path for carry propagation.
2929 static SDValue
combineADDCARRYDiamond(DAGCombiner
&Combiner
, SelectionDAG
&DAG
,
2930 SDValue X
, SDValue Carry0
, SDValue Carry1
,
2932 if (Carry1
.getResNo() != 1 || Carry0
.getResNo() != 1)
2934 if (Carry1
.getOpcode() != ISD::UADDO
)
2940 * First look for a suitable Z. It will present itself in the form of
2941 * (addcarry Y, 0, Z) or its equivalent (uaddo Y, 1) for Z=true
2943 if (Carry0
.getOpcode() == ISD::ADDCARRY
&&
2944 isNullConstant(Carry0
.getOperand(1))) {
2945 Z
= Carry0
.getOperand(2);
2946 } else if (Carry0
.getOpcode() == ISD::UADDO
&&
2947 isOneConstant(Carry0
.getOperand(1))) {
2948 EVT VT
= Combiner
.getSetCCResultType(Carry0
.getValueType());
2949 Z
= DAG
.getConstant(1, SDLoc(Carry0
.getOperand(1)), VT
);
2951 // We couldn't find a suitable Z.
2956 auto cancelDiamond
= [&](SDValue A
,SDValue B
) {
2958 SDValue NewY
= DAG
.getNode(ISD::ADDCARRY
, DL
, Carry0
->getVTList(), A
, B
, Z
);
2959 Combiner
.AddToWorklist(NewY
.getNode());
2960 return DAG
.getNode(ISD::ADDCARRY
, DL
, N
->getVTList(), X
,
2961 DAG
.getConstant(0, DL
, X
.getValueType()),
2970 * (addcarry *, 0, Z)
2972 if (Carry0
.getOperand(0) == Carry1
.getValue(0)) {
2973 return cancelDiamond(Carry1
.getOperand(0), Carry1
.getOperand(1));
2977 * (addcarry A, 0, Z)
2983 if (Carry1
.getOperand(0) == Carry0
.getValue(0)) {
2984 return cancelDiamond(Carry0
.getOperand(0), Carry1
.getOperand(1));
2987 if (Carry1
.getOperand(1) == Carry0
.getValue(0)) {
2988 return cancelDiamond(Carry1
.getOperand(0), Carry0
.getOperand(0));
2994 SDValue
DAGCombiner::visitADDCARRYLike(SDValue N0
, SDValue N1
, SDValue CarryIn
,
2996 // fold (addcarry (xor a, -1), b, c) -> (subcarry b, a, !c) and flip carry.
2997 if (isBitwiseNot(N0
))
2998 if (SDValue NotC
= extractBooleanFlip(CarryIn
, DAG
, TLI
, true)) {
3000 SDValue Sub
= DAG
.getNode(ISD::SUBCARRY
, DL
, N
->getVTList(), N1
,
3001 N0
.getOperand(0), NotC
);
3002 return CombineTo(N
, Sub
,
3003 flipBoolean(Sub
.getValue(1), DL
, DAG
, TLI
));
3006 // Iff the flag result is dead:
3007 // (addcarry (add|uaddo X, Y), 0, Carry) -> (addcarry X, Y, Carry)
3008 // Don't do this if the Carry comes from the uaddo. It won't remove the uaddo
3009 // or the dependency between the instructions.
3010 if ((N0
.getOpcode() == ISD::ADD
||
3011 (N0
.getOpcode() == ISD::UADDO
&& N0
.getResNo() == 0 &&
3012 N0
.getValue(1) != CarryIn
)) &&
3013 isNullConstant(N1
) && !N
->hasAnyUseOfValue(1))
3014 return DAG
.getNode(ISD::ADDCARRY
, SDLoc(N
), N
->getVTList(),
3015 N0
.getOperand(0), N0
.getOperand(1), CarryIn
);
3018 * When one of the addcarry argument is itself a carry, we may be facing
3019 * a diamond carry propagation. In which case we try to transform the DAG
3020 * to ensure linear carry propagation if that is possible.
3022 if (auto Y
= getAsCarry(TLI
, N1
)) {
3023 // Because both are carries, Y and Z can be swapped.
3024 if (auto R
= combineADDCARRYDiamond(*this, DAG
, N0
, Y
, CarryIn
, N
))
3026 if (auto R
= combineADDCARRYDiamond(*this, DAG
, N0
, CarryIn
, Y
, N
))
3033 // Since it may not be valid to emit a fold to zero for vector initializers
3034 // check if we can before folding.
3035 static SDValue
tryFoldToZero(const SDLoc
&DL
, const TargetLowering
&TLI
, EVT VT
,
3036 SelectionDAG
&DAG
, bool LegalOperations
) {
3038 return DAG
.getConstant(0, DL
, VT
);
3039 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::BUILD_VECTOR
, VT
))
3040 return DAG
.getConstant(0, DL
, VT
);
3044 SDValue
DAGCombiner::visitSUB(SDNode
*N
) {
3045 SDValue N0
= N
->getOperand(0);
3046 SDValue N1
= N
->getOperand(1);
3047 EVT VT
= N0
.getValueType();
3051 if (VT
.isVector()) {
3052 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
3055 // fold (sub x, 0) -> x, vector edition
3056 if (ISD::isBuildVectorAllZeros(N1
.getNode()))
3060 // fold (sub x, x) -> 0
3061 // FIXME: Refactor this and xor and other similar operations together.
3063 return tryFoldToZero(DL
, TLI
, VT
, DAG
, LegalOperations
);
3064 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
3065 DAG
.isConstantIntBuildVectorOrConstantInt(N1
)) {
3066 // fold (sub c1, c2) -> c1-c2
3067 return DAG
.FoldConstantArithmetic(ISD::SUB
, DL
, VT
, N0
.getNode(),
3071 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
3074 ConstantSDNode
*N1C
= getAsNonOpaqueConstant(N1
);
3076 // fold (sub x, c) -> (add x, -c)
3078 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
,
3079 DAG
.getConstant(-N1C
->getAPIntValue(), DL
, VT
));
3082 if (isNullOrNullSplat(N0
)) {
3083 unsigned BitWidth
= VT
.getScalarSizeInBits();
3084 // Right-shifting everything out but the sign bit followed by negation is
3085 // the same as flipping arithmetic/logical shift type without the negation:
3086 // -(X >>u 31) -> (X >>s 31)
3087 // -(X >>s 31) -> (X >>u 31)
3088 if (N1
->getOpcode() == ISD::SRA
|| N1
->getOpcode() == ISD::SRL
) {
3089 ConstantSDNode
*ShiftAmt
= isConstOrConstSplat(N1
.getOperand(1));
3090 if (ShiftAmt
&& ShiftAmt
->getAPIntValue() == (BitWidth
- 1)) {
3091 auto NewSh
= N1
->getOpcode() == ISD::SRA
? ISD::SRL
: ISD::SRA
;
3092 if (!LegalOperations
|| TLI
.isOperationLegal(NewSh
, VT
))
3093 return DAG
.getNode(NewSh
, DL
, VT
, N1
.getOperand(0), N1
.getOperand(1));
3097 // 0 - X --> 0 if the sub is NUW.
3098 if (N
->getFlags().hasNoUnsignedWrap())
3101 if (DAG
.MaskedValueIsZero(N1
, ~APInt::getSignMask(BitWidth
))) {
3102 // N1 is either 0 or the minimum signed value. If the sub is NSW, then
3103 // N1 must be 0 because negating the minimum signed value is undefined.
3104 if (N
->getFlags().hasNoSignedWrap())
3107 // 0 - X --> X if X is 0 or the minimum signed value.
3112 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
3113 if (isAllOnesOrAllOnesSplat(N0
))
3114 return DAG
.getNode(ISD::XOR
, DL
, VT
, N1
, N0
);
3116 // fold (A - (0-B)) -> A+B
3117 if (N1
.getOpcode() == ISD::SUB
&& isNullOrNullSplat(N1
.getOperand(0)))
3118 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
.getOperand(1));
3120 // fold A-(A-B) -> B
3121 if (N1
.getOpcode() == ISD::SUB
&& N0
== N1
.getOperand(0))
3122 return N1
.getOperand(1);
3124 // fold (A+B)-A -> B
3125 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(0) == N1
)
3126 return N0
.getOperand(1);
3128 // fold (A+B)-B -> A
3129 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(1) == N1
)
3130 return N0
.getOperand(0);
3132 // fold (A+C1)-C2 -> A+(C1-C2)
3133 if (N0
.getOpcode() == ISD::ADD
&&
3134 isConstantOrConstantVector(N1
, /* NoOpaques */ true) &&
3135 isConstantOrConstantVector(N0
.getOperand(1), /* NoOpaques */ true)) {
3136 SDValue NewC
= DAG
.FoldConstantArithmetic(
3137 ISD::SUB
, DL
, VT
, N0
.getOperand(1).getNode(), N1
.getNode());
3138 assert(NewC
&& "Constant folding failed");
3139 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0), NewC
);
3142 // fold C2-(A+C1) -> (C2-C1)-A
3143 if (N1
.getOpcode() == ISD::ADD
) {
3144 SDValue N11
= N1
.getOperand(1);
3145 if (isConstantOrConstantVector(N0
, /* NoOpaques */ true) &&
3146 isConstantOrConstantVector(N11
, /* NoOpaques */ true)) {
3147 SDValue NewC
= DAG
.FoldConstantArithmetic(ISD::SUB
, DL
, VT
, N0
.getNode(),
3149 assert(NewC
&& "Constant folding failed");
3150 return DAG
.getNode(ISD::SUB
, DL
, VT
, NewC
, N1
.getOperand(0));
3154 // fold (A-C1)-C2 -> A-(C1+C2)
3155 if (N0
.getOpcode() == ISD::SUB
&&
3156 isConstantOrConstantVector(N1
, /* NoOpaques */ true) &&
3157 isConstantOrConstantVector(N0
.getOperand(1), /* NoOpaques */ true)) {
3158 SDValue NewC
= DAG
.FoldConstantArithmetic(
3159 ISD::ADD
, DL
, VT
, N0
.getOperand(1).getNode(), N1
.getNode());
3160 assert(NewC
&& "Constant folding failed");
3161 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(0), NewC
);
3164 // fold (c1-A)-c2 -> (c1-c2)-A
3165 if (N0
.getOpcode() == ISD::SUB
&&
3166 isConstantOrConstantVector(N1
, /* NoOpaques */ true) &&
3167 isConstantOrConstantVector(N0
.getOperand(0), /* NoOpaques */ true)) {
3168 SDValue NewC
= DAG
.FoldConstantArithmetic(
3169 ISD::SUB
, DL
, VT
, N0
.getOperand(0).getNode(), N1
.getNode());
3170 assert(NewC
&& "Constant folding failed");
3171 return DAG
.getNode(ISD::SUB
, DL
, VT
, NewC
, N0
.getOperand(1));
3174 // fold ((A+(B+or-C))-B) -> A+or-C
3175 if (N0
.getOpcode() == ISD::ADD
&&
3176 (N0
.getOperand(1).getOpcode() == ISD::SUB
||
3177 N0
.getOperand(1).getOpcode() == ISD::ADD
) &&
3178 N0
.getOperand(1).getOperand(0) == N1
)
3179 return DAG
.getNode(N0
.getOperand(1).getOpcode(), DL
, VT
, N0
.getOperand(0),
3180 N0
.getOperand(1).getOperand(1));
3182 // fold ((A+(C+B))-B) -> A+C
3183 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(1).getOpcode() == ISD::ADD
&&
3184 N0
.getOperand(1).getOperand(1) == N1
)
3185 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0),
3186 N0
.getOperand(1).getOperand(0));
3188 // fold ((A-(B-C))-C) -> A-B
3189 if (N0
.getOpcode() == ISD::SUB
&& N0
.getOperand(1).getOpcode() == ISD::SUB
&&
3190 N0
.getOperand(1).getOperand(1) == N1
)
3191 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(0),
3192 N0
.getOperand(1).getOperand(0));
3194 // fold (A-(B-C)) -> A+(C-B)
3195 if (N1
.getOpcode() == ISD::SUB
&& N1
.hasOneUse())
3196 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
,
3197 DAG
.getNode(ISD::SUB
, DL
, VT
, N1
.getOperand(1),
3200 // fold (X - (-Y * Z)) -> (X + (Y * Z))
3201 if (N1
.getOpcode() == ISD::MUL
&& N1
.hasOneUse()) {
3202 if (N1
.getOperand(0).getOpcode() == ISD::SUB
&&
3203 isNullOrNullSplat(N1
.getOperand(0).getOperand(0))) {
3204 SDValue Mul
= DAG
.getNode(ISD::MUL
, DL
, VT
,
3205 N1
.getOperand(0).getOperand(1),
3207 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, Mul
);
3209 if (N1
.getOperand(1).getOpcode() == ISD::SUB
&&
3210 isNullOrNullSplat(N1
.getOperand(1).getOperand(0))) {
3211 SDValue Mul
= DAG
.getNode(ISD::MUL
, DL
, VT
,
3213 N1
.getOperand(1).getOperand(1));
3214 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, Mul
);
3218 // If either operand of a sub is undef, the result is undef
3224 if (SDValue V
= foldAddSubBoolOfMaskedVal(N
, DAG
))
3227 if (SDValue V
= foldAddSubOfSignBit(N
, DAG
))
3230 if (SDValue V
= foldAddSubMasked1(false, N0
, N1
, DAG
, SDLoc(N
)))
3233 // (x - y) - 1 -> add (xor y, -1), x
3234 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::SUB
&& isOneOrOneSplat(N1
)) {
3235 SDValue Xor
= DAG
.getNode(ISD::XOR
, DL
, VT
, N0
.getOperand(1),
3236 DAG
.getAllOnesConstant(DL
, VT
));
3237 return DAG
.getNode(ISD::ADD
, DL
, VT
, Xor
, N0
.getOperand(0));
3241 // sub y, (xor x, -1)
3242 // And if the target does not like this form then turn into:
3243 // add (add x, y), 1
3244 if (TLI
.preferIncOfAddToSubOfNot(VT
) && N1
.hasOneUse() && isBitwiseNot(N1
)) {
3245 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
.getOperand(0));
3246 return DAG
.getNode(ISD::ADD
, DL
, VT
, Add
, DAG
.getConstant(1, DL
, VT
));
3249 // Hoist one-use addition by non-opaque constant:
3250 // (x + C) - y -> (x - y) + C
3251 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::ADD
&&
3252 isConstantOrConstantVector(N0
.getOperand(1), /*NoOpaques=*/true)) {
3253 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(0), N1
);
3254 return DAG
.getNode(ISD::ADD
, DL
, VT
, Sub
, N0
.getOperand(1));
3256 // y - (x + C) -> (y - x) - C
3257 if (N1
.hasOneUse() && N1
.getOpcode() == ISD::ADD
&&
3258 isConstantOrConstantVector(N1
.getOperand(1), /*NoOpaques=*/true)) {
3259 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, N1
.getOperand(0));
3260 return DAG
.getNode(ISD::SUB
, DL
, VT
, Sub
, N1
.getOperand(1));
3262 // (x - C) - y -> (x - y) - C
3263 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors.
3264 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::SUB
&&
3265 isConstantOrConstantVector(N0
.getOperand(1), /*NoOpaques=*/true)) {
3266 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(0), N1
);
3267 return DAG
.getNode(ISD::SUB
, DL
, VT
, Sub
, N0
.getOperand(1));
3269 // (C - x) - y -> C - (x + y)
3270 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::SUB
&&
3271 isConstantOrConstantVector(N0
.getOperand(0), /*NoOpaques=*/true)) {
3272 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(1), N1
);
3273 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(0), Add
);
3276 // If the target's bool is represented as 0/-1, prefer to make this 'add 0/-1'
3277 // rather than 'sub 0/1' (the sext should get folded).
3278 // sub X, (zext i1 Y) --> add X, (sext i1 Y)
3279 if (N1
.getOpcode() == ISD::ZERO_EXTEND
&&
3280 N1
.getOperand(0).getScalarValueSizeInBits() == 1 &&
3281 TLI
.getBooleanContents(VT
) ==
3282 TargetLowering::ZeroOrNegativeOneBooleanContent
) {
3283 SDValue SExt
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, N1
.getOperand(0));
3284 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, SExt
);
3287 // fold Y = sra (X, size(X)-1); sub (xor (X, Y), Y) -> (abs X)
3288 if (TLI
.isOperationLegalOrCustom(ISD::ABS
, VT
)) {
3289 if (N0
.getOpcode() == ISD::XOR
&& N1
.getOpcode() == ISD::SRA
) {
3290 SDValue X0
= N0
.getOperand(0), X1
= N0
.getOperand(1);
3291 SDValue S0
= N1
.getOperand(0);
3292 if ((X0
== S0
&& X1
== N1
) || (X0
== N1
&& X1
== S0
)) {
3293 unsigned OpSizeInBits
= VT
.getScalarSizeInBits();
3294 if (ConstantSDNode
*C
= isConstOrConstSplat(N1
.getOperand(1)))
3295 if (C
->getAPIntValue() == (OpSizeInBits
- 1))
3296 return DAG
.getNode(ISD::ABS
, SDLoc(N
), VT
, S0
);
3301 // If the relocation model supports it, consider symbol offsets.
3302 if (GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(N0
))
3303 if (!LegalOperations
&& TLI
.isOffsetFoldingLegal(GA
)) {
3304 // fold (sub Sym, c) -> Sym-c
3305 if (N1C
&& GA
->getOpcode() == ISD::GlobalAddress
)
3306 return DAG
.getGlobalAddress(GA
->getGlobal(), SDLoc(N1C
), VT
,
3308 (uint64_t)N1C
->getSExtValue());
3309 // fold (sub Sym+c1, Sym+c2) -> c1-c2
3310 if (GlobalAddressSDNode
*GB
= dyn_cast
<GlobalAddressSDNode
>(N1
))
3311 if (GA
->getGlobal() == GB
->getGlobal())
3312 return DAG
.getConstant((uint64_t)GA
->getOffset() - GB
->getOffset(),
3316 // sub X, (sextinreg Y i1) -> add X, (and Y 1)
3317 if (N1
.getOpcode() == ISD::SIGN_EXTEND_INREG
) {
3318 VTSDNode
*TN
= cast
<VTSDNode
>(N1
.getOperand(1));
3319 if (TN
->getVT() == MVT::i1
) {
3320 SDValue ZExt
= DAG
.getNode(ISD::AND
, DL
, VT
, N1
.getOperand(0),
3321 DAG
.getConstant(1, DL
, VT
));
3322 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, ZExt
);
3326 // Prefer an add for more folding potential and possibly better codegen:
3327 // sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1)
3328 if (!LegalOperations
&& N1
.getOpcode() == ISD::SRL
&& N1
.hasOneUse()) {
3329 SDValue ShAmt
= N1
.getOperand(1);
3330 ConstantSDNode
*ShAmtC
= isConstOrConstSplat(ShAmt
);
3332 ShAmtC
->getAPIntValue() == (N1
.getScalarValueSizeInBits() - 1)) {
3333 SDValue SRA
= DAG
.getNode(ISD::SRA
, DL
, VT
, N1
.getOperand(0), ShAmt
);
3334 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, SRA
);
3341 SDValue
DAGCombiner::visitSUBSAT(SDNode
*N
) {
3342 SDValue N0
= N
->getOperand(0);
3343 SDValue N1
= N
->getOperand(1);
3344 EVT VT
= N0
.getValueType();
3348 if (VT
.isVector()) {
3349 // TODO SimplifyVBinOp
3351 // fold (sub_sat x, 0) -> x, vector edition
3352 if (ISD::isBuildVectorAllZeros(N1
.getNode()))
3356 // fold (sub_sat x, undef) -> 0
3357 if (N0
.isUndef() || N1
.isUndef())
3358 return DAG
.getConstant(0, DL
, VT
);
3360 // fold (sub_sat x, x) -> 0
3362 return DAG
.getConstant(0, DL
, VT
);
3364 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
3365 DAG
.isConstantIntBuildVectorOrConstantInt(N1
)) {
3366 // fold (sub_sat c1, c2) -> c3
3367 return DAG
.FoldConstantArithmetic(N
->getOpcode(), DL
, VT
, N0
.getNode(),
3371 // fold (sub_sat x, 0) -> x
3372 if (isNullConstant(N1
))
3378 SDValue
DAGCombiner::visitSUBC(SDNode
*N
) {
3379 SDValue N0
= N
->getOperand(0);
3380 SDValue N1
= N
->getOperand(1);
3381 EVT VT
= N0
.getValueType();
3384 // If the flag result is dead, turn this into an SUB.
3385 if (!N
->hasAnyUseOfValue(1))
3386 return CombineTo(N
, DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, N1
),
3387 DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
3389 // fold (subc x, x) -> 0 + no borrow
3391 return CombineTo(N
, DAG
.getConstant(0, DL
, VT
),
3392 DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
3394 // fold (subc x, 0) -> x + no borrow
3395 if (isNullConstant(N1
))
3396 return CombineTo(N
, N0
, DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
3398 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
3399 if (isAllOnesConstant(N0
))
3400 return CombineTo(N
, DAG
.getNode(ISD::XOR
, DL
, VT
, N1
, N0
),
3401 DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
3406 SDValue
DAGCombiner::visitSUBO(SDNode
*N
) {
3407 SDValue N0
= N
->getOperand(0);
3408 SDValue N1
= N
->getOperand(1);
3409 EVT VT
= N0
.getValueType();
3410 bool IsSigned
= (ISD::SSUBO
== N
->getOpcode());
3412 EVT CarryVT
= N
->getValueType(1);
3415 // If the flag result is dead, turn this into an SUB.
3416 if (!N
->hasAnyUseOfValue(1))
3417 return CombineTo(N
, DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, N1
),
3418 DAG
.getUNDEF(CarryVT
));
3420 // fold (subo x, x) -> 0 + no borrow
3422 return CombineTo(N
, DAG
.getConstant(0, DL
, VT
),
3423 DAG
.getConstant(0, DL
, CarryVT
));
3425 ConstantSDNode
*N1C
= getAsNonOpaqueConstant(N1
);
3427 // fold (subox, c) -> (addo x, -c)
3428 if (IsSigned
&& N1C
&& !N1C
->getAPIntValue().isMinSignedValue()) {
3429 return DAG
.getNode(ISD::SADDO
, DL
, N
->getVTList(), N0
,
3430 DAG
.getConstant(-N1C
->getAPIntValue(), DL
, VT
));
3433 // fold (subo x, 0) -> x + no borrow
3434 if (isNullOrNullSplat(N1
))
3435 return CombineTo(N
, N0
, DAG
.getConstant(0, DL
, CarryVT
));
3437 // Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow
3438 if (!IsSigned
&& isAllOnesOrAllOnesSplat(N0
))
3439 return CombineTo(N
, DAG
.getNode(ISD::XOR
, DL
, VT
, N1
, N0
),
3440 DAG
.getConstant(0, DL
, CarryVT
));
3445 SDValue
DAGCombiner::visitSUBE(SDNode
*N
) {
3446 SDValue N0
= N
->getOperand(0);
3447 SDValue N1
= N
->getOperand(1);
3448 SDValue CarryIn
= N
->getOperand(2);
3450 // fold (sube x, y, false) -> (subc x, y)
3451 if (CarryIn
.getOpcode() == ISD::CARRY_FALSE
)
3452 return DAG
.getNode(ISD::SUBC
, SDLoc(N
), N
->getVTList(), N0
, N1
);
3457 SDValue
DAGCombiner::visitSUBCARRY(SDNode
*N
) {
3458 SDValue N0
= N
->getOperand(0);
3459 SDValue N1
= N
->getOperand(1);
3460 SDValue CarryIn
= N
->getOperand(2);
3462 // fold (subcarry x, y, false) -> (usubo x, y)
3463 if (isNullConstant(CarryIn
)) {
3464 if (!LegalOperations
||
3465 TLI
.isOperationLegalOrCustom(ISD::USUBO
, N
->getValueType(0)))
3466 return DAG
.getNode(ISD::USUBO
, SDLoc(N
), N
->getVTList(), N0
, N1
);
3472 // Notice that "mulfix" can be any of SMULFIX, SMULFIXSAT and UMULFIX here.
3473 SDValue
DAGCombiner::visitMULFIX(SDNode
*N
) {
3474 SDValue N0
= N
->getOperand(0);
3475 SDValue N1
= N
->getOperand(1);
3476 SDValue Scale
= N
->getOperand(2);
3477 EVT VT
= N0
.getValueType();
3479 // fold (mulfix x, undef, scale) -> 0
3480 if (N0
.isUndef() || N1
.isUndef())
3481 return DAG
.getConstant(0, SDLoc(N
), VT
);
3483 // Canonicalize constant to RHS (vector doesn't have to splat)
3484 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
3485 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
3486 return DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
, N1
, N0
, Scale
);
3488 // fold (mulfix x, 0, scale) -> 0
3489 if (isNullConstant(N1
))
3490 return DAG
.getConstant(0, SDLoc(N
), VT
);
3495 SDValue
DAGCombiner::visitMUL(SDNode
*N
) {
3496 SDValue N0
= N
->getOperand(0);
3497 SDValue N1
= N
->getOperand(1);
3498 EVT VT
= N0
.getValueType();
3500 // fold (mul x, undef) -> 0
3501 if (N0
.isUndef() || N1
.isUndef())
3502 return DAG
.getConstant(0, SDLoc(N
), VT
);
3504 bool N0IsConst
= false;
3505 bool N1IsConst
= false;
3506 bool N1IsOpaqueConst
= false;
3507 bool N0IsOpaqueConst
= false;
3508 APInt ConstValue0
, ConstValue1
;
3510 if (VT
.isVector()) {
3511 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
3514 N0IsConst
= ISD::isConstantSplatVector(N0
.getNode(), ConstValue0
);
3515 N1IsConst
= ISD::isConstantSplatVector(N1
.getNode(), ConstValue1
);
3516 assert((!N0IsConst
||
3517 ConstValue0
.getBitWidth() == VT
.getScalarSizeInBits()) &&
3518 "Splat APInt should be element width");
3519 assert((!N1IsConst
||
3520 ConstValue1
.getBitWidth() == VT
.getScalarSizeInBits()) &&
3521 "Splat APInt should be element width");
3523 N0IsConst
= isa
<ConstantSDNode
>(N0
);
3525 ConstValue0
= cast
<ConstantSDNode
>(N0
)->getAPIntValue();
3526 N0IsOpaqueConst
= cast
<ConstantSDNode
>(N0
)->isOpaque();
3528 N1IsConst
= isa
<ConstantSDNode
>(N1
);
3530 ConstValue1
= cast
<ConstantSDNode
>(N1
)->getAPIntValue();
3531 N1IsOpaqueConst
= cast
<ConstantSDNode
>(N1
)->isOpaque();
3535 // fold (mul c1, c2) -> c1*c2
3536 if (N0IsConst
&& N1IsConst
&& !N0IsOpaqueConst
&& !N1IsOpaqueConst
)
3537 return DAG
.FoldConstantArithmetic(ISD::MUL
, SDLoc(N
), VT
,
3538 N0
.getNode(), N1
.getNode());
3540 // canonicalize constant to RHS (vector doesn't have to splat)
3541 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
3542 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
3543 return DAG
.getNode(ISD::MUL
, SDLoc(N
), VT
, N1
, N0
);
3544 // fold (mul x, 0) -> 0
3545 if (N1IsConst
&& ConstValue1
.isNullValue())
3547 // fold (mul x, 1) -> x
3548 if (N1IsConst
&& ConstValue1
.isOneValue())
3551 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
3554 // fold (mul x, -1) -> 0-x
3555 if (N1IsConst
&& ConstValue1
.isAllOnesValue()) {
3557 return DAG
.getNode(ISD::SUB
, DL
, VT
,
3558 DAG
.getConstant(0, DL
, VT
), N0
);
3560 // fold (mul x, (1 << c)) -> x << c
3561 if (isConstantOrConstantVector(N1
, /*NoOpaques*/ true) &&
3562 DAG
.isKnownToBeAPowerOfTwo(N1
) &&
3563 (!VT
.isVector() || Level
<= AfterLegalizeVectorOps
)) {
3565 SDValue LogBase2
= BuildLogBase2(N1
, DL
);
3566 EVT ShiftVT
= getShiftAmountTy(N0
.getValueType());
3567 SDValue Trunc
= DAG
.getZExtOrTrunc(LogBase2
, DL
, ShiftVT
);
3568 return DAG
.getNode(ISD::SHL
, DL
, VT
, N0
, Trunc
);
3570 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
3571 if (N1IsConst
&& !N1IsOpaqueConst
&& (-ConstValue1
).isPowerOf2()) {
3572 unsigned Log2Val
= (-ConstValue1
).logBase2();
3574 // FIXME: If the input is something that is easily negated (e.g. a
3575 // single-use add), we should put the negate there.
3576 return DAG
.getNode(ISD::SUB
, DL
, VT
,
3577 DAG
.getConstant(0, DL
, VT
),
3578 DAG
.getNode(ISD::SHL
, DL
, VT
, N0
,
3579 DAG
.getConstant(Log2Val
, DL
,
3580 getShiftAmountTy(N0
.getValueType()))));
3583 // Try to transform multiply-by-(power-of-2 +/- 1) into shift and add/sub.
3584 // mul x, (2^N + 1) --> add (shl x, N), x
3585 // mul x, (2^N - 1) --> sub (shl x, N), x
3586 // Examples: x * 33 --> (x << 5) + x
3587 // x * 15 --> (x << 4) - x
3588 // x * -33 --> -((x << 5) + x)
3589 // x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4)
3590 if (N1IsConst
&& TLI
.decomposeMulByConstant(*DAG
.getContext(), VT
, N1
)) {
3591 // TODO: We could handle more general decomposition of any constant by
3592 // having the target set a limit on number of ops and making a
3593 // callback to determine that sequence (similar to sqrt expansion).
3594 unsigned MathOp
= ISD::DELETED_NODE
;
3595 APInt MulC
= ConstValue1
.abs();
3596 if ((MulC
- 1).isPowerOf2())
3598 else if ((MulC
+ 1).isPowerOf2())
3601 if (MathOp
!= ISD::DELETED_NODE
) {
3603 MathOp
== ISD::ADD
? (MulC
- 1).logBase2() : (MulC
+ 1).logBase2();
3604 assert(ShAmt
< VT
.getScalarSizeInBits() &&
3605 "multiply-by-constant generated out of bounds shift");
3608 DAG
.getNode(ISD::SHL
, DL
, VT
, N0
, DAG
.getConstant(ShAmt
, DL
, VT
));
3609 SDValue R
= DAG
.getNode(MathOp
, DL
, VT
, Shl
, N0
);
3610 if (ConstValue1
.isNegative())
3611 R
= DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
), R
);
3616 // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
3617 if (N0
.getOpcode() == ISD::SHL
&&
3618 isConstantOrConstantVector(N1
, /* NoOpaques */ true) &&
3619 isConstantOrConstantVector(N0
.getOperand(1), /* NoOpaques */ true)) {
3620 SDValue C3
= DAG
.getNode(ISD::SHL
, SDLoc(N
), VT
, N1
, N0
.getOperand(1));
3621 if (isConstantOrConstantVector(C3
))
3622 return DAG
.getNode(ISD::MUL
, SDLoc(N
), VT
, N0
.getOperand(0), C3
);
3625 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
3628 SDValue
Sh(nullptr, 0), Y(nullptr, 0);
3630 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
3631 if (N0
.getOpcode() == ISD::SHL
&&
3632 isConstantOrConstantVector(N0
.getOperand(1)) &&
3633 N0
.getNode()->hasOneUse()) {
3635 } else if (N1
.getOpcode() == ISD::SHL
&&
3636 isConstantOrConstantVector(N1
.getOperand(1)) &&
3637 N1
.getNode()->hasOneUse()) {
3642 SDValue Mul
= DAG
.getNode(ISD::MUL
, SDLoc(N
), VT
, Sh
.getOperand(0), Y
);
3643 return DAG
.getNode(ISD::SHL
, SDLoc(N
), VT
, Mul
, Sh
.getOperand(1));
3647 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
3648 if (DAG
.isConstantIntBuildVectorOrConstantInt(N1
) &&
3649 N0
.getOpcode() == ISD::ADD
&&
3650 DAG
.isConstantIntBuildVectorOrConstantInt(N0
.getOperand(1)) &&
3651 isMulAddWithConstProfitable(N
, N0
, N1
))
3652 return DAG
.getNode(ISD::ADD
, SDLoc(N
), VT
,
3653 DAG
.getNode(ISD::MUL
, SDLoc(N0
), VT
,
3654 N0
.getOperand(0), N1
),
3655 DAG
.getNode(ISD::MUL
, SDLoc(N1
), VT
,
3656 N0
.getOperand(1), N1
));
3659 if (SDValue RMUL
= reassociateOps(ISD::MUL
, SDLoc(N
), N0
, N1
, N
->getFlags()))
3665 /// Return true if divmod libcall is available.
3666 static bool isDivRemLibcallAvailable(SDNode
*Node
, bool isSigned
,
3667 const TargetLowering
&TLI
) {
3669 EVT NodeType
= Node
->getValueType(0);
3670 if (!NodeType
.isSimple())
3672 switch (NodeType
.getSimpleVT().SimpleTy
) {
3673 default: return false; // No libcall for vector types.
3674 case MVT::i8
: LC
= isSigned
? RTLIB::SDIVREM_I8
: RTLIB::UDIVREM_I8
; break;
3675 case MVT::i16
: LC
= isSigned
? RTLIB::SDIVREM_I16
: RTLIB::UDIVREM_I16
; break;
3676 case MVT::i32
: LC
= isSigned
? RTLIB::SDIVREM_I32
: RTLIB::UDIVREM_I32
; break;
3677 case MVT::i64
: LC
= isSigned
? RTLIB::SDIVREM_I64
: RTLIB::UDIVREM_I64
; break;
3678 case MVT::i128
: LC
= isSigned
? RTLIB::SDIVREM_I128
:RTLIB::UDIVREM_I128
; break;
3681 return TLI
.getLibcallName(LC
) != nullptr;
3684 /// Issue divrem if both quotient and remainder are needed.
3685 SDValue
DAGCombiner::useDivRem(SDNode
*Node
) {
3686 if (Node
->use_empty())
3687 return SDValue(); // This is a dead node, leave it alone.
3689 unsigned Opcode
= Node
->getOpcode();
3690 bool isSigned
= (Opcode
== ISD::SDIV
) || (Opcode
== ISD::SREM
);
3691 unsigned DivRemOpc
= isSigned
? ISD::SDIVREM
: ISD::UDIVREM
;
3693 // DivMod lib calls can still work on non-legal types if using lib-calls.
3694 EVT VT
= Node
->getValueType(0);
3695 if (VT
.isVector() || !VT
.isInteger())
3698 if (!TLI
.isTypeLegal(VT
) && !TLI
.isOperationCustom(DivRemOpc
, VT
))
3701 // If DIVREM is going to get expanded into a libcall,
3702 // but there is no libcall available, then don't combine.
3703 if (!TLI
.isOperationLegalOrCustom(DivRemOpc
, VT
) &&
3704 !isDivRemLibcallAvailable(Node
, isSigned
, TLI
))
3707 // If div is legal, it's better to do the normal expansion
3708 unsigned OtherOpcode
= 0;
3709 if ((Opcode
== ISD::SDIV
) || (Opcode
== ISD::UDIV
)) {
3710 OtherOpcode
= isSigned
? ISD::SREM
: ISD::UREM
;
3711 if (TLI
.isOperationLegalOrCustom(Opcode
, VT
))
3714 OtherOpcode
= isSigned
? ISD::SDIV
: ISD::UDIV
;
3715 if (TLI
.isOperationLegalOrCustom(OtherOpcode
, VT
))
3719 SDValue Op0
= Node
->getOperand(0);
3720 SDValue Op1
= Node
->getOperand(1);
3722 for (SDNode::use_iterator UI
= Op0
.getNode()->use_begin(),
3723 UE
= Op0
.getNode()->use_end(); UI
!= UE
; ++UI
) {
3725 if (User
== Node
|| User
->getOpcode() == ISD::DELETED_NODE
||
3728 // Convert the other matching node(s), too;
3729 // otherwise, the DIVREM may get target-legalized into something
3730 // target-specific that we won't be able to recognize.
3731 unsigned UserOpc
= User
->getOpcode();
3732 if ((UserOpc
== Opcode
|| UserOpc
== OtherOpcode
|| UserOpc
== DivRemOpc
) &&
3733 User
->getOperand(0) == Op0
&&
3734 User
->getOperand(1) == Op1
) {
3736 if (UserOpc
== OtherOpcode
) {
3737 SDVTList VTs
= DAG
.getVTList(VT
, VT
);
3738 combined
= DAG
.getNode(DivRemOpc
, SDLoc(Node
), VTs
, Op0
, Op1
);
3739 } else if (UserOpc
== DivRemOpc
) {
3740 combined
= SDValue(User
, 0);
3742 assert(UserOpc
== Opcode
);
3746 if (UserOpc
== ISD::SDIV
|| UserOpc
== ISD::UDIV
)
3747 CombineTo(User
, combined
);
3748 else if (UserOpc
== ISD::SREM
|| UserOpc
== ISD::UREM
)
3749 CombineTo(User
, combined
.getValue(1));
3755 static SDValue
simplifyDivRem(SDNode
*N
, SelectionDAG
&DAG
) {
3756 SDValue N0
= N
->getOperand(0);
3757 SDValue N1
= N
->getOperand(1);
3758 EVT VT
= N
->getValueType(0);
3761 unsigned Opc
= N
->getOpcode();
3762 bool IsDiv
= (ISD::SDIV
== Opc
) || (ISD::UDIV
== Opc
);
3763 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
3765 // X / undef -> undef
3766 // X % undef -> undef
3769 // NOTE: This includes vectors where any divisor element is zero/undef.
3770 if (DAG
.isUndef(Opc
, {N0
, N1
}))
3771 return DAG
.getUNDEF(VT
);
3776 return DAG
.getConstant(0, DL
, VT
);
3780 ConstantSDNode
*N0C
= isConstOrConstSplat(N0
);
3781 if (N0C
&& N0C
->isNullValue())
3787 return DAG
.getConstant(IsDiv
? 1 : 0, DL
, VT
);
3791 // If this is a boolean op (single-bit element type), we can't have
3792 // division-by-zero or remainder-by-zero, so assume the divisor is 1.
3793 // TODO: Similarly, if we're zero-extending a boolean divisor, then assume
3795 if ((N1C
&& N1C
->isOne()) || (VT
.getScalarType() == MVT::i1
))
3796 return IsDiv
? N0
: DAG
.getConstant(0, DL
, VT
);
3801 SDValue
DAGCombiner::visitSDIV(SDNode
*N
) {
3802 SDValue N0
= N
->getOperand(0);
3803 SDValue N1
= N
->getOperand(1);
3804 EVT VT
= N
->getValueType(0);
3805 EVT CCVT
= getSetCCResultType(VT
);
3809 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
3814 // fold (sdiv c1, c2) -> c1/c2
3815 ConstantSDNode
*N0C
= isConstOrConstSplat(N0
);
3816 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
3817 if (N0C
&& N1C
&& !N0C
->isOpaque() && !N1C
->isOpaque())
3818 return DAG
.FoldConstantArithmetic(ISD::SDIV
, DL
, VT
, N0C
, N1C
);
3819 // fold (sdiv X, -1) -> 0-X
3820 if (N1C
&& N1C
->isAllOnesValue())
3821 return DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
), N0
);
3822 // fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0)
3823 if (N1C
&& N1C
->getAPIntValue().isMinSignedValue())
3824 return DAG
.getSelect(DL
, VT
, DAG
.getSetCC(DL
, CCVT
, N0
, N1
, ISD::SETEQ
),
3825 DAG
.getConstant(1, DL
, VT
),
3826 DAG
.getConstant(0, DL
, VT
));
3828 if (SDValue V
= simplifyDivRem(N
, DAG
))
3831 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
3834 // If we know the sign bits of both operands are zero, strength reduce to a
3835 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
3836 if (DAG
.SignBitIsZero(N1
) && DAG
.SignBitIsZero(N0
))
3837 return DAG
.getNode(ISD::UDIV
, DL
, N1
.getValueType(), N0
, N1
);
3839 if (SDValue V
= visitSDIVLike(N0
, N1
, N
)) {
3840 // If the corresponding remainder node exists, update its users with
3841 // (Dividend - (Quotient * Divisor).
3842 if (SDNode
*RemNode
= DAG
.getNodeIfExists(ISD::SREM
, N
->getVTList(),
3844 SDValue Mul
= DAG
.getNode(ISD::MUL
, DL
, VT
, V
, N1
);
3845 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, Mul
);
3846 AddToWorklist(Mul
.getNode());
3847 AddToWorklist(Sub
.getNode());
3848 CombineTo(RemNode
, Sub
);
3853 // sdiv, srem -> sdivrem
3854 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
3855 // true. Otherwise, we break the simplification logic in visitREM().
3856 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
3857 if (!N1C
|| TLI
.isIntDivCheap(N
->getValueType(0), Attr
))
3858 if (SDValue DivRem
= useDivRem(N
))
3864 SDValue
DAGCombiner::visitSDIVLike(SDValue N0
, SDValue N1
, SDNode
*N
) {
3866 EVT VT
= N
->getValueType(0);
3867 EVT CCVT
= getSetCCResultType(VT
);
3868 unsigned BitWidth
= VT
.getScalarSizeInBits();
3870 // Helper for determining whether a value is a power-2 constant scalar or a
3871 // vector of such elements.
3872 auto IsPowerOfTwo
= [](ConstantSDNode
*C
) {
3873 if (C
->isNullValue() || C
->isOpaque())
3875 if (C
->getAPIntValue().isPowerOf2())
3877 if ((-C
->getAPIntValue()).isPowerOf2())
3882 // fold (sdiv X, pow2) -> simple ops after legalize
3883 // FIXME: We check for the exact bit here because the generic lowering gives
3884 // better results in that case. The target-specific lowering should learn how
3885 // to handle exact sdivs efficiently.
3886 if (!N
->getFlags().hasExact() && ISD::matchUnaryPredicate(N1
, IsPowerOfTwo
)) {
3887 // Target-specific implementation of sdiv x, pow2.
3888 if (SDValue Res
= BuildSDIVPow2(N
))
3891 // Create constants that are functions of the shift amount value.
3892 EVT ShiftAmtTy
= getShiftAmountTy(N0
.getValueType());
3893 SDValue Bits
= DAG
.getConstant(BitWidth
, DL
, ShiftAmtTy
);
3894 SDValue C1
= DAG
.getNode(ISD::CTTZ
, DL
, VT
, N1
);
3895 C1
= DAG
.getZExtOrTrunc(C1
, DL
, ShiftAmtTy
);
3896 SDValue Inexact
= DAG
.getNode(ISD::SUB
, DL
, ShiftAmtTy
, Bits
, C1
);
3897 if (!isConstantOrConstantVector(Inexact
))
3900 // Splat the sign bit into the register
3901 SDValue Sign
= DAG
.getNode(ISD::SRA
, DL
, VT
, N0
,
3902 DAG
.getConstant(BitWidth
- 1, DL
, ShiftAmtTy
));
3903 AddToWorklist(Sign
.getNode());
3905 // Add (N0 < 0) ? abs2 - 1 : 0;
3906 SDValue Srl
= DAG
.getNode(ISD::SRL
, DL
, VT
, Sign
, Inexact
);
3907 AddToWorklist(Srl
.getNode());
3908 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, Srl
);
3909 AddToWorklist(Add
.getNode());
3910 SDValue Sra
= DAG
.getNode(ISD::SRA
, DL
, VT
, Add
, C1
);
3911 AddToWorklist(Sra
.getNode());
3913 // Special case: (sdiv X, 1) -> X
3914 // Special Case: (sdiv X, -1) -> 0-X
3915 SDValue One
= DAG
.getConstant(1, DL
, VT
);
3916 SDValue AllOnes
= DAG
.getAllOnesConstant(DL
, VT
);
3917 SDValue IsOne
= DAG
.getSetCC(DL
, CCVT
, N1
, One
, ISD::SETEQ
);
3918 SDValue IsAllOnes
= DAG
.getSetCC(DL
, CCVT
, N1
, AllOnes
, ISD::SETEQ
);
3919 SDValue IsOneOrAllOnes
= DAG
.getNode(ISD::OR
, DL
, CCVT
, IsOne
, IsAllOnes
);
3920 Sra
= DAG
.getSelect(DL
, VT
, IsOneOrAllOnes
, N0
, Sra
);
3922 // If dividing by a positive value, we're done. Otherwise, the result must
3924 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
3925 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, Zero
, Sra
);
3927 // FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding.
3928 SDValue IsNeg
= DAG
.getSetCC(DL
, CCVT
, N1
, Zero
, ISD::SETLT
);
3929 SDValue Res
= DAG
.getSelect(DL
, VT
, IsNeg
, Sub
, Sra
);
3933 // If integer divide is expensive and we satisfy the requirements, emit an
3934 // alternate sequence. Targets may check function attributes for size/speed
3936 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
3937 if (isConstantOrConstantVector(N1
) &&
3938 !TLI
.isIntDivCheap(N
->getValueType(0), Attr
))
3939 if (SDValue Op
= BuildSDIV(N
))
3945 SDValue
DAGCombiner::visitUDIV(SDNode
*N
) {
3946 SDValue N0
= N
->getOperand(0);
3947 SDValue N1
= N
->getOperand(1);
3948 EVT VT
= N
->getValueType(0);
3949 EVT CCVT
= getSetCCResultType(VT
);
3953 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
3958 // fold (udiv c1, c2) -> c1/c2
3959 ConstantSDNode
*N0C
= isConstOrConstSplat(N0
);
3960 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
3962 if (SDValue Folded
= DAG
.FoldConstantArithmetic(ISD::UDIV
, DL
, VT
,
3965 // fold (udiv X, -1) -> select(X == -1, 1, 0)
3966 if (N1C
&& N1C
->getAPIntValue().isAllOnesValue())
3967 return DAG
.getSelect(DL
, VT
, DAG
.getSetCC(DL
, CCVT
, N0
, N1
, ISD::SETEQ
),
3968 DAG
.getConstant(1, DL
, VT
),
3969 DAG
.getConstant(0, DL
, VT
));
3971 if (SDValue V
= simplifyDivRem(N
, DAG
))
3974 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
3977 if (SDValue V
= visitUDIVLike(N0
, N1
, N
)) {
3978 // If the corresponding remainder node exists, update its users with
3979 // (Dividend - (Quotient * Divisor).
3980 if (SDNode
*RemNode
= DAG
.getNodeIfExists(ISD::UREM
, N
->getVTList(),
3982 SDValue Mul
= DAG
.getNode(ISD::MUL
, DL
, VT
, V
, N1
);
3983 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, Mul
);
3984 AddToWorklist(Mul
.getNode());
3985 AddToWorklist(Sub
.getNode());
3986 CombineTo(RemNode
, Sub
);
3991 // sdiv, srem -> sdivrem
3992 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
3993 // true. Otherwise, we break the simplification logic in visitREM().
3994 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
3995 if (!N1C
|| TLI
.isIntDivCheap(N
->getValueType(0), Attr
))
3996 if (SDValue DivRem
= useDivRem(N
))
4002 SDValue
DAGCombiner::visitUDIVLike(SDValue N0
, SDValue N1
, SDNode
*N
) {
4004 EVT VT
= N
->getValueType(0);
4006 // fold (udiv x, (1 << c)) -> x >>u c
4007 if (isConstantOrConstantVector(N1
, /*NoOpaques*/ true) &&
4008 DAG
.isKnownToBeAPowerOfTwo(N1
)) {
4009 SDValue LogBase2
= BuildLogBase2(N1
, DL
);
4010 AddToWorklist(LogBase2
.getNode());
4012 EVT ShiftVT
= getShiftAmountTy(N0
.getValueType());
4013 SDValue Trunc
= DAG
.getZExtOrTrunc(LogBase2
, DL
, ShiftVT
);
4014 AddToWorklist(Trunc
.getNode());
4015 return DAG
.getNode(ISD::SRL
, DL
, VT
, N0
, Trunc
);
4018 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
4019 if (N1
.getOpcode() == ISD::SHL
) {
4020 SDValue N10
= N1
.getOperand(0);
4021 if (isConstantOrConstantVector(N10
, /*NoOpaques*/ true) &&
4022 DAG
.isKnownToBeAPowerOfTwo(N10
)) {
4023 SDValue LogBase2
= BuildLogBase2(N10
, DL
);
4024 AddToWorklist(LogBase2
.getNode());
4026 EVT ADDVT
= N1
.getOperand(1).getValueType();
4027 SDValue Trunc
= DAG
.getZExtOrTrunc(LogBase2
, DL
, ADDVT
);
4028 AddToWorklist(Trunc
.getNode());
4029 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, ADDVT
, N1
.getOperand(1), Trunc
);
4030 AddToWorklist(Add
.getNode());
4031 return DAG
.getNode(ISD::SRL
, DL
, VT
, N0
, Add
);
4035 // fold (udiv x, c) -> alternate
4036 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
4037 if (isConstantOrConstantVector(N1
) &&
4038 !TLI
.isIntDivCheap(N
->getValueType(0), Attr
))
4039 if (SDValue Op
= BuildUDIV(N
))
4045 // handles ISD::SREM and ISD::UREM
4046 SDValue
DAGCombiner::visitREM(SDNode
*N
) {
4047 unsigned Opcode
= N
->getOpcode();
4048 SDValue N0
= N
->getOperand(0);
4049 SDValue N1
= N
->getOperand(1);
4050 EVT VT
= N
->getValueType(0);
4051 EVT CCVT
= getSetCCResultType(VT
);
4053 bool isSigned
= (Opcode
== ISD::SREM
);
4056 // fold (rem c1, c2) -> c1%c2
4057 ConstantSDNode
*N0C
= isConstOrConstSplat(N0
);
4058 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
4060 if (SDValue Folded
= DAG
.FoldConstantArithmetic(Opcode
, DL
, VT
, N0C
, N1C
))
4062 // fold (urem X, -1) -> select(X == -1, 0, x)
4063 if (!isSigned
&& N1C
&& N1C
->getAPIntValue().isAllOnesValue())
4064 return DAG
.getSelect(DL
, VT
, DAG
.getSetCC(DL
, CCVT
, N0
, N1
, ISD::SETEQ
),
4065 DAG
.getConstant(0, DL
, VT
), N0
);
4067 if (SDValue V
= simplifyDivRem(N
, DAG
))
4070 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
4074 // If we know the sign bits of both operands are zero, strength reduce to a
4075 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
4076 if (DAG
.SignBitIsZero(N1
) && DAG
.SignBitIsZero(N0
))
4077 return DAG
.getNode(ISD::UREM
, DL
, VT
, N0
, N1
);
4079 SDValue NegOne
= DAG
.getAllOnesConstant(DL
, VT
);
4080 if (DAG
.isKnownToBeAPowerOfTwo(N1
)) {
4081 // fold (urem x, pow2) -> (and x, pow2-1)
4082 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N1
, NegOne
);
4083 AddToWorklist(Add
.getNode());
4084 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
, Add
);
4086 if (N1
.getOpcode() == ISD::SHL
&&
4087 DAG
.isKnownToBeAPowerOfTwo(N1
.getOperand(0))) {
4088 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
4089 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N1
, NegOne
);
4090 AddToWorklist(Add
.getNode());
4091 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
, Add
);
4095 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
4097 // If X/C can be simplified by the division-by-constant logic, lower
4098 // X%C to the equivalent of X-X/C*C.
4099 // Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the
4100 // speculative DIV must not cause a DIVREM conversion. We guard against this
4101 // by skipping the simplification if isIntDivCheap(). When div is not cheap,
4102 // combine will not return a DIVREM. Regardless, checking cheapness here
4103 // makes sense since the simplification results in fatter code.
4104 if (DAG
.isKnownNeverZero(N1
) && !TLI
.isIntDivCheap(VT
, Attr
)) {
4105 SDValue OptimizedDiv
=
4106 isSigned
? visitSDIVLike(N0
, N1
, N
) : visitUDIVLike(N0
, N1
, N
);
4107 if (OptimizedDiv
.getNode()) {
4108 // If the equivalent Div node also exists, update its users.
4109 unsigned DivOpcode
= isSigned
? ISD::SDIV
: ISD::UDIV
;
4110 if (SDNode
*DivNode
= DAG
.getNodeIfExists(DivOpcode
, N
->getVTList(),
4112 CombineTo(DivNode
, OptimizedDiv
);
4113 SDValue Mul
= DAG
.getNode(ISD::MUL
, DL
, VT
, OptimizedDiv
, N1
);
4114 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, Mul
);
4115 AddToWorklist(OptimizedDiv
.getNode());
4116 AddToWorklist(Mul
.getNode());
4121 // sdiv, srem -> sdivrem
4122 if (SDValue DivRem
= useDivRem(N
))
4123 return DivRem
.getValue(1);
4128 SDValue
DAGCombiner::visitMULHS(SDNode
*N
) {
4129 SDValue N0
= N
->getOperand(0);
4130 SDValue N1
= N
->getOperand(1);
4131 EVT VT
= N
->getValueType(0);
4134 if (VT
.isVector()) {
4135 // fold (mulhs x, 0) -> 0
4136 if (ISD::isBuildVectorAllZeros(N1
.getNode()))
4138 if (ISD::isBuildVectorAllZeros(N0
.getNode()))
4142 // fold (mulhs x, 0) -> 0
4143 if (isNullConstant(N1
))
4145 // fold (mulhs x, 1) -> (sra x, size(x)-1)
4146 if (isOneConstant(N1
))
4147 return DAG
.getNode(ISD::SRA
, DL
, N0
.getValueType(), N0
,
4148 DAG
.getConstant(N0
.getValueSizeInBits() - 1, DL
,
4149 getShiftAmountTy(N0
.getValueType())));
4151 // fold (mulhs x, undef) -> 0
4152 if (N0
.isUndef() || N1
.isUndef())
4153 return DAG
.getConstant(0, DL
, VT
);
4155 // If the type twice as wide is legal, transform the mulhs to a wider multiply
4157 if (VT
.isSimple() && !VT
.isVector()) {
4158 MVT Simple
= VT
.getSimpleVT();
4159 unsigned SimpleSize
= Simple
.getSizeInBits();
4160 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), SimpleSize
*2);
4161 if (TLI
.isOperationLegal(ISD::MUL
, NewVT
)) {
4162 N0
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, NewVT
, N0
);
4163 N1
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, NewVT
, N1
);
4164 N1
= DAG
.getNode(ISD::MUL
, DL
, NewVT
, N0
, N1
);
4165 N1
= DAG
.getNode(ISD::SRL
, DL
, NewVT
, N1
,
4166 DAG
.getConstant(SimpleSize
, DL
,
4167 getShiftAmountTy(N1
.getValueType())));
4168 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, N1
);
4175 SDValue
DAGCombiner::visitMULHU(SDNode
*N
) {
4176 SDValue N0
= N
->getOperand(0);
4177 SDValue N1
= N
->getOperand(1);
4178 EVT VT
= N
->getValueType(0);
4181 if (VT
.isVector()) {
4182 // fold (mulhu x, 0) -> 0
4183 if (ISD::isBuildVectorAllZeros(N1
.getNode()))
4185 if (ISD::isBuildVectorAllZeros(N0
.getNode()))
4189 // fold (mulhu x, 0) -> 0
4190 if (isNullConstant(N1
))
4192 // fold (mulhu x, 1) -> 0
4193 if (isOneConstant(N1
))
4194 return DAG
.getConstant(0, DL
, N0
.getValueType());
4195 // fold (mulhu x, undef) -> 0
4196 if (N0
.isUndef() || N1
.isUndef())
4197 return DAG
.getConstant(0, DL
, VT
);
4199 // fold (mulhu x, (1 << c)) -> x >> (bitwidth - c)
4200 if (isConstantOrConstantVector(N1
, /*NoOpaques*/ true) &&
4201 DAG
.isKnownToBeAPowerOfTwo(N1
) && hasOperation(ISD::SRL
, VT
)) {
4202 unsigned NumEltBits
= VT
.getScalarSizeInBits();
4203 SDValue LogBase2
= BuildLogBase2(N1
, DL
);
4204 SDValue SRLAmt
= DAG
.getNode(
4205 ISD::SUB
, DL
, VT
, DAG
.getConstant(NumEltBits
, DL
, VT
), LogBase2
);
4206 EVT ShiftVT
= getShiftAmountTy(N0
.getValueType());
4207 SDValue Trunc
= DAG
.getZExtOrTrunc(SRLAmt
, DL
, ShiftVT
);
4208 return DAG
.getNode(ISD::SRL
, DL
, VT
, N0
, Trunc
);
4211 // If the type twice as wide is legal, transform the mulhu to a wider multiply
4213 if (VT
.isSimple() && !VT
.isVector()) {
4214 MVT Simple
= VT
.getSimpleVT();
4215 unsigned SimpleSize
= Simple
.getSizeInBits();
4216 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), SimpleSize
*2);
4217 if (TLI
.isOperationLegal(ISD::MUL
, NewVT
)) {
4218 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, NewVT
, N0
);
4219 N1
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, NewVT
, N1
);
4220 N1
= DAG
.getNode(ISD::MUL
, DL
, NewVT
, N0
, N1
);
4221 N1
= DAG
.getNode(ISD::SRL
, DL
, NewVT
, N1
,
4222 DAG
.getConstant(SimpleSize
, DL
,
4223 getShiftAmountTy(N1
.getValueType())));
4224 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, N1
);
4231 /// Perform optimizations common to nodes that compute two values. LoOp and HiOp
4232 /// give the opcodes for the two computations that are being performed. Return
4233 /// true if a simplification was made.
4234 SDValue
DAGCombiner::SimplifyNodeWithTwoResults(SDNode
*N
, unsigned LoOp
,
4236 // If the high half is not needed, just compute the low half.
4237 bool HiExists
= N
->hasAnyUseOfValue(1);
4238 if (!HiExists
&& (!LegalOperations
||
4239 TLI
.isOperationLegalOrCustom(LoOp
, N
->getValueType(0)))) {
4240 SDValue Res
= DAG
.getNode(LoOp
, SDLoc(N
), N
->getValueType(0), N
->ops());
4241 return CombineTo(N
, Res
, Res
);
4244 // If the low half is not needed, just compute the high half.
4245 bool LoExists
= N
->hasAnyUseOfValue(0);
4246 if (!LoExists
&& (!LegalOperations
||
4247 TLI
.isOperationLegalOrCustom(HiOp
, N
->getValueType(1)))) {
4248 SDValue Res
= DAG
.getNode(HiOp
, SDLoc(N
), N
->getValueType(1), N
->ops());
4249 return CombineTo(N
, Res
, Res
);
4252 // If both halves are used, return as it is.
4253 if (LoExists
&& HiExists
)
4256 // If the two computed results can be simplified separately, separate them.
4258 SDValue Lo
= DAG
.getNode(LoOp
, SDLoc(N
), N
->getValueType(0), N
->ops());
4259 AddToWorklist(Lo
.getNode());
4260 SDValue LoOpt
= combine(Lo
.getNode());
4261 if (LoOpt
.getNode() && LoOpt
.getNode() != Lo
.getNode() &&
4262 (!LegalOperations
||
4263 TLI
.isOperationLegalOrCustom(LoOpt
.getOpcode(), LoOpt
.getValueType())))
4264 return CombineTo(N
, LoOpt
, LoOpt
);
4268 SDValue Hi
= DAG
.getNode(HiOp
, SDLoc(N
), N
->getValueType(1), N
->ops());
4269 AddToWorklist(Hi
.getNode());
4270 SDValue HiOpt
= combine(Hi
.getNode());
4271 if (HiOpt
.getNode() && HiOpt
!= Hi
&&
4272 (!LegalOperations
||
4273 TLI
.isOperationLegalOrCustom(HiOpt
.getOpcode(), HiOpt
.getValueType())))
4274 return CombineTo(N
, HiOpt
, HiOpt
);
4280 SDValue
DAGCombiner::visitSMUL_LOHI(SDNode
*N
) {
4281 if (SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::MUL
, ISD::MULHS
))
4284 EVT VT
= N
->getValueType(0);
4287 // If the type is twice as wide is legal, transform the mulhu to a wider
4288 // multiply plus a shift.
4289 if (VT
.isSimple() && !VT
.isVector()) {
4290 MVT Simple
= VT
.getSimpleVT();
4291 unsigned SimpleSize
= Simple
.getSizeInBits();
4292 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), SimpleSize
*2);
4293 if (TLI
.isOperationLegal(ISD::MUL
, NewVT
)) {
4294 SDValue Lo
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, NewVT
, N
->getOperand(0));
4295 SDValue Hi
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, NewVT
, N
->getOperand(1));
4296 Lo
= DAG
.getNode(ISD::MUL
, DL
, NewVT
, Lo
, Hi
);
4297 // Compute the high part as N1.
4298 Hi
= DAG
.getNode(ISD::SRL
, DL
, NewVT
, Lo
,
4299 DAG
.getConstant(SimpleSize
, DL
,
4300 getShiftAmountTy(Lo
.getValueType())));
4301 Hi
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, Hi
);
4302 // Compute the low part as N0.
4303 Lo
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, Lo
);
4304 return CombineTo(N
, Lo
, Hi
);
4311 SDValue
DAGCombiner::visitUMUL_LOHI(SDNode
*N
) {
4312 if (SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::MUL
, ISD::MULHU
))
4315 EVT VT
= N
->getValueType(0);
4318 // If the type is twice as wide is legal, transform the mulhu to a wider
4319 // multiply plus a shift.
4320 if (VT
.isSimple() && !VT
.isVector()) {
4321 MVT Simple
= VT
.getSimpleVT();
4322 unsigned SimpleSize
= Simple
.getSizeInBits();
4323 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), SimpleSize
*2);
4324 if (TLI
.isOperationLegal(ISD::MUL
, NewVT
)) {
4325 SDValue Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, NewVT
, N
->getOperand(0));
4326 SDValue Hi
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, NewVT
, N
->getOperand(1));
4327 Lo
= DAG
.getNode(ISD::MUL
, DL
, NewVT
, Lo
, Hi
);
4328 // Compute the high part as N1.
4329 Hi
= DAG
.getNode(ISD::SRL
, DL
, NewVT
, Lo
,
4330 DAG
.getConstant(SimpleSize
, DL
,
4331 getShiftAmountTy(Lo
.getValueType())));
4332 Hi
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, Hi
);
4333 // Compute the low part as N0.
4334 Lo
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, Lo
);
4335 return CombineTo(N
, Lo
, Hi
);
4342 SDValue
DAGCombiner::visitMULO(SDNode
*N
) {
4343 bool IsSigned
= (ISD::SMULO
== N
->getOpcode());
4345 // (mulo x, 2) -> (addo x, x)
4346 if (ConstantSDNode
*C2
= isConstOrConstSplat(N
->getOperand(1)))
4347 if (C2
->getAPIntValue() == 2)
4348 return DAG
.getNode(IsSigned
? ISD::SADDO
: ISD::UADDO
, SDLoc(N
),
4349 N
->getVTList(), N
->getOperand(0), N
->getOperand(0));
4354 SDValue
DAGCombiner::visitIMINMAX(SDNode
*N
) {
4355 SDValue N0
= N
->getOperand(0);
4356 SDValue N1
= N
->getOperand(1);
4357 EVT VT
= N0
.getValueType();
4361 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
4364 // fold operation with constant operands.
4365 ConstantSDNode
*N0C
= getAsNonOpaqueConstant(N0
);
4366 ConstantSDNode
*N1C
= getAsNonOpaqueConstant(N1
);
4368 return DAG
.FoldConstantArithmetic(N
->getOpcode(), SDLoc(N
), VT
, N0C
, N1C
);
4370 // canonicalize constant to RHS
4371 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
4372 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
4373 return DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
, N1
, N0
);
4375 // Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX.
4376 // Only do this if the current op isn't legal and the flipped is.
4377 unsigned Opcode
= N
->getOpcode();
4378 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4379 if (!TLI
.isOperationLegal(Opcode
, VT
) &&
4380 (N0
.isUndef() || DAG
.SignBitIsZero(N0
)) &&
4381 (N1
.isUndef() || DAG
.SignBitIsZero(N1
))) {
4384 case ISD::SMIN
: AltOpcode
= ISD::UMIN
; break;
4385 case ISD::SMAX
: AltOpcode
= ISD::UMAX
; break;
4386 case ISD::UMIN
: AltOpcode
= ISD::SMIN
; break;
4387 case ISD::UMAX
: AltOpcode
= ISD::SMAX
; break;
4388 default: llvm_unreachable("Unknown MINMAX opcode");
4390 if (TLI
.isOperationLegal(AltOpcode
, VT
))
4391 return DAG
.getNode(AltOpcode
, SDLoc(N
), VT
, N0
, N1
);
4397 /// If this is a bitwise logic instruction and both operands have the same
4398 /// opcode, try to sink the other opcode after the logic instruction.
4399 SDValue
DAGCombiner::hoistLogicOpWithSameOpcodeHands(SDNode
*N
) {
4400 SDValue N0
= N
->getOperand(0), N1
= N
->getOperand(1);
4401 EVT VT
= N0
.getValueType();
4402 unsigned LogicOpcode
= N
->getOpcode();
4403 unsigned HandOpcode
= N0
.getOpcode();
4404 assert((LogicOpcode
== ISD::AND
|| LogicOpcode
== ISD::OR
||
4405 LogicOpcode
== ISD::XOR
) && "Expected logic opcode");
4406 assert(HandOpcode
== N1
.getOpcode() && "Bad input!");
4408 // Bail early if none of these transforms apply.
4409 if (N0
.getNumOperands() == 0)
4412 // FIXME: We should check number of uses of the operands to not increase
4413 // the instruction count for all transforms.
4415 // Handle size-changing casts.
4416 SDValue X
= N0
.getOperand(0);
4417 SDValue Y
= N1
.getOperand(0);
4418 EVT XVT
= X
.getValueType();
4420 if (HandOpcode
== ISD::ANY_EXTEND
|| HandOpcode
== ISD::ZERO_EXTEND
||
4421 HandOpcode
== ISD::SIGN_EXTEND
) {
4422 // If both operands have other uses, this transform would create extra
4423 // instructions without eliminating anything.
4424 if (!N0
.hasOneUse() && !N1
.hasOneUse())
4426 // We need matching integer source types.
4427 if (XVT
!= Y
.getValueType())
4429 // Don't create an illegal op during or after legalization. Don't ever
4430 // create an unsupported vector op.
4431 if ((VT
.isVector() || LegalOperations
) &&
4432 !TLI
.isOperationLegalOrCustom(LogicOpcode
, XVT
))
4434 // Avoid infinite looping with PromoteIntBinOp.
4435 // TODO: Should we apply desirable/legal constraints to all opcodes?
4436 if (HandOpcode
== ISD::ANY_EXTEND
&& LegalTypes
&&
4437 !TLI
.isTypeDesirableForOp(LogicOpcode
, XVT
))
4439 // logic_op (hand_op X), (hand_op Y) --> hand_op (logic_op X, Y)
4440 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, XVT
, X
, Y
);
4441 return DAG
.getNode(HandOpcode
, DL
, VT
, Logic
);
4444 // logic_op (truncate x), (truncate y) --> truncate (logic_op x, y)
4445 if (HandOpcode
== ISD::TRUNCATE
) {
4446 // If both operands have other uses, this transform would create extra
4447 // instructions without eliminating anything.
4448 if (!N0
.hasOneUse() && !N1
.hasOneUse())
4450 // We need matching source types.
4451 if (XVT
!= Y
.getValueType())
4453 // Don't create an illegal op during or after legalization.
4454 if (LegalOperations
&& !TLI
.isOperationLegal(LogicOpcode
, XVT
))
4456 // Be extra careful sinking truncate. If it's free, there's no benefit in
4457 // widening a binop. Also, don't create a logic op on an illegal type.
4458 if (TLI
.isZExtFree(VT
, XVT
) && TLI
.isTruncateFree(XVT
, VT
))
4460 if (!TLI
.isTypeLegal(XVT
))
4462 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, XVT
, X
, Y
);
4463 return DAG
.getNode(HandOpcode
, DL
, VT
, Logic
);
4466 // For binops SHL/SRL/SRA/AND:
4467 // logic_op (OP x, z), (OP y, z) --> OP (logic_op x, y), z
4468 if ((HandOpcode
== ISD::SHL
|| HandOpcode
== ISD::SRL
||
4469 HandOpcode
== ISD::SRA
|| HandOpcode
== ISD::AND
) &&
4470 N0
.getOperand(1) == N1
.getOperand(1)) {
4471 // If either operand has other uses, this transform is not an improvement.
4472 if (!N0
.hasOneUse() || !N1
.hasOneUse())
4474 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, XVT
, X
, Y
);
4475 return DAG
.getNode(HandOpcode
, DL
, VT
, Logic
, N0
.getOperand(1));
4478 // Unary ops: logic_op (bswap x), (bswap y) --> bswap (logic_op x, y)
4479 if (HandOpcode
== ISD::BSWAP
) {
4480 // If either operand has other uses, this transform is not an improvement.
4481 if (!N0
.hasOneUse() || !N1
.hasOneUse())
4483 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, XVT
, X
, Y
);
4484 return DAG
.getNode(HandOpcode
, DL
, VT
, Logic
);
4487 // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
4488 // Only perform this optimization up until type legalization, before
4489 // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
4490 // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
4491 // we don't want to undo this promotion.
4492 // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
4494 if ((HandOpcode
== ISD::BITCAST
|| HandOpcode
== ISD::SCALAR_TO_VECTOR
) &&
4495 Level
<= AfterLegalizeTypes
) {
4496 // Input types must be integer and the same.
4497 if (XVT
.isInteger() && XVT
== Y
.getValueType()) {
4498 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, XVT
, X
, Y
);
4499 return DAG
.getNode(HandOpcode
, DL
, VT
, Logic
);
4503 // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
4504 // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
4505 // If both shuffles use the same mask, and both shuffle within a single
4506 // vector, then it is worthwhile to move the swizzle after the operation.
4507 // The type-legalizer generates this pattern when loading illegal
4508 // vector types from memory. In many cases this allows additional shuffle
4510 // There are other cases where moving the shuffle after the xor/and/or
4511 // is profitable even if shuffles don't perform a swizzle.
4512 // If both shuffles use the same mask, and both shuffles have the same first
4513 // or second operand, then it might still be profitable to move the shuffle
4514 // after the xor/and/or operation.
4515 if (HandOpcode
== ISD::VECTOR_SHUFFLE
&& Level
< AfterLegalizeDAG
) {
4516 auto *SVN0
= cast
<ShuffleVectorSDNode
>(N0
);
4517 auto *SVN1
= cast
<ShuffleVectorSDNode
>(N1
);
4518 assert(X
.getValueType() == Y
.getValueType() &&
4519 "Inputs to shuffles are not the same type");
4521 // Check that both shuffles use the same mask. The masks are known to be of
4522 // the same length because the result vector type is the same.
4523 // Check also that shuffles have only one use to avoid introducing extra
4525 if (!SVN0
->hasOneUse() || !SVN1
->hasOneUse() ||
4526 !SVN0
->getMask().equals(SVN1
->getMask()))
4529 // Don't try to fold this node if it requires introducing a
4530 // build vector of all zeros that might be illegal at this stage.
4531 SDValue ShOp
= N0
.getOperand(1);
4532 if (LogicOpcode
== ISD::XOR
&& !ShOp
.isUndef())
4533 ShOp
= tryFoldToZero(DL
, TLI
, VT
, DAG
, LegalOperations
);
4535 // (logic_op (shuf (A, C), shuf (B, C))) --> shuf (logic_op (A, B), C)
4536 if (N0
.getOperand(1) == N1
.getOperand(1) && ShOp
.getNode()) {
4537 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, VT
,
4538 N0
.getOperand(0), N1
.getOperand(0));
4539 return DAG
.getVectorShuffle(VT
, DL
, Logic
, ShOp
, SVN0
->getMask());
4542 // Don't try to fold this node if it requires introducing a
4543 // build vector of all zeros that might be illegal at this stage.
4544 ShOp
= N0
.getOperand(0);
4545 if (LogicOpcode
== ISD::XOR
&& !ShOp
.isUndef())
4546 ShOp
= tryFoldToZero(DL
, TLI
, VT
, DAG
, LegalOperations
);
4548 // (logic_op (shuf (C, A), shuf (C, B))) --> shuf (C, logic_op (A, B))
4549 if (N0
.getOperand(0) == N1
.getOperand(0) && ShOp
.getNode()) {
4550 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, VT
, N0
.getOperand(1),
4552 return DAG
.getVectorShuffle(VT
, DL
, ShOp
, Logic
, SVN0
->getMask());
4559 /// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient.
4560 SDValue
DAGCombiner::foldLogicOfSetCCs(bool IsAnd
, SDValue N0
, SDValue N1
,
4562 SDValue LL
, LR
, RL
, RR
, N0CC
, N1CC
;
4563 if (!isSetCCEquivalent(N0
, LL
, LR
, N0CC
) ||
4564 !isSetCCEquivalent(N1
, RL
, RR
, N1CC
))
4567 assert(N0
.getValueType() == N1
.getValueType() &&
4568 "Unexpected operand types for bitwise logic op");
4569 assert(LL
.getValueType() == LR
.getValueType() &&
4570 RL
.getValueType() == RR
.getValueType() &&
4571 "Unexpected operand types for setcc");
4573 // If we're here post-legalization or the logic op type is not i1, the logic
4574 // op type must match a setcc result type. Also, all folds require new
4575 // operations on the left and right operands, so those types must match.
4576 EVT VT
= N0
.getValueType();
4577 EVT OpVT
= LL
.getValueType();
4578 if (LegalOperations
|| VT
.getScalarType() != MVT::i1
)
4579 if (VT
!= getSetCCResultType(OpVT
))
4581 if (OpVT
!= RL
.getValueType())
4584 ISD::CondCode CC0
= cast
<CondCodeSDNode
>(N0CC
)->get();
4585 ISD::CondCode CC1
= cast
<CondCodeSDNode
>(N1CC
)->get();
4586 bool IsInteger
= OpVT
.isInteger();
4587 if (LR
== RR
&& CC0
== CC1
&& IsInteger
) {
4588 bool IsZero
= isNullOrNullSplat(LR
);
4589 bool IsNeg1
= isAllOnesOrAllOnesSplat(LR
);
4592 bool AndEqZero
= IsAnd
&& CC1
== ISD::SETEQ
&& IsZero
;
4593 // All sign bits clear?
4594 bool AndGtNeg1
= IsAnd
&& CC1
== ISD::SETGT
&& IsNeg1
;
4596 bool OrNeZero
= !IsAnd
&& CC1
== ISD::SETNE
&& IsZero
;
4597 // Any sign bits set?
4598 bool OrLtZero
= !IsAnd
&& CC1
== ISD::SETLT
&& IsZero
;
4600 // (and (seteq X, 0), (seteq Y, 0)) --> (seteq (or X, Y), 0)
4601 // (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1)
4602 // (or (setne X, 0), (setne Y, 0)) --> (setne (or X, Y), 0)
4603 // (or (setlt X, 0), (setlt Y, 0)) --> (setlt (or X, Y), 0)
4604 if (AndEqZero
|| AndGtNeg1
|| OrNeZero
|| OrLtZero
) {
4605 SDValue Or
= DAG
.getNode(ISD::OR
, SDLoc(N0
), OpVT
, LL
, RL
);
4606 AddToWorklist(Or
.getNode());
4607 return DAG
.getSetCC(DL
, VT
, Or
, LR
, CC1
);
4611 bool AndEqNeg1
= IsAnd
&& CC1
== ISD::SETEQ
&& IsNeg1
;
4612 // All sign bits set?
4613 bool AndLtZero
= IsAnd
&& CC1
== ISD::SETLT
&& IsZero
;
4615 bool OrNeNeg1
= !IsAnd
&& CC1
== ISD::SETNE
&& IsNeg1
;
4616 // Any sign bits clear?
4617 bool OrGtNeg1
= !IsAnd
&& CC1
== ISD::SETGT
&& IsNeg1
;
4619 // (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1)
4620 // (and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0)
4621 // (or (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1)
4622 // (or (setgt X, -1), (setgt Y -1)) --> (setgt (and X, Y), -1)
4623 if (AndEqNeg1
|| AndLtZero
|| OrNeNeg1
|| OrGtNeg1
) {
4624 SDValue And
= DAG
.getNode(ISD::AND
, SDLoc(N0
), OpVT
, LL
, RL
);
4625 AddToWorklist(And
.getNode());
4626 return DAG
.getSetCC(DL
, VT
, And
, LR
, CC1
);
4630 // TODO: What is the 'or' equivalent of this fold?
4631 // (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2)
4632 if (IsAnd
&& LL
== RL
&& CC0
== CC1
&& OpVT
.getScalarSizeInBits() > 1 &&
4633 IsInteger
&& CC0
== ISD::SETNE
&&
4634 ((isNullConstant(LR
) && isAllOnesConstant(RR
)) ||
4635 (isAllOnesConstant(LR
) && isNullConstant(RR
)))) {
4636 SDValue One
= DAG
.getConstant(1, DL
, OpVT
);
4637 SDValue Two
= DAG
.getConstant(2, DL
, OpVT
);
4638 SDValue Add
= DAG
.getNode(ISD::ADD
, SDLoc(N0
), OpVT
, LL
, One
);
4639 AddToWorklist(Add
.getNode());
4640 return DAG
.getSetCC(DL
, VT
, Add
, Two
, ISD::SETUGE
);
4643 // Try more general transforms if the predicates match and the only user of
4644 // the compares is the 'and' or 'or'.
4645 if (IsInteger
&& TLI
.convertSetCCLogicToBitwiseLogic(OpVT
) && CC0
== CC1
&&
4646 N0
.hasOneUse() && N1
.hasOneUse()) {
4647 // and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
4648 // or (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0
4649 if ((IsAnd
&& CC1
== ISD::SETEQ
) || (!IsAnd
&& CC1
== ISD::SETNE
)) {
4650 SDValue XorL
= DAG
.getNode(ISD::XOR
, SDLoc(N0
), OpVT
, LL
, LR
);
4651 SDValue XorR
= DAG
.getNode(ISD::XOR
, SDLoc(N1
), OpVT
, RL
, RR
);
4652 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, OpVT
, XorL
, XorR
);
4653 SDValue Zero
= DAG
.getConstant(0, DL
, OpVT
);
4654 return DAG
.getSetCC(DL
, VT
, Or
, Zero
, CC1
);
4657 // Turn compare of constants whose difference is 1 bit into add+and+setcc.
4658 // TODO - support non-uniform vector amounts.
4659 if ((IsAnd
&& CC1
== ISD::SETNE
) || (!IsAnd
&& CC1
== ISD::SETEQ
)) {
4660 // Match a shared variable operand and 2 non-opaque constant operands.
4661 ConstantSDNode
*C0
= isConstOrConstSplat(LR
);
4662 ConstantSDNode
*C1
= isConstOrConstSplat(RR
);
4663 if (LL
== RL
&& C0
&& C1
&& !C0
->isOpaque() && !C1
->isOpaque()) {
4664 // Canonicalize larger constant as C0.
4665 if (C1
->getAPIntValue().ugt(C0
->getAPIntValue()))
4668 // The difference of the constants must be a single bit.
4669 const APInt
&C0Val
= C0
->getAPIntValue();
4670 const APInt
&C1Val
= C1
->getAPIntValue();
4671 if ((C0Val
- C1Val
).isPowerOf2()) {
4672 // and/or (setcc X, C0, ne), (setcc X, C1, ne/eq) -->
4673 // setcc ((add X, -C1), ~(C0 - C1)), 0, ne/eq
4674 SDValue OffsetC
= DAG
.getConstant(-C1Val
, DL
, OpVT
);
4675 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, OpVT
, LL
, OffsetC
);
4676 SDValue MaskC
= DAG
.getConstant(~(C0Val
- C1Val
), DL
, OpVT
);
4677 SDValue And
= DAG
.getNode(ISD::AND
, DL
, OpVT
, Add
, MaskC
);
4678 SDValue Zero
= DAG
.getConstant(0, DL
, OpVT
);
4679 return DAG
.getSetCC(DL
, VT
, And
, Zero
, CC0
);
4685 // Canonicalize equivalent operands to LL == RL.
4686 if (LL
== RR
&& LR
== RL
) {
4687 CC1
= ISD::getSetCCSwappedOperands(CC1
);
4691 // (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
4692 // (or (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
4693 if (LL
== RL
&& LR
== RR
) {
4694 ISD::CondCode NewCC
= IsAnd
? ISD::getSetCCAndOperation(CC0
, CC1
, IsInteger
)
4695 : ISD::getSetCCOrOperation(CC0
, CC1
, IsInteger
);
4696 if (NewCC
!= ISD::SETCC_INVALID
&&
4697 (!LegalOperations
||
4698 (TLI
.isCondCodeLegal(NewCC
, LL
.getSimpleValueType()) &&
4699 TLI
.isOperationLegal(ISD::SETCC
, OpVT
))))
4700 return DAG
.getSetCC(DL
, VT
, LL
, LR
, NewCC
);
4706 /// This contains all DAGCombine rules which reduce two values combined by
4707 /// an And operation to a single value. This makes them reusable in the context
4708 /// of visitSELECT(). Rules involving constants are not included as
4709 /// visitSELECT() already handles those cases.
4710 SDValue
DAGCombiner::visitANDLike(SDValue N0
, SDValue N1
, SDNode
*N
) {
4711 EVT VT
= N1
.getValueType();
4714 // fold (and x, undef) -> 0
4715 if (N0
.isUndef() || N1
.isUndef())
4716 return DAG
.getConstant(0, DL
, VT
);
4718 if (SDValue V
= foldLogicOfSetCCs(true, N0
, N1
, DL
))
4721 if (N0
.getOpcode() == ISD::ADD
&& N1
.getOpcode() == ISD::SRL
&&
4722 VT
.getSizeInBits() <= 64) {
4723 if (ConstantSDNode
*ADDI
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
4724 if (ConstantSDNode
*SRLI
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1))) {
4725 // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
4726 // immediate for an add, but it is legal if its top c2 bits are set,
4727 // transform the ADD so the immediate doesn't need to be materialized
4729 APInt ADDC
= ADDI
->getAPIntValue();
4730 APInt SRLC
= SRLI
->getAPIntValue();
4731 if (ADDC
.getMinSignedBits() <= 64 &&
4732 SRLC
.ult(VT
.getSizeInBits()) &&
4733 !TLI
.isLegalAddImmediate(ADDC
.getSExtValue())) {
4734 APInt Mask
= APInt::getHighBitsSet(VT
.getSizeInBits(),
4735 SRLC
.getZExtValue());
4736 if (DAG
.MaskedValueIsZero(N0
.getOperand(1), Mask
)) {
4738 if (TLI
.isLegalAddImmediate(ADDC
.getSExtValue())) {
4741 DAG
.getNode(ISD::ADD
, DL0
, VT
,
4742 N0
.getOperand(0), DAG
.getConstant(ADDC
, DL
, VT
));
4743 CombineTo(N0
.getNode(), NewAdd
);
4744 // Return N so it doesn't get rechecked!
4745 return SDValue(N
, 0);
4753 // Reduce bit extract of low half of an integer to the narrower type.
4754 // (and (srl i64:x, K), KMask) ->
4755 // (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask)
4756 if (N0
.getOpcode() == ISD::SRL
&& N0
.hasOneUse()) {
4757 if (ConstantSDNode
*CAnd
= dyn_cast
<ConstantSDNode
>(N1
)) {
4758 if (ConstantSDNode
*CShift
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
4759 unsigned Size
= VT
.getSizeInBits();
4760 const APInt
&AndMask
= CAnd
->getAPIntValue();
4761 unsigned ShiftBits
= CShift
->getZExtValue();
4763 // Bail out, this node will probably disappear anyway.
4767 unsigned MaskBits
= AndMask
.countTrailingOnes();
4768 EVT HalfVT
= EVT::getIntegerVT(*DAG
.getContext(), Size
/ 2);
4770 if (AndMask
.isMask() &&
4771 // Required bits must not span the two halves of the integer and
4772 // must fit in the half size type.
4773 (ShiftBits
+ MaskBits
<= Size
/ 2) &&
4774 TLI
.isNarrowingProfitable(VT
, HalfVT
) &&
4775 TLI
.isTypeDesirableForOp(ISD::AND
, HalfVT
) &&
4776 TLI
.isTypeDesirableForOp(ISD::SRL
, HalfVT
) &&
4777 TLI
.isTruncateFree(VT
, HalfVT
) &&
4778 TLI
.isZExtFree(HalfVT
, VT
)) {
4779 // The isNarrowingProfitable is to avoid regressions on PPC and
4780 // AArch64 which match a few 64-bit bit insert / bit extract patterns
4781 // on downstream users of this. Those patterns could probably be
4782 // extended to handle extensions mixed in.
4785 assert(MaskBits
<= Size
);
4787 // Extracting the highest bit of the low half.
4788 EVT ShiftVT
= TLI
.getShiftAmountTy(HalfVT
, DAG
.getDataLayout());
4789 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SL
, HalfVT
,
4792 SDValue NewMask
= DAG
.getConstant(AndMask
.trunc(Size
/ 2), SL
, HalfVT
);
4793 SDValue ShiftK
= DAG
.getConstant(ShiftBits
, SL
, ShiftVT
);
4794 SDValue Shift
= DAG
.getNode(ISD::SRL
, SL
, HalfVT
, Trunc
, ShiftK
);
4795 SDValue And
= DAG
.getNode(ISD::AND
, SL
, HalfVT
, Shift
, NewMask
);
4796 return DAG
.getNode(ISD::ZERO_EXTEND
, SL
, VT
, And
);
4805 bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode
*AndC
, LoadSDNode
*LoadN
,
4806 EVT LoadResultTy
, EVT
&ExtVT
) {
4807 if (!AndC
->getAPIntValue().isMask())
4810 unsigned ActiveBits
= AndC
->getAPIntValue().countTrailingOnes();
4812 ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), ActiveBits
);
4813 EVT LoadedVT
= LoadN
->getMemoryVT();
4815 if (ExtVT
== LoadedVT
&&
4816 (!LegalOperations
||
4817 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, LoadResultTy
, ExtVT
))) {
4818 // ZEXTLOAD will match without needing to change the size of the value being
4823 // Do not change the width of a volatile load.
4824 if (LoadN
->isVolatile())
4827 // Do not generate loads of non-round integer types since these can
4828 // be expensive (and would be wrong if the type is not byte sized).
4829 if (!LoadedVT
.bitsGT(ExtVT
) || !ExtVT
.isRound())
4832 if (LegalOperations
&&
4833 !TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, LoadResultTy
, ExtVT
))
4836 if (!TLI
.shouldReduceLoadWidth(LoadN
, ISD::ZEXTLOAD
, ExtVT
))
4842 bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode
*LDST
,
4843 ISD::LoadExtType ExtType
, EVT
&MemVT
,
4847 // Only allow byte offsets.
4851 // Do not generate loads of non-round integer types since these can
4852 // be expensive (and would be wrong if the type is not byte sized).
4853 if (!MemVT
.isRound())
4856 // Don't change the width of a volatile load.
4857 if (LDST
->isVolatile())
4860 // Verify that we are actually reducing a load width here.
4861 if (LDST
->getMemoryVT().getSizeInBits() < MemVT
.getSizeInBits())
4864 // Ensure that this isn't going to produce an unsupported unaligned access.
4866 !TLI
.allowsMemoryAccess(*DAG
.getContext(), DAG
.getDataLayout(), MemVT
,
4867 LDST
->getAddressSpace(), ShAmt
/ 8,
4868 LDST
->getMemOperand()->getFlags()))
4871 // It's not possible to generate a constant of extended or untyped type.
4872 EVT PtrType
= LDST
->getBasePtr().getValueType();
4873 if (PtrType
== MVT::Untyped
|| PtrType
.isExtended())
4876 if (isa
<LoadSDNode
>(LDST
)) {
4877 LoadSDNode
*Load
= cast
<LoadSDNode
>(LDST
);
4878 // Don't transform one with multiple uses, this would require adding a new
4880 if (!SDValue(Load
, 0).hasOneUse())
4883 if (LegalOperations
&&
4884 !TLI
.isLoadExtLegal(ExtType
, Load
->getValueType(0), MemVT
))
4887 // For the transform to be legal, the load must produce only two values
4888 // (the value loaded and the chain). Don't transform a pre-increment
4889 // load, for example, which produces an extra value. Otherwise the
4890 // transformation is not equivalent, and the downstream logic to replace
4891 // uses gets things wrong.
4892 if (Load
->getNumValues() > 2)
4895 // If the load that we're shrinking is an extload and we're not just
4896 // discarding the extension we can't simply shrink the load. Bail.
4897 // TODO: It would be possible to merge the extensions in some cases.
4898 if (Load
->getExtensionType() != ISD::NON_EXTLOAD
&&
4899 Load
->getMemoryVT().getSizeInBits() < MemVT
.getSizeInBits() + ShAmt
)
4902 if (!TLI
.shouldReduceLoadWidth(Load
, ExtType
, MemVT
))
4905 assert(isa
<StoreSDNode
>(LDST
) && "It is not a Load nor a Store SDNode");
4906 StoreSDNode
*Store
= cast
<StoreSDNode
>(LDST
);
4907 // Can't write outside the original store
4908 if (Store
->getMemoryVT().getSizeInBits() < MemVT
.getSizeInBits() + ShAmt
)
4911 if (LegalOperations
&&
4912 !TLI
.isTruncStoreLegal(Store
->getValue().getValueType(), MemVT
))
4918 bool DAGCombiner::SearchForAndLoads(SDNode
*N
,
4919 SmallVectorImpl
<LoadSDNode
*> &Loads
,
4920 SmallPtrSetImpl
<SDNode
*> &NodesWithConsts
,
4921 ConstantSDNode
*Mask
,
4922 SDNode
*&NodeToMask
) {
4923 // Recursively search for the operands, looking for loads which can be
4925 for (SDValue Op
: N
->op_values()) {
4926 if (Op
.getValueType().isVector())
4929 // Some constants may need fixing up later if they are too large.
4930 if (auto *C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4931 if ((N
->getOpcode() == ISD::OR
|| N
->getOpcode() == ISD::XOR
) &&
4932 (Mask
->getAPIntValue() & C
->getAPIntValue()) != C
->getAPIntValue())
4933 NodesWithConsts
.insert(N
);
4937 if (!Op
.hasOneUse())
4940 switch(Op
.getOpcode()) {
4942 auto *Load
= cast
<LoadSDNode
>(Op
);
4944 if (isAndLoadExtLoad(Mask
, Load
, Load
->getValueType(0), ExtVT
) &&
4945 isLegalNarrowLdSt(Load
, ISD::ZEXTLOAD
, ExtVT
)) {
4947 // ZEXTLOAD is already small enough.
4948 if (Load
->getExtensionType() == ISD::ZEXTLOAD
&&
4949 ExtVT
.bitsGE(Load
->getMemoryVT()))
4952 // Use LE to convert equal sized loads to zext.
4953 if (ExtVT
.bitsLE(Load
->getMemoryVT()))
4954 Loads
.push_back(Load
);
4960 case ISD::ZERO_EXTEND
:
4961 case ISD::AssertZext
: {
4962 unsigned ActiveBits
= Mask
->getAPIntValue().countTrailingOnes();
4963 EVT ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), ActiveBits
);
4964 EVT VT
= Op
.getOpcode() == ISD::AssertZext
?
4965 cast
<VTSDNode
>(Op
.getOperand(1))->getVT() :
4966 Op
.getOperand(0).getValueType();
4968 // We can accept extending nodes if the mask is wider or an equal
4969 // width to the original type.
4970 if (ExtVT
.bitsGE(VT
))
4977 if (!SearchForAndLoads(Op
.getNode(), Loads
, NodesWithConsts
, Mask
,
4983 // Allow one node which will masked along with any loads found.
4987 // Also ensure that the node to be masked only produces one data result.
4988 NodeToMask
= Op
.getNode();
4989 if (NodeToMask
->getNumValues() > 1) {
4990 bool HasValue
= false;
4991 for (unsigned i
= 0, e
= NodeToMask
->getNumValues(); i
< e
; ++i
) {
4992 MVT VT
= SDValue(NodeToMask
, i
).getSimpleValueType();
4993 if (VT
!= MVT::Glue
&& VT
!= MVT::Other
) {
4995 NodeToMask
= nullptr;
5001 assert(HasValue
&& "Node to be masked has no data result?");
5007 bool DAGCombiner::BackwardsPropagateMask(SDNode
*N
, SelectionDAG
&DAG
) {
5008 auto *Mask
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
5012 if (!Mask
->getAPIntValue().isMask())
5015 // No need to do anything if the and directly uses a load.
5016 if (isa
<LoadSDNode
>(N
->getOperand(0)))
5019 SmallVector
<LoadSDNode
*, 8> Loads
;
5020 SmallPtrSet
<SDNode
*, 2> NodesWithConsts
;
5021 SDNode
*FixupNode
= nullptr;
5022 if (SearchForAndLoads(N
, Loads
, NodesWithConsts
, Mask
, FixupNode
)) {
5023 if (Loads
.size() == 0)
5026 LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N
->dump());
5027 SDValue MaskOp
= N
->getOperand(1);
5029 // If it exists, fixup the single node we allow in the tree that needs
5032 LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode
->dump());
5033 SDValue And
= DAG
.getNode(ISD::AND
, SDLoc(FixupNode
),
5034 FixupNode
->getValueType(0),
5035 SDValue(FixupNode
, 0), MaskOp
);
5036 DAG
.ReplaceAllUsesOfValueWith(SDValue(FixupNode
, 0), And
);
5037 if (And
.getOpcode() == ISD ::AND
)
5038 DAG
.UpdateNodeOperands(And
.getNode(), SDValue(FixupNode
, 0), MaskOp
);
5041 // Narrow any constants that need it.
5042 for (auto *LogicN
: NodesWithConsts
) {
5043 SDValue Op0
= LogicN
->getOperand(0);
5044 SDValue Op1
= LogicN
->getOperand(1);
5046 if (isa
<ConstantSDNode
>(Op0
))
5047 std::swap(Op0
, Op1
);
5049 SDValue And
= DAG
.getNode(ISD::AND
, SDLoc(Op1
), Op1
.getValueType(),
5052 DAG
.UpdateNodeOperands(LogicN
, Op0
, And
);
5055 // Create narrow loads.
5056 for (auto *Load
: Loads
) {
5057 LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load
->dump());
5058 SDValue And
= DAG
.getNode(ISD::AND
, SDLoc(Load
), Load
->getValueType(0),
5059 SDValue(Load
, 0), MaskOp
);
5060 DAG
.ReplaceAllUsesOfValueWith(SDValue(Load
, 0), And
);
5061 if (And
.getOpcode() == ISD ::AND
)
5063 DAG
.UpdateNodeOperands(And
.getNode(), SDValue(Load
, 0), MaskOp
), 0);
5064 SDValue NewLoad
= ReduceLoadWidth(And
.getNode());
5066 "Shouldn't be masking the load if it can't be narrowed");
5067 CombineTo(Load
, NewLoad
, NewLoad
.getValue(1));
5069 DAG
.ReplaceAllUsesWith(N
, N
->getOperand(0).getNode());
5076 // x & (-1 'logical shift' y)
5078 // (x 'opposite logical shift' y) 'logical shift' y
5079 // if it is better for performance.
5080 SDValue
DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode
*N
) {
5081 assert(N
->getOpcode() == ISD::AND
);
5083 SDValue N0
= N
->getOperand(0);
5084 SDValue N1
= N
->getOperand(1);
5086 // Do we actually prefer shifts over mask?
5087 if (!TLI
.shouldFoldMaskToVariableShiftPair(N0
))
5090 // Try to match (-1 '[outer] logical shift' y)
5091 unsigned OuterShift
;
5092 unsigned InnerShift
; // The opposite direction to the OuterShift.
5093 SDValue Y
; // Shift amount.
5094 auto matchMask
= [&OuterShift
, &InnerShift
, &Y
](SDValue M
) -> bool {
5097 OuterShift
= M
->getOpcode();
5098 if (OuterShift
== ISD::SHL
)
5099 InnerShift
= ISD::SRL
;
5100 else if (OuterShift
== ISD::SRL
)
5101 InnerShift
= ISD::SHL
;
5104 if (!isAllOnesConstant(M
->getOperand(0)))
5106 Y
= M
->getOperand(1);
5113 else if (matchMask(N0
))
5119 EVT VT
= N
->getValueType(0);
5121 // tmp = x 'opposite logical shift' y
5122 SDValue T0
= DAG
.getNode(InnerShift
, DL
, VT
, X
, Y
);
5123 // ret = tmp 'logical shift' y
5124 SDValue T1
= DAG
.getNode(OuterShift
, DL
, VT
, T0
, Y
);
5129 SDValue
DAGCombiner::visitAND(SDNode
*N
) {
5130 SDValue N0
= N
->getOperand(0);
5131 SDValue N1
= N
->getOperand(1);
5132 EVT VT
= N1
.getValueType();
5139 if (VT
.isVector()) {
5140 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
5143 // fold (and x, 0) -> 0, vector edition
5144 if (ISD::isBuildVectorAllZeros(N0
.getNode()))
5145 // do not return N0, because undef node may exist in N0
5146 return DAG
.getConstant(APInt::getNullValue(N0
.getScalarValueSizeInBits()),
5147 SDLoc(N
), N0
.getValueType());
5148 if (ISD::isBuildVectorAllZeros(N1
.getNode()))
5149 // do not return N1, because undef node may exist in N1
5150 return DAG
.getConstant(APInt::getNullValue(N1
.getScalarValueSizeInBits()),
5151 SDLoc(N
), N1
.getValueType());
5153 // fold (and x, -1) -> x, vector edition
5154 if (ISD::isBuildVectorAllOnes(N0
.getNode()))
5156 if (ISD::isBuildVectorAllOnes(N1
.getNode()))
5160 // fold (and c1, c2) -> c1&c2
5161 ConstantSDNode
*N0C
= getAsNonOpaqueConstant(N0
);
5162 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
5163 if (N0C
&& N1C
&& !N1C
->isOpaque())
5164 return DAG
.FoldConstantArithmetic(ISD::AND
, SDLoc(N
), VT
, N0C
, N1C
);
5165 // canonicalize constant to RHS
5166 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
5167 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
5168 return DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, N1
, N0
);
5169 // fold (and x, -1) -> x
5170 if (isAllOnesConstant(N1
))
5172 // if (and x, c) is known to be zero, return 0
5173 unsigned BitWidth
= VT
.getScalarSizeInBits();
5174 if (N1C
&& DAG
.MaskedValueIsZero(SDValue(N
, 0),
5175 APInt::getAllOnesValue(BitWidth
)))
5176 return DAG
.getConstant(0, SDLoc(N
), VT
);
5178 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
5182 if (SDValue RAND
= reassociateOps(ISD::AND
, SDLoc(N
), N0
, N1
, N
->getFlags()))
5185 // Try to convert a constant mask AND into a shuffle clear mask.
