[Alignment][NFC] Convert StoreInst to MaybeAlign
[llvm-complete.git] / include / llvm / CodeGen / TargetLowering.h
bloba58fca7e73f5b88b6de7932b30b693d3b0e559ff
1 //===- llvm/CodeGen/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file describes how to lower LLVM code to machine code. This has two
11 /// main components:
12 ///
13 /// 1. Which ValueTypes are natively supported by the target.
14 /// 2. Which operations are supported for supported ValueTypes.
15 /// 3. Cost thresholds for alternative implementations of certain operations.
16 ///
17 /// In addition it has a few other components, like information about FP
18 /// immediates.
19 ///
20 //===----------------------------------------------------------------------===//
22 #ifndef LLVM_CODEGEN_TARGETLOWERING_H
23 #define LLVM_CODEGEN_TARGETLOWERING_H
25 #include "llvm/ADT/APInt.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/CodeGen/DAGCombine.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/RuntimeLibcalls.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/CodeGen/SelectionDAGNodes.h"
36 #include "llvm/CodeGen/TargetCallingConv.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/CallSite.h"
40 #include "llvm/IR/CallingConv.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/InlineAsm.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/Type.h"
49 #include "llvm/MC/MCRegisterInfo.h"
50 #include "llvm/Support/Alignment.h"
51 #include "llvm/Support/AtomicOrdering.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/MachineValueType.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include <algorithm>
57 #include <cassert>
58 #include <climits>
59 #include <cstdint>
60 #include <iterator>
61 #include <map>
62 #include <string>
63 #include <utility>
64 #include <vector>
66 namespace llvm {
68 class BranchProbability;
69 class CCState;
70 class CCValAssign;
71 class Constant;
72 class FastISel;
73 class FunctionLoweringInfo;
74 class GlobalValue;
75 class GISelKnownBits;
76 class IntrinsicInst;
77 struct KnownBits;
78 class LegacyDivergenceAnalysis;
79 class LLVMContext;
80 class MachineBasicBlock;
81 class MachineFunction;
82 class MachineInstr;
83 class MachineJumpTableInfo;
84 class MachineLoop;
85 class MachineRegisterInfo;
86 class MCContext;
87 class MCExpr;
88 class Module;
89 class TargetRegisterClass;
90 class TargetLibraryInfo;
91 class TargetRegisterInfo;
92 class Value;
94 namespace Sched {
96 enum Preference {
97 None, // No preference
98 Source, // Follow source order.
99 RegPressure, // Scheduling for lowest register pressure.
100 Hybrid, // Scheduling for both latency and register pressure.
101 ILP, // Scheduling for ILP in low register pressure mode.
102 VLIW // Scheduling for VLIW targets.
105 } // end namespace Sched
107 /// This base class for TargetLowering contains the SelectionDAG-independent
108 /// parts that can be used from the rest of CodeGen.
109 class TargetLoweringBase {
110 public:
111 /// This enum indicates whether operations are valid for a target, and if not,
112 /// what action should be used to make them valid.
113 enum LegalizeAction : uint8_t {
114 Legal, // The target natively supports this operation.
115 Promote, // This operation should be executed in a larger type.
116 Expand, // Try to expand this to other ops, otherwise use a libcall.
117 LibCall, // Don't try to expand this to other ops, always use a libcall.
118 Custom // Use the LowerOperation hook to implement custom lowering.
121 /// This enum indicates whether a types are legal for a target, and if not,
122 /// what action should be used to make them valid.
123 enum LegalizeTypeAction : uint8_t {
124 TypeLegal, // The target natively supports this type.
125 TypePromoteInteger, // Replace this integer with a larger one.
126 TypeExpandInteger, // Split this integer into two of half the size.
127 TypeSoftenFloat, // Convert this float to a same size integer type.
128 TypeExpandFloat, // Split this float into two of half the size.
129 TypeScalarizeVector, // Replace this one-element vector with its element.
130 TypeSplitVector, // Split this vector into two of half the size.
131 TypeWidenVector, // This vector should be widened into a larger vector.
132 TypePromoteFloat // Replace this float with a larger one.
135 /// LegalizeKind holds the legalization kind that needs to happen to EVT
136 /// in order to type-legalize it.
137 using LegalizeKind = std::pair<LegalizeTypeAction, EVT>;
139 /// Enum that describes how the target represents true/false values.
140 enum BooleanContent {
141 UndefinedBooleanContent, // Only bit 0 counts, the rest can hold garbage.
142 ZeroOrOneBooleanContent, // All bits zero except for bit 0.
143 ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
146 /// Enum that describes what type of support for selects the target has.
147 enum SelectSupportKind {
148 ScalarValSelect, // The target supports scalar selects (ex: cmov).
149 ScalarCondVectorVal, // The target supports selects with a scalar condition
150 // and vector values (ex: cmov).
151 VectorMaskSelect // The target supports vector selects with a vector
152 // mask (ex: x86 blends).
155 /// Enum that specifies what an atomic load/AtomicRMWInst is expanded
156 /// to, if at all. Exists because different targets have different levels of
157 /// support for these atomic instructions, and also have different options
158 /// w.r.t. what they should expand to.
159 enum class AtomicExpansionKind {
160 None, // Don't expand the instruction.
161 LLSC, // Expand the instruction into loadlinked/storeconditional; used
162 // by ARM/AArch64.
163 LLOnly, // Expand the (load) instruction into just a load-linked, which has
164 // greater atomic guarantees than a normal load.
165 CmpXChg, // Expand the instruction into cmpxchg; used by at least X86.
166 MaskedIntrinsic, // Use a target-specific intrinsic for the LL/SC loop.
169 /// Enum that specifies when a multiplication should be expanded.
170 enum class MulExpansionKind {
171 Always, // Always expand the instruction.
172 OnlyLegalOrCustom, // Only expand when the resulting instructions are legal
173 // or custom.
176 class ArgListEntry {
177 public:
178 Value *Val = nullptr;
179 SDValue Node = SDValue();
180 Type *Ty = nullptr;
181 bool IsSExt : 1;
182 bool IsZExt : 1;
183 bool IsInReg : 1;
184 bool IsSRet : 1;
185 bool IsNest : 1;
186 bool IsByVal : 1;
187 bool IsInAlloca : 1;
188 bool IsReturned : 1;
189 bool IsSwiftSelf : 1;
190 bool IsSwiftError : 1;
191 uint16_t Alignment = 0;
192 Type *ByValType = nullptr;
194 ArgListEntry()
195 : IsSExt(false), IsZExt(false), IsInReg(false), IsSRet(false),
196 IsNest(false), IsByVal(false), IsInAlloca(false), IsReturned(false),
197 IsSwiftSelf(false), IsSwiftError(false) {}
199 void setAttributes(const CallBase *Call, unsigned ArgIdx);
201 void setAttributes(ImmutableCallSite *CS, unsigned ArgIdx) {
202 return setAttributes(cast<CallBase>(CS->getInstruction()), ArgIdx);
205 using ArgListTy = std::vector<ArgListEntry>;
207 virtual void markLibCallAttributes(MachineFunction *MF, unsigned CC,
208 ArgListTy &Args) const {};
210 static ISD::NodeType getExtendForContent(BooleanContent Content) {
211 switch (Content) {
212 case UndefinedBooleanContent:
213 // Extend by adding rubbish bits.
214 return ISD::ANY_EXTEND;
215 case ZeroOrOneBooleanContent:
216 // Extend by adding zero bits.
217 return ISD::ZERO_EXTEND;
218 case ZeroOrNegativeOneBooleanContent:
219 // Extend by copying the sign bit.
220 return ISD::SIGN_EXTEND;
222 llvm_unreachable("Invalid content kind");
225 /// NOTE: The TargetMachine owns TLOF.
226 explicit TargetLoweringBase(const TargetMachine &TM);
227 TargetLoweringBase(const TargetLoweringBase &) = delete;
228 TargetLoweringBase &operator=(const TargetLoweringBase &) = delete;
229 virtual ~TargetLoweringBase() = default;
231 protected:
232 /// Initialize all of the actions to default values.
233 void initActions();
235 public:
236 const TargetMachine &getTargetMachine() const { return TM; }
238 virtual bool useSoftFloat() const { return false; }
240 /// Return the pointer type for the given address space, defaults to
241 /// the pointer type from the data layout.
242 /// FIXME: The default needs to be removed once all the code is updated.
243 virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS = 0) const {
244 return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
247 /// Return the in-memory pointer type for the given address space, defaults to
248 /// the pointer type from the data layout. FIXME: The default needs to be
249 /// removed once all the code is updated.
250 MVT getPointerMemTy(const DataLayout &DL, uint32_t AS = 0) const {
251 return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
254 /// Return the type for frame index, which is determined by
255 /// the alloca address space specified through the data layout.
256 MVT getFrameIndexTy(const DataLayout &DL) const {
257 return getPointerTy(DL, DL.getAllocaAddrSpace());
260 /// Return the type for operands of fence.
261 /// TODO: Let fence operands be of i32 type and remove this.
262 virtual MVT getFenceOperandTy(const DataLayout &DL) const {
263 return getPointerTy(DL);
266 /// EVT is not used in-tree, but is used by out-of-tree target.
267 /// A documentation for this function would be nice...