5187 if (SDValue Shuffle
= XformToShuffleWithZero(N
))
5190 // fold (and (or x, C), D) -> D if (C & D) == D
5191 auto MatchSubset
= [](ConstantSDNode
*LHS
, ConstantSDNode
*RHS
) {
5192 return RHS
->getAPIntValue().isSubsetOf(LHS
->getAPIntValue());
5194 if (N0
.getOpcode() == ISD::OR
&&
5195 ISD::matchBinaryPredicate(N0
.getOperand(1), N1
, MatchSubset
))
5197 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
5198 if (N1C
&& N0
.getOpcode() == ISD::ANY_EXTEND
) {
5199 SDValue N0Op0
= N0
.getOperand(0);
5200 APInt Mask
= ~N1C
->getAPIntValue();
5201 Mask
= Mask
.trunc(N0Op0
.getScalarValueSizeInBits());
5202 if (DAG
.MaskedValueIsZero(N0Op0
, Mask
)) {
5203 SDValue Zext
= DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N
),
5204 N0
.getValueType(), N0Op0
);
5206 // Replace uses of the AND with uses of the Zero extend node.
5209 // We actually want to replace all uses of the any_extend with the
5210 // zero_extend, to avoid duplicating things. This will later cause this
5211 // AND to be folded.
5212 CombineTo(N0
.getNode(), Zext
);
5213 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
5216 // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
5217 // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
5218 // already be zero by virtue of the width of the base type of the load.
5220 // the 'X' node here can either be nothing or an extract_vector_elt to catch
5222 if ((N0
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
5223 N0
.getValueSizeInBits() == N0
.getOperand(0).getScalarValueSizeInBits() &&
5224 N0
.getOperand(0).getOpcode() == ISD::LOAD
&&
5225 N0
.getOperand(0).getResNo() == 0) ||
5226 (N0
.getOpcode() == ISD::LOAD
&& N0
.getResNo() == 0)) {
5227 LoadSDNode
*Load
= cast
<LoadSDNode
>( (N0
.getOpcode() == ISD::LOAD
) ?
5228 N0
: N0
.getOperand(0) );
5230 // Get the constant (if applicable) the zero'th operand is being ANDed with.
5231 // This can be a pure constant or a vector splat, in which case we treat the
5232 // vector as a scalar and use the splat value.
5233 APInt Constant
= APInt::getNullValue(1);
5234 if (const ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N1
)) {
5235 Constant
= C
->getAPIntValue();
5236 } else if (BuildVectorSDNode
*Vector
= dyn_cast
<BuildVectorSDNode
>(N1
)) {
5237 APInt SplatValue
, SplatUndef
;
5238 unsigned SplatBitSize
;
5240 bool IsSplat
= Vector
->isConstantSplat(SplatValue
, SplatUndef
,
5241 SplatBitSize
, HasAnyUndefs
);
5243 // Undef bits can contribute to a possible optimisation if set, so
5245 SplatValue
|= SplatUndef
;
5247 // The splat value may be something like "0x00FFFFFF", which means 0 for
5248 // the first vector value and FF for the rest, repeating. We need a mask
5249 // that will apply equally to all members of the vector, so AND all the
5250 // lanes of the constant together.
5251 unsigned EltBitWidth
= Vector
->getValueType(0).getScalarSizeInBits();
5253 // If the splat value has been compressed to a bitlength lower
5254 // than the size of the vector lane, we need to re-expand it to
5256 if (EltBitWidth
> SplatBitSize
)
5257 for (SplatValue
= SplatValue
.zextOrTrunc(EltBitWidth
);
5258 SplatBitSize
< EltBitWidth
; SplatBitSize
= SplatBitSize
* 2)
5259 SplatValue
|= SplatValue
.shl(SplatBitSize
);
5261 // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a
5262 // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value.
5263 if ((SplatBitSize
% EltBitWidth
) == 0) {
5264 Constant
= APInt::getAllOnesValue(EltBitWidth
);
5265 for (unsigned i
= 0, n
= (SplatBitSize
/ EltBitWidth
); i
< n
; ++i
)
5266 Constant
&= SplatValue
.extractBits(EltBitWidth
, i
* EltBitWidth
);
5271 // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
5272 // actually legal and isn't going to get expanded, else this is a false
5274 bool CanZextLoadProfitably
= TLI
.isLoadExtLegal(ISD::ZEXTLOAD
,
5275 Load
->getValueType(0),
5276 Load
->getMemoryVT());
5278 // Resize the constant to the same size as the original memory access before
5279 // extension. If it is still the AllOnesValue then this AND is completely
5281 Constant
= Constant
.zextOrTrunc(Load
->getMemoryVT().getScalarSizeInBits());
5284 switch (Load
->getExtensionType()) {
5285 default: B
= false; break;
5286 case ISD::EXTLOAD
: B
= CanZextLoadProfitably
; break;
5288 case ISD::NON_EXTLOAD
: B
= true; break;
5291 if (B
&& Constant
.isAllOnesValue()) {
5292 // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
5293 // preserve semantics once we get rid of the AND.
5294 SDValue
NewLoad(Load
, 0);
5296 // Fold the AND away. NewLoad may get replaced immediately.
5297 CombineTo(N
, (N0
.getNode() == Load
) ? NewLoad
: N0
);
5299 if (Load
->getExtensionType() == ISD::EXTLOAD
) {
5300 NewLoad
= DAG
.getLoad(Load
->getAddressingMode(), ISD::ZEXTLOAD
,
5301 Load
->getValueType(0), SDLoc(Load
),
5302 Load
->getChain(), Load
->getBasePtr(),
5303 Load
->getOffset(), Load
->getMemoryVT(),
5304 Load
->getMemOperand());
5305 // Replace uses of the EXTLOAD with the new ZEXTLOAD.
5306 if (Load
->getNumValues() == 3) {
5307 // PRE/POST_INC loads have 3 values.
5308 SDValue To
[] = { NewLoad
.getValue(0), NewLoad
.getValue(1),
5309 NewLoad
.getValue(2) };
5310 CombineTo(Load
, To
, 3, true);
5312 CombineTo(Load
, NewLoad
.getValue(0), NewLoad
.getValue(1));
5316 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
5320 // fold (and (load x), 255) -> (zextload x, i8)
5321 // fold (and (extload x, i16), 255) -> (zextload x, i8)
5322 // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
5323 if (!VT
.isVector() && N1C
&& (N0
.getOpcode() == ISD::LOAD
||
5324 (N0
.getOpcode() == ISD::ANY_EXTEND
&&
5325 N0
.getOperand(0).getOpcode() == ISD::LOAD
))) {
5326 if (SDValue Res
= ReduceLoadWidth(N
)) {
5327 LoadSDNode
*LN0
= N0
->getOpcode() == ISD::ANY_EXTEND
5328 ? cast
<LoadSDNode
>(N0
.getOperand(0)) : cast
<LoadSDNode
>(N0
);
5330 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 0), Res
);
5331 return SDValue(N
, 0);
5335 if (Level
>= AfterLegalizeTypes
) {
5336 // Attempt to propagate the AND back up to the leaves which, if they're
5337 // loads, can be combined to narrow loads and the AND node can be removed.
5338 // Perform after legalization so that extend nodes will already be
5339 // combined into the loads.
5340 if (BackwardsPropagateMask(N
, DAG
)) {
5341 return SDValue(N
, 0);
5345 if (SDValue Combined
= visitANDLike(N0
, N1
, N
))
5348 // Simplify: (and (op x...), (op y...)) -> (op (and x, y))
5349 if (N0
.getOpcode() == N1
.getOpcode())
5350 if (SDValue V
= hoistLogicOpWithSameOpcodeHands(N
))
5353 // Masking the negated extension of a boolean is just the zero-extended
5355 // and (sub 0, zext(bool X)), 1 --> zext(bool X)
5356 // and (sub 0, sext(bool X)), 1 --> zext(bool X)
5358 // Note: the SimplifyDemandedBits fold below can make an information-losing
5359 // transform, and then we have no way to find this better fold.
5360 if (N1C
&& N1C
->isOne() && N0
.getOpcode() == ISD::SUB
) {
5361 if (isNullOrNullSplat(N0
.getOperand(0))) {
5362 SDValue SubRHS
= N0
.getOperand(1);
5363 if (SubRHS
.getOpcode() == ISD::ZERO_EXTEND
&&
5364 SubRHS
.getOperand(0).getScalarValueSizeInBits() == 1)
5366 if (SubRHS
.getOpcode() == ISD::SIGN_EXTEND
&&
5367 SubRHS
.getOperand(0).getScalarValueSizeInBits() == 1)
5368 return DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N
), VT
, SubRHS
.getOperand(0));
5372 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
5373 // fold (and (sra)) -> (and (srl)) when possible.
5374 if (SimplifyDemandedBits(SDValue(N
, 0)))
5375 return SDValue(N
, 0);
5377 // fold (zext_inreg (extload x)) -> (zextload x)
5378 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
5379 if (ISD::isUNINDEXEDLoad(N0
.getNode()) &&
5380 (ISD::isEXTLoad(N0
.getNode()) ||
5381 (ISD::isSEXTLoad(N0
.getNode()) && N0
.hasOneUse()))) {
5382 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
5383 EVT MemVT
= LN0
->getMemoryVT();
5384 // If we zero all the possible extended bits, then we can turn this into
5385 // a zextload if we are running before legalize or the operation is legal.
5386 unsigned ExtBitSize
= N1
.getScalarValueSizeInBits();
5387 unsigned MemBitSize
= MemVT
.getScalarSizeInBits();
5388 APInt ExtBits
= APInt::getHighBitsSet(ExtBitSize
, ExtBitSize
- MemBitSize
);
5389 if (DAG
.MaskedValueIsZero(N1
, ExtBits
) &&
5390 ((!LegalOperations
&& !LN0
->isVolatile()) ||
5391 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, VT
, MemVT
))) {
5393 DAG
.getExtLoad(ISD::ZEXTLOAD
, SDLoc(N0
), VT
, LN0
->getChain(),
5394 LN0
->getBasePtr(), MemVT
, LN0
->getMemOperand());
5396 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
5397 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
5401 // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const)
5402 if (N1C
&& N1C
->getAPIntValue() == 0xffff && N0
.getOpcode() == ISD::OR
) {
5403 if (SDValue BSwap
= MatchBSwapHWordLow(N0
.getNode(), N0
.getOperand(0),
5404 N0
.getOperand(1), false))
5408 if (SDValue Shifts
= unfoldExtremeBitClearingToShifts(N
))
5414 /// Match (a >> 8) | (a << 8) as (bswap a) >> 16.
5415 SDValue
DAGCombiner::MatchBSwapHWordLow(SDNode
*N
, SDValue N0
, SDValue N1
,
5416 bool DemandHighBits
) {
5417 if (!LegalOperations
)
5420 EVT VT
= N
->getValueType(0);
5421 if (VT
!= MVT::i64
&& VT
!= MVT::i32
&& VT
!= MVT::i16
)
5423 if (!TLI
.isOperationLegalOrCustom(ISD::BSWAP
, VT
))
5426 // Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff)
5427 bool LookPassAnd0
= false;
5428 bool LookPassAnd1
= false;
5429 if (N0
.getOpcode() == ISD::AND
&& N0
.getOperand(0).getOpcode() == ISD::SRL
)
5431 if (N1
.getOpcode() == ISD::AND
&& N1
.getOperand(0).getOpcode() == ISD::SHL
)
5433 if (N0
.getOpcode() == ISD::AND
) {
5434 if (!N0
.getNode()->hasOneUse())
5436 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
5437 // Also handle 0xffff since the LHS is guaranteed to have zeros there.
5438 // This is needed for X86.
5439 if (!N01C
|| (N01C
->getZExtValue() != 0xFF00 &&
5440 N01C
->getZExtValue() != 0xFFFF))
5442 N0
= N0
.getOperand(0);
5443 LookPassAnd0
= true;
5446 if (N1
.getOpcode() == ISD::AND
) {
5447 if (!N1
.getNode()->hasOneUse())
5449 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
5450 if (!N11C
|| N11C
->getZExtValue() != 0xFF)
5452 N1
= N1
.getOperand(0);
5453 LookPassAnd1
= true;
5456 if (N0
.getOpcode() == ISD::SRL
&& N1
.getOpcode() == ISD::SHL
)
5458 if (N0
.getOpcode() != ISD::SHL
|| N1
.getOpcode() != ISD::SRL
)
5460 if (!N0
.getNode()->hasOneUse() || !N1
.getNode()->hasOneUse())
5463 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
5464 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
5467 if (N01C
->getZExtValue() != 8 || N11C
->getZExtValue() != 8)
5470 // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
5471 SDValue N00
= N0
->getOperand(0);
5472 if (!LookPassAnd0
&& N00
.getOpcode() == ISD::AND
) {
5473 if (!N00
.getNode()->hasOneUse())
5475 ConstantSDNode
*N001C
= dyn_cast
<ConstantSDNode
>(N00
.getOperand(1));
5476 if (!N001C
|| N001C
->getZExtValue() != 0xFF)
5478 N00
= N00
.getOperand(0);
5479 LookPassAnd0
= true;
5482 SDValue N10
= N1
->getOperand(0);
5483 if (!LookPassAnd1
&& N10
.getOpcode() == ISD::AND
) {
5484 if (!N10
.getNode()->hasOneUse())
5486 ConstantSDNode
*N101C
= dyn_cast
<ConstantSDNode
>(N10
.getOperand(1));
5487 // Also allow 0xFFFF since the bits will be shifted out. This is needed
5489 if (!N101C
|| (N101C
->getZExtValue() != 0xFF00 &&
5490 N101C
->getZExtValue() != 0xFFFF))
5492 N10
= N10
.getOperand(0);
5493 LookPassAnd1
= true;
5499 // Make sure everything beyond the low halfword gets set to zero since the SRL
5500 // 16 will clear the top bits.
5501 unsigned OpSizeInBits
= VT
.getSizeInBits();
5502 if (DemandHighBits
&& OpSizeInBits
> 16) {
5503 // If the left-shift isn't masked out then the only way this is a bswap is
5504 // if all bits beyond the low 8 are 0. In that case the entire pattern
5505 // reduces to a left shift anyway: leave it for other parts of the combiner.
5509 // However, if the right shift isn't masked out then it might be because
5510 // it's not needed. See if we can spot that too.
5511 if (!LookPassAnd1
&&
5512 !DAG
.MaskedValueIsZero(
5513 N10
, APInt::getHighBitsSet(OpSizeInBits
, OpSizeInBits
- 16)))
5517 SDValue Res
= DAG
.getNode(ISD::BSWAP
, SDLoc(N
), VT
, N00
);
5518 if (OpSizeInBits
> 16) {
5520 Res
= DAG
.getNode(ISD::SRL
, DL
, VT
, Res
,
5521 DAG
.getConstant(OpSizeInBits
- 16, DL
,
5522 getShiftAmountTy(VT
)));
5527 /// Return true if the specified node is an element that makes up a 32-bit
5528 /// packed halfword byteswap.
5529 /// ((x & 0x000000ff) << 8) |
5530 /// ((x & 0x0000ff00) >> 8) |
5531 /// ((x & 0x00ff0000) << 8) |
5532 /// ((x & 0xff000000) >> 8)
5533 static bool isBSwapHWordElement(SDValue N
, MutableArrayRef
<SDNode
*> Parts
) {
5534 if (!N
.getNode()->hasOneUse())
5537 unsigned Opc
= N
.getOpcode();
5538 if (Opc
!= ISD::AND
&& Opc
!= ISD::SHL
&& Opc
!= ISD::SRL
)
5541 SDValue N0
= N
.getOperand(0);
5542 unsigned Opc0
= N0
.getOpcode();
5543 if (Opc0
!= ISD::AND
&& Opc0
!= ISD::SHL
&& Opc0
!= ISD::SRL
)
5546 ConstantSDNode
*N1C
= nullptr;
5547 // SHL or SRL: look upstream for AND mask operand
5548 if (Opc
== ISD::AND
)
5549 N1C
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
5550 else if (Opc0
== ISD::AND
)
5551 N1C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
5555 unsigned MaskByteOffset
;
5556 switch (N1C
->getZExtValue()) {
5559 case 0xFF: MaskByteOffset
= 0; break;
5560 case 0xFF00: MaskByteOffset
= 1; break;
5562 // In case demanded bits didn't clear the bits that will be shifted out.
5563 // This is needed for X86.
5564 if (Opc
== ISD::SRL
|| (Opc
== ISD::AND
&& Opc0
== ISD::SHL
)) {
5569 case 0xFF0000: MaskByteOffset
= 2; break;
5570 case 0xFF000000: MaskByteOffset
= 3; break;
5573 // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
5574 if (Opc
== ISD::AND
) {
5575 if (MaskByteOffset
== 0 || MaskByteOffset
== 2) {
5577 // (x >> 8) & 0xff0000
5578 if (Opc0
!= ISD::SRL
)
5580 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
5581 if (!C
|| C
->getZExtValue() != 8)
5584 // (x << 8) & 0xff00
5585 // (x << 8) & 0xff000000
5586 if (Opc0
!= ISD::SHL
)
5588 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
5589 if (!C
|| C
->getZExtValue() != 8)
5592 } else if (Opc
== ISD::SHL
) {
5594 // (x & 0xff0000) << 8
5595 if (MaskByteOffset
!= 0 && MaskByteOffset
!= 2)
5597 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
5598 if (!C
|| C
->getZExtValue() != 8)
5600 } else { // Opc == ISD::SRL
5601 // (x & 0xff00) >> 8
5602 // (x & 0xff000000) >> 8
5603 if (MaskByteOffset
!= 1 && MaskByteOffset
!= 3)
5605 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
5606 if (!C
|| C
->getZExtValue() != 8)
5610 if (Parts
[MaskByteOffset
])
5613 Parts
[MaskByteOffset
] = N0
.getOperand(0).getNode();
5617 /// Match a 32-bit packed halfword bswap. That is
5618 /// ((x & 0x000000ff) << 8) |
5619 /// ((x & 0x0000ff00) >> 8) |
5620 /// ((x & 0x00ff0000) << 8) |
5621 /// ((x & 0xff000000) >> 8)
5622 /// => (rotl (bswap x), 16)
5623 SDValue
DAGCombiner::MatchBSwapHWord(SDNode
*N
, SDValue N0
, SDValue N1
) {
5624 if (!LegalOperations
)
5627 EVT VT
= N
->getValueType(0);
5630 if (!TLI
.isOperationLegalOrCustom(ISD::BSWAP
, VT
))
5634 // (or (or (and), (and)), (or (and), (and)))
5635 // (or (or (or (and), (and)), (and)), (and))
5636 if (N0
.getOpcode() != ISD::OR
)
5638 SDValue N00
= N0
.getOperand(0);
5639 SDValue N01
= N0
.getOperand(1);
5640 SDNode
*Parts
[4] = {};
5642 if (N1
.getOpcode() == ISD::OR
&&
5643 N00
.getNumOperands() == 2 && N01
.getNumOperands() == 2) {
5644 // (or (or (and), (and)), (or (and), (and)))
5645 if (!isBSwapHWordElement(N00
, Parts
))
5648 if (!isBSwapHWordElement(N01
, Parts
))
5650 SDValue N10
= N1
.getOperand(0);
5651 if (!isBSwapHWordElement(N10
, Parts
))
5653 SDValue N11
= N1
.getOperand(1);
5654 if (!isBSwapHWordElement(N11
, Parts
))
5657 // (or (or (or (and), (and)), (and)), (and))
5658 if (!isBSwapHWordElement(N1
, Parts
))
5660 if (!isBSwapHWordElement(N01
, Parts
))
5662 if (N00
.getOpcode() != ISD::OR
)
5664 SDValue N000
= N00
.getOperand(0);
5665 if (!isBSwapHWordElement(N000
, Parts
))
5667 SDValue N001
= N00
.getOperand(1);
5668 if (!isBSwapHWordElement(N001
, Parts
))
5672 // Make sure the parts are all coming from the same node.
5673 if (Parts
[0] != Parts
[1] || Parts
[0] != Parts
[2] || Parts
[0] != Parts
[3])
5677 SDValue BSwap
= DAG
.getNode(ISD::BSWAP
, DL
, VT
,
5678 SDValue(Parts
[0], 0));
5680 // Result of the bswap should be rotated by 16. If it's not legal, then
5681 // do (x << 16) | (x >> 16).
5682 SDValue ShAmt
= DAG
.getConstant(16, DL
, getShiftAmountTy(VT
));
5683 if (TLI
.isOperationLegalOrCustom(ISD::ROTL
, VT
))
5684 return DAG
.getNode(ISD::ROTL
, DL
, VT
, BSwap
, ShAmt
);
5685 if (TLI
.isOperationLegalOrCustom(ISD::ROTR
, VT
))
5686 return DAG
.getNode(ISD::ROTR
, DL
, VT
, BSwap
, ShAmt
);
5687 return DAG
.getNode(ISD::OR
, DL
, VT
,
5688 DAG
.getNode(ISD::SHL
, DL
, VT
, BSwap
, ShAmt
),
5689 DAG
.getNode(ISD::SRL
, DL
, VT
, BSwap
, ShAmt
));
5692 /// This contains all DAGCombine rules which reduce two values combined by
5693 /// an Or operation to a single value \see visitANDLike().
5694 SDValue
DAGCombiner::visitORLike(SDValue N0
, SDValue N1
, SDNode
*N
) {
5695 EVT VT
= N1
.getValueType();
5698 // fold (or x, undef) -> -1
5699 if (!LegalOperations
&& (N0
.isUndef() || N1
.isUndef()))
5700 return DAG
.getAllOnesConstant(DL
, VT
);
5702 if (SDValue V
= foldLogicOfSetCCs(false, N0
, N1
, DL
))
5705 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible.
5706 if (N0
.getOpcode() == ISD::AND
&& N1
.getOpcode() == ISD::AND
&&
5707 // Don't increase # computations.
5708 (N0
.getNode()->hasOneUse() || N1
.getNode()->hasOneUse())) {
5709 // We can only do this xform if we know that bits from X that are set in C2
5710 // but not in C1 are already zero. Likewise for Y.
5711 if (const ConstantSDNode
*N0O1C
=
5712 getAsNonOpaqueConstant(N0
.getOperand(1))) {
5713 if (const ConstantSDNode
*N1O1C
=
5714 getAsNonOpaqueConstant(N1
.getOperand(1))) {
5715 // We can only do this xform if we know that bits from X that are set in
5716 // C2 but not in C1 are already zero. Likewise for Y.
5717 const APInt
&LHSMask
= N0O1C
->getAPIntValue();
5718 const APInt
&RHSMask
= N1O1C
->getAPIntValue();
5720 if (DAG
.MaskedValueIsZero(N0
.getOperand(0), RHSMask
&~LHSMask
) &&
5721 DAG
.MaskedValueIsZero(N1
.getOperand(0), LHSMask
&~RHSMask
)) {
5722 SDValue X
= DAG
.getNode(ISD::OR
, SDLoc(N0
), VT
,
5723 N0
.getOperand(0), N1
.getOperand(0));
5724 return DAG
.getNode(ISD::AND
, DL
, VT
, X
,
5725 DAG
.getConstant(LHSMask
| RHSMask
, DL
, VT
));
5731 // (or (and X, M), (and X, N)) -> (and X, (or M, N))
5732 if (N0
.getOpcode() == ISD::AND
&&
5733 N1
.getOpcode() == ISD::AND
&&
5734 N0
.getOperand(0) == N1
.getOperand(0) &&
5735 // Don't increase # computations.
5736 (N0
.getNode()->hasOneUse() || N1
.getNode()->hasOneUse())) {
5737 SDValue X
= DAG
.getNode(ISD::OR
, SDLoc(N0
), VT
,
5738 N0
.getOperand(1), N1
.getOperand(1));
5739 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
.getOperand(0), X
);
5745 /// OR combines for which the commuted variant will be tried as well.
5746 static SDValue
visitORCommutative(
5747 SelectionDAG
&DAG
, SDValue N0
, SDValue N1
, SDNode
*N
) {
5748 EVT VT
= N0
.getValueType();
5749 if (N0
.getOpcode() == ISD::AND
) {
5750 // fold (or (and X, (xor Y, -1)), Y) -> (or X, Y)
5751 if (isBitwiseNot(N0
.getOperand(1)) && N0
.getOperand(1).getOperand(0) == N1
)
5752 return DAG
.getNode(ISD::OR
, SDLoc(N
), VT
, N0
.getOperand(0), N1
);
5754 // fold (or (and (xor Y, -1), X), Y) -> (or X, Y)
5755 if (isBitwiseNot(N0
.getOperand(0)) && N0
.getOperand(0).getOperand(0) == N1
)
5756 return DAG
.getNode(ISD::OR
, SDLoc(N
), VT
, N0
.getOperand(1), N1
);
5762 SDValue
DAGCombiner::visitOR(SDNode
*N
) {
5763 SDValue N0
= N
->getOperand(0);
5764 SDValue N1
= N
->getOperand(1);
5765 EVT VT
= N1
.getValueType();
5772 if (VT
.isVector()) {
5773 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
5776 // fold (or x, 0) -> x, vector edition
5777 if (ISD::isBuildVectorAllZeros(N0
.getNode()))
5779 if (ISD::isBuildVectorAllZeros(N1
.getNode()))
5782 // fold (or x, -1) -> -1, vector edition
5783 if (ISD::isBuildVectorAllOnes(N0
.getNode()))
5784 // do not return N0, because undef node may exist in N0
5785 return DAG
.getAllOnesConstant(SDLoc(N
), N0
.getValueType());
5786 if (ISD::isBuildVectorAllOnes(N1
.getNode()))
5787 // do not return N1, because undef node may exist in N1
5788 return DAG
.getAllOnesConstant(SDLoc(N
), N1
.getValueType());
5790 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask)
5791 // Do this only if the resulting shuffle is legal.
5792 if (isa
<ShuffleVectorSDNode
>(N0
) &&
5793 isa
<ShuffleVectorSDNode
>(N1
) &&
5794 // Avoid folding a node with illegal type.
5795 TLI
.isTypeLegal(VT
)) {
5796 bool ZeroN00
= ISD::isBuildVectorAllZeros(N0
.getOperand(0).getNode());
5797 bool ZeroN01
= ISD::isBuildVectorAllZeros(N0
.getOperand(1).getNode());
5798 bool ZeroN10
= ISD::isBuildVectorAllZeros(N1
.getOperand(0).getNode());
5799 bool ZeroN11
= ISD::isBuildVectorAllZeros(N1
.getOperand(1).getNode());
5800 // Ensure both shuffles have a zero input.
5801 if ((ZeroN00
!= ZeroN01
) && (ZeroN10
!= ZeroN11
)) {
5802 assert((!ZeroN00
|| !ZeroN01
) && "Both inputs zero!");
5803 assert((!ZeroN10
|| !ZeroN11
) && "Both inputs zero!");
5804 const ShuffleVectorSDNode
*SV0
= cast
<ShuffleVectorSDNode
>(N0
);
5805 const ShuffleVectorSDNode
*SV1
= cast
<ShuffleVectorSDNode
>(N1
);
5806 bool CanFold
= true;
5807 int NumElts
= VT
.getVectorNumElements();
5808 SmallVector
<int, 4> Mask(NumElts
);
5810 for (int i
= 0; i
!= NumElts
; ++i
) {
5811 int M0
= SV0
->getMaskElt(i
);
5812 int M1
= SV1
->getMaskElt(i
);
5814 // Determine if either index is pointing to a zero vector.
5815 bool M0Zero
= M0
< 0 || (ZeroN00
== (M0
< NumElts
));
5816 bool M1Zero
= M1
< 0 || (ZeroN10
== (M1
< NumElts
));
5818 // If one element is zero and the otherside is undef, keep undef.
5819 // This also handles the case that both are undef.
5820 if ((M0Zero
&& M1
< 0) || (M1Zero
&& M0
< 0)) {
5825 // Make sure only one of the elements is zero.
5826 if (M0Zero
== M1Zero
) {
5831 assert((M0
>= 0 || M1
>= 0) && "Undef index!");
5833 // We have a zero and non-zero element. If the non-zero came from
5834 // SV0 make the index a LHS index. If it came from SV1, make it
5835 // a RHS index. We need to mod by NumElts because we don't care
5836 // which operand it came from in the original shuffles.
5837 Mask
[i
] = M1Zero
? M0
% NumElts
: (M1
% NumElts
) + NumElts
;
5841 SDValue NewLHS
= ZeroN00
? N0
.getOperand(1) : N0
.getOperand(0);
5842 SDValue NewRHS
= ZeroN10
? N1
.getOperand(1) : N1
.getOperand(0);
5844 bool LegalMask
= TLI
.isShuffleMaskLegal(Mask
, VT
);
5846 std::swap(NewLHS
, NewRHS
);
5847 ShuffleVectorSDNode::commuteMask(Mask
);
5848 LegalMask
= TLI
.isShuffleMaskLegal(Mask
, VT
);
5852 return DAG
.getVectorShuffle(VT
, SDLoc(N
), NewLHS
, NewRHS
, Mask
);
5858 // fold (or c1, c2) -> c1|c2
5859 ConstantSDNode
*N0C
= getAsNonOpaqueConstant(N0
);
5860 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
5861 if (N0C
&& N1C
&& !N1C
->isOpaque())
5862 return DAG
.FoldConstantArithmetic(ISD::OR
, SDLoc(N
), VT
, N0C
, N1C
);
5863 // canonicalize constant to RHS
5864 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
5865 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
5866 return DAG
.getNode(ISD::OR
, SDLoc(N
), VT
, N1
, N0
);
5867 // fold (or x, 0) -> x
5868 if (isNullConstant(N1
))
5870 // fold (or x, -1) -> -1
5871 if (isAllOnesConstant(N1
))
5874 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
5877 // fold (or x, c) -> c iff (x & ~c) == 0
5878 if (N1C
&& DAG
.MaskedValueIsZero(N0
, ~N1C
->getAPIntValue()))
5881 if (SDValue Combined
= visitORLike(N0
, N1
, N
))
5884 // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
5885 if (SDValue BSwap
= MatchBSwapHWord(N
, N0
, N1
))
5887 if (SDValue BSwap
= MatchBSwapHWordLow(N
, N0
, N1
))
5891 if (SDValue ROR
= reassociateOps(ISD::OR
, SDLoc(N
), N0
, N1
, N
->getFlags()))
5894 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
5895 // iff (c1 & c2) != 0 or c1/c2 are undef.
5896 auto MatchIntersect
= [](ConstantSDNode
*C1
, ConstantSDNode
*C2
) {
5897 return !C1
|| !C2
|| C1
->getAPIntValue().intersects(C2
->getAPIntValue());
5899 if (N0
.getOpcode() == ISD::AND
&& N0
.getNode()->hasOneUse() &&
5900 ISD::matchBinaryPredicate(N0
.getOperand(1), N1
, MatchIntersect
, true)) {
5901 if (SDValue COR
= DAG
.FoldConstantArithmetic(
5902 ISD::OR
, SDLoc(N1
), VT
, N1
.getNode(), N0
.getOperand(1).getNode())) {
5903 SDValue IOR
= DAG
.getNode(ISD::OR
, SDLoc(N0
), VT
, N0
.getOperand(0), N1
);
5904 AddToWorklist(IOR
.getNode());
5905 return DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, COR
, IOR
);
5909 if (SDValue Combined
= visitORCommutative(DAG
, N0
, N1
, N
))
5911 if (SDValue Combined
= visitORCommutative(DAG
, N1
, N0
, N
))
5914 // Simplify: (or (op x...), (op y...)) -> (op (or x, y))
5915 if (N0
.getOpcode() == N1
.getOpcode())
5916 if (SDValue V
= hoistLogicOpWithSameOpcodeHands(N
))
5919 // See if this is some rotate idiom.
5920 if (SDNode
*Rot
= MatchRotate(N0
, N1
, SDLoc(N
)))
5921 return SDValue(Rot
, 0);
5923 if (SDValue Load
= MatchLoadCombine(N
))
5926 // Simplify the operands using demanded-bits information.
5927 if (SimplifyDemandedBits(SDValue(N
, 0)))
5928 return SDValue(N
, 0);
5930 // If OR can be rewritten into ADD, try combines based on ADD.
5931 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::ADD
, VT
)) &&
5932 DAG
.haveNoCommonBitsSet(N0
, N1
))
5933 if (SDValue Combined
= visitADDLike(N
))
5939 static SDValue
stripConstantMask(SelectionDAG
&DAG
, SDValue Op
, SDValue
&Mask
) {
5940 if (Op
.getOpcode() == ISD::AND
&&
5941 DAG
.isConstantIntBuildVectorOrConstantInt(Op
.getOperand(1))) {
5942 Mask
= Op
.getOperand(1);
5943 return Op
.getOperand(0);
5948 /// Match "(X shl/srl V1) & V2" where V2 may not be present.
5949 static bool matchRotateHalf(SelectionDAG
&DAG
, SDValue Op
, SDValue
&Shift
,
5951 Op
= stripConstantMask(DAG
, Op
, Mask
);
5952 if (Op
.getOpcode() == ISD::SRL
|| Op
.getOpcode() == ISD::SHL
) {
5959 /// Helper function for visitOR to extract the needed side of a rotate idiom
5960 /// from a shl/srl/mul/udiv. This is meant to handle cases where
5961 /// InstCombine merged some outside op with one of the shifts from
5962 /// the rotate pattern.
5963 /// \returns An empty \c SDValue if the needed shift couldn't be extracted.
5964 /// Otherwise, returns an expansion of \p ExtractFrom based on the following
5967 /// (or (mul v c0) (shrl (mul v c1) c2)):
5968 /// expands (mul v c0) -> (shl (mul v c1) c3)
5970 /// (or (udiv v c0) (shl (udiv v c1) c2)):
5971 /// expands (udiv v c0) -> (shrl (udiv v c1) c3)
5973 /// (or (shl v c0) (shrl (shl v c1) c2)):
5974 /// expands (shl v c0) -> (shl (shl v c1) c3)
5976 /// (or (shrl v c0) (shl (shrl v c1) c2)):
5977 /// expands (shrl v c0) -> (shrl (shrl v c1) c3)
5979 /// Such that in all cases, c3+c2==bitwidth(op v c1).
5980 static SDValue
extractShiftForRotate(SelectionDAG
&DAG
, SDValue OppShift
,
5981 SDValue ExtractFrom
, SDValue
&Mask
,
5983 assert(OppShift
&& ExtractFrom
&& "Empty SDValue");
5985 (OppShift
.getOpcode() == ISD::SHL
|| OppShift
.getOpcode() == ISD::SRL
) &&
5986 "Existing shift must be valid as a rotate half");
5988 ExtractFrom
= stripConstantMask(DAG
, ExtractFrom
, Mask
);
5990 // (or (op0 v c0) (shiftl/r (op0 v c1) c2))
5992 // Find opcode of the needed shift to be extracted from (op0 v c0).
5993 unsigned Opcode
= ISD::DELETED_NODE
;
5994 bool IsMulOrDiv
= false;
5995 // Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift
5996 // opcode or its arithmetic (mul or udiv) variant.
5997 auto SelectOpcode
= [&](unsigned NeededShift
, unsigned MulOrDivVariant
) {
5998 IsMulOrDiv
= ExtractFrom
.getOpcode() == MulOrDivVariant
;
5999 if (!IsMulOrDiv
&& ExtractFrom
.getOpcode() != NeededShift
)
6001 Opcode
= NeededShift
;
6004 // op0 must be either the needed shift opcode or the mul/udiv equivalent
6005 // that the needed shift can be extracted from.
6006 if ((OppShift
.getOpcode() != ISD::SRL
|| !SelectOpcode(ISD::SHL
, ISD::MUL
)) &&
6007 (OppShift
.getOpcode() != ISD::SHL
|| !SelectOpcode(ISD::SRL
, ISD::UDIV
)))
6010 // op0 must be the same opcode on both sides, have the same LHS argument,
6011 // and produce the same value type.
6012 SDValue OppShiftLHS
= OppShift
.getOperand(0);
6013 EVT ShiftedVT
= OppShiftLHS
.getValueType();
6014 if (OppShiftLHS
.getOpcode() != ExtractFrom
.getOpcode() ||
6015 OppShiftLHS
.getOperand(0) != ExtractFrom
.getOperand(0) ||
6016 ShiftedVT
!= ExtractFrom
.getValueType())
6019 // Amount of the existing shift.
6020 ConstantSDNode
*OppShiftCst
= isConstOrConstSplat(OppShift
.getOperand(1));
6021 // Constant mul/udiv/shift amount from the RHS of the shift's LHS op.
6022 ConstantSDNode
*OppLHSCst
= isConstOrConstSplat(OppShiftLHS
.getOperand(1));
6023 // Constant mul/udiv/shift amount from the RHS of the ExtractFrom op.
6024 ConstantSDNode
*ExtractFromCst
=
6025 isConstOrConstSplat(ExtractFrom
.getOperand(1));
6026 // TODO: We should be able to handle non-uniform constant vectors for these values
6027 // Check that we have constant values.
6028 if (!OppShiftCst
|| !OppShiftCst
->getAPIntValue() ||
6029 !OppLHSCst
|| !OppLHSCst
->getAPIntValue() ||
6030 !ExtractFromCst
|| !ExtractFromCst
->getAPIntValue())
6033 // Compute the shift amount we need to extract to complete the rotate.
6034 const unsigned VTWidth
= ShiftedVT
.getScalarSizeInBits();
6035 if (OppShiftCst
->getAPIntValue().ugt(VTWidth
))
6037 APInt NeededShiftAmt
= VTWidth
- OppShiftCst
->getAPIntValue();
6038 // Normalize the bitwidth of the two mul/udiv/shift constant operands.
6039 APInt ExtractFromAmt
= ExtractFromCst
->getAPIntValue();
6040 APInt OppLHSAmt
= OppLHSCst
->getAPIntValue();
6041 zeroExtendToMatch(ExtractFromAmt
, OppLHSAmt
);
6043 // Now try extract the needed shift from the ExtractFrom op and see if the
6044 // result matches up with the existing shift's LHS op.
6046 // Op to extract from is a mul or udiv by a constant.
6048 // c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0
6049 // c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0
6050 const APInt ExtractDiv
= APInt::getOneBitSet(ExtractFromAmt
.getBitWidth(),
6051 NeededShiftAmt
.getZExtValue());
6054 APInt::udivrem(ExtractFromAmt
, ExtractDiv
, ResultAmt
, Rem
);
6055 if (Rem
!= 0 || ResultAmt
!= OppLHSAmt
)
6058 // Op to extract from is a shift by a constant.
6060 // c2 - (bitwidth(op0 v c0) - c1) == c0
6061 if (OppLHSAmt
!= ExtractFromAmt
- NeededShiftAmt
.zextOrTrunc(
6062 ExtractFromAmt
.getBitWidth()))
6066 // Return the expanded shift op that should allow a rotate to be formed.
6067 EVT ShiftVT
= OppShift
.getOperand(1).getValueType();
6068 EVT ResVT
= ExtractFrom
.getValueType();
6069 SDValue NewShiftNode
= DAG
.getConstant(NeededShiftAmt
, DL
, ShiftVT
);
6070 return DAG
.getNode(Opcode
, DL
, ResVT
, OppShiftLHS
, NewShiftNode
);
6073 // Return true if we can prove that, whenever Neg and Pos are both in the
6074 // range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that
6075 // for two opposing shifts shift1 and shift2 and a value X with OpBits bits:
6077 // (or (shift1 X, Neg), (shift2 X, Pos))
6079 // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate
6080 // in direction shift1 by Neg. The range [0, EltSize) means that we only need
6081 // to consider shift amounts with defined behavior.
6082 static bool matchRotateSub(SDValue Pos
, SDValue Neg
, unsigned EltSize
,
6083 SelectionDAG
&DAG
) {
6084 // If EltSize is a power of 2 then:
6086 // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1)
6087 // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize).
6089 // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check
6090 // for the stronger condition:
6092 // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A]
6094 // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1)
6095 // we can just replace Neg with Neg' for the rest of the function.
6097 // In other cases we check for the even stronger condition:
6099 // Neg == EltSize - Pos [B]
6101 // for all Neg and Pos. Note that the (or ...) then invokes undefined
6102 // behavior if Pos == 0 (and consequently Neg == EltSize).
6104 // We could actually use [A] whenever EltSize is a power of 2, but the
6105 // only extra cases that it would match are those uninteresting ones
6106 // where Neg and Pos are never in range at the same time. E.g. for
6107 // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos)
6108 // as well as (sub 32, Pos), but:
6110 // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos))
6112 // always invokes undefined behavior for 32-bit X.
6114 // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise.
6115 unsigned MaskLoBits
= 0;
6116 if (Neg
.getOpcode() == ISD::AND
&& isPowerOf2_64(EltSize
)) {
6117 if (ConstantSDNode
*NegC
= isConstOrConstSplat(Neg
.getOperand(1))) {
6118 KnownBits Known
= DAG
.computeKnownBits(Neg
.getOperand(0));
6119 unsigned Bits
= Log2_64(EltSize
);
6120 if (NegC
->getAPIntValue().getActiveBits() <= Bits
&&
6121 ((NegC
->getAPIntValue() | Known
.Zero
).countTrailingOnes() >= Bits
)) {
6122 Neg
= Neg
.getOperand(0);
6128 // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1.
6129 if (Neg
.getOpcode() != ISD::SUB
)
6131 ConstantSDNode
*NegC
= isConstOrConstSplat(Neg
.getOperand(0));
6134 SDValue NegOp1
= Neg
.getOperand(1);
6136 // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with
6137 // Pos'. The truncation is redundant for the purpose of the equality.
6138 if (MaskLoBits
&& Pos
.getOpcode() == ISD::AND
) {
6139 if (ConstantSDNode
*PosC
= isConstOrConstSplat(Pos
.getOperand(1))) {
6140 KnownBits Known
= DAG
.computeKnownBits(Pos
.getOperand(0));
6141 if (PosC
->getAPIntValue().getActiveBits() <= MaskLoBits
&&
6142 ((PosC
->getAPIntValue() | Known
.Zero
).countTrailingOnes() >=
6144 Pos
= Pos
.getOperand(0);
6148 // The condition we need is now:
6150 // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask
6152 // If NegOp1 == Pos then we need:
6154 // EltSize & Mask == NegC & Mask
6156 // (because "x & Mask" is a truncation and distributes through subtraction).
6159 Width
= NegC
->getAPIntValue();
6161 // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC.
6162 // Then the condition we want to prove becomes:
6164 // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask
6166 // which, again because "x & Mask" is a truncation, becomes:
6168 // NegC & Mask == (EltSize - PosC) & Mask
6169 // EltSize & Mask == (NegC + PosC) & Mask
6170 else if (Pos
.getOpcode() == ISD::ADD
&& Pos
.getOperand(0) == NegOp1
) {
6171 if (ConstantSDNode
*PosC
= isConstOrConstSplat(Pos
.getOperand(1)))
6172 Width
= PosC
->getAPIntValue() + NegC
->getAPIntValue();
6178 // Now we just need to check that EltSize & Mask == Width & Mask.
6180 // EltSize & Mask is 0 since Mask is EltSize - 1.
6181 return Width
.getLoBits(MaskLoBits
) == 0;
6182 return Width
== EltSize
;
6185 // A subroutine of MatchRotate used once we have found an OR of two opposite
6186 // shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces
6187 // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the
6188 // former being preferred if supported. InnerPos and InnerNeg are Pos and
6189 // Neg with outer conversions stripped away.
6190 SDNode
*DAGCombiner::MatchRotatePosNeg(SDValue Shifted
, SDValue Pos
,
6191 SDValue Neg
, SDValue InnerPos
,
6192 SDValue InnerNeg
, unsigned PosOpcode
,
6193 unsigned NegOpcode
, const SDLoc
&DL
) {
6194 // fold (or (shl x, (*ext y)),
6195 // (srl x, (*ext (sub 32, y)))) ->
6196 // (rotl x, y) or (rotr x, (sub 32, y))
6198 // fold (or (shl x, (*ext (sub 32, y))),
6199 // (srl x, (*ext y))) ->
6200 // (rotr x, y) or (rotl x, (sub 32, y))
6201 EVT VT
= Shifted
.getValueType();
6202 if (matchRotateSub(InnerPos
, InnerNeg
, VT
.getScalarSizeInBits(), DAG
)) {
6203 bool HasPos
= TLI
.isOperationLegalOrCustom(PosOpcode
, VT
);
6204 return DAG
.getNode(HasPos
? PosOpcode
: NegOpcode
, DL
, VT
, Shifted
,
6205 HasPos
? Pos
: Neg
).getNode();
6211 // MatchRotate - Handle an 'or' of two operands. If this is one of the many
6212 // idioms for rotate, and if the target supports rotation instructions, generate
6214 SDNode
*DAGCombiner::MatchRotate(SDValue LHS
, SDValue RHS
, const SDLoc
&DL
) {
6215 // Must be a legal type. Expanded 'n promoted things won't work with rotates.
6216 EVT VT
= LHS
.getValueType();
6217 if (!TLI
.isTypeLegal(VT
)) return nullptr;
6219 // The target must have at least one rotate flavor.
6220 bool HasROTL
= hasOperation(ISD::ROTL
, VT
);
6221 bool HasROTR
= hasOperation(ISD::ROTR
, VT
);
6222 if (!HasROTL
&& !HasROTR
) return nullptr;
6224 // Check for truncated rotate.
6225 if (LHS
.getOpcode() == ISD::TRUNCATE
&& RHS
.getOpcode() == ISD::TRUNCATE
&&
6226 LHS
.getOperand(0).getValueType() == RHS
.getOperand(0).getValueType()) {
6227 assert(LHS
.getValueType() == RHS
.getValueType());
6228 if (SDNode
*Rot
= MatchRotate(LHS
.getOperand(0), RHS
.getOperand(0), DL
)) {
6229 return DAG
.getNode(ISD::TRUNCATE
, SDLoc(LHS
), LHS
.getValueType(),
6230 SDValue(Rot
, 0)).getNode();
6234 // Match "(X shl/srl V1) & V2" where V2 may not be present.
6235 SDValue LHSShift
; // The shift.
6236 SDValue LHSMask
; // AND value if any.
6237 matchRotateHalf(DAG
, LHS
, LHSShift
, LHSMask
);
6239 SDValue RHSShift
; // The shift.
6240 SDValue RHSMask
; // AND value if any.
6241 matchRotateHalf(DAG
, RHS
, RHSShift
, RHSMask
);
6243 // If neither side matched a rotate half, bail
6244 if (!LHSShift
&& !RHSShift
)
6247 // InstCombine may have combined a constant shl, srl, mul, or udiv with one
6248 // side of the rotate, so try to handle that here. In all cases we need to
6249 // pass the matched shift from the opposite side to compute the opcode and
6250 // needed shift amount to extract. We still want to do this if both sides
6251 // matched a rotate half because one half may be a potential overshift that
6252 // can be broken down (ie if InstCombine merged two shl or srl ops into a
6255 // Have LHS side of the rotate, try to extract the needed shift from the RHS.
6257 if (SDValue NewRHSShift
=
6258 extractShiftForRotate(DAG
, LHSShift
, RHS
, RHSMask
, DL
))
6259 RHSShift
= NewRHSShift
;
6260 // Have RHS side of the rotate, try to extract the needed shift from the LHS.
6262 if (SDValue NewLHSShift
=
6263 extractShiftForRotate(DAG
, RHSShift
, LHS
, LHSMask
, DL
))
6264 LHSShift
= NewLHSShift
;
6266 // If a side is still missing, nothing else we can do.
6267 if (!RHSShift
|| !LHSShift
)
6270 // At this point we've matched or extracted a shift op on each side.
6272 if (LHSShift
.getOperand(0) != RHSShift
.getOperand(0))
6273 return nullptr; // Not shifting the same value.
6275 if (LHSShift
.getOpcode() == RHSShift
.getOpcode())
6276 return nullptr; // Shifts must disagree.
6278 // Canonicalize shl to left side in a shl/srl pair.
6279 if (RHSShift
.getOpcode() == ISD::SHL
) {
6280 std::swap(LHS
, RHS
);
6281 std::swap(LHSShift
, RHSShift
);
6282 std::swap(LHSMask
, RHSMask
);
6285 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
6286 SDValue LHSShiftArg
= LHSShift
.getOperand(0);
6287 SDValue LHSShiftAmt
= LHSShift
.getOperand(1);
6288 SDValue RHSShiftArg
= RHSShift
.getOperand(0);
6289 SDValue RHSShiftAmt
= RHSShift
.getOperand(1);
6291 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
6292 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
6293 auto MatchRotateSum
= [EltSizeInBits
](ConstantSDNode
*LHS
,
6294 ConstantSDNode
*RHS
) {
6295 return (LHS
->getAPIntValue() + RHS
->getAPIntValue()) == EltSizeInBits
;
6297 if (ISD::matchBinaryPredicate(LHSShiftAmt
, RHSShiftAmt
, MatchRotateSum
)) {
6298 SDValue Rot
= DAG
.getNode(HasROTL
? ISD::ROTL
: ISD::ROTR
, DL
, VT
,
6299 LHSShiftArg
, HasROTL
? LHSShiftAmt
: RHSShiftAmt
);
6301 // If there is an AND of either shifted operand, apply it to the result.
6302 if (LHSMask
.getNode() || RHSMask
.getNode()) {
6303 SDValue AllOnes
= DAG
.getAllOnesConstant(DL
, VT
);
6304 SDValue Mask
= AllOnes
;
6306 if (LHSMask
.getNode()) {
6307 SDValue RHSBits
= DAG
.getNode(ISD::SRL
, DL
, VT
, AllOnes
, RHSShiftAmt
);
6308 Mask
= DAG
.getNode(ISD::AND
, DL
, VT
, Mask
,
6309 DAG
.getNode(ISD::OR
, DL
, VT
, LHSMask
, RHSBits
));
6311 if (RHSMask
.getNode()) {
6312 SDValue LHSBits
= DAG
.getNode(ISD::SHL
, DL
, VT
, AllOnes
, LHSShiftAmt
);
6313 Mask
= DAG
.getNode(ISD::AND
, DL
, VT
, Mask
,
6314 DAG
.getNode(ISD::OR
, DL
, VT
, RHSMask
, LHSBits
));
6317 Rot
= DAG
.getNode(ISD::AND
, DL
, VT
, Rot
, Mask
);
6320 return Rot
.getNode();
6323 // If there is a mask here, and we have a variable shift, we can't be sure
6324 // that we're masking out the right stuff.
6325 if (LHSMask
.getNode() || RHSMask
.getNode())
6328 // If the shift amount is sign/zext/any-extended just peel it off.
6329 SDValue LExtOp0
= LHSShiftAmt
;
6330 SDValue RExtOp0
= RHSShiftAmt
;
6331 if ((LHSShiftAmt
.getOpcode() == ISD::SIGN_EXTEND
||
6332 LHSShiftAmt
.getOpcode() == ISD::ZERO_EXTEND
||
6333 LHSShiftAmt
.getOpcode() == ISD::ANY_EXTEND
||
6334 LHSShiftAmt
.getOpcode() == ISD::TRUNCATE
) &&
6335 (RHSShiftAmt
.getOpcode() == ISD::SIGN_EXTEND
||
6336 RHSShiftAmt
.getOpcode() == ISD::ZERO_EXTEND
||
6337 RHSShiftAmt
.getOpcode() == ISD::ANY_EXTEND
||
6338 RHSShiftAmt
.getOpcode() == ISD::TRUNCATE
)) {
6339 LExtOp0
= LHSShiftAmt
.getOperand(0);
6340 RExtOp0
= RHSShiftAmt
.getOperand(0);
6343 SDNode
*TryL
= MatchRotatePosNeg(LHSShiftArg
, LHSShiftAmt
, RHSShiftAmt
,
6344 LExtOp0
, RExtOp0
, ISD::ROTL
, ISD::ROTR
, DL
);
6348 SDNode
*TryR
= MatchRotatePosNeg(RHSShiftArg
, RHSShiftAmt
, LHSShiftAmt
,
6349 RExtOp0
, LExtOp0
, ISD::ROTR
, ISD::ROTL
, DL
);
6358 /// Represents known origin of an individual byte in load combine pattern. The
6359 /// value of the byte is either constant zero or comes from memory.
6360 struct ByteProvider
{
6361 // For constant zero providers Load is set to nullptr. For memory providers
6362 // Load represents the node which loads the byte from memory.
6363 // ByteOffset is the offset of the byte in the value produced by the load.
6364 LoadSDNode
*Load
= nullptr;
6365 unsigned ByteOffset
= 0;
6367 ByteProvider() = default;
6369 static ByteProvider
getMemory(LoadSDNode
*Load
, unsigned ByteOffset
) {
6370 return ByteProvider(Load
, ByteOffset
);
6373 static ByteProvider
getConstantZero() { return ByteProvider(nullptr, 0); }
6375 bool isConstantZero() const { return !Load
; }
6376 bool isMemory() const { return Load
; }
6378 bool operator==(const ByteProvider
&Other
) const {
6379 return Other
.Load
== Load
&& Other
.ByteOffset
== ByteOffset
;
6383 ByteProvider(LoadSDNode
*Load
, unsigned ByteOffset
)
6384 : Load(Load
), ByteOffset(ByteOffset
) {}
6387 } // end anonymous namespace
6389 /// Recursively traverses the expression calculating the origin of the requested
6390 /// byte of the given value. Returns None if the provider can't be calculated.
6392 /// For all the values except the root of the expression verifies that the value
6393 /// has exactly one use and if it's not true return None. This way if the origin
6394 /// of the byte is returned it's guaranteed that the values which contribute to
6395 /// the byte are not used outside of this expression.
6397 /// Because the parts of the expression are not allowed to have more than one
6398 /// use this function iterates over trees, not DAGs. So it never visits the same
6399 /// node more than once.
6400 static const Optional
<ByteProvider
>
6401 calculateByteProvider(SDValue Op
, unsigned Index
, unsigned Depth
,
6402 bool Root
= false) {
6403 // Typical i64 by i8 pattern requires recursion up to 8 calls depth
6407 if (!Root
&& !Op
.hasOneUse())
6410 assert(Op
.getValueType().isScalarInteger() && "can't handle other types");
6411 unsigned BitWidth
= Op
.getValueSizeInBits();
6412 if (BitWidth
% 8 != 0)
6414 unsigned ByteWidth
= BitWidth
/ 8;
6415 assert(Index
< ByteWidth
&& "invalid index requested");
6418 switch (Op
.getOpcode()) {
6420 auto LHS
= calculateByteProvider(Op
->getOperand(0), Index
, Depth
+ 1);
6423 auto RHS
= calculateByteProvider(Op
->getOperand(1), Index
, Depth
+ 1);
6427 if (LHS
->isConstantZero())
6429 if (RHS
->isConstantZero())
6434 auto ShiftOp
= dyn_cast
<ConstantSDNode
>(Op
->getOperand(1));
6438 uint64_t BitShift
= ShiftOp
->getZExtValue();
6439 if (BitShift
% 8 != 0)
6441 uint64_t ByteShift
= BitShift
/ 8;
6443 return Index
< ByteShift
6444 ? ByteProvider::getConstantZero()
6445 : calculateByteProvider(Op
->getOperand(0), Index
- ByteShift
,
6448 case ISD::ANY_EXTEND
:
6449 case ISD::SIGN_EXTEND
:
6450 case ISD::ZERO_EXTEND
: {
6451 SDValue NarrowOp
= Op
->getOperand(0);
6452 unsigned NarrowBitWidth
= NarrowOp
.getScalarValueSizeInBits();
6453 if (NarrowBitWidth
% 8 != 0)
6455 uint64_t NarrowByteWidth
= NarrowBitWidth
/ 8;
6457 if (Index
>= NarrowByteWidth
)
6458 return Op
.getOpcode() == ISD::ZERO_EXTEND
6459 ? Optional
<ByteProvider
>(ByteProvider::getConstantZero())
6461 return calculateByteProvider(NarrowOp
, Index
, Depth
+ 1);
6464 return calculateByteProvider(Op
->getOperand(0), ByteWidth
- Index
- 1,
6467 auto L
= cast
<LoadSDNode
>(Op
.getNode());
6468 if (L
->isVolatile() || L
->isIndexed())
6471 unsigned NarrowBitWidth
= L
->getMemoryVT().getSizeInBits();
6472 if (NarrowBitWidth
% 8 != 0)
6474 uint64_t NarrowByteWidth
= NarrowBitWidth
/ 8;
6476 if (Index
>= NarrowByteWidth
)
6477 return L
->getExtensionType() == ISD::ZEXTLOAD
6478 ? Optional
<ByteProvider
>(ByteProvider::getConstantZero())
6480 return ByteProvider::getMemory(L
, Index
);
6487 static unsigned LittleEndianByteAt(unsigned BW
, unsigned i
) {
6491 static unsigned BigEndianByteAt(unsigned BW
, unsigned i
) {
6495 // Check if the bytes offsets we are looking at match with either big or
6496 // little endian value loaded. Return true for big endian, false for little
6497 // endian, and None if match failed.
6498 static Optional
<bool> isBigEndian(const SmallVector
<int64_t, 4> &ByteOffsets
,
6499 int64_t FirstOffset
) {
6500 // The endian can be decided only when it is 2 bytes at least.
6501 unsigned Width
= ByteOffsets
.size();
6505 bool BigEndian
= true, LittleEndian
= true;
6506 for (unsigned i
= 0; i
< Width
; i
++) {
6507 int64_t CurrentByteOffset
= ByteOffsets
[i
] - FirstOffset
;
6508 LittleEndian
&= CurrentByteOffset
== LittleEndianByteAt(Width
, i
);
6509 BigEndian
&= CurrentByteOffset
== BigEndianByteAt(Width
, i
);
6510 if (!BigEndian
&& !LittleEndian
)
6514 assert((BigEndian
!= LittleEndian
) && "It should be either big endian or"
6519 static SDValue
stripTruncAndExt(SDValue Value
) {
6520 switch (Value
.getOpcode()) {
6522 case ISD::ZERO_EXTEND
:
6523 case ISD::SIGN_EXTEND
:
6524 case ISD::ANY_EXTEND
:
6525 return stripTruncAndExt(Value
.getOperand(0));
6530 /// Match a pattern where a wide type scalar value is stored by several narrow
6531 /// stores. Fold it into a single store or a BSWAP and a store if the targets
6534 /// Assuming little endian target:
6537 /// p[0] = (val >> 0) & 0xFF;
6538 /// p[1] = (val >> 8) & 0xFF;
6539 /// p[2] = (val >> 16) & 0xFF;
6540 /// p[3] = (val >> 24) & 0xFF;
6542 /// *((i32)p) = val;
6546 /// p[0] = (val >> 24) & 0xFF;
6547 /// p[1] = (val >> 16) & 0xFF;
6548 /// p[2] = (val >> 8) & 0xFF;
6549 /// p[3] = (val >> 0) & 0xFF;
6551 /// *((i32)p) = BSWAP(val);
6552 SDValue
DAGCombiner::MatchStoreCombine(StoreSDNode
*N
) {
6553 // Collect all the stores in the chain.
6555 SmallVector
<StoreSDNode
*, 8> Stores
;
6556 for (StoreSDNode
*Store
= N
; Store
; Store
= dyn_cast
<StoreSDNode
>(Chain
)) {
6557 if (Store
->getMemoryVT() != MVT::i8
||
6558 Store
->isVolatile() || Store
->isIndexed())
6560 Stores
.push_back(Store
);
6561 Chain
= Store
->getChain();
6563 // Handle the simple type only.
6564 unsigned Width
= Stores
.size();
6565 EVT VT
= EVT::getIntegerVT(
6566 *DAG
.getContext(), Width
* N
->getMemoryVT().getSizeInBits());
6567 if (VT
!= MVT::i16
&& VT
!= MVT::i32
&& VT
!= MVT::i64
)
6570 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
6571 if (LegalOperations
&& !TLI
.isOperationLegal(ISD::STORE
, VT
))
6574 // Check if all the bytes of the combined value we are looking at are stored
6575 // to the same base address. Collect bytes offsets from Base address into
6577 SDValue CombinedValue
;
6578 SmallVector
<int64_t, 4> ByteOffsets(Width
, INT64_MAX
);
6579 int64_t FirstOffset
= INT64_MAX
;
6580 StoreSDNode
*FirstStore
= nullptr;
6581 Optional
<BaseIndexOffset
> Base
;
6582 for (auto Store
: Stores
) {
6583 // All the stores store different byte of the CombinedValue. A truncate is
6584 // required to get that byte value.
6585 SDValue Trunc
= Store
->getValue();
6586 if (Trunc
.getOpcode() != ISD::TRUNCATE
)
6588 // A shift operation is required to get the right byte offset, except the
6591 SDValue Value
= Trunc
.getOperand(0);
6592 if (Value
.getOpcode() == ISD::SRL
||
6593 Value
.getOpcode() == ISD::SRA
) {
6594 ConstantSDNode
*ShiftOffset
=
6595 dyn_cast
<ConstantSDNode
>(Value
.getOperand(1));
6596 // Trying to match the following pattern. The shift offset must be
6597 // a constant and a multiple of 8. It is the byte offset in "y".
6599 // x = srl y, offset
6602 if (!ShiftOffset
|| (ShiftOffset
->getSExtValue() % 8))
6605 Offset
= ShiftOffset
->getSExtValue()/8;
6606 Value
= Value
.getOperand(0);
6609 // Stores must share the same combined value with different offsets.
6611 CombinedValue
= Value
;
6612 else if (stripTruncAndExt(CombinedValue
) != stripTruncAndExt(Value
))
6615 // The trunc and all the extend operation should be stripped to get the
6616 // real value we are stored.
6617 else if (CombinedValue
.getValueType() != VT
) {
6618 if (Value
.getValueType() == VT
||
6619 Value
.getValueSizeInBits() > CombinedValue
.getValueSizeInBits())
6620 CombinedValue
= Value
;
6621 // Give up if the combined value type is smaller than the store size.
6622 if (CombinedValue
.getValueSizeInBits() < VT
.getSizeInBits())
6626 // Stores must share the same base address
6627 BaseIndexOffset Ptr
= BaseIndexOffset::match(Store
, DAG
);
6628 int64_t ByteOffsetFromBase
= 0;
6631 else if (!Base
->equalBaseIndex(Ptr
, DAG
, ByteOffsetFromBase
))
6634 // Remember the first byte store
6635 if (ByteOffsetFromBase
< FirstOffset
) {
6637 FirstOffset
= ByteOffsetFromBase
;
6639 // Map the offset in the store and the offset in the combined value, and
6640 // early return if it has been set before.
6641 if (Offset
< 0 || Offset
>= Width
|| ByteOffsets
[Offset
] != INT64_MAX
)
6643 ByteOffsets
[Offset
] = ByteOffsetFromBase
;
6646 assert(FirstOffset
!= INT64_MAX
&& "First byte offset must be set");
6647 assert(FirstStore
&& "First store must be set");
6649 // Check if the bytes of the combined value we are looking at match with
6650 // either big or little endian value store.
6651 Optional
<bool> IsBigEndian
= isBigEndian(ByteOffsets
, FirstOffset
);
6652 if (!IsBigEndian
.hasValue())
6655 // The node we are looking at matches with the pattern, check if we can
6656 // replace it with a single bswap if needed and store.
6658 // If the store needs byte swap check if the target supports it
6659 bool NeedsBswap
= DAG
.getDataLayout().isBigEndian() != *IsBigEndian
;
6661 // Before legalize we can introduce illegal bswaps which will be later
6662 // converted to an explicit bswap sequence. This way we end up with a single
6663 // store and byte shuffling instead of several stores and byte shuffling.
6664 if (NeedsBswap
&& LegalOperations
&& !TLI
.isOperationLegal(ISD::BSWAP
, VT
))
6667 // Check that a store of the wide type is both allowed and fast on the target
6670 TLI
.allowsMemoryAccess(*DAG
.getContext(), DAG
.getDataLayout(), VT
,
6671 *FirstStore
->getMemOperand(), &Fast
);
6672 if (!Allowed
|| !Fast
)
6675 if (VT
!= CombinedValue
.getValueType()) {
6676 assert(CombinedValue
.getValueType().getSizeInBits() > VT
.getSizeInBits() &&
6677 "Get unexpected store value to combine");
6678 CombinedValue
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
,
6683 CombinedValue
= DAG
.getNode(ISD::BSWAP
, SDLoc(N
), VT
, CombinedValue
);
6686 DAG
.getStore(Chain
, SDLoc(N
), CombinedValue
, FirstStore
->getBasePtr(),
6687 FirstStore
->getPointerInfo(), FirstStore
->getAlignment());
6689 // Rely on other DAG combine rules to remove the other individual stores.
6690 DAG
.ReplaceAllUsesWith(N
, NewStore
.getNode());
6694 /// Match a pattern where a wide type scalar value is loaded by several narrow
6695 /// loads and combined by shifts and ors. Fold it into a single load or a load
6696 /// and a BSWAP if the targets supports it.
6698 /// Assuming little endian target:
6700 /// i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
6702 /// i32 val = *((i32)a)
6705 /// i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
6707 /// i32 val = BSWAP(*((i32)a))
6709 /// TODO: This rule matches complex patterns with OR node roots and doesn't
6710 /// interact well with the worklist mechanism. When a part of the pattern is
6711 /// updated (e.g. one of the loads) its direct users are put into the worklist,
6712 /// but the root node of the pattern which triggers the load combine is not
6713 /// necessarily a direct user of the changed node. For example, once the address
6714 /// of t28 load is reassociated load combine won't be triggered:
6715 /// t25: i32 = add t4, Constant:i32<2>
6716 /// t26: i64 = sign_extend t25
6717 /// t27: i64 = add t2, t26
6718 /// t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64
6719 /// t29: i32 = zero_extend t28
6720 /// t32: i32 = shl t29, Constant:i8<8>
6721 /// t33: i32 = or t23, t32
6722 /// As a possible fix visitLoad can check if the load can be a part of a load
6723 /// combine pattern and add corresponding OR roots to the worklist.
6724 SDValue
DAGCombiner::MatchLoadCombine(SDNode
*N
) {
6725 assert(N
->getOpcode() == ISD::OR
&&
6726 "Can only match load combining against OR nodes");
6728 // Handles simple types only
6729 EVT VT
= N
->getValueType(0);
6730 if (VT
!= MVT::i16
&& VT
!= MVT::i32
&& VT
!= MVT::i64
)
6732 unsigned ByteWidth
= VT
.getSizeInBits() / 8;
6734 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
6735 // Before legalize we can introduce too wide illegal loads which will be later
6736 // split into legal sized loads. This enables us to combine i64 load by i8
6737 // patterns to a couple of i32 loads on 32 bit targets.
6738 if (LegalOperations
&& !TLI
.isOperationLegal(ISD::LOAD
, VT
))
6741 bool IsBigEndianTarget
= DAG
.getDataLayout().isBigEndian();
6742 auto MemoryByteOffset
= [&] (ByteProvider P
) {
6743 assert(P
.isMemory() && "Must be a memory byte provider");
6744 unsigned LoadBitWidth
= P
.Load
->getMemoryVT().getSizeInBits();
6745 assert(LoadBitWidth
% 8 == 0 &&
6746 "can only analyze providers for individual bytes not bit");
6747 unsigned LoadByteWidth
= LoadBitWidth
/ 8;
6748 return IsBigEndianTarget
6749 ? BigEndianByteAt(LoadByteWidth
, P
.ByteOffset
)
6750 : LittleEndianByteAt(LoadByteWidth
, P
.ByteOffset
);
6753 Optional
<BaseIndexOffset
> Base
;
6756 SmallPtrSet
<LoadSDNode
*, 8> Loads
;
6757 Optional
<ByteProvider
> FirstByteProvider
;
6758 int64_t FirstOffset
= INT64_MAX
;
6760 // Check if all the bytes of the OR we are looking at are loaded from the same
6761 // base address. Collect bytes offsets from Base address in ByteOffsets.
6762 SmallVector
<int64_t, 4> ByteOffsets(ByteWidth
);
6763 for (unsigned i
= 0; i
< ByteWidth
; i
++) {
6764 auto P
= calculateByteProvider(SDValue(N
, 0), i
, 0, /*Root=*/true);
6765 if (!P
|| !P
->isMemory()) // All the bytes must be loaded from memory
6768 LoadSDNode
*L
= P
->Load
;
6769 assert(L
->hasNUsesOfValue(1, 0) && !L
->isVolatile() && !L
->isIndexed() &&
6770 "Must be enforced by calculateByteProvider");
6771 assert(L
->getOffset().isUndef() && "Unindexed load must have undef offset");
6773 // All loads must share the same chain
6774 SDValue LChain
= L
->getChain();
6777 else if (Chain
!= LChain
)
6780 // Loads must share the same base address
6781 BaseIndexOffset Ptr
= BaseIndexOffset::match(L
, DAG
);
6782 int64_t ByteOffsetFromBase
= 0;
6785 else if (!Base
->equalBaseIndex(Ptr
, DAG
, ByteOffsetFromBase
))
6788 // Calculate the offset of the current byte from the base address
6789 ByteOffsetFromBase
+= MemoryByteOffset(*P
);
6790 ByteOffsets
[i
] = ByteOffsetFromBase
;
6792 // Remember the first byte load
6793 if (ByteOffsetFromBase
< FirstOffset
) {
6794 FirstByteProvider
= P
;
6795 FirstOffset
= ByteOffsetFromBase
;
6800 assert(!Loads
.empty() && "All the bytes of the value must be loaded from "
6801 "memory, so there must be at least one load which produces the value");
6802 assert(Base
&& "Base address of the accessed memory location must be set");
6803 assert(FirstOffset
!= INT64_MAX
&& "First byte offset must be set");
6805 // Check if the bytes of the OR we are looking at match with either big or
6806 // little endian value load
6807 Optional
<bool> IsBigEndian
= isBigEndian(ByteOffsets
, FirstOffset
);
6808 if (!IsBigEndian
.hasValue())
6811 assert(FirstByteProvider
&& "must be set");
6813 // Ensure that the first byte is loaded from zero offset of the first load.
6814 // So the combined value can be loaded from the first load address.
6815 if (MemoryByteOffset(*FirstByteProvider
) != 0)
6817 LoadSDNode
*FirstLoad
= FirstByteProvider
->Load
;
6819 // The node we are looking at matches with the pattern, check if we can
6820 // replace it with a single load and bswap if needed.
6822 // If the load needs byte swap check if the target supports it
6823 bool NeedsBswap
= IsBigEndianTarget
!= *IsBigEndian
;
6825 // Before legalize we can introduce illegal bswaps which will be later
6826 // converted to an explicit bswap sequence. This way we end up with a single
6827 // load and byte shuffling instead of several loads and byte shuffling.
6828 if (NeedsBswap
&& LegalOperations
&& !TLI
.isOperationLegal(ISD::BSWAP
, VT
))
6831 // Check that a load of the wide type is both allowed and fast on the target
6833 bool Allowed
= TLI
.allowsMemoryAccess(*DAG
.getContext(), DAG
.getDataLayout(),
6834 VT
, *FirstLoad
->getMemOperand(), &Fast
);
6835 if (!Allowed
|| !Fast
)
6839 DAG
.getLoad(VT
, SDLoc(N
), Chain
, FirstLoad
->getBasePtr(),
6840 FirstLoad
->getPointerInfo(), FirstLoad
->getAlignment());
6842 // Transfer chain users from old loads to the new load.
6843 for (LoadSDNode
*L
: Loads
)
6844 DAG
.ReplaceAllUsesOfValueWith(SDValue(L
, 1), SDValue(NewLoad
.getNode(), 1));
6846 return NeedsBswap
? DAG
.getNode(ISD::BSWAP
, SDLoc(N
), VT
, NewLoad
) : NewLoad
;
6849 // If the target has andn, bsl, or a similar bit-select instruction,
6850 // we want to unfold masked merge, with canonical pattern of:
6852 // ((x ^ y) & m) ^ y
6855 // (x & m) | (y & ~m)
6856 // If y is a constant, and the 'andn' does not work with immediates,
6857 // we unfold into a different pattern:
6858 // ~(~x & m) & (m | y)
6859 // NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at
6860 // the very least that breaks andnpd / andnps patterns, and because those
6861 // patterns are simplified in IR and shouldn't be created in the DAG
6862 SDValue
DAGCombiner::unfoldMaskedMerge(SDNode
*N
) {
6863 assert(N
->getOpcode() == ISD::XOR
);
6865 // Don't touch 'not' (i.e. where y = -1).
6866 if (isAllOnesOrAllOnesSplat(N
->getOperand(1)))
6869 EVT VT
= N
->getValueType(0);
6871 // There are 3 commutable operators in the pattern,
6872 // so we have to deal with 8 possible variants of the basic pattern.
6874 auto matchAndXor
= [&X
, &Y
, &M
](SDValue And
, unsigned XorIdx
, SDValue Other
) {
6875 if (And
.getOpcode() != ISD::AND
|| !And
.hasOneUse())
6877 SDValue Xor
= And
.getOperand(XorIdx
);
6878 if (Xor
.getOpcode() != ISD::XOR
|| !Xor
.hasOneUse())
6880 SDValue Xor0
= Xor
.getOperand(0);
6881 SDValue Xor1
= Xor
.getOperand(1);
6882 // Don't touch 'not' (i.e. where y = -1).
6883 if (isAllOnesOrAllOnesSplat(Xor1
))
6886 std::swap(Xor0
, Xor1
);
6891 M
= And
.getOperand(XorIdx
? 0 : 1);
6895 SDValue N0
= N
->getOperand(0);
6896 SDValue N1
= N
->getOperand(1);
6897 if (!matchAndXor(N0
, 0, N1
) && !matchAndXor(N0
, 1, N1
) &&
6898 !matchAndXor(N1
, 0, N0
) && !matchAndXor(N1
, 1, N0
))
6901 // Don't do anything if the mask is constant. This should not be reachable.
6902 // InstCombine should have already unfolded this pattern, and DAGCombiner
6903 // probably shouldn't produce it, too.
6904 if (isa
<ConstantSDNode
>(M
.getNode()))
6907 // We can transform if the target has AndNot
6908 if (!TLI
.hasAndNot(M
))
6913 // If Y is a constant, check that 'andn' works with immediates.
6914 if (!TLI
.hasAndNot(Y
)) {
6915 assert(TLI
.hasAndNot(X
) && "Only mask is a variable? Unreachable.");
6916 // If not, we need to do a bit more work to make sure andn is still used.
6917 SDValue NotX
= DAG
.getNOT(DL
, X
, VT
);
6918 SDValue LHS
= DAG
.getNode(ISD::AND
, DL
, VT
, NotX
, M
);
6919 SDValue NotLHS
= DAG
.getNOT(DL
, LHS
, VT
);
6920 SDValue RHS
= DAG
.getNode(ISD::OR
, DL
, VT
, M
, Y
);
6921 return DAG
.getNode(ISD::AND
, DL
, VT
, NotLHS
, RHS
);
6924 SDValue LHS
= DAG
.getNode(ISD::AND
, DL
, VT
, X
, M
);
6925 SDValue NotM
= DAG
.getNOT(DL
, M
, VT
);
6926 SDValue RHS
= DAG
.getNode(ISD::AND
, DL
, VT
, Y
, NotM
);
6928 return DAG
.getNode(ISD::OR
, DL
, VT
, LHS
, RHS
);
6931 SDValue
DAGCombiner::visitXOR(SDNode
*N
) {
6932 SDValue N0
= N
->getOperand(0);
6933 SDValue N1
= N
->getOperand(1);
6934 EVT VT
= N0
.getValueType();
6937 if (VT
.isVector()) {
6938 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
6941 // fold (xor x, 0) -> x, vector edition
6942 if (ISD::isBuildVectorAllZeros(N0
.getNode()))
6944 if (ISD::isBuildVectorAllZeros(N1
.getNode()))
6948 // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
6950 if (N0
.isUndef() && N1
.isUndef())
6951 return DAG
.getConstant(0, DL
, VT
);
6952 // fold (xor x, undef) -> undef
6957 // fold (xor c1, c2) -> c1^c2
6958 ConstantSDNode
*N0C
= getAsNonOpaqueConstant(N0
);
6959 ConstantSDNode
*N1C
= getAsNonOpaqueConstant(N1
);
6961 return DAG
.FoldConstantArithmetic(ISD::XOR
, DL
, VT
, N0C
, N1C
);
6962 // canonicalize constant to RHS
6963 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
6964 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
6965 return DAG
.getNode(ISD::XOR
, DL
, VT
, N1
, N0
);
6966 // fold (xor x, 0) -> x
6967 if (isNullConstant(N1
))
6970 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
6974 if (SDValue RXOR
= reassociateOps(ISD::XOR
, DL
, N0
, N1
, N
->getFlags()))
6977 // fold !(x cc y) -> (x !cc y)
6978 unsigned N0Opcode
= N0
.getOpcode();
6979 SDValue LHS
, RHS
, CC
;
6980 if (TLI
.isConstTrueVal(N1
.getNode()) && isSetCCEquivalent(N0
, LHS
, RHS
, CC
)) {
6981 ISD::CondCode NotCC
= ISD::getSetCCInverse(cast
<CondCodeSDNode
>(CC
)->get(),
6982 LHS
.getValueType().isInteger());
6983 if (!LegalOperations
||
6984 TLI
.isCondCodeLegal(NotCC
, LHS
.getSimpleValueType())) {
6987 llvm_unreachable("Unhandled SetCC Equivalent!");
6989 return DAG
.getSetCC(SDLoc(N0
), VT
, LHS
, RHS
, NotCC
);
6990 case ISD::SELECT_CC
:
6991 return DAG
.getSelectCC(SDLoc(N0
), LHS
, RHS
, N0
.getOperand(2),
6992 N0
.getOperand(3), NotCC
);
6997 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
6998 if (isOneConstant(N1
) && N0Opcode
== ISD::ZERO_EXTEND
&& N0
.hasOneUse() &&
6999 isSetCCEquivalent(N0
.getOperand(0), LHS
, RHS
, CC
)){
7000 SDValue V
= N0
.getOperand(0);
7002 V
= DAG
.getNode(ISD::XOR
, DL0
, V
.getValueType(), V
,
7003 DAG
.getConstant(1, DL0
, V
.getValueType()));
7004 AddToWorklist(V
.getNode());
7005 return DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, V
);
7008 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
7009 if (isOneConstant(N1
) && VT
== MVT::i1
&& N0
.hasOneUse() &&
7010 (N0Opcode
== ISD::OR
|| N0Opcode
== ISD::AND
)) {
7011 SDValue LHS
= N0
.getOperand(0), RHS
= N0
.getOperand(1);
7012 if (isOneUseSetCC(RHS
) || isOneUseSetCC(LHS
)) {
7013 unsigned NewOpcode
= N0Opcode
== ISD::AND
? ISD::OR
: ISD::AND
;
7014 LHS
= DAG
.getNode(ISD::XOR
, SDLoc(LHS
), VT
, LHS
, N1
); // LHS = ~LHS
7015 RHS
= DAG
.getNode(ISD::XOR
, SDLoc(RHS
), VT
, RHS
, N1
); // RHS = ~RHS
7016 AddToWorklist(LHS
.getNode()); AddToWorklist(RHS
.getNode());
7017 return DAG
.getNode(NewOpcode
, DL
, VT
, LHS
, RHS
);
7020 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
7021 if (isAllOnesConstant(N1
) && N0
.hasOneUse() &&
7022 (N0Opcode
== ISD::OR
|| N0Opcode
== ISD::AND
)) {
7023 SDValue LHS
= N0
.getOperand(0), RHS
= N0
.getOperand(1);
7024 if (isa
<ConstantSDNode
>(RHS
) || isa
<ConstantSDNode
>(LHS
)) {
7025 unsigned NewOpcode
= N0Opcode
== ISD::AND
? ISD::OR
: ISD::AND
;
7026 LHS
= DAG
.getNode(ISD::XOR
, SDLoc(LHS
), VT
, LHS
, N1
); // LHS = ~LHS
7027 RHS
= DAG
.getNode(ISD::XOR
, SDLoc(RHS
), VT
, RHS
, N1
); // RHS = ~RHS
7028 AddToWorklist(LHS
.getNode()); AddToWorklist(RHS
.getNode());
7029 return DAG
.getNode(NewOpcode
, DL
, VT
, LHS
, RHS
);
7033 // fold (not (neg x)) -> (add X, -1)
7034 // FIXME: This can be generalized to (not (sub Y, X)) -> (add X, ~Y) if
7035 // Y is a constant or the subtract has a single use.
7036 if (isAllOnesConstant(N1
) && N0
.getOpcode() == ISD::SUB
&&
7037 isNullConstant(N0
.getOperand(0))) {
7038 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(1),
7039 DAG
.getAllOnesConstant(DL
, VT
));
7042 // fold (xor (and x, y), y) -> (and (not x), y)
7043 if (N0Opcode
== ISD::AND
&& N0
.hasOneUse() && N0
->getOperand(1) == N1
) {
7044 SDValue X
= N0
.getOperand(0);
7045 SDValue NotX
= DAG
.getNOT(SDLoc(X
), X
, VT
);
7046 AddToWorklist(NotX
.getNode());
7047 return DAG
.getNode(ISD::AND
, DL
, VT
, NotX
, N1
);
7050 if ((N0Opcode
== ISD::SRL
|| N0Opcode
== ISD::SHL
) && N0
.hasOneUse()) {
7051 ConstantSDNode
*XorC
= isConstOrConstSplat(N1
);
7052 ConstantSDNode
*ShiftC
= isConstOrConstSplat(N0
.getOperand(1));
7053 unsigned BitWidth
= VT
.getScalarSizeInBits();
7054 if (XorC
&& ShiftC
) {
7055 // Don't crash on an oversized shift. We can not guarantee that a bogus
7056 // shift has been simplified to undef.
7057 uint64_t ShiftAmt
= ShiftC
->getLimitedValue();
7058 if (ShiftAmt
< BitWidth
) {
7059 APInt Ones
= APInt::getAllOnesValue(BitWidth
);
7060 Ones
= N0Opcode
== ISD::SHL
? Ones
.shl(ShiftAmt
) : Ones
.lshr(ShiftAmt
);
7061 if (XorC
->getAPIntValue() == Ones
) {
7062 // If the xor constant is a shifted -1, do a 'not' before the shift:
7063 // xor (X << ShiftC), XorC --> (not X) << ShiftC
7064 // xor (X >> ShiftC), XorC --> (not X) >> ShiftC
7065 SDValue Not
= DAG
.getNOT(DL
, N0
.getOperand(0), VT
);
7066 return DAG
.getNode(N0Opcode
, DL
, VT
, Not
, N0
.getOperand(1));
7072 // fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X)
7073 if (TLI
.isOperationLegalOrCustom(ISD::ABS
, VT
)) {
7074 SDValue A
= N0Opcode
== ISD::ADD
? N0
: N1
;
7075 SDValue S
= N0Opcode
== ISD::SRA
? N0
: N1
;
7076 if (A
.getOpcode() == ISD::ADD
&& S
.getOpcode() == ISD::SRA
) {
7077 SDValue A0
= A
.getOperand(0), A1
= A
.getOperand(1);
7078 SDValue S0
= S
.getOperand(0);
7079 if ((A0
== S
&& A1
== S0
) || (A1
== S
&& A0
== S0
)) {
7080 unsigned OpSizeInBits
= VT
.getScalarSizeInBits();
7081 if (ConstantSDNode
*C
= isConstOrConstSplat(S
.getOperand(1)))
7082 if (C
->getAPIntValue() == (OpSizeInBits
- 1))
7083 return DAG
.getNode(ISD::ABS
, DL
, VT
, S0
);
7088 // fold (xor x, x) -> 0
7090 return tryFoldToZero(DL
, TLI
, VT
, DAG
, LegalOperations
);
7092 // fold (xor (shl 1, x), -1) -> (rotl ~1, x)
7093 // Here is a concrete example of this equivalence:
7095 // i16 shl == 1 << 14 == 16384 == 0b0100000000000000
7096 // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111
7100 // i16 ~1 == 0b1111111111111110
7101 // i16 rol(~1, 14) == 0b1011111111111111
7103 // Some additional tips to help conceptualize this transform:
7104 // - Try to see the operation as placing a single zero in a value of all ones.
7105 // - There exists no value for x which would allow the result to contain zero.
7106 // - Values of x larger than the bitwidth are undefined and do not require a
7107 // consistent result.
7108 // - Pushing the zero left requires shifting one bits in from the right.
7109 // A rotate left of ~1 is a nice way of achieving the desired result.
7110 if (TLI
.isOperationLegalOrCustom(ISD::ROTL
, VT
) && N0Opcode
== ISD::SHL
&&
7111 isAllOnesConstant(N1
) && isOneConstant(N0
.getOperand(0))) {
7112 return DAG
.getNode(ISD::ROTL
, DL
, VT
, DAG
.getConstant(~1, DL
, VT
),
7116 // Simplify: xor (op x...), (op y...) -> (op (xor x, y))
7117 if (N0Opcode
== N1
.getOpcode())
7118 if (SDValue V
= hoistLogicOpWithSameOpcodeHands(N
))
7121 // Unfold ((x ^ y) & m) ^ y into (x & m) | (y & ~m) if profitable
7122 if (SDValue MM
= unfoldMaskedMerge(N
))
7125 // Simplify the expression using non-local knowledge.
7126 if (SimplifyDemandedBits(SDValue(N
, 0)))
7127 return SDValue(N
, 0);
7132 /// Handle transforms common to the three shifts, when the shift amount is a
7134 /// We are looking for: (shift being one of shl/sra/srl)
7135 /// shift (binop X, C0), C1
7136 /// And want to transform into:
7137 /// binop (shift X, C1), (shift C0, C1)
7138 SDValue
DAGCombiner::visitShiftByConstant(SDNode
*N
, ConstantSDNode
*Amt
) {
7139 // Do not turn a 'not' into a regular xor.
7140 if (isBitwiseNot(N
->getOperand(0)))
7143 // The inner binop must be one-use, since we want to replace it.
7144 SDNode
*LHS
= N
->getOperand(0).getNode();
7145 if (!LHS
->hasOneUse()) return SDValue();
7147 // We want to pull some binops through shifts, so that we have (and (shift))
7148 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of
7149 // thing happens with address calculations, so it's important to canonicalize
7151 switch (LHS
->getOpcode()) {
7159 if (N
->getOpcode() != ISD::SHL
)
7160 return SDValue(); // only shl(add) not sr[al](add).
7164 // We require the RHS of the binop to be a constant and not opaque as well.
7165 ConstantSDNode
*BinOpCst
= getAsNonOpaqueConstant(LHS
->getOperand(1));
7169 // FIXME: disable this unless the input to the binop is a shift by a constant
7170 // or is copy/select. Enable this in other cases when figure out it's exactly
7172 SDValue BinOpLHSVal
= LHS
->getOperand(0);
7173 bool IsShiftByConstant
= (BinOpLHSVal
.getOpcode() == ISD::SHL
||
7174 BinOpLHSVal
.getOpcode() == ISD::SRA
||
7175 BinOpLHSVal
.getOpcode() == ISD::SRL
) &&
7176 isa
<ConstantSDNode
>(BinOpLHSVal
.getOperand(1));
7177 bool IsCopyOrSelect
= BinOpLHSVal
.getOpcode() == ISD::CopyFromReg
||
7178 BinOpLHSVal
.getOpcode() == ISD::SELECT
;
7180 if (!IsShiftByConstant
&& !IsCopyOrSelect
)
7183 if (IsCopyOrSelect
&& N
->hasOneUse())
7186 EVT VT
= N
->getValueType(0);
7188 if (!TLI
.isDesirableToCommuteWithShift(N
, Level
))
7191 // Fold the constants, shifting the binop RHS by the shift amount.
7192 SDValue NewRHS
= DAG
.getNode(N
->getOpcode(), SDLoc(LHS
->getOperand(1)),
7194 LHS
->getOperand(1), N
->getOperand(1));
7195 assert(isa
<ConstantSDNode
>(NewRHS
) && "Folding was not successful!");
7197 // Create the new shift.
7198 SDValue NewShift
= DAG
.getNode(N
->getOpcode(),
7199 SDLoc(LHS
->getOperand(0)),
7200 VT
, LHS
->getOperand(0), N
->getOperand(1));
7202 // Create the new binop.
7203 return DAG
.getNode(LHS
->getOpcode(), SDLoc(N
), VT
, NewShift
, NewRHS
);
7206 SDValue
DAGCombiner::distributeTruncateThroughAnd(SDNode
*N
) {
7207 assert(N
->getOpcode() == ISD::TRUNCATE
);
7208 assert(N
->getOperand(0).getOpcode() == ISD::AND
);
7210 // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC)
7211 EVT TruncVT
= N
->getValueType(0);
7212 if (N
->hasOneUse() && N
->getOperand(0).hasOneUse() &&
7213 TLI
.isTypeDesirableForOp(ISD::AND
, TruncVT
)) {
7214 SDValue N01
= N
->getOperand(0).getOperand(1);
7215 if (isConstantOrConstantVector(N01
, /* NoOpaques */ true)) {
7217 SDValue N00
= N
->getOperand(0).getOperand(0);
7218 SDValue Trunc00
= DAG
.getNode(ISD::TRUNCATE
, DL
, TruncVT
, N00
);
7219 SDValue Trunc01
= DAG
.getNode(ISD::TRUNCATE
, DL
, TruncVT
, N01
);
7220 AddToWorklist(Trunc00
.getNode());
7221 AddToWorklist(Trunc01
.getNode());
7222 return DAG
.getNode(ISD::AND
, DL
, TruncVT
, Trunc00
, Trunc01
);
7229 SDValue
DAGCombiner::visitRotate(SDNode
*N
) {
7231 SDValue N0
= N
->getOperand(0);
7232 SDValue N1
= N
->getOperand(1);
7233 EVT VT
= N
->getValueType(0);
7234 unsigned Bitsize
= VT
.getScalarSizeInBits();
7236 // fold (rot x, 0) -> x
7237 if (isNullOrNullSplat(N1
))
7240 // fold (rot x, c) -> x iff (c % BitSize) == 0
7241 if (isPowerOf2_32(Bitsize
) && Bitsize
> 1) {
7242 APInt
ModuloMask(N1
.getScalarValueSizeInBits(), Bitsize
- 1);
7243 if (DAG
.MaskedValueIsZero(N1
, ModuloMask
))
7247 // fold (rot x, c) -> (rot x, c % BitSize)
7248 // TODO - support non-uniform vector amounts.
7249 if (ConstantSDNode
*Cst
= isConstOrConstSplat(N1
)) {
7250 if (Cst
->getAPIntValue().uge(Bitsize
)) {
7251 uint64_t RotAmt
= Cst
->getAPIntValue().urem(Bitsize
);
7252 return DAG
.getNode(N
->getOpcode(), dl
, VT
, N0
,
7253 DAG
.getConstant(RotAmt
, dl
, N1
.getValueType()));
7257 // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))).
7258 if (N1
.getOpcode() == ISD::TRUNCATE
&&
7259 N1
.getOperand(0).getOpcode() == ISD::AND
) {
7260 if (SDValue NewOp1
= distributeTruncateThroughAnd(N1
.getNode()))
7261 return DAG
.getNode(N
->getOpcode(), dl
, VT
, N0
, NewOp1
);
7264 unsigned NextOp
= N0
.getOpcode();
7265 // fold (rot* (rot* x, c2), c1) -> (rot* x, c1 +- c2 % bitsize)
7266 if (NextOp
== ISD::ROTL
|| NextOp
== ISD::ROTR
) {
7267 SDNode
*C1
= DAG
.isConstantIntBuildVectorOrConstantInt(N1
);
7268 SDNode
*C2
= DAG
.isConstantIntBuildVectorOrConstantInt(N0
.getOperand(1));
7269 if (C1
&& C2
&& C1
->getValueType(0) == C2
->getValueType(0)) {
7270 EVT ShiftVT
= C1
->getValueType(0);
7271 bool SameSide
= (N
->getOpcode() == NextOp
);
7272 unsigned CombineOp
= SameSide
? ISD::ADD
: ISD::SUB
;
7273 if (SDValue CombinedShift
=
7274 DAG
.FoldConstantArithmetic(CombineOp
, dl
, ShiftVT
, C1
, C2
)) {
7275 SDValue BitsizeC
= DAG
.getConstant(Bitsize
, dl
, ShiftVT
);
7276 SDValue CombinedShiftNorm
= DAG
.FoldConstantArithmetic(
7277 ISD::SREM
, dl
, ShiftVT
, CombinedShift
.getNode(),
7278 BitsizeC
.getNode());
7279 return DAG
.getNode(N
->getOpcode(), dl
, VT
, N0
->getOperand(0),
7287 SDValue
DAGCombiner::visitSHL(SDNode
*N
) {
7288 SDValue N0
= N
->getOperand(0);
7289 SDValue N1
= N
->getOperand(1);
7290 if (SDValue V
= DAG
.simplifyShift(N0
, N1
))
7293 EVT VT
= N0
.getValueType();
7294 EVT ShiftVT
= N1
.getValueType();
7295 unsigned OpSizeInBits
= VT
.getScalarSizeInBits();
7298 if (VT
.isVector()) {
7299 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
7302 BuildVectorSDNode
*N1CV
= dyn_cast
<BuildVectorSDNode
>(N1
);
7303 // If setcc produces all-one true value then:
7304 // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV)
7305 if (N1CV
&& N1CV
->isConstant()) {
7306 if (N0
.getOpcode() == ISD::AND
) {
7307 SDValue N00
= N0
->getOperand(0);
7308 SDValue N01
= N0
->getOperand(1);
7309 BuildVectorSDNode
*N01CV
= dyn_cast
<BuildVectorSDNode
>(N01
);
7311 if (N01CV
&& N01CV
->isConstant() && N00
.getOpcode() == ISD::SETCC
&&
7312 TLI
.getBooleanContents(N00
.getOperand(0).getValueType()) ==
7313 TargetLowering::ZeroOrNegativeOneBooleanContent
) {
7314 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::SHL
, SDLoc(N
), VT
,
7316 return DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, N00
, C
);
7322 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
7324 // fold (shl c1, c2) -> c1<<c2
7325 // TODO - support non-uniform vector shift amounts.
7326 ConstantSDNode
*N0C
= getAsNonOpaqueConstant(N0
);
7327 if (N0C
&& N1C
&& !N1C
->isOpaque())
7328 return DAG
.FoldConstantArithmetic(ISD::SHL
, SDLoc(N
), VT
, N0C
, N1C
);
7330 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
7333 // if (shl x, c) is known to be zero, return 0
7334 if (DAG
.MaskedValueIsZero(SDValue(N
, 0),
7335 APInt::getAllOnesValue(OpSizeInBits
)))
7336 return DAG
.getConstant(0, SDLoc(N
), VT
);
7338 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
7339 if (N1
.getOpcode() == ISD::TRUNCATE
&&
7340 N1
.getOperand(0).getOpcode() == ISD::AND
) {
7341 if (SDValue NewOp1
= distributeTruncateThroughAnd(N1
.getNode()))
7342 return DAG
.getNode(ISD::SHL
, SDLoc(N
), VT
, N0
, NewOp1
);
7345 // TODO - support non-uniform vector shift amounts.
7346 if (N1C
&& SimplifyDemandedBits(SDValue(N
, 0)))
7347 return SDValue(N
, 0);
7349 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
7350 if (N0
.getOpcode() == ISD::SHL
) {
7351 auto MatchOutOfRange
= [OpSizeInBits
](ConstantSDNode
*LHS
,
7352 ConstantSDNode
*RHS
) {
7353 APInt c1
= LHS
->getAPIntValue();
7354 APInt c2
= RHS
->getAPIntValue();
7355 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
7356 return (c1
+ c2
).uge(OpSizeInBits
);
7358 if (ISD::matchBinaryPredicate(N1
, N0
.getOperand(1), MatchOutOfRange
))
7359 return DAG
.getConstant(0, SDLoc(N
), VT
);
7361 auto MatchInRange
= [OpSizeInBits
](ConstantSDNode
*LHS
,
7362 ConstantSDNode
*RHS
) {
7363 APInt c1
= LHS
->getAPIntValue();
7364 APInt c2
= RHS
->getAPIntValue();
7365 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
7366 return (c1
+ c2
).ult(OpSizeInBits
);
7368 if (ISD::matchBinaryPredicate(N1
, N0
.getOperand(1), MatchInRange
)) {
7370 SDValue Sum
= DAG
.getNode(ISD::ADD
, DL
, ShiftVT
, N1
, N0
.getOperand(1));
7371 return DAG
.getNode(ISD::SHL
, DL
, VT
, N0
.getOperand(0), Sum
);
7375 // fold (shl (ext (shl x, c1)), c2) -> (shl (ext x), (add c1, c2))
7376 // For this to be valid, the second form must not preserve any of the bits
7377 // that are shifted out by the inner shift in the first form. This means
7378 // the outer shift size must be >= the number of bits added by the ext.
7379 // As a corollary, we don't care what kind of ext it is.
7380 if ((N0
.getOpcode() == ISD::ZERO_EXTEND
||
7381 N0
.getOpcode() == ISD::ANY_EXTEND
||
7382 N0
.getOpcode() == ISD::SIGN_EXTEND
) &&
7383 N0
.getOperand(0).getOpcode() == ISD::SHL
) {
7384 SDValue N0Op0
= N0
.getOperand(0);
7385 SDValue InnerShiftAmt
= N0Op0
.getOperand(1);
7386 EVT InnerVT
= N0Op0
.getValueType();
7387 uint64_t InnerBitwidth
= InnerVT
.getScalarSizeInBits();
7389 auto MatchOutOfRange
= [OpSizeInBits
, InnerBitwidth
](ConstantSDNode
*LHS
,
7390 ConstantSDNode
*RHS
) {
7391 APInt c1
= LHS
->getAPIntValue();
7392 APInt c2
= RHS
->getAPIntValue();
7393 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
7394 return c2
.uge(OpSizeInBits
- InnerBitwidth
) &&
7395 (c1
+ c2
).uge(OpSizeInBits
);
7397 if (ISD::matchBinaryPredicate(InnerShiftAmt
, N1
, MatchOutOfRange
,
7398 /*AllowUndefs*/ false,
7399 /*AllowTypeMismatch*/ true))
7400 return DAG
.getConstant(0, SDLoc(N
), VT
);
7402 auto MatchInRange
= [OpSizeInBits
, InnerBitwidth
](ConstantSDNode
*LHS
,
7403 ConstantSDNode
*RHS
) {
7404 APInt c1
= LHS
->getAPIntValue();
7405 APInt c2
= RHS
->getAPIntValue();
7406 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
7407 return c2
.uge(OpSizeInBits
- InnerBitwidth
) &&
7408 (c1
+ c2
).ult(OpSizeInBits
);
7410 if (ISD::matchBinaryPredicate(InnerShiftAmt
, N1
, MatchInRange
,
7411 /*AllowUndefs*/ false,
7412 /*AllowTypeMismatch*/ true)) {
7414 SDValue Ext
= DAG
.getNode(N0
.getOpcode(), DL
, VT
, N0Op0
.getOperand(0));
7415 SDValue Sum
= DAG
.getZExtOrTrunc(InnerShiftAmt
, DL
, ShiftVT
);
7416 Sum
= DAG
.getNode(ISD::ADD
, DL
, ShiftVT
, Sum
, N1
);
7417 return DAG
.getNode(ISD::SHL
, DL
, VT
, Ext
, Sum
);
7421 // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C))
7422 // Only fold this if the inner zext has no other uses to avoid increasing
7423 // the total number of instructions.
7424 if (N0
.getOpcode() == ISD::ZERO_EXTEND
&& N0
.hasOneUse() &&
7425 N0
.getOperand(0).getOpcode() == ISD::SRL
) {
7426 SDValue N0Op0
= N0
.getOperand(0);
7427 SDValue InnerShiftAmt
= N0Op0
.getOperand(1);
7429 auto MatchEqual
= [VT
](ConstantSDNode
*LHS
, ConstantSDNode
*RHS
) {
7430 APInt c1
= LHS
->getAPIntValue();
7431 APInt c2
= RHS
->getAPIntValue();
7432 zeroExtendToMatch(c1
, c2
);
7433 return c1
.ult(VT
.getScalarSizeInBits()) && (c1
== c2
);
7435 if (ISD::matchBinaryPredicate(InnerShiftAmt
, N1
, MatchEqual
,
7436 /*AllowUndefs*/ false,
7437 /*AllowTypeMismatch*/ true)) {
7439 EVT InnerShiftAmtVT
= N0Op0
.getOperand(1).getValueType();
7440 SDValue NewSHL
= DAG
.getZExtOrTrunc(N1
, DL
, InnerShiftAmtVT
);
7441 NewSHL
= DAG
.getNode(ISD::SHL
, DL
, N0Op0
.getValueType(), N0Op0
, NewSHL
);
7442 AddToWorklist(NewSHL
.getNode());
7443 return DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N0
), VT
, NewSHL
);
7447 // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2
7448 // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2
7449 // TODO - support non-uniform vector shift amounts.
7450 if (N1C
&& (N0
.getOpcode() == ISD::SRL
|| N0
.getOpcode() == ISD::SRA
) &&
7451 N0
->getFlags().hasExact()) {
7452 if (ConstantSDNode
*N0C1
= isConstOrConstSplat(N0
.getOperand(1))) {
7453 uint64_t C1
= N0C1
->getZExtValue();
7454 uint64_t C2
= N1C
->getZExtValue();
7457 return DAG
.getNode(ISD::SHL
, DL
, VT
, N0
.getOperand(0),
7458 DAG
.getConstant(C2
- C1
, DL
, ShiftVT
));
7459 return DAG
.getNode(N0
.getOpcode(), DL
, VT
, N0
.getOperand(0),
7460 DAG
.getConstant(C1
- C2
, DL
, ShiftVT
));
7464 // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
7465 // (and (srl x, (sub c1, c2), MASK)
7466 // Only fold this if the inner shift has no other uses -- if it does, folding
7467 // this will increase the total number of instructions.
7468 // TODO - drop hasOneUse requirement if c1 == c2?
7469 // TODO - support non-uniform vector shift amounts.
7470 if (N1C
&& N0
.getOpcode() == ISD::SRL
&& N0
.hasOneUse() &&
7471 TLI
.shouldFoldConstantShiftPairToMask(N
, Level
)) {
7472 if (ConstantSDNode
*N0C1
= isConstOrConstSplat(N0
.getOperand(1))) {
7473 if (N0C1
->getAPIntValue().ult(OpSizeInBits
)) {
7474 uint64_t c1
= N0C1
->getZExtValue();
7475 uint64_t c2
= N1C
->getZExtValue();
7476 APInt Mask
= APInt::getHighBitsSet(OpSizeInBits
, OpSizeInBits
- c1
);
7481 Shift
= DAG
.getNode(ISD::SHL
, DL
, VT
, N0
.getOperand(0),
7482 DAG
.getConstant(c2
- c1
, DL
, ShiftVT
));
7484 Mask
.lshrInPlace(c1
- c2
);
7486 Shift
= DAG
.getNode(ISD::SRL
, DL
, VT
, N0
.getOperand(0),
7487 DAG
.getConstant(c1
- c2
, DL
, ShiftVT
));
7490 return DAG
.getNode(ISD::AND
, DL
, VT
, Shift
,
7491 DAG
.getConstant(Mask
, DL
, VT
));
7496 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
7497 if (N0
.getOpcode() == ISD::SRA
&& N1
== N0
.getOperand(1) &&
7498 isConstantOrConstantVector(N1
, /* No Opaques */ true)) {
7500 SDValue AllBits
= DAG
.getAllOnesConstant(DL
, VT
);
7501 SDValue HiBitsMask
= DAG
.getNode(ISD::SHL
, DL
, VT
, AllBits
, N1
);
7502 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
.getOperand(0), HiBitsMask
);
7505 // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
7506 // fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
7507 // Variant of version done on multiply, except mul by a power of 2 is turned
7509 if ((N0
.getOpcode() == ISD::ADD
|| N0
.getOpcode() == ISD::OR
) &&
7510 N0
.getNode()->hasOneUse() &&
7511 isConstantOrConstantVector(N1
, /* No Opaques */ true) &&
7512 isConstantOrConstantVector(N0
.getOperand(1), /* No Opaques */ true) &&
7513 TLI
.isDesirableToCommuteWithShift(N
, Level
)) {
7514 SDValue Shl0
= DAG
.getNode(ISD::SHL
, SDLoc(N0
), VT
, N0
.getOperand(0), N1
);
7515 SDValue Shl1
= DAG
.getNode(ISD::SHL
, SDLoc(N1
), VT
, N0
.getOperand(1), N1
);
7516 AddToWorklist(Shl0
.getNode());
7517 AddToWorklist(Shl1
.getNode());
7518 return DAG
.getNode(N0
.getOpcode(), SDLoc(N
), VT
, Shl0
, Shl1
);
7521 // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2)
7522 if (N0
.getOpcode() == ISD::MUL
&& N0
.getNode()->hasOneUse() &&
7523 isConstantOrConstantVector(N1
, /* No Opaques */ true) &&
7524 isConstantOrConstantVector(N0
.getOperand(1), /* No Opaques */ true)) {
7525 SDValue Shl
= DAG
.getNode(ISD::SHL
, SDLoc(N1
), VT
, N0
.getOperand(1), N1
);
7526 if (isConstantOrConstantVector(Shl
))
7527 return DAG
.getNode(ISD::MUL
, SDLoc(N
), VT
, N0
.getOperand(0), Shl
);
7530 if (N1C
&& !N1C
->isOpaque())
7531 if (SDValue NewSHL
= visitShiftByConstant(N
, N1C
))
7537 SDValue
DAGCombiner::visitSRA(SDNode
*N
) {
7538 SDValue N0
= N
->getOperand(0);
7539 SDValue N1
= N
->getOperand(1);
7540 if (SDValue V
= DAG
.simplifyShift(N0
, N1
))
7543 EVT VT
= N0
.getValueType();
7544 unsigned OpSizeInBits
= VT
.getScalarSizeInBits();
7546 // Arithmetic shifting an all-sign-bit value is a no-op.
7547 // fold (sra 0, x) -> 0
7548 // fold (sra -1, x) -> -1
7549 if (DAG
.ComputeNumSignBits(N0
) == OpSizeInBits
)
7554 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
7557 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
7559 // fold (sra c1, c2) -> (sra c1, c2)
7560 // TODO - support non-uniform vector shift amounts.
7561 ConstantSDNode
*N0C
= getAsNonOpaqueConstant(N0
);
7562 if (N0C
&& N1C
&& !N1C
->isOpaque())
7563 return DAG
.FoldConstantArithmetic(ISD::SRA
, SDLoc(N
), VT
, N0C
, N1C
);
7565 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
7568 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
7570 if (N1C
&& N0
.getOpcode() == ISD::SHL
&& N1
== N0
.getOperand(1)) {
7571 unsigned LowBits
= OpSizeInBits
- (unsigned)N1C
->getZExtValue();
7572 EVT ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), LowBits
);
7574 ExtVT
= EVT::getVectorVT(*DAG
.getContext(),
7575 ExtVT
, VT
.getVectorNumElements());
7576 if ((!LegalOperations
||
7577 TLI
.isOperationLegal(ISD::SIGN_EXTEND_INREG
, ExtVT
)))
7578 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, SDLoc(N
), VT
,
7579 N0
.getOperand(0), DAG
.getValueType(ExtVT
));
7582 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
7583 // clamp (add c1, c2) to max shift.
7584 if (N0
.getOpcode() == ISD::SRA
) {
7586 EVT ShiftVT
= N1
.getValueType();
7587 EVT ShiftSVT
= ShiftVT
.getScalarType();
7588 SmallVector
<SDValue
, 16> ShiftValues
;
7590 auto SumOfShifts
= [&](ConstantSDNode
*LHS
, ConstantSDNode
*RHS
) {
7591 APInt c1
= LHS
->getAPIntValue();
7592 APInt c2
= RHS
->getAPIntValue();
7593 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
7594 APInt Sum
= c1
+ c2
;
7596 Sum
.uge(OpSizeInBits
) ? (OpSizeInBits
- 1) : Sum
.getZExtValue();
7597 ShiftValues
.push_back(DAG
.getConstant(ShiftSum
, DL
, ShiftSVT
));
7600 if (ISD::matchBinaryPredicate(N1
, N0
.getOperand(1), SumOfShifts
)) {
7603 ShiftValue
= DAG
.getBuildVector(ShiftVT
, DL
, ShiftValues
);
7605 ShiftValue
= ShiftValues
[0];
7606 return DAG
.getNode(ISD::SRA
, DL
, VT
, N0
.getOperand(0), ShiftValue
);
7610 // fold (sra (shl X, m), (sub result_size, n))
7611 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
7612 // result_size - n != m.
7613 // If truncate is free for the target sext(shl) is likely to result in better
7615 if (N0
.getOpcode() == ISD::SHL
&& N1C
) {
7616 // Get the two constanst of the shifts, CN0 = m, CN = n.
7617 const ConstantSDNode
*N01C
= isConstOrConstSplat(N0
.getOperand(1));
7619 LLVMContext
&Ctx
= *DAG
.getContext();
7620 // Determine what the truncate's result bitsize and type would be.
7621 EVT TruncVT
= EVT::getIntegerVT(Ctx
, OpSizeInBits
- N1C
->getZExtValue());
7624 TruncVT
= EVT::getVectorVT(Ctx
, TruncVT
, VT
.getVectorNumElements());
7626 // Determine the residual right-shift amount.
7627 int ShiftAmt
= N1C
->getZExtValue() - N01C
->getZExtValue();
7629 // If the shift is not a no-op (in which case this should be just a sign
7630 // extend already), the truncated to type is legal, sign_extend is legal
7631 // on that type, and the truncate to that type is both legal and free,
7632 // perform the transform.
7633 if ((ShiftAmt
> 0) &&
7634 TLI
.isOperationLegalOrCustom(ISD::SIGN_EXTEND
, TruncVT
) &&
7635 TLI
.isOperationLegalOrCustom(ISD::TRUNCATE
, VT
) &&
7636 TLI
.isTruncateFree(VT
, TruncVT
)) {
7638 SDValue Amt
= DAG
.getConstant(ShiftAmt
, DL
,
7639 getShiftAmountTy(N0
.getOperand(0).getValueType()));
7640 SDValue Shift
= DAG
.getNode(ISD::SRL
, DL
, VT
,
7641 N0
.getOperand(0), Amt
);
7642 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, DL
, TruncVT
,
7644 return DAG
.getNode(ISD::SIGN_EXTEND
, DL
,
7645 N
->getValueType(0), Trunc
);
7650 // We convert trunc/ext to opposing shifts in IR, but casts may be cheaper.
7651 // sra (add (shl X, N1C), AddC), N1C -->
7652 // sext (add (trunc X to (width - N1C)), AddC')
7653 if (!LegalTypes
&& N0
.getOpcode() == ISD::ADD
&& N0
.hasOneUse() && N1C
&&
7654 N0
.getOperand(0).getOpcode() == ISD::SHL
&&
7655 N0
.getOperand(0).getOperand(1) == N1
&& N0
.getOperand(0).hasOneUse()) {
7656 if (ConstantSDNode
*AddC
= isConstOrConstSplat(N0
.getOperand(1))) {
7657 SDValue Shl
= N0
.getOperand(0);
7658 // Determine what the truncate's type would be and ask the target if that
7659 // is a free operation.
7660 LLVMContext
&Ctx
= *DAG
.getContext();
7661 unsigned ShiftAmt
= N1C
->getZExtValue();
7662 EVT TruncVT
= EVT::getIntegerVT(Ctx
, OpSizeInBits
- ShiftAmt
);
7664 TruncVT
= EVT::getVectorVT(Ctx
, TruncVT
, VT
.getVectorNumElements());
7666 // TODO: The simple type check probably belongs in the default hook
7667 // implementation and/or target-specific overrides (because
7668 // non-simple types likely require masking when legalized), but that
7669 // restriction may conflict with other transforms.
7670 if (TruncVT
.isSimple() && TLI
.isTruncateFree(VT
, TruncVT
)) {
7672 SDValue Trunc
= DAG
.getZExtOrTrunc(Shl
.getOperand(0), DL
, TruncVT
);
7673 SDValue ShiftC
= DAG
.getConstant(AddC
->getAPIntValue().lshr(ShiftAmt
).
7674 trunc(TruncVT
.getScalarSizeInBits()), DL
, TruncVT
);
7675 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, TruncVT
, Trunc
, ShiftC
);
7676 return DAG
.getSExtOrTrunc(Add
, DL
, VT
);
7681 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
7682 if (N1
.getOpcode() == ISD::TRUNCATE
&&
7683 N1
.getOperand(0).getOpcode() == ISD::AND
) {
7684 if (SDValue NewOp1
= distributeTruncateThroughAnd(N1
.getNode()))
7685 return DAG
.getNode(ISD::SRA
, SDLoc(N
), VT
, N0
, NewOp1
);
7688 // fold (sra (trunc (sra x, c1)), c2) -> (trunc (sra x, c1 + c2))
7689 // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2))
7690 // if c1 is equal to the number of bits the trunc removes
7691 // TODO - support non-uniform vector shift amounts.
7692 if (N0
.getOpcode() == ISD::TRUNCATE
&&
7693 (N0
.getOperand(0).getOpcode() == ISD::SRL
||
7694 N0
.getOperand(0).getOpcode() == ISD::SRA
) &&
7695 N0
.getOperand(0).hasOneUse() &&
7696 N0
.getOperand(0).getOperand(1).hasOneUse() && N1C
) {
7697 SDValue N0Op0
= N0
.getOperand(0);
7698 if (ConstantSDNode
*LargeShift
= isConstOrConstSplat(N0Op0
.getOperand(1))) {
7699 EVT LargeVT
= N0Op0
.getValueType();
7700 unsigned TruncBits
= LargeVT
.getScalarSizeInBits() - OpSizeInBits
;
7701 if (LargeShift
->getAPIntValue() == TruncBits
) {
7703 SDValue Amt
= DAG
.getConstant(N1C
->getZExtValue() + TruncBits
, DL
,
7704 getShiftAmountTy(LargeVT
));
7706 DAG
.getNode(ISD::SRA
, DL
, LargeVT
, N0Op0
.getOperand(0), Amt
);
7707 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, SRA
);
7712 // Simplify, based on bits shifted out of the LHS.
7713 // TODO - support non-uniform vector shift amounts.
7714 if (N1C
&& SimplifyDemandedBits(SDValue(N
, 0)))
7715 return SDValue(N
, 0);
7717 // If the sign bit is known to be zero, switch this to a SRL.
7718 if (DAG
.SignBitIsZero(N0
))
7719 return DAG
.getNode(ISD::SRL
, SDLoc(N
), VT
, N0
, N1
);
7721 if (N1C
&& !N1C
->isOpaque())
7722 if (SDValue NewSRA
= visitShiftByConstant(N
, N1C
))
7728 SDValue
DAGCombiner::visitSRL(SDNode
*N
) {
7729 SDValue N0
= N
->getOperand(0);
7730 SDValue N1
= N
->getOperand(1);
7731 if (SDValue V
= DAG
.simplifyShift(N0
, N1
))
7734 EVT VT
= N0
.getValueType();
7735 unsigned OpSizeInBits
= VT
.getScalarSizeInBits();
7739 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
7742 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
7744 // fold (srl c1, c2) -> c1 >>u c2
7745 // TODO - support non-uniform vector shift amounts.
7746 ConstantSDNode
*N0C
= getAsNonOpaqueConstant(N0
);
7747 if (N0C
&& N1C
&& !N1C
->isOpaque())
7748 return DAG
.FoldConstantArithmetic(ISD::SRL
, SDLoc(N
), VT
, N0C
, N1C
);
7750 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
7753 // if (srl x, c) is known to be zero, return 0
7754 if (N1C
&& DAG
.MaskedValueIsZero(SDValue(N
, 0),
7755 APInt::getAllOnesValue(OpSizeInBits
)))
7756 return DAG
.getConstant(0, SDLoc(N
), VT
);
7758 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
7759 if (N0
.getOpcode() == ISD::SRL
) {
7760 auto MatchOutOfRange
= [OpSizeInBits
](ConstantSDNode
*LHS
,
7761 ConstantSDNode
*RHS
) {
7762 APInt c1
= LHS
->getAPIntValue();
7763 APInt c2
= RHS
->getAPIntValue();
7764 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
7765 return (c1
+ c2
).uge(OpSizeInBits
);
7767 if (ISD::matchBinaryPredicate(N1
, N0
.getOperand(1), MatchOutOfRange
))
7768 return DAG
.getConstant(0, SDLoc(N
), VT
);
7770 auto MatchInRange
= [OpSizeInBits
](ConstantSDNode
*LHS
,
7771 ConstantSDNode
*RHS
) {
7772 APInt c1
= LHS
->getAPIntValue();
7773 APInt c2
= RHS
->getAPIntValue();
7774 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
7775 return (c1
+ c2
).ult(OpSizeInBits
);
7777 if (ISD::matchBinaryPredicate(N1
, N0
.getOperand(1), MatchInRange
)) {
7779 EVT ShiftVT
= N1
.getValueType();
7780 SDValue Sum
= DAG
.getNode(ISD::ADD
, DL
, ShiftVT
, N1
, N0
.getOperand(1));
7781 return DAG
.getNode(ISD::SRL
, DL
, VT
, N0
.getOperand(0), Sum
);
7785 // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
7786 // TODO - support non-uniform vector shift amounts.
7787 if (N1C
&& N0
.getOpcode() == ISD::TRUNCATE
&&
7788 N0
.getOperand(0).getOpcode() == ISD::SRL
) {
7789 if (auto N001C
= isConstOrConstSplat(N0
.getOperand(0).getOperand(1))) {
7790 uint64_t c1
= N001C
->getZExtValue();
7791 uint64_t c2
= N1C
->getZExtValue();
7792 EVT InnerShiftVT
= N0
.getOperand(0).getValueType();
7793 EVT ShiftCountVT
= N0
.getOperand(0).getOperand(1).getValueType();
7794 uint64_t InnerShiftSize
= InnerShiftVT
.getScalarSizeInBits();
7795 // This is only valid if the OpSizeInBits + c1 = size of inner shift.
7796 if (c1
+ OpSizeInBits
== InnerShiftSize
) {
7798 if (c1
+ c2
>= InnerShiftSize
)
7799 return DAG
.getConstant(0, DL
, VT
);
7800 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
,
7801 DAG
.getNode(ISD::SRL
, DL
, InnerShiftVT
,
7802 N0
.getOperand(0).getOperand(0),
7803 DAG
.getConstant(c1
+ c2
, DL
,
7809 // fold (srl (shl x, c), c) -> (and x, cst2)
7810 // TODO - (srl (shl x, c1), c2).
7811 if (N0
.getOpcode() == ISD::SHL
&& N0
.getOperand(1) == N1
&&
7812 isConstantOrConstantVector(N1
, /* NoOpaques */ true)) {
7815 DAG
.getNode(ISD::SRL
, DL
, VT
, DAG
.getAllOnesConstant(DL
, VT
), N1
);
7816 AddToWorklist(Mask
.getNode());
7817 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
.getOperand(0), Mask
);
7820 // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
7821 // TODO - support non-uniform vector shift amounts.
7822 if (N1C
&& N0
.getOpcode() == ISD::ANY_EXTEND
) {
7823 // Shifting in all undef bits?
7824 EVT SmallVT
= N0
.getOperand(0).getValueType();
7825 unsigned BitSize
= SmallVT
.getScalarSizeInBits();
7826 if (N1C
->getAPIntValue().uge(BitSize
))
7827 return DAG
.getUNDEF(VT
);
7829 if (!LegalTypes
|| TLI
.isTypeDesirableForOp(ISD::SRL
, SmallVT
)) {
7830 uint64_t ShiftAmt
= N1C
->getZExtValue();
7832 SDValue SmallShift
= DAG
.getNode(ISD::SRL
, DL0
, SmallVT
,
7834 DAG
.getConstant(ShiftAmt
, DL0
,
7835 getShiftAmountTy(SmallVT
)));
7836 AddToWorklist(SmallShift
.getNode());
7837 APInt Mask
= APInt::getLowBitsSet(OpSizeInBits
, OpSizeInBits
- ShiftAmt
);
7839 return DAG
.getNode(ISD::AND
, DL
, VT
,
7840 DAG
.getNode(ISD::ANY_EXTEND
, DL
, VT
, SmallShift
),
7841 DAG
.getConstant(Mask
, DL
, VT
));
7845 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
7846 // bit, which is unmodified by sra.
7847 if (N1C
&& N1C
->getAPIntValue() == (OpSizeInBits
- 1)) {
7848 if (N0
.getOpcode() == ISD::SRA
)
7849 return DAG
.getNode(ISD::SRL
, SDLoc(N
), VT
, N0
.getOperand(0), N1
);
7852 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit).
7853 if (N1C
&& N0
.getOpcode() == ISD::CTLZ
&&
7854 N1C
->getAPIntValue() == Log2_32(OpSizeInBits
)) {
7855 KnownBits Known
= DAG
.computeKnownBits(N0
.getOperand(0));
7857 // If any of the input bits are KnownOne, then the input couldn't be all
7858 // zeros, thus the result of the srl will always be zero.
7859 if (Known
.One
.getBoolValue()) return DAG
.getConstant(0, SDLoc(N0
), VT
);
7861 // If all of the bits input the to ctlz node are known to be zero, then
7862 // the result of the ctlz is "32" and the result of the shift is one.
7863 APInt UnknownBits
= ~Known
.Zero
;
7864 if (UnknownBits
== 0) return DAG
.getConstant(1, SDLoc(N0
), VT
);
7866 // Otherwise, check to see if there is exactly one bit input to the ctlz.
7867 if (UnknownBits
.isPowerOf2()) {
7868 // Okay, we know that only that the single bit specified by UnknownBits
7869 // could be set on input to the CTLZ node. If this bit is set, the SRL
7870 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
7871 // to an SRL/XOR pair, which is likely to simplify more.
7872 unsigned ShAmt
= UnknownBits
.countTrailingZeros();
7873 SDValue Op
= N0
.getOperand(0);
7877 Op
= DAG
.getNode(ISD::SRL
, DL
, VT
, Op
,
7878 DAG
.getConstant(ShAmt
, DL
,
7879 getShiftAmountTy(Op
.getValueType())));
7880 AddToWorklist(Op
.getNode());
7884 return DAG
.getNode(ISD::XOR
, DL
, VT
,
7885 Op
, DAG
.getConstant(1, DL
, VT
));
7889 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
7890 if (N1
.getOpcode() == ISD::TRUNCATE
&&
7891 N1
.getOperand(0).getOpcode() == ISD::AND
) {
7892 if (SDValue NewOp1
= distributeTruncateThroughAnd(N1
.getNode()))
7893 return DAG
.getNode(ISD::SRL
, SDLoc(N
), VT
, N0
, NewOp1
);
7896 // fold operands of srl based on knowledge that the low bits are not
7898 // TODO - support non-uniform vector shift amounts.
7899 if (N1C
&& SimplifyDemandedBits(SDValue(N
, 0)))
7900 return SDValue(N
, 0);
7902 if (N1C
&& !N1C
->isOpaque())
7903 if (SDValue NewSRL
= visitShiftByConstant(N
, N1C
))
7906 // Attempt to convert a srl of a load into a narrower zero-extending load.
7907 if (SDValue NarrowLoad
= ReduceLoadWidth(N
))
7910 // Here is a common situation. We want to optimize:
7913 // %b = and i32 %a, 2
7914 // %c = srl i32 %b, 1
7915 // brcond i32 %c ...
7921 // %c = setcc eq %b, 0
7924 // However when after the source operand of SRL is optimized into AND, the SRL
7925 // itself may not be optimized further. Look for it and add the BRCOND into
7927 if (N
->hasOneUse()) {
7928 SDNode
*Use
= *N
->use_begin();
7929 if (Use
->getOpcode() == ISD::BRCOND
)
7931 else if (Use
->getOpcode() == ISD::TRUNCATE
&& Use
->hasOneUse()) {
7932 // Also look pass the truncate.
7933 Use
= *Use
->use_begin();
7934 if (Use
->getOpcode() == ISD::BRCOND
)
7942 SDValue
DAGCombiner::visitFunnelShift(SDNode
*N
) {
7943 EVT VT
= N
->getValueType(0);
7944 SDValue N0
= N
->getOperand(0);
7945 SDValue N1
= N
->getOperand(1);
7946 SDValue N2
= N
->getOperand(2);
7947 bool IsFSHL
= N
->getOpcode() == ISD::FSHL
;
7948 unsigned BitWidth
= VT
.getScalarSizeInBits();
7950 // fold (fshl N0, N1, 0) -> N0
7951 // fold (fshr N0, N1, 0) -> N1
7952 if (isPowerOf2_32(BitWidth
))
7953 if (DAG
.MaskedValueIsZero(
7954 N2
, APInt(N2
.getScalarValueSizeInBits(), BitWidth
- 1)))
7955 return IsFSHL
? N0
: N1
;
7957 auto IsUndefOrZero
= [](SDValue V
) {
7958 return V
.isUndef() || isNullOrNullSplat(V
, /*AllowUndefs*/ true);
7961 // TODO - support non-uniform vector shift amounts.
7962 if (ConstantSDNode
*Cst
= isConstOrConstSplat(N2
)) {
7963 EVT ShAmtTy
= N2
.getValueType();
7965 // fold (fsh* N0, N1, c) -> (fsh* N0, N1, c % BitWidth)
7966 if (Cst
->getAPIntValue().uge(BitWidth
)) {
7967 uint64_t RotAmt
= Cst
->getAPIntValue().urem(BitWidth
);
7968 return DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
, N0
, N1
,
7969 DAG
.getConstant(RotAmt
, SDLoc(N
), ShAmtTy
));
7972 unsigned ShAmt
= Cst
->getZExtValue();
7974 return IsFSHL
? N0
: N1
;
7976 // fold fshl(undef_or_zero, N1, C) -> lshr(N1, BW-C)
7977 // fold fshr(undef_or_zero, N1, C) -> lshr(N1, C)
7978 // fold fshl(N0, undef_or_zero, C) -> shl(N0, C)
7979 // fold fshr(N0, undef_or_zero, C) -> shl(N0, BW-C)
7980 if (IsUndefOrZero(N0
))
7981 return DAG
.getNode(ISD::SRL
, SDLoc(N
), VT
, N1
,
7982 DAG
.getConstant(IsFSHL
? BitWidth
- ShAmt
: ShAmt
,
7983 SDLoc(N
), ShAmtTy
));
7984 if (IsUndefOrZero(N1
))
7985 return DAG
.getNode(ISD::SHL
, SDLoc(N
), VT
, N0
,
7986 DAG
.getConstant(IsFSHL
? ShAmt
: BitWidth
- ShAmt
,
7987 SDLoc(N
), ShAmtTy
));
7990 // fold fshr(undef_or_zero, N1, N2) -> lshr(N1, N2)
7991 // fold fshl(N0, undef_or_zero, N2) -> shl(N0, N2)
7992 // iff We know the shift amount is in range.
7993 // TODO: when is it worth doing SUB(BW, N2) as well?
7994 if (isPowerOf2_32(BitWidth
)) {
7995 APInt
ModuloBits(N2
.getScalarValueSizeInBits(), BitWidth
- 1);
7996 if (IsUndefOrZero(N0
) && !IsFSHL
&& DAG
.MaskedValueIsZero(N2
, ~ModuloBits
))
7997 return DAG
.getNode(ISD::SRL
, SDLoc(N
), VT
, N1
, N2
);
7998 if (IsUndefOrZero(N1
) && IsFSHL
&& DAG
.MaskedValueIsZero(N2
, ~ModuloBits
))
7999 return DAG
.getNode(ISD::SHL
, SDLoc(N
), VT
, N0
, N2
);
8002 // fold (fshl N0, N0, N2) -> (rotl N0, N2)
8003 // fold (fshr N0, N0, N2) -> (rotr N0, N2)
8004 // TODO: Investigate flipping this rotate if only one is legal, if funnel shift
8005 // is legal as well we might be better off avoiding non-constant (BW - N2).
8006 unsigned RotOpc
= IsFSHL
? ISD::ROTL
: ISD::ROTR
;
8007 if (N0
== N1
&& hasOperation(RotOpc
, VT
))
8008 return DAG
.getNode(RotOpc
, SDLoc(N
), VT
, N0
, N2
);
8010 // Simplify, based on bits shifted out of N0/N1.
8011 if (SimplifyDemandedBits(SDValue(N
, 0)))
8012 return SDValue(N
, 0);
8017 SDValue
DAGCombiner::visitABS(SDNode
*N
) {
8018 SDValue N0
= N
->getOperand(0);
8019 EVT VT
= N
->getValueType(0);
8021 // fold (abs c1) -> c2
8022 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
8023 return DAG
.getNode(ISD::ABS
, SDLoc(N
), VT
, N0
);
8024 // fold (abs (abs x)) -> (abs x)
8025 if (N0
.getOpcode() == ISD::ABS
)
8027 // fold (abs x) -> x iff not-negative
8028 if (DAG
.SignBitIsZero(N0
))
8033 SDValue
DAGCombiner::visitBSWAP(SDNode
*N
) {
8034 SDValue N0
= N
->getOperand(0);
8035 EVT VT
= N
->getValueType(0);
8037 // fold (bswap c1) -> c2
8038 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
8039 return DAG
.getNode(ISD::BSWAP
, SDLoc(N
), VT
, N0
);
8040 // fold (bswap (bswap x)) -> x
8041 if (N0
.getOpcode() == ISD::BSWAP
)
8042 return N0
->getOperand(0);
8046 SDValue
DAGCombiner::visitBITREVERSE(SDNode
*N
) {
8047 SDValue N0
= N
->getOperand(0);
8048 EVT VT
= N
->getValueType(0);
8050 // fold (bitreverse c1) -> c2
8051 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
8052 return DAG
.getNode(ISD::BITREVERSE
, SDLoc(N
), VT
, N0
);
8053 // fold (bitreverse (bitreverse x)) -> x
8054 if (N0
.getOpcode() == ISD::BITREVERSE
)
8055 return N0
.getOperand(0);
8059 SDValue
DAGCombiner::visitCTLZ(SDNode
*N
) {
8060 SDValue N0
= N
->getOperand(0);
8061 EVT VT
= N
->getValueType(0);
8063 // fold (ctlz c1) -> c2
8064 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
8065 return DAG
.getNode(ISD::CTLZ
, SDLoc(N
), VT
, N0
);
8067 // If the value is known never to be zero, switch to the undef version.
8068 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::CTLZ_ZERO_UNDEF
, VT
)) {
8069 if (DAG
.isKnownNeverZero(N0
))
8070 return DAG
.getNode(ISD::CTLZ_ZERO_UNDEF
, SDLoc(N
), VT
, N0
);
8076 SDValue
DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode
*N
) {
8077 SDValue N0
= N
->getOperand(0);
8078 EVT VT
= N
->getValueType(0);
8080 // fold (ctlz_zero_undef c1) -> c2
8081 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
8082 return DAG
.getNode(ISD::CTLZ_ZERO_UNDEF
, SDLoc(N
), VT
, N0
);
8086 SDValue
DAGCombiner::visitCTTZ(SDNode
*N
) {
8087 SDValue N0
= N
->getOperand(0);
8088 EVT VT
= N
->getValueType(0);
8090 // fold (cttz c1) -> c2
8091 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
8092 return DAG
.getNode(ISD::CTTZ
, SDLoc(N
), VT
, N0
);
8094 // If the value is known never to be zero, switch to the undef version.
8095 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::CTTZ_ZERO_UNDEF
, VT
)) {
8096 if (DAG
.isKnownNeverZero(N0
))
8097 return DAG
.getNode(ISD::CTTZ_ZERO_UNDEF
, SDLoc(N
), VT
, N0
);
8103 SDValue
DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode
*N
) {
8104 SDValue N0
= N
->getOperand(0);
8105 EVT VT
= N
->getValueType(0);
8107 // fold (cttz_zero_undef c1) -> c2
8108 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
8109 return DAG
.getNode(ISD::CTTZ_ZERO_UNDEF
, SDLoc(N
), VT
, N0
);
8113 SDValue
DAGCombiner::visitCTPOP(SDNode
*N
) {
8114 SDValue N0
= N
->getOperand(0);
8115 EVT VT
= N
->getValueType(0);
8117 // fold (ctpop c1) -> c2
8118 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
8119 return DAG
.getNode(ISD::CTPOP
, SDLoc(N
), VT
, N0
);
8123 // FIXME: This should be checking for no signed zeros on individual operands, as
8125 static bool isLegalToCombineMinNumMaxNum(SelectionDAG
&DAG
, SDValue LHS
,
8127 const TargetLowering
&TLI
) {
8128 const TargetOptions
&Options
= DAG
.getTarget().Options
;
8129 EVT VT
= LHS
.getValueType();
8131 return Options
.NoSignedZerosFPMath
&& VT
.isFloatingPoint() &&
8132 TLI
.isProfitableToCombineMinNumMaxNum(VT
) &&
8133 DAG
.isKnownNeverNaN(LHS
) && DAG
.isKnownNeverNaN(RHS
);
8136 /// Generate Min/Max node
8137 static SDValue
combineMinNumMaxNum(const SDLoc
&DL
, EVT VT
, SDValue LHS
,
8138 SDValue RHS
, SDValue True
, SDValue False
,
8139 ISD::CondCode CC
, const TargetLowering
&TLI
,
8140 SelectionDAG
&DAG
) {
8141 if (!(LHS
== True
&& RHS
== False
) && !(LHS
== False
&& RHS
== True
))
8144 EVT TransformVT
= TLI
.getTypeToTransformTo(*DAG
.getContext(), VT
);
8152 // Since it's known never nan to get here already, either fminnum or
8153 // fminnum_ieee are OK. Try the ieee version first, since it's fminnum is
8154 // expanded in terms of it.
8155 unsigned IEEEOpcode
= (LHS
== True
) ? ISD::FMINNUM_IEEE
: ISD::FMAXNUM_IEEE
;
8156 if (TLI
.isOperationLegalOrCustom(IEEEOpcode
, VT
))
8157 return DAG
.getNode(IEEEOpcode
, DL
, VT
, LHS
, RHS
);
8159 unsigned Opcode
= (LHS
== True
) ? ISD::FMINNUM
: ISD::FMAXNUM
;
8160 if (TLI
.isOperationLegalOrCustom(Opcode
, TransformVT
))
8161 return DAG
.getNode(Opcode
, DL
, VT
, LHS
, RHS
);
8170 unsigned IEEEOpcode
= (LHS
== True
) ? ISD::FMAXNUM_IEEE
: ISD::FMINNUM_IEEE
;
8171 if (TLI
.isOperationLegalOrCustom(IEEEOpcode
, VT
))
8172 return DAG
.getNode(IEEEOpcode
, DL
, VT
, LHS
, RHS
);
8174 unsigned Opcode
= (LHS
== True
) ? ISD::FMAXNUM
: ISD::FMINNUM
;
8175 if (TLI
.isOperationLegalOrCustom(Opcode
, TransformVT
))
8176 return DAG
.getNode(Opcode
, DL
, VT
, LHS
, RHS
);
8184 SDValue
DAGCombiner::foldSelectOfConstants(SDNode
*N
) {
8185 SDValue Cond
= N
->getOperand(0);
8186 SDValue N1
= N
->getOperand(1);
8187 SDValue N2
= N
->getOperand(2);
8188 EVT VT
= N
->getValueType(0);
8189 EVT CondVT
= Cond
.getValueType();
8192 if (!VT
.isInteger())
8195 auto *C1
= dyn_cast
<ConstantSDNode
>(N1
);
8196 auto *C2
= dyn_cast
<ConstantSDNode
>(N2
);
8200 // Only do this before legalization to avoid conflicting with target-specific
8201 // transforms in the other direction (create a select from a zext/sext). There
8202 // is also a target-independent combine here in DAGCombiner in the other
8203 // direction for (select Cond, -1, 0) when the condition is not i1.
8204 if (CondVT
== MVT::i1
&& !LegalOperations
) {
8205 if (C1
->isNullValue() && C2
->isOne()) {
8206 // select Cond, 0, 1 --> zext (!Cond)
8207 SDValue NotCond
= DAG
.getNOT(DL
, Cond
, MVT::i1
);
8209 NotCond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, NotCond
);
8212 if (C1
->isNullValue() && C2
->isAllOnesValue()) {
8213 // select Cond, 0, -1 --> sext (!Cond)
8214 SDValue NotCond
= DAG
.getNOT(DL
, Cond
, MVT::i1
);
8216 NotCond
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, NotCond
);
8219 if (C1
->isOne() && C2
->isNullValue()) {
8220 // select Cond, 1, 0 --> zext (Cond)
8222 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Cond
);
8225 if (C1
->isAllOnesValue() && C2
->isNullValue()) {
8226 // select Cond, -1, 0 --> sext (Cond)
8228 Cond
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, Cond
);
8232 // For any constants that differ by 1, we can transform the select into an
8233 // extend and add. Use a target hook because some targets may prefer to
8234 // transform in the other direction.
8235 if (TLI
.convertSelectOfConstantsToMath(VT
)) {
8236 if (C1
->getAPIntValue() - 1 == C2
->getAPIntValue()) {
8237 // select Cond, C1, C1-1 --> add (zext Cond), C1-1
8239 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Cond
);
8240 return DAG
.getNode(ISD::ADD
, DL
, VT
, Cond
, N2
);
8242 if (C1
->getAPIntValue() + 1 == C2
->getAPIntValue()) {
8243 // select Cond, C1, C1+1 --> add (sext Cond), C1+1
8245 Cond
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, Cond
);
8246 return DAG
.getNode(ISD::ADD
, DL
, VT
, Cond
, N2
);
8253 // fold (select Cond, 0, 1) -> (xor Cond, 1)
8254 // We can't do this reliably if integer based booleans have different contents
8255 // to floating point based booleans. This is because we can't tell whether we
8256 // have an integer-based boolean or a floating-point-based boolean unless we
8257 // can find the SETCC that produced it and inspect its operands. This is
8258 // fairly easy if C is the SETCC node, but it can potentially be
8259 // undiscoverable (or not reasonably discoverable). For example, it could be
8260 // in another basic block or it could require searching a complicated
8262 if (CondVT
.isInteger() &&
8263 TLI
.getBooleanContents(/*isVec*/false, /*isFloat*/true) ==
8264 TargetLowering::ZeroOrOneBooleanContent
&&
8265 TLI
.getBooleanContents(/*isVec*/false, /*isFloat*/false) ==
8266 TargetLowering::ZeroOrOneBooleanContent
&&
8267 C1
->isNullValue() && C2
->isOne()) {
8269 DAG
.getNode(ISD::XOR
, DL
, CondVT
, Cond
, DAG
.getConstant(1, DL
, CondVT
));
8270 if (VT
.bitsEq(CondVT
))
8272 return DAG
.getZExtOrTrunc(NotCond
, DL
, VT
);
8278 SDValue
DAGCombiner::visitSELECT(SDNode
*N
) {
8279 SDValue N0
= N
->getOperand(0);
8280 SDValue N1
= N
->getOperand(1);
8281 SDValue N2
= N
->getOperand(2);
8282 EVT VT
= N
->getValueType(0);
8283 EVT VT0
= N0
.getValueType();
8285 SDNodeFlags Flags
= N
->getFlags();
8287 if (SDValue V
= DAG
.simplifySelect(N0
, N1
, N2
))
8290 // fold (select X, X, Y) -> (or X, Y)
8291 // fold (select X, 1, Y) -> (or C, Y)
8292 if (VT
== VT0
&& VT
== MVT::i1
&& (N0
== N1
|| isOneConstant(N1
)))
8293 return DAG
.getNode(ISD::OR
, DL
, VT
, N0
, N2
);
8295 if (SDValue V
= foldSelectOfConstants(N
))
8298 // fold (select C, 0, X) -> (and (not C), X)
8299 if (VT
== VT0
&& VT
== MVT::i1
&& isNullConstant(N1
)) {
8300 SDValue NOTNode
= DAG
.getNOT(SDLoc(N0
), N0
, VT
);
8301 AddToWorklist(NOTNode
.getNode());
8302 return DAG
.getNode(ISD::AND
, DL
, VT
, NOTNode
, N2
);
8304 // fold (select C, X, 1) -> (or (not C), X)
8305 if (VT
== VT0
&& VT
== MVT::i1
&& isOneConstant(N2
)) {
8306 SDValue NOTNode
= DAG
.getNOT(SDLoc(N0
), N0
, VT
);
8307 AddToWorklist(NOTNode
.getNode());
8308 return DAG
.getNode(ISD::OR
, DL
, VT
, NOTNode
, N1
);
8310 // fold (select X, Y, X) -> (and X, Y)
8311 // fold (select X, Y, 0) -> (and X, Y)
8312 if (VT
== VT0
&& VT
== MVT::i1
&& (N0
== N2
|| isNullConstant(N2
)))
8313 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
, N1
);
8315 // If we can fold this based on the true/false value, do so.
8316 if (SimplifySelectOps(N
, N1
, N2
))
8317 return SDValue(N
, 0); // Don't revisit N.
8319 if (VT0
== MVT::i1
) {
8320 // The code in this block deals with the following 2 equivalences:
8321 // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y))
8322 // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y)
8323 // The target can specify its preferred form with the
8324 // shouldNormalizeToSelectSequence() callback. However we always transform
8325 // to the right anyway if we find the inner select exists in the DAG anyway
8326 // and we always transform to the left side if we know that we can further
8327 // optimize the combination of the conditions.
8328 bool normalizeToSequence
=
8329 TLI
.shouldNormalizeToSelectSequence(*DAG
.getContext(), VT
);
8330 // select (and Cond0, Cond1), X, Y
8331 // -> select Cond0, (select Cond1, X, Y), Y
8332 if (N0
->getOpcode() == ISD::AND
&& N0
->hasOneUse()) {
8333 SDValue Cond0
= N0
->getOperand(0);
8334 SDValue Cond1
= N0
->getOperand(1);
8335 SDValue InnerSelect
=
8336 DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Cond1
, N1
, N2
, Flags
);
8337 if (normalizeToSequence
|| !InnerSelect
.use_empty())
8338 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Cond0
,
8339 InnerSelect
, N2
, Flags
);
8340 // Cleanup on failure.
8341 if (InnerSelect
.use_empty())
8342 recursivelyDeleteUnusedNodes(InnerSelect
.getNode());
8344 // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y)
8345 if (N0
->getOpcode() == ISD::OR
&& N0
->hasOneUse()) {
8346 SDValue Cond0
= N0
->getOperand(0);
8347 SDValue Cond1
= N0
->getOperand(1);
8348 SDValue InnerSelect
= DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(),
8349 Cond1
, N1
, N2
, Flags
);
8350 if (normalizeToSequence
|| !InnerSelect
.use_empty())
8351 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Cond0
, N1
,
8352 InnerSelect
, Flags
);
8353 // Cleanup on failure.
8354 if (InnerSelect
.use_empty())
8355 recursivelyDeleteUnusedNodes(InnerSelect
.getNode());
8358 // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y
8359 if (N1
->getOpcode() == ISD::SELECT
&& N1
->hasOneUse()) {
8360 SDValue N1_0
= N1
->getOperand(0);
8361 SDValue N1_1
= N1
->getOperand(1);
8362 SDValue N1_2
= N1
->getOperand(2);
8363 if (N1_2
== N2
&& N0
.getValueType() == N1_0
.getValueType()) {
8364 // Create the actual and node if we can generate good code for it.
8365 if (!normalizeToSequence
) {
8366 SDValue And
= DAG
.getNode(ISD::AND
, DL
, N0
.getValueType(), N0
, N1_0
);
8367 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), And
, N1_1
,
8370 // Otherwise see if we can optimize the "and" to a better pattern.
8371 if (SDValue Combined
= visitANDLike(N0
, N1_0
, N
)) {
8372 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Combined
, N1_1
,
8377 // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y
8378 if (N2
->getOpcode() == ISD::SELECT
&& N2
->hasOneUse()) {
8379 SDValue N2_0
= N2
->getOperand(0);
8380 SDValue N2_1
= N2
->getOperand(1);
8381 SDValue N2_2
= N2
->getOperand(2);
8382 if (N2_1
== N1
&& N0
.getValueType() == N2_0
.getValueType()) {
8383 // Create the actual or node if we can generate good code for it.
8384 if (!normalizeToSequence
) {
8385 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, N0
.getValueType(), N0
, N2_0
);
8386 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Or
, N1
,
8389 // Otherwise see if we can optimize to a better pattern.
8390 if (SDValue Combined
= visitORLike(N0
, N2_0
, N
))
8391 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Combined
, N1
,
8397 // select (not Cond), N1, N2 -> select Cond, N2, N1
8398 if (SDValue F
= extractBooleanFlip(N0
, DAG
, TLI
, false)) {
8399 SDValue SelectOp
= DAG
.getSelect(DL
, VT
, F
, N2
, N1
);
8400 SelectOp
->setFlags(Flags
);
8404 // Fold selects based on a setcc into other things, such as min/max/abs.
8405 if (N0
.getOpcode() == ISD::SETCC
) {
8406 SDValue Cond0
= N0
.getOperand(0), Cond1
= N0
.getOperand(1);
8407 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N0
.getOperand(2))->get();
8409 // select (fcmp lt x, y), x, y -> fminnum x, y
8410 // select (fcmp gt x, y), x, y -> fmaxnum x, y
8412 // This is OK if we don't care what happens if either operand is a NaN.
8413 if (N0
.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG
, N1
, N2
, TLI
))
8414 if (SDValue FMinMax
= combineMinNumMaxNum(DL
, VT
, Cond0
, Cond1
, N1
, N2
,
8418 // Use 'unsigned add with overflow' to optimize an unsigned saturating add.
8419 // This is conservatively limited to pre-legal-operations to give targets
8420 // a chance to reverse the transform if they want to do that. Also, it is
8421 // unlikely that the pattern would be formed late, so it's probably not
8422 // worth going through the other checks.
8423 if (!LegalOperations
&& TLI
.isOperationLegalOrCustom(ISD::UADDO
, VT
) &&
8424 CC
== ISD::SETUGT
&& N0
.hasOneUse() && isAllOnesConstant(N1
) &&
8425 N2
.getOpcode() == ISD::ADD
&& Cond0
== N2
.getOperand(0)) {
8426 auto *C
= dyn_cast
<ConstantSDNode
>(N2
.getOperand(1));
8427 auto *NotC
= dyn_cast
<ConstantSDNode
>(Cond1
);
8428 if (C
&& NotC
&& C
->getAPIntValue() == ~NotC
->getAPIntValue()) {
8429 // select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) -->
8430 // uaddo Cond0, C; select uaddo.1, -1, uaddo.0
8432 // The IR equivalent of this transform would have this form:
8434 // %c = icmp ugt %x, ~C
8435 // %r = select %c, -1, %a
8437 // %u = call {iN,i1} llvm.uadd.with.overflow(%x, C)
8438 // %u0 = extractvalue %u, 0
8439 // %u1 = extractvalue %u, 1
8440 // %r = select %u1, -1, %u0
8441 SDVTList VTs
= DAG
.getVTList(VT
, VT0
);
8442 SDValue UAO
= DAG
.getNode(ISD::UADDO
, DL
, VTs
, Cond0
, N2
.getOperand(1));
8443 return DAG
.getSelect(DL
, VT
, UAO
.getValue(1), N1
, UAO
.getValue(0));
8447 if (TLI
.isOperationLegal(ISD::SELECT_CC
, VT
) ||
8448 (!LegalOperations
&&
8449 TLI
.isOperationLegalOrCustom(ISD::SELECT_CC
, VT
))) {
8450 // Any flags available in a select/setcc fold will be on the setcc as they
8451 // migrated from fcmp
8452 Flags
= N0
.getNode()->getFlags();
8453 SDValue SelectNode
= DAG
.getNode(ISD::SELECT_CC
, DL
, VT
, Cond0
, Cond1
, N1
,
8454 N2
, N0
.getOperand(2));
8455 SelectNode
->setFlags(Flags
);
8459 return SimplifySelect(DL
, N0
, N1
, N2
);
8465 // This function assumes all the vselect's arguments are CONCAT_VECTOR
8466 // nodes and that the condition is a BV of ConstantSDNodes (or undefs).
8467 static SDValue
ConvertSelectToConcatVector(SDNode
*N
, SelectionDAG
&DAG
) {
8469 SDValue Cond
= N
->getOperand(0);
8470 SDValue LHS
= N
->getOperand(1);
8471 SDValue RHS
= N
->getOperand(2);
8472 EVT VT
= N
->getValueType(0);
8473 int NumElems
= VT
.getVectorNumElements();
8474 assert(LHS
.getOpcode() == ISD::CONCAT_VECTORS
&&
8475 RHS
.getOpcode() == ISD::CONCAT_VECTORS
&&
8476 Cond
.getOpcode() == ISD::BUILD_VECTOR
);
8478 // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about
8479 // binary ones here.
8480 if (LHS
->getNumOperands() != 2 || RHS
->getNumOperands() != 2)
8483 // We're sure we have an even number of elements due to the
8484 // concat_vectors we have as arguments to vselect.
8485 // Skip BV elements until we find one that's not an UNDEF
8486 // After we find an UNDEF element, keep looping until we get to half the
8487 // length of the BV and see if all the non-undef nodes are the same.
8488 ConstantSDNode
*BottomHalf
= nullptr;
8489 for (int i
= 0; i
< NumElems
/ 2; ++i
) {
8490 if (Cond
->getOperand(i
)->isUndef())
8493 if (BottomHalf
== nullptr)
8494 BottomHalf
= cast
<ConstantSDNode
>(Cond
.getOperand(i
));
8495 else if (Cond
->getOperand(i
).getNode() != BottomHalf
)
8499 // Do the same for the second half of the BuildVector
8500 ConstantSDNode
*TopHalf
= nullptr;
8501 for (int i
= NumElems
/ 2; i
< NumElems
; ++i
) {
8502 if (Cond
->getOperand(i
)->isUndef())
8505 if (TopHalf
== nullptr)
8506 TopHalf
= cast
<ConstantSDNode
>(Cond
.getOperand(i
));
8507 else if (Cond
->getOperand(i
).getNode() != TopHalf
)
8511 assert(TopHalf
&& BottomHalf
&&
8512 "One half of the selector was all UNDEFs and the other was all the "
8513 "same value. This should have been addressed before this function.");
8515 ISD::CONCAT_VECTORS
, DL
, VT
,
8516 BottomHalf
->isNullValue() ? RHS
->getOperand(0) : LHS
->getOperand(0),
8517 TopHalf
->isNullValue() ? RHS
->getOperand(1) : LHS
->getOperand(1));
8520 SDValue
DAGCombiner::visitMSCATTER(SDNode
*N
) {
8521 MaskedScatterSDNode
*MSC
= cast
<MaskedScatterSDNode
>(N
);
8522 SDValue Mask
= MSC
->getMask();
8523 SDValue Chain
= MSC
->getChain();
8526 // Zap scatters with a zero mask.
8527 if (ISD::isBuildVectorAllZeros(Mask
.getNode()))
8533 SDValue
DAGCombiner::visitMSTORE(SDNode
*N
) {
8534 MaskedStoreSDNode
*MST
= cast
<MaskedStoreSDNode
>(N
);
8535 SDValue Mask
= MST
->getMask();
8536 SDValue Chain
= MST
->getChain();
8539 // Zap masked stores with a zero mask.
8540 if (ISD::isBuildVectorAllZeros(Mask
.getNode()))
8546 SDValue
DAGCombiner::visitMGATHER(SDNode
*N
) {
8547 MaskedGatherSDNode
*MGT
= cast
<MaskedGatherSDNode
>(N
);
8548 SDValue Mask
= MGT
->getMask();
8551 // Zap gathers with a zero mask.
8552 if (ISD::isBuildVectorAllZeros(Mask
.getNode()))
8553 return CombineTo(N
, MGT
->getPassThru(), MGT
->getChain());
8558 SDValue
DAGCombiner::visitMLOAD(SDNode
*N
) {
8559 MaskedLoadSDNode
*MLD
= cast
<MaskedLoadSDNode
>(N
);
8560 SDValue Mask
= MLD
->getMask();
8563 // Zap masked loads with a zero mask.
8564 if (ISD::isBuildVectorAllZeros(Mask
.getNode()))
8565 return CombineTo(N
, MLD
->getPassThru(), MLD
->getChain());
8570 /// A vector select of 2 constant vectors can be simplified to math/logic to
8571 /// avoid a variable select instruction and possibly avoid constant loads.
8572 SDValue
DAGCombiner::foldVSelectOfConstants(SDNode
*N
) {
8573 SDValue Cond
= N
->getOperand(0);
8574 SDValue N1
= N
->getOperand(1);
8575 SDValue N2
= N
->getOperand(2);
8576 EVT VT
= N
->getValueType(0);
8577 if (!Cond
.hasOneUse() || Cond
.getScalarValueSizeInBits() != 1 ||
8578 !TLI
.convertSelectOfConstantsToMath(VT
) ||
8579 !ISD::isBuildVectorOfConstantSDNodes(N1
.getNode()) ||
8580 !ISD::isBuildVectorOfConstantSDNodes(N2
.getNode()))
8583 // Check if we can use the condition value to increment/decrement a single
8584 // constant value. This simplifies a select to an add and removes a constant
8585 // load/materialization from the general case.
8586 bool AllAddOne
= true;
8587 bool AllSubOne
= true;
8588 unsigned Elts
= VT
.getVectorNumElements();
8589 for (unsigned i
= 0; i
!= Elts
; ++i
) {
8590 SDValue N1Elt
= N1
.getOperand(i
);
8591 SDValue N2Elt
= N2
.getOperand(i
);
8592 if (N1Elt
.isUndef() || N2Elt
.isUndef())
8595 const APInt
&C1
= cast
<ConstantSDNode
>(N1Elt
)->getAPIntValue();
8596 const APInt
&C2
= cast
<ConstantSDNode
>(N2Elt
)->getAPIntValue();
8603 // Further simplifications for the extra-special cases where the constants are
8604 // all 0 or all -1 should be implemented as folds of these patterns.
8606 if (AllAddOne
|| AllSubOne
) {
8607 // vselect <N x i1> Cond, C+1, C --> add (zext Cond), C
8608 // vselect <N x i1> Cond, C-1, C --> add (sext Cond), C
8609 auto ExtendOpcode
= AllAddOne
? ISD::ZERO_EXTEND
: ISD::SIGN_EXTEND
;
8610 SDValue ExtendedCond
= DAG
.getNode(ExtendOpcode
, DL
, VT
, Cond
);
8611 return DAG
.getNode(ISD::ADD
, DL
, VT
, ExtendedCond
, N2
);
8614 // The general case for select-of-constants:
8615 // vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2
8616 // ...but that only makes sense if a vselect is slower than 2 logic ops, so
8617 // leave that to a machine-specific pass.
8621 SDValue
DAGCombiner::visitVSELECT(SDNode
*N
) {
8622 SDValue N0
= N
->getOperand(0);
8623 SDValue N1
= N
->getOperand(1);
8624 SDValue N2
= N
->getOperand(2);
8625 EVT VT
= N
->getValueType(0);
8628 if (SDValue V
= DAG
.simplifySelect(N0
, N1
, N2
))
8631 // vselect (not Cond), N1, N2 -> vselect Cond, N2, N1
8632 if (SDValue F
= extractBooleanFlip(N0
, DAG
, TLI
, false))
8633 return DAG
.getSelect(DL
, VT
, F
, N2
, N1
);
8635 // Canonicalize integer abs.
8636 // vselect (setg[te] X, 0), X, -X ->
8637 // vselect (setgt X, -1), X, -X ->
8638 // vselect (setl[te] X, 0), -X, X ->
8639 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
8640 if (N0
.getOpcode() == ISD::SETCC
) {
8641 SDValue LHS
= N0
.getOperand(0), RHS
= N0
.getOperand(1);
8642 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N0
.getOperand(2))->get();
8644 bool RHSIsAllZeros
= ISD::isBuildVectorAllZeros(RHS
.getNode());
8646 if (((RHSIsAllZeros
&& (CC
== ISD::SETGT
|| CC
== ISD::SETGE
)) ||
8647 (ISD::isBuildVectorAllOnes(RHS
.getNode()) && CC
== ISD::SETGT
)) &&
8648 N1
== LHS
&& N2
.getOpcode() == ISD::SUB
&& N1
== N2
.getOperand(1))
8649 isAbs
= ISD::isBuildVectorAllZeros(N2
.getOperand(0).getNode());
8650 else if ((RHSIsAllZeros
&& (CC
== ISD::SETLT
|| CC
== ISD::SETLE
)) &&
8651 N2
== LHS
&& N1
.getOpcode() == ISD::SUB
&& N2
== N1
.getOperand(1))
8652 isAbs
= ISD::isBuildVectorAllZeros(N1
.getOperand(0).getNode());
8655 EVT VT
= LHS
.getValueType();
8656 if (TLI
.isOperationLegalOrCustom(ISD::ABS
, VT
))
8657 return DAG
.getNode(ISD::ABS
, DL
, VT
, LHS
);
8659 SDValue Shift
= DAG
.getNode(
8660 ISD::SRA
, DL
, VT
, LHS
,
8661 DAG
.getConstant(VT
.getScalarSizeInBits() - 1, DL
, VT
));
8662 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, LHS
, Shift
);
8663 AddToWorklist(Shift
.getNode());
8664 AddToWorklist(Add
.getNode());
8665 return DAG
.getNode(ISD::XOR
, DL
, VT
, Add
, Shift
);
8668 // vselect x, y (fcmp lt x, y) -> fminnum x, y
8669 // vselect x, y (fcmp gt x, y) -> fmaxnum x, y
8671 // This is OK if we don't care about what happens if either operand is a
8674 if (N0
.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG
, N0
.getOperand(0),
8675 N0
.getOperand(1), TLI
)) {
8676 if (SDValue FMinMax
= combineMinNumMaxNum(
8677 DL
, VT
, N0
.getOperand(0), N0
.getOperand(1), N1
, N2
, CC
, TLI
, DAG
))
8681 // If this select has a condition (setcc) with narrower operands than the
8682 // select, try to widen the compare to match the select width.
8683 // TODO: This should be extended to handle any constant.
8684 // TODO: This could be extended to handle non-loading patterns, but that
8685 // requires thorough testing to avoid regressions.
8686 if (isNullOrNullSplat(RHS
)) {
8687 EVT NarrowVT
= LHS
.getValueType();
8688 EVT WideVT
= N1
.getValueType().changeVectorElementTypeToInteger();
8689 EVT SetCCVT
= getSetCCResultType(LHS
.getValueType());
8690 unsigned SetCCWidth
= SetCCVT
.getScalarSizeInBits();
8691 unsigned WideWidth
= WideVT
.getScalarSizeInBits();
8692 bool IsSigned
= isSignedIntSetCC(CC
);
8693 auto LoadExtOpcode
= IsSigned
? ISD::SEXTLOAD
: ISD::ZEXTLOAD
;
8694 if (LHS
.getOpcode() == ISD::LOAD
&& LHS
.hasOneUse() &&
8695 SetCCWidth
!= 1 && SetCCWidth
< WideWidth
&&
8696 TLI
.isLoadExtLegalOrCustom(LoadExtOpcode
, WideVT
, NarrowVT
) &&
8697 TLI
.isOperationLegalOrCustom(ISD::SETCC
, WideVT
)) {
8698 // Both compare operands can be widened for free. The LHS can use an
8699 // extended load, and the RHS is a constant:
8700 // vselect (ext (setcc load(X), C)), N1, N2 -->
8701 // vselect (setcc extload(X), C'), N1, N2
8702 auto ExtOpcode
= IsSigned
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
8703 SDValue WideLHS
= DAG
.getNode(ExtOpcode
, DL
, WideVT
, LHS
);
8704 SDValue WideRHS
= DAG
.getNode(ExtOpcode
, DL
, WideVT
, RHS
);
8705 EVT WideSetCCVT
= getSetCCResultType(WideVT
);
8706 SDValue WideSetCC
= DAG
.getSetCC(DL
, WideSetCCVT
, WideLHS
, WideRHS
, CC
);
8707 return DAG
.getSelect(DL
, N1
.getValueType(), WideSetCC
, N1
, N2
);
8712 if (SimplifySelectOps(N
, N1
, N2
))
8713 return SDValue(N
, 0); // Don't revisit N.
8715 // Fold (vselect (build_vector all_ones), N1, N2) -> N1
8716 if (ISD::isBuildVectorAllOnes(N0
.getNode()))
8718 // Fold (vselect (build_vector all_zeros), N1, N2) -> N2
8719 if (ISD::isBuildVectorAllZeros(N0
.getNode()))
8722 // The ConvertSelectToConcatVector function is assuming both the above
8723 // checks for (vselect (build_vector all{ones,zeros) ...) have been made
8725 if (N1
.getOpcode() == ISD::CONCAT_VECTORS
&&
8726 N2
.getOpcode() == ISD::CONCAT_VECTORS
&&
8727 ISD::isBuildVectorOfConstantSDNodes(N0
.getNode())) {
8728 if (SDValue CV
= ConvertSelectToConcatVector(N
, DAG
))
8732 if (SDValue V
= foldVSelectOfConstants(N
))
8738 SDValue
DAGCombiner::visitSELECT_CC(SDNode
*N
) {
8739 SDValue N0
= N
->getOperand(0);
8740 SDValue N1
= N
->getOperand(1);
8741 SDValue N2
= N
->getOperand(2);
8742 SDValue N3
= N
->getOperand(3);
8743 SDValue N4
= N
->getOperand(4);
8744 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N4
)->get();
8746 // fold select_cc lhs, rhs, x, x, cc -> x
8750 // Determine if the condition we're dealing with is constant
8751 if (SDValue SCC
= SimplifySetCC(getSetCCResultType(N0
.getValueType()), N0
, N1
,
8752 CC
, SDLoc(N
), false)) {
8753 AddToWorklist(SCC
.getNode());
8755 if (ConstantSDNode
*SCCC
= dyn_cast
<ConstantSDNode
>(SCC
.getNode())) {
8756 if (!SCCC
->isNullValue())
8757 return N2
; // cond always true -> true val
8759 return N3
; // cond always false -> false val
8760 } else if (SCC
->isUndef()) {
8761 // When the condition is UNDEF, just return the first operand. This is
8762 // coherent the DAG creation, no setcc node is created in this case
8764 } else if (SCC
.getOpcode() == ISD::SETCC
) {
8765 // Fold to a simpler select_cc
8766 SDValue SelectOp
= DAG
.getNode(
8767 ISD::SELECT_CC
, SDLoc(N
), N2
.getValueType(), SCC
.getOperand(0),
8768 SCC
.getOperand(1), N2
, N3
, SCC
.getOperand(2));
8769 SelectOp
->setFlags(SCC
->getFlags());
8774 // If we can fold this based on the true/false value, do so.
8775 if (SimplifySelectOps(N
, N2
, N3
))
8776 return SDValue(N
, 0); // Don't revisit N.
8778 // fold select_cc into other things, such as min/max/abs
8779 return SimplifySelectCC(SDLoc(N
), N0
, N1
, N2
, N3
, CC
);
8782 SDValue
DAGCombiner::visitSETCC(SDNode
*N
) {
8783 // setcc is very commonly used as an argument to brcond. This pattern
8784 // also lend itself to numerous combines and, as a result, it is desired
8785 // we keep the argument to a brcond as a setcc as much as possible.
8787 N
->hasOneUse() && N
->use_begin()->getOpcode() == ISD::BRCOND
;
8789 SDValue Combined
= SimplifySetCC(
8790 N
->getValueType(0), N
->getOperand(0), N
->getOperand(1),
8791 cast
<CondCodeSDNode
>(N
->getOperand(2))->get(), SDLoc(N
), !PreferSetCC
);
8796 // If we prefer to have a setcc, and we don't, we'll try our best to
8797 // recreate one using rebuildSetCC.
8798 if (PreferSetCC
&& Combined
.getOpcode() != ISD::SETCC
) {
8799 SDValue NewSetCC
= rebuildSetCC(Combined
);
8801 // We don't have anything interesting to combine to.
8802 if (NewSetCC
.getNode() == N
)
8812 SDValue
DAGCombiner::visitSETCCCARRY(SDNode
*N
) {
8813 SDValue LHS
= N
->getOperand(0);
8814 SDValue RHS
= N
->getOperand(1);
8815 SDValue Carry
= N
->getOperand(2);
8816 SDValue Cond
= N
->getOperand(3);
8818 // If Carry is false, fold to a regular SETCC.
8819 if (isNullConstant(Carry
))
8820 return DAG
.getNode(ISD::SETCC
, SDLoc(N
), N
->getVTList(), LHS
, RHS
, Cond
);
8825 /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or
8826 /// a build_vector of constants.
8827 /// This function is called by the DAGCombiner when visiting sext/zext/aext
8828 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND).
8829 /// Vector extends are not folded if operations are legal; this is to
8830 /// avoid introducing illegal build_vector dag nodes.
8831 static SDValue
tryToFoldExtendOfConstant(SDNode
*N
, const TargetLowering
&TLI
,
8832 SelectionDAG
&DAG
, bool LegalTypes
) {
8833 unsigned Opcode
= N
->getOpcode();
8834 SDValue N0
= N
->getOperand(0);
8835 EVT VT
= N
->getValueType(0);
8838 assert((Opcode
== ISD::SIGN_EXTEND
|| Opcode
== ISD::ZERO_EXTEND
||
8839 Opcode
== ISD::ANY_EXTEND
|| Opcode
== ISD::SIGN_EXTEND_VECTOR_INREG
||
8840 Opcode
== ISD::ZERO_EXTEND_VECTOR_INREG
)
8841 && "Expected EXTEND dag node in input!");
8843 // fold (sext c1) -> c1
8844 // fold (zext c1) -> c1
8845 // fold (aext c1) -> c1
8846 if (isa
<ConstantSDNode
>(N0
))
8847 return DAG
.getNode(Opcode
, DL
, VT
, N0
);
8849 // fold (sext (select cond, c1, c2)) -> (select cond, sext c1, sext c2)
8850 // fold (zext (select cond, c1, c2)) -> (select cond, zext c1, zext c2)
8851 // fold (aext (select cond, c1, c2)) -> (select cond, sext c1, sext c2)
8852 if (N0
->getOpcode() == ISD::SELECT
) {
8853 SDValue Op1
= N0
->getOperand(1);
8854 SDValue Op2
= N0
->getOperand(2);
8855 if (isa
<ConstantSDNode
>(Op1
) && isa
<ConstantSDNode
>(Op2
) &&
8856 (Opcode
!= ISD::ZERO_EXTEND
|| !TLI
.isZExtFree(N0
.getValueType(), VT
))) {
8857 // For any_extend, choose sign extension of the constants to allow a
8858 // possible further transform to sign_extend_inreg.i.e.
8860 // t1: i8 = select t0, Constant:i8<-1>, Constant:i8<0>
8861 // t2: i64 = any_extend t1
8863 // t3: i64 = select t0, Constant:i64<-1>, Constant:i64<0>
8865 // t4: i64 = sign_extend_inreg t3
8866 unsigned FoldOpc
= Opcode
;
8867 if (FoldOpc
== ISD::ANY_EXTEND
)
8868 FoldOpc
= ISD::SIGN_EXTEND
;
8869 return DAG
.getSelect(DL
, VT
, N0
->getOperand(0),
8870 DAG
.getNode(FoldOpc
, DL
, VT
, Op1
),
8871 DAG
.getNode(FoldOpc
, DL
, VT
, Op2
));
8875 // fold (sext (build_vector AllConstants) -> (build_vector AllConstants)
8876 // fold (zext (build_vector AllConstants) -> (build_vector AllConstants)
8877 // fold (aext (build_vector AllConstants) -> (build_vector AllConstants)
8878 EVT SVT
= VT
.getScalarType();
8879 if (!(VT
.isVector() && (!LegalTypes
|| TLI
.isTypeLegal(SVT
)) &&
8880 ISD::isBuildVectorOfConstantSDNodes(N0
.getNode())))
8883 // We can fold this node into a build_vector.
8884 unsigned VTBits
= SVT
.getSizeInBits();
8885 unsigned EVTBits
= N0
->getValueType(0).getScalarSizeInBits();
8886 SmallVector
<SDValue
, 8> Elts
;
8887 unsigned NumElts
= VT
.getVectorNumElements();
8889 // For zero-extensions, UNDEF elements still guarantee to have the upper
8890 // bits set to zero.
8892 Opcode
== ISD::ZERO_EXTEND
|| Opcode
== ISD::ZERO_EXTEND_VECTOR_INREG
;
8894 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
8895 SDValue Op
= N0
.getOperand(i
);
8897 Elts
.push_back(IsZext
? DAG
.getConstant(0, DL
, SVT
) : DAG
.getUNDEF(SVT
));
8902 // Get the constant value and if needed trunc it to the size of the type.
8903 // Nodes like build_vector might have constants wider than the scalar type.
8904 APInt C
= cast
<ConstantSDNode
>(Op
)->getAPIntValue().zextOrTrunc(EVTBits
);
8905 if (Opcode
== ISD::SIGN_EXTEND
|| Opcode
== ISD::SIGN_EXTEND_VECTOR_INREG
)
8906 Elts
.push_back(DAG
.getConstant(C
.sext(VTBits
), DL
, SVT
));
8908 Elts
.push_back(DAG
.getConstant(C
.zext(VTBits
), DL
, SVT
));
8911 return DAG
.getBuildVector(VT
, DL
, Elts
);
8914 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
8915 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
8916 // transformation. Returns true if extension are possible and the above
8917 // mentioned transformation is profitable.
8918 static bool ExtendUsesToFormExtLoad(EVT VT
, SDNode
*N
, SDValue N0
,
8920 SmallVectorImpl
<SDNode
*> &ExtendNodes
,
8921 const TargetLowering
&TLI
) {
8922 bool HasCopyToRegUses
= false;
8923 bool isTruncFree
= TLI
.isTruncateFree(VT
, N0
.getValueType());
8924 for (SDNode::use_iterator UI
= N0
.getNode()->use_begin(),
8925 UE
= N0
.getNode()->use_end();
8930 if (UI
.getUse().getResNo() != N0
.getResNo())
8932 // FIXME: Only extend SETCC N, N and SETCC N, c for now.
8933 if (ExtOpc
!= ISD::ANY_EXTEND
&& User
->getOpcode() == ISD::SETCC
) {
8934 ISD::CondCode CC
= cast
<CondCodeSDNode
>(User
->getOperand(2))->get();
8935 if (ExtOpc
== ISD::ZERO_EXTEND
&& ISD::isSignedIntSetCC(CC
))
8936 // Sign bits will be lost after a zext.
8939 for (unsigned i
= 0; i
!= 2; ++i
) {
8940 SDValue UseOp
= User
->getOperand(i
);
8943 if (!isa
<ConstantSDNode
>(UseOp
))
8948 ExtendNodes
.push_back(User
);
8951 // If truncates aren't free and there are users we can't
8952 // extend, it isn't worthwhile.
8955 // Remember if this value is live-out.
8956 if (User
->getOpcode() == ISD::CopyToReg
)
8957 HasCopyToRegUses
= true;
8960 if (HasCopyToRegUses
) {
8961 bool BothLiveOut
= false;
8962 for (SDNode::use_iterator UI
= N
->use_begin(), UE
= N
->use_end();
8964 SDUse
&Use
= UI
.getUse();
8965 if (Use
.getResNo() == 0 && Use
.getUser()->getOpcode() == ISD::CopyToReg
) {
8971 // Both unextended and extended values are live out. There had better be
8972 // a good reason for the transformation.
8973 return ExtendNodes
.size();
8978 void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl
<SDNode
*> &SetCCs
,
8979 SDValue OrigLoad
, SDValue ExtLoad
,
8980 ISD::NodeType ExtType
) {
8981 // Extend SetCC uses if necessary.
8983 for (SDNode
*SetCC
: SetCCs
) {
8984 SmallVector
<SDValue
, 4> Ops
;
8986 for (unsigned j
= 0; j
!= 2; ++j
) {
8987 SDValue SOp
= SetCC
->getOperand(j
);
8988 if (SOp
== OrigLoad
)
8989 Ops
.push_back(ExtLoad
);
8991 Ops
.push_back(DAG
.getNode(ExtType
, DL
, ExtLoad
->getValueType(0), SOp
));
8994 Ops
.push_back(SetCC
->getOperand(2));
8995 CombineTo(SetCC
, DAG
.getNode(ISD::SETCC
, DL
, SetCC
->getValueType(0), Ops
));
8999 // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?).
9000 SDValue
DAGCombiner::CombineExtLoad(SDNode
*N
) {
9001 SDValue N0
= N
->getOperand(0);
9002 EVT DstVT
= N
->getValueType(0);
9003 EVT SrcVT
= N0
.getValueType();
9005 assert((N
->getOpcode() == ISD::SIGN_EXTEND
||
9006 N
->getOpcode() == ISD::ZERO_EXTEND
) &&
9007 "Unexpected node type (not an extend)!");
9009 // fold (sext (load x)) to multiple smaller sextloads; same for zext.
9010 // For example, on a target with legal v4i32, but illegal v8i32, turn:
9011 // (v8i32 (sext (v8i16 (load x))))
9013 // (v8i32 (concat_vectors (v4i32 (sextload x)),
9014 // (v4i32 (sextload (x + 16)))))
9015 // Where uses of the original load, i.e.:
9017 // are replaced with:
9019 // (v8i32 (concat_vectors (v4i32 (sextload x)),
9020 // (v4i32 (sextload (x + 16)))))))
9022 // This combine is only applicable to illegal, but splittable, vectors.
9023 // All legal types, and illegal non-vector types, are handled elsewhere.
9024 // This combine is controlled by TargetLowering::isVectorLoadExtDesirable.
9026 if (N0
->getOpcode() != ISD::LOAD
)
9029 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
9031 if (!ISD::isNON_EXTLoad(LN0
) || !ISD::isUNINDEXEDLoad(LN0
) ||
9032 !N0
.hasOneUse() || LN0
->isVolatile() || !DstVT
.isVector() ||
9033 !DstVT
.isPow2VectorType() || !TLI
.isVectorLoadExtDesirable(SDValue(N
, 0)))
9036 SmallVector
<SDNode
*, 4> SetCCs
;
9037 if (!ExtendUsesToFormExtLoad(DstVT
, N
, N0
, N
->getOpcode(), SetCCs
, TLI
))
9040 ISD::LoadExtType ExtType
=
9041 N
->getOpcode() == ISD::SIGN_EXTEND
? ISD::SEXTLOAD
: ISD::ZEXTLOAD
;
9043 // Try to split the vector types to get down to legal types.
9044 EVT SplitSrcVT
= SrcVT
;
9045 EVT SplitDstVT
= DstVT
;
9046 while (!TLI
.isLoadExtLegalOrCustom(ExtType
, SplitDstVT
, SplitSrcVT
) &&
9047 SplitSrcVT
.getVectorNumElements() > 1) {
9048 SplitDstVT
= DAG
.GetSplitDestVTs(SplitDstVT
).first
;
9049 SplitSrcVT
= DAG
.GetSplitDestVTs(SplitSrcVT
).first
;
9052 if (!TLI
.isLoadExtLegalOrCustom(ExtType
, SplitDstVT
, SplitSrcVT
))
9056 const unsigned NumSplits
=
9057 DstVT
.getVectorNumElements() / SplitDstVT
.getVectorNumElements();
9058 const unsigned Stride
= SplitSrcVT
.getStoreSize();
9059 SmallVector
<SDValue
, 4> Loads
;
9060 SmallVector
<SDValue
, 4> Chains
;
9062 SDValue BasePtr
= LN0
->getBasePtr();
9063 for (unsigned Idx
= 0; Idx
< NumSplits
; Idx
++) {
9064 const unsigned Offset
= Idx
* Stride
;
9065 const unsigned Align
= MinAlign(LN0
->getAlignment(), Offset
);
9067 SDValue SplitLoad
= DAG
.getExtLoad(
9068 ExtType
, SDLoc(LN0
), SplitDstVT
, LN0
->getChain(), BasePtr
,
9069 LN0
->getPointerInfo().getWithOffset(Offset
), SplitSrcVT
, Align
,
9070 LN0
->getMemOperand()->getFlags(), LN0
->getAAInfo());
9072 BasePtr
= DAG
.getNode(ISD::ADD
, DL
, BasePtr
.getValueType(), BasePtr
,
9073 DAG
.getConstant(Stride
, DL
, BasePtr
.getValueType()));
9075 Loads
.push_back(SplitLoad
.getValue(0));
9076 Chains
.push_back(SplitLoad
.getValue(1));
9079 SDValue NewChain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Chains
);
9080 SDValue NewValue
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, DstVT
, Loads
);
9083 AddToWorklist(NewChain
.getNode());
9085 CombineTo(N
, NewValue
);
9087 // Replace uses of the original load (before extension)
9088 // with a truncate of the concatenated sextloaded vectors.
9090 DAG
.getNode(ISD::TRUNCATE
, SDLoc(N0
), N0
.getValueType(), NewValue
);
9091 ExtendSetCCUses(SetCCs
, N0
, NewValue
, (ISD::NodeType
)N
->getOpcode());
9092 CombineTo(N0
.getNode(), Trunc
, NewChain
);
9093 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
9096 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
9097 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
9098 SDValue
DAGCombiner::CombineZExtLogicopShiftLoad(SDNode
*N
) {
9099 assert(N
->getOpcode() == ISD::ZERO_EXTEND
);
9100 EVT VT
= N
->getValueType(0);
9101 EVT OrigVT
= N
->getOperand(0).getValueType();
9102 if (TLI
.isZExtFree(OrigVT
, VT
))
9106 SDValue N0
= N
->getOperand(0);
9107 if (!(N0
.getOpcode() == ISD::AND
|| N0
.getOpcode() == ISD::OR
||
9108 N0
.getOpcode() == ISD::XOR
) ||
9109 N0
.getOperand(1).getOpcode() != ISD::Constant
||
9110 (LegalOperations
&& !TLI
.isOperationLegal(N0
.getOpcode(), VT
)))
9114 SDValue N1
= N0
->getOperand(0);
9115 if (!(N1
.getOpcode() == ISD::SHL
|| N1
.getOpcode() == ISD::SRL
) ||
9116 N1
.getOperand(1).getOpcode() != ISD::Constant
||
9117 (LegalOperations
&& !TLI
.isOperationLegal(N1
.getOpcode(), VT
)))
9121 if (!isa
<LoadSDNode
>(N1
.getOperand(0)))
9123 LoadSDNode
*Load
= cast
<LoadSDNode
>(N1
.getOperand(0));
9124 EVT MemVT
= Load
->getMemoryVT();
9125 if (!TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, VT
, MemVT
) ||
9126 Load
->getExtensionType() == ISD::SEXTLOAD
|| Load
->isIndexed())
9130 // If the shift op is SHL, the logic op must be AND, otherwise the result
9132 if (N1
.getOpcode() == ISD::SHL
&& N0
.getOpcode() != ISD::AND
)
9135 if (!N0
.hasOneUse() || !N1
.hasOneUse())
9138 SmallVector
<SDNode
*, 4> SetCCs
;
9139 if (!ExtendUsesToFormExtLoad(VT
, N1
.getNode(), N1
.getOperand(0),
9140 ISD::ZERO_EXTEND
, SetCCs
, TLI
))
9143 // Actually do the transformation.
9144 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, SDLoc(Load
), VT
,
9145 Load
->getChain(), Load
->getBasePtr(),
9146 Load
->getMemoryVT(), Load
->getMemOperand());
9149 SDValue Shift
= DAG
.getNode(N1
.getOpcode(), DL1
, VT
, ExtLoad
,
9152 APInt Mask
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
9153 Mask
= Mask
.zext(VT
.getSizeInBits());
9155 SDValue And
= DAG
.getNode(N0
.getOpcode(), DL0
, VT
, Shift
,
9156 DAG
.getConstant(Mask
, DL0
, VT
));
9158 ExtendSetCCUses(SetCCs
, N1
.getOperand(0), ExtLoad
, ISD::ZERO_EXTEND
);
9160 if (SDValue(Load
, 0).hasOneUse()) {
9161 DAG
.ReplaceAllUsesOfValueWith(SDValue(Load
, 1), ExtLoad
.getValue(1));
9163 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(Load
),
9164 Load
->getValueType(0), ExtLoad
);
9165 CombineTo(Load
, Trunc
, ExtLoad
.getValue(1));
9168 // N0 is dead at this point.
9169 recursivelyDeleteUnusedNodes(N0
.getNode());
9171 return SDValue(N
,0); // Return N so it doesn't get rechecked!
9174 /// If we're narrowing or widening the result of a vector select and the final
9175 /// size is the same size as a setcc (compare) feeding the select, then try to
9176 /// apply the cast operation to the select's operands because matching vector
9177 /// sizes for a select condition and other operands should be more efficient.
9178 SDValue
DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode
*Cast
) {
9179 unsigned CastOpcode
= Cast
->getOpcode();
9180 assert((CastOpcode
== ISD::SIGN_EXTEND
|| CastOpcode
== ISD::ZERO_EXTEND
||
9181 CastOpcode
== ISD::TRUNCATE
|| CastOpcode
== ISD::FP_EXTEND
||
9182 CastOpcode
== ISD::FP_ROUND
) &&
9183 "Unexpected opcode for vector select narrowing/widening");
9185 // We only do this transform before legal ops because the pattern may be
9186 // obfuscated by target-specific operations after legalization. Do not create
9187 // an illegal select op, however, because that may be difficult to lower.
9188 EVT VT
= Cast
->getValueType(0);
9189 if (LegalOperations
|| !TLI
.isOperationLegalOrCustom(ISD::VSELECT
, VT
))
9192 SDValue VSel
= Cast
->getOperand(0);
9193 if (VSel
.getOpcode() != ISD::VSELECT
|| !VSel
.hasOneUse() ||
9194 VSel
.getOperand(0).getOpcode() != ISD::SETCC
)
9197 // Does the setcc have the same vector size as the casted select?
9198 SDValue SetCC
= VSel
.getOperand(0);
9199 EVT SetCCVT
= getSetCCResultType(SetCC
.getOperand(0).getValueType());
9200 if (SetCCVT
.getSizeInBits() != VT
.getSizeInBits())
9203 // cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B)
9204 SDValue A
= VSel
.getOperand(1);
9205 SDValue B
= VSel
.getOperand(2);
9206 SDValue CastA
, CastB
;
9208 if (CastOpcode
== ISD::FP_ROUND
) {
9209 // FP_ROUND (fptrunc) has an extra flag operand to pass along.
9210 CastA
= DAG
.getNode(CastOpcode
, DL
, VT
, A
, Cast
->getOperand(1));
9211 CastB
= DAG
.getNode(CastOpcode
, DL
, VT
, B
, Cast
->getOperand(1));
9213 CastA
= DAG
.getNode(CastOpcode
, DL
, VT
, A
);
9214 CastB
= DAG
.getNode(CastOpcode
, DL
, VT
, B
);
9216 return DAG
.getNode(ISD::VSELECT
, DL
, VT
, SetCC
, CastA
, CastB
);
9219 // fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
9220 // fold ([s|z]ext ( extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
9221 static SDValue
tryToFoldExtOfExtload(SelectionDAG
&DAG
, DAGCombiner
&Combiner
,
9222 const TargetLowering
&TLI
, EVT VT
,
9223 bool LegalOperations
, SDNode
*N
,
9224 SDValue N0
, ISD::LoadExtType ExtLoadType
) {
9225 SDNode
*N0Node
= N0
.getNode();
9226 bool isAExtLoad
= (ExtLoadType
== ISD::SEXTLOAD
) ? ISD::isSEXTLoad(N0Node
)
9227 : ISD::isZEXTLoad(N0Node
);
9228 if ((!isAExtLoad
&& !ISD::isEXTLoad(N0Node
)) ||
9229 !ISD::isUNINDEXEDLoad(N0Node
) || !N0
.hasOneUse())
9232 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
9233 EVT MemVT
= LN0
->getMemoryVT();
9234 if ((LegalOperations
|| LN0
->isVolatile() || VT
.isVector()) &&
9235 !TLI
.isLoadExtLegal(ExtLoadType
, VT
, MemVT
))
9239 DAG
.getExtLoad(ExtLoadType
, SDLoc(LN0
), VT
, LN0
->getChain(),
9240 LN0
->getBasePtr(), MemVT
, LN0
->getMemOperand());
9241 Combiner
.CombineTo(N
, ExtLoad
);
9242 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 1), ExtLoad
.getValue(1));
9243 if (LN0
->use_empty())
9244 Combiner
.recursivelyDeleteUnusedNodes(LN0
);
9245 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
9248 // fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x)))
9249 // Only generate vector extloads when 1) they're legal, and 2) they are
9250 // deemed desirable by the target.
9251 static SDValue
tryToFoldExtOfLoad(SelectionDAG
&DAG
, DAGCombiner
&Combiner
,
9252 const TargetLowering
&TLI
, EVT VT
,
9253 bool LegalOperations
, SDNode
*N
, SDValue N0
,
9254 ISD::LoadExtType ExtLoadType
,
9255 ISD::NodeType ExtOpc
) {
9256 if (!ISD::isNON_EXTLoad(N0
.getNode()) ||
9257 !ISD::isUNINDEXEDLoad(N0
.getNode()) ||
9258 ((LegalOperations
|| VT
.isVector() ||
9259 cast
<LoadSDNode
>(N0
)->isVolatile()) &&
9260 !TLI
.isLoadExtLegal(ExtLoadType
, VT
, N0
.getValueType())))
9263 bool DoXform
= true;
9264 SmallVector
<SDNode
*, 4> SetCCs
;
9265 if (!N0
.hasOneUse())
9266 DoXform
= ExtendUsesToFormExtLoad(VT
, N
, N0
, ExtOpc
, SetCCs
, TLI
);
9268 DoXform
&= TLI
.isVectorLoadExtDesirable(SDValue(N
, 0));
9272 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
9273 SDValue ExtLoad
= DAG
.getExtLoad(ExtLoadType
, SDLoc(LN0
), VT
, LN0
->getChain(),
9274 LN0
->getBasePtr(), N0
.getValueType(),
9275 LN0
->getMemOperand());
9276 Combiner
.ExtendSetCCUses(SetCCs
, N0
, ExtLoad
, ExtOpc
);
9277 // If the load value is used only by N, replace it via CombineTo N.
9278 bool NoReplaceTrunc
= SDValue(LN0
, 0).hasOneUse();
9279 Combiner
.CombineTo(N
, ExtLoad
);
9280 if (NoReplaceTrunc
) {
9281 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 1), ExtLoad
.getValue(1));
9282 Combiner
.recursivelyDeleteUnusedNodes(LN0
);
9285 DAG
.getNode(ISD::TRUNCATE
, SDLoc(N0
), N0
.getValueType(), ExtLoad
);
9286 Combiner
.CombineTo(LN0
, Trunc
, ExtLoad
.getValue(1));
9288 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
9291 static SDValue
foldExtendedSignBitTest(SDNode
*N
, SelectionDAG
&DAG
,
9292 bool LegalOperations
) {
9293 assert((N
->getOpcode() == ISD::SIGN_EXTEND
||
9294 N
->getOpcode() == ISD::ZERO_EXTEND
) && "Expected sext or zext");
9296 SDValue SetCC
= N
->getOperand(0);
9297 if (LegalOperations
|| SetCC
.getOpcode() != ISD::SETCC
||
9298 !SetCC
.hasOneUse() || SetCC
.getValueType() != MVT::i1
)
9301 SDValue X
= SetCC
.getOperand(0);
9302 SDValue Ones
= SetCC
.getOperand(1);
9303 ISD::CondCode CC
= cast
<CondCodeSDNode
>(SetCC
.getOperand(2))->get();
9304 EVT VT
= N
->getValueType(0);
9305 EVT XVT
= X
.getValueType();
9306 // setge X, C is canonicalized to setgt, so we do not need to match that
9307 // pattern. The setlt sibling is folded in SimplifySelectCC() because it does
9308 // not require the 'not' op.
9309 if (CC
== ISD::SETGT
&& isAllOnesConstant(Ones
) && VT
== XVT
) {
9310 // Invert and smear/shift the sign bit:
9311 // sext i1 (setgt iN X, -1) --> sra (not X), (N - 1)
9312 // zext i1 (setgt iN X, -1) --> srl (not X), (N - 1)
9314 SDValue NotX
= DAG
.getNOT(DL
, X
, VT
);
9315 SDValue ShiftAmount
= DAG
.getConstant(VT
.getSizeInBits() - 1, DL
, VT
);
9316 auto ShiftOpcode
= N
->getOpcode() == ISD::SIGN_EXTEND
? ISD::SRA
: ISD::SRL
;
9317 return DAG
.getNode(ShiftOpcode
, DL
, VT
, NotX
, ShiftAmount
);
9322 SDValue
DAGCombiner::visitSIGN_EXTEND(SDNode
*N
) {
9323 SDValue N0
= N
->getOperand(0);
9324 EVT VT
= N
->getValueType(0);
9327 if (SDValue Res
= tryToFoldExtendOfConstant(N
, TLI
, DAG
, LegalTypes
))
9330 // fold (sext (sext x)) -> (sext x)
9331 // fold (sext (aext x)) -> (sext x)
9332 if (N0
.getOpcode() == ISD::SIGN_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
)
9333 return DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, N0
.getOperand(0));
9335 if (N0
.getOpcode() == ISD::TRUNCATE
) {
9336 // fold (sext (truncate (load x))) -> (sext (smaller load x))
9337 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
9338 if (SDValue NarrowLoad
= ReduceLoadWidth(N0
.getNode())) {
9339 SDNode
*oye
= N0
.getOperand(0).getNode();
9340 if (NarrowLoad
.getNode() != N0
.getNode()) {
9341 CombineTo(N0
.getNode(), NarrowLoad
);
9342 // CombineTo deleted the truncate, if needed, but not what's under it.
9345 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
9348 // See if the value being truncated is already sign extended. If so, just
9349 // eliminate the trunc/sext pair.
9350 SDValue Op
= N0
.getOperand(0);
9351 unsigned OpBits
= Op
.getScalarValueSizeInBits();
9352 unsigned MidBits
= N0
.getScalarValueSizeInBits();
9353 unsigned DestBits
= VT
.getScalarSizeInBits();
9354 unsigned NumSignBits
= DAG
.ComputeNumSignBits(Op
);
9356 if (OpBits
== DestBits
) {
9357 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
9358 // bits, it is already ready.
9359 if (NumSignBits
> DestBits
-MidBits
)
9361 } else if (OpBits
< DestBits
) {
9362 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
9363 // bits, just sext from i32.
9364 if (NumSignBits
> OpBits
-MidBits
)
9365 return DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, Op
);
9367 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
9368 // bits, just truncate to i32.
9369 if (NumSignBits
> OpBits
-MidBits
)
9370 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, Op
);
9373 // fold (sext (truncate x)) -> (sextinreg x).
9374 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::SIGN_EXTEND_INREG
,
9375 N0
.getValueType())) {
9376 if (OpBits
< DestBits
)
9377 Op
= DAG
.getNode(ISD::ANY_EXTEND
, SDLoc(N0
), VT
, Op
);
9378 else if (OpBits
> DestBits
)
9379 Op
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(N0
), VT
, Op
);
9380 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, VT
, Op
,
9381 DAG
.getValueType(N0
.getValueType()));
9385 // Try to simplify (sext (load x)).
9386 if (SDValue foldedExt
=
9387 tryToFoldExtOfLoad(DAG
, *this, TLI
, VT
, LegalOperations
, N
, N0
,
9388 ISD::SEXTLOAD
, ISD::SIGN_EXTEND
))
9391 // fold (sext (load x)) to multiple smaller sextloads.
9392 // Only on illegal but splittable vectors.
9393 if (SDValue ExtLoad
= CombineExtLoad(N
))
9396 // Try to simplify (sext (sextload x)).
9397 if (SDValue foldedExt
= tryToFoldExtOfExtload(
9398 DAG
, *this, TLI
, VT
, LegalOperations
, N
, N0
, ISD::SEXTLOAD
))
9401 // fold (sext (and/or/xor (load x), cst)) ->
9402 // (and/or/xor (sextload x), (sext cst))
9403 if ((N0
.getOpcode() == ISD::AND
|| N0
.getOpcode() == ISD::OR
||
9404 N0
.getOpcode() == ISD::XOR
) &&
9405 isa
<LoadSDNode
>(N0
.getOperand(0)) &&
9406 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
9407 (!LegalOperations
&& TLI
.isOperationLegal(N0
.getOpcode(), VT
))) {
9408 LoadSDNode
*LN00
= cast
<LoadSDNode
>(N0
.getOperand(0));
9409 EVT MemVT
= LN00
->getMemoryVT();
9410 if (TLI
.isLoadExtLegal(ISD::SEXTLOAD
, VT
, MemVT
) &&
9411 LN00
->getExtensionType() != ISD::ZEXTLOAD
&& LN00
->isUnindexed()) {
9412 SmallVector
<SDNode
*, 4> SetCCs
;
9413 bool DoXform
= ExtendUsesToFormExtLoad(VT
, N0
.getNode(), N0
.getOperand(0),
9414 ISD::SIGN_EXTEND
, SetCCs
, TLI
);
9416 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, SDLoc(LN00
), VT
,
9417 LN00
->getChain(), LN00
->getBasePtr(),
9418 LN00
->getMemoryVT(),
9419 LN00
->getMemOperand());
9420 APInt Mask
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
9421 Mask
= Mask
.sext(VT
.getSizeInBits());
9422 SDValue And
= DAG
.getNode(N0
.getOpcode(), DL
, VT
,
9423 ExtLoad
, DAG
.getConstant(Mask
, DL
, VT
));
9424 ExtendSetCCUses(SetCCs
, N0
.getOperand(0), ExtLoad
, ISD::SIGN_EXTEND
);
9425 bool NoReplaceTruncAnd
= !N0
.hasOneUse();
9426 bool NoReplaceTrunc
= SDValue(LN00
, 0).hasOneUse();
9428 // If N0 has multiple uses, change other uses as well.
9429 if (NoReplaceTruncAnd
) {
9431 DAG
.getNode(ISD::TRUNCATE
, DL
, N0
.getValueType(), And
);
9432 CombineTo(N0
.getNode(), TruncAnd
);
9434 if (NoReplaceTrunc
) {
9435 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN00
, 1), ExtLoad
.getValue(1));
9437 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(LN00
),
9438 LN00
->getValueType(0), ExtLoad
);
9439 CombineTo(LN00
, Trunc
, ExtLoad
.getValue(1));
9441 return SDValue(N
,0); // Return N so it doesn't get rechecked!
9446 if (SDValue V
= foldExtendedSignBitTest(N
, DAG
, LegalOperations
))
9449 if (N0
.getOpcode() == ISD::SETCC
) {
9450 SDValue N00
= N0
.getOperand(0);
9451 SDValue N01
= N0
.getOperand(1);
9452 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N0
.getOperand(2))->get();
9453 EVT N00VT
= N0
.getOperand(0).getValueType();
9455 // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
9456 // Only do this before legalize for now.
9457 if (VT
.isVector() && !LegalOperations
&&
9458 TLI
.getBooleanContents(N00VT
) ==
9459 TargetLowering::ZeroOrNegativeOneBooleanContent
) {
9460 // On some architectures (such as SSE/NEON/etc) the SETCC result type is
9461 // of the same size as the compared operands. Only optimize sext(setcc())
9462 // if this is the case.
9463 EVT SVT
= getSetCCResultType(N00VT
);
9465 // If we already have the desired type, don't change it.
9466 if (SVT
!= N0
.getValueType()) {
9467 // We know that the # elements of the results is the same as the
9468 // # elements of the compare (and the # elements of the compare result
9469 // for that matter). Check to see that they are the same size. If so,
9470 // we know that the element size of the sext'd result matches the
9471 // element size of the compare operands.
9472 if (VT
.getSizeInBits() == SVT
.getSizeInBits())
9473 return DAG
.getSetCC(DL
, VT
, N00
, N01
, CC
);
9475 // If the desired elements are smaller or larger than the source
9476 // elements, we can use a matching integer vector type and then
9477 // truncate/sign extend.
9478 EVT MatchingVecType
= N00VT
.changeVectorElementTypeToInteger();
9479 if (SVT
== MatchingVecType
) {
9480 SDValue VsetCC
= DAG
.getSetCC(DL
, MatchingVecType
, N00
, N01
, CC
);
9481 return DAG
.getSExtOrTrunc(VsetCC
, DL
, VT
);
9486 // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0)
9487 // Here, T can be 1 or -1, depending on the type of the setcc and
9488 // getBooleanContents().
9489 unsigned SetCCWidth
= N0
.getScalarValueSizeInBits();
9491 // To determine the "true" side of the select, we need to know the high bit
9492 // of the value returned by the setcc if it evaluates to true.
9493 // If the type of the setcc is i1, then the true case of the select is just
9494 // sext(i1 1), that is, -1.
9495 // If the type of the setcc is larger (say, i8) then the value of the high
9496 // bit depends on getBooleanContents(), so ask TLI for a real "true" value
9497 // of the appropriate width.
9498 SDValue ExtTrueVal
= (SetCCWidth
== 1)
9499 ? DAG
.getAllOnesConstant(DL
, VT
)
9500 : DAG
.getBoolConstant(true, DL
, VT
, N00VT
);
9501 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
9503 SimplifySelectCC(DL
, N00
, N01
, ExtTrueVal
, Zero
, CC
, true))
9506 if (!VT
.isVector() && !TLI
.convertSelectOfConstantsToMath(VT
)) {
9507 EVT SetCCVT
= getSetCCResultType(N00VT
);
9508 // Don't do this transform for i1 because there's a select transform
9509 // that would reverse it.
9510 // TODO: We should not do this transform at all without a target hook
9511 // because a sext is likely cheaper than a select?
9512 if (SetCCVT
.getScalarSizeInBits() != 1 &&
9513 (!LegalOperations
|| TLI
.isOperationLegal(ISD::SETCC
, N00VT
))) {
9514 SDValue SetCC
= DAG
.getSetCC(DL
, SetCCVT
, N00
, N01
, CC
);
9515 return DAG
.getSelect(DL
, VT
, SetCC
, ExtTrueVal
, Zero
);
9520 // fold (sext x) -> (zext x) if the sign bit is known zero.
9521 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::ZERO_EXTEND
, VT
)) &&
9522 DAG
.SignBitIsZero(N0
))
9523 return DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, N0
);
9525 if (SDValue NewVSel
= matchVSelectOpSizesWithSetCC(N
))
9528 // Eliminate this sign extend by doing a negation in the destination type:
9529 // sext i32 (0 - (zext i8 X to i32)) to i64 --> 0 - (zext i8 X to i64)
9530 if (N0
.getOpcode() == ISD::SUB
&& N0
.hasOneUse() &&
9531 isNullOrNullSplat(N0
.getOperand(0)) &&
9532 N0
.getOperand(1).getOpcode() == ISD::ZERO_EXTEND
&&
9533 TLI
.isOperationLegalOrCustom(ISD::SUB
, VT
)) {
9534 SDValue Zext
= DAG
.getZExtOrTrunc(N0
.getOperand(1).getOperand(0), DL
, VT
);
9535 return DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
), Zext
);
9537 // Eliminate this sign extend by doing a decrement in the destination type:
9538 // sext i32 ((zext i8 X to i32) + (-1)) to i64 --> (zext i8 X to i64) + (-1)
9539 if (N0
.getOpcode() == ISD::ADD
&& N0
.hasOneUse() &&
9540 isAllOnesOrAllOnesSplat(N0
.getOperand(1)) &&
9541 N0
.getOperand(0).getOpcode() == ISD::ZERO_EXTEND
&&
9542 TLI
.isOperationLegalOrCustom(ISD::ADD
, VT
)) {
9543 SDValue Zext
= DAG
.getZExtOrTrunc(N0
.getOperand(0).getOperand(0), DL
, VT
);
9544 return DAG
.getNode(ISD::ADD
, DL
, VT
, Zext
, DAG
.getAllOnesConstant(DL
, VT
));
9550 // isTruncateOf - If N is a truncate of some other value, return true, record
9551 // the value being truncated in Op and which of Op's bits are zero/one in Known.