268 virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const;
270 EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
271 bool LegalTypes = true) const;
273 /// Returns the type to be used for the index operand of:
274 /// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
275 /// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR
276 virtual MVT getVectorIdxTy(const DataLayout &DL) const {
277 return getPointerTy(DL);
280 virtual bool isSelectSupported(SelectSupportKind /*kind*/) const {
281 return true;
284 /// Return true if it is profitable to convert a select of FP constants into
285 /// a constant pool load whose address depends on the select condition. The
286 /// parameter may be used to differentiate a select with FP compare from
287 /// integer compare.
288 virtual bool reduceSelectOfFPConstantLoads(EVT CmpOpVT) const {
289 return true;
292 /// Return true if multiple condition registers are available.
293 bool hasMultipleConditionRegisters() const {
294 return HasMultipleConditionRegisters;
297 /// Return true if the target has BitExtract instructions.
298 bool hasExtractBitsInsn() const { return HasExtractBitsInsn; }
300 /// Return the preferred vector type legalization action.
301 virtual TargetLoweringBase::LegalizeTypeAction
302 getPreferredVectorAction(MVT VT) const {
303 // The default action for one element vectors is to scalarize
304 if (VT.getVectorNumElements() == 1)
305 return TypeScalarizeVector;
306 // The default action for an odd-width vector is to widen.
307 if (!VT.isPow2VectorType())
308 return TypeWidenVector;
309 // The default action for other vectors is to promote
310 return TypePromoteInteger;
313 // There are two general methods for expanding a BUILD_VECTOR node:
314 // 1. Use SCALAR_TO_VECTOR on the defined scalar values and then shuffle
315 // them together.
316 // 2. Build the vector on the stack and then load it.
317 // If this function returns true, then method (1) will be used, subject to
318 // the constraint that all of the necessary shuffles are legal (as determined
319 // by isShuffleMaskLegal). If this function returns false, then method (2) is
320 // always used. The vector type, and the number of defined values, are
321 // provided.
322 virtual bool
323 shouldExpandBuildVectorWithShuffles(EVT /* VT */,
324 unsigned DefinedValues) const {
325 return DefinedValues < 3;
328 /// Return true if integer divide is usually cheaper than a sequence of
329 /// several shifts, adds, and multiplies for this target.
330 /// The definition of "cheaper" may depend on whether we're optimizing
331 /// for speed or for size.
332 virtual bool isIntDivCheap(EVT VT, AttributeList Attr) const { return false; }
334 /// Return true if the target can handle a standalone remainder operation.
335 virtual bool hasStandaloneRem(EVT VT) const {
336 return true;
339 /// Return true if SQRT(X) shouldn't be replaced with X*RSQRT(X).
340 virtual bool isFsqrtCheap(SDValue X, SelectionDAG &DAG) const {
341 // Default behavior is to replace SQRT(X) with X*RSQRT(X).
342 return false;
345 /// Reciprocal estimate status values used by the functions below.
346 enum ReciprocalEstimate : int {
347 Unspecified = -1,
348 Disabled = 0,
349 Enabled = 1
352 /// Return a ReciprocalEstimate enum value for a square root of the given type
353 /// based on the function's attributes. If the operation is not overridden by
354 /// the function's attributes, "Unspecified" is returned and target defaults
355 /// are expected to be used for instruction selection.
356 int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const;
358 /// Return a ReciprocalEstimate enum value for a division of the given type
359 /// based on the function's attributes. If the operation is not overridden by
360 /// the function's attributes, "Unspecified" is returned and target defaults
361 /// are expected to be used for instruction selection.
362 int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const;
364 /// Return the refinement step count for a square root of the given type based
365 /// on the function's attributes. If the operation is not overridden by
366 /// the function's attributes, "Unspecified" is returned and target defaults
367 /// are expected to be used for instruction selection.
368 int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const;
370 /// Return the refinement step count for a division of the given type based
371 /// on the function's attributes. If the operation is not overridden by
372 /// the function's attributes, "Unspecified" is returned and target defaults
373 /// are expected to be used for instruction selection.
374 int getDivRefinementSteps(EVT VT, MachineFunction &MF) const;
376 /// Returns true if target has indicated at least one type should be bypassed.
377 bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
379 /// Returns map of slow types for division or remainder with corresponding
380 /// fast types
381 const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
382 return BypassSlowDivWidths;
385 /// Return true if Flow Control is an expensive operation that should be
386 /// avoided.
387 bool isJumpExpensive() const { return JumpIsExpensive; }
389 /// Return true if selects are only cheaper than branches if the branch is
390 /// unlikely to be predicted right.
391 bool isPredictableSelectExpensive() const {
392 return PredictableSelectIsExpensive;
395 /// If a branch or a select condition is skewed in one direction by more than
396 /// this factor, it is very likely to be predicted correctly.