9552 // This function computes KnownBits to avoid a duplicated call to
9553 // computeKnownBits in the caller.
9554 static bool isTruncateOf(SelectionDAG
&DAG
, SDValue N
, SDValue
&Op
,
9556 if (N
->getOpcode() == ISD::TRUNCATE
) {
9557 Op
= N
->getOperand(0);
9558 Known
= DAG
.computeKnownBits(Op
);
9562 if (N
.getOpcode() != ISD::SETCC
||
9563 N
.getValueType().getScalarType() != MVT::i1
||
9564 cast
<CondCodeSDNode
>(N
.getOperand(2))->get() != ISD::SETNE
)
9567 SDValue Op0
= N
->getOperand(0);
9568 SDValue Op1
= N
->getOperand(1);
9569 assert(Op0
.getValueType() == Op1
.getValueType());
9571 if (isNullOrNullSplat(Op0
))
9573 else if (isNullOrNullSplat(Op1
))
9578 Known
= DAG
.computeKnownBits(Op
);
9580 return (Known
.Zero
| 1).isAllOnesValue();
9583 SDValue
DAGCombiner::visitZERO_EXTEND(SDNode
*N
) {
9584 SDValue N0
= N
->getOperand(0);
9585 EVT VT
= N
->getValueType(0);
9587 if (SDValue Res
= tryToFoldExtendOfConstant(N
, TLI
, DAG
, LegalTypes
))
9590 // fold (zext (zext x)) -> (zext x)
9591 // fold (zext (aext x)) -> (zext x)
9592 if (N0
.getOpcode() == ISD::ZERO_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
)
9593 return DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N
), VT
,
9596 // fold (zext (truncate x)) -> (zext x) or
9597 // (zext (truncate x)) -> (truncate x)
9598 // This is valid when the truncated bits of x are already zero.
9601 if (isTruncateOf(DAG
, N0
, Op
, Known
)) {
9602 APInt TruncatedBits
=
9603 (Op
.getScalarValueSizeInBits() == N0
.getScalarValueSizeInBits()) ?
9604 APInt(Op
.getScalarValueSizeInBits(), 0) :
9605 APInt::getBitsSet(Op
.getScalarValueSizeInBits(),
9606 N0
.getScalarValueSizeInBits(),
9607 std::min(Op
.getScalarValueSizeInBits(),
9608 VT
.getScalarSizeInBits()));
9609 if (TruncatedBits
.isSubsetOf(Known
.Zero
))
9610 return DAG
.getZExtOrTrunc(Op
, SDLoc(N
), VT
);
9613 // fold (zext (truncate x)) -> (and x, mask)
9614 if (N0
.getOpcode() == ISD::TRUNCATE
) {
9615 // fold (zext (truncate (load x))) -> (zext (smaller load x))
9616 // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
9617 if (SDValue NarrowLoad
= ReduceLoadWidth(N0
.getNode())) {
9618 SDNode
*oye
= N0
.getOperand(0).getNode();
9619 if (NarrowLoad
.getNode() != N0
.getNode()) {
9620 CombineTo(N0
.getNode(), NarrowLoad
);
9621 // CombineTo deleted the truncate, if needed, but not what's under it.
9624 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
9627 EVT SrcVT
= N0
.getOperand(0).getValueType();
9628 EVT MinVT
= N0
.getValueType();
9630 // Try to mask before the extension to avoid having to generate a larger mask,
9631 // possibly over several sub-vectors.
9632 if (SrcVT
.bitsLT(VT
) && VT
.isVector()) {
9633 if (!LegalOperations
|| (TLI
.isOperationLegal(ISD::AND
, SrcVT
) &&
9634 TLI
.isOperationLegal(ISD::ZERO_EXTEND
, VT
))) {
9635 SDValue Op
= N0
.getOperand(0);
9636 Op
= DAG
.getZeroExtendInReg(Op
, SDLoc(N
), MinVT
.getScalarType());
9637 AddToWorklist(Op
.getNode());
9638 SDValue ZExtOrTrunc
= DAG
.getZExtOrTrunc(Op
, SDLoc(N
), VT
);
9639 // Transfer the debug info; the new node is equivalent to N0.
9640 DAG
.transferDbgValues(N0
, ZExtOrTrunc
);
9645 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::AND
, VT
)) {
9646 SDValue Op
= DAG
.getAnyExtOrTrunc(N0
.getOperand(0), SDLoc(N
), VT
);
9647 AddToWorklist(Op
.getNode());
9648 SDValue And
= DAG
.getZeroExtendInReg(Op
, SDLoc(N
), MinVT
.getScalarType());
9649 // We may safely transfer the debug info describing the truncate node over
9650 // to the equivalent and operation.
9651 DAG
.transferDbgValues(N0
, And
);
9656 // Fold (zext (and (trunc x), cst)) -> (and x, cst),
9657 // if either of the casts is not free.
9658 if (N0
.getOpcode() == ISD::AND
&&
9659 N0
.getOperand(0).getOpcode() == ISD::TRUNCATE
&&
9660 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
9661 (!TLI
.isTruncateFree(N0
.getOperand(0).getOperand(0).getValueType(),
9662 N0
.getValueType()) ||
9663 !TLI
.isZExtFree(N0
.getValueType(), VT
))) {
9664 SDValue X
= N0
.getOperand(0).getOperand(0);
9665 X
= DAG
.getAnyExtOrTrunc(X
, SDLoc(X
), VT
);
9666 APInt Mask
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
9667 Mask
= Mask
.zext(VT
.getSizeInBits());
9669 return DAG
.getNode(ISD::AND
, DL
, VT
,
9670 X
, DAG
.getConstant(Mask
, DL
, VT
));
9673 // Try to simplify (zext (load x)).
9674 if (SDValue foldedExt
=
9675 tryToFoldExtOfLoad(DAG
, *this, TLI
, VT
, LegalOperations
, N
, N0
,
9676 ISD::ZEXTLOAD
, ISD::ZERO_EXTEND
))
9679 // fold (zext (load x)) to multiple smaller zextloads.
9680 // Only on illegal but splittable vectors.
9681 if (SDValue ExtLoad
= CombineExtLoad(N
))
9684 // fold (zext (and/or/xor (load x), cst)) ->
9685 // (and/or/xor (zextload x), (zext cst))
9686 // Unless (and (load x) cst) will match as a zextload already and has
9687 // additional users.
9688 if ((N0
.getOpcode() == ISD::AND
|| N0
.getOpcode() == ISD::OR
||
9689 N0
.getOpcode() == ISD::XOR
) &&
9690 isa
<LoadSDNode
>(N0
.getOperand(0)) &&
9691 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
9692 (!LegalOperations
&& TLI
.isOperationLegal(N0
.getOpcode(), VT
))) {
9693 LoadSDNode
*LN00
= cast
<LoadSDNode
>(N0
.getOperand(0));
9694 EVT MemVT
= LN00
->getMemoryVT();
9695 if (TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, VT
, MemVT
) &&
9696 LN00
->getExtensionType() != ISD::SEXTLOAD
&& LN00
->isUnindexed()) {
9697 bool DoXform
= true;
9698 SmallVector
<SDNode
*, 4> SetCCs
;
9699 if (!N0
.hasOneUse()) {
9700 if (N0
.getOpcode() == ISD::AND
) {
9701 auto *AndC
= cast
<ConstantSDNode
>(N0
.getOperand(1));
9702 EVT LoadResultTy
= AndC
->getValueType(0);
9704 if (isAndLoadExtLoad(AndC
, LN00
, LoadResultTy
, ExtVT
))
9709 DoXform
= ExtendUsesToFormExtLoad(VT
, N0
.getNode(), N0
.getOperand(0),
9710 ISD::ZERO_EXTEND
, SetCCs
, TLI
);
9712 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, SDLoc(LN00
), VT
,
9713 LN00
->getChain(), LN00
->getBasePtr(),
9714 LN00
->getMemoryVT(),
9715 LN00
->getMemOperand());
9716 APInt Mask
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
9717 Mask
= Mask
.zext(VT
.getSizeInBits());
9719 SDValue And
= DAG
.getNode(N0
.getOpcode(), DL
, VT
,
9720 ExtLoad
, DAG
.getConstant(Mask
, DL
, VT
));
9721 ExtendSetCCUses(SetCCs
, N0
.getOperand(0), ExtLoad
, ISD::ZERO_EXTEND
);
9722 bool NoReplaceTruncAnd
= !N0
.hasOneUse();
9723 bool NoReplaceTrunc
= SDValue(LN00
, 0).hasOneUse();
9725 // If N0 has multiple uses, change other uses as well.
9726 if (NoReplaceTruncAnd
) {
9728 DAG
.getNode(ISD::TRUNCATE
, DL
, N0
.getValueType(), And
);
9729 CombineTo(N0
.getNode(), TruncAnd
);
9731 if (NoReplaceTrunc
) {
9732 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN00
, 1), ExtLoad
.getValue(1));
9734 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(LN00
),
9735 LN00
->getValueType(0), ExtLoad
);
9736 CombineTo(LN00
, Trunc
, ExtLoad
.getValue(1));
9738 return SDValue(N
,0); // Return N so it doesn't get rechecked!
9743 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
9744 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
9745 if (SDValue ZExtLoad
= CombineZExtLogicopShiftLoad(N
))
9748 // Try to simplify (zext (zextload x)).
9749 if (SDValue foldedExt
= tryToFoldExtOfExtload(
9750 DAG
, *this, TLI
, VT
, LegalOperations
, N
, N0
, ISD::ZEXTLOAD
))
9753 if (SDValue V
= foldExtendedSignBitTest(N
, DAG
, LegalOperations
))
9756 if (N0
.getOpcode() == ISD::SETCC
) {
9757 // Only do this before legalize for now.
9758 if (!LegalOperations
&& VT
.isVector() &&
9759 N0
.getValueType().getVectorElementType() == MVT::i1
) {
9760 EVT N00VT
= N0
.getOperand(0).getValueType();
9761 if (getSetCCResultType(N00VT
) == N0
.getValueType())
9764 // We know that the # elements of the results is the same as the #
9765 // elements of the compare (and the # elements of the compare result for
9766 // that matter). Check to see that they are the same size. If so, we know
9767 // that the element size of the sext'd result matches the element size of
9768 // the compare operands.
9770 SDValue VecOnes
= DAG
.getConstant(1, DL
, VT
);
9771 if (VT
.getSizeInBits() == N00VT
.getSizeInBits()) {
9772 // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
9773 SDValue VSetCC
= DAG
.getNode(ISD::SETCC
, DL
, VT
, N0
.getOperand(0),
9774 N0
.getOperand(1), N0
.getOperand(2));
9775 return DAG
.getNode(ISD::AND
, DL
, VT
, VSetCC
, VecOnes
);
9778 // If the desired elements are smaller or larger than the source
9779 // elements we can use a matching integer vector type and then
9780 // truncate/sign extend.
9781 EVT MatchingVectorType
= N00VT
.changeVectorElementTypeToInteger();
9783 DAG
.getNode(ISD::SETCC
, DL
, MatchingVectorType
, N0
.getOperand(0),
9784 N0
.getOperand(1), N0
.getOperand(2));
9785 return DAG
.getNode(ISD::AND
, DL
, VT
, DAG
.getSExtOrTrunc(VsetCC
, DL
, VT
),
9789 // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
9791 if (SDValue SCC
= SimplifySelectCC(
9792 DL
, N0
.getOperand(0), N0
.getOperand(1), DAG
.getConstant(1, DL
, VT
),
9793 DAG
.getConstant(0, DL
, VT
),
9794 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get(), true))
9798 // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
9799 if ((N0
.getOpcode() == ISD::SHL
|| N0
.getOpcode() == ISD::SRL
) &&
9800 isa
<ConstantSDNode
>(N0
.getOperand(1)) &&
9801 N0
.getOperand(0).getOpcode() == ISD::ZERO_EXTEND
&&
9803 SDValue ShAmt
= N0
.getOperand(1);
9804 if (N0
.getOpcode() == ISD::SHL
) {
9805 SDValue InnerZExt
= N0
.getOperand(0);
9806 // If the original shl may be shifting out bits, do not perform this
9808 unsigned KnownZeroBits
= InnerZExt
.getValueSizeInBits() -
9809 InnerZExt
.getOperand(0).getValueSizeInBits();
9810 if (cast
<ConstantSDNode
>(ShAmt
)->getAPIntValue().ugt(KnownZeroBits
))
9816 // Ensure that the shift amount is wide enough for the shifted value.
9817 if (VT
.getSizeInBits() >= 256)
9818 ShAmt
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, MVT::i32
, ShAmt
);
9820 return DAG
.getNode(N0
.getOpcode(), DL
, VT
,
9821 DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, N0
.getOperand(0)),
9825 if (SDValue NewVSel
= matchVSelectOpSizesWithSetCC(N
))
9831 SDValue
DAGCombiner::visitANY_EXTEND(SDNode
*N
) {
9832 SDValue N0
= N
->getOperand(0);
9833 EVT VT
= N
->getValueType(0);
9835 if (SDValue Res
= tryToFoldExtendOfConstant(N
, TLI
, DAG
, LegalTypes
))
9838 // fold (aext (aext x)) -> (aext x)
9839 // fold (aext (zext x)) -> (zext x)
9840 // fold (aext (sext x)) -> (sext x)
9841 if (N0
.getOpcode() == ISD::ANY_EXTEND
||
9842 N0
.getOpcode() == ISD::ZERO_EXTEND
||
9843 N0
.getOpcode() == ISD::SIGN_EXTEND
)
9844 return DAG
.getNode(N0
.getOpcode(), SDLoc(N
), VT
, N0
.getOperand(0));
9846 // fold (aext (truncate (load x))) -> (aext (smaller load x))
9847 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
9848 if (N0
.getOpcode() == ISD::TRUNCATE
) {
9849 if (SDValue NarrowLoad
= ReduceLoadWidth(N0
.getNode())) {
9850 SDNode
*oye
= N0
.getOperand(0).getNode();
9851 if (NarrowLoad
.getNode() != N0
.getNode()) {
9852 CombineTo(N0
.getNode(), NarrowLoad
);
9853 // CombineTo deleted the truncate, if needed, but not what's under it.
9856 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
9860 // fold (aext (truncate x))
9861 if (N0
.getOpcode() == ISD::TRUNCATE
)
9862 return DAG
.getAnyExtOrTrunc(N0
.getOperand(0), SDLoc(N
), VT
);
9864 // Fold (aext (and (trunc x), cst)) -> (and x, cst)
9865 // if the trunc is not free.
9866 if (N0
.getOpcode() == ISD::AND
&&
9867 N0
.getOperand(0).getOpcode() == ISD::TRUNCATE
&&
9868 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
9869 !TLI
.isTruncateFree(N0
.getOperand(0).getOperand(0).getValueType(),
9870 N0
.getValueType())) {
9872 SDValue X
= N0
.getOperand(0).getOperand(0);
9873 X
= DAG
.getAnyExtOrTrunc(X
, DL
, VT
);
9874 APInt Mask
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
9875 Mask
= Mask
.zext(VT
.getSizeInBits());
9876 return DAG
.getNode(ISD::AND
, DL
, VT
,
9877 X
, DAG
.getConstant(Mask
, DL
, VT
));
9880 // fold (aext (load x)) -> (aext (truncate (extload x)))
9881 // None of the supported targets knows how to perform load and any_ext
9882 // on vectors in one instruction. We only perform this transformation on
9884 if (ISD::isNON_EXTLoad(N0
.getNode()) && !VT
.isVector() &&
9885 ISD::isUNINDEXEDLoad(N0
.getNode()) &&
9886 TLI
.isLoadExtLegal(ISD::EXTLOAD
, VT
, N0
.getValueType())) {
9887 bool DoXform
= true;
9888 SmallVector
<SDNode
*, 4> SetCCs
;
9889 if (!N0
.hasOneUse())
9890 DoXform
= ExtendUsesToFormExtLoad(VT
, N
, N0
, ISD::ANY_EXTEND
, SetCCs
,
9893 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
9894 SDValue ExtLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, SDLoc(N
), VT
,
9896 LN0
->getBasePtr(), N0
.getValueType(),
9897 LN0
->getMemOperand());
9898 ExtendSetCCUses(SetCCs
, N0
, ExtLoad
, ISD::ANY_EXTEND
);
9899 // If the load value is used only by N, replace it via CombineTo N.
9900 bool NoReplaceTrunc
= N0
.hasOneUse();
9901 CombineTo(N
, ExtLoad
);
9902 if (NoReplaceTrunc
) {
9903 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 1), ExtLoad
.getValue(1));
9904 recursivelyDeleteUnusedNodes(LN0
);
9906 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(N0
),
9907 N0
.getValueType(), ExtLoad
);
9908 CombineTo(LN0
, Trunc
, ExtLoad
.getValue(1));
9910 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
9914 // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
9915 // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
9916 // fold (aext ( extload x)) -> (aext (truncate (extload x)))
9917 if (N0
.getOpcode() == ISD::LOAD
&& !ISD::isNON_EXTLoad(N0
.getNode()) &&
9918 ISD::isUNINDEXEDLoad(N0
.getNode()) && N0
.hasOneUse()) {
9919 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
9920 ISD::LoadExtType ExtType
= LN0
->getExtensionType();
9921 EVT MemVT
= LN0
->getMemoryVT();
9922 if (!LegalOperations
|| TLI
.isLoadExtLegal(ExtType
, VT
, MemVT
)) {
9923 SDValue ExtLoad
= DAG
.getExtLoad(ExtType
, SDLoc(N
),
9924 VT
, LN0
->getChain(), LN0
->getBasePtr(),
9925 MemVT
, LN0
->getMemOperand());
9926 CombineTo(N
, ExtLoad
);
9927 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 1), ExtLoad
.getValue(1));
9928 recursivelyDeleteUnusedNodes(LN0
);
9929 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
9933 if (N0
.getOpcode() == ISD::SETCC
) {
9935 // aext(setcc) -> vsetcc
9936 // aext(setcc) -> truncate(vsetcc)
9937 // aext(setcc) -> aext(vsetcc)
9938 // Only do this before legalize for now.
9939 if (VT
.isVector() && !LegalOperations
) {
9940 EVT N00VT
= N0
.getOperand(0).getValueType();
9941 if (getSetCCResultType(N00VT
) == N0
.getValueType())
9944 // We know that the # elements of the results is the same as the
9945 // # elements of the compare (and the # elements of the compare result
9946 // for that matter). Check to see that they are the same size. If so,
9947 // we know that the element size of the sext'd result matches the
9948 // element size of the compare operands.
9949 if (VT
.getSizeInBits() == N00VT
.getSizeInBits())
9950 return DAG
.getSetCC(SDLoc(N
), VT
, N0
.getOperand(0),
9952 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
9954 // If the desired elements are smaller or larger than the source
9955 // elements we can use a matching integer vector type and then
9956 // truncate/any extend
9957 EVT MatchingVectorType
= N00VT
.changeVectorElementTypeToInteger();
9959 DAG
.getSetCC(SDLoc(N
), MatchingVectorType
, N0
.getOperand(0),
9961 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
9962 return DAG
.getAnyExtOrTrunc(VsetCC
, SDLoc(N
), VT
);
9965 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
9967 if (SDValue SCC
= SimplifySelectCC(
9968 DL
, N0
.getOperand(0), N0
.getOperand(1), DAG
.getConstant(1, DL
, VT
),
9969 DAG
.getConstant(0, DL
, VT
),
9970 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get(), true))
9977 SDValue
DAGCombiner::visitAssertExt(SDNode
*N
) {
9978 unsigned Opcode
= N
->getOpcode();
9979 SDValue N0
= N
->getOperand(0);
9980 SDValue N1
= N
->getOperand(1);
9981 EVT AssertVT
= cast
<VTSDNode
>(N1
)->getVT();
9983 // fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt)
9984 if (N0
.getOpcode() == Opcode
&&
9985 AssertVT
== cast
<VTSDNode
>(N0
.getOperand(1))->getVT())
9988 if (N0
.getOpcode() == ISD::TRUNCATE
&& N0
.hasOneUse() &&
9989 N0
.getOperand(0).getOpcode() == Opcode
) {
9990 // We have an assert, truncate, assert sandwich. Make one stronger assert
9991 // by asserting on the smallest asserted type to the larger source type.
9992 // This eliminates the later assert:
9993 // assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN
9994 // assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN
9995 SDValue BigA
= N0
.getOperand(0);
9996 EVT BigA_AssertVT
= cast
<VTSDNode
>(BigA
.getOperand(1))->getVT();
9997 assert(BigA_AssertVT
.bitsLE(N0
.getValueType()) &&
9998 "Asserting zero/sign-extended bits to a type larger than the "
9999 "truncated destination does not provide information");
10002 EVT MinAssertVT
= AssertVT
.bitsLT(BigA_AssertVT
) ? AssertVT
: BigA_AssertVT
;
10003 SDValue MinAssertVTVal
= DAG
.getValueType(MinAssertVT
);
10004 SDValue NewAssert
= DAG
.getNode(Opcode
, DL
, BigA
.getValueType(),
10005 BigA
.getOperand(0), MinAssertVTVal
);
10006 return DAG
.getNode(ISD::TRUNCATE
, DL
, N
->getValueType(0), NewAssert
);
10009 // If we have (AssertZext (truncate (AssertSext X, iX)), iY) and Y is smaller
10010 // than X. Just move the AssertZext in front of the truncate and drop the
10012 if (N0
.getOpcode() == ISD::TRUNCATE
&& N0
.hasOneUse() &&
10013 N0
.getOperand(0).getOpcode() == ISD::AssertSext
&&
10014 Opcode
== ISD::AssertZext
) {
10015 SDValue BigA
= N0
.getOperand(0);
10016 EVT BigA_AssertVT
= cast
<VTSDNode
>(BigA
.getOperand(1))->getVT();
10017 assert(BigA_AssertVT
.bitsLE(N0
.getValueType()) &&
10018 "Asserting zero/sign-extended bits to a type larger than the "
10019 "truncated destination does not provide information");
10021 if (AssertVT
.bitsLT(BigA_AssertVT
)) {
10023 SDValue NewAssert
= DAG
.getNode(Opcode
, DL
, BigA
.getValueType(),
10024 BigA
.getOperand(0), N1
);
10025 return DAG
.getNode(ISD::TRUNCATE
, DL
, N
->getValueType(0), NewAssert
);
10032 /// If the result of a wider load is shifted to right of N bits and then
10033 /// truncated to a narrower type and where N is a multiple of number of bits of
10034 /// the narrower type, transform it to a narrower load from address + N / num of
10035 /// bits of new type. Also narrow the load if the result is masked with an AND
10036 /// to effectively produce a smaller type. If the result is to be extended, also
10037 /// fold the extension to form a extending load.
10038 SDValue
DAGCombiner::ReduceLoadWidth(SDNode
*N
) {
10039 unsigned Opc
= N
->getOpcode();
10041 ISD::LoadExtType ExtType
= ISD::NON_EXTLOAD
;
10042 SDValue N0
= N
->getOperand(0);
10043 EVT VT
= N
->getValueType(0);
10046 // This transformation isn't valid for vector loads.
10050 unsigned ShAmt
= 0;
10051 bool HasShiftedOffset
= false;
10052 // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
10054 if (Opc
== ISD::SIGN_EXTEND_INREG
) {
10055 ExtType
= ISD::SEXTLOAD
;
10056 ExtVT
= cast
<VTSDNode
>(N
->getOperand(1))->getVT();
10057 } else if (Opc
== ISD::SRL
) {
10058 // Another special-case: SRL is basically zero-extending a narrower value,
10059 // or it maybe shifting a higher subword, half or byte into the lowest
10061 ExtType
= ISD::ZEXTLOAD
;
10062 N0
= SDValue(N
, 0);
10064 auto *LN0
= dyn_cast
<LoadSDNode
>(N0
.getOperand(0));
10065 auto *N01
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
10069 uint64_t ShiftAmt
= N01
->getZExtValue();
10070 uint64_t MemoryWidth
= LN0
->getMemoryVT().getSizeInBits();
10071 if (LN0
->getExtensionType() != ISD::SEXTLOAD
&& MemoryWidth
> ShiftAmt
)
10072 ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), MemoryWidth
- ShiftAmt
);
10074 ExtVT
= EVT::getIntegerVT(*DAG
.getContext(),
10075 VT
.getSizeInBits() - ShiftAmt
);
10076 } else if (Opc
== ISD::AND
) {
10077 // An AND with a constant mask is the same as a truncate + zero-extend.
10078 auto AndC
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
10082 const APInt
&Mask
= AndC
->getAPIntValue();
10083 unsigned ActiveBits
= 0;
10084 if (Mask
.isMask()) {
10085 ActiveBits
= Mask
.countTrailingOnes();
10086 } else if (Mask
.isShiftedMask()) {
10087 ShAmt
= Mask
.countTrailingZeros();
10088 APInt ShiftedMask
= Mask
.lshr(ShAmt
);
10089 ActiveBits
= ShiftedMask
.countTrailingOnes();
10090 HasShiftedOffset
= true;
10094 ExtType
= ISD::ZEXTLOAD
;
10095 ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), ActiveBits
);
10098 if (N0
.getOpcode() == ISD::SRL
&& N0
.hasOneUse()) {
10100 if (auto *ConstShift
= dyn_cast
<ConstantSDNode
>(SRL
.getOperand(1))) {
10101 ShAmt
= ConstShift
->getZExtValue();
10102 unsigned EVTBits
= ExtVT
.getSizeInBits();
10103 // Is the shift amount a multiple of size of VT?
10104 if ((ShAmt
& (EVTBits
-1)) == 0) {
10105 N0
= N0
.getOperand(0);
10106 // Is the load width a multiple of size of VT?
10107 if ((N0
.getValueSizeInBits() & (EVTBits
-1)) != 0)
10111 // At this point, we must have a load or else we can't do the transform.
10112 if (!isa
<LoadSDNode
>(N0
)) return SDValue();
10114 auto *LN0
= cast
<LoadSDNode
>(N0
);
10116 // Because a SRL must be assumed to *need* to zero-extend the high bits
10117 // (as opposed to anyext the high bits), we can't combine the zextload
10118 // lowering of SRL and an sextload.
10119 if (LN0
->getExtensionType() == ISD::SEXTLOAD
)
10122 // If the shift amount is larger than the input type then we're not
10123 // accessing any of the loaded bytes. If the load was a zextload/extload
10124 // then the result of the shift+trunc is zero/undef (handled elsewhere).
10125 if (ShAmt
>= LN0
->getMemoryVT().getSizeInBits())
10128 // If the SRL is only used by a masking AND, we may be able to adjust
10129 // the ExtVT to make the AND redundant.
10130 SDNode
*Mask
= *(SRL
->use_begin());
10131 if (Mask
->getOpcode() == ISD::AND
&&
10132 isa
<ConstantSDNode
>(Mask
->getOperand(1))) {
10133 const APInt
&ShiftMask
=
10134 cast
<ConstantSDNode
>(Mask
->getOperand(1))->getAPIntValue();
10135 if (ShiftMask
.isMask()) {
10136 EVT MaskedVT
= EVT::getIntegerVT(*DAG
.getContext(),
10137 ShiftMask
.countTrailingOnes());
10138 // If the mask is smaller, recompute the type.
10139 if ((ExtVT
.getSizeInBits() > MaskedVT
.getSizeInBits()) &&
10140 TLI
.isLoadExtLegal(ExtType
, N0
.getValueType(), MaskedVT
))
10147 // If the load is shifted left (and the result isn't shifted back right),
10148 // we can fold the truncate through the shift.
10149 unsigned ShLeftAmt
= 0;
10150 if (ShAmt
== 0 && N0
.getOpcode() == ISD::SHL
&& N0
.hasOneUse() &&
10151 ExtVT
== VT
&& TLI
.isNarrowingProfitable(N0
.getValueType(), VT
)) {
10152 if (ConstantSDNode
*N01
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
10153 ShLeftAmt
= N01
->getZExtValue();
10154 N0
= N0
.getOperand(0);
10158 // If we haven't found a load, we can't narrow it.
10159 if (!isa
<LoadSDNode
>(N0
))
10162 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
10163 if (!isLegalNarrowLdSt(LN0
, ExtType
, ExtVT
, ShAmt
))
10166 auto AdjustBigEndianShift
= [&](unsigned ShAmt
) {
10167 unsigned LVTStoreBits
= LN0
->getMemoryVT().getStoreSizeInBits();
10168 unsigned EVTStoreBits
= ExtVT
.getStoreSizeInBits();
10169 return LVTStoreBits
- EVTStoreBits
- ShAmt
;
10172 // For big endian targets, we need to adjust the offset to the pointer to
10173 // load the correct bytes.
10174 if (DAG
.getDataLayout().isBigEndian())
10175 ShAmt
= AdjustBigEndianShift(ShAmt
);
10177 EVT PtrType
= N0
.getOperand(1).getValueType();
10178 uint64_t PtrOff
= ShAmt
/ 8;
10179 unsigned NewAlign
= MinAlign(LN0
->getAlignment(), PtrOff
);
10181 // The original load itself didn't wrap, so an offset within it doesn't.
10183 Flags
.setNoUnsignedWrap(true);
10184 SDValue NewPtr
= DAG
.getNode(ISD::ADD
, DL
,
10185 PtrType
, LN0
->getBasePtr(),
10186 DAG
.getConstant(PtrOff
, DL
, PtrType
),
10188 AddToWorklist(NewPtr
.getNode());
10191 if (ExtType
== ISD::NON_EXTLOAD
)
10192 Load
= DAG
.getLoad(VT
, SDLoc(N0
), LN0
->getChain(), NewPtr
,
10193 LN0
->getPointerInfo().getWithOffset(PtrOff
), NewAlign
,
10194 LN0
->getMemOperand()->getFlags(), LN0
->getAAInfo());
10196 Load
= DAG
.getExtLoad(ExtType
, SDLoc(N0
), VT
, LN0
->getChain(), NewPtr
,
10197 LN0
->getPointerInfo().getWithOffset(PtrOff
), ExtVT
,
10198 NewAlign
, LN0
->getMemOperand()->getFlags(),
10201 // Replace the old load's chain with the new load's chain.
10202 WorklistRemover
DeadNodes(*this);
10203 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), Load
.getValue(1));
10205 // Shift the result left, if we've swallowed a left shift.
10206 SDValue Result
= Load
;
10207 if (ShLeftAmt
!= 0) {
10208 EVT ShImmTy
= getShiftAmountTy(Result
.getValueType());
10209 if (!isUIntN(ShImmTy
.getSizeInBits(), ShLeftAmt
))
10211 // If the shift amount is as large as the result size (but, presumably,
10212 // no larger than the source) then the useful bits of the result are
10213 // zero; we can't simply return the shortened shift, because the result
10214 // of that operation is undefined.
10216 if (ShLeftAmt
>= VT
.getSizeInBits())
10217 Result
= DAG
.getConstant(0, DL
, VT
);
10219 Result
= DAG
.getNode(ISD::SHL
, DL
, VT
,
10220 Result
, DAG
.getConstant(ShLeftAmt
, DL
, ShImmTy
));
10223 if (HasShiftedOffset
) {
10224 // Recalculate the shift amount after it has been altered to calculate
10226 if (DAG
.getDataLayout().isBigEndian())
10227 ShAmt
= AdjustBigEndianShift(ShAmt
);
10229 // We're using a shifted mask, so the load now has an offset. This means
10230 // that data has been loaded into the lower bytes than it would have been
10231 // before, so we need to shl the loaded data into the correct position in the
10233 SDValue ShiftC
= DAG
.getConstant(ShAmt
, DL
, VT
);
10234 Result
= DAG
.getNode(ISD::SHL
, DL
, VT
, Result
, ShiftC
);
10235 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
);
10238 // Return the new loaded value.
10242 SDValue
DAGCombiner::visitSIGN_EXTEND_INREG(SDNode
*N
) {
10243 SDValue N0
= N
->getOperand(0);
10244 SDValue N1
= N
->getOperand(1);
10245 EVT VT
= N
->getValueType(0);
10246 EVT EVT
= cast
<VTSDNode
>(N1
)->getVT();
10247 unsigned VTBits
= VT
.getScalarSizeInBits();
10248 unsigned EVTBits
= EVT
.getScalarSizeInBits();
10251 return DAG
.getUNDEF(VT
);
10253 // fold (sext_in_reg c1) -> c1
10254 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
10255 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, SDLoc(N
), VT
, N0
, N1
);
10257 // If the input is already sign extended, just drop the extension.
10258 if (DAG
.ComputeNumSignBits(N0
) >= VTBits
-EVTBits
+1)
10261 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
10262 if (N0
.getOpcode() == ISD::SIGN_EXTEND_INREG
&&
10263 EVT
.bitsLT(cast
<VTSDNode
>(N0
.getOperand(1))->getVT()))
10264 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, SDLoc(N
), VT
,
10265 N0
.getOperand(0), N1
);
10267 // fold (sext_in_reg (sext x)) -> (sext x)
10268 // fold (sext_in_reg (aext x)) -> (sext x)
10269 // if x is small enough or if we know that x has more than 1 sign bit and the
10270 // sign_extend_inreg is extending from one of them.
10271 if (N0
.getOpcode() == ISD::SIGN_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
) {
10272 SDValue N00
= N0
.getOperand(0);
10273 unsigned N00Bits
= N00
.getScalarValueSizeInBits();
10274 if ((N00Bits
<= EVTBits
||
10275 (N00Bits
- DAG
.ComputeNumSignBits(N00
)) < EVTBits
) &&
10276 (!LegalOperations
|| TLI
.isOperationLegal(ISD::SIGN_EXTEND
, VT
)))
10277 return DAG
.getNode(ISD::SIGN_EXTEND
, SDLoc(N
), VT
, N00
);
10280 // fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x)
10281 if ((N0
.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG
||
10282 N0
.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG
||
10283 N0
.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG
) &&
10284 N0
.getOperand(0).getScalarValueSizeInBits() == EVTBits
) {
10285 if (!LegalOperations
||
10286 TLI
.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG
, VT
))
10287 return DAG
.getNode(ISD::SIGN_EXTEND_VECTOR_INREG
, SDLoc(N
), VT
,
10291 // fold (sext_in_reg (zext x)) -> (sext x)
10292 // iff we are extending the source sign bit.
10293 if (N0
.getOpcode() == ISD::ZERO_EXTEND
) {
10294 SDValue N00
= N0
.getOperand(0);
10295 if (N00
.getScalarValueSizeInBits() == EVTBits
&&
10296 (!LegalOperations
|| TLI
.isOperationLegal(ISD::SIGN_EXTEND
, VT
)))
10297 return DAG
.getNode(ISD::SIGN_EXTEND
, SDLoc(N
), VT
, N00
, N1
);
10300 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
10301 if (DAG
.MaskedValueIsZero(N0
, APInt::getOneBitSet(VTBits
, EVTBits
- 1)))
10302 return DAG
.getZeroExtendInReg(N0
, SDLoc(N
), EVT
.getScalarType());
10304 // fold operands of sext_in_reg based on knowledge that the top bits are not
10306 if (SimplifyDemandedBits(SDValue(N
, 0)))
10307 return SDValue(N
, 0);
10309 // fold (sext_in_reg (load x)) -> (smaller sextload x)
10310 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
10311 if (SDValue NarrowLoad
= ReduceLoadWidth(N
))
10314 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
10315 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
10316 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
10317 if (N0
.getOpcode() == ISD::SRL
) {
10318 if (auto *ShAmt
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1)))
10319 if (ShAmt
->getAPIntValue().ule(VTBits
- EVTBits
)) {
10320 // We can turn this into an SRA iff the input to the SRL is already sign
10321 // extended enough.
10322 unsigned InSignBits
= DAG
.ComputeNumSignBits(N0
.getOperand(0));
10323 if (((VTBits
- EVTBits
) - ShAmt
->getZExtValue()) < InSignBits
)
10324 return DAG
.getNode(ISD::SRA
, SDLoc(N
), VT
, N0
.getOperand(0),
10329 // fold (sext_inreg (extload x)) -> (sextload x)
10330 // If sextload is not supported by target, we can only do the combine when
10331 // load has one use. Doing otherwise can block folding the extload with other
10332 // extends that the target does support.
10333 if (ISD::isEXTLoad(N0
.getNode()) &&
10334 ISD::isUNINDEXEDLoad(N0
.getNode()) &&
10335 EVT
== cast
<LoadSDNode
>(N0
)->getMemoryVT() &&
10336 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile() &&
10338 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, VT
, EVT
))) {
10339 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
10340 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, SDLoc(N
), VT
,
10342 LN0
->getBasePtr(), EVT
,
10343 LN0
->getMemOperand());
10344 CombineTo(N
, ExtLoad
);
10345 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
10346 AddToWorklist(ExtLoad
.getNode());
10347 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
10349 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
10350 if (ISD::isZEXTLoad(N0
.getNode()) && ISD::isUNINDEXEDLoad(N0
.getNode()) &&
10352 EVT
== cast
<LoadSDNode
>(N0
)->getMemoryVT() &&
10353 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
10354 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, VT
, EVT
))) {
10355 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
10356 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, SDLoc(N
), VT
,
10358 LN0
->getBasePtr(), EVT
,
10359 LN0
->getMemOperand());
10360 CombineTo(N
, ExtLoad
);
10361 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
10362 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
10365 // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
10366 if (EVTBits
<= 16 && N0
.getOpcode() == ISD::OR
) {
10367 if (SDValue BSwap
= MatchBSwapHWordLow(N0
.getNode(), N0
.getOperand(0),
10368 N0
.getOperand(1), false))
10369 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, SDLoc(N
), VT
,
10376 SDValue
DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode
*N
) {
10377 SDValue N0
= N
->getOperand(0);
10378 EVT VT
= N
->getValueType(0);
10381 return DAG
.getUNDEF(VT
);
10383 if (SDValue Res
= tryToFoldExtendOfConstant(N
, TLI
, DAG
, LegalTypes
))
10386 if (SimplifyDemandedVectorElts(SDValue(N
, 0)))
10387 return SDValue(N
, 0);
10392 SDValue
DAGCombiner::visitZERO_EXTEND_VECTOR_INREG(SDNode
*N
) {
10393 SDValue N0
= N
->getOperand(0);
10394 EVT VT
= N
->getValueType(0);
10397 return DAG
.getUNDEF(VT
);
10399 if (SDValue Res
= tryToFoldExtendOfConstant(N
, TLI
, DAG
, LegalTypes
))
10402 if (SimplifyDemandedVectorElts(SDValue(N
, 0)))
10403 return SDValue(N
, 0);
10408 SDValue
DAGCombiner::visitTRUNCATE(SDNode
*N
) {
10409 SDValue N0
= N
->getOperand(0);
10410 EVT VT
= N
->getValueType(0);
10411 EVT SrcVT
= N0
.getValueType();
10412 bool isLE
= DAG
.getDataLayout().isLittleEndian();
10418 // fold (truncate (truncate x)) -> (truncate x)
10419 if (N0
.getOpcode() == ISD::TRUNCATE
)
10420 return DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
, N0
.getOperand(0));
10422 // fold (truncate c1) -> c1
10423 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
)) {
10424 SDValue C
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
, N0
);
10425 if (C
.getNode() != N
)
10429 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
10430 if (N0
.getOpcode() == ISD::ZERO_EXTEND
||
10431 N0
.getOpcode() == ISD::SIGN_EXTEND
||
10432 N0
.getOpcode() == ISD::ANY_EXTEND
) {
10433 // if the source is smaller than the dest, we still need an extend.
10434 if (N0
.getOperand(0).getValueType().bitsLT(VT
))
10435 return DAG
.getNode(N0
.getOpcode(), SDLoc(N
), VT
, N0
.getOperand(0));
10436 // if the source is larger than the dest, than we just need the truncate.
10437 if (N0
.getOperand(0).getValueType().bitsGT(VT
))
10438 return DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
, N0
.getOperand(0));
10439 // if the source and dest are the same type, we can drop both the extend
10440 // and the truncate.
10441 return N0
.getOperand(0);
10444 // If this is anyext(trunc), don't fold it, allow ourselves to be folded.
10445 if (N
->hasOneUse() && (N
->use_begin()->getOpcode() == ISD::ANY_EXTEND
))
10448 // Fold extract-and-trunc into a narrow extract. For example:
10449 // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
10450 // i32 y = TRUNCATE(i64 x)
10452 // v16i8 b = BITCAST (v2i64 val)
10453 // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
10455 // Note: We only run this optimization after type legalization (which often
10456 // creates this pattern) and before operation legalization after which
10457 // we need to be more careful about the vector instructions that we generate.
10458 if (N0
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
10459 LegalTypes
&& !LegalOperations
&& N0
->hasOneUse() && VT
!= MVT::i1
) {
10460 EVT VecTy
= N0
.getOperand(0).getValueType();
10461 EVT ExTy
= N0
.getValueType();
10462 EVT TrTy
= N
->getValueType(0);
10464 unsigned NumElem
= VecTy
.getVectorNumElements();
10465 unsigned SizeRatio
= ExTy
.getSizeInBits()/TrTy
.getSizeInBits();
10467 EVT NVT
= EVT::getVectorVT(*DAG
.getContext(), TrTy
, SizeRatio
* NumElem
);
10468 assert(NVT
.getSizeInBits() == VecTy
.getSizeInBits() && "Invalid Size");
10470 SDValue EltNo
= N0
->getOperand(1);
10471 if (isa
<ConstantSDNode
>(EltNo
) && isTypeLegal(NVT
)) {
10472 int Elt
= cast
<ConstantSDNode
>(EltNo
)->getZExtValue();
10473 EVT IndexTy
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
10474 int Index
= isLE
? (Elt
*SizeRatio
) : (Elt
*SizeRatio
+ (SizeRatio
-1));
10477 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, TrTy
,
10478 DAG
.getBitcast(NVT
, N0
.getOperand(0)),
10479 DAG
.getConstant(Index
, DL
, IndexTy
));
10483 // trunc (select c, a, b) -> select c, (trunc a), (trunc b)
10484 if (N0
.getOpcode() == ISD::SELECT
&& N0
.hasOneUse()) {
10485 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::SELECT
, SrcVT
)) &&
10486 TLI
.isTruncateFree(SrcVT
, VT
)) {
10488 SDValue Cond
= N0
.getOperand(0);
10489 SDValue TruncOp0
= DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, N0
.getOperand(1));
10490 SDValue TruncOp1
= DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, N0
.getOperand(2));
10491 return DAG
.getNode(ISD::SELECT
, SDLoc(N
), VT
, Cond
, TruncOp0
, TruncOp1
);
10495 // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits()
10496 if (N0
.getOpcode() == ISD::SHL
&& N0
.hasOneUse() &&
10497 (!LegalOperations
|| TLI
.isOperationLegal(ISD::SHL
, VT
)) &&
10498 TLI
.isTypeDesirableForOp(ISD::SHL
, VT
)) {
10499 SDValue Amt
= N0
.getOperand(1);
10500 KnownBits Known
= DAG
.computeKnownBits(Amt
);
10501 unsigned Size
= VT
.getScalarSizeInBits();
10502 if (Known
.getBitWidth() - Known
.countMinLeadingZeros() <= Log2_32(Size
)) {
10504 EVT AmtVT
= TLI
.getShiftAmountTy(VT
, DAG
.getDataLayout());
10506 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, N0
.getOperand(0));
10507 if (AmtVT
!= Amt
.getValueType()) {
10508 Amt
= DAG
.getZExtOrTrunc(Amt
, SL
, AmtVT
);
10509 AddToWorklist(Amt
.getNode());
10511 return DAG
.getNode(ISD::SHL
, SL
, VT
, Trunc
, Amt
);
10515 // Attempt to pre-truncate BUILD_VECTOR sources.
10516 if (N0
.getOpcode() == ISD::BUILD_VECTOR
&& !LegalOperations
&&
10517 TLI
.isTruncateFree(SrcVT
.getScalarType(), VT
.getScalarType())) {
10519 EVT SVT
= VT
.getScalarType();
10520 SmallVector
<SDValue
, 8> TruncOps
;
10521 for (const SDValue
&Op
: N0
->op_values()) {
10522 SDValue TruncOp
= DAG
.getNode(ISD::TRUNCATE
, DL
, SVT
, Op
);
10523 TruncOps
.push_back(TruncOp
);
10525 return DAG
.getBuildVector(VT
, DL
, TruncOps
);
10528 // Fold a series of buildvector, bitcast, and truncate if possible.
10529 // For example fold
10530 // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
10531 // (2xi32 (buildvector x, y)).
10532 if (Level
== AfterLegalizeVectorOps
&& VT
.isVector() &&
10533 N0
.getOpcode() == ISD::BITCAST
&& N0
.hasOneUse() &&
10534 N0
.getOperand(0).getOpcode() == ISD::BUILD_VECTOR
&&
10535 N0
.getOperand(0).hasOneUse()) {
10536 SDValue BuildVect
= N0
.getOperand(0);
10537 EVT BuildVectEltTy
= BuildVect
.getValueType().getVectorElementType();
10538 EVT TruncVecEltTy
= VT
.getVectorElementType();
10540 // Check that the element types match.
10541 if (BuildVectEltTy
== TruncVecEltTy
) {
10542 // Now we only need to compute the offset of the truncated elements.
10543 unsigned BuildVecNumElts
= BuildVect
.getNumOperands();
10544 unsigned TruncVecNumElts
= VT
.getVectorNumElements();
10545 unsigned TruncEltOffset
= BuildVecNumElts
/ TruncVecNumElts
;
10547 assert((BuildVecNumElts
% TruncVecNumElts
) == 0 &&
10548 "Invalid number of elements");
10550 SmallVector
<SDValue
, 8> Opnds
;
10551 for (unsigned i
= 0, e
= BuildVecNumElts
; i
!= e
; i
+= TruncEltOffset
)
10552 Opnds
.push_back(BuildVect
.getOperand(i
));
10554 return DAG
.getBuildVector(VT
, SDLoc(N
), Opnds
);
10558 // See if we can simplify the input to this truncate through knowledge that
10559 // only the low bits are being used.
10560 // For example "trunc (or (shl x, 8), y)" // -> trunc y
10561 // Currently we only perform this optimization on scalars because vectors
10562 // may have different active low bits.
10563 if (!VT
.isVector()) {
10565 APInt::getLowBitsSet(N0
.getValueSizeInBits(), VT
.getSizeInBits());
10566 if (SDValue Shorter
= DAG
.GetDemandedBits(N0
, Mask
))
10567 return DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
, Shorter
);
10570 // fold (truncate (load x)) -> (smaller load x)
10571 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
10572 if (!LegalTypes
|| TLI
.isTypeDesirableForOp(N0
.getOpcode(), VT
)) {
10573 if (SDValue Reduced
= ReduceLoadWidth(N
))
10576 // Handle the case where the load remains an extending load even
10577 // after truncation.
10578 if (N0
.hasOneUse() && ISD::isUNINDEXEDLoad(N0
.getNode())) {
10579 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
10580 if (!LN0
->isVolatile() &&
10581 LN0
->getMemoryVT().getStoreSizeInBits() < VT
.getSizeInBits()) {
10582 SDValue NewLoad
= DAG
.getExtLoad(LN0
->getExtensionType(), SDLoc(LN0
),
10583 VT
, LN0
->getChain(), LN0
->getBasePtr(),
10584 LN0
->getMemoryVT(),
10585 LN0
->getMemOperand());
10586 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), NewLoad
.getValue(1));
10592 // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
10593 // where ... are all 'undef'.
10594 if (N0
.getOpcode() == ISD::CONCAT_VECTORS
&& !LegalTypes
) {
10595 SmallVector
<EVT
, 8> VTs
;
10598 unsigned NumDefs
= 0;
10600 for (unsigned i
= 0, e
= N0
.getNumOperands(); i
!= e
; ++i
) {
10601 SDValue X
= N0
.getOperand(i
);
10602 if (!X
.isUndef()) {
10607 // Stop if more than one members are non-undef.
10610 VTs
.push_back(EVT::getVectorVT(*DAG
.getContext(),
10611 VT
.getVectorElementType(),
10612 X
.getValueType().getVectorNumElements()));
10616 return DAG
.getUNDEF(VT
);
10618 if (NumDefs
== 1) {
10619 assert(V
.getNode() && "The single defined operand is empty!");
10620 SmallVector
<SDValue
, 8> Opnds
;
10621 for (unsigned i
= 0, e
= VTs
.size(); i
!= e
; ++i
) {
10623 Opnds
.push_back(DAG
.getUNDEF(VTs
[i
]));
10626 SDValue NV
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(V
), VTs
[i
], V
);
10627 AddToWorklist(NV
.getNode());
10628 Opnds
.push_back(NV
);
10630 return DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
, Opnds
);
10634 // Fold truncate of a bitcast of a vector to an extract of the low vector
10637 // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx
10638 if (N0
.getOpcode() == ISD::BITCAST
&& !VT
.isVector()) {
10639 SDValue VecSrc
= N0
.getOperand(0);
10640 EVT SrcVT
= VecSrc
.getValueType();
10641 if (SrcVT
.isVector() && SrcVT
.getScalarType() == VT
&&
10642 (!LegalOperations
||
10643 TLI
.isOperationLegal(ISD::EXTRACT_VECTOR_ELT
, SrcVT
))) {
10646 EVT IdxVT
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
10647 unsigned Idx
= isLE
? 0 : SrcVT
.getVectorNumElements() - 1;
10648 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, VT
,
10649 VecSrc
, DAG
.getConstant(Idx
, SL
, IdxVT
));
10653 // Simplify the operands using demanded-bits information.
10654 if (!VT
.isVector() &&
10655 SimplifyDemandedBits(SDValue(N
, 0)))
10656 return SDValue(N
, 0);
10658 // (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry)
10659 // (trunc addcarry(X, Y, Carry)) -> (addcarry trunc(X), trunc(Y), Carry)
10660 // When the adde's carry is not used.
10661 if ((N0
.getOpcode() == ISD::ADDE
|| N0
.getOpcode() == ISD::ADDCARRY
) &&
10662 N0
.hasOneUse() && !N0
.getNode()->hasAnyUseOfValue(1) &&
10663 // We only do for addcarry before legalize operation
10664 ((!LegalOperations
&& N0
.getOpcode() == ISD::ADDCARRY
) ||
10665 TLI
.isOperationLegal(N0
.getOpcode(), VT
))) {
10667 auto X
= DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, N0
.getOperand(0));
10668 auto Y
= DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, N0
.getOperand(1));
10669 auto VTs
= DAG
.getVTList(VT
, N0
->getValueType(1));
10670 return DAG
.getNode(N0
.getOpcode(), SL
, VTs
, X
, Y
, N0
.getOperand(2));
10673 // fold (truncate (extract_subvector(ext x))) ->
10674 // (extract_subvector x)
10675 // TODO: This can be generalized to cover cases where the truncate and extract
10676 // do not fully cancel each other out.
10677 if (!LegalTypes
&& N0
.getOpcode() == ISD::EXTRACT_SUBVECTOR
) {
10678 SDValue N00
= N0
.getOperand(0);
10679 if (N00
.getOpcode() == ISD::SIGN_EXTEND
||
10680 N00
.getOpcode() == ISD::ZERO_EXTEND
||
10681 N00
.getOpcode() == ISD::ANY_EXTEND
) {
10682 if (N00
.getOperand(0)->getValueType(0).getVectorElementType() ==
10683 VT
.getVectorElementType())
10684 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, SDLoc(N0
->getOperand(0)), VT
,
10685 N00
.getOperand(0), N0
.getOperand(1));
10689 if (SDValue NewVSel
= matchVSelectOpSizesWithSetCC(N
))
10692 // Narrow a suitable binary operation with a non-opaque constant operand by
10693 // moving it ahead of the truncate. This is limited to pre-legalization
10694 // because targets may prefer a wider type during later combines and invert
10696 switch (N0
.getOpcode()) {
10703 if (!LegalOperations
&& N0
.hasOneUse() &&
10704 (isConstantOrConstantVector(N0
.getOperand(0), true) ||
10705 isConstantOrConstantVector(N0
.getOperand(1), true))) {
10706 // TODO: We already restricted this to pre-legalization, but for vectors
10707 // we are extra cautious to not create an unsupported operation.
10708 // Target-specific changes are likely needed to avoid regressions here.
10709 if (VT
.isScalarInteger() || TLI
.isOperationLegal(N0
.getOpcode(), VT
)) {
10711 SDValue NarrowL
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, N0
.getOperand(0));
10712 SDValue NarrowR
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, N0
.getOperand(1));
10713 return DAG
.getNode(N0
.getOpcode(), DL
, VT
, NarrowL
, NarrowR
);
10721 static SDNode
*getBuildPairElt(SDNode
*N
, unsigned i
) {
10722 SDValue Elt
= N
->getOperand(i
);
10723 if (Elt
.getOpcode() != ISD::MERGE_VALUES
)
10724 return Elt
.getNode();
10725 return Elt
.getOperand(Elt
.getResNo()).getNode();
10728 /// build_pair (load, load) -> load
10729 /// if load locations are consecutive.
10730 SDValue
DAGCombiner::CombineConsecutiveLoads(SDNode
*N
, EVT VT
) {
10731 assert(N
->getOpcode() == ISD::BUILD_PAIR
);
10733 LoadSDNode
*LD1
= dyn_cast
<LoadSDNode
>(getBuildPairElt(N
, 0));
10734 LoadSDNode
*LD2
= dyn_cast
<LoadSDNode
>(getBuildPairElt(N
, 1));
10736 // A BUILD_PAIR is always having the least significant part in elt 0 and the
10737 // most significant part in elt 1. So when combining into one large load, we
10738 // need to consider the endianness.
10739 if (DAG
.getDataLayout().isBigEndian())
10740 std::swap(LD1
, LD2
);
10742 if (!LD1
|| !LD2
|| !ISD::isNON_EXTLoad(LD1
) || !LD1
->hasOneUse() ||
10743 LD1
->getAddressSpace() != LD2
->getAddressSpace())
10745 EVT LD1VT
= LD1
->getValueType(0);
10746 unsigned LD1Bytes
= LD1VT
.getStoreSize();
10747 if (ISD::isNON_EXTLoad(LD2
) && LD2
->hasOneUse() &&
10748 DAG
.areNonVolatileConsecutiveLoads(LD2
, LD1
, LD1Bytes
, 1)) {
10749 unsigned Align
= LD1
->getAlignment();
10750 unsigned NewAlign
= DAG
.getDataLayout().getABITypeAlignment(
10751 VT
.getTypeForEVT(*DAG
.getContext()));
10753 if (NewAlign
<= Align
&&
10754 (!LegalOperations
|| TLI
.isOperationLegal(ISD::LOAD
, VT
)))
10755 return DAG
.getLoad(VT
, SDLoc(N
), LD1
->getChain(), LD1
->getBasePtr(),
10756 LD1
->getPointerInfo(), Align
);
10762 static unsigned getPPCf128HiElementSelector(const SelectionDAG
&DAG
) {
10763 // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi
10764 // and Lo parts; on big-endian machines it doesn't.
10765 return DAG
.getDataLayout().isBigEndian() ? 1 : 0;
10768 static SDValue
foldBitcastedFPLogic(SDNode
*N
, SelectionDAG
&DAG
,
10769 const TargetLowering
&TLI
) {
10770 // If this is not a bitcast to an FP type or if the target doesn't have
10771 // IEEE754-compliant FP logic, we're done.
10772 EVT VT
= N
->getValueType(0);
10773 if (!VT
.isFloatingPoint() || !TLI
.hasBitPreservingFPLogic(VT
))
10776 // TODO: Handle cases where the integer constant is a different scalar
10777 // bitwidth to the FP.
10778 SDValue N0
= N
->getOperand(0);
10779 EVT SourceVT
= N0
.getValueType();
10780 if (VT
.getScalarSizeInBits() != SourceVT
.getScalarSizeInBits())
10785 switch (N0
.getOpcode()) {
10787 FPOpcode
= ISD::FABS
;
10788 SignMask
= ~APInt::getSignMask(SourceVT
.getScalarSizeInBits());
10791 FPOpcode
= ISD::FNEG
;
10792 SignMask
= APInt::getSignMask(SourceVT
.getScalarSizeInBits());
10795 FPOpcode
= ISD::FABS
;
10796 SignMask
= APInt::getSignMask(SourceVT
.getScalarSizeInBits());
10802 // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X
10803 // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X
10804 // Fold (bitcast int (or (bitcast fp X to int), 0x8000...) to fp) ->
10806 SDValue LogicOp0
= N0
.getOperand(0);
10807 ConstantSDNode
*LogicOp1
= isConstOrConstSplat(N0
.getOperand(1), true);
10808 if (LogicOp1
&& LogicOp1
->getAPIntValue() == SignMask
&&
10809 LogicOp0
.getOpcode() == ISD::BITCAST
&&
10810 LogicOp0
.getOperand(0).getValueType() == VT
) {
10811 SDValue FPOp
= DAG
.getNode(FPOpcode
, SDLoc(N
), VT
, LogicOp0
.getOperand(0));
10812 NumFPLogicOpsConv
++;
10813 if (N0
.getOpcode() == ISD::OR
)
10814 return DAG
.getNode(ISD::FNEG
, SDLoc(N
), VT
, FPOp
);
10821 SDValue
DAGCombiner::visitBITCAST(SDNode
*N
) {
10822 SDValue N0
= N
->getOperand(0);
10823 EVT VT
= N
->getValueType(0);
10826 return DAG
.getUNDEF(VT
);
10828 // If the input is a BUILD_VECTOR with all constant elements, fold this now.
10829 // Only do this before legalize types, unless both types are integer and the
10830 // scalar type is legal. Only do this before legalize ops, since the target
10831 // maybe depending on the bitcast.
10832 // First check to see if this is all constant.
10833 // TODO: Support FP bitcasts after legalize types.
10834 if (VT
.isVector() &&
10836 (!LegalOperations
&& VT
.isInteger() && N0
.getValueType().isInteger() &&
10837 TLI
.isTypeLegal(VT
.getVectorElementType()))) &&
10838 N0
.getOpcode() == ISD::BUILD_VECTOR
&& N0
.getNode()->hasOneUse() &&
10839 cast
<BuildVectorSDNode
>(N0
)->isConstant())
10840 return ConstantFoldBITCASTofBUILD_VECTOR(N0
.getNode(),
10841 VT
.getVectorElementType());
10843 // If the input is a constant, let getNode fold it.
10844 if (isa
<ConstantSDNode
>(N0
) || isa
<ConstantFPSDNode
>(N0
)) {
10845 // If we can't allow illegal operations, we need to check that this is just
10846 // a fp -> int or int -> conversion and that the resulting operation will
10848 if (!LegalOperations
||
10849 (isa
<ConstantSDNode
>(N0
) && VT
.isFloatingPoint() && !VT
.isVector() &&
10850 TLI
.isOperationLegal(ISD::ConstantFP
, VT
)) ||
10851 (isa
<ConstantFPSDNode
>(N0
) && VT
.isInteger() && !VT
.isVector() &&
10852 TLI
.isOperationLegal(ISD::Constant
, VT
))) {
10853 SDValue C
= DAG
.getBitcast(VT
, N0
);
10854 if (C
.getNode() != N
)
10859 // (conv (conv x, t1), t2) -> (conv x, t2)
10860 if (N0
.getOpcode() == ISD::BITCAST
)
10861 return DAG
.getBitcast(VT
, N0
.getOperand(0));
10863 // fold (conv (load x)) -> (load (conv*)x)
10864 // If the resultant load doesn't need a higher alignment than the original!
10865 if (ISD::isNormalLoad(N0
.getNode()) && N0
.hasOneUse() &&
10866 // Do not remove the cast if the types differ in endian layout.
10867 TLI
.hasBigEndianPartOrdering(N0
.getValueType(), DAG
.getDataLayout()) ==
10868 TLI
.hasBigEndianPartOrdering(VT
, DAG
.getDataLayout()) &&
10869 // If the load is volatile, we only want to change the load type if the
10870 // resulting load is legal. Otherwise we might increase the number of
10871 // memory accesses. We don't care if the original type was legal or not
10872 // as we assume software couldn't rely on the number of accesses of an
10874 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
10875 TLI
.isOperationLegal(ISD::LOAD
, VT
))) {
10876 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
10878 if (TLI
.isLoadBitCastBeneficial(N0
.getValueType(), VT
, DAG
,
10879 *LN0
->getMemOperand())) {
10881 DAG
.getLoad(VT
, SDLoc(N
), LN0
->getChain(), LN0
->getBasePtr(),
10882 LN0
->getPointerInfo(), LN0
->getAlignment(),
10883 LN0
->getMemOperand()->getFlags(), LN0
->getAAInfo());
10884 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), Load
.getValue(1));
10889 if (SDValue V
= foldBitcastedFPLogic(N
, DAG
, TLI
))
10892 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
10893 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
10896 // fold (bitcast (fneg x)) ->
10897 // flipbit = signbit
10898 // (xor (bitcast x) (build_pair flipbit, flipbit))
10900 // fold (bitcast (fabs x)) ->
10901 // flipbit = (and (extract_element (bitcast x), 0), signbit)
10902 // (xor (bitcast x) (build_pair flipbit, flipbit))
10903 // This often reduces constant pool loads.
10904 if (((N0
.getOpcode() == ISD::FNEG
&& !TLI
.isFNegFree(N0
.getValueType())) ||
10905 (N0
.getOpcode() == ISD::FABS
&& !TLI
.isFAbsFree(N0
.getValueType()))) &&
10906 N0
.getNode()->hasOneUse() && VT
.isInteger() &&
10907 !VT
.isVector() && !N0
.getValueType().isVector()) {
10908 SDValue NewConv
= DAG
.getBitcast(VT
, N0
.getOperand(0));
10909 AddToWorklist(NewConv
.getNode());
10912 if (N0
.getValueType() == MVT::ppcf128
&& !LegalTypes
) {
10913 assert(VT
.getSizeInBits() == 128);
10914 SDValue SignBit
= DAG
.getConstant(
10915 APInt::getSignMask(VT
.getSizeInBits() / 2), SDLoc(N0
), MVT::i64
);
10917 if (N0
.getOpcode() == ISD::FNEG
) {
10919 AddToWorklist(FlipBit
.getNode());
10921 assert(N0
.getOpcode() == ISD::FABS
);
10923 DAG
.getNode(ISD::EXTRACT_ELEMENT
, SDLoc(NewConv
), MVT::i64
, NewConv
,
10924 DAG
.getIntPtrConstant(getPPCf128HiElementSelector(DAG
),
10926 AddToWorklist(Hi
.getNode());
10927 FlipBit
= DAG
.getNode(ISD::AND
, SDLoc(N0
), MVT::i64
, Hi
, SignBit
);
10928 AddToWorklist(FlipBit
.getNode());
10931 DAG
.getNode(ISD::BUILD_PAIR
, SDLoc(N0
), VT
, FlipBit
, FlipBit
);
10932 AddToWorklist(FlipBits
.getNode());
10933 return DAG
.getNode(ISD::XOR
, DL
, VT
, NewConv
, FlipBits
);
10935 APInt SignBit
= APInt::getSignMask(VT
.getSizeInBits());
10936 if (N0
.getOpcode() == ISD::FNEG
)
10937 return DAG
.getNode(ISD::XOR
, DL
, VT
,
10938 NewConv
, DAG
.getConstant(SignBit
, DL
, VT
));
10939 assert(N0
.getOpcode() == ISD::FABS
);
10940 return DAG
.getNode(ISD::AND
, DL
, VT
,
10941 NewConv
, DAG
.getConstant(~SignBit
, DL
, VT
));
10944 // fold (bitconvert (fcopysign cst, x)) ->
10945 // (or (and (bitconvert x), sign), (and cst, (not sign)))
10946 // Note that we don't handle (copysign x, cst) because this can always be
10947 // folded to an fneg or fabs.
10950 // fold (bitcast (fcopysign cst, x)) ->
10951 // flipbit = (and (extract_element
10952 // (xor (bitcast cst), (bitcast x)), 0),
10954 // (xor (bitcast cst) (build_pair flipbit, flipbit))
10955 if (N0
.getOpcode() == ISD::FCOPYSIGN
&& N0
.getNode()->hasOneUse() &&
10956 isa
<ConstantFPSDNode
>(N0
.getOperand(0)) &&
10957 VT
.isInteger() && !VT
.isVector()) {
10958 unsigned OrigXWidth
= N0
.getOperand(1).getValueSizeInBits();
10959 EVT IntXVT
= EVT::getIntegerVT(*DAG
.getContext(), OrigXWidth
);
10960 if (isTypeLegal(IntXVT
)) {
10961 SDValue X
= DAG
.getBitcast(IntXVT
, N0
.getOperand(1));
10962 AddToWorklist(X
.getNode());
10964 // If X has a different width than the result/lhs, sext it or truncate it.
10965 unsigned VTWidth
= VT
.getSizeInBits();
10966 if (OrigXWidth
< VTWidth
) {
10967 X
= DAG
.getNode(ISD::SIGN_EXTEND
, SDLoc(N
), VT
, X
);
10968 AddToWorklist(X
.getNode());
10969 } else if (OrigXWidth
> VTWidth
) {
10970 // To get the sign bit in the right place, we have to shift it right
10971 // before truncating.
10973 X
= DAG
.getNode(ISD::SRL
, DL
,
10974 X
.getValueType(), X
,
10975 DAG
.getConstant(OrigXWidth
-VTWidth
, DL
,
10976 X
.getValueType()));
10977 AddToWorklist(X
.getNode());
10978 X
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(X
), VT
, X
);
10979 AddToWorklist(X
.getNode());
10982 if (N0
.getValueType() == MVT::ppcf128
&& !LegalTypes
) {
10983 APInt SignBit
= APInt::getSignMask(VT
.getSizeInBits() / 2);
10984 SDValue Cst
= DAG
.getBitcast(VT
, N0
.getOperand(0));
10985 AddToWorklist(Cst
.getNode());
10986 SDValue X
= DAG
.getBitcast(VT
, N0
.getOperand(1));
10987 AddToWorklist(X
.getNode());
10988 SDValue XorResult
= DAG
.getNode(ISD::XOR
, SDLoc(N0
), VT
, Cst
, X
);
10989 AddToWorklist(XorResult
.getNode());
10990 SDValue XorResult64
= DAG
.getNode(
10991 ISD::EXTRACT_ELEMENT
, SDLoc(XorResult
), MVT::i64
, XorResult
,
10992 DAG
.getIntPtrConstant(getPPCf128HiElementSelector(DAG
),
10993 SDLoc(XorResult
)));
10994 AddToWorklist(XorResult64
.getNode());
10996 DAG
.getNode(ISD::AND
, SDLoc(XorResult64
), MVT::i64
, XorResult64
,
10997 DAG
.getConstant(SignBit
, SDLoc(XorResult64
), MVT::i64
));
10998 AddToWorklist(FlipBit
.getNode());
11000 DAG
.getNode(ISD::BUILD_PAIR
, SDLoc(N0
), VT
, FlipBit
, FlipBit
);
11001 AddToWorklist(FlipBits
.getNode());
11002 return DAG
.getNode(ISD::XOR
, SDLoc(N
), VT
, Cst
, FlipBits
);
11004 APInt SignBit
= APInt::getSignMask(VT
.getSizeInBits());
11005 X
= DAG
.getNode(ISD::AND
, SDLoc(X
), VT
,
11006 X
, DAG
.getConstant(SignBit
, SDLoc(X
), VT
));
11007 AddToWorklist(X
.getNode());
11009 SDValue Cst
= DAG
.getBitcast(VT
, N0
.getOperand(0));
11010 Cst
= DAG
.getNode(ISD::AND
, SDLoc(Cst
), VT
,
11011 Cst
, DAG
.getConstant(~SignBit
, SDLoc(Cst
), VT
));
11012 AddToWorklist(Cst
.getNode());
11014 return DAG
.getNode(ISD::OR
, SDLoc(N
), VT
, X
, Cst
);
11018 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
11019 if (N0
.getOpcode() == ISD::BUILD_PAIR
)
11020 if (SDValue CombineLD
= CombineConsecutiveLoads(N0
.getNode(), VT
))
11023 // Remove double bitcasts from shuffles - this is often a legacy of
11024 // XformToShuffleWithZero being used to combine bitmaskings (of
11025 // float vectors bitcast to integer vectors) into shuffles.
11026 // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1)
11027 if (Level
< AfterLegalizeDAG
&& TLI
.isTypeLegal(VT
) && VT
.isVector() &&
11028 N0
->getOpcode() == ISD::VECTOR_SHUFFLE
&& N0
.hasOneUse() &&
11029 VT
.getVectorNumElements() >= N0
.getValueType().getVectorNumElements() &&
11030 !(VT
.getVectorNumElements() % N0
.getValueType().getVectorNumElements())) {
11031 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N0
);
11033 // If operands are a bitcast, peek through if it casts the original VT.
11034 // If operands are a constant, just bitcast back to original VT.
11035 auto PeekThroughBitcast
= [&](SDValue Op
) {
11036 if (Op
.getOpcode() == ISD::BITCAST
&&
11037 Op
.getOperand(0).getValueType() == VT
)
11038 return SDValue(Op
.getOperand(0));
11039 if (Op
.isUndef() || ISD::isBuildVectorOfConstantSDNodes(Op
.getNode()) ||
11040 ISD::isBuildVectorOfConstantFPSDNodes(Op
.getNode()))
11041 return DAG
.getBitcast(VT
, Op
);
11045 // FIXME: If either input vector is bitcast, try to convert the shuffle to
11046 // the result type of this bitcast. This would eliminate at least one
11047 // bitcast. See the transform in InstCombine.
11048 SDValue SV0
= PeekThroughBitcast(N0
->getOperand(0));
11049 SDValue SV1
= PeekThroughBitcast(N0
->getOperand(1));
11054 VT
.getVectorNumElements() / N0
.getValueType().getVectorNumElements();
11055 SmallVector
<int, 8> NewMask
;
11056 for (int M
: SVN
->getMask())
11057 for (int i
= 0; i
!= MaskScale
; ++i
)
11058 NewMask
.push_back(M
< 0 ? -1 : M
* MaskScale
+ i
);
11060 bool LegalMask
= TLI
.isShuffleMaskLegal(NewMask
, VT
);
11062 std::swap(SV0
, SV1
);
11063 ShuffleVectorSDNode::commuteMask(NewMask
);
11064 LegalMask
= TLI
.isShuffleMaskLegal(NewMask
, VT
);
11068 return DAG
.getVectorShuffle(VT
, SDLoc(N
), SV0
, SV1
, NewMask
);
11074 SDValue
DAGCombiner::visitBUILD_PAIR(SDNode
*N
) {
11075 EVT VT
= N
->getValueType(0);
11076 return CombineConsecutiveLoads(N
, VT
);
11079 /// We know that BV is a build_vector node with Constant, ConstantFP or Undef
11080 /// operands. DstEltVT indicates the destination element value type.
11081 SDValue
DAGCombiner::
11082 ConstantFoldBITCASTofBUILD_VECTOR(SDNode
*BV
, EVT DstEltVT
) {
11083 EVT SrcEltVT
= BV
->getValueType(0).getVectorElementType();
11085 // If this is already the right type, we're done.
11086 if (SrcEltVT
== DstEltVT
) return SDValue(BV
, 0);
11088 unsigned SrcBitSize
= SrcEltVT
.getSizeInBits();
11089 unsigned DstBitSize
= DstEltVT
.getSizeInBits();
11091 // If this is a conversion of N elements of one type to N elements of another
11092 // type, convert each element. This handles FP<->INT cases.
11093 if (SrcBitSize
== DstBitSize
) {
11094 SmallVector
<SDValue
, 8> Ops
;
11095 for (SDValue Op
: BV
->op_values()) {
11096 // If the vector element type is not legal, the BUILD_VECTOR operands
11097 // are promoted and implicitly truncated. Make that explicit here.
11098 if (Op
.getValueType() != SrcEltVT
)
11099 Op
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(BV
), SrcEltVT
, Op
);
11100 Ops
.push_back(DAG
.getBitcast(DstEltVT
, Op
));
11101 AddToWorklist(Ops
.back().getNode());
11103 EVT VT
= EVT::getVectorVT(*DAG
.getContext(), DstEltVT
,
11104 BV
->getValueType(0).getVectorNumElements());
11105 return DAG
.getBuildVector(VT
, SDLoc(BV
), Ops
);
11108 // Otherwise, we're growing or shrinking the elements. To avoid having to
11109 // handle annoying details of growing/shrinking FP values, we convert them to
11111 if (SrcEltVT
.isFloatingPoint()) {
11112 // Convert the input float vector to a int vector where the elements are the
11114 EVT IntVT
= EVT::getIntegerVT(*DAG
.getContext(), SrcEltVT
.getSizeInBits());
11115 BV
= ConstantFoldBITCASTofBUILD_VECTOR(BV
, IntVT
).getNode();
11119 // Now we know the input is an integer vector. If the output is a FP type,
11120 // convert to integer first, then to FP of the right size.
11121 if (DstEltVT
.isFloatingPoint()) {
11122 EVT TmpVT
= EVT::getIntegerVT(*DAG
.getContext(), DstEltVT
.getSizeInBits());
11123 SDNode
*Tmp
= ConstantFoldBITCASTofBUILD_VECTOR(BV
, TmpVT
).getNode();
11125 // Next, convert to FP elements of the same size.
11126 return ConstantFoldBITCASTofBUILD_VECTOR(Tmp
, DstEltVT
);
11131 // Okay, we know the src/dst types are both integers of differing types.
11132 // Handling growing first.
11133 assert(SrcEltVT
.isInteger() && DstEltVT
.isInteger());
11134 if (SrcBitSize
< DstBitSize
) {
11135 unsigned NumInputsPerOutput
= DstBitSize
/SrcBitSize
;
11137 SmallVector
<SDValue
, 8> Ops
;
11138 for (unsigned i
= 0, e
= BV
->getNumOperands(); i
!= e
;
11139 i
+= NumInputsPerOutput
) {
11140 bool isLE
= DAG
.getDataLayout().isLittleEndian();
11141 APInt NewBits
= APInt(DstBitSize
, 0);
11142 bool EltIsUndef
= true;
11143 for (unsigned j
= 0; j
!= NumInputsPerOutput
; ++j
) {
11144 // Shift the previously computed bits over.
11145 NewBits
<<= SrcBitSize
;
11146 SDValue Op
= BV
->getOperand(i
+ (isLE
? (NumInputsPerOutput
-j
-1) : j
));
11147 if (Op
.isUndef()) continue;
11148 EltIsUndef
= false;
11150 NewBits
|= cast
<ConstantSDNode
>(Op
)->getAPIntValue().
11151 zextOrTrunc(SrcBitSize
).zext(DstBitSize
);
11155 Ops
.push_back(DAG
.getUNDEF(DstEltVT
));
11157 Ops
.push_back(DAG
.getConstant(NewBits
, DL
, DstEltVT
));
11160 EVT VT
= EVT::getVectorVT(*DAG
.getContext(), DstEltVT
, Ops
.size());
11161 return DAG
.getBuildVector(VT
, DL
, Ops
);
11164 // Finally, this must be the case where we are shrinking elements: each input
11165 // turns into multiple outputs.
11166 unsigned NumOutputsPerInput
= SrcBitSize
/DstBitSize
;
11167 EVT VT
= EVT::getVectorVT(*DAG
.getContext(), DstEltVT
,
11168 NumOutputsPerInput
*BV
->getNumOperands());
11169 SmallVector
<SDValue
, 8> Ops
;
11171 for (const SDValue
&Op
: BV
->op_values()) {
11172 if (Op
.isUndef()) {
11173 Ops
.append(NumOutputsPerInput
, DAG
.getUNDEF(DstEltVT
));
11177 APInt OpVal
= cast
<ConstantSDNode
>(Op
)->
11178 getAPIntValue().zextOrTrunc(SrcBitSize
);
11180 for (unsigned j
= 0; j
!= NumOutputsPerInput
; ++j
) {
11181 APInt ThisVal
= OpVal
.trunc(DstBitSize
);
11182 Ops
.push_back(DAG
.getConstant(ThisVal
, DL
, DstEltVT
));
11183 OpVal
.lshrInPlace(DstBitSize
);
11186 // For big endian targets, swap the order of the pieces of each element.
11187 if (DAG
.getDataLayout().isBigEndian())
11188 std::reverse(Ops
.end()-NumOutputsPerInput
, Ops
.end());
11191 return DAG
.getBuildVector(VT
, DL
, Ops
);
11194 static bool isContractable(SDNode
*N
) {
11195 SDNodeFlags F
= N
->getFlags();
11196 return F
.hasAllowContract() || F
.hasAllowReassociation();
11199 /// Try to perform FMA combining on a given FADD node.
11200 SDValue
DAGCombiner::visitFADDForFMACombine(SDNode
*N
) {
11201 SDValue N0
= N
->getOperand(0);
11202 SDValue N1
= N
->getOperand(1);
11203 EVT VT
= N
->getValueType(0);
11206 const TargetOptions
&Options
= DAG
.getTarget().Options
;
11208 // Floating-point multiply-add with intermediate rounding.
11209 bool HasFMAD
= (LegalOperations
&& TLI
.isOperationLegal(ISD::FMAD
, VT
));
11211 // Floating-point multiply-add without intermediate rounding.
11213 TLI
.isFMAFasterThanFMulAndFAdd(VT
) &&
11214 (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::FMA
, VT
));
11216 // No valid opcode, do not combine.
11217 if (!HasFMAD
&& !HasFMA
)
11220 SDNodeFlags Flags
= N
->getFlags();
11221 bool CanFuse
= Options
.UnsafeFPMath
|| isContractable(N
);
11222 bool AllowFusionGlobally
= (Options
.AllowFPOpFusion
== FPOpFusion::Fast
||
11223 CanFuse
|| HasFMAD
);
11224 // If the addition is not contractable, do not combine.
11225 if (!AllowFusionGlobally
&& !isContractable(N
))
11228 const SelectionDAGTargetInfo
*STI
= DAG
.getSubtarget().getSelectionDAGInfo();
11229 if (STI
&& STI
->generateFMAsInMachineCombiner(OptLevel
))
11232 // Always prefer FMAD to FMA for precision.
11233 unsigned PreferredFusedOpcode
= HasFMAD
? ISD::FMAD
: ISD::FMA
;
11234 bool Aggressive
= TLI
.enableAggressiveFMAFusion(VT
);
11236 // Is the node an FMUL and contractable either due to global flags or
11238 auto isContractableFMUL
= [AllowFusionGlobally
](SDValue N
) {
11239 if (N
.getOpcode() != ISD::FMUL
)
11241 return AllowFusionGlobally
|| isContractable(N
.getNode());
11243 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
11244 // prefer to fold the multiply with fewer uses.
11245 if (Aggressive
&& isContractableFMUL(N0
) && isContractableFMUL(N1
)) {
11246 if (N0
.getNode()->use_size() > N1
.getNode()->use_size())
11250 // fold (fadd (fmul x, y), z) -> (fma x, y, z)
11251 if (isContractableFMUL(N0
) && (Aggressive
|| N0
->hasOneUse())) {
11252 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11253 N0
.getOperand(0), N0
.getOperand(1), N1
, Flags
);
11256 // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
11257 // Note: Commutes FADD operands.
11258 if (isContractableFMUL(N1
) && (Aggressive
|| N1
->hasOneUse())) {
11259 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11260 N1
.getOperand(0), N1
.getOperand(1), N0
, Flags
);
11263 // Look through FP_EXTEND nodes to do more combining.
11265 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z)
11266 if (N0
.getOpcode() == ISD::FP_EXTEND
) {
11267 SDValue N00
= N0
.getOperand(0);
11268 if (isContractableFMUL(N00
) &&
11269 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N00
.getValueType())) {
11270 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11271 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11272 N00
.getOperand(0)),
11273 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11274 N00
.getOperand(1)), N1
, Flags
);
11278 // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x)
11279 // Note: Commutes FADD operands.
11280 if (N1
.getOpcode() == ISD::FP_EXTEND
) {
11281 SDValue N10
= N1
.getOperand(0);
11282 if (isContractableFMUL(N10
) &&
11283 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N10
.getValueType())) {
11284 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11285 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11286 N10
.getOperand(0)),
11287 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11288 N10
.getOperand(1)), N0
, Flags
);
11292 // More folding opportunities when target permits.
11294 // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y (fma u, v, z))
11296 N0
.getOpcode() == PreferredFusedOpcode
&&
11297 N0
.getOperand(2).getOpcode() == ISD::FMUL
&&
11298 N0
->hasOneUse() && N0
.getOperand(2)->hasOneUse()) {
11299 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11300 N0
.getOperand(0), N0
.getOperand(1),
11301 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11302 N0
.getOperand(2).getOperand(0),
11303 N0
.getOperand(2).getOperand(1),
11304 N1
, Flags
), Flags
);
11307 // fold (fadd x, (fma y, z, (fmul u, v)) -> (fma y, z (fma u, v, x))
11309 N1
->getOpcode() == PreferredFusedOpcode
&&
11310 N1
.getOperand(2).getOpcode() == ISD::FMUL
&&
11311 N1
->hasOneUse() && N1
.getOperand(2)->hasOneUse()) {
11312 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11313 N1
.getOperand(0), N1
.getOperand(1),
11314 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11315 N1
.getOperand(2).getOperand(0),
11316 N1
.getOperand(2).getOperand(1),
11317 N0
, Flags
), Flags
);
11321 // fold (fadd (fma x, y, (fpext (fmul u, v))), z)
11322 // -> (fma x, y, (fma (fpext u), (fpext v), z))
11323 auto FoldFAddFMAFPExtFMul
= [&] (
11324 SDValue X
, SDValue Y
, SDValue U
, SDValue V
, SDValue Z
,
11325 SDNodeFlags Flags
) {
11326 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, X
, Y
,
11327 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11328 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, U
),
11329 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, V
),
11332 if (N0
.getOpcode() == PreferredFusedOpcode
) {
11333 SDValue N02
= N0
.getOperand(2);
11334 if (N02
.getOpcode() == ISD::FP_EXTEND
) {
11335 SDValue N020
= N02
.getOperand(0);
11336 if (isContractableFMUL(N020
) &&
11337 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N020
.getValueType())) {
11338 return FoldFAddFMAFPExtFMul(N0
.getOperand(0), N0
.getOperand(1),
11339 N020
.getOperand(0), N020
.getOperand(1),
11345 // fold (fadd (fpext (fma x, y, (fmul u, v))), z)
11346 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
11347 // FIXME: This turns two single-precision and one double-precision
11348 // operation into two double-precision operations, which might not be
11349 // interesting for all targets, especially GPUs.
11350 auto FoldFAddFPExtFMAFMul
= [&] (
11351 SDValue X
, SDValue Y
, SDValue U
, SDValue V
, SDValue Z
,
11352 SDNodeFlags Flags
) {
11353 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11354 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, X
),
11355 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, Y
),
11356 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11357 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, U
),
11358 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, V
),
11361 if (N0
.getOpcode() == ISD::FP_EXTEND
) {
11362 SDValue N00
= N0
.getOperand(0);
11363 if (N00
.getOpcode() == PreferredFusedOpcode
) {
11364 SDValue N002
= N00
.getOperand(2);
11365 if (isContractableFMUL(N002
) &&
11366 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N00
.getValueType())) {
11367 return FoldFAddFPExtFMAFMul(N00
.getOperand(0), N00
.getOperand(1),
11368 N002
.getOperand(0), N002
.getOperand(1),
11374 // fold (fadd x, (fma y, z, (fpext (fmul u, v)))
11375 // -> (fma y, z, (fma (fpext u), (fpext v), x))
11376 if (N1
.getOpcode() == PreferredFusedOpcode
) {
11377 SDValue N12
= N1
.getOperand(2);
11378 if (N12
.getOpcode() == ISD::FP_EXTEND
) {
11379 SDValue N120
= N12
.getOperand(0);
11380 if (isContractableFMUL(N120
) &&
11381 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N120
.getValueType())) {
11382 return FoldFAddFMAFPExtFMul(N1
.getOperand(0), N1
.getOperand(1),
11383 N120
.getOperand(0), N120
.getOperand(1),
11389 // fold (fadd x, (fpext (fma y, z, (fmul u, v)))
11390 // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x))
11391 // FIXME: This turns two single-precision and one double-precision
11392 // operation into two double-precision operations, which might not be
11393 // interesting for all targets, especially GPUs.
11394 if (N1
.getOpcode() == ISD::FP_EXTEND
) {
11395 SDValue N10
= N1
.getOperand(0);
11396 if (N10
.getOpcode() == PreferredFusedOpcode
) {
11397 SDValue N102
= N10
.getOperand(2);
11398 if (isContractableFMUL(N102
) &&
11399 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N10
.getValueType())) {
11400 return FoldFAddFPExtFMAFMul(N10
.getOperand(0), N10
.getOperand(1),
11401 N102
.getOperand(0), N102
.getOperand(1),
11411 /// Try to perform FMA combining on a given FSUB node.
11412 SDValue
DAGCombiner::visitFSUBForFMACombine(SDNode
*N
) {
11413 SDValue N0
= N
->getOperand(0);
11414 SDValue N1
= N
->getOperand(1);
11415 EVT VT
= N
->getValueType(0);
11418 const TargetOptions
&Options
= DAG
.getTarget().Options
;
11419 // Floating-point multiply-add with intermediate rounding.
11420 bool HasFMAD
= (LegalOperations
&& TLI
.isOperationLegal(ISD::FMAD
, VT
));
11422 // Floating-point multiply-add without intermediate rounding.
11424 TLI
.isFMAFasterThanFMulAndFAdd(VT
) &&
11425 (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::FMA
, VT
));
11427 // No valid opcode, do not combine.
11428 if (!HasFMAD
&& !HasFMA
)
11431 const SDNodeFlags Flags
= N
->getFlags();
11432 bool CanFuse
= Options
.UnsafeFPMath
|| isContractable(N
);
11433 bool AllowFusionGlobally
= (Options
.AllowFPOpFusion
== FPOpFusion::Fast
||
11434 CanFuse
|| HasFMAD
);
11436 // If the subtraction is not contractable, do not combine.
11437 if (!AllowFusionGlobally
&& !isContractable(N
))
11440 const SelectionDAGTargetInfo
*STI
= DAG
.getSubtarget().getSelectionDAGInfo();
11441 if (STI
&& STI
->generateFMAsInMachineCombiner(OptLevel
))
11444 // Always prefer FMAD to FMA for precision.
11445 unsigned PreferredFusedOpcode
= HasFMAD
? ISD::FMAD
: ISD::FMA
;
11446 bool Aggressive
= TLI
.enableAggressiveFMAFusion(VT
);
11448 // Is the node an FMUL and contractable either due to global flags or
11450 auto isContractableFMUL
= [AllowFusionGlobally
](SDValue N
) {
11451 if (N
.getOpcode() != ISD::FMUL
)
11453 return AllowFusionGlobally
|| isContractable(N
.getNode());
11456 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
11457 if (isContractableFMUL(N0
) && (Aggressive
|| N0
->hasOneUse())) {
11458 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11459 N0
.getOperand(0), N0
.getOperand(1),
11460 DAG
.getNode(ISD::FNEG
, SL
, VT
, N1
), Flags
);
11463 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
11464 // Note: Commutes FSUB operands.
11465 if (isContractableFMUL(N1
) && (Aggressive
|| N1
->hasOneUse())) {
11466 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11467 DAG
.getNode(ISD::FNEG
, SL
, VT
,
11469 N1
.getOperand(1), N0
, Flags
);
11472 // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
11473 if (N0
.getOpcode() == ISD::FNEG
&& isContractableFMUL(N0
.getOperand(0)) &&
11474 (Aggressive
|| (N0
->hasOneUse() && N0
.getOperand(0).hasOneUse()))) {
11475 SDValue N00
= N0
.getOperand(0).getOperand(0);
11476 SDValue N01
= N0
.getOperand(0).getOperand(1);
11477 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11478 DAG
.getNode(ISD::FNEG
, SL
, VT
, N00
), N01
,
11479 DAG
.getNode(ISD::FNEG
, SL
, VT
, N1
), Flags
);
11482 // Look through FP_EXTEND nodes to do more combining.
11484 // fold (fsub (fpext (fmul x, y)), z)
11485 // -> (fma (fpext x), (fpext y), (fneg z))
11486 if (N0
.getOpcode() == ISD::FP_EXTEND
) {
11487 SDValue N00
= N0
.getOperand(0);
11488 if (isContractableFMUL(N00
) &&
11489 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N00
.getValueType())) {
11490 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11491 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11492 N00
.getOperand(0)),
11493 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11494 N00
.getOperand(1)),
11495 DAG
.getNode(ISD::FNEG
, SL
, VT
, N1
), Flags
);
11499 // fold (fsub x, (fpext (fmul y, z)))
11500 // -> (fma (fneg (fpext y)), (fpext z), x)
11501 // Note: Commutes FSUB operands.
11502 if (N1
.getOpcode() == ISD::FP_EXTEND
) {
11503 SDValue N10
= N1
.getOperand(0);
11504 if (isContractableFMUL(N10
) &&
11505 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N10
.getValueType())) {
11506 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11507 DAG
.getNode(ISD::FNEG
, SL
, VT
,
11508 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11509 N10
.getOperand(0))),
11510 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11511 N10
.getOperand(1)),
11516 // fold (fsub (fpext (fneg (fmul, x, y))), z)
11517 // -> (fneg (fma (fpext x), (fpext y), z))
11518 // Note: This could be removed with appropriate canonicalization of the
11519 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
11520 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
11521 // from implementing the canonicalization in visitFSUB.
11522 if (N0
.getOpcode() == ISD::FP_EXTEND
) {
11523 SDValue N00
= N0
.getOperand(0);
11524 if (N00
.getOpcode() == ISD::FNEG
) {
11525 SDValue N000
= N00
.getOperand(0);
11526 if (isContractableFMUL(N000
) &&
11527 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N00
.getValueType())) {
11528 return DAG
.getNode(ISD::FNEG
, SL
, VT
,
11529 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11530 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11531 N000
.getOperand(0)),
11532 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11533 N000
.getOperand(1)),
11539 // fold (fsub (fneg (fpext (fmul, x, y))), z)
11540 // -> (fneg (fma (fpext x)), (fpext y), z)
11541 // Note: This could be removed with appropriate canonicalization of the
11542 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
11543 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
11544 // from implementing the canonicalization in visitFSUB.
11545 if (N0
.getOpcode() == ISD::FNEG
) {
11546 SDValue N00
= N0
.getOperand(0);
11547 if (N00
.getOpcode() == ISD::FP_EXTEND
) {
11548 SDValue N000
= N00
.getOperand(0);
11549 if (isContractableFMUL(N000
) &&
11550 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N000
.getValueType())) {
11551 return DAG
.getNode(ISD::FNEG
, SL
, VT
,
11552 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11553 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11554 N000
.getOperand(0)),
11555 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11556 N000
.getOperand(1)),
11562 // More folding opportunities when target permits.
11564 // fold (fsub (fma x, y, (fmul u, v)), z)
11565 // -> (fma x, y (fma u, v, (fneg z)))
11566 if (CanFuse
&& N0
.getOpcode() == PreferredFusedOpcode
&&
11567 isContractableFMUL(N0
.getOperand(2)) && N0
->hasOneUse() &&
11568 N0
.getOperand(2)->hasOneUse()) {
11569 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11570 N0
.getOperand(0), N0
.getOperand(1),
11571 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11572 N0
.getOperand(2).getOperand(0),
11573 N0
.getOperand(2).getOperand(1),
11574 DAG
.getNode(ISD::FNEG
, SL
, VT
,
11575 N1
), Flags
), Flags
);
11578 // fold (fsub x, (fma y, z, (fmul u, v)))
11579 // -> (fma (fneg y), z, (fma (fneg u), v, x))
11580 if (CanFuse
&& N1
.getOpcode() == PreferredFusedOpcode
&&
11581 isContractableFMUL(N1
.getOperand(2))) {
11582 SDValue N20
= N1
.getOperand(2).getOperand(0);
11583 SDValue N21
= N1
.getOperand(2).getOperand(1);
11584 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11585 DAG
.getNode(ISD::FNEG
, SL
, VT
,
11588 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11589 DAG
.getNode(ISD::FNEG
, SL
, VT
, N20
),
11590 N21
, N0
, Flags
), Flags
);
11594 // fold (fsub (fma x, y, (fpext (fmul u, v))), z)
11595 // -> (fma x, y (fma (fpext u), (fpext v), (fneg z)))
11596 if (N0
.getOpcode() == PreferredFusedOpcode
) {
11597 SDValue N02
= N0
.getOperand(2);
11598 if (N02
.getOpcode() == ISD::FP_EXTEND
) {
11599 SDValue N020
= N02
.getOperand(0);
11600 if (isContractableFMUL(N020
) &&
11601 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N020
.getValueType())) {
11602 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11603 N0
.getOperand(0), N0
.getOperand(1),
11604 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11605 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11606 N020
.getOperand(0)),
11607 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11608 N020
.getOperand(1)),
11609 DAG
.getNode(ISD::FNEG
, SL
, VT
,
11610 N1
), Flags
), Flags
);
11615 // fold (fsub (fpext (fma x, y, (fmul u, v))), z)
11616 // -> (fma (fpext x), (fpext y),
11617 // (fma (fpext u), (fpext v), (fneg z)))
11618 // FIXME: This turns two single-precision and one double-precision
11619 // operation into two double-precision operations, which might not be
11620 // interesting for all targets, especially GPUs.
11621 if (N0
.getOpcode() == ISD::FP_EXTEND
) {
11622 SDValue N00
= N0
.getOperand(0);
11623 if (N00
.getOpcode() == PreferredFusedOpcode
) {
11624 SDValue N002
= N00
.getOperand(2);
11625 if (isContractableFMUL(N002
) &&
11626 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N00
.getValueType())) {
11627 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11628 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11629 N00
.getOperand(0)),
11630 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11631 N00
.getOperand(1)),
11632 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11633 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11634 N002
.getOperand(0)),
11635 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11636 N002
.getOperand(1)),
11637 DAG
.getNode(ISD::FNEG
, SL
, VT
,
11638 N1
), Flags
), Flags
);
11643 // fold (fsub x, (fma y, z, (fpext (fmul u, v))))
11644 // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x))
11645 if (N1
.getOpcode() == PreferredFusedOpcode
&&
11646 N1
.getOperand(2).getOpcode() == ISD::FP_EXTEND
) {
11647 SDValue N120
= N1
.getOperand(2).getOperand(0);
11648 if (isContractableFMUL(N120
) &&
11649 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N120
.getValueType())) {
11650 SDValue N1200
= N120
.getOperand(0);
11651 SDValue N1201
= N120
.getOperand(1);
11652 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11653 DAG
.getNode(ISD::FNEG
, SL
, VT
, N1
.getOperand(0)),
11655 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11656 DAG
.getNode(ISD::FNEG
, SL
, VT
,
11657 DAG
.getNode(ISD::FP_EXTEND
, SL
,
11659 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11661 N0
, Flags
), Flags
);
11665 // fold (fsub x, (fpext (fma y, z, (fmul u, v))))
11666 // -> (fma (fneg (fpext y)), (fpext z),
11667 // (fma (fneg (fpext u)), (fpext v), x))
11668 // FIXME: This turns two single-precision and one double-precision
11669 // operation into two double-precision operations, which might not be
11670 // interesting for all targets, especially GPUs.
11671 if (N1
.getOpcode() == ISD::FP_EXTEND
&&
11672 N1
.getOperand(0).getOpcode() == PreferredFusedOpcode
) {
11673 SDValue CvtSrc
= N1
.getOperand(0);
11674 SDValue N100
= CvtSrc
.getOperand(0);
11675 SDValue N101
= CvtSrc
.getOperand(1);
11676 SDValue N102
= CvtSrc
.getOperand(2);
11677 if (isContractableFMUL(N102
) &&
11678 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, CvtSrc
.getValueType())) {
11679 SDValue N1020
= N102
.getOperand(0);
11680 SDValue N1021
= N102
.getOperand(1);
11681 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11682 DAG
.getNode(ISD::FNEG
, SL
, VT
,
11683 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11685 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N101
),
11686 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11687 DAG
.getNode(ISD::FNEG
, SL
, VT
,
11688 DAG
.getNode(ISD::FP_EXTEND
, SL
,
11690 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
11692 N0
, Flags
), Flags
);
11700 /// Try to perform FMA combining on a given FMUL node based on the distributive
11701 /// law x * (y + 1) = x * y + x and variants thereof (commuted versions,
11702 /// subtraction instead of addition).
11703 SDValue
DAGCombiner::visitFMULForFMADistributiveCombine(SDNode
*N
) {
11704 SDValue N0
= N
->getOperand(0);
11705 SDValue N1
= N
->getOperand(1);
11706 EVT VT
= N
->getValueType(0);
11708 const SDNodeFlags Flags
= N
->getFlags();
11710 assert(N
->getOpcode() == ISD::FMUL
&& "Expected FMUL Operation");
11712 const TargetOptions
&Options
= DAG
.getTarget().Options
;
11714 // The transforms below are incorrect when x == 0 and y == inf, because the
11715 // intermediate multiplication produces a nan.
11716 if (!Options
.NoInfsFPMath
)
11719 // Floating-point multiply-add without intermediate rounding.
11721 (Options
.AllowFPOpFusion
== FPOpFusion::Fast
|| Options
.UnsafeFPMath
) &&
11722 TLI
.isFMAFasterThanFMulAndFAdd(VT
) &&
11723 (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::FMA
, VT
));
11725 // Floating-point multiply-add with intermediate rounding. This can result
11726 // in a less precise result due to the changed rounding order.
11727 bool HasFMAD
= Options
.UnsafeFPMath
&&
11728 (LegalOperations
&& TLI
.isOperationLegal(ISD::FMAD
, VT
));
11730 // No valid opcode, do not combine.
11731 if (!HasFMAD
&& !HasFMA
)
11734 // Always prefer FMAD to FMA for precision.