397 virtual BranchProbability getPredictableBranchThreshold() const;
399 /// Return true if the following transform is beneficial:
400 /// fold (conv (load x)) -> (load (conv*)x)
401 /// On architectures that don't natively support some vector loads
402 /// efficiently, casting the load to a smaller vector of larger types and
403 /// loading is more efficient, however, this can be undone by optimizations in
404 /// dag combiner.
405 virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT,
406 const SelectionDAG &DAG,
407 const MachineMemOperand &MMO) const {
408 // Don't do if we could do an indexed load on the original type, but not on
409 // the new one.
410 if (!LoadVT.isSimple() || !BitcastVT.isSimple())
411 return true;
413 MVT LoadMVT = LoadVT.getSimpleVT();
415 // Don't bother doing this if it's just going to be promoted again later, as
416 // doing so might interfere with other combines.
417 if (getOperationAction(ISD::LOAD, LoadMVT) == Promote &&
418 getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT())
419 return false;
421 bool Fast = false;
422 return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), BitcastVT,
423 MMO, &Fast) && Fast;
426 /// Return true if the following transform is beneficial:
427 /// (store (y (conv x)), y*)) -> (store x, (x*))
428 virtual bool isStoreBitCastBeneficial(EVT StoreVT, EVT BitcastVT,
429 const SelectionDAG &DAG,
430 const MachineMemOperand &MMO) const {
431 // Default to the same logic as loads.
432 return isLoadBitCastBeneficial(StoreVT, BitcastVT, DAG, MMO);
435 /// Return true if it is expected to be cheaper to do a store of a non-zero
436 /// vector constant with the given size and type for the address space than to
437 /// store the individual scalar element constants.
438 virtual bool storeOfVectorConstantIsCheap(EVT MemVT,
439 unsigned NumElem,
440 unsigned AddrSpace) const {
441 return false;
444 /// Allow store merging for the specified type after legalization in addition
445 /// to before legalization. This may transform stores that do not exist
446 /// earlier (for example, stores created from intrinsics).
447 virtual bool mergeStoresAfterLegalization(EVT MemVT) const {
448 return true;
451 /// Returns if it's reasonable to merge stores to MemVT size.
452 virtual bool canMergeStoresTo(unsigned AS, EVT MemVT,
453 const SelectionDAG &DAG) const {
454 return true;
457 /// Return true if it is cheap to speculate a call to intrinsic cttz.
458 virtual bool isCheapToSpeculateCttz() const {
459 return false;
462 /// Return true if it is cheap to speculate a call to intrinsic ctlz.
463 virtual bool isCheapToSpeculateCtlz() const {
464 return false;
467 /// Return true if ctlz instruction is fast.
468 virtual bool isCtlzFast() const {
469 return false;
472 /// Return true if it is safe to transform an integer-domain bitwise operation
473 /// into the equivalent floating-point operation. This should be set to true
474 /// if the target has IEEE-754-compliant fabs/fneg operations for the input
475 /// type.
476 virtual bool hasBitPreservingFPLogic(EVT VT) const {
477 return false;
480 /// Return true if it is cheaper to split the store of a merged int val
481 /// from a pair of smaller values into multiple stores.
482 virtual bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const {
483 return false;
486 /// Return if the target supports combining a
487 /// chain like:
488 /// \code
489 /// %andResult = and %val1, #mask
490 /// %icmpResult = icmp %andResult, 0
491 /// \endcode
492 /// into a single machine instruction of a form like:
493 /// \code
494 /// cc = test %register, #mask
495 /// \endcode
496 virtual bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
497 return false;
500 /// Use bitwise logic to make pairs of compares more efficient. For example:
501 /// and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
502 /// This should be true when it takes more than one instruction to lower
503 /// setcc (cmp+set on x86 scalar), when bitwise ops are faster than logic on
504 /// condition bits (crand on PowerPC), and/or when reducing cmp+br is a win.
505 virtual bool convertSetCCLogicToBitwiseLogic(EVT VT) const {
506 return false;
509 /// Return the preferred operand type if the target has a quick way to compare
510 /// integer values of the given size. Assume that any legal integer type can
511 /// be compared efficiently. Targets may override this to allow illegal wide
512 /// types to return a vector type if there is support to compare that type.
513 virtual MVT hasFastEqualityCompare(unsigned NumBits) const {
514 MVT VT = MVT::getIntegerVT(NumBits);
515 return isTypeLegal(VT) ? VT : MVT::INVALID_SIMPLE_VALUE_TYPE;
518 /// Return true if the target should transform:
519 /// (X & Y) == Y ---> (~X & Y) == 0
520 /// (X & Y) != Y ---> (~X & Y) != 0
522 /// This may be profitable if the target has a bitwise and-not operation that
523 /// sets comparison flags. A target may want to limit the transformation based
524 /// on the type of Y or if Y is a constant.
526 /// Note that the transform will not occur if Y is known to be a power-of-2
527 /// because a mask and compare of a single bit can be handled by inverting the
528 /// predicate, for example:
529 /// (X & 8) == 8 ---> (X & 8) != 0
530 virtual bool hasAndNotCompare(SDValue Y) const {
531 return false;
534 /// Return true if the target has a bitwise and-not operation:
535 /// X = ~A & B
536 /// This can be used to simplify select or other instructions.
537 virtual bool hasAndNot(SDValue X) const {
538 // If the target has the more complex version of this operation, assume that
539 // it has this operation too.
540 return hasAndNotCompare(X);
543 /// Return true if the target has a bit-test instruction:
544 /// (X & (1 << Y)) ==/!= 0
545 /// This knowledge can be used to prevent breaking the pattern,
546 /// or creating it if it could be recognized.
547 virtual bool hasBitTest(SDValue X, SDValue Y) const { return false; }
549 /// There are two ways to clear extreme bits (either low or high):
550 /// Mask: x & (-1 << y) (the instcombine canonical form)
551 /// Shifts: x >> y << y
552 /// Return true if the variant with 2 variable shifts is preferred.
553 /// Return false if there is no preference.
554 virtual bool shouldFoldMaskToVariableShiftPair(SDValue X) const {
555 // By default, let's assume that no one prefers shifts.
556 return false;
559 /// Return true if it is profitable to fold a pair of shifts into a mask.
560 /// This is usually true on most targets. But some targets, like Thumb1,
561 /// have immediate shift instructions, but no immediate "and" instruction;
562 /// this makes the fold unprofitable.
563 virtual bool shouldFoldConstantShiftPairToMask(const SDNode *N,
564 CombineLevel Level) const {
565 return true;
568 /// Should we tranform the IR-optimal check for whether given truncation
569 /// down into KeptBits would be truncating or not:
570 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
571 /// Into it's more traditional form:
572 /// ((%x << C) a>> C) dstcond %x
573 /// Return true if we should transform.
574 /// Return false if there is no preference.
575 virtual bool shouldTransformSignedTruncationCheck(EVT XVT,
576 unsigned KeptBits) const {
577 // By default, let's assume that no one prefers shifts.
578 return false;
581 /// Given the pattern
582 /// (X & (C l>>/<< Y)) ==/!= 0
583 /// return true if it should be transformed into:
584 /// ((X <</l>> Y) & C) ==/!= 0
585 /// WARNING: if 'X' is a constant, the fold may deadlock!
586 /// FIXME: we could avoid passing XC, but we can't use isConstOrConstSplat()
587 /// here because it can end up being not linked in.
588 virtual bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
589 SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
590 unsigned OldShiftOpcode, unsigned NewShiftOpcode,
591 SelectionDAG &DAG) const {
592 if (hasBitTest(X, Y)) {
593 // One interesting pattern that we'd want to form is 'bit test':
594 // ((1 << Y) & C) ==/!= 0
595 // But we also need to be careful not to try to reverse that fold.
597 // Is this '1 << Y' ?
598 if (OldShiftOpcode == ISD::SHL && CC->isOne())
599 return false; // Keep the 'bit test' pattern.
601 // Will it be '1 << Y' after the transform ?
602 if (XC && NewShiftOpcode == ISD::SHL && XC->isOne())
603 return true; // Do form the 'bit test' pattern.
606 // If 'X' is a constant, and we transform, then we will immediately
607 // try to undo the fold, thus causing endless combine loop.
608 // So by default, let's assume everyone prefers the fold
609 // iff 'X' is not a constant.
610 return !XC;
613 /// These two forms are equivalent:
614 /// sub %y, (xor %x, -1)
615 /// add (add %x, 1), %y
616 /// The variant with two add's is IR-canonical.
617 /// Some targets may prefer one to the other.
618 virtual bool preferIncOfAddToSubOfNot(EVT VT) const {
619 // By default, let's assume that everyone prefers the form with two add's.
620 return true;
623 /// Return true if the target wants to use the optimization that
624 /// turns ext(promotableInst1(...(promotableInstN(load)))) into
625 /// promotedInst1(...(promotedInstN(ext(load)))).
626 bool enableExtLdPromotion() const { return EnableExtLdPromotion; }
628 /// Return true if the target can combine store(extractelement VectorTy,
629 /// Idx).
630 /// \p Cost[out] gives the cost of that transformation when this is true.