11735 unsigned PreferredFusedOpcode
= HasFMAD
? ISD::FMAD
: ISD::FMA
;
11736 bool Aggressive
= TLI
.enableAggressiveFMAFusion(VT
);
11738 // fold (fmul (fadd x0, +1.0), y) -> (fma x0, y, y)
11739 // fold (fmul (fadd x0, -1.0), y) -> (fma x0, y, (fneg y))
11740 auto FuseFADD
= [&](SDValue X
, SDValue Y
, const SDNodeFlags Flags
) {
11741 if (X
.getOpcode() == ISD::FADD
&& (Aggressive
|| X
->hasOneUse())) {
11742 if (auto *C
= isConstOrConstSplatFP(X
.getOperand(1), true)) {
11743 if (C
->isExactlyValue(+1.0))
11744 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, X
.getOperand(0), Y
,
11746 if (C
->isExactlyValue(-1.0))
11747 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, X
.getOperand(0), Y
,
11748 DAG
.getNode(ISD::FNEG
, SL
, VT
, Y
), Flags
);
11754 if (SDValue FMA
= FuseFADD(N0
, N1
, Flags
))
11756 if (SDValue FMA
= FuseFADD(N1
, N0
, Flags
))
11759 // fold (fmul (fsub +1.0, x1), y) -> (fma (fneg x1), y, y)
11760 // fold (fmul (fsub -1.0, x1), y) -> (fma (fneg x1), y, (fneg y))
11761 // fold (fmul (fsub x0, +1.0), y) -> (fma x0, y, (fneg y))
11762 // fold (fmul (fsub x0, -1.0), y) -> (fma x0, y, y)
11763 auto FuseFSUB
= [&](SDValue X
, SDValue Y
, const SDNodeFlags Flags
) {
11764 if (X
.getOpcode() == ISD::FSUB
&& (Aggressive
|| X
->hasOneUse())) {
11765 if (auto *C0
= isConstOrConstSplatFP(X
.getOperand(0), true)) {
11766 if (C0
->isExactlyValue(+1.0))
11767 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11768 DAG
.getNode(ISD::FNEG
, SL
, VT
, X
.getOperand(1)), Y
,
11770 if (C0
->isExactlyValue(-1.0))
11771 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
11772 DAG
.getNode(ISD::FNEG
, SL
, VT
, X
.getOperand(1)), Y
,
11773 DAG
.getNode(ISD::FNEG
, SL
, VT
, Y
), Flags
);
11775 if (auto *C1
= isConstOrConstSplatFP(X
.getOperand(1), true)) {
11776 if (C1
->isExactlyValue(+1.0))
11777 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, X
.getOperand(0), Y
,
11778 DAG
.getNode(ISD::FNEG
, SL
, VT
, Y
), Flags
);
11779 if (C1
->isExactlyValue(-1.0))
11780 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, X
.getOperand(0), Y
,
11787 if (SDValue FMA
= FuseFSUB(N0
, N1
, Flags
))
11789 if (SDValue FMA
= FuseFSUB(N1
, N0
, Flags
))
11795 SDValue
DAGCombiner::visitFADD(SDNode
*N
) {
11796 SDValue N0
= N
->getOperand(0);
11797 SDValue N1
= N
->getOperand(1);
11798 bool N0CFP
= isConstantFPBuildVectorOrConstantFP(N0
);
11799 bool N1CFP
= isConstantFPBuildVectorOrConstantFP(N1
);
11800 EVT VT
= N
->getValueType(0);
11802 const TargetOptions
&Options
= DAG
.getTarget().Options
;
11803 const SDNodeFlags Flags
= N
->getFlags();
11807 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
11810 // fold (fadd c1, c2) -> c1 + c2
11811 if (N0CFP
&& N1CFP
)
11812 return DAG
.getNode(ISD::FADD
, DL
, VT
, N0
, N1
, Flags
);
11814 // canonicalize constant to RHS
11815 if (N0CFP
&& !N1CFP
)
11816 return DAG
.getNode(ISD::FADD
, DL
, VT
, N1
, N0
, Flags
);
11818 // N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math)
11819 ConstantFPSDNode
*N1C
= isConstOrConstSplatFP(N1
, true);
11820 if (N1C
&& N1C
->isZero())
11821 if (N1C
->isNegative() || Options
.NoSignedZerosFPMath
|| Flags
.hasNoSignedZeros())
11824 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
11827 // fold (fadd A, (fneg B)) -> (fsub A, B)
11828 if ((!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::FSUB
, VT
)) &&
11829 isNegatibleForFree(N1
, LegalOperations
, TLI
, &Options
, ForCodeSize
) == 2)
11830 return DAG
.getNode(ISD::FSUB
, DL
, VT
, N0
,
11831 GetNegatedExpression(N1
, DAG
, LegalOperations
,
11832 ForCodeSize
), Flags
);
11834 // fold (fadd (fneg A), B) -> (fsub B, A)
11835 if ((!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::FSUB
, VT
)) &&
11836 isNegatibleForFree(N0
, LegalOperations
, TLI
, &Options
, ForCodeSize
) == 2)
11837 return DAG
.getNode(ISD::FSUB
, DL
, VT
, N1
,
11838 GetNegatedExpression(N0
, DAG
, LegalOperations
,
11839 ForCodeSize
), Flags
);
11841 auto isFMulNegTwo
= [](SDValue FMul
) {
11842 if (!FMul
.hasOneUse() || FMul
.getOpcode() != ISD::FMUL
)
11844 auto *C
= isConstOrConstSplatFP(FMul
.getOperand(1), true);
11845 return C
&& C
->isExactlyValue(-2.0);
11848 // fadd (fmul B, -2.0), A --> fsub A, (fadd B, B)
11849 if (isFMulNegTwo(N0
)) {
11850 SDValue B
= N0
.getOperand(0);
11851 SDValue Add
= DAG
.getNode(ISD::FADD
, DL
, VT
, B
, B
, Flags
);
11852 return DAG
.getNode(ISD::FSUB
, DL
, VT
, N1
, Add
, Flags
);
11854 // fadd A, (fmul B, -2.0) --> fsub A, (fadd B, B)
11855 if (isFMulNegTwo(N1
)) {
11856 SDValue B
= N1
.getOperand(0);
11857 SDValue Add
= DAG
.getNode(ISD::FADD
, DL
, VT
, B
, B
, Flags
);
11858 return DAG
.getNode(ISD::FSUB
, DL
, VT
, N0
, Add
, Flags
);
11861 // No FP constant should be created after legalization as Instruction
11862 // Selection pass has a hard time dealing with FP constants.
11863 bool AllowNewConst
= (Level
< AfterLegalizeDAG
);
11865 // If nnan is enabled, fold lots of things.
11866 if ((Options
.NoNaNsFPMath
|| Flags
.hasNoNaNs()) && AllowNewConst
) {
11867 // If allowed, fold (fadd (fneg x), x) -> 0.0
11868 if (N0
.getOpcode() == ISD::FNEG
&& N0
.getOperand(0) == N1
)
11869 return DAG
.getConstantFP(0.0, DL
, VT
);
11871 // If allowed, fold (fadd x, (fneg x)) -> 0.0
11872 if (N1
.getOpcode() == ISD::FNEG
&& N1
.getOperand(0) == N0
)
11873 return DAG
.getConstantFP(0.0, DL
, VT
);
11876 // If 'unsafe math' or reassoc and nsz, fold lots of things.
11877 // TODO: break out portions of the transformations below for which Unsafe is
11878 // considered and which do not require both nsz and reassoc
11879 if (((Options
.UnsafeFPMath
&& Options
.NoSignedZerosFPMath
) ||
11880 (Flags
.hasAllowReassociation() && Flags
.hasNoSignedZeros())) &&
11882 // fadd (fadd x, c1), c2 -> fadd x, c1 + c2
11883 if (N1CFP
&& N0
.getOpcode() == ISD::FADD
&&
11884 isConstantFPBuildVectorOrConstantFP(N0
.getOperand(1))) {
11885 SDValue NewC
= DAG
.getNode(ISD::FADD
, DL
, VT
, N0
.getOperand(1), N1
, Flags
);
11886 return DAG
.getNode(ISD::FADD
, DL
, VT
, N0
.getOperand(0), NewC
, Flags
);
11889 // We can fold chains of FADD's of the same value into multiplications.
11890 // This transform is not safe in general because we are reducing the number
11891 // of rounding steps.
11892 if (TLI
.isOperationLegalOrCustom(ISD::FMUL
, VT
) && !N0CFP
&& !N1CFP
) {
11893 if (N0
.getOpcode() == ISD::FMUL
) {
11894 bool CFP00
= isConstantFPBuildVectorOrConstantFP(N0
.getOperand(0));
11895 bool CFP01
= isConstantFPBuildVectorOrConstantFP(N0
.getOperand(1));
11897 // (fadd (fmul x, c), x) -> (fmul x, c+1)
11898 if (CFP01
&& !CFP00
&& N0
.getOperand(0) == N1
) {
11899 SDValue NewCFP
= DAG
.getNode(ISD::FADD
, DL
, VT
, N0
.getOperand(1),
11900 DAG
.getConstantFP(1.0, DL
, VT
), Flags
);
11901 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N1
, NewCFP
, Flags
);
11904 // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
11905 if (CFP01
&& !CFP00
&& N1
.getOpcode() == ISD::FADD
&&
11906 N1
.getOperand(0) == N1
.getOperand(1) &&
11907 N0
.getOperand(0) == N1
.getOperand(0)) {
11908 SDValue NewCFP
= DAG
.getNode(ISD::FADD
, DL
, VT
, N0
.getOperand(1),
11909 DAG
.getConstantFP(2.0, DL
, VT
), Flags
);
11910 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
.getOperand(0), NewCFP
, Flags
);
11914 if (N1
.getOpcode() == ISD::FMUL
) {
11915 bool CFP10
= isConstantFPBuildVectorOrConstantFP(N1
.getOperand(0));
11916 bool CFP11
= isConstantFPBuildVectorOrConstantFP(N1
.getOperand(1));
11918 // (fadd x, (fmul x, c)) -> (fmul x, c+1)
11919 if (CFP11
&& !CFP10
&& N1
.getOperand(0) == N0
) {
11920 SDValue NewCFP
= DAG
.getNode(ISD::FADD
, DL
, VT
, N1
.getOperand(1),
11921 DAG
.getConstantFP(1.0, DL
, VT
), Flags
);
11922 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, NewCFP
, Flags
);
11925 // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
11926 if (CFP11
&& !CFP10
&& N0
.getOpcode() == ISD::FADD
&&
11927 N0
.getOperand(0) == N0
.getOperand(1) &&
11928 N1
.getOperand(0) == N0
.getOperand(0)) {
11929 SDValue NewCFP
= DAG
.getNode(ISD::FADD
, DL
, VT
, N1
.getOperand(1),
11930 DAG
.getConstantFP(2.0, DL
, VT
), Flags
);
11931 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N1
.getOperand(0), NewCFP
, Flags
);
11935 if (N0
.getOpcode() == ISD::FADD
) {
11936 bool CFP00
= isConstantFPBuildVectorOrConstantFP(N0
.getOperand(0));
11937 // (fadd (fadd x, x), x) -> (fmul x, 3.0)
11938 if (!CFP00
&& N0
.getOperand(0) == N0
.getOperand(1) &&
11939 (N0
.getOperand(0) == N1
)) {
11940 return DAG
.getNode(ISD::FMUL
, DL
, VT
,
11941 N1
, DAG
.getConstantFP(3.0, DL
, VT
), Flags
);
11945 if (N1
.getOpcode() == ISD::FADD
) {
11946 bool CFP10
= isConstantFPBuildVectorOrConstantFP(N1
.getOperand(0));
11947 // (fadd x, (fadd x, x)) -> (fmul x, 3.0)
11948 if (!CFP10
&& N1
.getOperand(0) == N1
.getOperand(1) &&
11949 N1
.getOperand(0) == N0
) {
11950 return DAG
.getNode(ISD::FMUL
, DL
, VT
,
11951 N0
, DAG
.getConstantFP(3.0, DL
, VT
), Flags
);
11955 // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
11956 if (N0
.getOpcode() == ISD::FADD
&& N1
.getOpcode() == ISD::FADD
&&
11957 N0
.getOperand(0) == N0
.getOperand(1) &&
11958 N1
.getOperand(0) == N1
.getOperand(1) &&
11959 N0
.getOperand(0) == N1
.getOperand(0)) {
11960 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
.getOperand(0),
11961 DAG
.getConstantFP(4.0, DL
, VT
), Flags
);
11964 } // enable-unsafe-fp-math
11966 // FADD -> FMA combines:
11967 if (SDValue Fused
= visitFADDForFMACombine(N
)) {
11968 AddToWorklist(Fused
.getNode());
11974 SDValue
DAGCombiner::visitFSUB(SDNode
*N
) {
11975 SDValue N0
= N
->getOperand(0);
11976 SDValue N1
= N
->getOperand(1);
11977 ConstantFPSDNode
*N0CFP
= isConstOrConstSplatFP(N0
, true);
11978 ConstantFPSDNode
*N1CFP
= isConstOrConstSplatFP(N1
, true);
11979 EVT VT
= N
->getValueType(0);
11981 const TargetOptions
&Options
= DAG
.getTarget().Options
;
11982 const SDNodeFlags Flags
= N
->getFlags();
11986 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
11989 // fold (fsub c1, c2) -> c1-c2
11990 if (N0CFP
&& N1CFP
)
11991 return DAG
.getNode(ISD::FSUB
, DL
, VT
, N0
, N1
, Flags
);
11993 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
11996 // (fsub A, 0) -> A
11997 if (N1CFP
&& N1CFP
->isZero()) {
11998 if (!N1CFP
->isNegative() || Options
.NoSignedZerosFPMath
||
11999 Flags
.hasNoSignedZeros()) {
12005 // (fsub x, x) -> 0.0
12006 if (Options
.NoNaNsFPMath
|| Flags
.hasNoNaNs())
12007 return DAG
.getConstantFP(0.0f
, DL
, VT
);
12010 // (fsub -0.0, N1) -> -N1
12011 // NOTE: It is safe to transform an FSUB(-0.0,X) into an FNEG(X), since the
12012 // FSUB does not specify the sign bit of a NaN. Also note that for
12013 // the same reason, the inverse transform is not safe, unless fast math
12014 // flags are in play.
12015 if (N0CFP
&& N0CFP
->isZero()) {
12016 if (N0CFP
->isNegative() ||
12017 (Options
.NoSignedZerosFPMath
|| Flags
.hasNoSignedZeros())) {
12018 if (isNegatibleForFree(N1
, LegalOperations
, TLI
, &Options
, ForCodeSize
))
12019 return GetNegatedExpression(N1
, DAG
, LegalOperations
, ForCodeSize
);
12020 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
12021 return DAG
.getNode(ISD::FNEG
, DL
, VT
, N1
, Flags
);
12025 if (((Options
.UnsafeFPMath
&& Options
.NoSignedZerosFPMath
) ||
12026 (Flags
.hasAllowReassociation() && Flags
.hasNoSignedZeros()))
12027 && N1
.getOpcode() == ISD::FADD
) {
12028 // X - (X + Y) -> -Y
12029 if (N0
== N1
->getOperand(0))
12030 return DAG
.getNode(ISD::FNEG
, DL
, VT
, N1
->getOperand(1), Flags
);
12031 // X - (Y + X) -> -Y
12032 if (N0
== N1
->getOperand(1))
12033 return DAG
.getNode(ISD::FNEG
, DL
, VT
, N1
->getOperand(0), Flags
);
12036 // fold (fsub A, (fneg B)) -> (fadd A, B)
12037 if (isNegatibleForFree(N1
, LegalOperations
, TLI
, &Options
, ForCodeSize
))
12038 return DAG
.getNode(ISD::FADD
, DL
, VT
, N0
,
12039 GetNegatedExpression(N1
, DAG
, LegalOperations
,
12040 ForCodeSize
), Flags
);
12042 // FSUB -> FMA combines:
12043 if (SDValue Fused
= visitFSUBForFMACombine(N
)) {
12044 AddToWorklist(Fused
.getNode());
12051 SDValue
DAGCombiner::visitFMUL(SDNode
*N
) {
12052 SDValue N0
= N
->getOperand(0);
12053 SDValue N1
= N
->getOperand(1);
12054 ConstantFPSDNode
*N0CFP
= isConstOrConstSplatFP(N0
, true);
12055 ConstantFPSDNode
*N1CFP
= isConstOrConstSplatFP(N1
, true);
12056 EVT VT
= N
->getValueType(0);
12058 const TargetOptions
&Options
= DAG
.getTarget().Options
;
12059 const SDNodeFlags Flags
= N
->getFlags();
12062 if (VT
.isVector()) {
12063 // This just handles C1 * C2 for vectors. Other vector folds are below.
12064 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
12068 // fold (fmul c1, c2) -> c1*c2
12069 if (N0CFP
&& N1CFP
)
12070 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, N1
, Flags
);
12072 // canonicalize constant to RHS
12073 if (isConstantFPBuildVectorOrConstantFP(N0
) &&
12074 !isConstantFPBuildVectorOrConstantFP(N1
))
12075 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N1
, N0
, Flags
);
12077 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
12080 if ((Options
.NoNaNsFPMath
&& Options
.NoSignedZerosFPMath
) ||
12081 (Flags
.hasNoNaNs() && Flags
.hasNoSignedZeros())) {
12082 // fold (fmul A, 0) -> 0
12083 if (N1CFP
&& N1CFP
->isZero())
12087 if (Options
.UnsafeFPMath
|| Flags
.hasAllowReassociation()) {
12088 // fmul (fmul X, C1), C2 -> fmul X, C1 * C2
12089 if (isConstantFPBuildVectorOrConstantFP(N1
) &&
12090 N0
.getOpcode() == ISD::FMUL
) {
12091 SDValue N00
= N0
.getOperand(0);
12092 SDValue N01
= N0
.getOperand(1);
12093 // Avoid an infinite loop by making sure that N00 is not a constant
12094 // (the inner multiply has not been constant folded yet).
12095 if (isConstantFPBuildVectorOrConstantFP(N01
) &&
12096 !isConstantFPBuildVectorOrConstantFP(N00
)) {
12097 SDValue MulConsts
= DAG
.getNode(ISD::FMUL
, DL
, VT
, N01
, N1
, Flags
);
12098 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N00
, MulConsts
, Flags
);
12102 // Match a special-case: we convert X * 2.0 into fadd.
12103 // fmul (fadd X, X), C -> fmul X, 2.0 * C
12104 if (N0
.getOpcode() == ISD::FADD
&& N0
.hasOneUse() &&
12105 N0
.getOperand(0) == N0
.getOperand(1)) {
12106 const SDValue Two
= DAG
.getConstantFP(2.0, DL
, VT
);
12107 SDValue MulConsts
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Two
, N1
, Flags
);
12108 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
.getOperand(0), MulConsts
, Flags
);
12112 // fold (fmul X, 2.0) -> (fadd X, X)
12113 if (N1CFP
&& N1CFP
->isExactlyValue(+2.0))
12114 return DAG
.getNode(ISD::FADD
, DL
, VT
, N0
, N0
, Flags
);
12116 // fold (fmul X, -1.0) -> (fneg X)
12117 if (N1CFP
&& N1CFP
->isExactlyValue(-1.0))
12118 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
12119 return DAG
.getNode(ISD::FNEG
, DL
, VT
, N0
);
12121 // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
12122 if (char LHSNeg
= isNegatibleForFree(N0
, LegalOperations
, TLI
, &Options
,
12124 if (char RHSNeg
= isNegatibleForFree(N1
, LegalOperations
, TLI
, &Options
,
12126 // Both can be negated for free, check to see if at least one is cheaper
12128 if (LHSNeg
== 2 || RHSNeg
== 2)
12129 return DAG
.getNode(ISD::FMUL
, DL
, VT
,
12130 GetNegatedExpression(N0
, DAG
, LegalOperations
,
12132 GetNegatedExpression(N1
, DAG
, LegalOperations
,
12138 // fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X))
12139 // fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X)
12140 if (Flags
.hasNoNaNs() && Flags
.hasNoSignedZeros() &&
12141 (N0
.getOpcode() == ISD::SELECT
|| N1
.getOpcode() == ISD::SELECT
) &&
12142 TLI
.isOperationLegal(ISD::FABS
, VT
)) {
12143 SDValue Select
= N0
, X
= N1
;
12144 if (Select
.getOpcode() != ISD::SELECT
)
12145 std::swap(Select
, X
);
12147 SDValue Cond
= Select
.getOperand(0);
12148 auto TrueOpnd
= dyn_cast
<ConstantFPSDNode
>(Select
.getOperand(1));
12149 auto FalseOpnd
= dyn_cast
<ConstantFPSDNode
>(Select
.getOperand(2));
12151 if (TrueOpnd
&& FalseOpnd
&&
12152 Cond
.getOpcode() == ISD::SETCC
&& Cond
.getOperand(0) == X
&&
12153 isa
<ConstantFPSDNode
>(Cond
.getOperand(1)) &&
12154 cast
<ConstantFPSDNode
>(Cond
.getOperand(1))->isExactlyValue(0.0)) {
12155 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Cond
.getOperand(2))->get();
12164 std::swap(TrueOpnd
, FalseOpnd
);
12172 if (TrueOpnd
->isExactlyValue(-1.0) && FalseOpnd
->isExactlyValue(1.0) &&
12173 TLI
.isOperationLegal(ISD::FNEG
, VT
))
12174 return DAG
.getNode(ISD::FNEG
, DL
, VT
,
12175 DAG
.getNode(ISD::FABS
, DL
, VT
, X
));
12176 if (TrueOpnd
->isExactlyValue(1.0) && FalseOpnd
->isExactlyValue(-1.0))
12177 return DAG
.getNode(ISD::FABS
, DL
, VT
, X
);
12184 // FMUL -> FMA combines:
12185 if (SDValue Fused
= visitFMULForFMADistributiveCombine(N
)) {
12186 AddToWorklist(Fused
.getNode());
12193 SDValue
DAGCombiner::visitFMA(SDNode
*N
) {
12194 SDValue N0
= N
->getOperand(0);
12195 SDValue N1
= N
->getOperand(1);
12196 SDValue N2
= N
->getOperand(2);
12197 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
12198 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
12199 EVT VT
= N
->getValueType(0);
12201 const TargetOptions
&Options
= DAG
.getTarget().Options
;
12203 // FMA nodes have flags that propagate to the created nodes.
12204 const SDNodeFlags Flags
= N
->getFlags();
12205 bool UnsafeFPMath
= Options
.UnsafeFPMath
|| isContractable(N
);
12207 // Constant fold FMA.
12208 if (isa
<ConstantFPSDNode
>(N0
) &&
12209 isa
<ConstantFPSDNode
>(N1
) &&
12210 isa
<ConstantFPSDNode
>(N2
)) {
12211 return DAG
.getNode(ISD::FMA
, DL
, VT
, N0
, N1
, N2
);
12214 if (UnsafeFPMath
) {
12215 if (N0CFP
&& N0CFP
->isZero())
12217 if (N1CFP
&& N1CFP
->isZero())
12220 // TODO: The FMA node should have flags that propagate to these nodes.
12221 if (N0CFP
&& N0CFP
->isExactlyValue(1.0))
12222 return DAG
.getNode(ISD::FADD
, SDLoc(N
), VT
, N1
, N2
);
12223 if (N1CFP
&& N1CFP
->isExactlyValue(1.0))
12224 return DAG
.getNode(ISD::FADD
, SDLoc(N
), VT
, N0
, N2
);
12226 // Canonicalize (fma c, x, y) -> (fma x, c, y)
12227 if (isConstantFPBuildVectorOrConstantFP(N0
) &&
12228 !isConstantFPBuildVectorOrConstantFP(N1
))
12229 return DAG
.getNode(ISD::FMA
, SDLoc(N
), VT
, N1
, N0
, N2
);
12231 if (UnsafeFPMath
) {
12232 // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
12233 if (N2
.getOpcode() == ISD::FMUL
&& N0
== N2
.getOperand(0) &&
12234 isConstantFPBuildVectorOrConstantFP(N1
) &&
12235 isConstantFPBuildVectorOrConstantFP(N2
.getOperand(1))) {
12236 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
,
12237 DAG
.getNode(ISD::FADD
, DL
, VT
, N1
, N2
.getOperand(1),
12241 // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
12242 if (N0
.getOpcode() == ISD::FMUL
&&
12243 isConstantFPBuildVectorOrConstantFP(N1
) &&
12244 isConstantFPBuildVectorOrConstantFP(N0
.getOperand(1))) {
12245 return DAG
.getNode(ISD::FMA
, DL
, VT
,
12247 DAG
.getNode(ISD::FMUL
, DL
, VT
, N1
, N0
.getOperand(1),
12253 // (fma x, 1, y) -> (fadd x, y)
12254 // (fma x, -1, y) -> (fadd (fneg x), y)
12256 if (N1CFP
->isExactlyValue(1.0))
12257 // TODO: The FMA node should have flags that propagate to this node.
12258 return DAG
.getNode(ISD::FADD
, DL
, VT
, N0
, N2
);
12260 if (N1CFP
->isExactlyValue(-1.0) &&
12261 (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))) {
12262 SDValue RHSNeg
= DAG
.getNode(ISD::FNEG
, DL
, VT
, N0
);
12263 AddToWorklist(RHSNeg
.getNode());
12264 // TODO: The FMA node should have flags that propagate to this node.
12265 return DAG
.getNode(ISD::FADD
, DL
, VT
, N2
, RHSNeg
);
12268 // fma (fneg x), K, y -> fma x -K, y
12269 if (N0
.getOpcode() == ISD::FNEG
&&
12270 (TLI
.isOperationLegal(ISD::ConstantFP
, VT
) ||
12271 (N1
.hasOneUse() && !TLI
.isFPImmLegal(N1CFP
->getValueAPF(), VT
,
12273 return DAG
.getNode(ISD::FMA
, DL
, VT
, N0
.getOperand(0),
12274 DAG
.getNode(ISD::FNEG
, DL
, VT
, N1
, Flags
), N2
);
12278 if (UnsafeFPMath
) {
12279 // (fma x, c, x) -> (fmul x, (c+1))
12280 if (N1CFP
&& N0
== N2
) {
12281 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
,
12282 DAG
.getNode(ISD::FADD
, DL
, VT
, N1
,
12283 DAG
.getConstantFP(1.0, DL
, VT
), Flags
),
12287 // (fma x, c, (fneg x)) -> (fmul x, (c-1))
12288 if (N1CFP
&& N2
.getOpcode() == ISD::FNEG
&& N2
.getOperand(0) == N0
) {
12289 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
,
12290 DAG
.getNode(ISD::FADD
, DL
, VT
, N1
,
12291 DAG
.getConstantFP(-1.0, DL
, VT
), Flags
),
12299 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
12301 // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip)
12302 // Notice that this is not always beneficial. One reason is different targets
12303 // may have different costs for FDIV and FMUL, so sometimes the cost of two
12304 // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason
12305 // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL".
12306 SDValue
DAGCombiner::combineRepeatedFPDivisors(SDNode
*N
) {
12307 // TODO: Limit this transform based on optsize/minsize - it always creates at
12308 // least 1 extra instruction. But the perf win may be substantial enough
12309 // that only minsize should restrict this.
12310 bool UnsafeMath
= DAG
.getTarget().Options
.UnsafeFPMath
;
12311 const SDNodeFlags Flags
= N
->getFlags();
12312 if (!UnsafeMath
&& !Flags
.hasAllowReciprocal())
12315 // Skip if current node is a reciprocal/fneg-reciprocal.
12316 SDValue N0
= N
->getOperand(0);
12317 ConstantFPSDNode
*N0CFP
= isConstOrConstSplatFP(N0
, /* AllowUndefs */ true);
12318 if (N0CFP
&& (N0CFP
->isExactlyValue(1.0) || N0CFP
->isExactlyValue(-1.0)))
12321 // Exit early if the target does not want this transform or if there can't
12322 // possibly be enough uses of the divisor to make the transform worthwhile.
12323 SDValue N1
= N
->getOperand(1);
12324 unsigned MinUses
= TLI
.combineRepeatedFPDivisors();
12326 // For splat vectors, scale the number of uses by the splat factor. If we can
12327 // convert the division into a scalar op, that will likely be much faster.
12328 unsigned NumElts
= 1;
12329 EVT VT
= N
->getValueType(0);
12330 if (VT
.isVector() && DAG
.isSplatValue(N1
))
12331 NumElts
= VT
.getVectorNumElements();
12333 if (!MinUses
|| (N1
->use_size() * NumElts
) < MinUses
)
12336 // Find all FDIV users of the same divisor.
12337 // Use a set because duplicates may be present in the user list.
12338 SetVector
<SDNode
*> Users
;
12339 for (auto *U
: N1
->uses()) {
12340 if (U
->getOpcode() == ISD::FDIV
&& U
->getOperand(1) == N1
) {
12341 // This division is eligible for optimization only if global unsafe math
12342 // is enabled or if this division allows reciprocal formation.
12343 if (UnsafeMath
|| U
->getFlags().hasAllowReciprocal())
12348 // Now that we have the actual number of divisor uses, make sure it meets
12349 // the minimum threshold specified by the target.
12350 if ((Users
.size() * NumElts
) < MinUses
)
12354 SDValue FPOne
= DAG
.getConstantFP(1.0, DL
, VT
);
12355 SDValue Reciprocal
= DAG
.getNode(ISD::FDIV
, DL
, VT
, FPOne
, N1
, Flags
);
12357 // Dividend / Divisor -> Dividend * Reciprocal
12358 for (auto *U
: Users
) {
12359 SDValue Dividend
= U
->getOperand(0);
12360 if (Dividend
!= FPOne
) {
12361 SDValue NewNode
= DAG
.getNode(ISD::FMUL
, SDLoc(U
), VT
, Dividend
,
12362 Reciprocal
, Flags
);
12363 CombineTo(U
, NewNode
);
12364 } else if (U
!= Reciprocal
.getNode()) {
12365 // In the absence of fast-math-flags, this user node is always the
12366 // same node as Reciprocal, but with FMF they may be different nodes.
12367 CombineTo(U
, Reciprocal
);
12370 return SDValue(N
, 0); // N was replaced.
12373 SDValue
DAGCombiner::visitFDIV(SDNode
*N
) {
12374 SDValue N0
= N
->getOperand(0);
12375 SDValue N1
= N
->getOperand(1);
12376 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
12377 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
12378 EVT VT
= N
->getValueType(0);
12380 const TargetOptions
&Options
= DAG
.getTarget().Options
;
12381 SDNodeFlags Flags
= N
->getFlags();
12385 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
12388 // fold (fdiv c1, c2) -> c1/c2
12389 if (N0CFP
&& N1CFP
)
12390 return DAG
.getNode(ISD::FDIV
, SDLoc(N
), VT
, N0
, N1
, Flags
);
12392 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
12395 if (SDValue V
= combineRepeatedFPDivisors(N
))
12398 if (Options
.UnsafeFPMath
|| Flags
.hasAllowReciprocal()) {
12399 // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
12401 // Compute the reciprocal 1.0 / c2.
12402 const APFloat
&N1APF
= N1CFP
->getValueAPF();
12403 APFloat
Recip(N1APF
.getSemantics(), 1); // 1.0
12404 APFloat::opStatus st
= Recip
.divide(N1APF
, APFloat::rmNearestTiesToEven
);
12405 // Only do the transform if the reciprocal is a legal fp immediate that
12406 // isn't too nasty (eg NaN, denormal, ...).
12407 if ((st
== APFloat::opOK
|| st
== APFloat::opInexact
) && // Not too nasty
12408 (!LegalOperations
||
12409 // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
12410 // backend)... we should handle this gracefully after Legalize.
12411 // TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) ||
12412 TLI
.isOperationLegal(ISD::ConstantFP
, VT
) ||
12413 TLI
.isFPImmLegal(Recip
, VT
, ForCodeSize
)))
12414 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
,
12415 DAG
.getConstantFP(Recip
, DL
, VT
), Flags
);
12418 // If this FDIV is part of a reciprocal square root, it may be folded
12419 // into a target-specific square root estimate instruction.
12420 if (N1
.getOpcode() == ISD::FSQRT
) {
12421 if (SDValue RV
= buildRsqrtEstimate(N1
.getOperand(0), Flags
))
12422 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, RV
, Flags
);
12423 } else if (N1
.getOpcode() == ISD::FP_EXTEND
&&
12424 N1
.getOperand(0).getOpcode() == ISD::FSQRT
) {
12425 if (SDValue RV
= buildRsqrtEstimate(N1
.getOperand(0).getOperand(0),
12427 RV
= DAG
.getNode(ISD::FP_EXTEND
, SDLoc(N1
), VT
, RV
);
12428 AddToWorklist(RV
.getNode());
12429 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, RV
, Flags
);
12431 } else if (N1
.getOpcode() == ISD::FP_ROUND
&&
12432 N1
.getOperand(0).getOpcode() == ISD::FSQRT
) {
12433 if (SDValue RV
= buildRsqrtEstimate(N1
.getOperand(0).getOperand(0),
12435 RV
= DAG
.getNode(ISD::FP_ROUND
, SDLoc(N1
), VT
, RV
, N1
.getOperand(1));
12436 AddToWorklist(RV
.getNode());
12437 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, RV
, Flags
);
12439 } else if (N1
.getOpcode() == ISD::FMUL
) {
12440 // Look through an FMUL. Even though this won't remove the FDIV directly,
12441 // it's still worthwhile to get rid of the FSQRT if possible.
12444 if (N1
.getOperand(0).getOpcode() == ISD::FSQRT
) {
12445 SqrtOp
= N1
.getOperand(0);
12446 OtherOp
= N1
.getOperand(1);
12447 } else if (N1
.getOperand(1).getOpcode() == ISD::FSQRT
) {
12448 SqrtOp
= N1
.getOperand(1);
12449 OtherOp
= N1
.getOperand(0);
12451 if (SqrtOp
.getNode()) {
12452 // We found a FSQRT, so try to make this fold:
12453 // x / (y * sqrt(z)) -> x * (rsqrt(z) / y)
12454 if (SDValue RV
= buildRsqrtEstimate(SqrtOp
.getOperand(0), Flags
)) {
12455 RV
= DAG
.getNode(ISD::FDIV
, SDLoc(N1
), VT
, RV
, OtherOp
, Flags
);
12456 AddToWorklist(RV
.getNode());
12457 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, RV
, Flags
);
12462 // Fold into a reciprocal estimate and multiply instead of a real divide.
12463 if (SDValue RV
= BuildReciprocalEstimate(N1
, Flags
)) {
12464 AddToWorklist(RV
.getNode());
12465 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, RV
, Flags
);
12469 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
12470 if (char LHSNeg
= isNegatibleForFree(N0
, LegalOperations
, TLI
, &Options
,
12472 if (char RHSNeg
= isNegatibleForFree(N1
, LegalOperations
, TLI
, &Options
,
12474 // Both can be negated for free, check to see if at least one is cheaper
12476 if (LHSNeg
== 2 || RHSNeg
== 2)
12477 return DAG
.getNode(ISD::FDIV
, SDLoc(N
), VT
,
12478 GetNegatedExpression(N0
, DAG
, LegalOperations
,
12480 GetNegatedExpression(N1
, DAG
, LegalOperations
,
12489 SDValue
DAGCombiner::visitFREM(SDNode
*N
) {
12490 SDValue N0
= N
->getOperand(0);
12491 SDValue N1
= N
->getOperand(1);
12492 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
12493 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
12494 EVT VT
= N
->getValueType(0);
12496 // fold (frem c1, c2) -> fmod(c1,c2)
12497 if (N0CFP
&& N1CFP
)
12498 return DAG
.getNode(ISD::FREM
, SDLoc(N
), VT
, N0
, N1
, N
->getFlags());
12500 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
12506 SDValue
DAGCombiner::visitFSQRT(SDNode
*N
) {
12507 SDNodeFlags Flags
= N
->getFlags();
12508 if (!DAG
.getTarget().Options
.UnsafeFPMath
&&
12509 !Flags
.hasApproximateFuncs())
12512 SDValue N0
= N
->getOperand(0);
12513 if (TLI
.isFsqrtCheap(N0
, DAG
))
12516 // FSQRT nodes have flags that propagate to the created nodes.
12517 return buildSqrtEstimate(N0
, Flags
);
12520 /// copysign(x, fp_extend(y)) -> copysign(x, y)
12521 /// copysign(x, fp_round(y)) -> copysign(x, y)
12522 static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode
*N
) {
12523 SDValue N1
= N
->getOperand(1);
12524 if ((N1
.getOpcode() == ISD::FP_EXTEND
||
12525 N1
.getOpcode() == ISD::FP_ROUND
)) {
12526 // Do not optimize out type conversion of f128 type yet.
12527 // For some targets like x86_64, configuration is changed to keep one f128
12528 // value in one SSE register, but instruction selection cannot handle
12529 // FCOPYSIGN on SSE registers yet.
12530 EVT N1VT
= N1
->getValueType(0);
12531 EVT N1Op0VT
= N1
->getOperand(0).getValueType();
12532 return (N1VT
== N1Op0VT
|| N1Op0VT
!= MVT::f128
);
12537 SDValue
DAGCombiner::visitFCOPYSIGN(SDNode
*N
) {
12538 SDValue N0
= N
->getOperand(0);
12539 SDValue N1
= N
->getOperand(1);
12540 bool N0CFP
= isConstantFPBuildVectorOrConstantFP(N0
);
12541 bool N1CFP
= isConstantFPBuildVectorOrConstantFP(N1
);
12542 EVT VT
= N
->getValueType(0);
12544 if (N0CFP
&& N1CFP
) // Constant fold
12545 return DAG
.getNode(ISD::FCOPYSIGN
, SDLoc(N
), VT
, N0
, N1
);
12547 if (ConstantFPSDNode
*N1C
= isConstOrConstSplatFP(N
->getOperand(1))) {
12548 const APFloat
&V
= N1C
->getValueAPF();
12549 // copysign(x, c1) -> fabs(x) iff ispos(c1)
12550 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
12551 if (!V
.isNegative()) {
12552 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FABS
, VT
))
12553 return DAG
.getNode(ISD::FABS
, SDLoc(N
), VT
, N0
);
12555 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
12556 return DAG
.getNode(ISD::FNEG
, SDLoc(N
), VT
,
12557 DAG
.getNode(ISD::FABS
, SDLoc(N0
), VT
, N0
));
12561 // copysign(fabs(x), y) -> copysign(x, y)
12562 // copysign(fneg(x), y) -> copysign(x, y)
12563 // copysign(copysign(x,z), y) -> copysign(x, y)
12564 if (N0
.getOpcode() == ISD::FABS
|| N0
.getOpcode() == ISD::FNEG
||
12565 N0
.getOpcode() == ISD::FCOPYSIGN
)
12566 return DAG
.getNode(ISD::FCOPYSIGN
, SDLoc(N
), VT
, N0
.getOperand(0), N1
);
12568 // copysign(x, abs(y)) -> abs(x)
12569 if (N1
.getOpcode() == ISD::FABS
)
12570 return DAG
.getNode(ISD::FABS
, SDLoc(N
), VT
, N0
);
12572 // copysign(x, copysign(y,z)) -> copysign(x, z)
12573 if (N1
.getOpcode() == ISD::FCOPYSIGN
)
12574 return DAG
.getNode(ISD::FCOPYSIGN
, SDLoc(N
), VT
, N0
, N1
.getOperand(1));
12576 // copysign(x, fp_extend(y)) -> copysign(x, y)
12577 // copysign(x, fp_round(y)) -> copysign(x, y)
12578 if (CanCombineFCOPYSIGN_EXTEND_ROUND(N
))
12579 return DAG
.getNode(ISD::FCOPYSIGN
, SDLoc(N
), VT
, N0
, N1
.getOperand(0));
12584 SDValue
DAGCombiner::visitFPOW(SDNode
*N
) {
12585 ConstantFPSDNode
*ExponentC
= isConstOrConstSplatFP(N
->getOperand(1));
12589 // Try to convert x ** (1/3) into cube root.
12590 // TODO: Handle the various flavors of long double.
12591 // TODO: Since we're approximating, we don't need an exact 1/3 exponent.
12592 // Some range near 1/3 should be fine.
12593 EVT VT
= N
->getValueType(0);
12594 if ((VT
== MVT::f32
&& ExponentC
->getValueAPF().isExactlyValue(1.0f
/3.0f
)) ||
12595 (VT
== MVT::f64
&& ExponentC
->getValueAPF().isExactlyValue(1.0/3.0))) {
12596 // pow(-0.0, 1/3) = +0.0; cbrt(-0.0) = -0.0.
12597 // pow(-inf, 1/3) = +inf; cbrt(-inf) = -inf.
12598 // pow(-val, 1/3) = nan; cbrt(-val) = -num.
12599 // For regular numbers, rounding may cause the results to differ.
12600 // Therefore, we require { nsz ninf nnan afn } for this transform.
12601 // TODO: We could select out the special cases if we don't have nsz/ninf.
12602 SDNodeFlags Flags
= N
->getFlags();
12603 if (!Flags
.hasNoSignedZeros() || !Flags
.hasNoInfs() || !Flags
.hasNoNaNs() ||
12604 !Flags
.hasApproximateFuncs())
12607 // Do not create a cbrt() libcall if the target does not have it, and do not
12608 // turn a pow that has lowering support into a cbrt() libcall.
12609 if (!DAG
.getLibInfo().has(LibFunc_cbrt
) ||
12610 (!DAG
.getTargetLoweringInfo().isOperationExpand(ISD::FPOW
, VT
) &&
12611 DAG
.getTargetLoweringInfo().isOperationExpand(ISD::FCBRT
, VT
)))
12614 return DAG
.getNode(ISD::FCBRT
, SDLoc(N
), VT
, N
->getOperand(0), Flags
);
12617 // Try to convert x ** (1/4) and x ** (3/4) into square roots.
12618 // x ** (1/2) is canonicalized to sqrt, so we do not bother with that case.
12619 // TODO: This could be extended (using a target hook) to handle smaller
12620 // power-of-2 fractional exponents.
12621 bool ExponentIs025
= ExponentC
->getValueAPF().isExactlyValue(0.25);
12622 bool ExponentIs075
= ExponentC
->getValueAPF().isExactlyValue(0.75);
12623 if (ExponentIs025
|| ExponentIs075
) {
12624 // pow(-0.0, 0.25) = +0.0; sqrt(sqrt(-0.0)) = -0.0.
12625 // pow(-inf, 0.25) = +inf; sqrt(sqrt(-inf)) = NaN.
12626 // pow(-0.0, 0.75) = +0.0; sqrt(-0.0) * sqrt(sqrt(-0.0)) = +0.0.
12627 // pow(-inf, 0.75) = +inf; sqrt(-inf) * sqrt(sqrt(-inf)) = NaN.
12628 // For regular numbers, rounding may cause the results to differ.
12629 // Therefore, we require { nsz ninf afn } for this transform.
12630 // TODO: We could select out the special cases if we don't have nsz/ninf.
12631 SDNodeFlags Flags
= N
->getFlags();
12633 // We only need no signed zeros for the 0.25 case.
12634 if ((!Flags
.hasNoSignedZeros() && ExponentIs025
) || !Flags
.hasNoInfs() ||
12635 !Flags
.hasApproximateFuncs())
12638 // Don't double the number of libcalls. We are trying to inline fast code.
12639 if (!DAG
.getTargetLoweringInfo().isOperationLegalOrCustom(ISD::FSQRT
, VT
))
12642 // Assume that libcalls are the smallest code.
12643 // TODO: This restriction should probably be lifted for vectors.
12644 if (DAG
.getMachineFunction().getFunction().hasOptSize())
12647 // pow(X, 0.25) --> sqrt(sqrt(X))
12649 SDValue Sqrt
= DAG
.getNode(ISD::FSQRT
, DL
, VT
, N
->getOperand(0), Flags
);
12650 SDValue SqrtSqrt
= DAG
.getNode(ISD::FSQRT
, DL
, VT
, Sqrt
, Flags
);
12653 // pow(X, 0.75) --> sqrt(X) * sqrt(sqrt(X))
12654 return DAG
.getNode(ISD::FMUL
, DL
, VT
, Sqrt
, SqrtSqrt
, Flags
);
12660 static SDValue
foldFPToIntToFP(SDNode
*N
, SelectionDAG
&DAG
,
12661 const TargetLowering
&TLI
) {
12662 // This optimization is guarded by a function attribute because it may produce
12663 // unexpected results. Ie, programs may be relying on the platform-specific
12664 // undefined behavior when the float-to-int conversion overflows.
12665 const Function
&F
= DAG
.getMachineFunction().getFunction();
12666 Attribute StrictOverflow
= F
.getFnAttribute("strict-float-cast-overflow");
12667 if (StrictOverflow
.getValueAsString().equals("false"))
12670 // We only do this if the target has legal ftrunc. Otherwise, we'd likely be
12671 // replacing casts with a libcall. We also must be allowed to ignore -0.0
12672 // because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer
12673 // conversions would return +0.0.
12674 // FIXME: We should be able to use node-level FMF here.
12675 // TODO: If strict math, should we use FABS (+ range check for signed cast)?
12676 EVT VT
= N
->getValueType(0);
12677 if (!TLI
.isOperationLegal(ISD::FTRUNC
, VT
) ||
12678 !DAG
.getTarget().Options
.NoSignedZerosFPMath
)
12681 // fptosi/fptoui round towards zero, so converting from FP to integer and
12682 // back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X
12683 SDValue N0
= N
->getOperand(0);
12684 if (N
->getOpcode() == ISD::SINT_TO_FP
&& N0
.getOpcode() == ISD::FP_TO_SINT
&&
12685 N0
.getOperand(0).getValueType() == VT
)
12686 return DAG
.getNode(ISD::FTRUNC
, SDLoc(N
), VT
, N0
.getOperand(0));
12688 if (N
->getOpcode() == ISD::UINT_TO_FP
&& N0
.getOpcode() == ISD::FP_TO_UINT
&&
12689 N0
.getOperand(0).getValueType() == VT
)
12690 return DAG
.getNode(ISD::FTRUNC
, SDLoc(N
), VT
, N0
.getOperand(0));
12695 SDValue
DAGCombiner::visitSINT_TO_FP(SDNode
*N
) {
12696 SDValue N0
= N
->getOperand(0);
12697 EVT VT
= N
->getValueType(0);
12698 EVT OpVT
= N0
.getValueType();
12700 // [us]itofp(undef) = 0, because the result value is bounded.
12702 return DAG
.getConstantFP(0.0, SDLoc(N
), VT
);
12704 // fold (sint_to_fp c1) -> c1fp
12705 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
12706 // ...but only if the target supports immediate floating-point values
12707 (!LegalOperations
||
12708 TLI
.isOperationLegalOrCustom(ISD::ConstantFP
, VT
)))
12709 return DAG
.getNode(ISD::SINT_TO_FP
, SDLoc(N
), VT
, N0
);
12711 // If the input is a legal type, and SINT_TO_FP is not legal on this target,
12712 // but UINT_TO_FP is legal on this target, try to convert.
12713 if (!hasOperation(ISD::SINT_TO_FP
, OpVT
) &&
12714 hasOperation(ISD::UINT_TO_FP
, OpVT
)) {
12715 // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
12716 if (DAG
.SignBitIsZero(N0
))
12717 return DAG
.getNode(ISD::UINT_TO_FP
, SDLoc(N
), VT
, N0
);
12720 // The next optimizations are desirable only if SELECT_CC can be lowered.
12721 if (TLI
.isOperationLegalOrCustom(ISD::SELECT_CC
, VT
) || !LegalOperations
) {
12722 // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
12723 if (N0
.getOpcode() == ISD::SETCC
&& N0
.getValueType() == MVT::i1
&&
12725 (!LegalOperations
||
12726 TLI
.isOperationLegalOrCustom(ISD::ConstantFP
, VT
))) {
12729 { N0
.getOperand(0), N0
.getOperand(1),
12730 DAG
.getConstantFP(-1.0, DL
, VT
), DAG
.getConstantFP(0.0, DL
, VT
),
12731 N0
.getOperand(2) };
12732 return DAG
.getNode(ISD::SELECT_CC
, DL
, VT
, Ops
);
12735 // fold (sint_to_fp (zext (setcc x, y, cc))) ->
12736 // (select_cc x, y, 1.0, 0.0,, cc)
12737 if (N0
.getOpcode() == ISD::ZERO_EXTEND
&&
12738 N0
.getOperand(0).getOpcode() == ISD::SETCC
&&!VT
.isVector() &&
12739 (!LegalOperations
||
12740 TLI
.isOperationLegalOrCustom(ISD::ConstantFP
, VT
))) {
12743 { N0
.getOperand(0).getOperand(0), N0
.getOperand(0).getOperand(1),
12744 DAG
.getConstantFP(1.0, DL
, VT
), DAG
.getConstantFP(0.0, DL
, VT
),
12745 N0
.getOperand(0).getOperand(2) };
12746 return DAG
.getNode(ISD::SELECT_CC
, DL
, VT
, Ops
);
12750 if (SDValue FTrunc
= foldFPToIntToFP(N
, DAG
, TLI
))
12756 SDValue
DAGCombiner::visitUINT_TO_FP(SDNode
*N
) {
12757 SDValue N0
= N
->getOperand(0);
12758 EVT VT
= N
->getValueType(0);
12759 EVT OpVT
= N0
.getValueType();
12761 // [us]itofp(undef) = 0, because the result value is bounded.
12763 return DAG
.getConstantFP(0.0, SDLoc(N
), VT
);
12765 // fold (uint_to_fp c1) -> c1fp
12766 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
12767 // ...but only if the target supports immediate floating-point values
12768 (!LegalOperations
||
12769 TLI
.isOperationLegalOrCustom(ISD::ConstantFP
, VT
)))
12770 return DAG
.getNode(ISD::UINT_TO_FP
, SDLoc(N
), VT
, N0
);
12772 // If the input is a legal type, and UINT_TO_FP is not legal on this target,
12773 // but SINT_TO_FP is legal on this target, try to convert.
12774 if (!hasOperation(ISD::UINT_TO_FP
, OpVT
) &&
12775 hasOperation(ISD::SINT_TO_FP
, OpVT
)) {
12776 // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
12777 if (DAG
.SignBitIsZero(N0
))
12778 return DAG
.getNode(ISD::SINT_TO_FP
, SDLoc(N
), VT
, N0
);
12781 // The next optimizations are desirable only if SELECT_CC can be lowered.
12782 if (TLI
.isOperationLegalOrCustom(ISD::SELECT_CC
, VT
) || !LegalOperations
) {
12783 // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
12784 if (N0
.getOpcode() == ISD::SETCC
&& !VT
.isVector() &&
12785 (!LegalOperations
||
12786 TLI
.isOperationLegalOrCustom(ISD::ConstantFP
, VT
))) {
12789 { N0
.getOperand(0), N0
.getOperand(1),
12790 DAG
.getConstantFP(1.0, DL
, VT
), DAG
.getConstantFP(0.0, DL
, VT
),
12791 N0
.getOperand(2) };
12792 return DAG
.getNode(ISD::SELECT_CC
, DL
, VT
, Ops
);
12796 if (SDValue FTrunc
= foldFPToIntToFP(N
, DAG
, TLI
))
12802 // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x
12803 static SDValue
FoldIntToFPToInt(SDNode
*N
, SelectionDAG
&DAG
) {
12804 SDValue N0
= N
->getOperand(0);
12805 EVT VT
= N
->getValueType(0);
12807 if (N0
.getOpcode() != ISD::UINT_TO_FP
&& N0
.getOpcode() != ISD::SINT_TO_FP
)
12810 SDValue Src
= N0
.getOperand(0);
12811 EVT SrcVT
= Src
.getValueType();
12812 bool IsInputSigned
= N0
.getOpcode() == ISD::SINT_TO_FP
;
12813 bool IsOutputSigned
= N
->getOpcode() == ISD::FP_TO_SINT
;
12815 // We can safely assume the conversion won't overflow the output range,
12816 // because (for example) (uint8_t)18293.f is undefined behavior.
12818 // Since we can assume the conversion won't overflow, our decision as to
12819 // whether the input will fit in the float should depend on the minimum
12820 // of the input range and output range.
12822 // This means this is also safe for a signed input and unsigned output, since
12823 // a negative input would lead to undefined behavior.
12824 unsigned InputSize
= (int)SrcVT
.getScalarSizeInBits() - IsInputSigned
;
12825 unsigned OutputSize
= (int)VT
.getScalarSizeInBits() - IsOutputSigned
;
12826 unsigned ActualSize
= std::min(InputSize
, OutputSize
);
12827 const fltSemantics
&sem
= DAG
.EVTToAPFloatSemantics(N0
.getValueType());
12829 // We can only fold away the float conversion if the input range can be
12830 // represented exactly in the float range.
12831 if (APFloat::semanticsPrecision(sem
) >= ActualSize
) {
12832 if (VT
.getScalarSizeInBits() > SrcVT
.getScalarSizeInBits()) {
12833 unsigned ExtOp
= IsInputSigned
&& IsOutputSigned
? ISD::SIGN_EXTEND
12834 : ISD::ZERO_EXTEND
;
12835 return DAG
.getNode(ExtOp
, SDLoc(N
), VT
, Src
);
12837 if (VT
.getScalarSizeInBits() < SrcVT
.getScalarSizeInBits())
12838 return DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
, Src
);
12839 return DAG
.getBitcast(VT
, Src
);
12844 SDValue
DAGCombiner::visitFP_TO_SINT(SDNode
*N
) {
12845 SDValue N0
= N
->getOperand(0);
12846 EVT VT
= N
->getValueType(0);
12848 // fold (fp_to_sint undef) -> undef
12850 return DAG
.getUNDEF(VT
);
12852 // fold (fp_to_sint c1fp) -> c1
12853 if (isConstantFPBuildVectorOrConstantFP(N0
))
12854 return DAG
.getNode(ISD::FP_TO_SINT
, SDLoc(N
), VT
, N0
);
12856 return FoldIntToFPToInt(N
, DAG
);
12859 SDValue
DAGCombiner::visitFP_TO_UINT(SDNode
*N
) {
12860 SDValue N0
= N
->getOperand(0);
12861 EVT VT
= N
->getValueType(0);
12863 // fold (fp_to_uint undef) -> undef
12865 return DAG
.getUNDEF(VT
);
12867 // fold (fp_to_uint c1fp) -> c1
12868 if (isConstantFPBuildVectorOrConstantFP(N0
))
12869 return DAG
.getNode(ISD::FP_TO_UINT
, SDLoc(N
), VT
, N0
);
12871 return FoldIntToFPToInt(N
, DAG
);
12874 SDValue
DAGCombiner::visitFP_ROUND(SDNode
*N
) {
12875 SDValue N0
= N
->getOperand(0);
12876 SDValue N1
= N
->getOperand(1);
12877 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
12878 EVT VT
= N
->getValueType(0);
12880 // fold (fp_round c1fp) -> c1fp
12882 return DAG
.getNode(ISD::FP_ROUND
, SDLoc(N
), VT
, N0
, N1
);
12884 // fold (fp_round (fp_extend x)) -> x
12885 if (N0
.getOpcode() == ISD::FP_EXTEND
&& VT
== N0
.getOperand(0).getValueType())
12886 return N0
.getOperand(0);
12888 // fold (fp_round (fp_round x)) -> (fp_round x)
12889 if (N0
.getOpcode() == ISD::FP_ROUND
) {
12890 const bool NIsTrunc
= N
->getConstantOperandVal(1) == 1;
12891 const bool N0IsTrunc
= N0
.getConstantOperandVal(1) == 1;
12893 // Skip this folding if it results in an fp_round from f80 to f16.
12895 // f80 to f16 always generates an expensive (and as yet, unimplemented)
12896 // libcall to __truncxfhf2 instead of selecting native f16 conversion
12897 // instructions from f32 or f64. Moreover, the first (value-preserving)
12898 // fp_round from f80 to either f32 or f64 may become a NOP in platforms like
12900 if (N0
.getOperand(0).getValueType() == MVT::f80
&& VT
== MVT::f16
)
12903 // If the first fp_round isn't a value preserving truncation, it might
12904 // introduce a tie in the second fp_round, that wouldn't occur in the
12905 // single-step fp_round we want to fold to.
12906 // In other words, double rounding isn't the same as rounding.
12907 // Also, this is a value preserving truncation iff both fp_round's are.
12908 if (DAG
.getTarget().Options
.UnsafeFPMath
|| N0IsTrunc
) {
12910 return DAG
.getNode(ISD::FP_ROUND
, DL
, VT
, N0
.getOperand(0),
12911 DAG
.getIntPtrConstant(NIsTrunc
&& N0IsTrunc
, DL
));
12915 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
12916 if (N0
.getOpcode() == ISD::FCOPYSIGN
&& N0
.getNode()->hasOneUse()) {
12917 SDValue Tmp
= DAG
.getNode(ISD::FP_ROUND
, SDLoc(N0
), VT
,
12918 N0
.getOperand(0), N1
);
12919 AddToWorklist(Tmp
.getNode());
12920 return DAG
.getNode(ISD::FCOPYSIGN
, SDLoc(N
), VT
,
12921 Tmp
, N0
.getOperand(1));
12924 if (SDValue NewVSel
= matchVSelectOpSizesWithSetCC(N
))
12930 SDValue
DAGCombiner::visitFP_ROUND_INREG(SDNode
*N
) {
12931 SDValue N0
= N
->getOperand(0);
12932 EVT VT
= N
->getValueType(0);
12933 EVT EVT
= cast
<VTSDNode
>(N
->getOperand(1))->getVT();
12934 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
12936 // fold (fp_round_inreg c1fp) -> c1fp
12937 if (N0CFP
&& isTypeLegal(EVT
)) {
12939 SDValue Round
= DAG
.getConstantFP(*N0CFP
->getConstantFPValue(), DL
, EVT
);
12940 return DAG
.getNode(ISD::FP_EXTEND
, DL
, VT
, Round
);
12946 SDValue
DAGCombiner::visitFP_EXTEND(SDNode
*N
) {
12947 SDValue N0
= N
->getOperand(0);
12948 EVT VT
= N
->getValueType(0);
12950 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
12951 if (N
->hasOneUse() &&
12952 N
->use_begin()->getOpcode() == ISD::FP_ROUND
)
12955 // fold (fp_extend c1fp) -> c1fp
12956 if (isConstantFPBuildVectorOrConstantFP(N0
))
12957 return DAG
.getNode(ISD::FP_EXTEND
, SDLoc(N
), VT
, N0
);
12959 // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op)
12960 if (N0
.getOpcode() == ISD::FP16_TO_FP
&&
12961 TLI
.getOperationAction(ISD::FP16_TO_FP
, VT
) == TargetLowering::Legal
)
12962 return DAG
.getNode(ISD::FP16_TO_FP
, SDLoc(N
), VT
, N0
.getOperand(0));
12964 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
12966 if (N0
.getOpcode() == ISD::FP_ROUND
12967 && N0
.getConstantOperandVal(1) == 1) {
12968 SDValue In
= N0
.getOperand(0);
12969 if (In
.getValueType() == VT
) return In
;
12970 if (VT
.bitsLT(In
.getValueType()))
12971 return DAG
.getNode(ISD::FP_ROUND
, SDLoc(N
), VT
,
12972 In
, N0
.getOperand(1));
12973 return DAG
.getNode(ISD::FP_EXTEND
, SDLoc(N
), VT
, In
);
12976 // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
12977 if (ISD::isNormalLoad(N0
.getNode()) && N0
.hasOneUse() &&
12978 TLI
.isLoadExtLegal(ISD::EXTLOAD
, VT
, N0
.getValueType())) {
12979 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
12980 SDValue ExtLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, SDLoc(N
), VT
,
12982 LN0
->getBasePtr(), N0
.getValueType(),
12983 LN0
->getMemOperand());
12984 CombineTo(N
, ExtLoad
);
12985 CombineTo(N0
.getNode(),
12986 DAG
.getNode(ISD::FP_ROUND
, SDLoc(N0
),
12987 N0
.getValueType(), ExtLoad
,
12988 DAG
.getIntPtrConstant(1, SDLoc(N0
))),
12989 ExtLoad
.getValue(1));
12990 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
12993 if (SDValue NewVSel
= matchVSelectOpSizesWithSetCC(N
))
12999 SDValue
DAGCombiner::visitFCEIL(SDNode
*N
) {
13000 SDValue N0
= N
->getOperand(0);
13001 EVT VT
= N
->getValueType(0);
13003 // fold (fceil c1) -> fceil(c1)
13004 if (isConstantFPBuildVectorOrConstantFP(N0
))
13005 return DAG
.getNode(ISD::FCEIL
, SDLoc(N
), VT
, N0
);
13010 SDValue
DAGCombiner::visitFTRUNC(SDNode
*N
) {
13011 SDValue N0
= N
->getOperand(0);
13012 EVT VT
= N
->getValueType(0);
13014 // fold (ftrunc c1) -> ftrunc(c1)
13015 if (isConstantFPBuildVectorOrConstantFP(N0
))
13016 return DAG
.getNode(ISD::FTRUNC
, SDLoc(N
), VT
, N0
);
13018 // fold ftrunc (known rounded int x) -> x
13019 // ftrunc is a part of fptosi/fptoui expansion on some targets, so this is
13020 // likely to be generated to extract integer from a rounded floating value.
13021 switch (N0
.getOpcode()) {
13025 case ISD::FNEARBYINT
:
13034 SDValue
DAGCombiner::visitFFLOOR(SDNode
*N
) {
13035 SDValue N0
= N
->getOperand(0);
13036 EVT VT
= N
->getValueType(0);
13038 // fold (ffloor c1) -> ffloor(c1)
13039 if (isConstantFPBuildVectorOrConstantFP(N0
))
13040 return DAG
.getNode(ISD::FFLOOR
, SDLoc(N
), VT
, N0
);
13045 // FIXME: FNEG and FABS have a lot in common; refactor.
13046 SDValue
DAGCombiner::visitFNEG(SDNode
*N
) {
13047 SDValue N0
= N
->getOperand(0);
13048 EVT VT
= N
->getValueType(0);
13050 // Constant fold FNEG.
13051 if (isConstantFPBuildVectorOrConstantFP(N0
))
13052 return DAG
.getNode(ISD::FNEG
, SDLoc(N
), VT
, N0
);
13054 if (isNegatibleForFree(N0
, LegalOperations
, DAG
.getTargetLoweringInfo(),
13055 &DAG
.getTarget().Options
, ForCodeSize
))
13056 return GetNegatedExpression(N0
, DAG
, LegalOperations
, ForCodeSize
);
13058 // Transform fneg(bitconvert(x)) -> bitconvert(x ^ sign) to avoid loading
13059 // constant pool values.
13060 if (!TLI
.isFNegFree(VT
) &&
13061 N0
.getOpcode() == ISD::BITCAST
&&
13062 N0
.getNode()->hasOneUse()) {
13063 SDValue Int
= N0
.getOperand(0);
13064 EVT IntVT
= Int
.getValueType();
13065 if (IntVT
.isInteger() && !IntVT
.isVector()) {
13067 if (N0
.getValueType().isVector()) {
13068 // For a vector, get a mask such as 0x80... per scalar element
13070 SignMask
= APInt::getSignMask(N0
.getScalarValueSizeInBits());
13071 SignMask
= APInt::getSplat(IntVT
.getSizeInBits(), SignMask
);
13073 // For a scalar, just generate 0x80...
13074 SignMask
= APInt::getSignMask(IntVT
.getSizeInBits());
13077 Int
= DAG
.getNode(ISD::XOR
, DL0
, IntVT
, Int
,
13078 DAG
.getConstant(SignMask
, DL0
, IntVT
));
13079 AddToWorklist(Int
.getNode());
13080 return DAG
.getBitcast(VT
, Int
);
13084 // (fneg (fmul c, x)) -> (fmul -c, x)
13085 if (N0
.getOpcode() == ISD::FMUL
&&
13086 (N0
.getNode()->hasOneUse() || !TLI
.isFNegFree(VT
))) {
13087 ConstantFPSDNode
*CFP1
= dyn_cast
<ConstantFPSDNode
>(N0
.getOperand(1));
13089 APFloat CVal
= CFP1
->getValueAPF();
13091 if (Level
>= AfterLegalizeDAG
&&
13092 (TLI
.isFPImmLegal(CVal
, VT
, ForCodeSize
) ||
13093 TLI
.isOperationLegal(ISD::ConstantFP
, VT
)))
13094 return DAG
.getNode(
13095 ISD::FMUL
, SDLoc(N
), VT
, N0
.getOperand(0),
13096 DAG
.getNode(ISD::FNEG
, SDLoc(N
), VT
, N0
.getOperand(1)),
13104 static SDValue
visitFMinMax(SelectionDAG
&DAG
, SDNode
*N
,
13105 APFloat (*Op
)(const APFloat
&, const APFloat
&)) {
13106 SDValue N0
= N
->getOperand(0);
13107 SDValue N1
= N
->getOperand(1);
13108 EVT VT
= N
->getValueType(0);
13109 const ConstantFPSDNode
*N0CFP
= isConstOrConstSplatFP(N0
);
13110 const ConstantFPSDNode
*N1CFP
= isConstOrConstSplatFP(N1
);
13112 if (N0CFP
&& N1CFP
) {
13113 const APFloat
&C0
= N0CFP
->getValueAPF();
13114 const APFloat
&C1
= N1CFP
->getValueAPF();
13115 return DAG
.getConstantFP(Op(C0
, C1
), SDLoc(N
), VT
);
13118 // Canonicalize to constant on RHS.
13119 if (isConstantFPBuildVectorOrConstantFP(N0
) &&
13120 !isConstantFPBuildVectorOrConstantFP(N1
))
13121 return DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
, N1
, N0
);
13126 SDValue
DAGCombiner::visitFMINNUM(SDNode
*N
) {
13127 return visitFMinMax(DAG
, N
, minnum
);
13130 SDValue
DAGCombiner::visitFMAXNUM(SDNode
*N
) {
13131 return visitFMinMax(DAG
, N
, maxnum
);
13134 SDValue
DAGCombiner::visitFMINIMUM(SDNode
*N
) {
13135 return visitFMinMax(DAG
, N
, minimum
);
13138 SDValue
DAGCombiner::visitFMAXIMUM(SDNode
*N
) {
13139 return visitFMinMax(DAG
, N
, maximum
);
13142 SDValue
DAGCombiner::visitFABS(SDNode
*N
) {
13143 SDValue N0
= N
->getOperand(0);
13144 EVT VT
= N
->getValueType(0);
13146 // fold (fabs c1) -> fabs(c1)
13147 if (isConstantFPBuildVectorOrConstantFP(N0
))
13148 return DAG
.getNode(ISD::FABS
, SDLoc(N
), VT
, N0
);
13150 // fold (fabs (fabs x)) -> (fabs x)
13151 if (N0
.getOpcode() == ISD::FABS
)
13152 return N
->getOperand(0);
13154 // fold (fabs (fneg x)) -> (fabs x)
13155 // fold (fabs (fcopysign x, y)) -> (fabs x)
13156 if (N0
.getOpcode() == ISD::FNEG
|| N0
.getOpcode() == ISD::FCOPYSIGN
)
13157 return DAG
.getNode(ISD::FABS
, SDLoc(N
), VT
, N0
.getOperand(0));
13159 // fabs(bitcast(x)) -> bitcast(x & ~sign) to avoid constant pool loads.
13160 if (!TLI
.isFAbsFree(VT
) && N0
.getOpcode() == ISD::BITCAST
&& N0
.hasOneUse()) {
13161 SDValue Int
= N0
.getOperand(0);
13162 EVT IntVT
= Int
.getValueType();
13163 if (IntVT
.isInteger() && !IntVT
.isVector()) {
13165 if (N0
.getValueType().isVector()) {
13166 // For a vector, get a mask such as 0x7f... per scalar element
13168 SignMask
= ~APInt::getSignMask(N0
.getScalarValueSizeInBits());
13169 SignMask
= APInt::getSplat(IntVT
.getSizeInBits(), SignMask
);
13171 // For a scalar, just generate 0x7f...
13172 SignMask
= ~APInt::getSignMask(IntVT
.getSizeInBits());
13175 Int
= DAG
.getNode(ISD::AND
, DL
, IntVT
, Int
,
13176 DAG
.getConstant(SignMask
, DL
, IntVT
));
13177 AddToWorklist(Int
.getNode());
13178 return DAG
.getBitcast(N
->getValueType(0), Int
);
13185 SDValue
DAGCombiner::visitBRCOND(SDNode
*N
) {
13186 SDValue Chain
= N
->getOperand(0);
13187 SDValue N1
= N
->getOperand(1);
13188 SDValue N2
= N
->getOperand(2);
13190 // If N is a constant we could fold this into a fallthrough or unconditional
13191 // branch. However that doesn't happen very often in normal code, because
13192 // Instcombine/SimplifyCFG should have handled the available opportunities.
13193 // If we did this folding here, it would be necessary to update the
13194 // MachineBasicBlock CFG, which is awkward.
13196 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
13198 if (N1
.getOpcode() == ISD::SETCC
&&
13199 TLI
.isOperationLegalOrCustom(ISD::BR_CC
,
13200 N1
.getOperand(0).getValueType())) {
13201 return DAG
.getNode(ISD::BR_CC
, SDLoc(N
), MVT::Other
,
13202 Chain
, N1
.getOperand(2),
13203 N1
.getOperand(0), N1
.getOperand(1), N2
);
13206 if (N1
.hasOneUse()) {
13207 if (SDValue NewN1
= rebuildSetCC(N1
))
13208 return DAG
.getNode(ISD::BRCOND
, SDLoc(N
), MVT::Other
, Chain
, NewN1
, N2
);
13214 SDValue
DAGCombiner::rebuildSetCC(SDValue N
) {
13215 if (N
.getOpcode() == ISD::SRL
||
13216 (N
.getOpcode() == ISD::TRUNCATE
&&
13217 (N
.getOperand(0).hasOneUse() &&
13218 N
.getOperand(0).getOpcode() == ISD::SRL
))) {
13219 // Look pass the truncate.
13220 if (N
.getOpcode() == ISD::TRUNCATE
)
13221 N
= N
.getOperand(0);
13223 // Match this pattern so that we can generate simpler code:
13226 // %b = and i32 %a, 2
13227 // %c = srl i32 %b, 1
13228 // brcond i32 %c ...
13233 // %b = and i32 %a, 2
13234 // %c = setcc eq %b, 0
13237 // This applies only when the AND constant value has one bit set and the
13238 // SRL constant is equal to the log2 of the AND constant. The back-end is
13239 // smart enough to convert the result into a TEST/JMP sequence.
13240 SDValue Op0
= N
.getOperand(0);
13241 SDValue Op1
= N
.getOperand(1);
13243 if (Op0
.getOpcode() == ISD::AND
&& Op1
.getOpcode() == ISD::Constant
) {
13244 SDValue AndOp1
= Op0
.getOperand(1);
13246 if (AndOp1
.getOpcode() == ISD::Constant
) {
13247 const APInt
&AndConst
= cast
<ConstantSDNode
>(AndOp1
)->getAPIntValue();
13249 if (AndConst
.isPowerOf2() &&
13250 cast
<ConstantSDNode
>(Op1
)->getAPIntValue() == AndConst
.logBase2()) {
13252 return DAG
.getSetCC(DL
, getSetCCResultType(Op0
.getValueType()),
13253 Op0
, DAG
.getConstant(0, DL
, Op0
.getValueType()),
13260 // Transform br(xor(x, y)) -> br(x != y)
13261 // Transform br(xor(xor(x,y), 1)) -> br (x == y)
13262 if (N
.getOpcode() == ISD::XOR
) {
13263 // Because we may call this on a speculatively constructed
13264 // SimplifiedSetCC Node, we need to simplify this node first.
13265 // Ideally this should be folded into SimplifySetCC and not
13266 // here. For now, grab a handle to N so we don't lose it from
13267 // replacements interal to the visit.
13268 HandleSDNode
XORHandle(N
);
13269 while (N
.getOpcode() == ISD::XOR
) {
13270 SDValue Tmp
= visitXOR(N
.getNode());
13271 // No simplification done.
13272 if (!Tmp
.getNode())
13274 // Returning N is form in-visit replacement that may invalidated
13275 // N. Grab value from Handle.
13276 if (Tmp
.getNode() == N
.getNode())
13277 N
= XORHandle
.getValue();
13278 else // Node simplified. Try simplifying again.
13282 if (N
.getOpcode() != ISD::XOR
)
13285 SDNode
*TheXor
= N
.getNode();
13287 SDValue Op0
= TheXor
->getOperand(0);
13288 SDValue Op1
= TheXor
->getOperand(1);
13290 if (Op0
.getOpcode() != ISD::SETCC
&& Op1
.getOpcode() != ISD::SETCC
) {
13291 bool Equal
= false;
13292 if (isOneConstant(Op0
) && Op0
.hasOneUse() &&
13293 Op0
.getOpcode() == ISD::XOR
) {
13294 TheXor
= Op0
.getNode();
13298 EVT SetCCVT
= N
.getValueType();
13300 SetCCVT
= getSetCCResultType(SetCCVT
);
13301 // Replace the uses of XOR with SETCC
13302 return DAG
.getSetCC(SDLoc(TheXor
), SetCCVT
, Op0
, Op1
,
13303 Equal
? ISD::SETEQ
: ISD::SETNE
);
13310 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
13312 SDValue
DAGCombiner::visitBR_CC(SDNode
*N
) {
13313 CondCodeSDNode
*CC
= cast
<CondCodeSDNode
>(N
->getOperand(1));
13314 SDValue CondLHS
= N
->getOperand(2), CondRHS
= N
->getOperand(3);
13316 // If N is a constant we could fold this into a fallthrough or unconditional
13317 // branch. However that doesn't happen very often in normal code, because
13318 // Instcombine/SimplifyCFG should have handled the available opportunities.
13319 // If we did this folding here, it would be necessary to update the
13320 // MachineBasicBlock CFG, which is awkward.
13322 // Use SimplifySetCC to simplify SETCC's.
13323 SDValue Simp
= SimplifySetCC(getSetCCResultType(CondLHS
.getValueType()),
13324 CondLHS
, CondRHS
, CC
->get(), SDLoc(N
),
13326 if (Simp
.getNode()) AddToWorklist(Simp
.getNode());
13328 // fold to a simpler setcc
13329 if (Simp
.getNode() && Simp
.getOpcode() == ISD::SETCC
)
13330 return DAG
.getNode(ISD::BR_CC
, SDLoc(N
), MVT::Other
,
13331 N
->getOperand(0), Simp
.getOperand(2),
13332 Simp
.getOperand(0), Simp
.getOperand(1),
13338 /// Return true if 'Use' is a load or a store that uses N as its base pointer
13339 /// and that N may be folded in the load / store addressing mode.
13340 static bool canFoldInAddressingMode(SDNode
*N
, SDNode
*Use
,
13342 const TargetLowering
&TLI
) {
13346 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(Use
)) {
13347 if (LD
->isIndexed() || LD
->getBasePtr().getNode() != N
)
13349 VT
= LD
->getMemoryVT();
13350 AS
= LD
->getAddressSpace();
13351 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(Use
)) {
13352 if (ST
->isIndexed() || ST
->getBasePtr().getNode() != N
)
13354 VT
= ST
->getMemoryVT();
13355 AS
= ST
->getAddressSpace();
13359 TargetLowering::AddrMode AM
;
13360 if (N
->getOpcode() == ISD::ADD
) {
13361 AM
.HasBaseReg
= true;
13362 ConstantSDNode
*Offset
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
13365 AM
.BaseOffs
= Offset
->getSExtValue();
13369 } else if (N
->getOpcode() == ISD::SUB
) {
13370 AM
.HasBaseReg
= true;
13371 ConstantSDNode
*Offset
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
13374 AM
.BaseOffs
= -Offset
->getSExtValue();
13381 return TLI
.isLegalAddressingMode(DAG
.getDataLayout(), AM
,
13382 VT
.getTypeForEVT(*DAG
.getContext()), AS
);
13385 /// Try turning a load/store into a pre-indexed load/store when the base
13386 /// pointer is an add or subtract and it has other uses besides the load/store.
13387 /// After the transformation, the new indexed load/store has effectively folded
13388 /// the add/subtract in and all of its other uses are redirected to the
13389 /// new load/store.
13390 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode
*N
) {
13391 if (Level
< AfterLegalizeDAG
)
13394 bool isLoad
= true;
13397 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
13398 if (LD
->isIndexed())
13400 VT
= LD
->getMemoryVT();
13401 if (!TLI
.isIndexedLoadLegal(ISD::PRE_INC
, VT
) &&
13402 !TLI
.isIndexedLoadLegal(ISD::PRE_DEC
, VT
))
13404 Ptr
= LD
->getBasePtr();
13405 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
13406 if (ST
->isIndexed())
13408 VT
= ST
->getMemoryVT();
13409 if (!TLI
.isIndexedStoreLegal(ISD::PRE_INC
, VT
) &&
13410 !TLI
.isIndexedStoreLegal(ISD::PRE_DEC
, VT
))
13412 Ptr
= ST
->getBasePtr();
13418 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
13419 // out. There is no reason to make this a preinc/predec.
13420 if ((Ptr
.getOpcode() != ISD::ADD
&& Ptr
.getOpcode() != ISD::SUB
) ||
13421 Ptr
.getNode()->hasOneUse())
13424 // Ask the target to do addressing mode selection.
13427 ISD::MemIndexedMode AM
= ISD::UNINDEXED
;
13428 if (!TLI
.getPreIndexedAddressParts(N
, BasePtr
, Offset
, AM
, DAG
))
13431 // Backends without true r+i pre-indexed forms may need to pass a
13432 // constant base with a variable offset so that constant coercion
13433 // will work with the patterns in canonical form.
13434 bool Swapped
= false;
13435 if (isa
<ConstantSDNode
>(BasePtr
)) {
13436 std::swap(BasePtr
, Offset
);
13440 // Don't create a indexed load / store with zero offset.
13441 if (isNullConstant(Offset
))
13444 // Try turning it into a pre-indexed load / store except when:
13445 // 1) The new base ptr is a frame index.
13446 // 2) If N is a store and the new base ptr is either the same as or is a
13447 // predecessor of the value being stored.
13448 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
13449 // that would create a cycle.
13450 // 4) All uses are load / store ops that use it as old base ptr.
13452 // Check #1. Preinc'ing a frame index would require copying the stack pointer
13453 // (plus the implicit offset) to a register to preinc anyway.
13454 if (isa
<FrameIndexSDNode
>(BasePtr
) || isa
<RegisterSDNode
>(BasePtr
))
13459 SDValue Val
= cast
<StoreSDNode
>(N
)->getValue();
13461 // Would require a copy.
13462 if (Val
== BasePtr
)
13465 // Would create a cycle.
13466 if (Val
== Ptr
|| Ptr
->isPredecessorOf(Val
.getNode()))
13470 // Caches for hasPredecessorHelper.
13471 SmallPtrSet
<const SDNode
*, 32> Visited
;
13472 SmallVector
<const SDNode
*, 16> Worklist
;
13473 Worklist
.push_back(N
);
13475 // If the offset is a constant, there may be other adds of constants that
13476 // can be folded with this one. We should do this to avoid having to keep
13477 // a copy of the original base pointer.
13478 SmallVector
<SDNode
*, 16> OtherUses
;
13479 if (isa
<ConstantSDNode
>(Offset
))
13480 for (SDNode::use_iterator UI
= BasePtr
.getNode()->use_begin(),
13481 UE
= BasePtr
.getNode()->use_end();
13483 SDUse
&Use
= UI
.getUse();
13484 // Skip the use that is Ptr and uses of other results from BasePtr's
13485 // node (important for nodes that return multiple results).
13486 if (Use
.getUser() == Ptr
.getNode() || Use
!= BasePtr
)
13489 if (SDNode::hasPredecessorHelper(Use
.getUser(), Visited
, Worklist
))
13492 if (Use
.getUser()->getOpcode() != ISD::ADD
&&
13493 Use
.getUser()->getOpcode() != ISD::SUB
) {
13498 SDValue Op1
= Use
.getUser()->getOperand((UI
.getOperandNo() + 1) & 1);
13499 if (!isa
<ConstantSDNode
>(Op1
)) {
13504 // FIXME: In some cases, we can be smarter about this.
13505 if (Op1
.getValueType() != Offset
.getValueType()) {
13510 OtherUses
.push_back(Use
.getUser());
13514 std::swap(BasePtr
, Offset
);
13516 // Now check for #3 and #4.
13517 bool RealUse
= false;
13519 for (SDNode
*Use
: Ptr
.getNode()->uses()) {
13522 if (SDNode::hasPredecessorHelper(Use
, Visited
, Worklist
))
13525 // If Ptr may be folded in addressing mode of other use, then it's
13526 // not profitable to do this transformation.
13527 if (!canFoldInAddressingMode(Ptr
.getNode(), Use
, DAG
, TLI
))
13536 Result
= DAG
.getIndexedLoad(SDValue(N
,0), SDLoc(N
),
13537 BasePtr
, Offset
, AM
);
13539 Result
= DAG
.getIndexedStore(SDValue(N
,0), SDLoc(N
),
13540 BasePtr
, Offset
, AM
);
13543 LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N
->dump(&DAG
); dbgs() << "\nWith: ";
13544 Result
.getNode()->dump(&DAG
); dbgs() << '\n');
13545 WorklistRemover
DeadNodes(*this);
13547 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(0));
13548 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Result
.getValue(2));
13550 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(1));
13553 // Finally, since the node is now dead, remove it from the graph.
13554 deleteAndRecombine(N
);
13557 std::swap(BasePtr
, Offset
);
13559 // Replace other uses of BasePtr that can be updated to use Ptr
13560 for (unsigned i
= 0, e
= OtherUses
.size(); i
!= e
; ++i
) {
13561 unsigned OffsetIdx
= 1;
13562 if (OtherUses
[i
]->getOperand(OffsetIdx
).getNode() == BasePtr
.getNode())
13564 assert(OtherUses
[i
]->getOperand(!OffsetIdx
).getNode() ==
13565 BasePtr
.getNode() && "Expected BasePtr operand");
13567 // We need to replace ptr0 in the following expression:
13568 // x0 * offset0 + y0 * ptr0 = t0
13570 // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
13572 // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
13573 // indexed load/store and the expression that needs to be re-written.
13575 // Therefore, we have:
13576 // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
13578 ConstantSDNode
*CN
=
13579 cast
<ConstantSDNode
>(OtherUses
[i
]->getOperand(OffsetIdx
));
13580 int X0
, X1
, Y0
, Y1
;
13581 const APInt
&Offset0
= CN
->getAPIntValue();
13582 APInt Offset1
= cast
<ConstantSDNode
>(Offset
)->getAPIntValue();
13584 X0
= (OtherUses
[i
]->getOpcode() == ISD::SUB
&& OffsetIdx
== 1) ? -1 : 1;
13585 Y0
= (OtherUses
[i
]->getOpcode() == ISD::SUB
&& OffsetIdx
== 0) ? -1 : 1;
13586 X1
= (AM
== ISD::PRE_DEC
&& !Swapped
) ? -1 : 1;
13587 Y1
= (AM
== ISD::PRE_DEC
&& Swapped
) ? -1 : 1;
13589 unsigned Opcode
= (Y0
* Y1
< 0) ? ISD::SUB
: ISD::ADD
;
13591 APInt CNV
= Offset0
;
13592 if (X0
< 0) CNV
= -CNV
;
13593 if (X1
* Y0
* Y1
< 0) CNV
= CNV
+ Offset1
;
13594 else CNV
= CNV
- Offset1
;
13596 SDLoc
DL(OtherUses
[i
]);
13598 // We can now generate the new expression.
13599 SDValue NewOp1
= DAG
.getConstant(CNV
, DL
, CN
->getValueType(0));
13600 SDValue NewOp2
= Result
.getValue(isLoad
? 1 : 0);
13602 SDValue NewUse
= DAG
.getNode(Opcode
,
13604 OtherUses
[i
]->getValueType(0), NewOp1
, NewOp2
);
13605 DAG
.ReplaceAllUsesOfValueWith(SDValue(OtherUses
[i
], 0), NewUse
);
13606 deleteAndRecombine(OtherUses
[i
]);
13609 // Replace the uses of Ptr with uses of the updated base value.
13610 DAG
.ReplaceAllUsesOfValueWith(Ptr
, Result
.getValue(isLoad
? 1 : 0));
13611 deleteAndRecombine(Ptr
.getNode());
13612 AddToWorklist(Result
.getNode());
13617 /// Try to combine a load/store with a add/sub of the base pointer node into a
13618 /// post-indexed load/store. The transformation folded the add/subtract into the
13619 /// new indexed load/store effectively and all of its uses are redirected to the
13620 /// new load/store.
13621 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode
*N
) {
13622 if (Level
< AfterLegalizeDAG
)
13625 bool isLoad
= true;
13628 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
13629 if (LD
->isIndexed())
13631 VT
= LD
->getMemoryVT();
13632 if (!TLI
.isIndexedLoadLegal(ISD::POST_INC
, VT
) &&
13633 !TLI
.isIndexedLoadLegal(ISD::POST_DEC
, VT
))
13635 Ptr
= LD
->getBasePtr();
13636 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
13637 if (ST
->isIndexed())
13639 VT
= ST
->getMemoryVT();
13640 if (!TLI
.isIndexedStoreLegal(ISD::POST_INC
, VT
) &&
13641 !TLI
.isIndexedStoreLegal(ISD::POST_DEC
, VT
))
13643 Ptr
= ST
->getBasePtr();
13649 if (Ptr
.getNode()->hasOneUse())
13652 for (SDNode
*Op
: Ptr
.getNode()->uses()) {
13654 (Op
->getOpcode() != ISD::ADD
&& Op
->getOpcode() != ISD::SUB
))
13659 ISD::MemIndexedMode AM
= ISD::UNINDEXED
;
13660 if (TLI
.getPostIndexedAddressParts(N
, Op
, BasePtr
, Offset
, AM
, DAG
)) {
13661 // Don't create a indexed load / store with zero offset.
13662 if (isNullConstant(Offset
))
13665 // Try turning it into a post-indexed load / store except when
13666 // 1) All uses are load / store ops that use it as base ptr (and
13667 // it may be folded as addressing mmode).
13668 // 2) Op must be independent of N, i.e. Op is neither a predecessor
13669 // nor a successor of N. Otherwise, if Op is folded that would
13672 if (isa
<FrameIndexSDNode
>(BasePtr
) || isa
<RegisterSDNode
>(BasePtr
))
13676 bool TryNext
= false;
13677 for (SDNode
*Use
: BasePtr
.getNode()->uses()) {
13678 if (Use
== Ptr
.getNode())
13681 // If all the uses are load / store addresses, then don't do the
13683 if (Use
->getOpcode() == ISD::ADD
|| Use
->getOpcode() == ISD::SUB
){
13684 bool RealUse
= false;
13685 for (SDNode
*UseUse
: Use
->uses()) {
13686 if (!canFoldInAddressingMode(Use
, UseUse
, DAG
, TLI
))
13701 SmallPtrSet
<const SDNode
*, 32> Visited
;
13702 SmallVector
<const SDNode
*, 8> Worklist
;
13703 // Ptr is predecessor to both N and Op.
13704 Visited
.insert(Ptr
.getNode());
13705 Worklist
.push_back(N
);
13706 Worklist
.push_back(Op
);
13707 if (!SDNode::hasPredecessorHelper(N
, Visited
, Worklist
) &&
13708 !SDNode::hasPredecessorHelper(Op
, Visited
, Worklist
)) {
13709 SDValue Result
= isLoad
13710 ? DAG
.getIndexedLoad(SDValue(N
,0), SDLoc(N
),
13711 BasePtr
, Offset
, AM
)
13712 : DAG
.getIndexedStore(SDValue(N
,0), SDLoc(N
),
13713 BasePtr
, Offset
, AM
);
13714 ++PostIndexedNodes
;
13716 LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N
->dump(&DAG
);
13717 dbgs() << "\nWith: "; Result
.getNode()->dump(&DAG
);
13719 WorklistRemover
DeadNodes(*this);
13721 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(0));
13722 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Result
.getValue(2));
13724 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(1));
13727 // Finally, since the node is now dead, remove it from the graph.
13728 deleteAndRecombine(N
);
13730 // Replace the uses of Use with uses of the updated base value.
13731 DAG
.ReplaceAllUsesOfValueWith(SDValue(Op
, 0),
13732 Result
.getValue(isLoad
? 1 : 0));
13733 deleteAndRecombine(Op
);
13742 /// Return the base-pointer arithmetic from an indexed \p LD.
13743 SDValue
DAGCombiner::SplitIndexingFromLoad(LoadSDNode
*LD
) {
13744 ISD::MemIndexedMode AM
= LD
->getAddressingMode();
13745 assert(AM
!= ISD::UNINDEXED
);
13746 SDValue BP
= LD
->getOperand(1);
13747 SDValue Inc
= LD
->getOperand(2);
13749 // Some backends use TargetConstants for load offsets, but don't expect
13750 // TargetConstants in general ADD nodes. We can convert these constants into
13751 // regular Constants (if the constant is not opaque).
13752 assert((Inc
.getOpcode() != ISD::TargetConstant
||
13753 !cast
<ConstantSDNode
>(Inc
)->isOpaque()) &&
13754 "Cannot split out indexing using opaque target constants");
13755 if (Inc
.getOpcode() == ISD::TargetConstant
) {
13756 ConstantSDNode
*ConstInc
= cast
<ConstantSDNode
>(Inc
);
13757 Inc
= DAG
.getConstant(*ConstInc
->getConstantIntValue(), SDLoc(Inc
),
13758 ConstInc
->getValueType(0));
13762 (AM
== ISD::PRE_INC
|| AM
== ISD::POST_INC
? ISD::ADD
: ISD::SUB
);
13763 return DAG
.getNode(Opc
, SDLoc(LD
), BP
.getSimpleValueType(), BP
, Inc
);
13766 static inline int numVectorEltsOrZero(EVT T
) {
13767 return T
.isVector() ? T
.getVectorNumElements() : 0;
13770 bool DAGCombiner::getTruncatedStoreValue(StoreSDNode
*ST
, SDValue
&Val
) {
13771 Val
= ST
->getValue();
13772 EVT STType
= Val
.getValueType();
13773 EVT STMemType
= ST
->getMemoryVT();
13774 if (STType
== STMemType
)
13776 if (isTypeLegal(STMemType
))
13777 return false; // fail.
13778 if (STType
.isFloatingPoint() && STMemType
.isFloatingPoint() &&
13779 TLI
.isOperationLegal(ISD::FTRUNC
, STMemType
)) {
13780 Val
= DAG
.getNode(ISD::FTRUNC
, SDLoc(ST
), STMemType
, Val
);
13783 if (numVectorEltsOrZero(STType
) == numVectorEltsOrZero(STMemType
) &&
13784 STType
.isInteger() && STMemType
.isInteger()) {
13785 Val
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(ST
), STMemType
, Val
);
13788 if (STType
.getSizeInBits() == STMemType
.getSizeInBits()) {
13789 Val
= DAG
.getBitcast(STMemType
, Val
);
13792 return false; // fail.
13795 bool DAGCombiner::extendLoadedValueToExtension(LoadSDNode
*LD
, SDValue
&Val
) {
13796 EVT LDMemType
= LD
->getMemoryVT();
13797 EVT LDType
= LD
->getValueType(0);
13798 assert(Val
.getValueType() == LDMemType
&&
13799 "Attempting to extend value of non-matching type");
13800 if (LDType
== LDMemType
)
13802 if (LDMemType
.isInteger() && LDType
.isInteger()) {
13803 switch (LD
->getExtensionType()) {
13804 case ISD::NON_EXTLOAD
:
13805 Val
= DAG
.getBitcast(LDType
, Val
);
13808 Val
= DAG
.getNode(ISD::ANY_EXTEND
, SDLoc(LD
), LDType
, Val
);
13810 case ISD::SEXTLOAD
:
13811 Val
= DAG
.getNode(ISD::SIGN_EXTEND
, SDLoc(LD
), LDType
, Val
);
13813 case ISD::ZEXTLOAD
:
13814 Val
= DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(LD
), LDType
, Val
);
13821 SDValue
DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode
*LD
) {
13822 if (OptLevel
== CodeGenOpt::None
|| LD
->isVolatile())
13824 SDValue Chain
= LD
->getOperand(0);
13825 StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(Chain
.getNode());
13826 if (!ST
|| ST
->isVolatile())
13829 EVT LDType
= LD
->getValueType(0);
13830 EVT LDMemType
= LD
->getMemoryVT();
13831 EVT STMemType
= ST
->getMemoryVT();
13832 EVT STType
= ST
->getValue().getValueType();
13834 BaseIndexOffset BasePtrLD
= BaseIndexOffset::match(LD
, DAG
);
13835 BaseIndexOffset BasePtrST
= BaseIndexOffset::match(ST
, DAG
);
13837 if (!BasePtrST
.equalBaseIndex(BasePtrLD
, DAG
, Offset
))
13840 // Normalize for Endianness. After this Offset=0 will denote that the least
13841 // significant bit in the loaded value maps to the least significant bit in
13842 // the stored value). With Offset=n (for n > 0) the loaded value starts at the
13843 // n:th least significant byte of the stored value.
13844 if (DAG
.getDataLayout().isBigEndian())
13845 Offset
= (STMemType
.getStoreSizeInBits() -
13846 LDMemType
.getStoreSizeInBits()) / 8 - Offset
;
13848 // Check that the stored value cover all bits that are loaded.
13851 (Offset
* 8 + LDMemType
.getSizeInBits() <= STMemType
.getSizeInBits());
13853 auto ReplaceLd
= [&](LoadSDNode
*LD
, SDValue Val
, SDValue Chain
) -> SDValue
{
13854 if (LD
->isIndexed()) {
13855 bool IsSub
= (LD
->getAddressingMode() == ISD::PRE_DEC
||
13856 LD
->getAddressingMode() == ISD::POST_DEC
);
13857 unsigned Opc
= IsSub
? ISD::SUB
: ISD::ADD
;
13858 SDValue Idx
= DAG
.getNode(Opc
, SDLoc(LD
), LD
->getOperand(1).getValueType(),
13859 LD
->getOperand(1), LD
->getOperand(2));
13860 SDValue Ops
[] = {Val
, Idx
, Chain
};
13861 return CombineTo(LD
, Ops
, 3);
13863 return CombineTo(LD
, Val
, Chain
);
13869 // Memory as copy space (potentially masked).
13870 if (Offset
== 0 && LDType
== STType
&& STMemType
== LDMemType
) {
13871 // Simple case: Direct non-truncating forwarding
13872 if (LDType
.getSizeInBits() == LDMemType
.getSizeInBits())
13873 return ReplaceLd(LD
, ST
->getValue(), Chain
);
13874 // Can we model the truncate and extension with an and mask?
13875 if (STType
.isInteger() && LDMemType
.isInteger() && !STType
.isVector() &&
13876 !LDMemType
.isVector() && LD
->getExtensionType() != ISD::SEXTLOAD
) {
13877 // Mask to size of LDMemType
13879 DAG
.getConstant(APInt::getLowBitsSet(STType
.getSizeInBits(),
13880 STMemType
.getSizeInBits()),
13881 SDLoc(ST
), STType
);
13882 auto Val
= DAG
.getNode(ISD::AND
, SDLoc(LD
), LDType
, ST
->getValue(), Mask
);
13883 return ReplaceLd(LD
, Val
, Chain
);
13887 // TODO: Deal with nonzero offset.
13888 if (LD
->getBasePtr().isUndef() || Offset
!= 0)
13890 // Model necessary truncations / extenstions.
13892 // Truncate Value To Stored Memory Size.
13894 if (!getTruncatedStoreValue(ST
, Val
))
13896 if (!isTypeLegal(LDMemType
))
13898 if (STMemType
!= LDMemType
) {
13899 // TODO: Support vectors? This requires extract_subvector/bitcast.
13900 if (!STMemType
.isVector() && !LDMemType
.isVector() &&
13901 STMemType
.isInteger() && LDMemType
.isInteger())
13902 Val
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(LD
), LDMemType
, Val
);
13906 if (!extendLoadedValueToExtension(LD
, Val
))
13908 return ReplaceLd(LD
, Val
, Chain
);
13911 // On failure, cleanup dead nodes we may have created.
13912 if (Val
->use_empty())
13913 deleteAndRecombine(Val
.getNode());
13917 SDValue
DAGCombiner::visitLOAD(SDNode
*N
) {
13918 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
13919 SDValue Chain
= LD
->getChain();
13920 SDValue Ptr
= LD
->getBasePtr();
13922 // If load is not volatile and there are no uses of the loaded value (and
13923 // the updated indexed value in case of indexed loads), change uses of the
13924 // chain value into uses of the chain input (i.e. delete the dead load).
13925 if (!LD
->isVolatile()) {
13926 if (N
->getValueType(1) == MVT::Other
) {
13927 // Unindexed loads.
13928 if (!N
->hasAnyUseOfValue(0)) {
13929 // It's not safe to use the two value CombineTo variant here. e.g.
13930 // v1, chain2 = load chain1, loc
13931 // v2, chain3 = load chain2, loc
13933 // Now we replace use of chain2 with chain1. This makes the second load
13934 // isomorphic to the one we are deleting, and thus makes this load live.
13935 LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N
->dump(&DAG
);
13936 dbgs() << "\nWith chain: "; Chain
.getNode()->dump(&DAG
);
13938 WorklistRemover
DeadNodes(*this);
13939 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Chain
);
13940 AddUsersToWorklist(Chain
.getNode());
13941 if (N
->use_empty())
13942 deleteAndRecombine(N
);
13944 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
13948 assert(N
->getValueType(2) == MVT::Other
&& "Malformed indexed loads?");
13950 // If this load has an opaque TargetConstant offset, then we cannot split
13951 // the indexing into an add/sub directly (that TargetConstant may not be
13952 // valid for a different type of node, and we cannot convert an opaque
13953 // target constant into a regular constant).
13954 bool HasOTCInc
= LD
->getOperand(2).getOpcode() == ISD::TargetConstant
&&
13955 cast
<ConstantSDNode
>(LD
->getOperand(2))->isOpaque();
13957 if (!N
->hasAnyUseOfValue(0) &&
13958 ((MaySplitLoadIndex
&& !HasOTCInc
) || !N
->hasAnyUseOfValue(1))) {
13959 SDValue Undef
= DAG
.getUNDEF(N
->getValueType(0));
13961 if (N
->hasAnyUseOfValue(1) && MaySplitLoadIndex
&& !HasOTCInc
) {
13962 Index
= SplitIndexingFromLoad(LD
);
13963 // Try to fold the base pointer arithmetic into subsequent loads and
13965 AddUsersToWorklist(N
);
13967 Index
= DAG
.getUNDEF(N
->getValueType(1));
13968 LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N
->dump(&DAG
);
13969 dbgs() << "\nWith: "; Undef
.getNode()->dump(&DAG
);
13970 dbgs() << " and 2 other values\n");
13971 WorklistRemover
DeadNodes(*this);
13972 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Undef
);
13973 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Index
);
13974 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 2), Chain
);
13975 deleteAndRecombine(N
);
13976 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
13981 // If this load is directly stored, replace the load value with the stored
13983 if (auto V
= ForwardStoreValueToDirectLoad(LD
))
13986 // Try to infer better alignment information than the load already has.
13987 if (OptLevel
!= CodeGenOpt::None
&& LD
->isUnindexed()) {
13988 if (unsigned Align
= DAG
.InferPtrAlignment(Ptr
)) {
13989 if (Align
> LD
->getAlignment() && LD
->getSrcValueOffset() % Align
== 0) {
13990 SDValue NewLoad
= DAG
.getExtLoad(
13991 LD
->getExtensionType(), SDLoc(N
), LD
->getValueType(0), Chain
, Ptr
,
13992 LD
->getPointerInfo(), LD
->getMemoryVT(), Align
,
13993 LD
->getMemOperand()->getFlags(), LD
->getAAInfo());
13994 // NewLoad will always be N as we are only refining the alignment
13995 assert(NewLoad
.getNode() == N
);
14001 if (LD
->isUnindexed()) {
14002 // Walk up chain skipping non-aliasing memory nodes.
14003 SDValue BetterChain
= FindBetterChain(LD
, Chain
);
14005 // If there is a better chain.
14006 if (Chain
!= BetterChain
) {
14009 // Replace the chain to void dependency.
14010 if (LD
->getExtensionType() == ISD::NON_EXTLOAD
) {
14011 ReplLoad
= DAG
.getLoad(N
->getValueType(0), SDLoc(LD
),
14012 BetterChain
, Ptr
, LD
->getMemOperand());
14014 ReplLoad
= DAG
.getExtLoad(LD
->getExtensionType(), SDLoc(LD
),
14015 LD
->getValueType(0),
14016 BetterChain
, Ptr
, LD
->getMemoryVT(),
14017 LD
->getMemOperand());
14020 // Create token factor to keep old chain connected.
14021 SDValue Token
= DAG
.getNode(ISD::TokenFactor
, SDLoc(N
),
14022 MVT::Other
, Chain
, ReplLoad
.getValue(1));
14024 // Replace uses with load result and token factor
14025 return CombineTo(N
, ReplLoad
.getValue(0), Token
);
14029 // Try transforming N to an indexed load.
14030 if (CombineToPreIndexedLoadStore(N
) || CombineToPostIndexedLoadStore(N
))
14031 return SDValue(N
, 0);
14033 // Try to slice up N to more direct loads if the slices are mapped to
14034 // different register banks or pairing can take place.
14035 if (SliceUpLoad(N
))
14036 return SDValue(N
, 0);
14043 /// Helper structure used to slice a load in smaller loads.
14044 /// Basically a slice is obtained from the following sequence:
14045 /// Origin = load Ty1, Base
14046 /// Shift = srl Ty1 Origin, CstTy Amount
14047 /// Inst = trunc Shift to Ty2
14049 /// Then, it will be rewritten into:
14050 /// Slice = load SliceTy, Base + SliceOffset
14051 /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2
14053 /// SliceTy is deduced from the number of bits that are actually used to
14055 struct LoadedSlice
{
14056 /// Helper structure used to compute the cost of a slice.
14058 /// Are we optimizing for code size.
14062 unsigned Loads
= 0;
14063 unsigned Truncates
= 0;
14064 unsigned CrossRegisterBanksCopies
= 0;
14065 unsigned ZExts
= 0;
14066 unsigned Shift
= 0;
14068 Cost(bool ForCodeSize
= false) : ForCodeSize(ForCodeSize
) {}
14070 /// Get the cost of one isolated slice.
14071 Cost(const LoadedSlice
&LS
, bool ForCodeSize
= false)
14072 : ForCodeSize(ForCodeSize
), Loads(1) {
14073 EVT TruncType
= LS
.Inst
->getValueType(0);
14074 EVT LoadedType
= LS
.getLoadedType();
14075 if (TruncType
!= LoadedType
&&
14076 !LS
.DAG
->getTargetLoweringInfo().isZExtFree(LoadedType
, TruncType
))
14080 /// Account for slicing gain in the current cost.
14081 /// Slicing provide a few gains like removing a shift or a
14082 /// truncate. This method allows to grow the cost of the original
14083 /// load with the gain from this slice.
14084 void addSliceGain(const LoadedSlice
&LS
) {
14085 // Each slice saves a truncate.
14086 const TargetLowering
&TLI
= LS
.DAG
->getTargetLoweringInfo();
14087 if (!TLI
.isTruncateFree(LS
.Inst
->getOperand(0).getValueType(),
14088 LS
.Inst
->getValueType(0)))
14090 // If there is a shift amount, this slice gets rid of it.
14093 // If this slice can merge a cross register bank copy, account for it.
14094 if (LS
.canMergeExpensiveCrossRegisterBankCopy())
14095 ++CrossRegisterBanksCopies
;
14098 Cost
&operator+=(const Cost
&RHS
) {
14099 Loads
+= RHS
.Loads
;
14100 Truncates
+= RHS
.Truncates
;
14101 CrossRegisterBanksCopies
+= RHS
.CrossRegisterBanksCopies
;
14102 ZExts
+= RHS
.ZExts
;
14103 Shift
+= RHS
.Shift
;
14107 bool operator==(const Cost
&RHS
) const {
14108 return Loads
== RHS
.Loads
&& Truncates
== RHS
.Truncates
&&
14109 CrossRegisterBanksCopies
== RHS
.CrossRegisterBanksCopies
&&
14110 ZExts
== RHS
.ZExts
&& Shift
== RHS
.Shift
;
14113 bool operator!=(const Cost
&RHS
) const { return !(*this == RHS
); }
14115 bool operator<(const Cost
&RHS
) const {
14116 // Assume cross register banks copies are as expensive as loads.
14117 // FIXME: Do we want some more target hooks?
14118 unsigned ExpensiveOpsLHS
= Loads
+ CrossRegisterBanksCopies
;
14119 unsigned ExpensiveOpsRHS
= RHS
.Loads
+ RHS
.CrossRegisterBanksCopies
;
14120 // Unless we are optimizing for code size, consider the
14121 // expensive operation first.
14122 if (!ForCodeSize
&& ExpensiveOpsLHS
!= ExpensiveOpsRHS
)
14123 return ExpensiveOpsLHS
< ExpensiveOpsRHS
;
14124 return (Truncates
+ ZExts
+ Shift
+ ExpensiveOpsLHS
) <
14125 (RHS
.Truncates
+ RHS
.ZExts
+ RHS
.Shift
+ ExpensiveOpsRHS
);
14128 bool operator>(const Cost
&RHS
) const { return RHS
< *this; }
14130 bool operator<=(const Cost
&RHS
) const { return !(RHS
< *this); }
14132 bool operator>=(const Cost
&RHS
) const { return !(*this < RHS
); }
14135 // The last instruction that represent the slice. This should be a
14136 // truncate instruction.
14139 // The original load instruction.
14140 LoadSDNode
*Origin
;
14142 // The right shift amount in bits from the original load.
14145 // The DAG from which Origin came from.
14146 // This is used to get some contextual information about legal types, etc.
14149 LoadedSlice(SDNode
*Inst
= nullptr, LoadSDNode
*Origin
= nullptr,
14150 unsigned Shift
= 0, SelectionDAG
*DAG
= nullptr)
14151 : Inst(Inst
), Origin(Origin
), Shift(Shift
), DAG(DAG
) {}
14153 /// Get the bits used in a chunk of bits \p BitWidth large.
14154 /// \return Result is \p BitWidth and has used bits set to 1 and
14155 /// not used bits set to 0.
14156 APInt
getUsedBits() const {
14157 // Reproduce the trunc(lshr) sequence:
14158 // - Start from the truncated value.
14159 // - Zero extend to the desired bit width.
14161 assert(Origin
&& "No original load to compare against.");
14162 unsigned BitWidth
= Origin
->getValueSizeInBits(0);
14163 assert(Inst
&& "This slice is not bound to an instruction");
14164 assert(Inst
->getValueSizeInBits(0) <= BitWidth
&&
14165 "Extracted slice is bigger than the whole type!");
14166 APInt
UsedBits(Inst
->getValueSizeInBits(0), 0);
14167 UsedBits
.setAllBits();
14168 UsedBits
= UsedBits
.zext(BitWidth
);
14169 UsedBits
<<= Shift
;
14173 /// Get the size of the slice to be loaded in bytes.
14174 unsigned getLoadedSize() const {
14175 unsigned SliceSize
= getUsedBits().countPopulation();
14176 assert(!(SliceSize
& 0x7) && "Size is not a multiple of a byte.");
14177 return SliceSize
/ 8;
14180 /// Get the type that will be loaded for this slice.
14181 /// Note: This may not be the final type for the slice.
14182 EVT
getLoadedType() const {
14183 assert(DAG
&& "Missing context");
14184 LLVMContext
&Ctxt
= *DAG
->getContext();
14185 return EVT::getIntegerVT(Ctxt
, getLoadedSize() * 8);
14188 /// Get the alignment of the load used for this slice.
14189 unsigned getAlignment() const {
14190 unsigned Alignment
= Origin
->getAlignment();
14191 uint64_t Offset
= getOffsetFromBase();
14193 Alignment
= MinAlign(Alignment
, Alignment
+ Offset
);
14197 /// Check if this slice can be rewritten with legal operations.
14198 bool isLegal() const {
14199 // An invalid slice is not legal.
14200 if (!Origin
|| !Inst
|| !DAG
)
14203 // Offsets are for indexed load only, we do not handle that.
14204 if (!Origin
->getOffset().isUndef())
14207 const TargetLowering
&TLI
= DAG
->getTargetLoweringInfo();
14209 // Check that the type is legal.
14210 EVT SliceType
= getLoadedType();
14211 if (!TLI
.isTypeLegal(SliceType
))
14214 // Check that the load is legal for this type.
14215 if (!TLI
.isOperationLegal(ISD::LOAD
, SliceType
))
14218 // Check that the offset can be computed.
14219 // 1. Check its type.
14220 EVT PtrType
= Origin
->getBasePtr().getValueType();
14221 if (PtrType
== MVT::Untyped
|| PtrType
.isExtended())
14224 // 2. Check that it fits in the immediate.
14225 if (!TLI
.isLegalAddImmediate(getOffsetFromBase()))
14228 // 3. Check that the computation is legal.
14229 if (!TLI
.isOperationLegal(ISD::ADD
, PtrType
))
14232 // Check that the zext is legal if it needs one.
14233 EVT TruncateType
= Inst
->getValueType(0);
14234 if (TruncateType
!= SliceType
&&
14235 !TLI
.isOperationLegal(ISD::ZERO_EXTEND
, TruncateType
))
14241 /// Get the offset in bytes of this slice in the original chunk of
14243 /// \pre DAG != nullptr.
14244 uint64_t getOffsetFromBase() const {
14245 assert(DAG
&& "Missing context.");
14246 bool IsBigEndian
= DAG
->getDataLayout().isBigEndian();
14247 assert(!(Shift
& 0x7) && "Shifts not aligned on Bytes are not supported.");
14248 uint64_t Offset
= Shift
/ 8;
14249 unsigned TySizeInBytes
= Origin
->getValueSizeInBits(0) / 8;
14250 assert(!(Origin
->getValueSizeInBits(0) & 0x7) &&
14251 "The size of the original loaded type is not a multiple of a"
14253 // If Offset is bigger than TySizeInBytes, it means we are loading all
14254 // zeros. This should have been optimized before in the process.
14255 assert(TySizeInBytes
> Offset
&&
14256 "Invalid shift amount for given loaded size");
14258 Offset
= TySizeInBytes
- Offset
- getLoadedSize();
14262 /// Generate the sequence of instructions to load the slice
14263 /// represented by this object and redirect the uses of this slice to
14264 /// this new sequence of instructions.
14265 /// \pre this->Inst && this->Origin are valid Instructions and this
14266 /// object passed the legal check: LoadedSlice::isLegal returned true.
14267 /// \return The last instruction of the sequence used to load the slice.
14268 SDValue
loadSlice() const {
14269 assert(Inst
&& Origin
&& "Unable to replace a non-existing slice.");
14270 const SDValue
&OldBaseAddr
= Origin
->getBasePtr();
14271 SDValue BaseAddr
= OldBaseAddr
;
14272 // Get the offset in that chunk of bytes w.r.t. the endianness.
14273 int64_t Offset
= static_cast<int64_t>(getOffsetFromBase());
14274 assert(Offset
>= 0 && "Offset too big to fit in int64_t!");
14276 // BaseAddr = BaseAddr + Offset.
14277 EVT ArithType
= BaseAddr
.getValueType();
14279 BaseAddr
= DAG
->getNode(ISD::ADD
, DL
, ArithType
, BaseAddr
,
14280 DAG
->getConstant(Offset
, DL
, ArithType
));
14283 // Create the type of the loaded slice according to its size.
14284 EVT SliceType
= getLoadedType();
14286 // Create the load for the slice.
14288 DAG
->getLoad(SliceType
, SDLoc(Origin
), Origin
->getChain(), BaseAddr
,
14289 Origin
->getPointerInfo().getWithOffset(Offset
),
14290 getAlignment(), Origin
->getMemOperand()->getFlags());
14291 // If the final type is not the same as the loaded type, this means that
14292 // we have to pad with zero. Create a zero extend for that.
14293 EVT FinalType
= Inst
->getValueType(0);
14294 if (SliceType
!= FinalType
)
14296 DAG
->getNode(ISD::ZERO_EXTEND
, SDLoc(LastInst
), FinalType
, LastInst
);
14300 /// Check if this slice can be merged with an expensive cross register
14301 /// bank copy. E.g.,
14303 /// f = bitcast i32 i to float
14304 bool canMergeExpensiveCrossRegisterBankCopy() const {
14305 if (!Inst
|| !Inst
->hasOneUse())
14307 SDNode
*Use
= *Inst
->use_begin();
14308 if (Use
->getOpcode() != ISD::BITCAST
)
14310 assert(DAG
&& "Missing context");
14311 const TargetLowering
&TLI
= DAG
->getTargetLoweringInfo();
14312 EVT ResVT
= Use
->getValueType(0);
14313 const TargetRegisterClass
*ResRC
=
14314 TLI
.getRegClassFor(ResVT
.getSimpleVT(), Use
->isDivergent());
14315 const TargetRegisterClass
*ArgRC
=
14316 TLI
.getRegClassFor(Use
->getOperand(0).getValueType().getSimpleVT(),
14317 Use
->getOperand(0)->isDivergent());
14318 if (ArgRC
== ResRC
|| !TLI
.isOperationLegal(ISD::LOAD
, ResVT
))
14321 // At this point, we know that we perform a cross-register-bank copy.
14322 // Check if it is expensive.
14323 const TargetRegisterInfo
*TRI
= DAG
->getSubtarget().getRegisterInfo();
14324 // Assume bitcasts are cheap, unless both register classes do not
14325 // explicitly share a common sub class.
14326 if (!TRI
|| TRI
->getCommonSubClass(ArgRC
, ResRC
))
14329 // Check if it will be merged with the load.
14330 // 1. Check the alignment constraint.
14331 unsigned RequiredAlignment
= DAG
->getDataLayout().getABITypeAlignment(
14332 ResVT
.getTypeForEVT(*DAG
->getContext()));
14334 if (RequiredAlignment
> getAlignment())
14337 // 2. Check that the load is a legal operation for that type.
14338 if (!TLI
.isOperationLegal(ISD::LOAD
, ResVT
))
14341 // 3. Check that we do not have a zext in the way.
14342 if (Inst
->getValueType(0) != getLoadedType())
14349 } // end anonymous namespace
14351 /// Check that all bits set in \p UsedBits form a dense region, i.e.,
14352 /// \p UsedBits looks like 0..0 1..1 0..0.
14353 static bool areUsedBitsDense(const APInt
&UsedBits
) {
14354 // If all the bits are one, this is dense!
14355 if (UsedBits
.isAllOnesValue())
14358 // Get rid of the unused bits on the right.
14359 APInt NarrowedUsedBits
= UsedBits
.lshr(UsedBits
.countTrailingZeros());
14360 // Get rid of the unused bits on the left.
14361 if (NarrowedUsedBits
.countLeadingZeros())
14362 NarrowedUsedBits
= NarrowedUsedBits
.trunc(NarrowedUsedBits
.getActiveBits());
14363 // Check that the chunk of bits is completely used.
14364 return NarrowedUsedBits
.isAllOnesValue();
14367 /// Check whether or not \p First and \p Second are next to each other
14368 /// in memory. This means that there is no hole between the bits loaded
14369 /// by \p First and the bits loaded by \p Second.
14370 static bool areSlicesNextToEachOther(const LoadedSlice
&First
,
14371 const LoadedSlice
&Second
) {
14372 assert(First
.Origin
== Second
.Origin
&& First
.Origin
&&
14373 "Unable to match different memory origins.");
14374 APInt UsedBits
= First
.getUsedBits();
14375 assert((UsedBits
& Second
.getUsedBits()) == 0 &&
14376 "Slices are not supposed to overlap.");
14377 UsedBits
|= Second
.getUsedBits();
14378 return areUsedBitsDense(UsedBits
);
14381 /// Adjust the \p GlobalLSCost according to the target
14382 /// paring capabilities and the layout of the slices.
14383 /// \pre \p GlobalLSCost should account for at least as many loads as
14384 /// there is in the slices in \p LoadedSlices.
14385 static void adjustCostForPairing(SmallVectorImpl
<LoadedSlice
> &LoadedSlices
,
14386 LoadedSlice::Cost
&GlobalLSCost
) {
14387 unsigned NumberOfSlices
= LoadedSlices
.size();
14388 // If there is less than 2 elements, no pairing is possible.
14389 if (NumberOfSlices
< 2)
14392 // Sort the slices so that elements that are likely to be next to each
14393 // other in memory are next to each other in the list.
14394 llvm::sort(LoadedSlices
, [](const LoadedSlice
&LHS
, const LoadedSlice
&RHS
) {
14395 assert(LHS
.Origin
== RHS
.Origin
&& "Different bases not implemented.");
14396 return LHS
.getOffsetFromBase() < RHS
.getOffsetFromBase();
14398 const TargetLowering
&TLI
= LoadedSlices
[0].DAG
->getTargetLoweringInfo();
14399 // First (resp. Second) is the first (resp. Second) potentially candidate
14400 // to be placed in a paired load.
14401 const LoadedSlice
*First
= nullptr;
14402 const LoadedSlice
*Second
= nullptr;
14403 for (unsigned CurrSlice
= 0; CurrSlice
< NumberOfSlices
; ++CurrSlice
,
14404 // Set the beginning of the pair.
14406 Second
= &LoadedSlices
[CurrSlice
];
14408 // If First is NULL, it means we start a new pair.
14409 // Get to the next slice.
14413 EVT LoadedType
= First
->getLoadedType();
14415 // If the types of the slices are different, we cannot pair them.
14416 if (LoadedType
!= Second
->getLoadedType())
14419 // Check if the target supplies paired loads for this type.
14420 unsigned RequiredAlignment
= 0;
14421 if (!TLI
.hasPairedLoad(LoadedType
, RequiredAlignment
)) {
14422 // move to the next pair, this type is hopeless.
14426 // Check if we meet the alignment requirement.
14427 if (RequiredAlignment
> First
->getAlignment())
14430 // Check that both loads are next to each other in memory.
14431 if (!areSlicesNextToEachOther(*First
, *Second
))
14434 assert(GlobalLSCost
.Loads
> 0 && "We save more loads than we created!");
14435 --GlobalLSCost
.Loads
;
14436 // Move to the next pair.
14441 /// Check the profitability of all involved LoadedSlice.
14442 /// Currently, it is considered profitable if there is exactly two
14443 /// involved slices (1) which are (2) next to each other in memory, and
14444 /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3).
14446 /// Note: The order of the elements in \p LoadedSlices may be modified, but not
14447 /// the elements themselves.
14449 /// FIXME: When the cost model will be mature enough, we can relax
14450 /// constraints (1) and (2).
14451 static bool isSlicingProfitable(SmallVectorImpl
<LoadedSlice
> &LoadedSlices
,
14452 const APInt
&UsedBits
, bool ForCodeSize
) {
14453 unsigned NumberOfSlices
= LoadedSlices
.size();
14454 if (StressLoadSlicing
)
14455 return NumberOfSlices
> 1;
14458 if (NumberOfSlices
!= 2)
14462 if (!areUsedBitsDense(UsedBits
))
14466 LoadedSlice::Cost
OrigCost(ForCodeSize
), GlobalSlicingCost(ForCodeSize
);
14467 // The original code has one big load.
14468 OrigCost
.Loads
= 1;
14469 for (unsigned CurrSlice
= 0; CurrSlice
< NumberOfSlices
; ++CurrSlice
) {
14470 const LoadedSlice
&LS
= LoadedSlices
[CurrSlice
];
14471 // Accumulate the cost of all the slices.
14472 LoadedSlice::Cost
SliceCost(LS
, ForCodeSize
);
14473 GlobalSlicingCost
+= SliceCost
;
14475 // Account as cost in the original configuration the gain obtained
14476 // with the current slices.
14477 OrigCost
.addSliceGain(LS
);
14480 // If the target supports paired load, adjust the cost accordingly.
14481 adjustCostForPairing(LoadedSlices
, GlobalSlicingCost
);
14482 return OrigCost
> GlobalSlicingCost
;
14485 /// If the given load, \p LI, is used only by trunc or trunc(lshr)
14486 /// operations, split it in the various pieces being extracted.
14488 /// This sort of thing is introduced by SROA.
14489 /// This slicing takes care not to insert overlapping loads.
14490 /// \pre LI is a simple load (i.e., not an atomic or volatile load).
14491 bool DAGCombiner::SliceUpLoad(SDNode
*N
) {
14492 if (Level
< AfterLegalizeDAG
)
14495 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
14496 if (LD
->isVolatile() || !ISD::isNormalLoad(LD
) ||
14497 !LD
->getValueType(0).isInteger())
14500 // Keep track of already used bits to detect overlapping values.
14501 // In that case, we will just abort the transformation.
14502 APInt
UsedBits(LD
->getValueSizeInBits(0), 0);
14504 SmallVector
<LoadedSlice
, 4> LoadedSlices
;
14506 // Check if this load is used as several smaller chunks of bits.
14507 // Basically, look for uses in trunc or trunc(lshr) and record a new chain
14508 // of computation for each trunc.
14509 for (SDNode::use_iterator UI
= LD
->use_begin(), UIEnd
= LD
->use_end();
14510 UI
!= UIEnd
; ++UI
) {
14511 // Skip the uses of the chain.
14512 if (UI
.getUse().getResNo() != 0)
14515 SDNode
*User
= *UI
;
14516 unsigned Shift
= 0;
14518 // Check if this is a trunc(lshr).
14519 if (User
->getOpcode() == ISD::SRL
&& User
->hasOneUse() &&
14520 isa
<ConstantSDNode
>(User
->getOperand(1))) {
14521 Shift
= User
->getConstantOperandVal(1);
14522 User
= *User
->use_begin();
14525 // At this point, User is a Truncate, iff we encountered, trunc or
14527 if (User
->getOpcode() != ISD::TRUNCATE
)
14530 // The width of the type must be a power of 2 and greater than 8-bits.
14531 // Otherwise the load cannot be represented in LLVM IR.
14532 // Moreover, if we shifted with a non-8-bits multiple, the slice
14533 // will be across several bytes. We do not support that.
14534 unsigned Width
= User
->getValueSizeInBits(0);
14535 if (Width
< 8 || !isPowerOf2_32(Width
) || (Shift
& 0x7))
14538 // Build the slice for this chain of computations.
14539 LoadedSlice
LS(User
, LD
, Shift
, &DAG
);
14540 APInt CurrentUsedBits
= LS
.getUsedBits();
14542 // Check if this slice overlaps with another.
14543 if ((CurrentUsedBits
& UsedBits
) != 0)
14545 // Update the bits used globally.
14546 UsedBits
|= CurrentUsedBits
;
14548 // Check if the new slice would be legal.
14552 // Record the slice.
14553 LoadedSlices
.push_back(LS
);
14556 // Abort slicing if it does not seem to be profitable.
14557 if (!isSlicingProfitable(LoadedSlices
, UsedBits
, ForCodeSize
))
14562 // Rewrite each chain to use an independent load.
14563 // By construction, each chain can be represented by a unique load.
14565 // Prepare the argument for the new token factor for all the slices.
14566 SmallVector
<SDValue
, 8> ArgChains
;
14567 for (SmallVectorImpl
<LoadedSlice
>::const_iterator
14568 LSIt
= LoadedSlices
.begin(),
14569 LSItEnd
= LoadedSlices
.end();
14570 LSIt
!= LSItEnd
; ++LSIt
) {
14571 SDValue SliceInst
= LSIt
->loadSlice();
14572 CombineTo(LSIt
->Inst
, SliceInst
, true);
14573 if (SliceInst
.getOpcode() != ISD::LOAD
)
14574 SliceInst
= SliceInst
.getOperand(0);
14575 assert(SliceInst
->getOpcode() == ISD::LOAD
&&
14576 "It takes more than a zext to get to the loaded slice!!");
14577 ArgChains
.push_back(SliceInst
.getValue(1));
14580 SDValue Chain
= DAG
.getNode(ISD::TokenFactor
, SDLoc(LD
), MVT::Other
,
14582 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Chain
);
14583 AddToWorklist(Chain
.getNode());
14587 /// Check to see if V is (and load (ptr), imm), where the load is having
14588 /// specific bytes cleared out. If so, return the byte size being masked out
14589 /// and the shift amount.
14590 static std::pair
<unsigned, unsigned>
14591 CheckForMaskedLoad(SDValue V
, SDValue Ptr
, SDValue Chain
) {
14592 std::pair
<unsigned, unsigned> Result(0, 0);
14594 // Check for the structure we're looking for.
14595 if (V
->getOpcode() != ISD::AND
||
14596 !isa
<ConstantSDNode
>(V
->getOperand(1)) ||
14597 !ISD::isNormalLoad(V
->getOperand(0).getNode()))
14600 // Check the chain and pointer.
14601 LoadSDNode
*LD
= cast
<LoadSDNode
>(V
->getOperand(0));
14602 if (LD
->getBasePtr() != Ptr
) return Result
; // Not from same pointer.
14604 // This only handles simple types.
14605 if (V
.getValueType() != MVT::i16
&&
14606 V
.getValueType() != MVT::i32
&&
14607 V
.getValueType() != MVT::i64
)
14610 // Check the constant mask. Invert it so that the bits being masked out are
14611 // 0 and the bits being kept are 1. Use getSExtValue so that leading bits
14612 // follow the sign bit for uniformity.
14613 uint64_t NotMask
= ~cast
<ConstantSDNode
>(V
->getOperand(1))->getSExtValue();
14614 unsigned NotMaskLZ
= countLeadingZeros(NotMask
);
14615 if (NotMaskLZ
& 7) return Result
; // Must be multiple of a byte.
14616 unsigned NotMaskTZ
= countTrailingZeros(NotMask
);
14617 if (NotMaskTZ
& 7) return Result
; // Must be multiple of a byte.
14618 if (NotMaskLZ
== 64) return Result
; // All zero mask.
14620 // See if we have a continuous run of bits. If so, we have 0*1+0*
14621 if (countTrailingOnes(NotMask
>> NotMaskTZ
) + NotMaskTZ
+ NotMaskLZ
!= 64)
14624 // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
14625 if (V
.getValueType() != MVT::i64
&& NotMaskLZ
)
14626 NotMaskLZ
-= 64-V
.getValueSizeInBits();
14628 unsigned MaskedBytes
= (V
.getValueSizeInBits()-NotMaskLZ
-NotMaskTZ
)/8;
14629 switch (MaskedBytes
) {
14633 default: return Result
; // All one mask, or 5-byte mask.
14636 // Verify that the first bit starts at a multiple of mask so that the access
14637 // is aligned the same as the access width.
14638 if (NotMaskTZ
&& NotMaskTZ
/8 % MaskedBytes
) return Result
;
14640 // For narrowing to be valid, it must be the case that the load the
14641 // immediately preceding memory operation before the store.
14642 if (LD
== Chain
.getNode())
14644 else if (Chain
->getOpcode() == ISD::TokenFactor
&&
14645 SDValue(LD
, 1).hasOneUse()) {
14646 // LD has only 1 chain use so they are no indirect dependencies.
14647 if (!LD
->isOperandOf(Chain
.getNode()))
14650 return Result
; // Fail.
14652 Result
.first
= MaskedBytes
;
14653 Result
.second
= NotMaskTZ
/8;
14657 /// Check to see if IVal is something that provides a value as specified by
14658 /// MaskInfo. If so, replace the specified store with a narrower store of
14659 /// truncated IVal.
14661 ShrinkLoadReplaceStoreWithStore(const std::pair
<unsigned, unsigned> &MaskInfo
,
14662 SDValue IVal
, StoreSDNode
*St
,
14664 unsigned NumBytes
= MaskInfo
.first
;
14665 unsigned ByteShift
= MaskInfo
.second
;
14666 SelectionDAG
&DAG
= DC
->getDAG();
14668 // Check to see if IVal is all zeros in the part being masked in by the 'or'
14669 // that uses this. If not, this is not a replacement.
14670 APInt Mask
= ~APInt::getBitsSet(IVal
.getValueSizeInBits(),
14671 ByteShift
*8, (ByteShift
+NumBytes
)*8);
14672 if (!DAG
.MaskedValueIsZero(IVal
, Mask
)) return SDValue();
14674 // Check that it is legal on the target to do this. It is legal if the new
14675 // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
14677 MVT VT
= MVT::getIntegerVT(NumBytes
*8);
14678 if (!DC
->isTypeLegal(VT
))
14681 // Okay, we can do this! Replace the 'St' store with a store of IVal that is
14682 // shifted by ByteShift and truncated down to NumBytes.
14685 IVal
= DAG
.getNode(ISD::SRL
, DL
, IVal
.getValueType(), IVal
,
14686 DAG
.getConstant(ByteShift
*8, DL
,
14687 DC
->getShiftAmountTy(IVal
.getValueType())));
14690 // Figure out the offset for the store and the alignment of the access.
14692 unsigned NewAlign
= St
->getAlignment();
14694 if (DAG
.getDataLayout().isLittleEndian())
14695 StOffset
= ByteShift
;
14697 StOffset
= IVal
.getValueType().getStoreSize() - ByteShift
- NumBytes
;
14699 SDValue Ptr
= St
->getBasePtr();
14702 Ptr
= DAG
.getNode(ISD::ADD
, DL
, Ptr
.getValueType(),
14703 Ptr
, DAG
.getConstant(StOffset
, DL
, Ptr
.getValueType()));
14704 NewAlign
= MinAlign(NewAlign
, StOffset
);
14707 // Truncate down to the new size.
14708 IVal
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(IVal
), VT
, IVal
);
14712 .getStore(St
->getChain(), SDLoc(St
), IVal
, Ptr
,
14713 St
->getPointerInfo().getWithOffset(StOffset
), NewAlign
);
14716 /// Look for sequence of load / op / store where op is one of 'or', 'xor', and
14717 /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try
14718 /// narrowing the load and store if it would end up being a win for performance
14720 SDValue
DAGCombiner::ReduceLoadOpStoreWidth(SDNode
*N
) {
14721 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
14722 if (ST
->isVolatile())
14725 SDValue Chain
= ST
->getChain();
14726 SDValue Value
= ST
->getValue();
14727 SDValue Ptr
= ST
->getBasePtr();
14728 EVT VT
= Value
.getValueType();
14730 if (ST
->isTruncatingStore() || VT
.isVector() || !Value
.hasOneUse())
14733 unsigned Opc
= Value
.getOpcode();
14735 // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
14736 // is a byte mask indicating a consecutive number of bytes, check to see if
14737 // Y is known to provide just those bytes. If so, we try to replace the
14738 // load + replace + store sequence with a single (narrower) store, which makes
14740 if (Opc
== ISD::OR
) {
14741 std::pair
<unsigned, unsigned> MaskedLoad
;
14742 MaskedLoad
= CheckForMaskedLoad(Value
.getOperand(0), Ptr
, Chain
);
14743 if (MaskedLoad
.first
)
14744 if (SDValue NewST
= ShrinkLoadReplaceStoreWithStore(MaskedLoad
,
14745 Value
.getOperand(1), ST
,this))
14748 // Or is commutative, so try swapping X and Y.
14749 MaskedLoad
= CheckForMaskedLoad(Value
.getOperand(1), Ptr
, Chain
);
14750 if (MaskedLoad
.first
)
14751 if (SDValue NewST
= ShrinkLoadReplaceStoreWithStore(MaskedLoad
,
14752 Value
.getOperand(0), ST
,this))
14756 if ((Opc
!= ISD::OR
&& Opc
!= ISD::XOR
&& Opc
!= ISD::AND
) ||
14757 Value
.getOperand(1).getOpcode() != ISD::Constant
)
14760 SDValue N0
= Value
.getOperand(0);
14761 if (ISD::isNormalLoad(N0
.getNode()) && N0
.hasOneUse() &&
14762 Chain
== SDValue(N0
.getNode(), 1)) {
14763 LoadSDNode
*LD
= cast
<LoadSDNode
>(N0
);
14764 if (LD
->getBasePtr() != Ptr
||
14765 LD
->getPointerInfo().getAddrSpace() !=
14766 ST
->getPointerInfo().getAddrSpace())
14769 // Find the type to narrow it the load / op / store to.
14770 SDValue N1
= Value
.getOperand(1);
14771 unsigned BitWidth
= N1
.getValueSizeInBits();
14772 APInt Imm
= cast
<ConstantSDNode
>(N1
)->getAPIntValue();
14773 if (Opc
== ISD::AND
)
14774 Imm
^= APInt::getAllOnesValue(BitWidth
);
14775 if (Imm
== 0 || Imm
.isAllOnesValue())
14777 unsigned ShAmt
= Imm
.countTrailingZeros();
14778 unsigned MSB
= BitWidth
- Imm
.countLeadingZeros() - 1;
14779 unsigned NewBW
= NextPowerOf2(MSB
- ShAmt
);
14780 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), NewBW
);
14781 // The narrowing should be profitable, the load/store operation should be
14782 // legal (or custom) and the store size should be equal to the NewVT width.
14783 while (NewBW
< BitWidth
&&
14784 (NewVT
.getStoreSizeInBits() != NewBW
||
14785 !TLI
.isOperationLegalOrCustom(Opc
, NewVT
) ||
14786 !TLI
.isNarrowingProfitable(VT
, NewVT
))) {
14787 NewBW
= NextPowerOf2(NewBW
);
14788 NewVT
= EVT::getIntegerVT(*DAG
.getContext(), NewBW
);
14790 if (NewBW
>= BitWidth
)
14793 // If the lsb changed does not start at the type bitwidth boundary,
14794 // start at the previous one.
14796 ShAmt
= (((ShAmt
+ NewBW
- 1) / NewBW
) * NewBW
) - NewBW
;
14797 APInt Mask
= APInt::getBitsSet(BitWidth
, ShAmt
,
14798 std::min(BitWidth
, ShAmt
+ NewBW
));
14799 if ((Imm
& Mask
) == Imm
) {
14800 APInt NewImm
= (Imm
& Mask
).lshr(ShAmt
).trunc(NewBW
);
14801 if (Opc
== ISD::AND
)
14802 NewImm
^= APInt::getAllOnesValue(NewBW
);
14803 uint64_t PtrOff
= ShAmt
/ 8;
14804 // For big endian targets, we need to adjust the offset to the pointer to
14805 // load the correct bytes.
14806 if (DAG
.getDataLayout().isBigEndian())
14807 PtrOff
= (BitWidth
+ 7 - NewBW
) / 8 - PtrOff
;
14809 unsigned NewAlign
= MinAlign(LD
->getAlignment(), PtrOff
);
14810 Type
*NewVTTy
= NewVT
.getTypeForEVT(*DAG
.getContext());
14811 if (NewAlign
< DAG
.getDataLayout().getABITypeAlignment(NewVTTy
))
14814 SDValue NewPtr
= DAG
.getNode(ISD::ADD
, SDLoc(LD
),
14815 Ptr
.getValueType(), Ptr
,
14816 DAG
.getConstant(PtrOff
, SDLoc(LD
),
14817 Ptr
.getValueType()));
14819 DAG
.getLoad(NewVT
, SDLoc(N0
), LD
->getChain(), NewPtr
,
14820 LD
->getPointerInfo().getWithOffset(PtrOff
), NewAlign
,
14821 LD
->getMemOperand()->getFlags(), LD
->getAAInfo());
14822 SDValue NewVal
= DAG
.getNode(Opc
, SDLoc(Value
), NewVT
, NewLD
,
14823 DAG
.getConstant(NewImm
, SDLoc(Value
),
14826 DAG
.getStore(Chain
, SDLoc(N
), NewVal
, NewPtr
,
14827 ST
->getPointerInfo().getWithOffset(PtrOff
), NewAlign
);
14829 AddToWorklist(NewPtr
.getNode());
14830 AddToWorklist(NewLD
.getNode());
14831 AddToWorklist(NewVal
.getNode());
14832 WorklistRemover
DeadNodes(*this);
14833 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), NewLD
.getValue(1));
14842 /// For a given floating point load / store pair, if the load value isn't used
14843 /// by any other operations, then consider transforming the pair to integer
14844 /// load / store operations if the target deems the transformation profitable.
14845 SDValue
DAGCombiner::TransformFPLoadStorePair(SDNode
*N
) {
14846 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
14847 SDValue Value
= ST
->getValue();
14848 if (ISD::isNormalStore(ST
) && ISD::isNormalLoad(Value
.getNode()) &&
14849 Value
.hasOneUse()) {
14850 LoadSDNode
*LD
= cast
<LoadSDNode
>(Value
);
14851 EVT VT
= LD
->getMemoryVT();
14852 if (!VT
.isFloatingPoint() ||
14853 VT
!= ST
->getMemoryVT() ||
14854 LD
->isNonTemporal() ||
14855 ST
->isNonTemporal() ||
14856 LD
->getPointerInfo().getAddrSpace() != 0 ||
14857 ST
->getPointerInfo().getAddrSpace() != 0)
14860 EVT IntVT
= EVT::getIntegerVT(*DAG
.getContext(), VT
.getSizeInBits());
14861 if (!TLI
.isOperationLegal(ISD::LOAD
, IntVT
) ||
14862 !TLI
.isOperationLegal(ISD::STORE
, IntVT
) ||
14863 !TLI
.isDesirableToTransformToIntegerOp(ISD::LOAD
, VT
) ||
14864 !TLI
.isDesirableToTransformToIntegerOp(ISD::STORE
, VT
))
14867 unsigned LDAlign
= LD
->getAlignment();
14868 unsigned STAlign
= ST
->getAlignment();
14869 Type
*IntVTTy
= IntVT
.getTypeForEVT(*DAG
.getContext());
14870 unsigned ABIAlign
= DAG
.getDataLayout().getABITypeAlignment(IntVTTy
);
14871 if (LDAlign
< ABIAlign
|| STAlign
< ABIAlign
)
14875 DAG
.getLoad(IntVT
, SDLoc(Value
), LD
->getChain(), LD
->getBasePtr(),
14876 LD
->getPointerInfo(), LDAlign
);
14879 DAG
.getStore(ST
->getChain(), SDLoc(N
), NewLD
, ST
->getBasePtr(),
14880 ST
->getPointerInfo(), STAlign
);
14882 AddToWorklist(NewLD
.getNode());
14883 AddToWorklist(NewST
.getNode());
14884 WorklistRemover
DeadNodes(*this);
14885 DAG
.ReplaceAllUsesOfValueWith(Value
.getValue(1), NewLD
.getValue(1));
14893 // This is a helper function for visitMUL to check the profitability
14894 // of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
14895 // MulNode is the original multiply, AddNode is (add x, c1),
14896 // and ConstNode is c2.
14898 // If the (add x, c1) has multiple uses, we could increase
14899 // the number of adds if we make this transformation.
14900 // It would only be worth doing this if we can remove a
14901 // multiply in the process. Check for that here.
14905 // We're checking for cases where we have common "c3 * A" expressions.
14906 bool DAGCombiner::isMulAddWithConstProfitable(SDNode
*MulNode
,
14908 SDValue
&ConstNode
) {
14911 // If the add only has one use, this would be OK to do.
14912 if (AddNode
.getNode()->hasOneUse())
14915 // Walk all the users of the constant with which we're multiplying.
14916 for (SDNode
*Use
: ConstNode
->uses()) {
14917 if (Use
== MulNode
) // This use is the one we're on right now. Skip it.
14920 if (Use
->getOpcode() == ISD::MUL
) { // We have another multiply use.
14922 SDNode
*MulVar
= AddNode
.getOperand(0).getNode();
14924 // OtherOp is what we're multiplying against the constant.
14925 if (Use
->getOperand(0) == ConstNode
)
14926 OtherOp
= Use
->getOperand(1).getNode();
14928 OtherOp
= Use
->getOperand(0).getNode();
14930 // Check to see if multiply is with the same operand of our "add".
14932 // ConstNode = CONST
14933 // Use = ConstNode * A <-- visiting Use. OtherOp is A.
14935 // AddNode = (A + c1) <-- MulVar is A.
14936 // = AddNode * ConstNode <-- current visiting instruction.
14938 // If we make this transformation, we will have a common
14939 // multiply (ConstNode * A) that we can save.
14940 if (OtherOp
== MulVar
)
14943 // Now check to see if a future expansion will give us a common
14946 // ConstNode = CONST
14947 // AddNode = (A + c1)
14948 // ... = AddNode * ConstNode <-- current visiting instruction.
14950 // OtherOp = (A + c2)
14951 // Use = OtherOp * ConstNode <-- visiting Use.
14953 // If we make this transformation, we will have a common
14954 // multiply (CONST * A) after we also do the same transformation
14955 // to the "t2" instruction.
14956 if (OtherOp
->getOpcode() == ISD::ADD
&&
14957 DAG
.isConstantIntBuildVectorOrConstantInt(OtherOp
->getOperand(1)) &&
14958 OtherOp
->getOperand(0).getNode() == MulVar
)
14963 // Didn't find a case where this would be profitable.
14967 SDValue
DAGCombiner::getMergeStoreChains(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
14968 unsigned NumStores
) {
14969 SmallVector
<SDValue
, 8> Chains
;
14970 SmallPtrSet
<const SDNode
*, 8> Visited
;
14971 SDLoc
StoreDL(StoreNodes
[0].MemNode
);
14973 for (unsigned i
= 0; i
< NumStores
; ++i
) {
14974 Visited
.insert(StoreNodes
[i
].MemNode
);
14977 // don't include nodes that are children or repeated nodes.
14978 for (unsigned i
= 0; i
< NumStores
; ++i
) {
14979 if (Visited
.insert(StoreNodes
[i
].MemNode
->getChain().getNode()).second
)
14980 Chains
.push_back(StoreNodes
[i
].MemNode
->getChain());
14983 assert(Chains
.size() > 0 && "Chain should have generated a chain");
14984 return DAG
.getTokenFactor(StoreDL
, Chains
);
14987 bool DAGCombiner::MergeStoresOfConstantsOrVecElts(
14988 SmallVectorImpl
<MemOpLink
> &StoreNodes
, EVT MemVT
, unsigned NumStores
,
14989 bool IsConstantSrc
, bool UseVector
, bool UseTrunc
) {
14990 // Make sure we have something to merge.
14994 // The latest Node in the DAG.
14995 SDLoc
DL(StoreNodes
[0].MemNode
);
14997 int64_t ElementSizeBits
= MemVT
.getStoreSizeInBits();
14998 unsigned SizeInBits
= NumStores
* ElementSizeBits
;
14999 unsigned NumMemElts
= MemVT
.isVector() ? MemVT
.getVectorNumElements() : 1;
15003 unsigned Elts
= NumStores
* NumMemElts
;
15004 // Get the type for the merged vector store.
15005 StoreTy
= EVT::getVectorVT(*DAG
.getContext(), MemVT
.getScalarType(), Elts
);
15007 StoreTy
= EVT::getIntegerVT(*DAG
.getContext(), SizeInBits
);
15011 if (IsConstantSrc
) {
15012 SmallVector
<SDValue
, 8> BuildVector
;
15013 for (unsigned I
= 0; I
!= NumStores
; ++I
) {
15014 StoreSDNode
*St
= cast
<StoreSDNode
>(StoreNodes
[I
].MemNode
);
15015 SDValue Val
= St
->getValue();
15016 // If constant is of the wrong type, convert it now.
15017 if (MemVT
!= Val
.getValueType()) {
15018 Val
= peekThroughBitcasts(Val
);
15019 // Deal with constants of wrong size.
15020 if (ElementSizeBits
!= Val
.getValueSizeInBits()) {
15022 EVT::getIntegerVT(*DAG
.getContext(), MemVT
.getSizeInBits());
15023 if (isa
<ConstantFPSDNode
>(Val
)) {
15024 // Not clear how to truncate FP values.
15026 } else if (auto *C
= dyn_cast
<ConstantSDNode
>(Val
))
15027 Val
= DAG
.getConstant(C
->getAPIntValue()
15028 .zextOrTrunc(Val
.getValueSizeInBits())
15029 .zextOrTrunc(ElementSizeBits
),
15030 SDLoc(C
), IntMemVT
);
15032 // Make sure correctly size type is the correct type.
15033 Val
= DAG
.getBitcast(MemVT
, Val
);
15035 BuildVector
.push_back(Val
);
15037 StoredVal
= DAG
.getNode(MemVT
.isVector() ? ISD::CONCAT_VECTORS
15038 : ISD::BUILD_VECTOR
,
15039 DL
, StoreTy
, BuildVector
);
15041 SmallVector
<SDValue
, 8> Ops
;
15042 for (unsigned i
= 0; i
< NumStores
; ++i
) {
15043 StoreSDNode
*St
= cast
<StoreSDNode
>(StoreNodes
[i
].MemNode
);
15044 SDValue Val
= peekThroughBitcasts(St
->getValue());
15045 // All operands of BUILD_VECTOR / CONCAT_VECTOR must be of
15046 // type MemVT. If the underlying value is not the correct
15047 // type, but it is an extraction of an appropriate vector we
15048 // can recast Val to be of the correct type. This may require
15049 // converting between EXTRACT_VECTOR_ELT and
15050 // EXTRACT_SUBVECTOR.
15051 if ((MemVT
!= Val
.getValueType()) &&
15052 (Val
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
||
15053 Val
.getOpcode() == ISD::EXTRACT_SUBVECTOR
)) {
15054 EVT MemVTScalarTy
= MemVT
.getScalarType();
15055 // We may need to add a bitcast here to get types to line up.
15056 if (MemVTScalarTy
!= Val
.getValueType().getScalarType()) {
15057 Val
= DAG
.getBitcast(MemVT
, Val
);
15059 unsigned OpC
= MemVT
.isVector() ? ISD::EXTRACT_SUBVECTOR
15060 : ISD::EXTRACT_VECTOR_ELT
;
15061 SDValue Vec
= Val
.getOperand(0);
15062 SDValue Idx
= Val
.getOperand(1);
15063 Val
= DAG
.getNode(OpC
, SDLoc(Val
), MemVT
, Vec
, Idx
);
15066 Ops
.push_back(Val
);
15069 // Build the extracted vector elements back into a vector.
15070 StoredVal
= DAG
.getNode(MemVT
.isVector() ? ISD::CONCAT_VECTORS
15071 : ISD::BUILD_VECTOR
,
15075 // We should always use a vector store when merging extracted vector
15076 // elements, so this path implies a store of constants.
15077 assert(IsConstantSrc
&& "Merged vector elements should use vector store");
15079 APInt
StoreInt(SizeInBits
, 0);
15081 // Construct a single integer constant which is made of the smaller
15082 // constant inputs.
15083 bool IsLE
= DAG
.getDataLayout().isLittleEndian();
15084 for (unsigned i
= 0; i
< NumStores
; ++i
) {
15085 unsigned Idx
= IsLE
? (NumStores
- 1 - i
) : i
;
15086 StoreSDNode
*St
= cast
<StoreSDNode
>(StoreNodes
[Idx
].MemNode
);
15088 SDValue Val
= St
->getValue();
15089 Val
= peekThroughBitcasts(Val
);
15090 StoreInt
<<= ElementSizeBits
;
15091 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Val
)) {
15092 StoreInt
|= C
->getAPIntValue()
15093 .zextOrTrunc(ElementSizeBits
)
15094 .zextOrTrunc(SizeInBits
);
15095 } else if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Val
)) {
15096 StoreInt
|= C
->getValueAPF()
15098 .zextOrTrunc(ElementSizeBits
)
15099 .zextOrTrunc(SizeInBits
);
15100 // If fp truncation is necessary give up for now.
15101 if (MemVT
.getSizeInBits() != ElementSizeBits
)
15104 llvm_unreachable("Invalid constant element type");
15108 // Create the new Load and Store operations.
15109 StoredVal
= DAG
.getConstant(StoreInt
, DL
, StoreTy
);
15112 LSBaseSDNode
*FirstInChain
= StoreNodes
[0].MemNode
;
15113 SDValue NewChain
= getMergeStoreChains(StoreNodes
, NumStores
);
15115 // make sure we use trunc store if it's necessary to be legal.
15118 NewStore
= DAG
.getStore(NewChain
, DL
, StoredVal
, FirstInChain
->getBasePtr(),
15119 FirstInChain
->getPointerInfo(),
15120 FirstInChain
->getAlignment());
15121 } else { // Must be realized as a trunc store
15122 EVT LegalizedStoredValTy
=
15123 TLI
.getTypeToTransformTo(*DAG
.getContext(), StoredVal
.getValueType());
15124 unsigned LegalizedStoreSize
= LegalizedStoredValTy
.getSizeInBits();
15125 ConstantSDNode
*C
= cast
<ConstantSDNode
>(StoredVal
);
15126 SDValue ExtendedStoreVal
=
15127 DAG
.getConstant(C
->getAPIntValue().zextOrTrunc(LegalizedStoreSize
), DL
,
15128 LegalizedStoredValTy
);
15129 NewStore
= DAG
.getTruncStore(
15130 NewChain
, DL
, ExtendedStoreVal
, FirstInChain
->getBasePtr(),
15131 FirstInChain
->getPointerInfo(), StoredVal
.getValueType() /*TVT*/,
15132 FirstInChain
->getAlignment(),
15133 FirstInChain
->getMemOperand()->getFlags());
15136 // Replace all merged stores with the new store.
15137 for (unsigned i
= 0; i
< NumStores
; ++i
)
15138 CombineTo(StoreNodes
[i
].MemNode
, NewStore
);
15140 AddToWorklist(NewChain
.getNode());
15144 void DAGCombiner::getStoreMergeCandidates(
15145 StoreSDNode
*St
, SmallVectorImpl
<MemOpLink
> &StoreNodes
,
15146 SDNode
*&RootNode
) {
15147 // This holds the base pointer, index, and the offset in bytes from the base
15149 BaseIndexOffset BasePtr
= BaseIndexOffset::match(St
, DAG
);
15150 EVT MemVT
= St
->getMemoryVT();
15152 SDValue Val
= peekThroughBitcasts(St
->getValue());
15153 // We must have a base and an offset.
15154 if (!BasePtr
.getBase().getNode())
15157 // Do not handle stores to undef base pointers.
15158 if (BasePtr
.getBase().isUndef())
15161 bool IsConstantSrc
= isa
<ConstantSDNode
>(Val
) || isa
<ConstantFPSDNode
>(Val
);
15162 bool IsExtractVecSrc
= (Val
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
||
15163 Val
.getOpcode() == ISD::EXTRACT_SUBVECTOR
);
15164 bool IsLoadSrc
= isa
<LoadSDNode
>(Val
);
15165 BaseIndexOffset LBasePtr
;
15166 // Match on loadbaseptr if relevant.
15169 auto *Ld
= cast
<LoadSDNode
>(Val
);
15170 LBasePtr
= BaseIndexOffset::match(Ld
, DAG
);
15171 LoadVT
= Ld
->getMemoryVT();
15172 // Load and store should be the same type.
15173 if (MemVT
!= LoadVT
)
15175 // Loads must only have one use.
15176 if (!Ld
->hasNUsesOfValue(1, 0))
15178 // The memory operands must not be volatile/indexed.
15179 if (Ld
->isVolatile() || Ld
->isIndexed())
15182 auto CandidateMatch
= [&](StoreSDNode
*Other
, BaseIndexOffset
&Ptr
,
15183 int64_t &Offset
) -> bool {
15184 // The memory operands must not be volatile/indexed.
15185 if (Other
->isVolatile() || Other
->isIndexed())
15187 // Don't mix temporal stores with non-temporal stores.
15188 if (St
->isNonTemporal() != Other
->isNonTemporal())
15190 SDValue OtherBC
= peekThroughBitcasts(Other
->getValue());
15191 // Allow merging constants of different types as integers.
15192 bool NoTypeMatch
= (MemVT
.isInteger()) ? !MemVT
.bitsEq(Other
->getMemoryVT())
15193 : Other
->getMemoryVT() != MemVT
;
15197 // The Load's Base Ptr must also match
15198 if (LoadSDNode
*OtherLd
= dyn_cast
<LoadSDNode
>(OtherBC
)) {
15199 BaseIndexOffset LPtr
= BaseIndexOffset::match(OtherLd
, DAG
);
15200 if (LoadVT
!= OtherLd
->getMemoryVT())
15202 // Loads must only have one use.
15203 if (!OtherLd
->hasNUsesOfValue(1, 0))
15205 // The memory operands must not be volatile/indexed.
15206 if (OtherLd
->isVolatile() || OtherLd
->isIndexed())
15208 // Don't mix temporal loads with non-temporal loads.
15209 if (cast
<LoadSDNode
>(Val
)->isNonTemporal() != OtherLd
->isNonTemporal())
15211 if (!(LBasePtr
.equalBaseIndex(LPtr
, DAG
)))
15216 if (IsConstantSrc
) {
15219 if (!(isa
<ConstantSDNode
>(OtherBC
) || isa
<ConstantFPSDNode
>(OtherBC
)))
15222 if (IsExtractVecSrc
) {
15223 // Do not merge truncated stores here.
15224 if (Other
->isTruncatingStore())
15226 if (!MemVT
.bitsEq(OtherBC
.getValueType()))
15228 if (OtherBC
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
&&
15229 OtherBC
.getOpcode() != ISD::EXTRACT_SUBVECTOR
)
15232 Ptr
= BaseIndexOffset::match(Other
, DAG
);
15233 return (BasePtr
.equalBaseIndex(Ptr
, DAG
, Offset
));
15236 // Check if the pair of StoreNode and the RootNode already bail out many
15237 // times which is over the limit in dependence check.
15238 auto OverLimitInDependenceCheck
= [&](SDNode
*StoreNode
,
15239 SDNode
*RootNode
) -> bool {
15240 auto RootCount
= StoreRootCountMap
.find(StoreNode
);
15241 if (RootCount
!= StoreRootCountMap
.end() &&
15242 RootCount
->second
.first
== RootNode
&&
15243 RootCount
->second
.second
> StoreMergeDependenceLimit
)
15248 // We looking for a root node which is an ancestor to all mergable
15249 // stores. We search up through a load, to our root and then down
15250 // through all children. For instance we will find Store{1,2,3} if
15251 // St is Store1, Store2. or Store3 where the root is not a load
15252 // which always true for nonvolatile ops. TODO: Expand
15253 // the search to find all valid candidates through multiple layers of loads.
15256 // |-------|-------|
15257 // Load Load Store3
15261 // FIXME: We should be able to climb and
15262 // descend TokenFactors to find candidates as well.
15264 RootNode
= St
->getChain().getNode();
15266 unsigned NumNodesExplored
= 0;
15267 if (LoadSDNode
*Ldn
= dyn_cast
<LoadSDNode
>(RootNode
)) {
15268 RootNode
= Ldn
->getChain().getNode();
15269 for (auto I
= RootNode
->use_begin(), E
= RootNode
->use_end();
15270 I
!= E
&& NumNodesExplored
< 1024; ++I
, ++NumNodesExplored
)
15271 if (I
.getOperandNo() == 0 && isa
<LoadSDNode
>(*I
)) // walk down chain
15272 for (auto I2
= (*I
)->use_begin(), E2
= (*I
)->use_end(); I2
!= E2
; ++I2
)
15273 if (I2
.getOperandNo() == 0)
15274 if (StoreSDNode
*OtherST
= dyn_cast
<StoreSDNode
>(*I2
)) {
15275 BaseIndexOffset Ptr
;
15277 if (CandidateMatch(OtherST
, Ptr
, PtrDiff
) &&
15278 !OverLimitInDependenceCheck(OtherST
, RootNode
))
15279 StoreNodes
.push_back(MemOpLink(OtherST
, PtrDiff
));
15282 for (auto I
= RootNode
->use_begin(), E
= RootNode
->use_end();
15283 I
!= E
&& NumNodesExplored
< 1024; ++I
, ++NumNodesExplored
)
15284 if (I
.getOperandNo() == 0)
15285 if (StoreSDNode
*OtherST
= dyn_cast
<StoreSDNode
>(*I
)) {
15286 BaseIndexOffset Ptr
;
15288 if (CandidateMatch(OtherST
, Ptr
, PtrDiff
) &&
15289 !OverLimitInDependenceCheck(OtherST
, RootNode
))
15290 StoreNodes
.push_back(MemOpLink(OtherST
, PtrDiff
));
15294 // We need to check that merging these stores does not cause a loop in
15295 // the DAG. Any store candidate may depend on another candidate
15296 // indirectly through its operand (we already consider dependencies
15297 // through the chain). Check in parallel by searching up from
15298 // non-chain operands of candidates.
15299 bool DAGCombiner::checkMergeStoreCandidatesForDependencies(
15300 SmallVectorImpl
<MemOpLink
> &StoreNodes
, unsigned NumStores
,
15301 SDNode
*RootNode
) {
15302 // FIXME: We should be able to truncate a full search of
15303 // predecessors by doing a BFS and keeping tabs the originating
15304 // stores from which worklist nodes come from in a similar way to
15305 // TokenFactor simplfication.
15307 SmallPtrSet
<const SDNode
*, 32> Visited
;
15308 SmallVector
<const SDNode
*, 8> Worklist
;
15310 // RootNode is a predecessor to all candidates so we need not search
15311 // past it. Add RootNode (peeking through TokenFactors). Do not count
15312 // these towards size check.
15314 Worklist
.push_back(RootNode
);
15315 while (!Worklist
.empty()) {
15316 auto N
= Worklist
.pop_back_val();
15317 if (!Visited
.insert(N
).second
)
15318 continue; // Already present in Visited.
15319 if (N
->getOpcode() == ISD::TokenFactor
) {
15320 for (SDValue Op
: N
->ops())
15321 Worklist
.push_back(Op
.getNode());
15325 // Don't count pruning nodes towards max.
15326 unsigned int Max
= 1024 + Visited
.size();
15327 // Search Ops of store candidates.
15328 for (unsigned i
= 0; i
< NumStores
; ++i
) {
15329 SDNode
*N
= StoreNodes
[i
].MemNode
;
15330 // Of the 4 Store Operands:
15331 // * Chain (Op 0) -> We have already considered these
15332 // in candidate selection and can be
15334 // * Value (Op 1) -> Cycles may happen (e.g. through load chains)
15335 // * Address (Op 2) -> Merged addresses may only vary by a fixed constant,
15336 // but aren't necessarily fromt the same base node, so
15337 // cycles possible (e.g. via indexed store).
15338 // * (Op 3) -> Represents the pre or post-indexing offset (or undef for
15339 // non-indexed stores). Not constant on all targets (e.g. ARM)
15340 // and so can participate in a cycle.
15341 for (unsigned j
= 1; j
< N
->getNumOperands(); ++j
)
15342 Worklist
.push_back(N
->getOperand(j
).getNode());
15344 // Search through DAG. We can stop early if we find a store node.
15345 for (unsigned i
= 0; i
< NumStores
; ++i
)
15346 if (SDNode::hasPredecessorHelper(StoreNodes
[i
].MemNode
, Visited
, Worklist
,
15348 // If the searching bail out, record the StoreNode and RootNode in the
15349 // StoreRootCountMap. If we have seen the pair many times over a limit,
15350 // we won't add the StoreNode into StoreNodes set again.
15351 if (Visited
.size() >= Max
) {
15352 auto &RootCount
= StoreRootCountMap
[StoreNodes
[i
].MemNode
];
15353 if (RootCount
.first
== RootNode
)
15354 RootCount
.second
++;
15356 RootCount
= {RootNode
, 1};
15363 bool DAGCombiner::MergeConsecutiveStores(StoreSDNode
*St
) {
15364 if (OptLevel
== CodeGenOpt::None
|| !EnableStoreMerging
)
15367 EVT MemVT
= St
->getMemoryVT();
15368 int64_t ElementSizeBytes
= MemVT
.getStoreSize();
15369 unsigned NumMemElts
= MemVT
.isVector() ? MemVT
.getVectorNumElements() : 1;
15371 if (MemVT
.getSizeInBits() * 2 > MaximumLegalStoreInBits
)
15374 bool NoVectors
= DAG
.getMachineFunction().getFunction().hasFnAttribute(
15375 Attribute::NoImplicitFloat
);
15377 // This function cannot currently deal with non-byte-sized memory sizes.
15378 if (ElementSizeBytes
* 8 != MemVT
.getSizeInBits())
15381 if (!MemVT
.isSimple())
15384 // Perform an early exit check. Do not bother looking at stored values that
15385 // are not constants, loads, or extracted vector elements.
15386 SDValue StoredVal
= peekThroughBitcasts(St
->getValue());
15387 bool IsLoadSrc
= isa
<LoadSDNode
>(StoredVal
);
15388 bool IsConstantSrc
= isa
<ConstantSDNode
>(StoredVal
) ||
15389 isa
<ConstantFPSDNode
>(StoredVal
);
15390 bool IsExtractVecSrc
= (StoredVal
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
||
15391 StoredVal
.getOpcode() == ISD::EXTRACT_SUBVECTOR
);
15392 bool IsNonTemporalStore
= St
->isNonTemporal();
15393 bool IsNonTemporalLoad
=
15394 IsLoadSrc
&& cast
<LoadSDNode
>(StoredVal
)->isNonTemporal();
15396 if (!IsConstantSrc
&& !IsLoadSrc
&& !IsExtractVecSrc
)
15399 SmallVector
<MemOpLink
, 8> StoreNodes
;
15401 // Find potential store merge candidates by searching through chain sub-DAG
15402 getStoreMergeCandidates(St
, StoreNodes
, RootNode
);
15404 // Check if there is anything to merge.
15405 if (StoreNodes
.size() < 2)
15408 // Sort the memory operands according to their distance from the
15410 llvm::sort(StoreNodes
, [](MemOpLink LHS
, MemOpLink RHS
) {
15411 return LHS
.OffsetFromBase
< RHS
.OffsetFromBase
;
15414 // Store Merge attempts to merge the lowest stores. This generally
15415 // works out as if successful, as the remaining stores are checked
15416 // after the first collection of stores is merged. However, in the
15417 // case that a non-mergeable store is found first, e.g., {p[-2],
15418 // p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent
15419 // mergeable cases. To prevent this, we prune such stores from the
15420 // front of StoreNodes here.
15423 while (StoreNodes
.size() > 1) {
15424 size_t StartIdx
= 0;
15425 while ((StartIdx
+ 1 < StoreNodes
.size()) &&
15426 StoreNodes
[StartIdx
].OffsetFromBase
+ ElementSizeBytes
!=
15427 StoreNodes
[StartIdx
+ 1].OffsetFromBase
)
15430 // Bail if we don't have enough candidates to merge.
15431 if (StartIdx
+ 1 >= StoreNodes
.size())
15435 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + StartIdx
);
15437 // Scan the memory operations on the chain and find the first
15438 // non-consecutive store memory address.
15439 unsigned NumConsecutiveStores
= 1;
15440 int64_t StartAddress
= StoreNodes
[0].OffsetFromBase
;
15441 // Check that the addresses are consecutive starting from the second
15442 // element in the list of stores.
15443 for (unsigned i
= 1, e
= StoreNodes
.size(); i
< e
; ++i
) {
15444 int64_t CurrAddress
= StoreNodes
[i
].OffsetFromBase
;
15445 if (CurrAddress
- StartAddress
!= (ElementSizeBytes
* i
))
15447 NumConsecutiveStores
= i
+ 1;
15450 if (NumConsecutiveStores
< 2) {
15451 StoreNodes
.erase(StoreNodes
.begin(),
15452 StoreNodes
.begin() + NumConsecutiveStores
);
15456 // The node with the lowest store address.
15457 LLVMContext
&Context
= *DAG
.getContext();
15458 const DataLayout
&DL
= DAG
.getDataLayout();
15460 // Store the constants into memory as one consecutive store.
15461 if (IsConstantSrc
) {
15462 while (NumConsecutiveStores
>= 2) {
15463 LSBaseSDNode
*FirstInChain
= StoreNodes
[0].MemNode
;
15464 unsigned FirstStoreAS
= FirstInChain
->getAddressSpace();
15465 unsigned FirstStoreAlign
= FirstInChain
->getAlignment();
15466 unsigned LastLegalType
= 1;
15467 unsigned LastLegalVectorType
= 1;
15468 bool LastIntegerTrunc
= false;
15469 bool NonZero
= false;
15470 unsigned FirstZeroAfterNonZero
= NumConsecutiveStores
;
15471 for (unsigned i
= 0; i
< NumConsecutiveStores
; ++i
) {
15472 StoreSDNode
*ST
= cast
<StoreSDNode
>(StoreNodes
[i
].MemNode
);
15473 SDValue StoredVal
= ST
->getValue();
15474 bool IsElementZero
= false;
15475 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(StoredVal
))
15476 IsElementZero
= C
->isNullValue();
15477 else if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(StoredVal
))
15478 IsElementZero
= C
->getConstantFPValue()->isNullValue();
15479 if (IsElementZero
) {
15480 if (NonZero
&& FirstZeroAfterNonZero
== NumConsecutiveStores
)
15481 FirstZeroAfterNonZero
= i
;
15483 NonZero
|= !IsElementZero
;
15485 // Find a legal type for the constant store.
15486 unsigned SizeInBits
= (i
+ 1) * ElementSizeBytes
* 8;
15487 EVT StoreTy
= EVT::getIntegerVT(Context
, SizeInBits
);
15488 bool IsFast
= false;
15490 // Break early when size is too large to be legal.
15491 if (StoreTy
.getSizeInBits() > MaximumLegalStoreInBits
)
15494 if (TLI
.isTypeLegal(StoreTy
) &&
15495 TLI
.canMergeStoresTo(FirstStoreAS
, StoreTy
, DAG
) &&
15496 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
15497 *FirstInChain
->getMemOperand(), &IsFast
) &&
15499 LastIntegerTrunc
= false;
15500 LastLegalType
= i
+ 1;
15501 // Or check whether a truncstore is legal.
15502 } else if (TLI
.getTypeAction(Context
, StoreTy
) ==
15503 TargetLowering::TypePromoteInteger
) {
15504 EVT LegalizedStoredValTy
=
15505 TLI
.getTypeToTransformTo(Context
, StoredVal
.getValueType());
15506 if (TLI
.isTruncStoreLegal(LegalizedStoredValTy
, StoreTy
) &&
15507 TLI
.canMergeStoresTo(FirstStoreAS
, LegalizedStoredValTy
, DAG
) &&
15508 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
15509 *FirstInChain
->getMemOperand(),
15512 LastIntegerTrunc
= true;
15513 LastLegalType
= i
+ 1;
15517 // We only use vectors if the constant is known to be zero or the
15518 // target allows it and the function is not marked with the
15519 // noimplicitfloat attribute.
15521 TLI
.storeOfVectorConstantIsCheap(MemVT
, i
+ 1, FirstStoreAS
)) &&
15523 // Find a legal type for the vector store.
15524 unsigned Elts
= (i
+ 1) * NumMemElts
;
15525 EVT Ty
= EVT::getVectorVT(Context
, MemVT
.getScalarType(), Elts
);
15526 if (TLI
.isTypeLegal(Ty
) && TLI
.isTypeLegal(MemVT
) &&
15527 TLI
.canMergeStoresTo(FirstStoreAS
, Ty
, DAG
) &&
15528 TLI
.allowsMemoryAccess(
15529 Context
, DL
, Ty
, *FirstInChain
->getMemOperand(), &IsFast
) &&
15531 LastLegalVectorType
= i
+ 1;
15535 bool UseVector
= (LastLegalVectorType
> LastLegalType
) && !NoVectors
;
15536 unsigned NumElem
= (UseVector
) ? LastLegalVectorType
: LastLegalType
;
15538 // Check if we found a legal integer type that creates a meaningful
15541 // We know that candidate stores are in order and of correct
15542 // shape. While there is no mergeable sequence from the
15543 // beginning one may start later in the sequence. The only
15544 // reason a merge of size N could have failed where another of
15545 // the same size would not have, is if the alignment has
15546 // improved or we've dropped a non-zero value. Drop as many
15547 // candidates as we can here.
15548 unsigned NumSkip
= 1;
15550 (NumSkip
< NumConsecutiveStores
) &&
15551 (NumSkip
< FirstZeroAfterNonZero
) &&
15552 (StoreNodes
[NumSkip
].MemNode
->getAlignment() <= FirstStoreAlign
))
15555 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumSkip
);
15556 NumConsecutiveStores
-= NumSkip
;
15560 // Check that we can merge these candidates without causing a cycle.
15561 if (!checkMergeStoreCandidatesForDependencies(StoreNodes
, NumElem
,
15563 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumElem
);
15564 NumConsecutiveStores
-= NumElem
;
15568 RV
|= MergeStoresOfConstantsOrVecElts(StoreNodes
, MemVT
, NumElem
, true,
15569 UseVector
, LastIntegerTrunc
);
15571 // Remove merged stores for next iteration.
15572 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumElem
);
15573 NumConsecutiveStores
-= NumElem
;
15578 // When extracting multiple vector elements, try to store them
15579 // in one vector store rather than a sequence of scalar stores.
15580 if (IsExtractVecSrc
) {
15581 // Loop on Consecutive Stores on success.
15582 while (NumConsecutiveStores
>= 2) {
15583 LSBaseSDNode
*FirstInChain
= StoreNodes
[0].MemNode
;
15584 unsigned FirstStoreAS
= FirstInChain
->getAddressSpace();
15585 unsigned FirstStoreAlign
= FirstInChain
->getAlignment();
15586 unsigned NumStoresToMerge
= 1;
15587 for (unsigned i
= 0; i
< NumConsecutiveStores
; ++i
) {
15588 // Find a legal type for the vector store.
15589 unsigned Elts
= (i
+ 1) * NumMemElts
;
15591 EVT::getVectorVT(*DAG
.getContext(), MemVT
.getScalarType(), Elts
);
15594 // Break early when size is too large to be legal.
15595 if (Ty
.getSizeInBits() > MaximumLegalStoreInBits
)
15598 if (TLI
.isTypeLegal(Ty
) &&
15599 TLI
.canMergeStoresTo(FirstStoreAS
, Ty
, DAG
) &&
15600 TLI
.allowsMemoryAccess(Context
, DL
, Ty
,
15601 *FirstInChain
->getMemOperand(), &IsFast
) &&
15603 NumStoresToMerge
= i
+ 1;
15606 // Check if we found a legal integer type creating a meaningful
15608 if (NumStoresToMerge
< 2) {
15609 // We know that candidate stores are in order and of correct
15610 // shape. While there is no mergeable sequence from the
15611 // beginning one may start later in the sequence. The only
15612 // reason a merge of size N could have failed where another of
15613 // the same size would not have, is if the alignment has
15614 // improved. Drop as many candidates as we can here.
15615 unsigned NumSkip
= 1;
15617 (NumSkip
< NumConsecutiveStores
) &&
15618 (StoreNodes
[NumSkip
].MemNode
->getAlignment() <= FirstStoreAlign
))
15621 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumSkip
);
15622 NumConsecutiveStores
-= NumSkip
;
15626 // Check that we can merge these candidates without causing a cycle.
15627 if (!checkMergeStoreCandidatesForDependencies(
15628 StoreNodes
, NumStoresToMerge
, RootNode
)) {
15629 StoreNodes
.erase(StoreNodes
.begin(),
15630 StoreNodes
.begin() + NumStoresToMerge
);
15631 NumConsecutiveStores
-= NumStoresToMerge
;
15635 RV
|= MergeStoresOfConstantsOrVecElts(
15636 StoreNodes
, MemVT
, NumStoresToMerge
, false, true, false);
15638 StoreNodes
.erase(StoreNodes
.begin(),
15639 StoreNodes
.begin() + NumStoresToMerge
);
15640 NumConsecutiveStores
-= NumStoresToMerge
;
15645 // Below we handle the case of multiple consecutive stores that
15646 // come from multiple consecutive loads. We merge them into a single
15647 // wide load and a single wide store.
15649 // Look for load nodes which are used by the stored values.
15650 SmallVector
<MemOpLink
, 8> LoadNodes
;
15652 // Find acceptable loads. Loads need to have the same chain (token factor),
15653 // must not be zext, volatile, indexed, and they must be consecutive.
15654 BaseIndexOffset LdBasePtr
;
15656 for (unsigned i
= 0; i
< NumConsecutiveStores
; ++i
) {
15657 StoreSDNode
*St
= cast
<StoreSDNode
>(StoreNodes
[i
].MemNode
);
15658 SDValue Val
= peekThroughBitcasts(St
->getValue());
15659 LoadSDNode
*Ld
= cast
<LoadSDNode
>(Val
);
15661 BaseIndexOffset LdPtr
= BaseIndexOffset::match(Ld
, DAG
);
15662 // If this is not the first ptr that we check.
15663 int64_t LdOffset
= 0;
15664 if (LdBasePtr
.getBase().getNode()) {
15665 // The base ptr must be the same.
15666 if (!LdBasePtr
.equalBaseIndex(LdPtr
, DAG
, LdOffset
))
15669 // Check that all other base pointers are the same as this one.
15673 // We found a potential memory operand to merge.
15674 LoadNodes
.push_back(MemOpLink(Ld
, LdOffset
));
15677 while (NumConsecutiveStores
>= 2 && LoadNodes
.size() >= 2) {
15678 // If we have load/store pair instructions and we only have two values,
15679 // don't bother merging.
15680 unsigned RequiredAlignment
;
15681 if (LoadNodes
.size() == 2 &&
15682 TLI
.hasPairedLoad(MemVT
, RequiredAlignment
) &&
15683 StoreNodes
[0].MemNode
->getAlignment() >= RequiredAlignment
) {
15684 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + 2);
15685 LoadNodes
.erase(LoadNodes
.begin(), LoadNodes
.begin() + 2);
15688 LSBaseSDNode
*FirstInChain
= StoreNodes
[0].MemNode
;
15689 unsigned FirstStoreAS
= FirstInChain
->getAddressSpace();
15690 unsigned FirstStoreAlign
= FirstInChain
->getAlignment();
15691 LoadSDNode
*FirstLoad
= cast
<LoadSDNode
>(LoadNodes
[0].MemNode
);
15692 unsigned FirstLoadAlign
= FirstLoad
->getAlignment();
15694 // Scan the memory operations on the chain and find the first
15695 // non-consecutive load memory address. These variables hold the index in
15696 // the store node array.
15698 unsigned LastConsecutiveLoad
= 1;
15700 // This variable refers to the size and not index in the array.
15701 unsigned LastLegalVectorType
= 1;
15702 unsigned LastLegalIntegerType
= 1;
15703 bool isDereferenceable
= true;
15704 bool DoIntegerTruncate
= false;
15705 StartAddress
= LoadNodes
[0].OffsetFromBase
;
15706 SDValue FirstChain
= FirstLoad
->getChain();
15707 for (unsigned i
= 1; i
< LoadNodes
.size(); ++i
) {
15708 // All loads must share the same chain.
15709 if (LoadNodes
[i
].MemNode
->getChain() != FirstChain
)
15712 int64_t CurrAddress
= LoadNodes
[i
].OffsetFromBase
;
15713 if (CurrAddress
- StartAddress
!= (ElementSizeBytes
* i
))
15715 LastConsecutiveLoad
= i
;
15717 if (isDereferenceable
&& !LoadNodes
[i
].MemNode
->isDereferenceable())
15718 isDereferenceable
= false;
15720 // Find a legal type for the vector store.
15721 unsigned Elts
= (i
+ 1) * NumMemElts
;
15722 EVT StoreTy
= EVT::getVectorVT(Context
, MemVT
.getScalarType(), Elts
);
15724 // Break early when size is too large to be legal.
15725 if (StoreTy
.getSizeInBits() > MaximumLegalStoreInBits
)
15728 bool IsFastSt
, IsFastLd
;
15729 if (TLI
.isTypeLegal(StoreTy
) &&
15730 TLI
.canMergeStoresTo(FirstStoreAS
, StoreTy
, DAG
) &&
15731 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
15732 *FirstInChain
->getMemOperand(), &IsFastSt
) &&
15734 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
15735 *FirstLoad
->getMemOperand(), &IsFastLd
) &&
15737 LastLegalVectorType
= i
+ 1;
15740 // Find a legal type for the integer store.
15741 unsigned SizeInBits
= (i
+ 1) * ElementSizeBytes
* 8;
15742 StoreTy
= EVT::getIntegerVT(Context
, SizeInBits
);
15743 if (TLI
.isTypeLegal(StoreTy
) &&
15744 TLI
.canMergeStoresTo(FirstStoreAS
, StoreTy
, DAG
) &&
15745 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
15746 *FirstInChain
->getMemOperand(), &IsFastSt
) &&
15748 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
15749 *FirstLoad
->getMemOperand(), &IsFastLd
) &&
15751 LastLegalIntegerType
= i
+ 1;
15752 DoIntegerTruncate
= false;
15753 // Or check whether a truncstore and extload is legal.
15754 } else if (TLI
.getTypeAction(Context
, StoreTy
) ==
15755 TargetLowering::TypePromoteInteger
) {
15756 EVT LegalizedStoredValTy
= TLI
.getTypeToTransformTo(Context
, StoreTy
);
15757 if (TLI
.isTruncStoreLegal(LegalizedStoredValTy
, StoreTy
) &&
15758 TLI
.canMergeStoresTo(FirstStoreAS
, LegalizedStoredValTy
, DAG
) &&
15759 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, LegalizedStoredValTy
,
15761 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, LegalizedStoredValTy
,
15763 TLI
.isLoadExtLegal(ISD::EXTLOAD
, LegalizedStoredValTy
, StoreTy
) &&
15764 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
15765 *FirstInChain
->getMemOperand(),
15768 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
15769 *FirstLoad
->getMemOperand(), &IsFastLd
) &&
15771 LastLegalIntegerType
= i
+ 1;
15772 DoIntegerTruncate
= true;
15777 // Only use vector types if the vector type is larger than the integer
15778 // type. If they are the same, use integers.
15780 LastLegalVectorType
> LastLegalIntegerType
&& !NoVectors
;
15781 unsigned LastLegalType
=
15782 std::max(LastLegalVectorType
, LastLegalIntegerType
);
15784 // We add +1 here because the LastXXX variables refer to location while
15785 // the NumElem refers to array/index size.
15787 std::min(NumConsecutiveStores
, LastConsecutiveLoad
+ 1);
15788 NumElem
= std::min(LastLegalType
, NumElem
);
15791 // We know that candidate stores are in order and of correct
15792 // shape. While there is no mergeable sequence from the
15793 // beginning one may start later in the sequence. The only
15794 // reason a merge of size N could have failed where another of
15795 // the same size would not have is if the alignment or either
15796 // the load or store has improved. Drop as many candidates as we
15798 unsigned NumSkip
= 1;
15799 while ((NumSkip
< LoadNodes
.size()) &&
15800 (LoadNodes
[NumSkip
].MemNode
->getAlignment() <= FirstLoadAlign
) &&
15801 (StoreNodes
[NumSkip
].MemNode
->getAlignment() <= FirstStoreAlign
))
15803 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumSkip
);
15804 LoadNodes
.erase(LoadNodes
.begin(), LoadNodes
.begin() + NumSkip
);
15805 NumConsecutiveStores
-= NumSkip
;
15809 // Check that we can merge these candidates without causing a cycle.
15810 if (!checkMergeStoreCandidatesForDependencies(StoreNodes
, NumElem
,
15812 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumElem
);
15813 LoadNodes
.erase(LoadNodes
.begin(), LoadNodes
.begin() + NumElem
);
15814 NumConsecutiveStores
-= NumElem
;
15818 // Find if it is better to use vectors or integers to load and store
15822 // Find a legal type for the vector store.
15823 unsigned Elts
= NumElem
* NumMemElts
;
15824 JointMemOpVT
= EVT::getVectorVT(Context
, MemVT
.getScalarType(), Elts
);
15826 unsigned SizeInBits
= NumElem
* ElementSizeBytes
* 8;
15827 JointMemOpVT
= EVT::getIntegerVT(Context
, SizeInBits
);
15830 SDLoc
LoadDL(LoadNodes
[0].MemNode
);
15831 SDLoc
StoreDL(StoreNodes
[0].MemNode
);
15833 // The merged loads are required to have the same incoming chain, so
15834 // using the first's chain is acceptable.
15836 SDValue NewStoreChain
= getMergeStoreChains(StoreNodes
, NumElem
);
15837 AddToWorklist(NewStoreChain
.getNode());
15839 MachineMemOperand::Flags LdMMOFlags
=
15840 isDereferenceable
? MachineMemOperand::MODereferenceable
15841 : MachineMemOperand::MONone
;
15842 if (IsNonTemporalLoad
)
15843 LdMMOFlags
|= MachineMemOperand::MONonTemporal
;
15845 MachineMemOperand::Flags StMMOFlags
=
15846 IsNonTemporalStore
? MachineMemOperand::MONonTemporal
15847 : MachineMemOperand::MONone
;
15849 SDValue NewLoad
, NewStore
;
15850 if (UseVectorTy
|| !DoIntegerTruncate
) {
15852 DAG
.getLoad(JointMemOpVT
, LoadDL
, FirstLoad
->getChain(),
15853 FirstLoad
->getBasePtr(), FirstLoad
->getPointerInfo(),
15854 FirstLoadAlign
, LdMMOFlags
);
15855 NewStore
= DAG
.getStore(
15856 NewStoreChain
, StoreDL
, NewLoad
, FirstInChain
->getBasePtr(),
15857 FirstInChain
->getPointerInfo(), FirstStoreAlign
, StMMOFlags
);
15858 } else { // This must be the truncstore/extload case
15860 TLI
.getTypeToTransformTo(*DAG
.getContext(), JointMemOpVT
);
15861 NewLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, LoadDL
, ExtendedTy
,
15862 FirstLoad
->getChain(), FirstLoad
->getBasePtr(),
15863 FirstLoad
->getPointerInfo(), JointMemOpVT
,
15864 FirstLoadAlign
, LdMMOFlags
);
15865 NewStore
= DAG
.getTruncStore(NewStoreChain
, StoreDL
, NewLoad
,
15866 FirstInChain
->getBasePtr(),
15867 FirstInChain
->getPointerInfo(),
15868 JointMemOpVT
, FirstInChain
->getAlignment(),
15869 FirstInChain
->getMemOperand()->getFlags());
15872 // Transfer chain users from old loads to the new load.
15873 for (unsigned i
= 0; i
< NumElem
; ++i
) {
15874 LoadSDNode
*Ld
= cast
<LoadSDNode
>(LoadNodes
[i
].MemNode
);
15875 DAG
.ReplaceAllUsesOfValueWith(SDValue(Ld
, 1),
15876 SDValue(NewLoad
.getNode(), 1));
15879 // Replace the all stores with the new store. Recursively remove
15880 // corresponding value if its no longer used.
15881 for (unsigned i
= 0; i
< NumElem
; ++i
) {
15882 SDValue Val
= StoreNodes
[i
].MemNode
->getOperand(1);
15883 CombineTo(StoreNodes
[i
].MemNode
, NewStore
);
15884 if (Val
.getNode()->use_empty())
15885 recursivelyDeleteUnusedNodes(Val
.getNode());
15889 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumElem
);
15890 LoadNodes
.erase(LoadNodes
.begin(), LoadNodes
.begin() + NumElem
);
15891 NumConsecutiveStores
-= NumElem
;
15897 SDValue
DAGCombiner::replaceStoreChain(StoreSDNode
*ST
, SDValue BetterChain
) {
15901 // Replace the chain to avoid dependency.
15902 if (ST
->isTruncatingStore()) {
15903 ReplStore
= DAG
.getTruncStore(BetterChain
, SL
, ST
->getValue(),
15904 ST
->getBasePtr(), ST
->getMemoryVT(),
15905 ST
->getMemOperand());
15907 ReplStore
= DAG
.getStore(BetterChain
, SL
, ST
->getValue(), ST
->getBasePtr(),
15908 ST
->getMemOperand());
15911 // Create token to keep both nodes around.
15912 SDValue Token
= DAG
.getNode(ISD::TokenFactor
, SL
,
15913 MVT::Other
, ST
->getChain(), ReplStore
);
15915 // Make sure the new and old chains are cleaned up.
15916 AddToWorklist(Token
.getNode());
15918 // Don't add users to work list.
15919 return CombineTo(ST
, Token
, false);
15922 SDValue
DAGCombiner::replaceStoreOfFPConstant(StoreSDNode
*ST
) {
15923 SDValue Value
= ST
->getValue();
15924 if (Value
.getOpcode() == ISD::TargetConstantFP
)
15929 SDValue Chain
= ST
->getChain();
15930 SDValue Ptr
= ST
->getBasePtr();
15932 const ConstantFPSDNode
*CFP
= cast
<ConstantFPSDNode
>(Value
);
15934 // NOTE: If the original store is volatile, this transform must not increase
15935 // the number of stores. For example, on x86-32 an f64 can be stored in one
15936 // processor operation but an i64 (which is not legal) requires two. So the
15937 // transform should not be done in this case.
15940 switch (CFP
->getSimpleValueType(0).SimpleTy
) {
15942 llvm_unreachable("Unknown FP type");
15943 case MVT::f16
: // We don't do this for these yet.
15949 if ((isTypeLegal(MVT::i32
) && !LegalOperations
&& !ST
->isVolatile()) ||
15950 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i32
)) {
15952 Tmp
= DAG
.getConstant((uint32_t)CFP
->getValueAPF().
15953 bitcastToAPInt().getZExtValue(), SDLoc(CFP
),
15955 return DAG
.getStore(Chain
, DL
, Tmp
, Ptr
, ST
->getMemOperand());
15960 if ((TLI
.isTypeLegal(MVT::i64
) && !LegalOperations
&&
15961 !ST
->isVolatile()) ||
15962 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i64
)) {
15964 Tmp
= DAG
.getConstant(CFP
->getValueAPF().bitcastToAPInt().
15965 getZExtValue(), SDLoc(CFP
), MVT::i64
);
15966 return DAG
.getStore(Chain
, DL
, Tmp
,
15967 Ptr
, ST
->getMemOperand());
15970 if (!ST
->isVolatile() &&
15971 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i32
)) {
15972 // Many FP stores are not made apparent until after legalize, e.g. for
15973 // argument passing. Since this is so common, custom legalize the
15974 // 64-bit integer store into two 32-bit stores.
15975 uint64_t Val
= CFP
->getValueAPF().bitcastToAPInt().getZExtValue();
15976 SDValue Lo
= DAG
.getConstant(Val
& 0xFFFFFFFF, SDLoc(CFP
), MVT::i32
);
15977 SDValue Hi
= DAG
.getConstant(Val
>> 32, SDLoc(CFP
), MVT::i32
);
15978 if (DAG
.getDataLayout().isBigEndian())
15981 unsigned Alignment
= ST
->getAlignment();
15982 MachineMemOperand::Flags MMOFlags
= ST
->getMemOperand()->getFlags();
15983 AAMDNodes AAInfo
= ST
->getAAInfo();
15985 SDValue St0
= DAG
.getStore(Chain
, DL
, Lo
, Ptr
, ST
->getPointerInfo(),
15986 ST
->getAlignment(), MMOFlags
, AAInfo
);
15987 Ptr
= DAG
.getNode(ISD::ADD
, DL
, Ptr
.getValueType(), Ptr
,
15988 DAG
.getConstant(4, DL
, Ptr
.getValueType()));
15989 Alignment
= MinAlign(Alignment
, 4U);
15990 SDValue St1
= DAG
.getStore(Chain
, DL
, Hi
, Ptr
,
15991 ST
->getPointerInfo().getWithOffset(4),
15992 Alignment
, MMOFlags
, AAInfo
);
15993 return DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
,
16001 SDValue
DAGCombiner::visitSTORE(SDNode
*N
) {
16002 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
16003 SDValue Chain
= ST
->getChain();
16004 SDValue Value
= ST
->getValue();
16005 SDValue Ptr
= ST
->getBasePtr();
16007 // If this is a store of a bit convert, store the input value if the
16008 // resultant store does not need a higher alignment than the original.
16009 if (Value
.getOpcode() == ISD::BITCAST
&& !ST
->isTruncatingStore() &&
16010 ST
->isUnindexed()) {
16011 EVT SVT
= Value
.getOperand(0).getValueType();
16012 // If the store is volatile, we only want to change the store type if the
16013 // resulting store is legal. Otherwise we might increase the number of
16014 // memory accesses. We don't care if the original type was legal or not
16015 // as we assume software couldn't rely on the number of accesses of an
16017 if (((!LegalOperations
&& !ST
->isVolatile()) ||
16018 TLI
.isOperationLegal(ISD::STORE
, SVT
)) &&
16019 TLI
.isStoreBitCastBeneficial(Value
.getValueType(), SVT
,
16020 DAG
, *ST
->getMemOperand())) {
16021 return DAG
.getStore(Chain
, SDLoc(N
), Value
.getOperand(0), Ptr
,
16022 ST
->getPointerInfo(), ST
->getAlignment(),
16023 ST
->getMemOperand()->getFlags(), ST
->getAAInfo());
16027 // Turn 'store undef, Ptr' -> nothing.
16028 if (Value
.isUndef() && ST
->isUnindexed())
16031 // Try to infer better alignment information than the store already has.
16032 if (OptLevel
!= CodeGenOpt::None
&& ST
->isUnindexed()) {
16033 if (unsigned Align
= DAG
.InferPtrAlignment(Ptr
)) {
16034 if (Align
> ST
->getAlignment() && ST
->getSrcValueOffset() % Align
== 0) {
16036 DAG
.getTruncStore(Chain
, SDLoc(N
), Value
, Ptr
, ST
->getPointerInfo(),
16037 ST
->getMemoryVT(), Align
,
16038 ST
->getMemOperand()->getFlags(), ST
->getAAInfo());
16039 // NewStore will always be N as we are only refining the alignment
16040 assert(NewStore
.getNode() == N
);
16046 // Try transforming a pair floating point load / store ops to integer
16047 // load / store ops.
16048 if (SDValue NewST
= TransformFPLoadStorePair(N
))
16051 // Try transforming several stores into STORE (BSWAP).
16052 if (SDValue Store
= MatchStoreCombine(ST
))
16055 if (ST
->isUnindexed()) {
16056 // Walk up chain skipping non-aliasing memory nodes, on this store and any
16057 // adjacent stores.
16058 if (findBetterNeighborChains(ST
)) {
16059 // replaceStoreChain uses CombineTo, which handled all of the worklist
16060 // manipulation. Return the original node to not do anything else.
16061 return SDValue(ST
, 0);
16063 Chain
= ST
->getChain();
16066 // FIXME: is there such a thing as a truncating indexed store?
16067 if (ST
->isTruncatingStore() && ST
->isUnindexed() &&
16068 Value
.getValueType().isInteger() &&
16069 (!isa
<ConstantSDNode
>(Value
) ||
16070 !cast
<ConstantSDNode
>(Value
)->isOpaque())) {
16071 APInt TruncDemandedBits
=
16072 APInt::getLowBitsSet(Value
.getScalarValueSizeInBits(),
16073 ST
->getMemoryVT().getScalarSizeInBits());
16075 // See if we can simplify the input to this truncstore with knowledge that
16076 // only the low bits are being used. For example:
16077 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8"
16078 AddToWorklist(Value
.getNode());
16079 if (SDValue Shorter
= DAG
.GetDemandedBits(Value
, TruncDemandedBits
))
16080 return DAG
.getTruncStore(Chain
, SDLoc(N
), Shorter
, Ptr
, ST
->getMemoryVT(),
16081 ST
->getMemOperand());
16083 // Otherwise, see if we can simplify the operation with
16084 // SimplifyDemandedBits, which only works if the value has a single use.
16085 if (SimplifyDemandedBits(Value
, TruncDemandedBits
)) {
16086 // Re-visit the store if anything changed and the store hasn't been merged
16087 // with another node (N is deleted) SimplifyDemandedBits will add Value's
16088 // node back to the worklist if necessary, but we also need to re-visit
16089 // the Store node itself.
16090 if (N
->getOpcode() != ISD::DELETED_NODE
)
16092 return SDValue(N
, 0);
16096 // If this is a load followed by a store to the same location, then the store
16098 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Value
)) {
16099 if (Ld
->getBasePtr() == Ptr
&& ST
->getMemoryVT() == Ld
->getMemoryVT() &&
16100 ST
->isUnindexed() && !ST
->isVolatile() &&
16101 // There can't be any side effects between the load and store, such as
16102 // a call or store.
16103 Chain
.reachesChainWithoutSideEffects(SDValue(Ld
, 1))) {
16104 // The store is dead, remove it.
16109 if (StoreSDNode
*ST1
= dyn_cast
<StoreSDNode
>(Chain
)) {
16110 if (ST
->isUnindexed() && !ST
->isVolatile() && ST1
->isUnindexed() &&
16111 !ST1
->isVolatile()) {
16112 if (ST1
->getBasePtr() == Ptr
&& ST1
->getValue() == Value
&&
16113 ST
->getMemoryVT() == ST1
->getMemoryVT()) {
16114 // If this is a store followed by a store with the same value to the
16115 // same location, then the store is dead/noop.
16119 if (OptLevel
!= CodeGenOpt::None
&& ST1
->hasOneUse() &&
16120 !ST1
->getBasePtr().isUndef()) {
16121 const BaseIndexOffset STBase
= BaseIndexOffset::match(ST
, DAG
);
16122 const BaseIndexOffset ChainBase
= BaseIndexOffset::match(ST1
, DAG
);
16123 unsigned STBitSize
= ST
->getMemoryVT().getSizeInBits();
16124 unsigned ChainBitSize
= ST1
->getMemoryVT().getSizeInBits();
16125 // If this is a store who's preceding store to a subset of the current
16126 // location and no one other node is chained to that store we can
16127 // effectively drop the store. Do not remove stores to undef as they may
16128 // be used as data sinks.
16129 if (STBase
.contains(DAG
, STBitSize
, ChainBase
, ChainBitSize
)) {
16130 CombineTo(ST1
, ST1
->getChain());
16134 // If ST stores to a subset of preceding store's write set, we may be
16135 // able to fold ST's value into the preceding stored value. As we know
16136 // the other uses of ST1's chain are unconcerned with ST, this folding
16137 // will not affect those nodes.
16139 if (ChainBase
.contains(DAG
, ChainBitSize
, STBase
, STBitSize
,
16141 SDValue ChainValue
= ST1
->getValue();
16142 if (auto *C1
= dyn_cast
<ConstantSDNode
>(ChainValue
)) {
16143 if (auto *C
= dyn_cast
<ConstantSDNode
>(Value
)) {
16144 APInt Val
= C1
->getAPIntValue();
16145 APInt InsertVal
= C
->getAPIntValue().zextOrTrunc(STBitSize
);
16146 // FIXME: Handle Big-endian mode.
16147 if (!DAG
.getDataLayout().isBigEndian()) {
16148 Val
.insertBits(InsertVal
, BitOffset
);
16150 DAG
.getConstant(Val
, SDLoc(C
), ChainValue
.getValueType(),
16151 C1
->isTargetOpcode(), C1
->isOpaque());
16152 SDNode
*NewST1
= DAG
.UpdateNodeOperands(
16153 ST1
, ST1
->getChain(), NewSDVal
, ST1
->getOperand(2),
16154 ST1
->getOperand(3));
16155 return CombineTo(ST
, SDValue(NewST1
, 0));
16159 } // End ST subset of ST1 case.
16164 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
16165 // truncating store. We can do this even if this is already a truncstore.
16166 if ((Value
.getOpcode() == ISD::FP_ROUND
|| Value
.getOpcode() == ISD::TRUNCATE
)
16167 && Value
.getNode()->hasOneUse() && ST
->isUnindexed() &&
16168 TLI
.isTruncStoreLegal(Value
.getOperand(0).getValueType(),
16169 ST
->getMemoryVT())) {
16170 return DAG
.getTruncStore(Chain
, SDLoc(N
), Value
.getOperand(0),
16171 Ptr
, ST
->getMemoryVT(), ST
->getMemOperand());
16174 // Always perform this optimization before types are legal. If the target
16175 // prefers, also try this after legalization to catch stores that were created
16176 // by intrinsics or other nodes.
16177 if (!LegalTypes
|| (TLI
.mergeStoresAfterLegalization(ST
->getMemoryVT()))) {
16179 // There can be multiple store sequences on the same chain.
16180 // Keep trying to merge store sequences until we are unable to do so
16181 // or until we merge the last store on the chain.
16182 bool Changed
= MergeConsecutiveStores(ST
);
16183 if (!Changed
) break;
16184 // Return N as merge only uses CombineTo and no worklist clean
16185 // up is necessary.
16186 if (N
->getOpcode() == ISD::DELETED_NODE
|| !isa
<StoreSDNode
>(N
))
16187 return SDValue(N
, 0);
16191 // Try transforming N to an indexed store.
16192 if (CombineToPreIndexedLoadStore(N
) || CombineToPostIndexedLoadStore(N
))
16193 return SDValue(N
, 0);
16195 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
16197 // Make sure to do this only after attempting to merge stores in order to
16198 // avoid changing the types of some subset of stores due to visit order,
16199 // preventing their merging.
16200 if (isa
<ConstantFPSDNode
>(ST
->getValue())) {
16201 if (SDValue NewSt
= replaceStoreOfFPConstant(ST
))
16205 if (SDValue NewSt
= splitMergedValStore(ST
))
16208 return ReduceLoadOpStoreWidth(N
);
16211 SDValue
DAGCombiner::visitLIFETIME_END(SDNode
*N
) {
16212 const auto *LifetimeEnd
= cast
<LifetimeSDNode
>(N
);
16213 if (!LifetimeEnd
->hasOffset())
16216 const BaseIndexOffset
LifetimeEndBase(N
->getOperand(1), SDValue(),
16217 LifetimeEnd
->getOffset(), false);
16219 // We walk up the chains to find stores.
16220 SmallVector
<SDValue
, 8> Chains
= {N
->getOperand(0)};
16221 while (!Chains
.empty()) {
16222 SDValue Chain
= Chains
.back();
16224 if (!Chain
.hasOneUse())
16226 switch (Chain
.getOpcode()) {
16227 case ISD::TokenFactor
:
16228 for (unsigned Nops
= Chain
.getNumOperands(); Nops
;)
16229 Chains
.push_back(Chain
.getOperand(--Nops
));
16231 case ISD::LIFETIME_START
:
16232 case ISD::LIFETIME_END
:
16233 // We can forward past any lifetime start/end that can be proven not to
16235 if (!isAlias(Chain
.getNode(), N
))
16236 Chains
.push_back(Chain
.getOperand(0));
16239 StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(Chain
);
16240 if (ST
->isVolatile() || ST
->isIndexed())
16242 const BaseIndexOffset StoreBase
= BaseIndexOffset::match(ST
, DAG
);
16243 // If we store purely within object bounds just before its lifetime ends,
16244 // we can remove the store.
16245 if (LifetimeEndBase
.contains(DAG
, LifetimeEnd
->getSize() * 8, StoreBase
,
16246 ST
->getMemoryVT().getStoreSizeInBits())) {
16247 LLVM_DEBUG(dbgs() << "\nRemoving store:"; StoreBase
.dump();
16248 dbgs() << "\nwithin LIFETIME_END of : ";
16249 LifetimeEndBase
.dump(); dbgs() << "\n");
16250 CombineTo(ST
, ST
->getChain());
16251 return SDValue(N
, 0);
16259 /// For the instruction sequence of store below, F and I values
16260 /// are bundled together as an i64 value before being stored into memory.
16261 /// Sometimes it is more efficent to generate separate stores for F and I,
16262 /// which can remove the bitwise instructions or sink them to colder places.
16264 /// (store (or (zext (bitcast F to i32) to i64),
16265 /// (shl (zext I to i64), 32)), addr) -->
16266 /// (store F, addr) and (store I, addr+4)
16268 /// Similarly, splitting for other merged store can also be beneficial, like:
16269 /// For pair of {i32, i32}, i64 store --> two i32 stores.