631 virtual bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
632 unsigned &Cost) const {
633 return false;
636 /// Return true if inserting a scalar into a variable element of an undef
637 /// vector is more efficiently handled by splatting the scalar instead.
638 virtual bool shouldSplatInsEltVarIndex(EVT) const {
639 return false;
642 /// Return true if target always beneficiates from combining into FMA for a
643 /// given value type. This must typically return false on targets where FMA
644 /// takes more cycles to execute than FADD.
645 virtual bool enableAggressiveFMAFusion(EVT VT) const {
646 return false;
649 /// Return the ValueType of the result of SETCC operations.
650 virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
651 EVT VT) const;
653 /// Return the ValueType for comparison libcalls. Comparions libcalls include
654 /// floating point comparion calls, and Ordered/Unordered check calls on
655 /// floating point numbers.
656 virtual
657 MVT::SimpleValueType getCmpLibcallReturnType() const;
659 /// For targets without i1 registers, this gives the nature of the high-bits
660 /// of boolean values held in types wider than i1.
662 /// "Boolean values" are special true/false values produced by nodes like
663 /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
664 /// Not to be confused with general values promoted from i1. Some cpus
665 /// distinguish between vectors of boolean and scalars; the isVec parameter
666 /// selects between the two kinds. For example on X86 a scalar boolean should
667 /// be zero extended from i1, while the elements of a vector of booleans
668 /// should be sign extended from i1.
670 /// Some cpus also treat floating point types the same way as they treat
671 /// vectors instead of the way they treat scalars.
672 BooleanContent getBooleanContents(bool isVec, bool isFloat) const {
673 if (isVec)
674 return BooleanVectorContents;
675 return isFloat ? BooleanFloatContents : BooleanContents;
678 BooleanContent getBooleanContents(EVT Type) const {
679 return getBooleanContents(Type.isVector(), Type.isFloatingPoint());
682 /// Return target scheduling preference.
683 Sched::Preference getSchedulingPreference() const {
684 return SchedPreferenceInfo;
687 /// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics
688 /// for different nodes. This function returns the preference (or none) for
689 /// the given node.
690 virtual Sched::Preference getSchedulingPreference(SDNode *) const {
691 return Sched::None;
694 /// Return the register class that should be used for the specified value
695 /// type.
696 virtual const TargetRegisterClass *getRegClassFor(MVT VT, bool isDivergent = false) const {
697 (void)isDivergent;
698 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
699 assert(RC && "This value type is not natively supported!");
700 return RC;
703 /// Allows target to decide about the register class of the
704 /// specific value that is live outside the defining block.
705 /// Returns true if the value needs uniform register class.
706 virtual bool requiresUniformRegister(MachineFunction &MF,
707 const Value *) const {
708 return false;
711 /// Return the 'representative' register class for the specified value
712 /// type.
714 /// The 'representative' register class is the largest legal super-reg
715 /// register class for the register class of the value type. For example, on
716 /// i386 the rep register class for i8, i16, and i32 are GR32; while the rep
717 /// register class is GR64 on x86_64.
718 virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
719 const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
720 return RC;
723 /// Return the cost of the 'representative' register class for the specified
724 /// value type.
725 virtual uint8_t getRepRegClassCostFor(MVT VT) const {
726 return RepRegClassCostForVT[VT.SimpleTy];
729 /// Return true if SHIFT instructions should be expanded to SHIFT_PARTS
730 /// instructions, and false if a library call is preferred (e.g for code-size
731 /// reasons).
732 virtual bool shouldExpandShift(SelectionDAG &DAG, SDNode *N) const {
733 return true;
736 /// Return true if the target has native support for the specified value type.
737 /// This means that it has a register that directly holds it without
738 /// promotions or expansions.
739 bool isTypeLegal(EVT VT) const {
740 assert(!VT.isSimple() ||
741 (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
742 return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != nullptr;
745 class ValueTypeActionImpl {
746 /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
747 /// that indicates how instruction selection should deal with the type.
748 LegalizeTypeAction ValueTypeActions[MVT::LAST_VALUETYPE];
750 public:
751 ValueTypeActionImpl() {
752 std::fill(std::begin(ValueTypeActions), std::end(ValueTypeActions),
753 TypeLegal);
756 LegalizeTypeAction getTypeAction(MVT VT) const {
757 return ValueTypeActions[VT.SimpleTy];
760 void setTypeAction(MVT VT, LegalizeTypeAction Action) {
761 ValueTypeActions[VT.SimpleTy] = Action;
765 const ValueTypeActionImpl &getValueTypeActions() const {
766 return ValueTypeActions;
769 /// Return how we should legalize values of this type, either it is already
770 /// legal (return 'Legal') or we need to promote it to a larger type (return
771 /// 'Promote'), or we need to expand it into multiple registers of smaller
772 /// integer type (return 'Expand'). 'Custom' is not an option.