16270 /// For pair of {i32, i16}, i64 store --> two i32 stores.
16271 /// For pair of {i16, i16}, i32 store --> two i16 stores.
16272 /// For pair of {i16, i8}, i32 store --> two i16 stores.
16273 /// For pair of {i8, i8}, i16 store --> two i8 stores.
16275 /// We allow each target to determine specifically which kind of splitting is
16278 /// The store patterns are commonly seen from the simple code snippet below
16279 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
16280 /// void goo(const std::pair<int, float> &);
16283 /// goo(std::make_pair(tmp, ftmp));
16287 SDValue
DAGCombiner::splitMergedValStore(StoreSDNode
*ST
) {
16288 if (OptLevel
== CodeGenOpt::None
)
16291 SDValue Val
= ST
->getValue();
16294 // Match OR operand.
16295 if (!Val
.getValueType().isScalarInteger() || Val
.getOpcode() != ISD::OR
)
16298 // Match SHL operand and get Lower and Higher parts of Val.
16299 SDValue Op1
= Val
.getOperand(0);
16300 SDValue Op2
= Val
.getOperand(1);
16302 if (Op1
.getOpcode() != ISD::SHL
) {
16303 std::swap(Op1
, Op2
);
16304 if (Op1
.getOpcode() != ISD::SHL
)
16308 Hi
= Op1
.getOperand(0);
16309 if (!Op1
.hasOneUse())
16312 // Match shift amount to HalfValBitSize.
16313 unsigned HalfValBitSize
= Val
.getValueSizeInBits() / 2;
16314 ConstantSDNode
*ShAmt
= dyn_cast
<ConstantSDNode
>(Op1
.getOperand(1));
16315 if (!ShAmt
|| ShAmt
->getAPIntValue() != HalfValBitSize
)
16318 // Lo and Hi are zero-extended from int with size less equal than 32
16320 if (Lo
.getOpcode() != ISD::ZERO_EXTEND
|| !Lo
.hasOneUse() ||
16321 !Lo
.getOperand(0).getValueType().isScalarInteger() ||
16322 Lo
.getOperand(0).getValueSizeInBits() > HalfValBitSize
||
16323 Hi
.getOpcode() != ISD::ZERO_EXTEND
|| !Hi
.hasOneUse() ||
16324 !Hi
.getOperand(0).getValueType().isScalarInteger() ||
16325 Hi
.getOperand(0).getValueSizeInBits() > HalfValBitSize
)
16328 // Use the EVT of low and high parts before bitcast as the input
16329 // of target query.
16330 EVT LowTy
= (Lo
.getOperand(0).getOpcode() == ISD::BITCAST
)
16331 ? Lo
.getOperand(0).getValueType()
16332 : Lo
.getValueType();
16333 EVT HighTy
= (Hi
.getOperand(0).getOpcode() == ISD::BITCAST
)
16334 ? Hi
.getOperand(0).getValueType()
16335 : Hi
.getValueType();
16336 if (!TLI
.isMultiStoresCheaperThanBitsMerge(LowTy
, HighTy
))
16339 // Start to split store.
16340 unsigned Alignment
= ST
->getAlignment();
16341 MachineMemOperand::Flags MMOFlags
= ST
->getMemOperand()->getFlags();
16342 AAMDNodes AAInfo
= ST
->getAAInfo();
16344 // Change the sizes of Lo and Hi's value types to HalfValBitSize.
16345 EVT VT
= EVT::getIntegerVT(*DAG
.getContext(), HalfValBitSize
);
16346 Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Lo
.getOperand(0));
16347 Hi
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Hi
.getOperand(0));
16349 SDValue Chain
= ST
->getChain();
16350 SDValue Ptr
= ST
->getBasePtr();
16351 // Lower value store.
16352 SDValue St0
= DAG
.getStore(Chain
, DL
, Lo
, Ptr
, ST
->getPointerInfo(),
16353 ST
->getAlignment(), MMOFlags
, AAInfo
);
16355 DAG
.getNode(ISD::ADD
, DL
, Ptr
.getValueType(), Ptr
,
16356 DAG
.getConstant(HalfValBitSize
/ 8, DL
, Ptr
.getValueType()));
16357 // Higher value store.
16359 DAG
.getStore(St0
, DL
, Hi
, Ptr
,
16360 ST
->getPointerInfo().getWithOffset(HalfValBitSize
/ 8),
16361 Alignment
/ 2, MMOFlags
, AAInfo
);
16365 /// Convert a disguised subvector insertion into a shuffle:
16366 /// insert_vector_elt V, (bitcast X from vector type), IdxC -->
16367 /// bitcast(shuffle (bitcast V), (extended X), Mask)
16368 /// Note: We do not use an insert_subvector node because that requires a legal
16369 /// subvector type.
16370 SDValue
DAGCombiner::combineInsertEltToShuffle(SDNode
*N
, unsigned InsIndex
) {
16371 SDValue InsertVal
= N
->getOperand(1);
16372 if (InsertVal
.getOpcode() != ISD::BITCAST
|| !InsertVal
.hasOneUse() ||
16373 !InsertVal
.getOperand(0).getValueType().isVector())
16376 SDValue SubVec
= InsertVal
.getOperand(0);
16377 SDValue DestVec
= N
->getOperand(0);
16378 EVT SubVecVT
= SubVec
.getValueType();
16379 EVT VT
= DestVec
.getValueType();
16380 unsigned NumSrcElts
= SubVecVT
.getVectorNumElements();
16381 unsigned ExtendRatio
= VT
.getSizeInBits() / SubVecVT
.getSizeInBits();
16382 unsigned NumMaskVals
= ExtendRatio
* NumSrcElts
;
16384 // Step 1: Create a shuffle mask that implements this insert operation. The
16385 // vector that we are inserting into will be operand 0 of the shuffle, so
16386 // those elements are just 'i'. The inserted subvector is in the first
16387 // positions of operand 1 of the shuffle. Example:
16388 // insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7}
16389 SmallVector
<int, 16> Mask(NumMaskVals
);
16390 for (unsigned i
= 0; i
!= NumMaskVals
; ++i
) {
16391 if (i
/ NumSrcElts
== InsIndex
)
16392 Mask
[i
] = (i
% NumSrcElts
) + NumMaskVals
;
16397 // Bail out if the target can not handle the shuffle we want to create.
16398 EVT SubVecEltVT
= SubVecVT
.getVectorElementType();
16399 EVT ShufVT
= EVT::getVectorVT(*DAG
.getContext(), SubVecEltVT
, NumMaskVals
);
16400 if (!TLI
.isShuffleMaskLegal(Mask
, ShufVT
))
16403 // Step 2: Create a wide vector from the inserted source vector by appending
16404 // undefined elements. This is the same size as our destination vector.
16406 SmallVector
<SDValue
, 8> ConcatOps(ExtendRatio
, DAG
.getUNDEF(SubVecVT
));
16407 ConcatOps
[0] = SubVec
;
16408 SDValue PaddedSubV
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, ShufVT
, ConcatOps
);
16410 // Step 3: Shuffle in the padded subvector.
16411 SDValue DestVecBC
= DAG
.getBitcast(ShufVT
, DestVec
);
16412 SDValue Shuf
= DAG
.getVectorShuffle(ShufVT
, DL
, DestVecBC
, PaddedSubV
, Mask
);
16413 AddToWorklist(PaddedSubV
.getNode());
16414 AddToWorklist(DestVecBC
.getNode());
16415 AddToWorklist(Shuf
.getNode());
16416 return DAG
.getBitcast(VT
, Shuf
);
16419 SDValue
DAGCombiner::visitINSERT_VECTOR_ELT(SDNode
*N
) {
16420 SDValue InVec
= N
->getOperand(0);
16421 SDValue InVal
= N
->getOperand(1);
16422 SDValue EltNo
= N
->getOperand(2);
16425 // If the inserted element is an UNDEF, just use the input vector.
16426 if (InVal
.isUndef())
16429 EVT VT
= InVec
.getValueType();
16430 unsigned NumElts
= VT
.getVectorNumElements();
16432 // Remove redundant insertions:
16433 // (insert_vector_elt x (extract_vector_elt x idx) idx) -> x
16434 if (InVal
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
16435 InVec
== InVal
.getOperand(0) && EltNo
== InVal
.getOperand(1))
16438 auto *IndexC
= dyn_cast
<ConstantSDNode
>(EltNo
);
16440 // If this is variable insert to undef vector, it might be better to splat:
16441 // inselt undef, InVal, EltNo --> build_vector < InVal, InVal, ... >
16442 if (InVec
.isUndef() && TLI
.shouldSplatInsEltVarIndex(VT
)) {
16443 SmallVector
<SDValue
, 8> Ops(NumElts
, InVal
);
16444 return DAG
.getBuildVector(VT
, DL
, Ops
);
16449 // We must know which element is being inserted for folds below here.
16450 unsigned Elt
= IndexC
->getZExtValue();
16451 if (SDValue Shuf
= combineInsertEltToShuffle(N
, Elt
))
16454 // Canonicalize insert_vector_elt dag nodes.
16456 // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1)
16457 // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0)
16459 // Do this only if the child insert_vector node has one use; also
16460 // do this only if indices are both constants and Idx1 < Idx0.
16461 if (InVec
.getOpcode() == ISD::INSERT_VECTOR_ELT
&& InVec
.hasOneUse()
16462 && isa
<ConstantSDNode
>(InVec
.getOperand(2))) {
16463 unsigned OtherElt
= InVec
.getConstantOperandVal(2);
16464 if (Elt
< OtherElt
) {
16466 SDValue NewOp
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, DL
, VT
,
16467 InVec
.getOperand(0), InVal
, EltNo
);
16468 AddToWorklist(NewOp
.getNode());
16469 return DAG
.getNode(ISD::INSERT_VECTOR_ELT
, SDLoc(InVec
.getNode()),
16470 VT
, NewOp
, InVec
.getOperand(1), InVec
.getOperand(2));
16474 // If we can't generate a legal BUILD_VECTOR, exit
16475 if (LegalOperations
&& !TLI
.isOperationLegal(ISD::BUILD_VECTOR
, VT
))
16478 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
16479 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the
16480 // vector elements.
16481 SmallVector
<SDValue
, 8> Ops
;
16482 // Do not combine these two vectors if the output vector will not replace
16483 // the input vector.
16484 if (InVec
.getOpcode() == ISD::BUILD_VECTOR
&& InVec
.hasOneUse()) {
16485 Ops
.append(InVec
.getNode()->op_begin(),
16486 InVec
.getNode()->op_end());
16487 } else if (InVec
.isUndef()) {
16488 Ops
.append(NumElts
, DAG
.getUNDEF(InVal
.getValueType()));
16492 assert(Ops
.size() == NumElts
&& "Unexpected vector size");
16494 // Insert the element
16495 if (Elt
< Ops
.size()) {
16496 // All the operands of BUILD_VECTOR must have the same type;
16497 // we enforce that here.
16498 EVT OpVT
= Ops
[0].getValueType();
16499 Ops
[Elt
] = OpVT
.isInteger() ? DAG
.getAnyExtOrTrunc(InVal
, DL
, OpVT
) : InVal
;
16502 // Return the new vector
16503 return DAG
.getBuildVector(VT
, DL
, Ops
);
16506 SDValue
DAGCombiner::scalarizeExtractedVectorLoad(SDNode
*EVE
, EVT InVecVT
,
16508 LoadSDNode
*OriginalLoad
) {
16509 assert(!OriginalLoad
->isVolatile());
16511 EVT ResultVT
= EVE
->getValueType(0);
16512 EVT VecEltVT
= InVecVT
.getVectorElementType();
16513 unsigned Align
= OriginalLoad
->getAlignment();
16514 unsigned NewAlign
= DAG
.getDataLayout().getABITypeAlignment(
16515 VecEltVT
.getTypeForEVT(*DAG
.getContext()));
16517 if (NewAlign
> Align
|| !TLI
.isOperationLegalOrCustom(ISD::LOAD
, VecEltVT
))
16520 ISD::LoadExtType ExtTy
= ResultVT
.bitsGT(VecEltVT
) ?
16521 ISD::NON_EXTLOAD
: ISD::EXTLOAD
;
16522 if (!TLI
.shouldReduceLoadWidth(OriginalLoad
, ExtTy
, VecEltVT
))
16527 SDValue NewPtr
= OriginalLoad
->getBasePtr();
16529 EVT PtrType
= NewPtr
.getValueType();
16530 MachinePointerInfo MPI
;
16532 if (auto *ConstEltNo
= dyn_cast
<ConstantSDNode
>(EltNo
)) {
16533 int Elt
= ConstEltNo
->getZExtValue();
16534 unsigned PtrOff
= VecEltVT
.getSizeInBits() * Elt
/ 8;
16535 Offset
= DAG
.getConstant(PtrOff
, DL
, PtrType
);
16536 MPI
= OriginalLoad
->getPointerInfo().getWithOffset(PtrOff
);
16538 Offset
= DAG
.getZExtOrTrunc(EltNo
, DL
, PtrType
);
16539 Offset
= DAG
.getNode(
16540 ISD::MUL
, DL
, PtrType
, Offset
,
16541 DAG
.getConstant(VecEltVT
.getStoreSize(), DL
, PtrType
));
16542 // Discard the pointer info except the address space because the memory
16543 // operand can't represent this new access since the offset is variable.
16544 MPI
= MachinePointerInfo(OriginalLoad
->getPointerInfo().getAddrSpace());
16546 NewPtr
= DAG
.getNode(ISD::ADD
, DL
, PtrType
, NewPtr
, Offset
);
16548 // The replacement we need to do here is a little tricky: we need to
16549 // replace an extractelement of a load with a load.
16550 // Use ReplaceAllUsesOfValuesWith to do the replacement.
16551 // Note that this replacement assumes that the extractvalue is the only
16552 // use of the load; that's okay because we don't want to perform this
16553 // transformation in other cases anyway.
16556 if (ResultVT
.bitsGT(VecEltVT
)) {
16557 // If the result type of vextract is wider than the load, then issue an
16558 // extending load instead.
16559 ISD::LoadExtType ExtType
= TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, ResultVT
,
16563 Load
= DAG
.getExtLoad(ExtType
, SDLoc(EVE
), ResultVT
,
16564 OriginalLoad
->getChain(), NewPtr
, MPI
, VecEltVT
,
16565 Align
, OriginalLoad
->getMemOperand()->getFlags(),
16566 OriginalLoad
->getAAInfo());
16567 Chain
= Load
.getValue(1);
16569 Load
= DAG
.getLoad(VecEltVT
, SDLoc(EVE
), OriginalLoad
->getChain(), NewPtr
,
16570 MPI
, Align
, OriginalLoad
->getMemOperand()->getFlags(),
16571 OriginalLoad
->getAAInfo());
16572 Chain
= Load
.getValue(1);
16573 if (ResultVT
.bitsLT(VecEltVT
))
16574 Load
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(EVE
), ResultVT
, Load
);
16576 Load
= DAG
.getBitcast(ResultVT
, Load
);
16578 WorklistRemover
DeadNodes(*this);
16579 SDValue From
[] = { SDValue(EVE
, 0), SDValue(OriginalLoad
, 1) };
16580 SDValue To
[] = { Load
, Chain
};
16581 DAG
.ReplaceAllUsesOfValuesWith(From
, To
, 2);
16582 // Since we're explicitly calling ReplaceAllUses, add the new node to the
16583 // worklist explicitly as well.
16584 AddToWorklist(Load
.getNode());
16585 AddUsersToWorklist(Load
.getNode()); // Add users too
16586 // Make sure to revisit this node to clean it up; it will usually be dead.
16587 AddToWorklist(EVE
);
16589 return SDValue(EVE
, 0);
16592 /// Transform a vector binary operation into a scalar binary operation by moving
16593 /// the math/logic after an extract element of a vector.
16594 static SDValue
scalarizeExtractedBinop(SDNode
*ExtElt
, SelectionDAG
&DAG
,
16595 bool LegalOperations
) {
16596 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
16597 SDValue Vec
= ExtElt
->getOperand(0);
16598 SDValue Index
= ExtElt
->getOperand(1);
16599 auto *IndexC
= dyn_cast
<ConstantSDNode
>(Index
);
16600 if (!IndexC
|| !TLI
.isBinOp(Vec
.getOpcode()) || !Vec
.hasOneUse() ||
16601 Vec
.getNode()->getNumValues() != 1)
16604 // Targets may want to avoid this to prevent an expensive register transfer.
16605 if (!TLI
.shouldScalarizeBinop(Vec
))
16608 // Extracting an element of a vector constant is constant-folded, so this
16609 // transform is just replacing a vector op with a scalar op while moving the
16611 SDValue Op0
= Vec
.getOperand(0);
16612 SDValue Op1
= Vec
.getOperand(1);
16613 if (isAnyConstantBuildVector(Op0
, true) ||
16614 isAnyConstantBuildVector(Op1
, true)) {
16615 // extractelt (binop X, C), IndexC --> binop (extractelt X, IndexC), C'
16616 // extractelt (binop C, X), IndexC --> binop C', (extractelt X, IndexC)
16618 EVT VT
= ExtElt
->getValueType(0);
16619 SDValue Ext0
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
, Op0
, Index
);
16620 SDValue Ext1
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
, Op1
, Index
);
16621 return DAG
.getNode(Vec
.getOpcode(), DL
, VT
, Ext0
, Ext1
);
16627 SDValue
DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode
*N
) {
16628 SDValue VecOp
= N
->getOperand(0);
16629 SDValue Index
= N
->getOperand(1);
16630 EVT ScalarVT
= N
->getValueType(0);
16631 EVT VecVT
= VecOp
.getValueType();
16632 if (VecOp
.isUndef())
16633 return DAG
.getUNDEF(ScalarVT
);
16635 // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val
16637 // This only really matters if the index is non-constant since other combines
16638 // on the constant elements already work.
16640 if (VecOp
.getOpcode() == ISD::INSERT_VECTOR_ELT
&&
16641 Index
== VecOp
.getOperand(2)) {
16642 SDValue Elt
= VecOp
.getOperand(1);
16643 return VecVT
.isInteger() ? DAG
.getAnyExtOrTrunc(Elt
, DL
, ScalarVT
) : Elt
;
16646 // (vextract (scalar_to_vector val, 0) -> val
16647 if (VecOp
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
16648 // Check if the result type doesn't match the inserted element type. A
16649 // SCALAR_TO_VECTOR may truncate the inserted element and the
16650 // EXTRACT_VECTOR_ELT may widen the extracted vector.
16651 SDValue InOp
= VecOp
.getOperand(0);
16652 if (InOp
.getValueType() != ScalarVT
) {
16653 assert(InOp
.getValueType().isInteger() && ScalarVT
.isInteger());
16654 return DAG
.getSExtOrTrunc(InOp
, DL
, ScalarVT
);
16659 // extract_vector_elt of out-of-bounds element -> UNDEF
16660 auto *IndexC
= dyn_cast
<ConstantSDNode
>(Index
);
16661 unsigned NumElts
= VecVT
.getVectorNumElements();
16662 if (IndexC
&& IndexC
->getAPIntValue().uge(NumElts
))
16663 return DAG
.getUNDEF(ScalarVT
);
16665 // extract_vector_elt (build_vector x, y), 1 -> y
16666 if (IndexC
&& VecOp
.getOpcode() == ISD::BUILD_VECTOR
&&
16667 TLI
.isTypeLegal(VecVT
) &&
16668 (VecOp
.hasOneUse() || TLI
.aggressivelyPreferBuildVectorSources(VecVT
))) {
16669 SDValue Elt
= VecOp
.getOperand(IndexC
->getZExtValue());
16670 EVT InEltVT
= Elt
.getValueType();
16672 // Sometimes build_vector's scalar input types do not match result type.
16673 if (ScalarVT
== InEltVT
)
16676 // TODO: It may be useful to truncate if free if the build_vector implicitly
16680 // TODO: These transforms should not require the 'hasOneUse' restriction, but
16681 // there are regressions on multiple targets without it. We can end up with a
16682 // mess of scalar and vector code if we reduce only part of the DAG to scalar.
16683 if (IndexC
&& VecOp
.getOpcode() == ISD::BITCAST
&& VecVT
.isInteger() &&
16684 VecOp
.hasOneUse()) {
16685 // The vector index of the LSBs of the source depend on the endian-ness.
16686 bool IsLE
= DAG
.getDataLayout().isLittleEndian();
16687 unsigned ExtractIndex
= IndexC
->getZExtValue();
16688 // extract_elt (v2i32 (bitcast i64:x)), BCTruncElt -> i32 (trunc i64:x)
16689 unsigned BCTruncElt
= IsLE
? 0 : NumElts
- 1;
16690 SDValue BCSrc
= VecOp
.getOperand(0);
16691 if (ExtractIndex
== BCTruncElt
&& BCSrc
.getValueType().isScalarInteger())
16692 return DAG
.getNode(ISD::TRUNCATE
, DL
, ScalarVT
, BCSrc
);
16694 if (LegalTypes
&& BCSrc
.getValueType().isInteger() &&
16695 BCSrc
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
16696 // ext_elt (bitcast (scalar_to_vec i64 X to v2i64) to v4i32), TruncElt -->
16697 // trunc i64 X to i32
16698 SDValue X
= BCSrc
.getOperand(0);
16699 assert(X
.getValueType().isScalarInteger() && ScalarVT
.isScalarInteger() &&
16700 "Extract element and scalar to vector can't change element type "
16701 "from FP to integer.");
16702 unsigned XBitWidth
= X
.getValueSizeInBits();
16703 unsigned VecEltBitWidth
= VecVT
.getScalarSizeInBits();
16704 BCTruncElt
= IsLE
? 0 : XBitWidth
/ VecEltBitWidth
- 1;
16706 // An extract element return value type can be wider than its vector
16707 // operand element type. In that case, the high bits are undefined, so
16708 // it's possible that we may need to extend rather than truncate.
16709 if (ExtractIndex
== BCTruncElt
&& XBitWidth
> VecEltBitWidth
) {
16710 assert(XBitWidth
% VecEltBitWidth
== 0 &&
16711 "Scalar bitwidth must be a multiple of vector element bitwidth");
16712 return DAG
.getAnyExtOrTrunc(X
, DL
, ScalarVT
);
16717 if (SDValue BO
= scalarizeExtractedBinop(N
, DAG
, LegalOperations
))
16720 // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
16721 // We only perform this optimization before the op legalization phase because
16722 // we may introduce new vector instructions which are not backed by TD
16723 // patterns. For example on AVX, extracting elements from a wide vector
16724 // without using extract_subvector. However, if we can find an underlying
16725 // scalar value, then we can always use that.
16726 if (IndexC
&& VecOp
.getOpcode() == ISD::VECTOR_SHUFFLE
) {
16727 auto *Shuf
= cast
<ShuffleVectorSDNode
>(VecOp
);
16728 // Find the new index to extract from.
16729 int OrigElt
= Shuf
->getMaskElt(IndexC
->getZExtValue());
16731 // Extracting an undef index is undef.
16733 return DAG
.getUNDEF(ScalarVT
);
16735 // Select the right vector half to extract from.
16737 if (OrigElt
< (int)NumElts
) {
16738 SVInVec
= VecOp
.getOperand(0);
16740 SVInVec
= VecOp
.getOperand(1);
16741 OrigElt
-= NumElts
;
16744 if (SVInVec
.getOpcode() == ISD::BUILD_VECTOR
) {
16745 SDValue InOp
= SVInVec
.getOperand(OrigElt
);
16746 if (InOp
.getValueType() != ScalarVT
) {
16747 assert(InOp
.getValueType().isInteger() && ScalarVT
.isInteger());
16748 InOp
= DAG
.getSExtOrTrunc(InOp
, DL
, ScalarVT
);
16754 // FIXME: We should handle recursing on other vector shuffles and
16755 // scalar_to_vector here as well.
16757 if (!LegalOperations
||
16758 // FIXME: Should really be just isOperationLegalOrCustom.
16759 TLI
.isOperationLegal(ISD::EXTRACT_VECTOR_ELT
, VecVT
) ||
16760 TLI
.isOperationExpand(ISD::VECTOR_SHUFFLE
, VecVT
)) {
16761 EVT IndexTy
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
16762 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, ScalarVT
, SVInVec
,
16763 DAG
.getConstant(OrigElt
, DL
, IndexTy
));
16767 // If only EXTRACT_VECTOR_ELT nodes use the source vector we can
16768 // simplify it based on the (valid) extraction indices.
16769 if (llvm::all_of(VecOp
->uses(), [&](SDNode
*Use
) {
16770 return Use
->getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
16771 Use
->getOperand(0) == VecOp
&&
16772 isa
<ConstantSDNode
>(Use
->getOperand(1));
16774 APInt DemandedElts
= APInt::getNullValue(NumElts
);
16775 for (SDNode
*Use
: VecOp
->uses()) {
16776 auto *CstElt
= cast
<ConstantSDNode
>(Use
->getOperand(1));
16777 if (CstElt
->getAPIntValue().ult(NumElts
))
16778 DemandedElts
.setBit(CstElt
->getZExtValue());
16780 if (SimplifyDemandedVectorElts(VecOp
, DemandedElts
, true)) {
16781 // We simplified the vector operand of this extract element. If this
16782 // extract is not dead, visit it again so it is folded properly.
16783 if (N
->getOpcode() != ISD::DELETED_NODE
)
16785 return SDValue(N
, 0);
16789 // Everything under here is trying to match an extract of a loaded value.
16790 // If the result of load has to be truncated, then it's not necessarily
16792 bool BCNumEltsChanged
= false;
16793 EVT ExtVT
= VecVT
.getVectorElementType();
16795 if (ScalarVT
.bitsLT(LVT
) && !TLI
.isTruncateFree(LVT
, ScalarVT
))
16798 if (VecOp
.getOpcode() == ISD::BITCAST
) {
16799 // Don't duplicate a load with other uses.
16800 if (!VecOp
.hasOneUse())
16803 EVT BCVT
= VecOp
.getOperand(0).getValueType();
16804 if (!BCVT
.isVector() || ExtVT
.bitsGT(BCVT
.getVectorElementType()))
16806 if (NumElts
!= BCVT
.getVectorNumElements())
16807 BCNumEltsChanged
= true;
16808 VecOp
= VecOp
.getOperand(0);
16809 ExtVT
= BCVT
.getVectorElementType();
16812 // extract (vector load $addr), i --> load $addr + i * size
16813 if (!LegalOperations
&& !IndexC
&& VecOp
.hasOneUse() &&
16814 ISD::isNormalLoad(VecOp
.getNode()) &&
16815 !Index
->hasPredecessor(VecOp
.getNode())) {
16816 auto *VecLoad
= dyn_cast
<LoadSDNode
>(VecOp
);
16817 if (VecLoad
&& !VecLoad
->isVolatile())
16818 return scalarizeExtractedVectorLoad(N
, VecVT
, Index
, VecLoad
);
16821 // Perform only after legalization to ensure build_vector / vector_shuffle
16822 // optimizations have already been done.
16823 if (!LegalOperations
|| !IndexC
)
16826 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
16827 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
16828 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
16829 int Elt
= IndexC
->getZExtValue();
16830 LoadSDNode
*LN0
= nullptr;
16831 if (ISD::isNormalLoad(VecOp
.getNode())) {
16832 LN0
= cast
<LoadSDNode
>(VecOp
);
16833 } else if (VecOp
.getOpcode() == ISD::SCALAR_TO_VECTOR
&&
16834 VecOp
.getOperand(0).getValueType() == ExtVT
&&
16835 ISD::isNormalLoad(VecOp
.getOperand(0).getNode())) {
16836 // Don't duplicate a load with other uses.
16837 if (!VecOp
.hasOneUse())
16840 LN0
= cast
<LoadSDNode
>(VecOp
.getOperand(0));
16842 if (auto *Shuf
= dyn_cast
<ShuffleVectorSDNode
>(VecOp
)) {
16843 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
16845 // (load $addr+1*size)
16847 // Don't duplicate a load with other uses.
16848 if (!VecOp
.hasOneUse())
16851 // If the bit convert changed the number of elements, it is unsafe
16852 // to examine the mask.
16853 if (BCNumEltsChanged
)
16856 // Select the input vector, guarding against out of range extract vector.
16857 int Idx
= (Elt
> (int)NumElts
) ? -1 : Shuf
->getMaskElt(Elt
);
16858 VecOp
= (Idx
< (int)NumElts
) ? VecOp
.getOperand(0) : VecOp
.getOperand(1);
16860 if (VecOp
.getOpcode() == ISD::BITCAST
) {
16861 // Don't duplicate a load with other uses.
16862 if (!VecOp
.hasOneUse())
16865 VecOp
= VecOp
.getOperand(0);
16867 if (ISD::isNormalLoad(VecOp
.getNode())) {
16868 LN0
= cast
<LoadSDNode
>(VecOp
);
16869 Elt
= (Idx
< (int)NumElts
) ? Idx
: Idx
- (int)NumElts
;
16870 Index
= DAG
.getConstant(Elt
, DL
, Index
.getValueType());
16874 // Make sure we found a non-volatile load and the extractelement is
16876 if (!LN0
|| !LN0
->hasNUsesOfValue(1,0) || LN0
->isVolatile())
16879 // If Idx was -1 above, Elt is going to be -1, so just return undef.
16881 return DAG
.getUNDEF(LVT
);
16883 return scalarizeExtractedVectorLoad(N
, VecVT
, Index
, LN0
);
16886 // Simplify (build_vec (ext )) to (bitcast (build_vec ))
16887 SDValue
DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode
*N
) {
16888 // We perform this optimization post type-legalization because
16889 // the type-legalizer often scalarizes integer-promoted vectors.
16890 // Performing this optimization before may create bit-casts which
16891 // will be type-legalized to complex code sequences.
16892 // We perform this optimization only before the operation legalizer because we
16893 // may introduce illegal operations.
16894 if (Level
!= AfterLegalizeVectorOps
&& Level
!= AfterLegalizeTypes
)
16897 unsigned NumInScalars
= N
->getNumOperands();
16899 EVT VT
= N
->getValueType(0);
16901 // Check to see if this is a BUILD_VECTOR of a bunch of values
16902 // which come from any_extend or zero_extend nodes. If so, we can create
16903 // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
16904 // optimizations. We do not handle sign-extend because we can't fill the sign
16906 EVT SourceType
= MVT::Other
;
16907 bool AllAnyExt
= true;
16909 for (unsigned i
= 0; i
!= NumInScalars
; ++i
) {
16910 SDValue In
= N
->getOperand(i
);
16911 // Ignore undef inputs.
16912 if (In
.isUndef()) continue;
16914 bool AnyExt
= In
.getOpcode() == ISD::ANY_EXTEND
;
16915 bool ZeroExt
= In
.getOpcode() == ISD::ZERO_EXTEND
;
16917 // Abort if the element is not an extension.
16918 if (!ZeroExt
&& !AnyExt
) {
16919 SourceType
= MVT::Other
;
16923 // The input is a ZeroExt or AnyExt. Check the original type.
16924 EVT InTy
= In
.getOperand(0).getValueType();
16926 // Check that all of the widened source types are the same.
16927 if (SourceType
== MVT::Other
)
16930 else if (InTy
!= SourceType
) {
16931 // Multiple income types. Abort.
16932 SourceType
= MVT::Other
;
16936 // Check if all of the extends are ANY_EXTENDs.
16937 AllAnyExt
&= AnyExt
;
16940 // In order to have valid types, all of the inputs must be extended from the
16941 // same source type and all of the inputs must be any or zero extend.
16942 // Scalar sizes must be a power of two.
16943 EVT OutScalarTy
= VT
.getScalarType();
16944 bool ValidTypes
= SourceType
!= MVT::Other
&&
16945 isPowerOf2_32(OutScalarTy
.getSizeInBits()) &&
16946 isPowerOf2_32(SourceType
.getSizeInBits());
16948 // Create a new simpler BUILD_VECTOR sequence which other optimizations can
16949 // turn into a single shuffle instruction.
16953 bool isLE
= DAG
.getDataLayout().isLittleEndian();
16954 unsigned ElemRatio
= OutScalarTy
.getSizeInBits()/SourceType
.getSizeInBits();
16955 assert(ElemRatio
> 1 && "Invalid element size ratio");
16956 SDValue Filler
= AllAnyExt
? DAG
.getUNDEF(SourceType
):
16957 DAG
.getConstant(0, DL
, SourceType
);
16959 unsigned NewBVElems
= ElemRatio
* VT
.getVectorNumElements();
16960 SmallVector
<SDValue
, 8> Ops(NewBVElems
, Filler
);
16962 // Populate the new build_vector
16963 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
16964 SDValue Cast
= N
->getOperand(i
);
16965 assert((Cast
.getOpcode() == ISD::ANY_EXTEND
||
16966 Cast
.getOpcode() == ISD::ZERO_EXTEND
||
16967 Cast
.isUndef()) && "Invalid cast opcode");
16969 if (Cast
.isUndef())
16970 In
= DAG
.getUNDEF(SourceType
);
16972 In
= Cast
->getOperand(0);
16973 unsigned Index
= isLE
? (i
* ElemRatio
) :
16974 (i
* ElemRatio
+ (ElemRatio
- 1));
16976 assert(Index
< Ops
.size() && "Invalid index");
16980 // The type of the new BUILD_VECTOR node.
16981 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), SourceType
, NewBVElems
);
16982 assert(VecVT
.getSizeInBits() == VT
.getSizeInBits() &&
16983 "Invalid vector size");
16984 // Check if the new vector type is legal.
16985 if (!isTypeLegal(VecVT
) ||
16986 (!TLI
.isOperationLegal(ISD::BUILD_VECTOR
, VecVT
) &&
16987 TLI
.isOperationLegal(ISD::BUILD_VECTOR
, VT
)))
16990 // Make the new BUILD_VECTOR.
16991 SDValue BV
= DAG
.getBuildVector(VecVT
, DL
, Ops
);
16993 // The new BUILD_VECTOR node has the potential to be further optimized.
16994 AddToWorklist(BV
.getNode());
16995 // Bitcast to the desired type.
16996 return DAG
.getBitcast(VT
, BV
);
16999 SDValue
DAGCombiner::createBuildVecShuffle(const SDLoc
&DL
, SDNode
*N
,
17000 ArrayRef
<int> VectorMask
,
17001 SDValue VecIn1
, SDValue VecIn2
,
17002 unsigned LeftIdx
, bool DidSplitVec
) {
17003 MVT IdxTy
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
17004 SDValue ZeroIdx
= DAG
.getConstant(0, DL
, IdxTy
);
17006 EVT VT
= N
->getValueType(0);
17007 EVT InVT1
= VecIn1
.getValueType();
17008 EVT InVT2
= VecIn2
.getNode() ? VecIn2
.getValueType() : InVT1
;
17010 unsigned NumElems
= VT
.getVectorNumElements();
17011 unsigned ShuffleNumElems
= NumElems
;
17013 // If we artificially split a vector in two already, then the offsets in the
17014 // operands will all be based off of VecIn1, even those in VecIn2.
17015 unsigned Vec2Offset
= DidSplitVec
? 0 : InVT1
.getVectorNumElements();
17017 // We can't generate a shuffle node with mismatched input and output types.
17018 // Try to make the types match the type of the output.
17019 if (InVT1
!= VT
|| InVT2
!= VT
) {
17020 if ((VT
.getSizeInBits() % InVT1
.getSizeInBits() == 0) && InVT1
== InVT2
) {
17021 // If the output vector length is a multiple of both input lengths,
17022 // we can concatenate them and pad the rest with undefs.
17023 unsigned NumConcats
= VT
.getSizeInBits() / InVT1
.getSizeInBits();
17024 assert(NumConcats
>= 2 && "Concat needs at least two inputs!");
17025 SmallVector
<SDValue
, 2> ConcatOps(NumConcats
, DAG
.getUNDEF(InVT1
));
17026 ConcatOps
[0] = VecIn1
;
17027 ConcatOps
[1] = VecIn2
? VecIn2
: DAG
.getUNDEF(InVT1
);
17028 VecIn1
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VT
, ConcatOps
);
17029 VecIn2
= SDValue();
17030 } else if (InVT1
.getSizeInBits() == VT
.getSizeInBits() * 2) {
17031 if (!TLI
.isExtractSubvectorCheap(VT
, InVT1
, NumElems
))
17034 if (!VecIn2
.getNode()) {
17035 // If we only have one input vector, and it's twice the size of the
17036 // output, split it in two.
17037 VecIn2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, VT
, VecIn1
,
17038 DAG
.getConstant(NumElems
, DL
, IdxTy
));
17039 VecIn1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, VT
, VecIn1
, ZeroIdx
);
17040 // Since we now have shorter input vectors, adjust the offset of the
17041 // second vector's start.
17042 Vec2Offset
= NumElems
;
17043 } else if (InVT2
.getSizeInBits() <= InVT1
.getSizeInBits()) {
17044 // VecIn1 is wider than the output, and we have another, possibly
17045 // smaller input. Pad the smaller input with undefs, shuffle at the
17046 // input vector width, and extract the output.
17047 // The shuffle type is different than VT, so check legality again.
17048 if (LegalOperations
&&
17049 !TLI
.isOperationLegal(ISD::VECTOR_SHUFFLE
, InVT1
))
17052 // Legalizing INSERT_SUBVECTOR is tricky - you basically have to
17053 // lower it back into a BUILD_VECTOR. So if the inserted type is
17054 // illegal, don't even try.
17055 if (InVT1
!= InVT2
) {
17056 if (!TLI
.isTypeLegal(InVT2
))
17058 VecIn2
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, InVT1
,
17059 DAG
.getUNDEF(InVT1
), VecIn2
, ZeroIdx
);
17061 ShuffleNumElems
= NumElems
* 2;
17063 // Both VecIn1 and VecIn2 are wider than the output, and VecIn2 is wider
17064 // than VecIn1. We can't handle this for now - this case will disappear
17065 // when we start sorting the vectors by type.
17068 } else if (InVT2
.getSizeInBits() * 2 == VT
.getSizeInBits() &&
17069 InVT1
.getSizeInBits() == VT
.getSizeInBits()) {
17070 SmallVector
<SDValue
, 2> ConcatOps(2, DAG
.getUNDEF(InVT2
));
17071 ConcatOps
[0] = VecIn2
;
17072 VecIn2
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VT
, ConcatOps
);
17074 // TODO: Support cases where the length mismatch isn't exactly by a
17076 // TODO: Move this check upwards, so that if we have bad type
17077 // mismatches, we don't create any DAG nodes.
17082 // Initialize mask to undef.
17083 SmallVector
<int, 8> Mask(ShuffleNumElems
, -1);
17085 // Only need to run up to the number of elements actually used, not the
17086 // total number of elements in the shuffle - if we are shuffling a wider
17087 // vector, the high lanes should be set to undef.
17088 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
17089 if (VectorMask
[i
] <= 0)
17092 unsigned ExtIndex
= N
->getOperand(i
).getConstantOperandVal(1);
17093 if (VectorMask
[i
] == (int)LeftIdx
) {
17094 Mask
[i
] = ExtIndex
;
17095 } else if (VectorMask
[i
] == (int)LeftIdx
+ 1) {
17096 Mask
[i
] = Vec2Offset
+ ExtIndex
;
17100 // The type the input vectors may have changed above.
17101 InVT1
= VecIn1
.getValueType();
17103 // If we already have a VecIn2, it should have the same type as VecIn1.
17104 // If we don't, get an undef/zero vector of the appropriate type.
17105 VecIn2
= VecIn2
.getNode() ? VecIn2
: DAG
.getUNDEF(InVT1
);
17106 assert(InVT1
== VecIn2
.getValueType() && "Unexpected second input type.");
17108 SDValue Shuffle
= DAG
.getVectorShuffle(InVT1
, DL
, VecIn1
, VecIn2
, Mask
);
17109 if (ShuffleNumElems
> NumElems
)
17110 Shuffle
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, VT
, Shuffle
, ZeroIdx
);
17115 static SDValue
reduceBuildVecToShuffleWithZero(SDNode
*BV
, SelectionDAG
&DAG
) {
17116 assert(BV
->getOpcode() == ISD::BUILD_VECTOR
&& "Expected build vector");
17118 // First, determine where the build vector is not undef.
17119 // TODO: We could extend this to handle zero elements as well as undefs.
17120 int NumBVOps
= BV
->getNumOperands();
17122 for (int i
= 0; i
!= NumBVOps
; ++i
) {
17123 SDValue Op
= BV
->getOperand(i
);
17131 // Bail out if there's no non-undef element.
17135 // The build vector contains some number of undef elements and exactly
17136 // one other element. That other element must be a zero-extended scalar
17137 // extracted from a vector at a constant index to turn this into a shuffle.
17138 // Also, require that the build vector does not implicitly truncate/extend
17140 // TODO: This could be enhanced to allow ANY_EXTEND as well as ZERO_EXTEND.
17141 EVT VT
= BV
->getValueType(0);
17142 SDValue Zext
= BV
->getOperand(ZextElt
);
17143 if (Zext
.getOpcode() != ISD::ZERO_EXTEND
|| !Zext
.hasOneUse() ||
17144 Zext
.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
17145 !isa
<ConstantSDNode
>(Zext
.getOperand(0).getOperand(1)) ||
17146 Zext
.getValueSizeInBits() != VT
.getScalarSizeInBits())
17149 // The zero-extend must be a multiple of the source size, and we must be
17150 // building a vector of the same size as the source of the extract element.
17151 SDValue Extract
= Zext
.getOperand(0);
17152 unsigned DestSize
= Zext
.getValueSizeInBits();
17153 unsigned SrcSize
= Extract
.getValueSizeInBits();
17154 if (DestSize
% SrcSize
!= 0 ||
17155 Extract
.getOperand(0).getValueSizeInBits() != VT
.getSizeInBits())
17158 // Create a shuffle mask that will combine the extracted element with zeros
17160 int ZextRatio
= DestSize
/ SrcSize
;
17161 int NumMaskElts
= NumBVOps
* ZextRatio
;
17162 SmallVector
<int, 32> ShufMask(NumMaskElts
, -1);
17163 for (int i
= 0; i
!= NumMaskElts
; ++i
) {
17164 if (i
/ ZextRatio
== ZextElt
) {
17165 // The low bits of the (potentially translated) extracted element map to
17166 // the source vector. The high bits map to zero. We will use a zero vector
17167 // as the 2nd source operand of the shuffle, so use the 1st element of
17168 // that vector (mask value is number-of-elements) for the high bits.
17169 if (i
% ZextRatio
== 0)
17170 ShufMask
[i
] = Extract
.getConstantOperandVal(1);
17172 ShufMask
[i
] = NumMaskElts
;
17175 // Undef elements of the build vector remain undef because we initialize
17176 // the shuffle mask with -1.
17179 // Turn this into a shuffle with zero if that's legal.
17180 EVT VecVT
= Extract
.getOperand(0).getValueType();
17181 if (!DAG
.getTargetLoweringInfo().isShuffleMaskLegal(ShufMask
, VecVT
))
17184 // buildvec undef, ..., (zext (extractelt V, IndexC)), undef... -->
17185 // bitcast (shuffle V, ZeroVec, VectorMask)
17187 SDValue ZeroVec
= DAG
.getConstant(0, DL
, VecVT
);
17188 SDValue Shuf
= DAG
.getVectorShuffle(VecVT
, DL
, Extract
.getOperand(0), ZeroVec
,
17190 return DAG
.getBitcast(VT
, Shuf
);
17193 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
17194 // operations. If the types of the vectors we're extracting from allow it,
17195 // turn this into a vector_shuffle node.
17196 SDValue
DAGCombiner::reduceBuildVecToShuffle(SDNode
*N
) {
17198 EVT VT
= N
->getValueType(0);
17200 // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
17201 if (!isTypeLegal(VT
))
17204 if (SDValue V
= reduceBuildVecToShuffleWithZero(N
, DAG
))
17207 // May only combine to shuffle after legalize if shuffle is legal.
17208 if (LegalOperations
&& !TLI
.isOperationLegal(ISD::VECTOR_SHUFFLE
, VT
))
17211 bool UsesZeroVector
= false;
17212 unsigned NumElems
= N
->getNumOperands();
17214 // Record, for each element of the newly built vector, which input vector
17215 // that element comes from. -1 stands for undef, 0 for the zero vector,
17216 // and positive values for the input vectors.
17217 // VectorMask maps each element to its vector number, and VecIn maps vector
17218 // numbers to their initial SDValues.
17220 SmallVector
<int, 8> VectorMask(NumElems
, -1);
17221 SmallVector
<SDValue
, 8> VecIn
;
17222 VecIn
.push_back(SDValue());
17224 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
17225 SDValue Op
= N
->getOperand(i
);
17230 // See if we can use a blend with a zero vector.
17231 // TODO: Should we generalize this to a blend with an arbitrary constant
17233 if (isNullConstant(Op
) || isNullFPConstant(Op
)) {
17234 UsesZeroVector
= true;
17239 // Not an undef or zero. If the input is something other than an
17240 // EXTRACT_VECTOR_ELT with an in-range constant index, bail out.
17241 if (Op
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
17242 !isa
<ConstantSDNode
>(Op
.getOperand(1)))
17244 SDValue ExtractedFromVec
= Op
.getOperand(0);
17246 const APInt
&ExtractIdx
= Op
.getConstantOperandAPInt(1);
17247 if (ExtractIdx
.uge(ExtractedFromVec
.getValueType().getVectorNumElements()))
17250 // All inputs must have the same element type as the output.
17251 if (VT
.getVectorElementType() !=
17252 ExtractedFromVec
.getValueType().getVectorElementType())
17255 // Have we seen this input vector before?
17256 // The vectors are expected to be tiny (usually 1 or 2 elements), so using
17257 // a map back from SDValues to numbers isn't worth it.
17258 unsigned Idx
= std::distance(
17259 VecIn
.begin(), std::find(VecIn
.begin(), VecIn
.end(), ExtractedFromVec
));
17260 if (Idx
== VecIn
.size())
17261 VecIn
.push_back(ExtractedFromVec
);
17263 VectorMask
[i
] = Idx
;
17266 // If we didn't find at least one input vector, bail out.
17267 if (VecIn
.size() < 2)
17270 // If all the Operands of BUILD_VECTOR extract from same
17271 // vector, then split the vector efficiently based on the maximum
17272 // vector access index and adjust the VectorMask and
17273 // VecIn accordingly.
17274 bool DidSplitVec
= false;
17275 if (VecIn
.size() == 2) {
17276 unsigned MaxIndex
= 0;
17277 unsigned NearestPow2
= 0;
17278 SDValue Vec
= VecIn
.back();
17279 EVT InVT
= Vec
.getValueType();
17280 MVT IdxTy
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
17281 SmallVector
<unsigned, 8> IndexVec(NumElems
, 0);
17283 for (unsigned i
= 0; i
< NumElems
; i
++) {
17284 if (VectorMask
[i
] <= 0)
17286 unsigned Index
= N
->getOperand(i
).getConstantOperandVal(1);
17287 IndexVec
[i
] = Index
;
17288 MaxIndex
= std::max(MaxIndex
, Index
);
17291 NearestPow2
= PowerOf2Ceil(MaxIndex
);
17292 if (InVT
.isSimple() && NearestPow2
> 2 && MaxIndex
< NearestPow2
&&
17293 NumElems
* 2 < NearestPow2
) {
17294 unsigned SplitSize
= NearestPow2
/ 2;
17295 EVT SplitVT
= EVT::getVectorVT(*DAG
.getContext(),
17296 InVT
.getVectorElementType(), SplitSize
);
17297 if (TLI
.isTypeLegal(SplitVT
)) {
17298 SDValue VecIn2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, SplitVT
, Vec
,
17299 DAG
.getConstant(SplitSize
, DL
, IdxTy
));
17300 SDValue VecIn1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, SplitVT
, Vec
,
17301 DAG
.getConstant(0, DL
, IdxTy
));
17303 VecIn
.push_back(VecIn1
);
17304 VecIn
.push_back(VecIn2
);
17305 DidSplitVec
= true;
17307 for (unsigned i
= 0; i
< NumElems
; i
++) {
17308 if (VectorMask
[i
] <= 0)
17310 VectorMask
[i
] = (IndexVec
[i
] < SplitSize
) ? 1 : 2;
17316 // TODO: We want to sort the vectors by descending length, so that adjacent
17317 // pairs have similar length, and the longer vector is always first in the
17320 // TODO: Should this fire if some of the input vectors has illegal type (like
17321 // it does now), or should we let legalization run its course first?
17324 // Take pairs of vectors, and shuffle them so that the result has elements
17325 // from these vectors in the correct places.
17326 // For example, given:
17327 // t10: i32 = extract_vector_elt t1, Constant:i64<0>
17328 // t11: i32 = extract_vector_elt t2, Constant:i64<0>
17329 // t12: i32 = extract_vector_elt t3, Constant:i64<0>
17330 // t13: i32 = extract_vector_elt t1, Constant:i64<1>
17331 // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13
17332 // We will generate:
17333 // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2
17334 // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef
17335 SmallVector
<SDValue
, 4> Shuffles
;
17336 for (unsigned In
= 0, Len
= (VecIn
.size() / 2); In
< Len
; ++In
) {
17337 unsigned LeftIdx
= 2 * In
+ 1;
17338 SDValue VecLeft
= VecIn
[LeftIdx
];
17340 (LeftIdx
+ 1) < VecIn
.size() ? VecIn
[LeftIdx
+ 1] : SDValue();
17342 if (SDValue Shuffle
= createBuildVecShuffle(DL
, N
, VectorMask
, VecLeft
,
17343 VecRight
, LeftIdx
, DidSplitVec
))
17344 Shuffles
.push_back(Shuffle
);
17349 // If we need the zero vector as an "ingredient" in the blend tree, add it
17350 // to the list of shuffles.
17351 if (UsesZeroVector
)
17352 Shuffles
.push_back(VT
.isInteger() ? DAG
.getConstant(0, DL
, VT
)
17353 : DAG
.getConstantFP(0.0, DL
, VT
));
17355 // If we only have one shuffle, we're done.
17356 if (Shuffles
.size() == 1)
17357 return Shuffles
[0];
17359 // Update the vector mask to point to the post-shuffle vectors.
17360 for (int &Vec
: VectorMask
)
17362 Vec
= Shuffles
.size() - 1;
17364 Vec
= (Vec
- 1) / 2;
17366 // More than one shuffle. Generate a binary tree of blends, e.g. if from
17367 // the previous step we got the set of shuffles t10, t11, t12, t13, we will
17369 // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2
17370 // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4
17371 // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6
17372 // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8
17373 // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11
17374 // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13
17375 // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21
17377 // Make sure the initial size of the shuffle list is even.
17378 if (Shuffles
.size() % 2)
17379 Shuffles
.push_back(DAG
.getUNDEF(VT
));
17381 for (unsigned CurSize
= Shuffles
.size(); CurSize
> 1; CurSize
/= 2) {
17383 Shuffles
[CurSize
] = DAG
.getUNDEF(VT
);
17386 for (unsigned In
= 0, Len
= CurSize
/ 2; In
< Len
; ++In
) {
17388 int Right
= 2 * In
+ 1;
17389 SmallVector
<int, 8> Mask(NumElems
, -1);
17390 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
17391 if (VectorMask
[i
] == Left
) {
17393 VectorMask
[i
] = In
;
17394 } else if (VectorMask
[i
] == Right
) {
17395 Mask
[i
] = i
+ NumElems
;
17396 VectorMask
[i
] = In
;
17401 DAG
.getVectorShuffle(VT
, DL
, Shuffles
[Left
], Shuffles
[Right
], Mask
);
17404 return Shuffles
[0];
17407 // Try to turn a build vector of zero extends of extract vector elts into a
17408 // a vector zero extend and possibly an extract subvector.
17409 // TODO: Support sign extend?
17410 // TODO: Allow undef elements?
17411 SDValue
DAGCombiner::convertBuildVecZextToZext(SDNode
*N
) {
17412 if (LegalOperations
)
17415 EVT VT
= N
->getValueType(0);
17417 bool FoundZeroExtend
= false;
17418 SDValue Op0
= N
->getOperand(0);
17419 auto checkElem
= [&](SDValue Op
) -> int64_t {
17420 unsigned Opc
= Op
.getOpcode();
17421 FoundZeroExtend
|= (Opc
== ISD::ZERO_EXTEND
);
17422 if ((Opc
== ISD::ZERO_EXTEND
|| Opc
== ISD::ANY_EXTEND
) &&
17423 Op
.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
17424 Op0
.getOperand(0).getOperand(0) == Op
.getOperand(0).getOperand(0))
17425 if (auto *C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(0).getOperand(1)))
17426 return C
->getZExtValue();
17430 // Make sure the first element matches
17431 // (zext (extract_vector_elt X, C))
17432 int64_t Offset
= checkElem(Op0
);
17436 unsigned NumElems
= N
->getNumOperands();
17437 SDValue In
= Op0
.getOperand(0).getOperand(0);
17438 EVT InSVT
= In
.getValueType().getScalarType();
17439 EVT InVT
= EVT::getVectorVT(*DAG
.getContext(), InSVT
, NumElems
);
17441 // Don't create an illegal input type after type legalization.
17442 if (LegalTypes
&& !TLI
.isTypeLegal(InVT
))
17445 // Ensure all the elements come from the same vector and are adjacent.
17446 for (unsigned i
= 1; i
!= NumElems
; ++i
) {
17447 if ((Offset
+ i
) != checkElem(N
->getOperand(i
)))
17452 In
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, InVT
, In
,
17453 Op0
.getOperand(0).getOperand(1));
17454 return DAG
.getNode(FoundZeroExtend
? ISD::ZERO_EXTEND
: ISD::ANY_EXTEND
, DL
,
17458 SDValue
DAGCombiner::visitBUILD_VECTOR(SDNode
*N
) {
17459 EVT VT
= N
->getValueType(0);
17461 // A vector built entirely of undefs is undef.
17462 if (ISD::allOperandsUndef(N
))
17463 return DAG
.getUNDEF(VT
);
17465 // If this is a splat of a bitcast from another vector, change to a
17468 // (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) ->
17469 // (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X))))
17471 // If X is a build_vector itself, the concat can become a larger build_vector.
17472 // TODO: Maybe this is useful for non-splat too?
17473 if (!LegalOperations
) {
17474 if (SDValue Splat
= cast
<BuildVectorSDNode
>(N
)->getSplatValue()) {
17475 Splat
= peekThroughBitcasts(Splat
);
17476 EVT SrcVT
= Splat
.getValueType();
17477 if (SrcVT
.isVector()) {
17478 unsigned NumElts
= N
->getNumOperands() * SrcVT
.getVectorNumElements();
17479 EVT NewVT
= EVT::getVectorVT(*DAG
.getContext(),
17480 SrcVT
.getVectorElementType(), NumElts
);
17481 if (!LegalTypes
|| TLI
.isTypeLegal(NewVT
)) {
17482 SmallVector
<SDValue
, 8> Ops(N
->getNumOperands(), Splat
);
17483 SDValue Concat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
),
17485 return DAG
.getBitcast(VT
, Concat
);
17491 // Check if we can express BUILD VECTOR via subvector extract.
17492 if (!LegalTypes
&& (N
->getNumOperands() > 1)) {
17493 SDValue Op0
= N
->getOperand(0);
17494 auto checkElem
= [&](SDValue Op
) -> uint64_t {
17495 if ((Op
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
) &&
17496 (Op0
.getOperand(0) == Op
.getOperand(0)))
17497 if (auto CNode
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
17498 return CNode
->getZExtValue();
17502 int Offset
= checkElem(Op0
);
17503 for (unsigned i
= 0; i
< N
->getNumOperands(); ++i
) {
17504 if (Offset
+ i
!= checkElem(N
->getOperand(i
))) {
17510 if ((Offset
== 0) &&
17511 (Op0
.getOperand(0).getValueType() == N
->getValueType(0)))
17512 return Op0
.getOperand(0);
17513 if ((Offset
!= -1) &&
17514 ((Offset
% N
->getValueType(0).getVectorNumElements()) ==
17515 0)) // IDX must be multiple of output size.
17516 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, SDLoc(N
), N
->getValueType(0),
17517 Op0
.getOperand(0), Op0
.getOperand(1));
17520 if (SDValue V
= convertBuildVecZextToZext(N
))
17523 if (SDValue V
= reduceBuildVecExtToExtBuildVec(N
))
17526 if (SDValue V
= reduceBuildVecToShuffle(N
))
17532 static SDValue
combineConcatVectorOfScalars(SDNode
*N
, SelectionDAG
&DAG
) {
17533 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
17534 EVT OpVT
= N
->getOperand(0).getValueType();
17536 // If the operands are legal vectors, leave them alone.
17537 if (TLI
.isTypeLegal(OpVT
))
17541 EVT VT
= N
->getValueType(0);
17542 SmallVector
<SDValue
, 8> Ops
;
17544 EVT SVT
= EVT::getIntegerVT(*DAG
.getContext(), OpVT
.getSizeInBits());
17545 SDValue ScalarUndef
= DAG
.getNode(ISD::UNDEF
, DL
, SVT
);
17547 // Keep track of what we encounter.
17548 bool AnyInteger
= false;
17549 bool AnyFP
= false;
17550 for (const SDValue
&Op
: N
->ops()) {
17551 if (ISD::BITCAST
== Op
.getOpcode() &&
17552 !Op
.getOperand(0).getValueType().isVector())
17553 Ops
.push_back(Op
.getOperand(0));
17554 else if (ISD::UNDEF
== Op
.getOpcode())
17555 Ops
.push_back(ScalarUndef
);
17559 // Note whether we encounter an integer or floating point scalar.
17560 // If it's neither, bail out, it could be something weird like x86mmx.
17561 EVT LastOpVT
= Ops
.back().getValueType();
17562 if (LastOpVT
.isFloatingPoint())
17564 else if (LastOpVT
.isInteger())
17570 // If any of the operands is a floating point scalar bitcast to a vector,
17571 // use floating point types throughout, and bitcast everything.
17572 // Replace UNDEFs by another scalar UNDEF node, of the final desired type.
17574 SVT
= EVT::getFloatingPointVT(OpVT
.getSizeInBits());
17575 ScalarUndef
= DAG
.getNode(ISD::UNDEF
, DL
, SVT
);
17577 for (SDValue
&Op
: Ops
) {
17578 if (Op
.getValueType() == SVT
)
17583 Op
= DAG
.getBitcast(SVT
, Op
);
17588 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), SVT
,
17589 VT
.getSizeInBits() / SVT
.getSizeInBits());
17590 return DAG
.getBitcast(VT
, DAG
.getBuildVector(VecVT
, DL
, Ops
));
17593 // Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR
17594 // operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at
17595 // most two distinct vectors the same size as the result, attempt to turn this
17596 // into a legal shuffle.
17597 static SDValue
combineConcatVectorOfExtracts(SDNode
*N
, SelectionDAG
&DAG
) {
17598 EVT VT
= N
->getValueType(0);
17599 EVT OpVT
= N
->getOperand(0).getValueType();
17600 int NumElts
= VT
.getVectorNumElements();
17601 int NumOpElts
= OpVT
.getVectorNumElements();
17603 SDValue SV0
= DAG
.getUNDEF(VT
), SV1
= DAG
.getUNDEF(VT
);
17604 SmallVector
<int, 8> Mask
;
17606 for (SDValue Op
: N
->ops()) {
17607 Op
= peekThroughBitcasts(Op
);
17609 // UNDEF nodes convert to UNDEF shuffle mask values.
17610 if (Op
.isUndef()) {
17611 Mask
.append((unsigned)NumOpElts
, -1);
17615 if (Op
.getOpcode() != ISD::EXTRACT_SUBVECTOR
)
17618 // What vector are we extracting the subvector from and at what index?
17619 SDValue ExtVec
= Op
.getOperand(0);
17621 // We want the EVT of the original extraction to correctly scale the
17622 // extraction index.
17623 EVT ExtVT
= ExtVec
.getValueType();
17624 ExtVec
= peekThroughBitcasts(ExtVec
);
17626 // UNDEF nodes convert to UNDEF shuffle mask values.
17627 if (ExtVec
.isUndef()) {
17628 Mask
.append((unsigned)NumOpElts
, -1);
17632 if (!isa
<ConstantSDNode
>(Op
.getOperand(1)))
17634 int ExtIdx
= Op
.getConstantOperandVal(1);
17636 // Ensure that we are extracting a subvector from a vector the same
17637 // size as the result.
17638 if (ExtVT
.getSizeInBits() != VT
.getSizeInBits())
17641 // Scale the subvector index to account for any bitcast.
17642 int NumExtElts
= ExtVT
.getVectorNumElements();
17643 if (0 == (NumExtElts
% NumElts
))
17644 ExtIdx
/= (NumExtElts
/ NumElts
);
17645 else if (0 == (NumElts
% NumExtElts
))
17646 ExtIdx
*= (NumElts
/ NumExtElts
);
17650 // At most we can reference 2 inputs in the final shuffle.
17651 if (SV0
.isUndef() || SV0
== ExtVec
) {
17653 for (int i
= 0; i
!= NumOpElts
; ++i
)
17654 Mask
.push_back(i
+ ExtIdx
);
17655 } else if (SV1
.isUndef() || SV1
== ExtVec
) {
17657 for (int i
= 0; i
!= NumOpElts
; ++i
)
17658 Mask
.push_back(i
+ ExtIdx
+ NumElts
);
17664 if (!DAG
.getTargetLoweringInfo().isShuffleMaskLegal(Mask
, VT
))
17667 return DAG
.getVectorShuffle(VT
, SDLoc(N
), DAG
.getBitcast(VT
, SV0
),
17668 DAG
.getBitcast(VT
, SV1
), Mask
);
17671 SDValue
DAGCombiner::visitCONCAT_VECTORS(SDNode
*N
) {
17672 // If we only have one input vector, we don't need to do any concatenation.
17673 if (N
->getNumOperands() == 1)
17674 return N
->getOperand(0);
17676 // Check if all of the operands are undefs.
17677 EVT VT
= N
->getValueType(0);
17678 if (ISD::allOperandsUndef(N
))
17679 return DAG
.getUNDEF(VT
);
17681 // Optimize concat_vectors where all but the first of the vectors are undef.
17682 if (std::all_of(std::next(N
->op_begin()), N
->op_end(), [](const SDValue
&Op
) {
17683 return Op
.isUndef();
17685 SDValue In
= N
->getOperand(0);
17686 assert(In
.getValueType().isVector() && "Must concat vectors");
17688 // If the input is a concat_vectors, just make a larger concat by padding
17689 // with smaller undefs.
17690 if (In
.getOpcode() == ISD::CONCAT_VECTORS
&& In
.hasOneUse()) {
17691 unsigned NumOps
= N
->getNumOperands() * In
.getNumOperands();
17692 SmallVector
<SDValue
, 4> Ops(In
->op_begin(), In
->op_end());
17693 Ops
.resize(NumOps
, DAG
.getUNDEF(Ops
[0].getValueType()));
17694 return DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
, Ops
);
17697 SDValue Scalar
= peekThroughOneUseBitcasts(In
);
17699 // concat_vectors(scalar_to_vector(scalar), undef) ->
17700 // scalar_to_vector(scalar)
17701 if (!LegalOperations
&& Scalar
.getOpcode() == ISD::SCALAR_TO_VECTOR
&&
17702 Scalar
.hasOneUse()) {
17703 EVT SVT
= Scalar
.getValueType().getVectorElementType();
17704 if (SVT
== Scalar
.getOperand(0).getValueType())
17705 Scalar
= Scalar
.getOperand(0);
17708 // concat_vectors(scalar, undef) -> scalar_to_vector(scalar)
17709 if (!Scalar
.getValueType().isVector()) {
17710 // If the bitcast type isn't legal, it might be a trunc of a legal type;
17711 // look through the trunc so we can still do the transform:
17712 // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar)
17713 if (Scalar
->getOpcode() == ISD::TRUNCATE
&&
17714 !TLI
.isTypeLegal(Scalar
.getValueType()) &&
17715 TLI
.isTypeLegal(Scalar
->getOperand(0).getValueType()))
17716 Scalar
= Scalar
->getOperand(0);
17718 EVT SclTy
= Scalar
.getValueType();
17720 if (!SclTy
.isFloatingPoint() && !SclTy
.isInteger())
17723 // Bail out if the vector size is not a multiple of the scalar size.
17724 if (VT
.getSizeInBits() % SclTy
.getSizeInBits())
17727 unsigned VNTNumElms
= VT
.getSizeInBits() / SclTy
.getSizeInBits();
17728 if (VNTNumElms
< 2)
17731 EVT NVT
= EVT::getVectorVT(*DAG
.getContext(), SclTy
, VNTNumElms
);
17732 if (!TLI
.isTypeLegal(NVT
) || !TLI
.isTypeLegal(Scalar
.getValueType()))
17735 SDValue Res
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, SDLoc(N
), NVT
, Scalar
);
17736 return DAG
.getBitcast(VT
, Res
);
17740 // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR.
17741 // We have already tested above for an UNDEF only concatenation.
17742 // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...))
17743 // -> (BUILD_VECTOR A, B, ..., C, D, ...)
17744 auto IsBuildVectorOrUndef
= [](const SDValue
&Op
) {
17745 return ISD::UNDEF
== Op
.getOpcode() || ISD::BUILD_VECTOR
== Op
.getOpcode();
17747 if (llvm::all_of(N
->ops(), IsBuildVectorOrUndef
)) {
17748 SmallVector
<SDValue
, 8> Opnds
;
17749 EVT SVT
= VT
.getScalarType();
17752 if (!SVT
.isFloatingPoint()) {
17753 // If BUILD_VECTOR are from built from integer, they may have different
17754 // operand types. Get the smallest type and truncate all operands to it.
17755 bool FoundMinVT
= false;
17756 for (const SDValue
&Op
: N
->ops())
17757 if (ISD::BUILD_VECTOR
== Op
.getOpcode()) {
17758 EVT OpSVT
= Op
.getOperand(0).getValueType();
17759 MinVT
= (!FoundMinVT
|| OpSVT
.bitsLE(MinVT
)) ? OpSVT
: MinVT
;
17762 assert(FoundMinVT
&& "Concat vector type mismatch");
17765 for (const SDValue
&Op
: N
->ops()) {
17766 EVT OpVT
= Op
.getValueType();
17767 unsigned NumElts
= OpVT
.getVectorNumElements();
17769 if (ISD::UNDEF
== Op
.getOpcode())
17770 Opnds
.append(NumElts
, DAG
.getUNDEF(MinVT
));
17772 if (ISD::BUILD_VECTOR
== Op
.getOpcode()) {
17773 if (SVT
.isFloatingPoint()) {
17774 assert(SVT
== OpVT
.getScalarType() && "Concat vector type mismatch");
17775 Opnds
.append(Op
->op_begin(), Op
->op_begin() + NumElts
);
17777 for (unsigned i
= 0; i
!= NumElts
; ++i
)
17779 DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), MinVT
, Op
.getOperand(i
)));
17784 assert(VT
.getVectorNumElements() == Opnds
.size() &&
17785 "Concat vector type mismatch");
17786 return DAG
.getBuildVector(VT
, SDLoc(N
), Opnds
);
17789 // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR.
17790 if (SDValue V
= combineConcatVectorOfScalars(N
, DAG
))
17793 // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE.
17794 if (Level
< AfterLegalizeVectorOps
&& TLI
.isTypeLegal(VT
))
17795 if (SDValue V
= combineConcatVectorOfExtracts(N
, DAG
))
17798 // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
17799 // nodes often generate nop CONCAT_VECTOR nodes.
17800 // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that
17801 // place the incoming vectors at the exact same location.
17802 SDValue SingleSource
= SDValue();
17803 unsigned PartNumElem
= N
->getOperand(0).getValueType().getVectorNumElements();
17805 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
17806 SDValue Op
= N
->getOperand(i
);
17811 // Check if this is the identity extract:
17812 if (Op
.getOpcode() != ISD::EXTRACT_SUBVECTOR
)
17815 // Find the single incoming vector for the extract_subvector.
17816 if (SingleSource
.getNode()) {
17817 if (Op
.getOperand(0) != SingleSource
)
17820 SingleSource
= Op
.getOperand(0);
17822 // Check the source type is the same as the type of the result.
17823 // If not, this concat may extend the vector, so we can not
17824 // optimize it away.
17825 if (SingleSource
.getValueType() != N
->getValueType(0))
17829 auto *CS
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
17830 // The extract index must be constant.
17834 // Check that we are reading from the identity index.
17835 unsigned IdentityIndex
= i
* PartNumElem
;
17836 if (CS
->getAPIntValue() != IdentityIndex
)
17840 if (SingleSource
.getNode())
17841 return SingleSource
;
17846 // Helper that peeks through INSERT_SUBVECTOR/CONCAT_VECTORS to find
17847 // if the subvector can be sourced for free.
17848 static SDValue
getSubVectorSrc(SDValue V
, SDValue Index
, EVT SubVT
) {
17849 if (V
.getOpcode() == ISD::INSERT_SUBVECTOR
&&
17850 V
.getOperand(1).getValueType() == SubVT
&& V
.getOperand(2) == Index
) {
17851 return V
.getOperand(1);
17853 auto *IndexC
= dyn_cast
<ConstantSDNode
>(Index
);
17854 if (IndexC
&& V
.getOpcode() == ISD::CONCAT_VECTORS
&&
17855 V
.getOperand(0).getValueType() == SubVT
&&
17856 (IndexC
->getZExtValue() % SubVT
.getVectorNumElements()) == 0) {
17857 uint64_t SubIdx
= IndexC
->getZExtValue() / SubVT
.getVectorNumElements();
17858 return V
.getOperand(SubIdx
);
17863 static SDValue
narrowInsertExtractVectorBinOp(SDNode
*Extract
,
17864 SelectionDAG
&DAG
) {
17865 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
17866 SDValue BinOp
= Extract
->getOperand(0);
17867 unsigned BinOpcode
= BinOp
.getOpcode();
17868 if (!TLI
.isBinOp(BinOpcode
) || BinOp
.getNode()->getNumValues() != 1)
17871 EVT VecVT
= BinOp
.getValueType();
17872 SDValue Bop0
= BinOp
.getOperand(0), Bop1
= BinOp
.getOperand(1);
17873 if (VecVT
!= Bop0
.getValueType() || VecVT
!= Bop1
.getValueType())
17876 SDValue Index
= Extract
->getOperand(1);
17877 EVT SubVT
= Extract
->getValueType(0);
17878 if (!TLI
.isOperationLegalOrCustom(BinOpcode
, SubVT
))
17881 SDValue Sub0
= getSubVectorSrc(Bop0
, Index
, SubVT
);
17882 SDValue Sub1
= getSubVectorSrc(Bop1
, Index
, SubVT
);
17884 // TODO: We could handle the case where only 1 operand is being inserted by
17885 // creating an extract of the other operand, but that requires checking
17886 // number of uses and/or costs.
17887 if (!Sub0
|| !Sub1
)
17890 // We are inserting both operands of the wide binop only to extract back
17891 // to the narrow vector size. Eliminate all of the insert/extract:
17892 // ext (binop (ins ?, X, Index), (ins ?, Y, Index)), Index --> binop X, Y
17893 return DAG
.getNode(BinOpcode
, SDLoc(Extract
), SubVT
, Sub0
, Sub1
,
17894 BinOp
->getFlags());
17897 /// If we are extracting a subvector produced by a wide binary operator try
17898 /// to use a narrow binary operator and/or avoid concatenation and extraction.
17899 static SDValue
narrowExtractedVectorBinOp(SDNode
*Extract
, SelectionDAG
&DAG
) {
17900 // TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share
17901 // some of these bailouts with other transforms.
17903 if (SDValue V
= narrowInsertExtractVectorBinOp(Extract
, DAG
))
17906 // The extract index must be a constant, so we can map it to a concat operand.
17907 auto *ExtractIndexC
= dyn_cast
<ConstantSDNode
>(Extract
->getOperand(1));
17908 if (!ExtractIndexC
)
17911 // We are looking for an optionally bitcasted wide vector binary operator
17912 // feeding an extract subvector.
17913 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
17914 SDValue BinOp
= peekThroughBitcasts(Extract
->getOperand(0));
17915 unsigned BOpcode
= BinOp
.getOpcode();
17916 if (!TLI
.isBinOp(BOpcode
) || BinOp
.getNode()->getNumValues() != 1)
17919 // The binop must be a vector type, so we can extract some fraction of it.
17920 EVT WideBVT
= BinOp
.getValueType();
17921 if (!WideBVT
.isVector())
17924 EVT VT
= Extract
->getValueType(0);
17925 unsigned ExtractIndex
= ExtractIndexC
->getZExtValue();
17926 assert(ExtractIndex
% VT
.getVectorNumElements() == 0 &&
17927 "Extract index is not a multiple of the vector length.");
17929 // Bail out if this is not a proper multiple width extraction.
17930 unsigned WideWidth
= WideBVT
.getSizeInBits();
17931 unsigned NarrowWidth
= VT
.getSizeInBits();
17932 if (WideWidth
% NarrowWidth
!= 0)
17935 // Bail out if we are extracting a fraction of a single operation. This can
17936 // occur because we potentially looked through a bitcast of the binop.
17937 unsigned NarrowingRatio
= WideWidth
/ NarrowWidth
;
17938 unsigned WideNumElts
= WideBVT
.getVectorNumElements();
17939 if (WideNumElts
% NarrowingRatio
!= 0)
17942 // Bail out if the target does not support a narrower version of the binop.
17943 EVT NarrowBVT
= EVT::getVectorVT(*DAG
.getContext(), WideBVT
.getScalarType(),
17944 WideNumElts
/ NarrowingRatio
);
17945 if (!TLI
.isOperationLegalOrCustomOrPromote(BOpcode
, NarrowBVT
))
17948 // If extraction is cheap, we don't need to look at the binop operands
17949 // for concat ops. The narrow binop alone makes this transform profitable.
17950 // We can't just reuse the original extract index operand because we may have
17952 unsigned ConcatOpNum
= ExtractIndex
/ VT
.getVectorNumElements();
17953 unsigned ExtBOIdx
= ConcatOpNum
* NarrowBVT
.getVectorNumElements();
17954 EVT ExtBOIdxVT
= Extract
->getOperand(1).getValueType();
17955 if (TLI
.isExtractSubvectorCheap(NarrowBVT
, WideBVT
, ExtBOIdx
) &&
17956 BinOp
.hasOneUse() && Extract
->getOperand(0)->hasOneUse()) {
17957 // extract (binop B0, B1), N --> binop (extract B0, N), (extract B1, N)
17959 SDValue NewExtIndex
= DAG
.getConstant(ExtBOIdx
, DL
, ExtBOIdxVT
);
17960 SDValue X
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NarrowBVT
,
17961 BinOp
.getOperand(0), NewExtIndex
);
17962 SDValue Y
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NarrowBVT
,
17963 BinOp
.getOperand(1), NewExtIndex
);
17964 SDValue NarrowBinOp
= DAG
.getNode(BOpcode
, DL
, NarrowBVT
, X
, Y
,
17965 BinOp
.getNode()->getFlags());
17966 return DAG
.getBitcast(VT
, NarrowBinOp
);
17969 // Only handle the case where we are doubling and then halving. A larger ratio
17970 // may require more than two narrow binops to replace the wide binop.
17971 if (NarrowingRatio
!= 2)
17974 // TODO: The motivating case for this transform is an x86 AVX1 target. That
17975 // target has temptingly almost legal versions of bitwise logic ops in 256-bit
17976 // flavors, but no other 256-bit integer support. This could be extended to
17977 // handle any binop, but that may require fixing/adding other folds to avoid
17978 // codegen regressions.
17979 if (BOpcode
!= ISD::AND
&& BOpcode
!= ISD::OR
&& BOpcode
!= ISD::XOR
)
17982 // We need at least one concatenation operation of a binop operand to make
17983 // this transform worthwhile. The concat must double the input vector sizes.
17984 auto GetSubVector
= [ConcatOpNum
](SDValue V
) -> SDValue
{
17985 if (V
.getOpcode() == ISD::CONCAT_VECTORS
&& V
.getNumOperands() == 2)
17986 return V
.getOperand(ConcatOpNum
);
17989 SDValue SubVecL
= GetSubVector(peekThroughBitcasts(BinOp
.getOperand(0)));
17990 SDValue SubVecR
= GetSubVector(peekThroughBitcasts(BinOp
.getOperand(1)));
17992 if (SubVecL
|| SubVecR
) {
17993 // If a binop operand was not the result of a concat, we must extract a
17994 // half-sized operand for our new narrow binop:
17995 // extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN
17996 // extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, IndexC)
17997 // extract (binop X, (concat Y1, Y2)), N --> binop (extract X, IndexC), YN
17999 SDValue IndexC
= DAG
.getConstant(ExtBOIdx
, DL
, ExtBOIdxVT
);
18000 SDValue X
= SubVecL
? DAG
.getBitcast(NarrowBVT
, SubVecL
)
18001 : DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NarrowBVT
,
18002 BinOp
.getOperand(0), IndexC
);
18004 SDValue Y
= SubVecR
? DAG
.getBitcast(NarrowBVT
, SubVecR
)
18005 : DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NarrowBVT
,
18006 BinOp
.getOperand(1), IndexC
);
18008 SDValue NarrowBinOp
= DAG
.getNode(BOpcode
, DL
, NarrowBVT
, X
, Y
);
18009 return DAG
.getBitcast(VT
, NarrowBinOp
);
18015 /// If we are extracting a subvector from a wide vector load, convert to a
18016 /// narrow load to eliminate the extraction:
18017 /// (extract_subvector (load wide vector)) --> (load narrow vector)
18018 static SDValue
narrowExtractedVectorLoad(SDNode
*Extract
, SelectionDAG
&DAG
) {
18019 // TODO: Add support for big-endian. The offset calculation must be adjusted.
18020 if (DAG
.getDataLayout().isBigEndian())
18023 auto *Ld
= dyn_cast
<LoadSDNode
>(Extract
->getOperand(0));
18024 auto *ExtIdx
= dyn_cast
<ConstantSDNode
>(Extract
->getOperand(1));
18025 if (!Ld
|| Ld
->getExtensionType() || Ld
->isVolatile() || !ExtIdx
)
18028 // Allow targets to opt-out.
18029 EVT VT
= Extract
->getValueType(0);
18030 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
18031 if (!TLI
.shouldReduceLoadWidth(Ld
, Ld
->getExtensionType(), VT
))
18034 // The narrow load will be offset from the base address of the old load if
18035 // we are extracting from something besides index 0 (little-endian).
18037 SDValue BaseAddr
= Ld
->getOperand(1);
18038 unsigned Offset
= ExtIdx
->getZExtValue() * VT
.getScalarType().getStoreSize();
18040 // TODO: Use "BaseIndexOffset" to make this more effective.
18041 SDValue NewAddr
= DAG
.getMemBasePlusOffset(BaseAddr
, Offset
, DL
);
18042 MachineFunction
&MF
= DAG
.getMachineFunction();
18043 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(Ld
->getMemOperand(), Offset
,
18044 VT
.getStoreSize());
18045 SDValue NewLd
= DAG
.getLoad(VT
, DL
, Ld
->getChain(), NewAddr
, MMO
);
18046 DAG
.makeEquivalentMemoryOrdering(Ld
, NewLd
);
18050 SDValue
DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode
*N
) {
18051 EVT NVT
= N
->getValueType(0);
18052 SDValue V
= N
->getOperand(0);
18054 // Extract from UNDEF is UNDEF.
18056 return DAG
.getUNDEF(NVT
);
18058 if (TLI
.isOperationLegalOrCustomOrPromote(ISD::LOAD
, NVT
))
18059 if (SDValue NarrowLoad
= narrowExtractedVectorLoad(N
, DAG
))
18062 // Combine an extract of an extract into a single extract_subvector.
18063 // ext (ext X, C), 0 --> ext X, C
18064 SDValue Index
= N
->getOperand(1);
18065 if (isNullConstant(Index
) && V
.getOpcode() == ISD::EXTRACT_SUBVECTOR
&&
18066 V
.hasOneUse() && isa
<ConstantSDNode
>(V
.getOperand(1))) {
18067 if (TLI
.isExtractSubvectorCheap(NVT
, V
.getOperand(0).getValueType(),
18068 V
.getConstantOperandVal(1)) &&
18069 TLI
.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR
, NVT
)) {
18070 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, SDLoc(N
), NVT
, V
.getOperand(0),
18075 // Try to move vector bitcast after extract_subv by scaling extraction index:
18076 // extract_subv (bitcast X), Index --> bitcast (extract_subv X, Index')
18077 if (isa
<ConstantSDNode
>(Index
) && V
.getOpcode() == ISD::BITCAST
&&
18078 V
.getOperand(0).getValueType().isVector()) {
18079 SDValue SrcOp
= V
.getOperand(0);
18080 EVT SrcVT
= SrcOp
.getValueType();
18081 unsigned SrcNumElts
= SrcVT
.getVectorNumElements();
18082 unsigned DestNumElts
= V
.getValueType().getVectorNumElements();
18083 if ((SrcNumElts
% DestNumElts
) == 0) {
18084 unsigned SrcDestRatio
= SrcNumElts
/ DestNumElts
;
18085 unsigned NewExtNumElts
= NVT
.getVectorNumElements() * SrcDestRatio
;
18086 EVT NewExtVT
= EVT::getVectorVT(*DAG
.getContext(), SrcVT
.getScalarType(),
18088 if (TLI
.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR
, NewExtVT
)) {
18089 unsigned IndexValScaled
= N
->getConstantOperandVal(1) * SrcDestRatio
;
18091 SDValue NewIndex
= DAG
.getIntPtrConstant(IndexValScaled
, DL
);
18092 SDValue NewExtract
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NewExtVT
,
18093 V
.getOperand(0), NewIndex
);
18094 return DAG
.getBitcast(NVT
, NewExtract
);
18097 // TODO - handle (DestNumElts % SrcNumElts) == 0
18101 // (extract_subvec (concat V1, V2, ...), i)
18104 // Only operand 0 is checked as 'concat' assumes all inputs of the same
18106 if (V
.getOpcode() == ISD::CONCAT_VECTORS
&& isa
<ConstantSDNode
>(Index
) &&
18107 V
.getOperand(0).getValueType() == NVT
) {
18108 unsigned Idx
= N
->getConstantOperandVal(1);
18109 unsigned NumElems
= NVT
.getVectorNumElements();
18110 assert((Idx
% NumElems
) == 0 &&
18111 "IDX in concat is not a multiple of the result vector length.");
18112 return V
->getOperand(Idx
/ NumElems
);
18115 V
= peekThroughBitcasts(V
);
18117 // If the input is a build vector. Try to make a smaller build vector.
18118 if (V
.getOpcode() == ISD::BUILD_VECTOR
) {
18119 if (auto *IdxC
= dyn_cast
<ConstantSDNode
>(Index
)) {
18120 EVT InVT
= V
.getValueType();
18121 unsigned ExtractSize
= NVT
.getSizeInBits();
18122 unsigned EltSize
= InVT
.getScalarSizeInBits();
18123 // Only do this if we won't split any elements.
18124 if (ExtractSize
% EltSize
== 0) {
18125 unsigned NumElems
= ExtractSize
/ EltSize
;
18126 EVT EltVT
= InVT
.getVectorElementType();
18127 EVT ExtractVT
= NumElems
== 1 ? EltVT
18128 : EVT::getVectorVT(*DAG
.getContext(),
18130 if ((Level
< AfterLegalizeDAG
||
18132 TLI
.isOperationLegal(ISD::BUILD_VECTOR
, ExtractVT
))) &&
18133 (!LegalTypes
|| TLI
.isTypeLegal(ExtractVT
))) {
18134 unsigned IdxVal
= IdxC
->getZExtValue();
18135 IdxVal
*= NVT
.getScalarSizeInBits();
18138 if (NumElems
== 1) {
18139 SDValue Src
= V
->getOperand(IdxVal
);
18140 if (EltVT
!= Src
.getValueType())
18141 Src
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), InVT
, Src
);
18142 return DAG
.getBitcast(NVT
, Src
);
18145 // Extract the pieces from the original build_vector.
18146 SDValue BuildVec
= DAG
.getBuildVector(
18147 ExtractVT
, SDLoc(N
), V
->ops().slice(IdxVal
, NumElems
));
18148 return DAG
.getBitcast(NVT
, BuildVec
);
18154 if (V
.getOpcode() == ISD::INSERT_SUBVECTOR
) {
18155 // Handle only simple case where vector being inserted and vector
18156 // being extracted are of same size.
18157 EVT SmallVT
= V
.getOperand(1).getValueType();
18158 if (!NVT
.bitsEq(SmallVT
))
18161 // Only handle cases where both indexes are constants.
18162 auto *ExtIdx
= dyn_cast
<ConstantSDNode
>(Index
);
18163 auto *InsIdx
= dyn_cast
<ConstantSDNode
>(V
.getOperand(2));
18164 if (InsIdx
&& ExtIdx
) {
18166 // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
18168 // indices are equal or bit offsets are equal => V1
18169 // otherwise => (extract_subvec V1, ExtIdx)
18170 if (InsIdx
->getZExtValue() * SmallVT
.getScalarSizeInBits() ==
18171 ExtIdx
->getZExtValue() * NVT
.getScalarSizeInBits())
18172 return DAG
.getBitcast(NVT
, V
.getOperand(1));
18173 return DAG
.getNode(
18174 ISD::EXTRACT_SUBVECTOR
, SDLoc(N
), NVT
,
18175 DAG
.getBitcast(N
->getOperand(0).getValueType(), V
.getOperand(0)),
18180 if (SDValue NarrowBOp
= narrowExtractedVectorBinOp(N
, DAG
))
18183 if (SimplifyDemandedVectorElts(SDValue(N
, 0)))
18184 return SDValue(N
, 0);
18189 /// Try to convert a wide shuffle of concatenated vectors into 2 narrow shuffles
18190 /// followed by concatenation. Narrow vector ops may have better performance
18191 /// than wide ops, and this can unlock further narrowing of other vector ops.
18192 /// Targets can invert this transform later if it is not profitable.
18193 static SDValue
foldShuffleOfConcatUndefs(ShuffleVectorSDNode
*Shuf
,
18194 SelectionDAG
&DAG
) {
18195 SDValue N0
= Shuf
->getOperand(0), N1
= Shuf
->getOperand(1);
18196 if (N0
.getOpcode() != ISD::CONCAT_VECTORS
|| N0
.getNumOperands() != 2 ||
18197 N1
.getOpcode() != ISD::CONCAT_VECTORS
|| N1
.getNumOperands() != 2 ||
18198 !N0
.getOperand(1).isUndef() || !N1
.getOperand(1).isUndef())
18201 // Split the wide shuffle mask into halves. Any mask element that is accessing
18202 // operand 1 is offset down to account for narrowing of the vectors.
18203 ArrayRef
<int> Mask
= Shuf
->getMask();
18204 EVT VT
= Shuf
->getValueType(0);
18205 unsigned NumElts
= VT
.getVectorNumElements();
18206 unsigned HalfNumElts
= NumElts
/ 2;
18207 SmallVector
<int, 16> Mask0(HalfNumElts
, -1);
18208 SmallVector
<int, 16> Mask1(HalfNumElts
, -1);
18209 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
18212 int M
= Mask
[i
] < (int)NumElts
? Mask
[i
] : Mask
[i
] - (int)HalfNumElts
;
18213 if (i
< HalfNumElts
)
18216 Mask1
[i
- HalfNumElts
] = M
;
18219 // Ask the target if this is a valid transform.
18220 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
18221 EVT HalfVT
= EVT::getVectorVT(*DAG
.getContext(), VT
.getScalarType(),
18223 if (!TLI
.isShuffleMaskLegal(Mask0
, HalfVT
) ||
18224 !TLI
.isShuffleMaskLegal(Mask1
, HalfVT
))
18227 // shuffle (concat X, undef), (concat Y, undef), Mask -->
18228 // concat (shuffle X, Y, Mask0), (shuffle X, Y, Mask1)
18229 SDValue X
= N0
.getOperand(0), Y
= N1
.getOperand(0);
18231 SDValue Shuf0
= DAG
.getVectorShuffle(HalfVT
, DL
, X
, Y
, Mask0
);
18232 SDValue Shuf1
= DAG
.getVectorShuffle(HalfVT
, DL
, X
, Y
, Mask1
);
18233 return DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VT
, Shuf0
, Shuf1
);
18236 // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat,
18237 // or turn a shuffle of a single concat into simpler shuffle then concat.
18238 static SDValue
partitionShuffleOfConcats(SDNode
*N
, SelectionDAG
&DAG
) {
18239 EVT VT
= N
->getValueType(0);
18240 unsigned NumElts
= VT
.getVectorNumElements();
18242 SDValue N0
= N
->getOperand(0);
18243 SDValue N1
= N
->getOperand(1);
18244 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
18245 ArrayRef
<int> Mask
= SVN
->getMask();
18247 SmallVector
<SDValue
, 4> Ops
;
18248 EVT ConcatVT
= N0
.getOperand(0).getValueType();
18249 unsigned NumElemsPerConcat
= ConcatVT
.getVectorNumElements();
18250 unsigned NumConcats
= NumElts
/ NumElemsPerConcat
;
18252 auto IsUndefMaskElt
= [](int i
) { return i
== -1; };
18254 // Special case: shuffle(concat(A,B)) can be more efficiently represented
18255 // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high
18256 // half vector elements.
18257 if (NumElemsPerConcat
* 2 == NumElts
&& N1
.isUndef() &&
18258 llvm::all_of(Mask
.slice(NumElemsPerConcat
, NumElemsPerConcat
),
18260 N0
= DAG
.getVectorShuffle(ConcatVT
, SDLoc(N
), N0
.getOperand(0),
18262 Mask
.slice(0, NumElemsPerConcat
));
18263 N1
= DAG
.getUNDEF(ConcatVT
);
18264 return DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
, N0
, N1
);
18267 // Look at every vector that's inserted. We're looking for exact
18268 // subvector-sized copies from a concatenated vector
18269 for (unsigned I
= 0; I
!= NumConcats
; ++I
) {
18270 unsigned Begin
= I
* NumElemsPerConcat
;
18271 ArrayRef
<int> SubMask
= Mask
.slice(Begin
, NumElemsPerConcat
);
18273 // Make sure we're dealing with a copy.
18274 if (llvm::all_of(SubMask
, IsUndefMaskElt
)) {
18275 Ops
.push_back(DAG
.getUNDEF(ConcatVT
));
18280 for (int i
= 0; i
!= (int)NumElemsPerConcat
; ++i
) {
18281 if (IsUndefMaskElt(SubMask
[i
]))
18283 if ((SubMask
[i
] % (int)NumElemsPerConcat
) != i
)
18285 int EltOpIdx
= SubMask
[i
] / NumElemsPerConcat
;
18286 if (0 <= OpIdx
&& EltOpIdx
!= OpIdx
)
18290 assert(0 <= OpIdx
&& "Unknown concat_vectors op");
18292 if (OpIdx
< (int)N0
.getNumOperands())
18293 Ops
.push_back(N0
.getOperand(OpIdx
));
18295 Ops
.push_back(N1
.getOperand(OpIdx
- N0
.getNumOperands()));
18298 return DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
, Ops
);
18301 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
18302 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
18304 // SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always
18305 // a simplification in some sense, but it isn't appropriate in general: some
18306 // BUILD_VECTORs are substantially cheaper than others. The general case
18307 // of a BUILD_VECTOR requires inserting each element individually (or
18308 // performing the equivalent in a temporary stack variable). A BUILD_VECTOR of
18309 // all constants is a single constant pool load. A BUILD_VECTOR where each
18310 // element is identical is a splat. A BUILD_VECTOR where most of the operands
18311 // are undef lowers to a small number of element insertions.
18313 // To deal with this, we currently use a bunch of mostly arbitrary heuristics.
18314 // We don't fold shuffles where one side is a non-zero constant, and we don't
18315 // fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate
18316 // non-constant operands. This seems to work out reasonably well in practice.
18317 static SDValue
combineShuffleOfScalars(ShuffleVectorSDNode
*SVN
,
18319 const TargetLowering
&TLI
) {
18320 EVT VT
= SVN
->getValueType(0);
18321 unsigned NumElts
= VT
.getVectorNumElements();
18322 SDValue N0
= SVN
->getOperand(0);
18323 SDValue N1
= SVN
->getOperand(1);
18325 if (!N0
->hasOneUse())
18328 // If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as
18329 // discussed above.
18330 if (!N1
.isUndef()) {
18331 if (!N1
->hasOneUse())
18334 bool N0AnyConst
= isAnyConstantBuildVector(N0
);
18335 bool N1AnyConst
= isAnyConstantBuildVector(N1
);
18336 if (N0AnyConst
&& !N1AnyConst
&& !ISD::isBuildVectorAllZeros(N0
.getNode()))
18338 if (!N0AnyConst
&& N1AnyConst
&& !ISD::isBuildVectorAllZeros(N1
.getNode()))
18342 // If both inputs are splats of the same value then we can safely merge this
18343 // to a single BUILD_VECTOR with undef elements based on the shuffle mask.
18344 bool IsSplat
= false;
18345 auto *BV0
= dyn_cast
<BuildVectorSDNode
>(N0
);
18346 auto *BV1
= dyn_cast
<BuildVectorSDNode
>(N1
);
18348 if (SDValue Splat0
= BV0
->getSplatValue())
18349 IsSplat
= (Splat0
== BV1
->getSplatValue());
18351 SmallVector
<SDValue
, 8> Ops
;
18352 SmallSet
<SDValue
, 16> DuplicateOps
;
18353 for (int M
: SVN
->getMask()) {
18354 SDValue Op
= DAG
.getUNDEF(VT
.getScalarType());
18356 int Idx
= M
< (int)NumElts
? M
: M
- NumElts
;
18357 SDValue
&S
= (M
< (int)NumElts
? N0
: N1
);
18358 if (S
.getOpcode() == ISD::BUILD_VECTOR
) {
18359 Op
= S
.getOperand(Idx
);
18360 } else if (S
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
18361 SDValue Op0
= S
.getOperand(0);
18362 Op
= Idx
== 0 ? Op0
: DAG
.getUNDEF(Op0
.getValueType());
18364 // Operand can't be combined - bail out.
18369 // Don't duplicate a non-constant BUILD_VECTOR operand unless we're
18370 // generating a splat; semantically, this is fine, but it's likely to
18371 // generate low-quality code if the target can't reconstruct an appropriate
18373 if (!Op
.isUndef() && !isa
<ConstantSDNode
>(Op
) && !isa
<ConstantFPSDNode
>(Op
))
18374 if (!IsSplat
&& !DuplicateOps
.insert(Op
).second
)
18380 // BUILD_VECTOR requires all inputs to be of the same type, find the
18381 // maximum type and extend them all.
18382 EVT SVT
= VT
.getScalarType();
18383 if (SVT
.isInteger())
18384 for (SDValue
&Op
: Ops
)
18385 SVT
= (SVT
.bitsLT(Op
.getValueType()) ? Op
.getValueType() : SVT
);
18386 if (SVT
!= VT
.getScalarType())
18387 for (SDValue
&Op
: Ops
)
18388 Op
= TLI
.isZExtFree(Op
.getValueType(), SVT
)
18389 ? DAG
.getZExtOrTrunc(Op
, SDLoc(SVN
), SVT
)
18390 : DAG
.getSExtOrTrunc(Op
, SDLoc(SVN
), SVT
);
18391 return DAG
.getBuildVector(VT
, SDLoc(SVN
), Ops
);
18394 // Match shuffles that can be converted to any_vector_extend_in_reg.
18395 // This is often generated during legalization.
18396 // e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src))
18397 // TODO Add support for ZERO_EXTEND_VECTOR_INREG when we have a test case.
18398 static SDValue
combineShuffleToVectorExtend(ShuffleVectorSDNode
*SVN
,
18400 const TargetLowering
&TLI
,
18401 bool LegalOperations
) {
18402 EVT VT
= SVN
->getValueType(0);
18403 bool IsBigEndian
= DAG
.getDataLayout().isBigEndian();
18405 // TODO Add support for big-endian when we have a test case.
18406 if (!VT
.isInteger() || IsBigEndian
)
18409 unsigned NumElts
= VT
.getVectorNumElements();
18410 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
18411 ArrayRef
<int> Mask
= SVN
->getMask();
18412 SDValue N0
= SVN
->getOperand(0);
18414 // shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32))
18415 auto isAnyExtend
= [&Mask
, &NumElts
](unsigned Scale
) {
18416 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
18419 if ((i
% Scale
) == 0 && Mask
[i
] == (int)(i
/ Scale
))
18426 // Attempt to match a '*_extend_vector_inreg' shuffle, we just search for
18427 // power-of-2 extensions as they are the most likely.
18428 for (unsigned Scale
= 2; Scale
< NumElts
; Scale
*= 2) {
18429 // Check for non power of 2 vector sizes
18430 if (NumElts
% Scale
!= 0)
18432 if (!isAnyExtend(Scale
))
18435 EVT OutSVT
= EVT::getIntegerVT(*DAG
.getContext(), EltSizeInBits
* Scale
);
18436 EVT OutVT
= EVT::getVectorVT(*DAG
.getContext(), OutSVT
, NumElts
/ Scale
);
18437 // Never create an illegal type. Only create unsupported operations if we
18438 // are pre-legalization.
18439 if (TLI
.isTypeLegal(OutVT
))
18440 if (!LegalOperations
||
18441 TLI
.isOperationLegalOrCustom(ISD::ANY_EXTEND_VECTOR_INREG
, OutVT
))
18442 return DAG
.getBitcast(VT
,
18443 DAG
.getNode(ISD::ANY_EXTEND_VECTOR_INREG
,
18444 SDLoc(SVN
), OutVT
, N0
));
18450 // Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of
18451 // each source element of a large type into the lowest elements of a smaller
18452 // destination type. This is often generated during legalization.
18453 // If the source node itself was a '*_extend_vector_inreg' node then we should
18454 // then be able to remove it.
18455 static SDValue
combineTruncationShuffle(ShuffleVectorSDNode
*SVN
,
18456 SelectionDAG
&DAG
) {
18457 EVT VT
= SVN
->getValueType(0);
18458 bool IsBigEndian
= DAG
.getDataLayout().isBigEndian();
18460 // TODO Add support for big-endian when we have a test case.
18461 if (!VT
.isInteger() || IsBigEndian
)
18464 SDValue N0
= peekThroughBitcasts(SVN
->getOperand(0));
18466 unsigned Opcode
= N0
.getOpcode();
18467 if (Opcode
!= ISD::ANY_EXTEND_VECTOR_INREG
&&
18468 Opcode
!= ISD::SIGN_EXTEND_VECTOR_INREG
&&
18469 Opcode
!= ISD::ZERO_EXTEND_VECTOR_INREG
)
18472 SDValue N00
= N0
.getOperand(0);
18473 ArrayRef
<int> Mask
= SVN
->getMask();
18474 unsigned NumElts
= VT
.getVectorNumElements();
18475 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
18476 unsigned ExtSrcSizeInBits
= N00
.getScalarValueSizeInBits();
18477 unsigned ExtDstSizeInBits
= N0
.getScalarValueSizeInBits();
18479 if (ExtDstSizeInBits
% ExtSrcSizeInBits
!= 0)
18481 unsigned ExtScale
= ExtDstSizeInBits
/ ExtSrcSizeInBits
;
18483 // (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1>
18484 // (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1>
18485 // (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1>
18486 auto isTruncate
= [&Mask
, &NumElts
](unsigned Scale
) {
18487 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
18490 if ((i
* Scale
) < NumElts
&& Mask
[i
] == (int)(i
* Scale
))
18497 // At the moment we just handle the case where we've truncated back to the
18498 // same size as before the extension.