773 LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
774 return getTypeConversion(Context, VT).first;
776 LegalizeTypeAction getTypeAction(MVT VT) const {
777 return ValueTypeActions.getTypeAction(VT);
780 /// For types supported by the target, this is an identity function. For
781 /// types that must be promoted to larger types, this returns the larger type
782 /// to promote to. For integer types that are larger than the largest integer
783 /// register, this contains one step in the expansion to get to the smaller
784 /// register. For illegal floating point types, this returns the integer type
785 /// to transform to.
786 EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
787 return getTypeConversion(Context, VT).second;
790 /// For types supported by the target, this is an identity function. For
791 /// types that must be expanded (i.e. integer types that are larger than the
792 /// largest integer register or illegal floating point types), this returns
793 /// the largest legal type it will be expanded to.
794 EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
795 assert(!VT.isVector());
796 while (true) {
797 switch (getTypeAction(Context, VT)) {
798 case TypeLegal:
799 return VT;
800 case TypeExpandInteger:
801 VT = getTypeToTransformTo(Context, VT);
802 break;
803 default:
804 llvm_unreachable("Type is not legal nor is it to be expanded!");
809 /// Vector types are broken down into some number of legal first class types.
810 /// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8
811 /// promoted EVT::f64 values with the X86 FP stack. Similarly, EVT::v2i64
812 /// turns into 4 EVT::i32 values with both PPC and X86.
814 /// This method returns the number of registers needed, and the VT for each
815 /// register. It also returns the VT and quantity of the intermediate values
816 /// before they are promoted/expanded.
817 unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
818 EVT &IntermediateVT,
819 unsigned &NumIntermediates,
820 MVT &RegisterVT) const;
822 /// Certain targets such as MIPS require that some types such as vectors are
823 /// always broken down into scalars in some contexts. This occurs even if the
824 /// vector type is legal.
825 virtual unsigned getVectorTypeBreakdownForCallingConv(
826 LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
827 unsigned &NumIntermediates, MVT &RegisterVT) const {
828 return getVectorTypeBreakdown(Context, VT, IntermediateVT, NumIntermediates,
829 RegisterVT);
832 struct IntrinsicInfo {
833 unsigned opc = 0; // target opcode
834 EVT memVT; // memory VT
836 // value representing memory location
837 PointerUnion<const Value *, const PseudoSourceValue *> ptrVal;
839 int offset = 0; // offset off of ptrVal
840 uint64_t size = 0; // the size of the memory location
841 // (taken from memVT if zero)
842 MaybeAlign align = Align::None(); // alignment
844 MachineMemOperand::Flags flags = MachineMemOperand::MONone;
845 IntrinsicInfo() = default;
848 /// Given an intrinsic, checks if on the target the intrinsic will need to map
849 /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
850 /// true and store the intrinsic information into the IntrinsicInfo that was
851 /// passed to the function.
852 virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
853 MachineFunction &,
854 unsigned /*Intrinsic*/) const {
855 return false;
858 /// Returns true if the target can instruction select the specified FP
859 /// immediate natively. If false, the legalizer will materialize the FP
860 /// immediate as a load from a constant pool.
861 virtual bool isFPImmLegal(const APFloat & /*Imm*/, EVT /*VT*/,
862 bool ForCodeSize = false) const {
863 return false;
866 /// Targets can use this to indicate that they only support *some*
867 /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a
868 /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be
869 /// legal.
870 virtual bool isShuffleMaskLegal(ArrayRef<int> /*Mask*/, EVT /*VT*/) const {
871 return true;
874 /// Returns true if the operation can trap for the value type.
876 /// VT must be a legal type. By default, we optimistically assume most
877 /// operations don't trap except for integer divide and remainder.
878 virtual bool canOpTrap(unsigned Op, EVT VT) const;
880 /// Similar to isShuffleMaskLegal. Targets can use this to indicate if there
881 /// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a
882 /// constant pool entry.
883 virtual bool isVectorClearMaskLegal(ArrayRef<int> /*Mask*/,
884 EVT /*VT*/) const {
885 return false;
888 /// Return how this operation should be treated: either it is legal, needs to
889 /// be promoted to a larger size, needs to be expanded to some other code
890 /// sequence, or the target has a custom expander for it.
891 LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
892 if (VT.isExtended()) return Expand;
893 // If a target-specific SDNode requires legalization, require the target
894 // to provide custom legalization for it.
895 if (Op >= array_lengthof(OpActions[0])) return Custom;
896 return OpActions[(unsigned)VT.getSimpleVT().SimpleTy][Op];
899 /// Custom method defined by each target to indicate if an operation which
900 /// may require a scale is supported natively by the target.