18499 // TODO: handle more extension/truncation cases as cases arise.
18500 if (EltSizeInBits
!= ExtSrcSizeInBits
)
18503 // We can remove *extend_vector_inreg only if the truncation happens at
18504 // the same scale as the extension.
18505 if (isTruncate(ExtScale
))
18506 return DAG
.getBitcast(VT
, N00
);
18511 // Combine shuffles of splat-shuffles of the form:
18512 // shuffle (shuffle V, undef, splat-mask), undef, M
18513 // If splat-mask contains undef elements, we need to be careful about
18514 // introducing undef's in the folded mask which are not the result of composing
18515 // the masks of the shuffles.
18516 static SDValue
combineShuffleOfSplatVal(ShuffleVectorSDNode
*Shuf
,
18517 SelectionDAG
&DAG
) {
18518 if (!Shuf
->getOperand(1).isUndef())
18520 auto *Splat
= dyn_cast
<ShuffleVectorSDNode
>(Shuf
->getOperand(0));
18521 if (!Splat
|| !Splat
->isSplat())
18524 ArrayRef
<int> ShufMask
= Shuf
->getMask();
18525 ArrayRef
<int> SplatMask
= Splat
->getMask();
18526 assert(ShufMask
.size() == SplatMask
.size() && "Mask length mismatch");
18528 // Prefer simplifying to the splat-shuffle, if possible. This is legal if
18529 // every undef mask element in the splat-shuffle has a corresponding undef
18530 // element in the user-shuffle's mask or if the composition of mask elements
18531 // would result in undef.
18532 // Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask):
18533 // * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u]
18534 // In this case it is not legal to simplify to the splat-shuffle because we
18535 // may be exposing the users of the shuffle an undef element at index 1
18536 // which was not there before the combine.
18537 // * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u]
18538 // In this case the composition of masks yields SplatMask, so it's ok to
18539 // simplify to the splat-shuffle.
18540 // * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u]
18541 // In this case the composed mask includes all undef elements of SplatMask
18542 // and in addition sets element zero to undef. It is safe to simplify to
18543 // the splat-shuffle.
18544 auto CanSimplifyToExistingSplat
= [](ArrayRef
<int> UserMask
,
18545 ArrayRef
<int> SplatMask
) {
18546 for (unsigned i
= 0, e
= UserMask
.size(); i
!= e
; ++i
)
18547 if (UserMask
[i
] != -1 && SplatMask
[i
] == -1 &&
18548 SplatMask
[UserMask
[i
]] != -1)
18552 if (CanSimplifyToExistingSplat(ShufMask
, SplatMask
))
18553 return Shuf
->getOperand(0);
18555 // Create a new shuffle with a mask that is composed of the two shuffles'
18557 SmallVector
<int, 32> NewMask
;
18558 for (int Idx
: ShufMask
)
18559 NewMask
.push_back(Idx
== -1 ? -1 : SplatMask
[Idx
]);
18561 return DAG
.getVectorShuffle(Splat
->getValueType(0), SDLoc(Splat
),
18562 Splat
->getOperand(0), Splat
->getOperand(1),
18566 /// If the shuffle mask is taking exactly one element from the first vector
18567 /// operand and passing through all other elements from the second vector
18568 /// operand, return the index of the mask element that is choosing an element
18569 /// from the first operand. Otherwise, return -1.
18570 static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef
<int> Mask
) {
18571 int MaskSize
= Mask
.size();
18572 int EltFromOp0
= -1;
18573 // TODO: This does not match if there are undef elements in the shuffle mask.
18574 // Should we ignore undefs in the shuffle mask instead? The trade-off is
18575 // removing an instruction (a shuffle), but losing the knowledge that some
18576 // vector lanes are not needed.
18577 for (int i
= 0; i
!= MaskSize
; ++i
) {
18578 if (Mask
[i
] >= 0 && Mask
[i
] < MaskSize
) {
18579 // We're looking for a shuffle of exactly one element from operand 0.
18580 if (EltFromOp0
!= -1)
18583 } else if (Mask
[i
] != i
+ MaskSize
) {
18584 // Nothing from operand 1 can change lanes.
18591 /// If a shuffle inserts exactly one element from a source vector operand into
18592 /// another vector operand and we can access the specified element as a scalar,
18593 /// then we can eliminate the shuffle.
18594 static SDValue
replaceShuffleOfInsert(ShuffleVectorSDNode
*Shuf
,
18595 SelectionDAG
&DAG
) {
18596 // First, check if we are taking one element of a vector and shuffling that
18597 // element into another vector.
18598 ArrayRef
<int> Mask
= Shuf
->getMask();
18599 SmallVector
<int, 16> CommutedMask(Mask
.begin(), Mask
.end());
18600 SDValue Op0
= Shuf
->getOperand(0);
18601 SDValue Op1
= Shuf
->getOperand(1);
18602 int ShufOp0Index
= getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask
);
18603 if (ShufOp0Index
== -1) {
18604 // Commute mask and check again.
18605 ShuffleVectorSDNode::commuteMask(CommutedMask
);
18606 ShufOp0Index
= getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask
);
18607 if (ShufOp0Index
== -1)
18609 // Commute operands to match the commuted shuffle mask.
18610 std::swap(Op0
, Op1
);
18611 Mask
= CommutedMask
;
18614 // The shuffle inserts exactly one element from operand 0 into operand 1.
18615 // Now see if we can access that element as a scalar via a real insert element
18617 // TODO: We can try harder to locate the element as a scalar. Examples: it
18618 // could be an operand of SCALAR_TO_VECTOR, BUILD_VECTOR, or a constant.
18619 assert(Mask
[ShufOp0Index
] >= 0 && Mask
[ShufOp0Index
] < (int)Mask
.size() &&
18620 "Shuffle mask value must be from operand 0");
18621 if (Op0
.getOpcode() != ISD::INSERT_VECTOR_ELT
)
18624 auto *InsIndexC
= dyn_cast
<ConstantSDNode
>(Op0
.getOperand(2));
18625 if (!InsIndexC
|| InsIndexC
->getSExtValue() != Mask
[ShufOp0Index
])
18628 // There's an existing insertelement with constant insertion index, so we
18629 // don't need to check the legality/profitability of a replacement operation
18630 // that differs at most in the constant value. The target should be able to
18631 // lower any of those in a similar way. If not, legalization will expand this
18632 // to a scalar-to-vector plus shuffle.
18634 // Note that the shuffle may move the scalar from the position that the insert
18635 // element used. Therefore, our new insert element occurs at the shuffle's
18636 // mask index value, not the insert's index value.
18637 // shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C'
18638 SDValue NewInsIndex
= DAG
.getConstant(ShufOp0Index
, SDLoc(Shuf
),
18639 Op0
.getOperand(2).getValueType());
18640 return DAG
.getNode(ISD::INSERT_VECTOR_ELT
, SDLoc(Shuf
), Op0
.getValueType(),
18641 Op1
, Op0
.getOperand(1), NewInsIndex
);
18644 /// If we have a unary shuffle of a shuffle, see if it can be folded away
18645 /// completely. This has the potential to lose undef knowledge because the first
18646 /// shuffle may not have an undef mask element where the second one does. So
18647 /// only call this after doing simplifications based on demanded elements.
18648 static SDValue
simplifyShuffleOfShuffle(ShuffleVectorSDNode
*Shuf
) {
18649 // shuf (shuf0 X, Y, Mask0), undef, Mask
18650 auto *Shuf0
= dyn_cast
<ShuffleVectorSDNode
>(Shuf
->getOperand(0));
18651 if (!Shuf0
|| !Shuf
->getOperand(1).isUndef())
18654 ArrayRef
<int> Mask
= Shuf
->getMask();
18655 ArrayRef
<int> Mask0
= Shuf0
->getMask();
18656 for (int i
= 0, e
= (int)Mask
.size(); i
!= e
; ++i
) {
18657 // Ignore undef elements.
18660 assert(Mask
[i
] >= 0 && Mask
[i
] < e
&& "Unexpected shuffle mask value");
18662 // Is the element of the shuffle operand chosen by this shuffle the same as
18663 // the element chosen by the shuffle operand itself?
18664 if (Mask0
[Mask
[i
]] != Mask0
[i
])
18667 // Every element of this shuffle is identical to the result of the previous
18668 // shuffle, so we can replace this value.
18669 return Shuf
->getOperand(0);
18672 SDValue
DAGCombiner::visitVECTOR_SHUFFLE(SDNode
*N
) {
18673 EVT VT
= N
->getValueType(0);
18674 unsigned NumElts
= VT
.getVectorNumElements();
18676 SDValue N0
= N
->getOperand(0);
18677 SDValue N1
= N
->getOperand(1);
18679 assert(N0
.getValueType() == VT
&& "Vector shuffle must be normalized in DAG");
18681 // Canonicalize shuffle undef, undef -> undef
18682 if (N0
.isUndef() && N1
.isUndef())
18683 return DAG
.getUNDEF(VT
);
18685 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
18687 // Canonicalize shuffle v, v -> v, undef
18689 SmallVector
<int, 8> NewMask
;
18690 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
18691 int Idx
= SVN
->getMaskElt(i
);
18692 if (Idx
>= (int)NumElts
) Idx
-= NumElts
;
18693 NewMask
.push_back(Idx
);
18695 return DAG
.getVectorShuffle(VT
, SDLoc(N
), N0
, DAG
.getUNDEF(VT
), NewMask
);
18698 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
18700 return DAG
.getCommutedVectorShuffle(*SVN
);
18702 // Remove references to rhs if it is undef
18703 if (N1
.isUndef()) {
18704 bool Changed
= false;
18705 SmallVector
<int, 8> NewMask
;
18706 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
18707 int Idx
= SVN
->getMaskElt(i
);
18708 if (Idx
>= (int)NumElts
) {
18712 NewMask
.push_back(Idx
);
18715 return DAG
.getVectorShuffle(VT
, SDLoc(N
), N0
, N1
, NewMask
);
18718 if (SDValue InsElt
= replaceShuffleOfInsert(SVN
, DAG
))
18721 // A shuffle of a single vector that is a splatted value can always be folded.
18722 if (SDValue V
= combineShuffleOfSplatVal(SVN
, DAG
))
18725 // If it is a splat, check if the argument vector is another splat or a
18727 if (SVN
->isSplat() && SVN
->getSplatIndex() < (int)NumElts
) {
18728 int SplatIndex
= SVN
->getSplatIndex();
18729 if (TLI
.isExtractVecEltCheap(VT
, SplatIndex
) &&
18730 TLI
.isBinOp(N0
.getOpcode()) && N0
.getNode()->getNumValues() == 1) {
18731 // splat (vector_bo L, R), Index -->
18732 // splat (scalar_bo (extelt L, Index), (extelt R, Index))
18733 SDValue L
= N0
.getOperand(0), R
= N0
.getOperand(1);
18735 EVT EltVT
= VT
.getScalarType();
18736 SDValue Index
= DAG
.getIntPtrConstant(SplatIndex
, DL
);
18737 SDValue ExtL
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltVT
, L
, Index
);
18738 SDValue ExtR
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltVT
, R
, Index
);
18739 SDValue NewBO
= DAG
.getNode(N0
.getOpcode(), DL
, EltVT
, ExtL
, ExtR
,
18740 N0
.getNode()->getFlags());
18741 SDValue Insert
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, DL
, VT
, NewBO
);
18742 SmallVector
<int, 16> ZeroMask(VT
.getVectorNumElements(), 0);
18743 return DAG
.getVectorShuffle(VT
, DL
, Insert
, DAG
.getUNDEF(VT
), ZeroMask
);
18746 // If this is a bit convert that changes the element type of the vector but
18747 // not the number of vector elements, look through it. Be careful not to
18748 // look though conversions that change things like v4f32 to v2f64.
18749 SDNode
*V
= N0
.getNode();
18750 if (V
->getOpcode() == ISD::BITCAST
) {
18751 SDValue ConvInput
= V
->getOperand(0);
18752 if (ConvInput
.getValueType().isVector() &&
18753 ConvInput
.getValueType().getVectorNumElements() == NumElts
)
18754 V
= ConvInput
.getNode();
18757 if (V
->getOpcode() == ISD::BUILD_VECTOR
) {
18758 assert(V
->getNumOperands() == NumElts
&&
18759 "BUILD_VECTOR has wrong number of operands");
18761 bool AllSame
= true;
18762 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
18763 if (!V
->getOperand(i
).isUndef()) {
18764 Base
= V
->getOperand(i
);
18768 // Splat of <u, u, u, u>, return <u, u, u, u>
18769 if (!Base
.getNode())
18771 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
18772 if (V
->getOperand(i
) != Base
) {
18777 // Splat of <x, x, x, x>, return <x, x, x, x>
18781 // Canonicalize any other splat as a build_vector.
18782 SDValue Splatted
= V
->getOperand(SplatIndex
);
18783 SmallVector
<SDValue
, 8> Ops(NumElts
, Splatted
);
18784 SDValue NewBV
= DAG
.getBuildVector(V
->getValueType(0), SDLoc(N
), Ops
);
18786 // We may have jumped through bitcasts, so the type of the
18787 // BUILD_VECTOR may not match the type of the shuffle.
18788 if (V
->getValueType(0) != VT
)
18789 NewBV
= DAG
.getBitcast(VT
, NewBV
);
18794 // Simplify source operands based on shuffle mask.
18795 if (SimplifyDemandedVectorElts(SDValue(N
, 0)))
18796 return SDValue(N
, 0);
18798 // This is intentionally placed after demanded elements simplification because
18799 // it could eliminate knowledge of undef elements created by this shuffle.
18800 if (SDValue ShufOp
= simplifyShuffleOfShuffle(SVN
))
18803 // Match shuffles that can be converted to any_vector_extend_in_reg.
18804 if (SDValue V
= combineShuffleToVectorExtend(SVN
, DAG
, TLI
, LegalOperations
))
18807 // Combine "truncate_vector_in_reg" style shuffles.
18808 if (SDValue V
= combineTruncationShuffle(SVN
, DAG
))
18811 if (N0
.getOpcode() == ISD::CONCAT_VECTORS
&&
18812 Level
< AfterLegalizeVectorOps
&&
18814 (N1
.getOpcode() == ISD::CONCAT_VECTORS
&&
18815 N0
.getOperand(0).getValueType() == N1
.getOperand(0).getValueType()))) {
18816 if (SDValue V
= partitionShuffleOfConcats(N
, DAG
))
18820 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
18821 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
18822 if (Level
< AfterLegalizeDAG
&& TLI
.isTypeLegal(VT
))
18823 if (SDValue Res
= combineShuffleOfScalars(SVN
, DAG
, TLI
))
18826 // If this shuffle only has a single input that is a bitcasted shuffle,
18827 // attempt to merge the 2 shuffles and suitably bitcast the inputs/output
18828 // back to their original types.
18829 if (N0
.getOpcode() == ISD::BITCAST
&& N0
.hasOneUse() &&
18830 N1
.isUndef() && Level
< AfterLegalizeVectorOps
&&
18831 TLI
.isTypeLegal(VT
)) {
18832 auto ScaleShuffleMask
= [](ArrayRef
<int> Mask
, int Scale
) {
18834 return SmallVector
<int, 8>(Mask
.begin(), Mask
.end());
18836 SmallVector
<int, 8> NewMask
;
18838 for (int s
= 0; s
!= Scale
; ++s
)
18839 NewMask
.push_back(M
< 0 ? -1 : Scale
* M
+ s
);
18843 SDValue BC0
= peekThroughOneUseBitcasts(N0
);
18844 if (BC0
.getOpcode() == ISD::VECTOR_SHUFFLE
&& BC0
.hasOneUse()) {
18845 EVT SVT
= VT
.getScalarType();
18846 EVT InnerVT
= BC0
->getValueType(0);
18847 EVT InnerSVT
= InnerVT
.getScalarType();
18849 // Determine which shuffle works with the smaller scalar type.
18850 EVT ScaleVT
= SVT
.bitsLT(InnerSVT
) ? VT
: InnerVT
;
18851 EVT ScaleSVT
= ScaleVT
.getScalarType();
18853 if (TLI
.isTypeLegal(ScaleVT
) &&
18854 0 == (InnerSVT
.getSizeInBits() % ScaleSVT
.getSizeInBits()) &&
18855 0 == (SVT
.getSizeInBits() % ScaleSVT
.getSizeInBits())) {
18856 int InnerScale
= InnerSVT
.getSizeInBits() / ScaleSVT
.getSizeInBits();
18857 int OuterScale
= SVT
.getSizeInBits() / ScaleSVT
.getSizeInBits();
18859 // Scale the shuffle masks to the smaller scalar type.
18860 ShuffleVectorSDNode
*InnerSVN
= cast
<ShuffleVectorSDNode
>(BC0
);
18861 SmallVector
<int, 8> InnerMask
=
18862 ScaleShuffleMask(InnerSVN
->getMask(), InnerScale
);
18863 SmallVector
<int, 8> OuterMask
=
18864 ScaleShuffleMask(SVN
->getMask(), OuterScale
);
18866 // Merge the shuffle masks.
18867 SmallVector
<int, 8> NewMask
;
18868 for (int M
: OuterMask
)
18869 NewMask
.push_back(M
< 0 ? -1 : InnerMask
[M
]);
18871 // Test for shuffle mask legality over both commutations.
18872 SDValue SV0
= BC0
->getOperand(0);
18873 SDValue SV1
= BC0
->getOperand(1);
18874 bool LegalMask
= TLI
.isShuffleMaskLegal(NewMask
, ScaleVT
);
18876 std::swap(SV0
, SV1
);
18877 ShuffleVectorSDNode::commuteMask(NewMask
);
18878 LegalMask
= TLI
.isShuffleMaskLegal(NewMask
, ScaleVT
);
18882 SV0
= DAG
.getBitcast(ScaleVT
, SV0
);
18883 SV1
= DAG
.getBitcast(ScaleVT
, SV1
);
18884 return DAG
.getBitcast(
18885 VT
, DAG
.getVectorShuffle(ScaleVT
, SDLoc(N
), SV0
, SV1
, NewMask
));
18891 // Canonicalize shuffles according to rules:
18892 // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A)
18893 // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B)
18894 // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B)
18895 if (N1
.getOpcode() == ISD::VECTOR_SHUFFLE
&&
18896 N0
.getOpcode() != ISD::VECTOR_SHUFFLE
&& Level
< AfterLegalizeDAG
&&
18897 TLI
.isTypeLegal(VT
)) {
18898 // The incoming shuffle must be of the same type as the result of the
18899 // current shuffle.
18900 assert(N1
->getOperand(0).getValueType() == VT
&&
18901 "Shuffle types don't match");
18903 SDValue SV0
= N1
->getOperand(0);
18904 SDValue SV1
= N1
->getOperand(1);
18905 bool HasSameOp0
= N0
== SV0
;
18906 bool IsSV1Undef
= SV1
.isUndef();
18907 if (HasSameOp0
|| IsSV1Undef
|| N0
== SV1
)
18908 // Commute the operands of this shuffle so that next rule
18910 return DAG
.getCommutedVectorShuffle(*SVN
);
18913 // Try to fold according to rules:
18914 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
18915 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
18916 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
18917 // Don't try to fold shuffles with illegal type.
18918 // Only fold if this shuffle is the only user of the other shuffle.
18919 if (N0
.getOpcode() == ISD::VECTOR_SHUFFLE
&& N
->isOnlyUserOf(N0
.getNode()) &&
18920 Level
< AfterLegalizeDAG
&& TLI
.isTypeLegal(VT
)) {
18921 ShuffleVectorSDNode
*OtherSV
= cast
<ShuffleVectorSDNode
>(N0
);
18923 // Don't try to fold splats; they're likely to simplify somehow, or they
18925 if (OtherSV
->isSplat())
18928 // The incoming shuffle must be of the same type as the result of the
18929 // current shuffle.
18930 assert(OtherSV
->getOperand(0).getValueType() == VT
&&
18931 "Shuffle types don't match");
18934 SmallVector
<int, 4> Mask
;
18935 // Compute the combined shuffle mask for a shuffle with SV0 as the first
18936 // operand, and SV1 as the second operand.
18937 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
18938 int Idx
= SVN
->getMaskElt(i
);
18940 // Propagate Undef.
18941 Mask
.push_back(Idx
);
18945 SDValue CurrentVec
;
18946 if (Idx
< (int)NumElts
) {
18947 // This shuffle index refers to the inner shuffle N0. Lookup the inner
18948 // shuffle mask to identify which vector is actually referenced.
18949 Idx
= OtherSV
->getMaskElt(Idx
);
18951 // Propagate Undef.
18952 Mask
.push_back(Idx
);
18956 CurrentVec
= (Idx
< (int) NumElts
) ? OtherSV
->getOperand(0)
18957 : OtherSV
->getOperand(1);
18959 // This shuffle index references an element within N1.
18963 // Simple case where 'CurrentVec' is UNDEF.
18964 if (CurrentVec
.isUndef()) {
18965 Mask
.push_back(-1);
18969 // Canonicalize the shuffle index. We don't know yet if CurrentVec
18970 // will be the first or second operand of the combined shuffle.
18971 Idx
= Idx
% NumElts
;
18972 if (!SV0
.getNode() || SV0
== CurrentVec
) {
18973 // Ok. CurrentVec is the left hand side.
18974 // Update the mask accordingly.
18976 Mask
.push_back(Idx
);
18980 // Bail out if we cannot convert the shuffle pair into a single shuffle.
18981 if (SV1
.getNode() && SV1
!= CurrentVec
)
18984 // Ok. CurrentVec is the right hand side.
18985 // Update the mask accordingly.
18987 Mask
.push_back(Idx
+ NumElts
);
18990 // Check if all indices in Mask are Undef. In case, propagate Undef.
18991 bool isUndefMask
= true;
18992 for (unsigned i
= 0; i
!= NumElts
&& isUndefMask
; ++i
)
18993 isUndefMask
&= Mask
[i
] < 0;
18996 return DAG
.getUNDEF(VT
);
18998 if (!SV0
.getNode())
18999 SV0
= DAG
.getUNDEF(VT
);
19000 if (!SV1
.getNode())
19001 SV1
= DAG
.getUNDEF(VT
);
19003 // Avoid introducing shuffles with illegal mask.
19004 if (!TLI
.isShuffleMaskLegal(Mask
, VT
)) {
19005 ShuffleVectorSDNode::commuteMask(Mask
);
19007 if (!TLI
.isShuffleMaskLegal(Mask
, VT
))
19010 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2)
19011 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2)
19012 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2)
19013 std::swap(SV0
, SV1
);
19016 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
19017 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
19018 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
19019 return DAG
.getVectorShuffle(VT
, SDLoc(N
), SV0
, SV1
, Mask
);
19022 if (SDValue V
= foldShuffleOfConcatUndefs(SVN
, DAG
))
19028 SDValue
DAGCombiner::visitSCALAR_TO_VECTOR(SDNode
*N
) {
19029 SDValue InVal
= N
->getOperand(0);
19030 EVT VT
= N
->getValueType(0);
19032 // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern
19033 // with a VECTOR_SHUFFLE and possible truncate.
19034 if (InVal
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
19035 SDValue InVec
= InVal
->getOperand(0);
19036 SDValue EltNo
= InVal
->getOperand(1);
19037 auto InVecT
= InVec
.getValueType();
19038 if (ConstantSDNode
*C0
= dyn_cast
<ConstantSDNode
>(EltNo
)) {
19039 SmallVector
<int, 8> NewMask(InVecT
.getVectorNumElements(), -1);
19040 int Elt
= C0
->getZExtValue();
19043 // If we have an implict truncate do truncate here as long as it's legal.
19044 // if it's not legal, this should
19045 if (VT
.getScalarType() != InVal
.getValueType() &&
19046 InVal
.getValueType().isScalarInteger() &&
19047 isTypeLegal(VT
.getScalarType())) {
19049 DAG
.getNode(ISD::TRUNCATE
, SDLoc(InVal
), VT
.getScalarType(), InVal
);
19050 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, SDLoc(N
), VT
, Val
);
19052 if (VT
.getScalarType() == InVecT
.getScalarType() &&
19053 VT
.getVectorNumElements() <= InVecT
.getVectorNumElements() &&
19054 TLI
.isShuffleMaskLegal(NewMask
, VT
)) {
19055 Val
= DAG
.getVectorShuffle(InVecT
, SDLoc(N
), InVec
,
19056 DAG
.getUNDEF(InVecT
), NewMask
);
19057 // If the initial vector is the correct size this shuffle is a
19061 // If not we must truncate the vector.
19062 if (VT
.getVectorNumElements() != InVecT
.getVectorNumElements()) {
19063 MVT IdxTy
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
19064 SDValue ZeroIdx
= DAG
.getConstant(0, SDLoc(N
), IdxTy
);
19066 EVT::getVectorVT(*DAG
.getContext(), InVecT
.getVectorElementType(),
19067 VT
.getVectorNumElements());
19068 Val
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, SDLoc(N
), SubVT
, Val
,
19079 SDValue
DAGCombiner::visitINSERT_SUBVECTOR(SDNode
*N
) {
19080 EVT VT
= N
->getValueType(0);
19081 SDValue N0
= N
->getOperand(0);
19082 SDValue N1
= N
->getOperand(1);
19083 SDValue N2
= N
->getOperand(2);
19085 // If inserting an UNDEF, just return the original vector.
19089 // If this is an insert of an extracted vector into an undef vector, we can
19090 // just use the input to the extract.
19091 if (N0
.isUndef() && N1
.getOpcode() == ISD::EXTRACT_SUBVECTOR
&&
19092 N1
.getOperand(1) == N2
&& N1
.getOperand(0).getValueType() == VT
)
19093 return N1
.getOperand(0);
19095 // If we are inserting a bitcast value into an undef, with the same
19096 // number of elements, just use the bitcast input of the extract.
19097 // i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 ->
19098 // BITCAST (INSERT_SUBVECTOR UNDEF N1 N2)
19099 if (N0
.isUndef() && N1
.getOpcode() == ISD::BITCAST
&&
19100 N1
.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR
&&
19101 N1
.getOperand(0).getOperand(1) == N2
&&
19102 N1
.getOperand(0).getOperand(0).getValueType().getVectorNumElements() ==
19103 VT
.getVectorNumElements() &&
19104 N1
.getOperand(0).getOperand(0).getValueType().getSizeInBits() ==
19105 VT
.getSizeInBits()) {
19106 return DAG
.getBitcast(VT
, N1
.getOperand(0).getOperand(0));
19109 // If both N1 and N2 are bitcast values on which insert_subvector
19110 // would makes sense, pull the bitcast through.
19111 // i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 ->
19112 // BITCAST (INSERT_SUBVECTOR N0 N1 N2)
19113 if (N0
.getOpcode() == ISD::BITCAST
&& N1
.getOpcode() == ISD::BITCAST
) {
19114 SDValue CN0
= N0
.getOperand(0);
19115 SDValue CN1
= N1
.getOperand(0);
19116 EVT CN0VT
= CN0
.getValueType();
19117 EVT CN1VT
= CN1
.getValueType();
19118 if (CN0VT
.isVector() && CN1VT
.isVector() &&
19119 CN0VT
.getVectorElementType() == CN1VT
.getVectorElementType() &&
19120 CN0VT
.getVectorNumElements() == VT
.getVectorNumElements()) {
19121 SDValue NewINSERT
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, SDLoc(N
),
19122 CN0
.getValueType(), CN0
, CN1
, N2
);
19123 return DAG
.getBitcast(VT
, NewINSERT
);
19127 // Combine INSERT_SUBVECTORs where we are inserting to the same index.
19128 // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx )
19129 // --> INSERT_SUBVECTOR( Vec, SubNew, Idx )
19130 if (N0
.getOpcode() == ISD::INSERT_SUBVECTOR
&&
19131 N0
.getOperand(1).getValueType() == N1
.getValueType() &&
19132 N0
.getOperand(2) == N2
)
19133 return DAG
.getNode(ISD::INSERT_SUBVECTOR
, SDLoc(N
), VT
, N0
.getOperand(0),
19136 // Eliminate an intermediate insert into an undef vector:
19137 // insert_subvector undef, (insert_subvector undef, X, 0), N2 -->
19138 // insert_subvector undef, X, N2
19139 if (N0
.isUndef() && N1
.getOpcode() == ISD::INSERT_SUBVECTOR
&&
19140 N1
.getOperand(0).isUndef() && isNullConstant(N1
.getOperand(2)))
19141 return DAG
.getNode(ISD::INSERT_SUBVECTOR
, SDLoc(N
), VT
, N0
,
19142 N1
.getOperand(1), N2
);
19144 if (!isa
<ConstantSDNode
>(N2
))
19147 uint64_t InsIdx
= cast
<ConstantSDNode
>(N2
)->getZExtValue();
19149 // Push subvector bitcasts to the output, adjusting the index as we go.
19150 // insert_subvector(bitcast(v), bitcast(s), c1)
19151 // -> bitcast(insert_subvector(v, s, c2))
19152 if ((N0
.isUndef() || N0
.getOpcode() == ISD::BITCAST
) &&
19153 N1
.getOpcode() == ISD::BITCAST
) {
19154 SDValue N0Src
= peekThroughBitcasts(N0
);
19155 SDValue N1Src
= peekThroughBitcasts(N1
);
19156 EVT N0SrcSVT
= N0Src
.getValueType().getScalarType();
19157 EVT N1SrcSVT
= N1Src
.getValueType().getScalarType();
19158 if ((N0
.isUndef() || N0SrcSVT
== N1SrcSVT
) &&
19159 N0Src
.getValueType().isVector() && N1Src
.getValueType().isVector()) {
19163 MVT IdxVT
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
19164 LLVMContext
&Ctx
= *DAG
.getContext();
19165 unsigned NumElts
= VT
.getVectorNumElements();
19166 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
19167 if ((EltSizeInBits
% N1SrcSVT
.getSizeInBits()) == 0) {
19168 unsigned Scale
= EltSizeInBits
/ N1SrcSVT
.getSizeInBits();
19169 NewVT
= EVT::getVectorVT(Ctx
, N1SrcSVT
, NumElts
* Scale
);
19170 NewIdx
= DAG
.getConstant(InsIdx
* Scale
, DL
, IdxVT
);
19171 } else if ((N1SrcSVT
.getSizeInBits() % EltSizeInBits
) == 0) {
19172 unsigned Scale
= N1SrcSVT
.getSizeInBits() / EltSizeInBits
;
19173 if ((NumElts
% Scale
) == 0 && (InsIdx
% Scale
) == 0) {
19174 NewVT
= EVT::getVectorVT(Ctx
, N1SrcSVT
, NumElts
/ Scale
);
19175 NewIdx
= DAG
.getConstant(InsIdx
/ Scale
, DL
, IdxVT
);
19178 if (NewIdx
&& hasOperation(ISD::INSERT_SUBVECTOR
, NewVT
)) {
19179 SDValue Res
= DAG
.getBitcast(NewVT
, N0Src
);
19180 Res
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, NewVT
, Res
, N1Src
, NewIdx
);
19181 return DAG
.getBitcast(VT
, Res
);
19186 // Canonicalize insert_subvector dag nodes.
19188 // (insert_subvector (insert_subvector A, Idx0), Idx1)
19189 // -> (insert_subvector (insert_subvector A, Idx1), Idx0)
19190 if (N0
.getOpcode() == ISD::INSERT_SUBVECTOR
&& N0
.hasOneUse() &&
19191 N1
.getValueType() == N0
.getOperand(1).getValueType() &&
19192 isa
<ConstantSDNode
>(N0
.getOperand(2))) {
19193 unsigned OtherIdx
= N0
.getConstantOperandVal(2);
19194 if (InsIdx
< OtherIdx
) {
19196 SDValue NewOp
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, SDLoc(N
), VT
,
19197 N0
.getOperand(0), N1
, N2
);
19198 AddToWorklist(NewOp
.getNode());
19199 return DAG
.getNode(ISD::INSERT_SUBVECTOR
, SDLoc(N0
.getNode()),
19200 VT
, NewOp
, N0
.getOperand(1), N0
.getOperand(2));
19204 // If the input vector is a concatenation, and the insert replaces
19205 // one of the pieces, we can optimize into a single concat_vectors.
19206 if (N0
.getOpcode() == ISD::CONCAT_VECTORS
&& N0
.hasOneUse() &&
19207 N0
.getOperand(0).getValueType() == N1
.getValueType()) {
19208 unsigned Factor
= N1
.getValueType().getVectorNumElements();
19210 SmallVector
<SDValue
, 8> Ops(N0
->op_begin(), N0
->op_end());
19211 Ops
[cast
<ConstantSDNode
>(N2
)->getZExtValue() / Factor
] = N1
;
19213 return DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
, Ops
);
19216 // Simplify source operands based on insertion.
19217 if (SimplifyDemandedVectorElts(SDValue(N
, 0)))
19218 return SDValue(N
, 0);
19223 SDValue
DAGCombiner::visitFP_TO_FP16(SDNode
*N
) {
19224 SDValue N0
= N
->getOperand(0);
19226 // fold (fp_to_fp16 (fp16_to_fp op)) -> op
19227 if (N0
->getOpcode() == ISD::FP16_TO_FP
)
19228 return N0
->getOperand(0);
19233 SDValue
DAGCombiner::visitFP16_TO_FP(SDNode
*N
) {
19234 SDValue N0
= N
->getOperand(0);
19236 // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op)
19237 if (N0
->getOpcode() == ISD::AND
) {
19238 ConstantSDNode
*AndConst
= getAsNonOpaqueConstant(N0
.getOperand(1));
19239 if (AndConst
&& AndConst
->getAPIntValue() == 0xffff) {
19240 return DAG
.getNode(ISD::FP16_TO_FP
, SDLoc(N
), N
->getValueType(0),
19248 SDValue
DAGCombiner::visitVECREDUCE(SDNode
*N
) {
19249 SDValue N0
= N
->getOperand(0);
19250 EVT VT
= N0
.getValueType();
19251 unsigned Opcode
= N
->getOpcode();
19253 // VECREDUCE over 1-element vector is just an extract.
19254 if (VT
.getVectorNumElements() == 1) {
19256 SDValue Res
= DAG
.getNode(
19257 ISD::EXTRACT_VECTOR_ELT
, dl
, VT
.getVectorElementType(), N0
,
19258 DAG
.getConstant(0, dl
, TLI
.getVectorIdxTy(DAG
.getDataLayout())));
19259 if (Res
.getValueType() != N
->getValueType(0))
19260 Res
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, N
->getValueType(0), Res
);
19264 // On an boolean vector an and/or reduction is the same as a umin/umax
19265 // reduction. Convert them if the latter is legal while the former isn't.
19266 if (Opcode
== ISD::VECREDUCE_AND
|| Opcode
== ISD::VECREDUCE_OR
) {
19267 unsigned NewOpcode
= Opcode
== ISD::VECREDUCE_AND
19268 ? ISD::VECREDUCE_UMIN
: ISD::VECREDUCE_UMAX
;
19269 if (!TLI
.isOperationLegalOrCustom(Opcode
, VT
) &&
19270 TLI
.isOperationLegalOrCustom(NewOpcode
, VT
) &&
19271 DAG
.ComputeNumSignBits(N0
) == VT
.getScalarSizeInBits())
19272 return DAG
.getNode(NewOpcode
, SDLoc(N
), N
->getValueType(0), N0
);
19278 /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle
19279 /// with the destination vector and a zero vector.
19280 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
19281 /// vector_shuffle V, Zero, <0, 4, 2, 4>
19282 SDValue
DAGCombiner::XformToShuffleWithZero(SDNode
*N
) {
19283 assert(N
->getOpcode() == ISD::AND
&& "Unexpected opcode!");
19285 EVT VT
= N
->getValueType(0);
19286 SDValue LHS
= N
->getOperand(0);
19287 SDValue RHS
= peekThroughBitcasts(N
->getOperand(1));
19290 // Make sure we're not running after operation legalization where it
19291 // may have custom lowered the vector shuffles.
19292 if (LegalOperations
)
19295 if (RHS
.getOpcode() != ISD::BUILD_VECTOR
)
19298 EVT RVT
= RHS
.getValueType();
19299 unsigned NumElts
= RHS
.getNumOperands();
19301 // Attempt to create a valid clear mask, splitting the mask into
19302 // sub elements and checking to see if each is
19303 // all zeros or all ones - suitable for shuffle masking.
19304 auto BuildClearMask
= [&](int Split
) {
19305 int NumSubElts
= NumElts
* Split
;
19306 int NumSubBits
= RVT
.getScalarSizeInBits() / Split
;
19308 SmallVector
<int, 8> Indices
;
19309 for (int i
= 0; i
!= NumSubElts
; ++i
) {
19310 int EltIdx
= i
/ Split
;
19311 int SubIdx
= i
% Split
;
19312 SDValue Elt
= RHS
.getOperand(EltIdx
);
19313 if (Elt
.isUndef()) {
19314 Indices
.push_back(-1);
19319 if (isa
<ConstantSDNode
>(Elt
))
19320 Bits
= cast
<ConstantSDNode
>(Elt
)->getAPIntValue();
19321 else if (isa
<ConstantFPSDNode
>(Elt
))
19322 Bits
= cast
<ConstantFPSDNode
>(Elt
)->getValueAPF().bitcastToAPInt();
19326 // Extract the sub element from the constant bit mask.
19327 if (DAG
.getDataLayout().isBigEndian()) {
19328 Bits
.lshrInPlace((Split
- SubIdx
- 1) * NumSubBits
);
19330 Bits
.lshrInPlace(SubIdx
* NumSubBits
);
19334 Bits
= Bits
.trunc(NumSubBits
);
19336 if (Bits
.isAllOnesValue())
19337 Indices
.push_back(i
);
19338 else if (Bits
== 0)
19339 Indices
.push_back(i
+ NumSubElts
);
19344 // Let's see if the target supports this vector_shuffle.
19345 EVT ClearSVT
= EVT::getIntegerVT(*DAG
.getContext(), NumSubBits
);
19346 EVT ClearVT
= EVT::getVectorVT(*DAG
.getContext(), ClearSVT
, NumSubElts
);
19347 if (!TLI
.isVectorClearMaskLegal(Indices
, ClearVT
))
19350 SDValue Zero
= DAG
.getConstant(0, DL
, ClearVT
);
19351 return DAG
.getBitcast(VT
, DAG
.getVectorShuffle(ClearVT
, DL
,
19352 DAG
.getBitcast(ClearVT
, LHS
),
19356 // Determine maximum split level (byte level masking).
19358 if (RVT
.getScalarSizeInBits() % 8 == 0)
19359 MaxSplit
= RVT
.getScalarSizeInBits() / 8;
19361 for (int Split
= 1; Split
<= MaxSplit
; ++Split
)
19362 if (RVT
.getScalarSizeInBits() % Split
== 0)
19363 if (SDValue S
= BuildClearMask(Split
))
19369 /// If a vector binop is performed on splat values, it may be profitable to
19370 /// extract, scalarize, and insert/splat.
19371 static SDValue
scalarizeBinOpOfSplats(SDNode
*N
, SelectionDAG
&DAG
) {
19372 SDValue N0
= N
->getOperand(0);
19373 SDValue N1
= N
->getOperand(1);
19374 unsigned Opcode
= N
->getOpcode();
19375 EVT VT
= N
->getValueType(0);
19376 EVT EltVT
= VT
.getVectorElementType();
19377 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
19379 // TODO: Remove/replace the extract cost check? If the elements are available
19380 // as scalars, then there may be no extract cost. Should we ask if
19381 // inserting a scalar back into a vector is cheap instead?
19382 int Index0
, Index1
;
19383 SDValue Src0
= DAG
.getSplatSourceVector(N0
, Index0
);
19384 SDValue Src1
= DAG
.getSplatSourceVector(N1
, Index1
);
19385 if (!Src0
|| !Src1
|| Index0
!= Index1
||
19386 Src0
.getValueType().getVectorElementType() != EltVT
||
19387 Src1
.getValueType().getVectorElementType() != EltVT
||
19388 !TLI
.isExtractVecEltCheap(VT
, Index0
) ||
19389 !TLI
.isOperationLegalOrCustom(Opcode
, EltVT
))
19394 DAG
.getConstant(Index0
, DL
, TLI
.getVectorIdxTy(DAG
.getDataLayout()));
19395 SDValue X
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltVT
, N0
, IndexC
);
19396 SDValue Y
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltVT
, N1
, IndexC
);
19397 SDValue ScalarBO
= DAG
.getNode(Opcode
, DL
, EltVT
, X
, Y
, N
->getFlags());
19399 // If all lanes but 1 are undefined, no need to splat the scalar result.
19400 // TODO: Keep track of undefs and use that info in the general case.
19401 if (N0
.getOpcode() == ISD::BUILD_VECTOR
&& N0
.getOpcode() == N1
.getOpcode() &&
19402 count_if(N0
->ops(), [](SDValue V
) { return !V
.isUndef(); }) == 1 &&
19403 count_if(N1
->ops(), [](SDValue V
) { return !V
.isUndef(); }) == 1) {
19404 // bo (build_vec ..undef, X, undef...), (build_vec ..undef, Y, undef...) -->
19405 // build_vec ..undef, (bo X, Y), undef...
19406 SmallVector
<SDValue
, 8> Ops(VT
.getVectorNumElements(), DAG
.getUNDEF(EltVT
));
19407 Ops
[Index0
] = ScalarBO
;
19408 return DAG
.getBuildVector(VT
, DL
, Ops
);
19411 // bo (splat X, Index), (splat Y, Index) --> splat (bo X, Y), Index
19412 SmallVector
<SDValue
, 8> Ops(VT
.getVectorNumElements(), ScalarBO
);
19413 return DAG
.getBuildVector(VT
, DL
, Ops
);
19416 /// Visit a binary vector operation, like ADD.
19417 SDValue
DAGCombiner::SimplifyVBinOp(SDNode
*N
) {
19418 assert(N
->getValueType(0).isVector() &&
19419 "SimplifyVBinOp only works on vectors!");
19421 SDValue LHS
= N
->getOperand(0);
19422 SDValue RHS
= N
->getOperand(1);
19423 SDValue Ops
[] = {LHS
, RHS
};
19424 EVT VT
= N
->getValueType(0);
19425 unsigned Opcode
= N
->getOpcode();
19427 // See if we can constant fold the vector operation.
19428 if (SDValue Fold
= DAG
.FoldConstantVectorArithmetic(
19429 Opcode
, SDLoc(LHS
), LHS
.getValueType(), Ops
, N
->getFlags()))
19432 // Move unary shuffles with identical masks after a vector binop:
19433 // VBinOp (shuffle A, Undef, Mask), (shuffle B, Undef, Mask))
19434 // --> shuffle (VBinOp A, B), Undef, Mask
19435 // This does not require type legality checks because we are creating the
19436 // same types of operations that are in the original sequence. We do have to
19437 // restrict ops like integer div that have immediate UB (eg, div-by-zero)
19438 // though. This code is adapted from the identical transform in instcombine.
19439 if (Opcode
!= ISD::UDIV
&& Opcode
!= ISD::SDIV
&&
19440 Opcode
!= ISD::UREM
&& Opcode
!= ISD::SREM
&&
19441 Opcode
!= ISD::UDIVREM
&& Opcode
!= ISD::SDIVREM
) {
19442 auto *Shuf0
= dyn_cast
<ShuffleVectorSDNode
>(LHS
);
19443 auto *Shuf1
= dyn_cast
<ShuffleVectorSDNode
>(RHS
);
19444 if (Shuf0
&& Shuf1
&& Shuf0
->getMask().equals(Shuf1
->getMask()) &&
19445 LHS
.getOperand(1).isUndef() && RHS
.getOperand(1).isUndef() &&
19446 (LHS
.hasOneUse() || RHS
.hasOneUse() || LHS
== RHS
)) {
19448 SDValue NewBinOp
= DAG
.getNode(Opcode
, DL
, VT
, LHS
.getOperand(0),
19449 RHS
.getOperand(0), N
->getFlags());
19450 SDValue UndefV
= LHS
.getOperand(1);
19451 return DAG
.getVectorShuffle(VT
, DL
, NewBinOp
, UndefV
, Shuf0
->getMask());
19455 // The following pattern is likely to emerge with vector reduction ops. Moving
19456 // the binary operation ahead of insertion may allow using a narrower vector
19457 // instruction that has better performance than the wide version of the op:
19458 // VBinOp (ins undef, X, Z), (ins undef, Y, Z) --> ins VecC, (VBinOp X, Y), Z
19459 if (LHS
.getOpcode() == ISD::INSERT_SUBVECTOR
&& LHS
.getOperand(0).isUndef() &&
19460 RHS
.getOpcode() == ISD::INSERT_SUBVECTOR
&& RHS
.getOperand(0).isUndef() &&
19461 LHS
.getOperand(2) == RHS
.getOperand(2) &&
19462 (LHS
.hasOneUse() || RHS
.hasOneUse())) {
19463 SDValue X
= LHS
.getOperand(1);
19464 SDValue Y
= RHS
.getOperand(1);
19465 SDValue Z
= LHS
.getOperand(2);
19466 EVT NarrowVT
= X
.getValueType();
19467 if (NarrowVT
== Y
.getValueType() &&
19468 TLI
.isOperationLegalOrCustomOrPromote(Opcode
, NarrowVT
)) {
19469 // (binop undef, undef) may not return undef, so compute that result.
19472 DAG
.getNode(Opcode
, DL
, VT
, DAG
.getUNDEF(VT
), DAG
.getUNDEF(VT
));
19473 SDValue NarrowBO
= DAG
.getNode(Opcode
, DL
, NarrowVT
, X
, Y
);
19474 return DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, VT
, VecC
, NarrowBO
, Z
);
19478 if (SDValue V
= scalarizeBinOpOfSplats(N
, DAG
))
19484 SDValue
DAGCombiner::SimplifySelect(const SDLoc
&DL
, SDValue N0
, SDValue N1
,
19486 assert(N0
.getOpcode() ==ISD::SETCC
&& "First argument must be a SetCC node!");
19488 SDValue SCC
= SimplifySelectCC(DL
, N0
.getOperand(0), N0
.getOperand(1), N1
, N2
,
19489 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
19491 // If we got a simplified select_cc node back from SimplifySelectCC, then
19492 // break it down into a new SETCC node, and a new SELECT node, and then return
19493 // the SELECT node, since we were called with a SELECT node.
19494 if (SCC
.getNode()) {
19495 // Check to see if we got a select_cc back (to turn into setcc/select).
19496 // Otherwise, just return whatever node we got back, like fabs.
19497 if (SCC
.getOpcode() == ISD::SELECT_CC
) {
19498 const SDNodeFlags Flags
= N0
.getNode()->getFlags();
19499 SDValue SETCC
= DAG
.getNode(ISD::SETCC
, SDLoc(N0
),
19501 SCC
.getOperand(0), SCC
.getOperand(1),
19502 SCC
.getOperand(4), Flags
);
19503 AddToWorklist(SETCC
.getNode());
19504 SDValue SelectNode
= DAG
.getSelect(SDLoc(SCC
), SCC
.getValueType(), SETCC
,
19505 SCC
.getOperand(2), SCC
.getOperand(3));
19506 SelectNode
->setFlags(Flags
);
19515 /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values
19516 /// being selected between, see if we can simplify the select. Callers of this
19517 /// should assume that TheSelect is deleted if this returns true. As such, they
19518 /// should return the appropriate thing (e.g. the node) back to the top-level of
19519 /// the DAG combiner loop to avoid it being looked at.
19520 bool DAGCombiner::SimplifySelectOps(SDNode
*TheSelect
, SDValue LHS
,
19522 // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
19523 // The select + setcc is redundant, because fsqrt returns NaN for X < 0.
19524 if (const ConstantFPSDNode
*NaN
= isConstOrConstSplatFP(LHS
)) {
19525 if (NaN
->isNaN() && RHS
.getOpcode() == ISD::FSQRT
) {
19526 // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?))
19527 SDValue Sqrt
= RHS
;
19530 const ConstantFPSDNode
*Zero
= nullptr;
19532 if (TheSelect
->getOpcode() == ISD::SELECT_CC
) {
19533 CC
= cast
<CondCodeSDNode
>(TheSelect
->getOperand(4))->get();
19534 CmpLHS
= TheSelect
->getOperand(0);
19535 Zero
= isConstOrConstSplatFP(TheSelect
->getOperand(1));
19537 // SELECT or VSELECT
19538 SDValue Cmp
= TheSelect
->getOperand(0);
19539 if (Cmp
.getOpcode() == ISD::SETCC
) {
19540 CC
= cast
<CondCodeSDNode
>(Cmp
.getOperand(2))->get();
19541 CmpLHS
= Cmp
.getOperand(0);
19542 Zero
= isConstOrConstSplatFP(Cmp
.getOperand(1));
19545 if (Zero
&& Zero
->isZero() &&
19546 Sqrt
.getOperand(0) == CmpLHS
&& (CC
== ISD::SETOLT
||
19547 CC
== ISD::SETULT
|| CC
== ISD::SETLT
)) {
19548 // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
19549 CombineTo(TheSelect
, Sqrt
);
19554 // Cannot simplify select with vector condition
19555 if (TheSelect
->getOperand(0).getValueType().isVector()) return false;
19557 // If this is a select from two identical things, try to pull the operation
19558 // through the select.
19559 if (LHS
.getOpcode() != RHS
.getOpcode() ||
19560 !LHS
.hasOneUse() || !RHS
.hasOneUse())
19563 // If this is a load and the token chain is identical, replace the select
19564 // of two loads with a load through a select of the address to load from.
19565 // This triggers in things like "select bool X, 10.0, 123.0" after the FP
19566 // constants have been dropped into the constant pool.
19567 if (LHS
.getOpcode() == ISD::LOAD
) {
19568 LoadSDNode
*LLD
= cast
<LoadSDNode
>(LHS
);
19569 LoadSDNode
*RLD
= cast
<LoadSDNode
>(RHS
);
19571 // Token chains must be identical.
19572 if (LHS
.getOperand(0) != RHS
.getOperand(0) ||
19573 // Do not let this transformation reduce the number of volatile loads.
19574 LLD
->isVolatile() || RLD
->isVolatile() ||
19575 // FIXME: If either is a pre/post inc/dec load,
19576 // we'd need to split out the address adjustment.
19577 LLD
->isIndexed() || RLD
->isIndexed() ||
19578 // If this is an EXTLOAD, the VT's must match.
19579 LLD
->getMemoryVT() != RLD
->getMemoryVT() ||
19580 // If this is an EXTLOAD, the kind of extension must match.
19581 (LLD
->getExtensionType() != RLD
->getExtensionType() &&
19582 // The only exception is if one of the extensions is anyext.
19583 LLD
->getExtensionType() != ISD::EXTLOAD
&&
19584 RLD
->getExtensionType() != ISD::EXTLOAD
) ||
19585 // FIXME: this discards src value information. This is
19586 // over-conservative. It would be beneficial to be able to remember
19587 // both potential memory locations. Since we are discarding
19588 // src value info, don't do the transformation if the memory
19589 // locations are not in the default address space.
19590 LLD
->getPointerInfo().getAddrSpace() != 0 ||
19591 RLD
->getPointerInfo().getAddrSpace() != 0 ||
19592 // We can't produce a CMOV of a TargetFrameIndex since we won't
19593 // generate the address generation required.
19594 LLD
->getBasePtr().getOpcode() == ISD::TargetFrameIndex
||
19595 RLD
->getBasePtr().getOpcode() == ISD::TargetFrameIndex
||
19596 !TLI
.isOperationLegalOrCustom(TheSelect
->getOpcode(),
19597 LLD
->getBasePtr().getValueType()))
19600 // The loads must not depend on one another.
19601 if (LLD
->isPredecessorOf(RLD
) || RLD
->isPredecessorOf(LLD
))
19604 // Check that the select condition doesn't reach either load. If so,
19605 // folding this will induce a cycle into the DAG. If not, this is safe to
19606 // xform, so create a select of the addresses.
19608 SmallPtrSet
<const SDNode
*, 32> Visited
;
19609 SmallVector
<const SDNode
*, 16> Worklist
;
19611 // Always fail if LLD and RLD are not independent. TheSelect is a
19612 // predecessor to all Nodes in question so we need not search past it.
19614 Visited
.insert(TheSelect
);
19615 Worklist
.push_back(LLD
);
19616 Worklist
.push_back(RLD
);
19618 if (SDNode::hasPredecessorHelper(LLD
, Visited
, Worklist
) ||
19619 SDNode::hasPredecessorHelper(RLD
, Visited
, Worklist
))
19623 if (TheSelect
->getOpcode() == ISD::SELECT
) {
19624 // We cannot do this optimization if any pair of {RLD, LLD} is a
19625 // predecessor to {RLD, LLD, CondNode}. As we've already compared the
19626 // Loads, we only need to check if CondNode is a successor to one of the
19627 // loads. We can further avoid this if there's no use of their chain
19629 SDNode
*CondNode
= TheSelect
->getOperand(0).getNode();
19630 Worklist
.push_back(CondNode
);
19632 if ((LLD
->hasAnyUseOfValue(1) &&
19633 SDNode::hasPredecessorHelper(LLD
, Visited
, Worklist
)) ||
19634 (RLD
->hasAnyUseOfValue(1) &&
19635 SDNode::hasPredecessorHelper(RLD
, Visited
, Worklist
)))
19638 Addr
= DAG
.getSelect(SDLoc(TheSelect
),
19639 LLD
->getBasePtr().getValueType(),
19640 TheSelect
->getOperand(0), LLD
->getBasePtr(),
19641 RLD
->getBasePtr());
19642 } else { // Otherwise SELECT_CC
19643 // We cannot do this optimization if any pair of {RLD, LLD} is a
19644 // predecessor to {RLD, LLD, CondLHS, CondRHS}. As we've already compared
19645 // the Loads, we only need to check if CondLHS/CondRHS is a successor to
19646 // one of the loads. We can further avoid this if there's no use of their
19649 SDNode
*CondLHS
= TheSelect
->getOperand(0).getNode();
19650 SDNode
*CondRHS
= TheSelect
->getOperand(1).getNode();
19651 Worklist
.push_back(CondLHS
);
19652 Worklist
.push_back(CondRHS
);
19654 if ((LLD
->hasAnyUseOfValue(1) &&
19655 SDNode::hasPredecessorHelper(LLD
, Visited
, Worklist
)) ||
19656 (RLD
->hasAnyUseOfValue(1) &&
19657 SDNode::hasPredecessorHelper(RLD
, Visited
, Worklist
)))
19660 Addr
= DAG
.getNode(ISD::SELECT_CC
, SDLoc(TheSelect
),
19661 LLD
->getBasePtr().getValueType(),
19662 TheSelect
->getOperand(0),
19663 TheSelect
->getOperand(1),
19664 LLD
->getBasePtr(), RLD
->getBasePtr(),
19665 TheSelect
->getOperand(4));
19669 // It is safe to replace the two loads if they have different alignments,
19670 // but the new load must be the minimum (most restrictive) alignment of the
19672 unsigned Alignment
= std::min(LLD
->getAlignment(), RLD
->getAlignment());
19673 MachineMemOperand::Flags MMOFlags
= LLD
->getMemOperand()->getFlags();
19674 if (!RLD
->isInvariant())
19675 MMOFlags
&= ~MachineMemOperand::MOInvariant
;
19676 if (!RLD
->isDereferenceable())
19677 MMOFlags
&= ~MachineMemOperand::MODereferenceable
;
19678 if (LLD
->getExtensionType() == ISD::NON_EXTLOAD
) {
19679 // FIXME: Discards pointer and AA info.
19680 Load
= DAG
.getLoad(TheSelect
->getValueType(0), SDLoc(TheSelect
),
19681 LLD
->getChain(), Addr
, MachinePointerInfo(), Alignment
,
19684 // FIXME: Discards pointer and AA info.
19685 Load
= DAG
.getExtLoad(
19686 LLD
->getExtensionType() == ISD::EXTLOAD
? RLD
->getExtensionType()
19687 : LLD
->getExtensionType(),
19688 SDLoc(TheSelect
), TheSelect
->getValueType(0), LLD
->getChain(), Addr
,
19689 MachinePointerInfo(), LLD
->getMemoryVT(), Alignment
, MMOFlags
);
19692 // Users of the select now use the result of the load.
19693 CombineTo(TheSelect
, Load
);
19695 // Users of the old loads now use the new load's chain. We know the
19696 // old-load value is dead now.
19697 CombineTo(LHS
.getNode(), Load
.getValue(0), Load
.getValue(1));
19698 CombineTo(RHS
.getNode(), Load
.getValue(0), Load
.getValue(1));
19705 /// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and
19707 SDValue
DAGCombiner::foldSelectCCToShiftAnd(const SDLoc
&DL
, SDValue N0
,
19708 SDValue N1
, SDValue N2
, SDValue N3
,
19709 ISD::CondCode CC
) {
19710 // If this is a select where the false operand is zero and the compare is a
19711 // check of the sign bit, see if we can perform the "gzip trick":
19712 // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
19713 // select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A
19714 EVT XType
= N0
.getValueType();
19715 EVT AType
= N2
.getValueType();
19716 if (!isNullConstant(N3
) || !XType
.bitsGE(AType
))
19719 // If the comparison is testing for a positive value, we have to invert
19720 // the sign bit mask, so only do that transform if the target has a bitwise
19721 // 'and not' instruction (the invert is free).
19722 if (CC
== ISD::SETGT
&& TLI
.hasAndNot(N2
)) {
19723 // (X > -1) ? A : 0
19724 // (X > 0) ? X : 0 <-- This is canonical signed max.
19725 if (!(isAllOnesConstant(N1
) || (isNullConstant(N1
) && N0
== N2
)))
19727 } else if (CC
== ISD::SETLT
) {
19729 // (X < 1) ? X : 0 <-- This is un-canonicalized signed min.
19730 if (!(isNullConstant(N1
) || (isOneConstant(N1
) && N0
== N2
)))
19736 // and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit
19738 EVT ShiftAmtTy
= getShiftAmountTy(N0
.getValueType());
19739 auto *N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode());
19740 if (N2C
&& ((N2C
->getAPIntValue() & (N2C
->getAPIntValue() - 1)) == 0)) {
19741 unsigned ShCt
= XType
.getSizeInBits() - N2C
->getAPIntValue().logBase2() - 1;
19742 SDValue ShiftAmt
= DAG
.getConstant(ShCt
, DL
, ShiftAmtTy
);
19743 SDValue Shift
= DAG
.getNode(ISD::SRL
, DL
, XType
, N0
, ShiftAmt
);
19744 AddToWorklist(Shift
.getNode());
19746 if (XType
.bitsGT(AType
)) {
19747 Shift
= DAG
.getNode(ISD::TRUNCATE
, DL
, AType
, Shift
);
19748 AddToWorklist(Shift
.getNode());
19751 if (CC
== ISD::SETGT
)
19752 Shift
= DAG
.getNOT(DL
, Shift
, AType
);
19754 return DAG
.getNode(ISD::AND
, DL
, AType
, Shift
, N2
);
19757 SDValue ShiftAmt
= DAG
.getConstant(XType
.getSizeInBits() - 1, DL
, ShiftAmtTy
);
19758 SDValue Shift
= DAG
.getNode(ISD::SRA
, DL
, XType
, N0
, ShiftAmt
);
19759 AddToWorklist(Shift
.getNode());
19761 if (XType
.bitsGT(AType
)) {
19762 Shift
= DAG
.getNode(ISD::TRUNCATE
, DL
, AType
, Shift
);
19763 AddToWorklist(Shift
.getNode());
19766 if (CC
== ISD::SETGT
)
19767 Shift
= DAG
.getNOT(DL
, Shift
, AType
);
19769 return DAG
.getNode(ISD::AND
, DL
, AType
, Shift
, N2
);
19772 /// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
19773 /// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
19774 /// in it. This may be a win when the constant is not otherwise available
19775 /// because it replaces two constant pool loads with one.
19776 SDValue
DAGCombiner::convertSelectOfFPConstantsToLoadOffset(
19777 const SDLoc
&DL
, SDValue N0
, SDValue N1
, SDValue N2
, SDValue N3
,
19778 ISD::CondCode CC
) {
19779 if (!TLI
.reduceSelectOfFPConstantLoads(N0
.getValueType().isFloatingPoint()))
19782 // If we are before legalize types, we want the other legalization to happen
19783 // first (for example, to avoid messing with soft float).
19784 auto *TV
= dyn_cast
<ConstantFPSDNode
>(N2
);
19785 auto *FV
= dyn_cast
<ConstantFPSDNode
>(N3
);
19786 EVT VT
= N2
.getValueType();
19787 if (!TV
|| !FV
|| !TLI
.isTypeLegal(VT
))
19790 // If a constant can be materialized without loads, this does not make sense.
19791 if (TLI
.getOperationAction(ISD::ConstantFP
, VT
) == TargetLowering::Legal
||
19792 TLI
.isFPImmLegal(TV
->getValueAPF(), TV
->getValueType(0), ForCodeSize
) ||
19793 TLI
.isFPImmLegal(FV
->getValueAPF(), FV
->getValueType(0), ForCodeSize
))
19796 // If both constants have multiple uses, then we won't need to do an extra
19797 // load. The values are likely around in registers for other users.
19798 if (!TV
->hasOneUse() && !FV
->hasOneUse())
19801 Constant
*Elts
[] = { const_cast<ConstantFP
*>(FV
->getConstantFPValue()),
19802 const_cast<ConstantFP
*>(TV
->getConstantFPValue()) };
19803 Type
*FPTy
= Elts
[0]->getType();
19804 const DataLayout
&TD
= DAG
.getDataLayout();
19806 // Create a ConstantArray of the two constants.
19807 Constant
*CA
= ConstantArray::get(ArrayType::get(FPTy
, 2), Elts
);
19808 SDValue CPIdx
= DAG
.getConstantPool(CA
, TLI
.getPointerTy(DAG
.getDataLayout()),
19809 TD
.getPrefTypeAlignment(FPTy
));
19810 unsigned Alignment
= cast
<ConstantPoolSDNode
>(CPIdx
)->getAlignment();
19812 // Get offsets to the 0 and 1 elements of the array, so we can select between
19814 SDValue Zero
= DAG
.getIntPtrConstant(0, DL
);
19815 unsigned EltSize
= (unsigned)TD
.getTypeAllocSize(Elts
[0]->getType());
19816 SDValue One
= DAG
.getIntPtrConstant(EltSize
, SDLoc(FV
));
19818 DAG
.getSetCC(DL
, getSetCCResultType(N0
.getValueType()), N0
, N1
, CC
);
19819 AddToWorklist(Cond
.getNode());
19820 SDValue CstOffset
= DAG
.getSelect(DL
, Zero
.getValueType(), Cond
, One
, Zero
);
19821 AddToWorklist(CstOffset
.getNode());
19822 CPIdx
= DAG
.getNode(ISD::ADD
, DL
, CPIdx
.getValueType(), CPIdx
, CstOffset
);
19823 AddToWorklist(CPIdx
.getNode());
19824 return DAG
.getLoad(TV
->getValueType(0), DL
, DAG
.getEntryNode(), CPIdx
,
19825 MachinePointerInfo::getConstantPool(
19826 DAG
.getMachineFunction()), Alignment
);
19829 /// Simplify an expression of the form (N0 cond N1) ? N2 : N3
19830 /// where 'cond' is the comparison specified by CC.
19831 SDValue
DAGCombiner::SimplifySelectCC(const SDLoc
&DL
, SDValue N0
, SDValue N1
,
19832 SDValue N2
, SDValue N3
, ISD::CondCode CC
,
19833 bool NotExtCompare
) {
19834 // (x ? y : y) -> y.
19835 if (N2
== N3
) return N2
;
19837 EVT CmpOpVT
= N0
.getValueType();
19838 EVT CmpResVT
= getSetCCResultType(CmpOpVT
);
19839 EVT VT
= N2
.getValueType();
19840 auto *N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
19841 auto *N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode());
19842 auto *N3C
= dyn_cast
<ConstantSDNode
>(N3
.getNode());
19844 // Determine if the condition we're dealing with is constant.
19845 if (SDValue SCC
= DAG
.FoldSetCC(CmpResVT
, N0
, N1
, CC
, DL
)) {
19846 AddToWorklist(SCC
.getNode());
19847 if (auto *SCCC
= dyn_cast
<ConstantSDNode
>(SCC
)) {
19848 // fold select_cc true, x, y -> x
19849 // fold select_cc false, x, y -> y
19850 return !(SCCC
->isNullValue()) ? N2
: N3
;
19855 convertSelectOfFPConstantsToLoadOffset(DL
, N0
, N1
, N2
, N3
, CC
))
19858 if (SDValue V
= foldSelectCCToShiftAnd(DL
, N0
, N1
, N2
, N3
, CC
))
19861 // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
19862 // where y is has a single bit set.
19863 // A plaintext description would be, we can turn the SELECT_CC into an AND
19864 // when the condition can be materialized as an all-ones register. Any
19865 // single bit-test can be materialized as an all-ones register with
19866 // shift-left and shift-right-arith.
19867 if (CC
== ISD::SETEQ
&& N0
->getOpcode() == ISD::AND
&&
19868 N0
->getValueType(0) == VT
&& isNullConstant(N1
) && isNullConstant(N2
)) {
19869 SDValue AndLHS
= N0
->getOperand(0);
19870 auto *ConstAndRHS
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1));
19871 if (ConstAndRHS
&& ConstAndRHS
->getAPIntValue().countPopulation() == 1) {
19872 // Shift the tested bit over the sign bit.
19873 const APInt
&AndMask
= ConstAndRHS
->getAPIntValue();
19875 DAG
.getConstant(AndMask
.countLeadingZeros(), SDLoc(AndLHS
),
19876 getShiftAmountTy(AndLHS
.getValueType()));
19877 SDValue Shl
= DAG
.getNode(ISD::SHL
, SDLoc(N0
), VT
, AndLHS
, ShlAmt
);
19879 // Now arithmetic right shift it all the way over, so the result is either
19880 // all-ones, or zero.
19882 DAG
.getConstant(AndMask
.getBitWidth() - 1, SDLoc(Shl
),
19883 getShiftAmountTy(Shl
.getValueType()));
19884 SDValue Shr
= DAG
.getNode(ISD::SRA
, SDLoc(N0
), VT
, Shl
, ShrAmt
);
19886 return DAG
.getNode(ISD::AND
, DL
, VT
, Shr
, N3
);
19890 // fold select C, 16, 0 -> shl C, 4
19891 bool Fold
= N2C
&& isNullConstant(N3
) && N2C
->getAPIntValue().isPowerOf2();
19892 bool Swap
= N3C
&& isNullConstant(N2
) && N3C
->getAPIntValue().isPowerOf2();
19894 if ((Fold
|| Swap
) &&
19895 TLI
.getBooleanContents(CmpOpVT
) ==
19896 TargetLowering::ZeroOrOneBooleanContent
&&
19897 (!LegalOperations
|| TLI
.isOperationLegal(ISD::SETCC
, CmpOpVT
))) {
19900 CC
= ISD::getSetCCInverse(CC
, CmpOpVT
.isInteger());
19901 std::swap(N2C
, N3C
);
19904 // If the caller doesn't want us to simplify this into a zext of a compare,
19906 if (NotExtCompare
&& N2C
->isOne())
19910 // zext (setcc n0, n1)
19912 SCC
= DAG
.getSetCC(DL
, CmpResVT
, N0
, N1
, CC
);
19913 if (VT
.bitsLT(SCC
.getValueType()))
19914 Temp
= DAG
.getZeroExtendInReg(SCC
, SDLoc(N2
), VT
);
19916 Temp
= DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N2
), VT
, SCC
);
19918 SCC
= DAG
.getSetCC(SDLoc(N0
), MVT::i1
, N0
, N1
, CC
);
19919 Temp
= DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N2
), VT
, SCC
);
19922 AddToWorklist(SCC
.getNode());
19923 AddToWorklist(Temp
.getNode());
19928 // shl setcc result by log2 n2c
19929 return DAG
.getNode(ISD::SHL
, DL
, N2
.getValueType(), Temp
,
19930 DAG
.getConstant(N2C
->getAPIntValue().logBase2(),
19932 getShiftAmountTy(Temp
.getValueType())));
19935 // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X)
19936 // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X)
19937 // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X)
19938 // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X)
19939 // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X)
19940 // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X)
19941 // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X)
19942 // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X)
19943 if (N1C
&& N1C
->isNullValue() && (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
19944 SDValue ValueOnZero
= N2
;
19945 SDValue Count
= N3
;
19946 // If the condition is NE instead of E, swap the operands.
19947 if (CC
== ISD::SETNE
)
19948 std::swap(ValueOnZero
, Count
);
19949 // Check if the value on zero is a constant equal to the bits in the type.
19950 if (auto *ValueOnZeroC
= dyn_cast
<ConstantSDNode
>(ValueOnZero
)) {
19951 if (ValueOnZeroC
->getAPIntValue() == VT
.getSizeInBits()) {
19952 // If the other operand is cttz/cttz_zero_undef of N0, and cttz is
19953 // legal, combine to just cttz.
19954 if ((Count
.getOpcode() == ISD::CTTZ
||
19955 Count
.getOpcode() == ISD::CTTZ_ZERO_UNDEF
) &&
19956 N0
== Count
.getOperand(0) &&
19957 (!LegalOperations
|| TLI
.isOperationLegal(ISD::CTTZ
, VT
)))
19958 return DAG
.getNode(ISD::CTTZ
, DL
, VT
, N0
);
19959 // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is
19960 // legal, combine to just ctlz.
19961 if ((Count
.getOpcode() == ISD::CTLZ
||
19962 Count
.getOpcode() == ISD::CTLZ_ZERO_UNDEF
) &&
19963 N0
== Count
.getOperand(0) &&
19964 (!LegalOperations
|| TLI
.isOperationLegal(ISD::CTLZ
, VT
)))
19965 return DAG
.getNode(ISD::CTLZ
, DL
, VT
, N0
);
19973 /// This is a stub for TargetLowering::SimplifySetCC.
19974 SDValue
DAGCombiner::SimplifySetCC(EVT VT
, SDValue N0
, SDValue N1
,
19975 ISD::CondCode Cond
, const SDLoc
&DL
,
19976 bool foldBooleans
) {
19977 TargetLowering::DAGCombinerInfo
19978 DagCombineInfo(DAG
, Level
, false, this);
19979 return TLI
.SimplifySetCC(VT
, N0
, N1
, Cond
, foldBooleans
, DagCombineInfo
, DL
);
19982 /// Given an ISD::SDIV node expressing a divide by constant, return
19983 /// a DAG expression to select that will generate the same value by multiplying
19984 /// by a magic number.
19985 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
19986 SDValue
DAGCombiner::BuildSDIV(SDNode
*N
) {
19987 // when optimising for minimum size, we don't want to expand a div to a mul
19989 if (DAG
.getMachineFunction().getFunction().hasMinSize())
19992 SmallVector
<SDNode
*, 8> Built
;
19993 if (SDValue S
= TLI
.BuildSDIV(N
, DAG
, LegalOperations
, Built
)) {
19994 for (SDNode
*N
: Built
)
20002 /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a
20003 /// DAG expression that will generate the same value by right shifting.
20004 SDValue
DAGCombiner::BuildSDIVPow2(SDNode
*N
) {
20005 ConstantSDNode
*C
= isConstOrConstSplat(N
->getOperand(1));
20009 // Avoid division by zero.
20010 if (C
->isNullValue())
20013 SmallVector
<SDNode
*, 8> Built
;
20014 if (SDValue S
= TLI
.BuildSDIVPow2(N
, C
->getAPIntValue(), DAG
, Built
)) {
20015 for (SDNode
*N
: Built
)
20023 /// Given an ISD::UDIV node expressing a divide by constant, return a DAG
20024 /// expression that will generate the same value by multiplying by a magic
20026 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
20027 SDValue
DAGCombiner::BuildUDIV(SDNode
*N
) {
20028 // when optimising for minimum size, we don't want to expand a div to a mul
20030 if (DAG
.getMachineFunction().getFunction().hasMinSize())
20033 SmallVector
<SDNode
*, 8> Built
;
20034 if (SDValue S
= TLI
.BuildUDIV(N
, DAG
, LegalOperations
, Built
)) {
20035 for (SDNode
*N
: Built
)
20043 /// Determines the LogBase2 value for a non-null input value using the
20044 /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V).
20045 SDValue
DAGCombiner::BuildLogBase2(SDValue V
, const SDLoc
&DL
) {
20046 EVT VT
= V
.getValueType();
20047 unsigned EltBits
= VT
.getScalarSizeInBits();
20048 SDValue Ctlz
= DAG
.getNode(ISD::CTLZ
, DL
, VT
, V
);
20049 SDValue Base
= DAG
.getConstant(EltBits
- 1, DL
, VT
);
20050 SDValue LogBase2
= DAG
.getNode(ISD::SUB
, DL
, VT
, Base
, Ctlz
);
20054 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
20055 /// For the reciprocal, we need to find the zero of the function:
20056 /// F(X) = A X - 1 [which has a zero at X = 1/A]
20058 /// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
20059 /// does not require additional intermediate precision]
20060 SDValue
DAGCombiner::BuildReciprocalEstimate(SDValue Op
, SDNodeFlags Flags
) {
20061 if (Level
>= AfterLegalizeDAG
)
20064 // TODO: Handle half and/or extended types?
20065 EVT VT
= Op
.getValueType();
20066 if (VT
.getScalarType() != MVT::f32
&& VT
.getScalarType() != MVT::f64
)
20069 // If estimates are explicitly disabled for this function, we're done.
20070 MachineFunction
&MF
= DAG
.getMachineFunction();
20071 int Enabled
= TLI
.getRecipEstimateDivEnabled(VT
, MF
);
20072 if (Enabled
== TLI
.ReciprocalEstimate::Disabled
)
20075 // Estimates may be explicitly enabled for this type with a custom number of
20076 // refinement steps.
20077 int Iterations
= TLI
.getDivRefinementSteps(VT
, MF
);
20078 if (SDValue Est
= TLI
.getRecipEstimate(Op
, DAG
, Enabled
, Iterations
)) {
20079 AddToWorklist(Est
.getNode());
20083 SDValue FPOne
= DAG
.getConstantFP(1.0, DL
, VT
);
20085 // Newton iterations: Est = Est + Est (1 - Arg * Est)
20086 for (int i
= 0; i
< Iterations
; ++i
) {
20087 SDValue NewEst
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Op
, Est
, Flags
);
20088 AddToWorklist(NewEst
.getNode());
20090 NewEst
= DAG
.getNode(ISD::FSUB
, DL
, VT
, FPOne
, NewEst
, Flags
);
20091 AddToWorklist(NewEst
.getNode());
20093 NewEst
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, NewEst
, Flags
);
20094 AddToWorklist(NewEst
.getNode());
20096 Est
= DAG
.getNode(ISD::FADD
, DL
, VT
, Est
, NewEst
, Flags
);
20097 AddToWorklist(Est
.getNode());
20106 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
20107 /// For the reciprocal sqrt, we need to find the zero of the function:
20108 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
20110 /// X_{i+1} = X_i (1.5 - A X_i^2 / 2)
20111 /// As a result, we precompute A/2 prior to the iteration loop.
20112 SDValue
DAGCombiner::buildSqrtNROneConst(SDValue Arg
, SDValue Est
,
20113 unsigned Iterations
,
20114 SDNodeFlags Flags
, bool Reciprocal
) {
20115 EVT VT
= Arg
.getValueType();
20117 SDValue ThreeHalves
= DAG
.getConstantFP(1.5, DL
, VT
);
20119 // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that
20120 // this entire sequence requires only one FP constant.
20121 SDValue HalfArg
= DAG
.getNode(ISD::FMUL
, DL
, VT
, ThreeHalves
, Arg
, Flags
);
20122 AddToWorklist(HalfArg
.getNode());
20124 HalfArg
= DAG
.getNode(ISD::FSUB
, DL
, VT
, HalfArg
, Arg
, Flags
);
20125 AddToWorklist(HalfArg
.getNode());
20127 // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
20128 for (unsigned i
= 0; i
< Iterations
; ++i
) {
20129 SDValue NewEst
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, Est
, Flags
);
20130 AddToWorklist(NewEst
.getNode());
20132 NewEst
= DAG
.getNode(ISD::FMUL
, DL
, VT
, HalfArg
, NewEst
, Flags
);
20133 AddToWorklist(NewEst
.getNode());
20135 NewEst
= DAG
.getNode(ISD::FSUB
, DL
, VT
, ThreeHalves
, NewEst
, Flags
);
20136 AddToWorklist(NewEst
.getNode());
20138 Est
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, NewEst
, Flags
);
20139 AddToWorklist(Est
.getNode());
20142 // If non-reciprocal square root is requested, multiply the result by Arg.
20144 Est
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, Arg
, Flags
);
20145 AddToWorklist(Est
.getNode());
20151 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
20152 /// For the reciprocal sqrt, we need to find the zero of the function:
20153 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
20155 /// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0))
20156 SDValue
DAGCombiner::buildSqrtNRTwoConst(SDValue Arg
, SDValue Est
,
20157 unsigned Iterations
,
20158 SDNodeFlags Flags
, bool Reciprocal
) {
20159 EVT VT
= Arg
.getValueType();
20161 SDValue MinusThree
= DAG
.getConstantFP(-3.0, DL
, VT
);
20162 SDValue MinusHalf
= DAG
.getConstantFP(-0.5, DL
, VT
);
20164 // This routine must enter the loop below to work correctly
20165 // when (Reciprocal == false).
20166 assert(Iterations
> 0);
20168 // Newton iterations for reciprocal square root:
20169 // E = (E * -0.5) * ((A * E) * E + -3.0)
20170 for (unsigned i
= 0; i
< Iterations
; ++i
) {
20171 SDValue AE
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Arg
, Est
, Flags
);
20172 AddToWorklist(AE
.getNode());
20174 SDValue AEE
= DAG
.getNode(ISD::FMUL
, DL
, VT
, AE
, Est
, Flags
);
20175 AddToWorklist(AEE
.getNode());
20177 SDValue RHS
= DAG
.getNode(ISD::FADD
, DL
, VT
, AEE
, MinusThree
, Flags
);
20178 AddToWorklist(RHS
.getNode());
20180 // When calculating a square root at the last iteration build:
20181 // S = ((A * E) * -0.5) * ((A * E) * E + -3.0)
20182 // (notice a common subexpression)
20184 if (Reciprocal
|| (i
+ 1) < Iterations
) {
20185 // RSQRT: LHS = (E * -0.5)
20186 LHS
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, MinusHalf
, Flags
);
20188 // SQRT: LHS = (A * E) * -0.5
20189 LHS
= DAG
.getNode(ISD::FMUL
, DL
, VT
, AE
, MinusHalf
, Flags
);
20191 AddToWorklist(LHS
.getNode());
20193 Est
= DAG
.getNode(ISD::FMUL
, DL
, VT
, LHS
, RHS
, Flags
);
20194 AddToWorklist(Est
.getNode());
20200 /// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case
20201 /// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if
20202 /// Op can be zero.
20203 SDValue
DAGCombiner::buildSqrtEstimateImpl(SDValue Op
, SDNodeFlags Flags
,
20205 if (Level
>= AfterLegalizeDAG
)
20208 // TODO: Handle half and/or extended types?
20209 EVT VT
= Op
.getValueType();
20210 if (VT
.getScalarType() != MVT::f32
&& VT
.getScalarType() != MVT::f64
)
20213 // If estimates are explicitly disabled for this function, we're done.
20214 MachineFunction
&MF
= DAG
.getMachineFunction();
20215 int Enabled
= TLI
.getRecipEstimateSqrtEnabled(VT
, MF
);
20216 if (Enabled
== TLI
.ReciprocalEstimate::Disabled
)
20219 // Estimates may be explicitly enabled for this type with a custom number of
20220 // refinement steps.
20221 int Iterations
= TLI
.getSqrtRefinementSteps(VT
, MF
);
20223 bool UseOneConstNR
= false;
20225 TLI
.getSqrtEstimate(Op
, DAG
, Enabled
, Iterations
, UseOneConstNR
,
20227 AddToWorklist(Est
.getNode());
20230 Est
= UseOneConstNR
20231 ? buildSqrtNROneConst(Op
, Est
, Iterations
, Flags
, Reciprocal
)
20232 : buildSqrtNRTwoConst(Op
, Est
, Iterations
, Flags
, Reciprocal
);
20235 // The estimate is now completely wrong if the input was exactly 0.0 or
20236 // possibly a denormal. Force the answer to 0.0 for those cases.
20238 EVT CCVT
= getSetCCResultType(VT
);
20239 ISD::NodeType SelOpcode
= VT
.isVector() ? ISD::VSELECT
: ISD::SELECT
;
20240 const Function
&F
= DAG
.getMachineFunction().getFunction();
20241 Attribute Denorms
= F
.getFnAttribute("denormal-fp-math");
20242 if (Denorms
.getValueAsString().equals("ieee")) {
20243 // fabs(X) < SmallestNormal ? 0.0 : Est
20244 const fltSemantics
&FltSem
= DAG
.EVTToAPFloatSemantics(VT
);
20245 APFloat SmallestNorm
= APFloat::getSmallestNormalized(FltSem
);
20246 SDValue NormC
= DAG
.getConstantFP(SmallestNorm
, DL
, VT
);
20247 SDValue FPZero
= DAG
.getConstantFP(0.0, DL
, VT
);
20248 SDValue Fabs
= DAG
.getNode(ISD::FABS
, DL
, VT
, Op
);
20249 SDValue IsDenorm
= DAG
.getSetCC(DL
, CCVT
, Fabs
, NormC
, ISD::SETLT
);
20250 Est
= DAG
.getNode(SelOpcode
, DL
, VT
, IsDenorm
, FPZero
, Est
);
20251 AddToWorklist(Fabs
.getNode());
20252 AddToWorklist(IsDenorm
.getNode());
20253 AddToWorklist(Est
.getNode());
20255 // X == 0.0 ? 0.0 : Est
20256 SDValue FPZero
= DAG
.getConstantFP(0.0, DL
, VT
);
20257 SDValue IsZero
= DAG
.getSetCC(DL
, CCVT
, Op
, FPZero
, ISD::SETEQ
);
20258 Est
= DAG
.getNode(SelOpcode
, DL
, VT
, IsZero
, FPZero
, Est
);
20259 AddToWorklist(IsZero
.getNode());
20260 AddToWorklist(Est
.getNode());
20270 SDValue
DAGCombiner::buildRsqrtEstimate(SDValue Op
, SDNodeFlags Flags
) {
20271 return buildSqrtEstimateImpl(Op
, Flags
, true);
20274 SDValue
DAGCombiner::buildSqrtEstimate(SDValue Op
, SDNodeFlags Flags
) {
20275 return buildSqrtEstimateImpl(Op
, Flags
, false);
20278 /// Return true if there is any possibility that the two addresses overlap.
20279 bool DAGCombiner::isAlias(SDNode
*Op0
, SDNode
*Op1
) const {
20281 struct MemUseCharacteristics
{
20285 Optional
<int64_t> NumBytes
;
20286 MachineMemOperand
*MMO
;
20289 auto getCharacteristics
= [](SDNode
*N
) -> MemUseCharacteristics
{
20290 if (const auto *LSN
= dyn_cast
<LSBaseSDNode
>(N
)) {
20291 int64_t Offset
= 0;
20292 if (auto *C
= dyn_cast
<ConstantSDNode
>(LSN
->getOffset()))
20293 Offset
= (LSN
->getAddressingMode() == ISD::PRE_INC
)
20294 ? C
->getSExtValue()
20295 : (LSN
->getAddressingMode() == ISD::PRE_DEC
)
20296 ? -1 * C
->getSExtValue()
20298 return {LSN
->isVolatile(), LSN
->getBasePtr(), Offset
/*base offset*/,
20299 Optional
<int64_t>(LSN
->getMemoryVT().getStoreSize()),
20300 LSN
->getMemOperand()};
20302 if (const auto *LN
= cast
<LifetimeSDNode
>(N
))
20303 return {false /*isVolatile*/, LN
->getOperand(1),
20304 (LN
->hasOffset()) ? LN
->getOffset() : 0,
20305 (LN
->hasOffset()) ? Optional
<int64_t>(LN
->getSize())
20306 : Optional
<int64_t>(),
20307 (MachineMemOperand
*)nullptr};
20309 return {false /*isvolatile*/, SDValue(), (int64_t)0 /*offset*/,
20310 Optional
<int64_t>() /*size*/, (MachineMemOperand
*)nullptr};
20313 MemUseCharacteristics MUC0
= getCharacteristics(Op0
),
20314 MUC1
= getCharacteristics(Op1
);
20316 // If they are to the same address, then they must be aliases.
20317 if (MUC0
.BasePtr
.getNode() && MUC0
.BasePtr
== MUC1
.BasePtr
&&
20318 MUC0
.Offset
== MUC1
.Offset
)
20321 // If they are both volatile then they cannot be reordered.
20322 if (MUC0
.IsVolatile
&& MUC1
.IsVolatile
)
20325 if (MUC0
.MMO
&& MUC1
.MMO
) {
20326 if ((MUC0
.MMO
->isInvariant() && MUC1
.MMO
->isStore()) ||
20327 (MUC1
.MMO
->isInvariant() && MUC0
.MMO
->isStore()))
20331 // Try to prove that there is aliasing, or that there is no aliasing. Either
20332 // way, we can return now. If nothing can be proved, proceed with more tests.
20334 if (BaseIndexOffset::computeAliasing(Op0
, MUC0
.NumBytes
, Op1
, MUC1
.NumBytes
,
20338 // The following all rely on MMO0 and MMO1 being valid. Fail conservatively if
20339 // either are not known.
20340 if (!MUC0
.MMO
|| !MUC1
.MMO
)
20343 // If one operation reads from invariant memory, and the other may store, they
20344 // cannot alias. These should really be checking the equivalent of mayWrite,
20345 // but it only matters for memory nodes other than load /store.
20346 if ((MUC0
.MMO
->isInvariant() && MUC1
.MMO
->isStore()) ||
20347 (MUC1
.MMO
->isInvariant() && MUC0
.MMO
->isStore()))
20350 // If we know required SrcValue1 and SrcValue2 have relatively large
20351 // alignment compared to the size and offset of the access, we may be able
20352 // to prove they do not alias. This check is conservative for now to catch
20353 // cases created by splitting vector types.
20354 int64_t SrcValOffset0
= MUC0
.MMO
->getOffset();
20355 int64_t SrcValOffset1
= MUC1
.MMO
->getOffset();
20356 unsigned OrigAlignment0
= MUC0
.MMO
->getBaseAlignment();
20357 unsigned OrigAlignment1
= MUC1
.MMO
->getBaseAlignment();
20358 if (OrigAlignment0
== OrigAlignment1
&& SrcValOffset0
!= SrcValOffset1
&&
20359 MUC0
.NumBytes
.hasValue() && MUC1
.NumBytes
.hasValue() &&
20360 *MUC0
.NumBytes
== *MUC1
.NumBytes
&& OrigAlignment0
> *MUC0
.NumBytes
) {
20361 int64_t OffAlign0
= SrcValOffset0
% OrigAlignment0
;
20362 int64_t OffAlign1
= SrcValOffset1
% OrigAlignment1
;
20364 // There is no overlap between these relatively aligned accesses of
20365 // similar size. Return no alias.
20366 if ((OffAlign0
+ *MUC0
.NumBytes
) <= OffAlign1
||
20367 (OffAlign1
+ *MUC1
.NumBytes
) <= OffAlign0
)
20371 bool UseAA
= CombinerGlobalAA
.getNumOccurrences() > 0
20373 : DAG
.getSubtarget().useAA();
20375 if (CombinerAAOnlyFunc
.getNumOccurrences() &&
20376 CombinerAAOnlyFunc
!= DAG
.getMachineFunction().getName())
20380 if (UseAA
&& AA
&& MUC0
.MMO
->getValue() && MUC1
.MMO
->getValue()) {
20381 // Use alias analysis information.
20382 int64_t MinOffset
= std::min(SrcValOffset0
, SrcValOffset1
);
20383 int64_t Overlap0
= *MUC0
.NumBytes
+ SrcValOffset0
- MinOffset
;
20384 int64_t Overlap1
= *MUC1
.NumBytes
+ SrcValOffset1
- MinOffset
;
20385 AliasResult AAResult
= AA
->alias(
20386 MemoryLocation(MUC0
.MMO
->getValue(), Overlap0
,
20387 UseTBAA
? MUC0
.MMO
->getAAInfo() : AAMDNodes()),
20388 MemoryLocation(MUC1
.MMO
->getValue(), Overlap1
,
20389 UseTBAA
? MUC1
.MMO
->getAAInfo() : AAMDNodes()));
20390 if (AAResult
== NoAlias
)
20394 // Otherwise we have to assume they alias.
20398 /// Walk up chain skipping non-aliasing memory nodes,
20399 /// looking for aliasing nodes and adding them to the Aliases vector.
20400 void DAGCombiner::GatherAllAliases(SDNode
*N
, SDValue OriginalChain
,
20401 SmallVectorImpl
<SDValue
> &Aliases
) {
20402 SmallVector
<SDValue
, 8> Chains
; // List of chains to visit.
20403 SmallPtrSet
<SDNode
*, 16> Visited
; // Visited node set.
20405 // Get alias information for node.
20406 const bool IsLoad
= isa
<LoadSDNode
>(N
) && !cast
<LoadSDNode
>(N
)->isVolatile();
20409 Chains
.push_back(OriginalChain
);
20410 unsigned Depth
= 0;
20412 // Attempt to improve chain by a single step
20413 std::function
<bool(SDValue
&)> ImproveChain
= [&](SDValue
&C
) -> bool {
20414 switch (C
.getOpcode()) {
20415 case ISD::EntryToken
:
20416 // No need to mark EntryToken.
20421 // Get alias information for C.
20422 bool IsOpLoad
= isa
<LoadSDNode
>(C
.getNode()) &&
20423 !cast
<LSBaseSDNode
>(C
.getNode())->isVolatile();
20424 if ((IsLoad
&& IsOpLoad
) || !isAlias(N
, C
.getNode())) {
20425 // Look further up the chain.
20426 C
= C
.getOperand(0);
20429 // Alias, so stop here.
20433 case ISD::CopyFromReg
:
20434 // Always forward past past CopyFromReg.
20435 C
= C
.getOperand(0);
20438 case ISD::LIFETIME_START
:
20439 case ISD::LIFETIME_END
: {
20440 // We can forward past any lifetime start/end that can be proven not to
20441 // alias the memory access.
20442 if (!isAlias(N
, C
.getNode())) {
20443 // Look further up the chain.
20444 C
= C
.getOperand(0);
20454 // Look at each chain and determine if it is an alias. If so, add it to the
20455 // aliases list. If not, then continue up the chain looking for the next
20457 while (!Chains
.empty()) {
20458 SDValue Chain
= Chains
.pop_back_val();
20460 // Don't bother if we've seen Chain before.
20461 if (!Visited
.insert(Chain
.getNode()).second
)
20464 // For TokenFactor nodes, look at each operand and only continue up the
20465 // chain until we reach the depth limit.
20467 // FIXME: The depth check could be made to return the last non-aliasing
20468 // chain we found before we hit a tokenfactor rather than the original
20470 if (Depth
> TLI
.getGatherAllAliasesMaxDepth()) {
20472 Aliases
.push_back(OriginalChain
);
20476 if (Chain
.getOpcode() == ISD::TokenFactor
) {
20477 // We have to check each of the operands of the token factor for "small"
20478 // token factors, so we queue them up. Adding the operands to the queue
20479 // (stack) in reverse order maintains the original order and increases the
20480 // likelihood that getNode will find a matching token factor (CSE.)
20481 if (Chain
.getNumOperands() > 16) {
20482 Aliases
.push_back(Chain
);
20485 for (unsigned n
= Chain
.getNumOperands(); n
;)
20486 Chains
.push_back(Chain
.getOperand(--n
));
20491 if (ImproveChain(Chain
)) {
20492 // Updated Chain Found, Consider new chain if one exists.
20493 if (Chain
.getNode())
20494 Chains
.push_back(Chain
);
20498 // No Improved Chain Possible, treat as Alias.
20499 Aliases
.push_back(Chain
);
20503 /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain
20504 /// (aliasing node.)
20505 SDValue
DAGCombiner::FindBetterChain(SDNode
*N
, SDValue OldChain
) {
20506 if (OptLevel
== CodeGenOpt::None
)
20509 // Ops for replacing token factor.
20510 SmallVector
<SDValue
, 8> Aliases
;
20512 // Accumulate all the aliases to this node.
20513 GatherAllAliases(N
, OldChain
, Aliases
);
20515 // If no operands then chain to entry token.
20516 if (Aliases
.size() == 0)
20517 return DAG
.getEntryNode();
20519 // If a single operand then chain to it. We don't need to revisit it.
20520 if (Aliases
.size() == 1)
20523 // Construct a custom tailored token factor.
20524 return DAG
.getTokenFactor(SDLoc(N
), Aliases
);
20528 // TODO: Replace with with std::monostate when we move to C++17.
20529 struct UnitT
{ } Unit
;
20530 bool operator==(const UnitT
&, const UnitT
&) { return true; }
20531 bool operator!=(const UnitT
&, const UnitT
&) { return false; }
20534 // This function tries to collect a bunch of potentially interesting
20535 // nodes to improve the chains of, all at once. This might seem
20536 // redundant, as this function gets called when visiting every store
20537 // node, so why not let the work be done on each store as it's visited?
20539 // I believe this is mainly important because MergeConsecutiveStores
20540 // is unable to deal with merging stores of different sizes, so unless
20541 // we improve the chains of all the potential candidates up-front
20542 // before running MergeConsecutiveStores, it might only see some of
20543 // the nodes that will eventually be candidates, and then not be able
20544 // to go from a partially-merged state to the desired final
20545 // fully-merged state.
20547 bool DAGCombiner::parallelizeChainedStores(StoreSDNode
*St
) {
20548 SmallVector
<StoreSDNode
*, 8> ChainedStores
;
20549 StoreSDNode
*STChain
= St
;
20550 // Intervals records which offsets from BaseIndex have been covered. In
20551 // the common case, every store writes to the immediately previous address
20552 // space and thus merged with the previous interval at insertion time.
20555 llvm::IntervalMap
<int64_t, UnitT
, 8, IntervalMapHalfOpenInfo
<int64_t>>;
20559 // This holds the base pointer, index, and the offset in bytes from the base
20561 const BaseIndexOffset BasePtr
= BaseIndexOffset::match(St
, DAG
);
20563 // We must have a base and an offset.
20564 if (!BasePtr
.getBase().getNode())
20567 // Do not handle stores to undef base pointers.
20568 if (BasePtr
.getBase().isUndef())
20571 // Add ST's interval.
20572 Intervals
.insert(0, (St
->getMemoryVT().getSizeInBits() + 7) / 8, Unit
);
20574 while (StoreSDNode
*Chain
= dyn_cast
<StoreSDNode
>(STChain
->getChain())) {
20575 // If the chain has more than one use, then we can't reorder the mem ops.
20576 if (!SDValue(Chain
, 0)->hasOneUse())
20578 if (Chain
->isVolatile() || Chain
->isIndexed())
20581 // Find the base pointer and offset for this memory node.
20582 const BaseIndexOffset Ptr
= BaseIndexOffset::match(Chain
, DAG
);
20583 // Check that the base pointer is the same as the original one.
20585 if (!BasePtr
.equalBaseIndex(Ptr
, DAG
, Offset
))
20587 int64_t Length
= (Chain
->getMemoryVT().getSizeInBits() + 7) / 8;
20588 // Make sure we don't overlap with other intervals by checking the ones to
20589 // the left or right before inserting.
20590 auto I
= Intervals
.find(Offset
);
20591 // If there's a next interval, we should end before it.
20592 if (I
!= Intervals
.end() && I
.start() < (Offset
+ Length
))
20594 // If there's a previous interval, we should start after it.
20595 if (I
!= Intervals
.begin() && (--I
).stop() <= Offset
)
20597 Intervals
.insert(Offset
, Offset
+ Length
, Unit
);
20599 ChainedStores
.push_back(Chain
);
20603 // If we didn't find a chained store, exit.
20604 if (ChainedStores
.size() == 0)
20607 // Improve all chained stores (St and ChainedStores members) starting from
20608 // where the store chain ended and return single TokenFactor.
20609 SDValue NewChain
= STChain
->getChain();
20610 SmallVector
<SDValue
, 8> TFOps
;
20611 for (unsigned I
= ChainedStores
.size(); I
;) {
20612 StoreSDNode
*S
= ChainedStores
[--I
];
20613 SDValue BetterChain
= FindBetterChain(S
, NewChain
);
20614 S
= cast
<StoreSDNode
>(DAG
.UpdateNodeOperands(
20615 S
, BetterChain
, S
->getOperand(1), S
->getOperand(2), S
->getOperand(3)));
20616 TFOps
.push_back(SDValue(S
, 0));
20617 ChainedStores
[I
] = S
;
20620 // Improve St's chain. Use a new node to avoid creating a loop from CombineTo.
20621 SDValue BetterChain
= FindBetterChain(St
, NewChain
);
20623 if (St
->isTruncatingStore())
20624 NewST
= DAG
.getTruncStore(BetterChain
, SDLoc(St
), St
->getValue(),
20625 St
->getBasePtr(), St
->getMemoryVT(),
20626 St
->getMemOperand());
20628 NewST
= DAG
.getStore(BetterChain
, SDLoc(St
), St
->getValue(),
20629 St
->getBasePtr(), St
->getMemOperand());
20631 TFOps
.push_back(NewST
);
20633 // If we improved every element of TFOps, then we've lost the dependence on
20634 // NewChain to successors of St and we need to add it back to TFOps. Do so at
20635 // the beginning to keep relative order consistent with FindBetterChains.
20636 auto hasImprovedChain
= [&](SDValue ST
) -> bool {
20637 return ST
->getOperand(0) != NewChain
;
20639 bool AddNewChain
= llvm::all_of(TFOps
, hasImprovedChain
);
20641 TFOps
.insert(TFOps
.begin(), NewChain
);
20643 SDValue TF
= DAG
.getTokenFactor(SDLoc(STChain
), TFOps
);
20646 AddToWorklist(STChain
);
20647 // Add TF operands worklist in reverse order.
20648 for (auto I
= TF
->getNumOperands(); I
;)
20649 AddToWorklist(TF
->getOperand(--I
).getNode());
20650 AddToWorklist(TF
.getNode());
20654 bool DAGCombiner::findBetterNeighborChains(StoreSDNode
*St
) {
20655 if (OptLevel
== CodeGenOpt::None
)
20658 const BaseIndexOffset BasePtr
= BaseIndexOffset::match(St
, DAG
);
20660 // We must have a base and an offset.
20661 if (!BasePtr
.getBase().getNode())
20664 // Do not handle stores to undef base pointers.
20665 if (BasePtr
.getBase().isUndef())
20668 // Directly improve a chain of disjoint stores starting at St.
20669 if (parallelizeChainedStores(St
))
20672 // Improve St's Chain..
20673 SDValue BetterChain
= FindBetterChain(St
, St
->getChain());
20674 if (St
->getChain() != BetterChain
) {
20675 replaceStoreChain(St
, BetterChain
);
20681 /// This is the entry point for the file.
20682 void SelectionDAG::Combine(CombineLevel Level
, AliasAnalysis
*AA
,
20683 CodeGenOpt::Level OptLevel
) {
20684 /// This is the main entry point to this class.
20685 DAGCombiner(*this, AA
, OptLevel
).Run(Level
);