901 /// If not, the operation is illegal.
902 virtual bool isSupportedFixedPointOperation(unsigned Op, EVT VT,
903 unsigned Scale) const {
904 return false;
907 /// Some fixed point operations may be natively supported by the target but
908 /// only for specific scales. This method allows for checking
909 /// if the width is supported by the target for a given operation that may
910 /// depend on scale.
911 LegalizeAction getFixedPointOperationAction(unsigned Op, EVT VT,
912 unsigned Scale) const {
913 auto Action = getOperationAction(Op, VT);
914 if (Action != Legal)
915 return Action;
917 // This operation is supported in this type but may only work on specific
918 // scales.
919 bool Supported;
920 switch (Op) {
921 default:
922 llvm_unreachable("Unexpected fixed point operation.");
923 case ISD::SMULFIX:
924 case ISD::SMULFIXSAT:
925 case ISD::UMULFIX:
926 case ISD::UMULFIXSAT:
927 Supported = isSupportedFixedPointOperation(Op, VT, Scale);
928 break;
931 return Supported ? Action : Expand;
934 // If Op is a strict floating-point operation, return the result
935 // of getOperationAction for the equivalent non-strict operation.
936 LegalizeAction getStrictFPOperationAction(unsigned Op, EVT VT) const {
937 unsigned EqOpc;
938 switch (Op) {
939 default: llvm_unreachable("Unexpected FP pseudo-opcode");
940 case ISD::STRICT_FADD: EqOpc = ISD::FADD; break;
941 case ISD::STRICT_FSUB: EqOpc = ISD::FSUB; break;
942 case ISD::STRICT_FMUL: EqOpc = ISD::FMUL; break;
943 case ISD::STRICT_FDIV: EqOpc = ISD::FDIV; break;
944 case ISD::STRICT_FREM: EqOpc = ISD::FREM; break;
945 case ISD::STRICT_FSQRT: EqOpc = ISD::FSQRT; break;
946 case ISD::STRICT_FPOW: EqOpc = ISD::FPOW; break;
947 case ISD::STRICT_FPOWI: EqOpc = ISD::FPOWI; break;
948 case ISD::STRICT_FMA: EqOpc = ISD::FMA; break;
949 case ISD::STRICT_FSIN: EqOpc = ISD::FSIN; break;
950 case ISD::STRICT_FCOS: EqOpc = ISD::FCOS; break;
951 case ISD::STRICT_FEXP: EqOpc = ISD::FEXP; break;
952 case ISD::STRICT_FEXP2: EqOpc = ISD::FEXP2; break;
953 case ISD::STRICT_FLOG: EqOpc = ISD::FLOG; break;
954 case ISD::STRICT_FLOG10: EqOpc = ISD::FLOG10; break;
955 case ISD::STRICT_FLOG2: EqOpc = ISD::FLOG2; break;
956 case ISD::STRICT_LRINT: EqOpc = ISD::LRINT; break;
957 case ISD::STRICT_LLRINT: EqOpc = ISD::LLRINT; break;
958 case ISD::STRICT_FRINT: EqOpc = ISD::FRINT; break;
959 case ISD::STRICT_FNEARBYINT: EqOpc = ISD::FNEARBYINT; break;
960 case ISD::STRICT_FMAXNUM: EqOpc = ISD::FMAXNUM; break;
961 case ISD::STRICT_FMINNUM: EqOpc = ISD::FMINNUM; break;
962 case ISD::STRICT_FCEIL: EqOpc = ISD::FCEIL; break;
963 case ISD::STRICT_FFLOOR: EqOpc = ISD::FFLOOR; break;
964 case ISD::STRICT_LROUND: EqOpc = ISD::LROUND; break;
965 case ISD::STRICT_LLROUND: EqOpc = ISD::LLROUND; break;
966 case ISD::STRICT_FROUND: EqOpc = ISD::FROUND; break;
967 case ISD::STRICT_FTRUNC: EqOpc = ISD::FTRUNC; break;
968 case ISD::STRICT_FP_TO_SINT: EqOpc = ISD::FP_TO_SINT; break;
969 case ISD::STRICT_FP_TO_UINT: EqOpc = ISD::FP_TO_UINT; break;
970 case ISD::STRICT_FP_ROUND: EqOpc = ISD::FP_ROUND; break;
971 case ISD::STRICT_FP_EXTEND: EqOpc = ISD::FP_EXTEND; break;
974 return getOperationAction(EqOpc, VT);
977 /// Return true if the specified operation is legal on this target or can be
978 /// made legal with custom lowering. This is used to help guide high-level
979 /// lowering decisions.
980 bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
981 return (VT == MVT::Other || isTypeLegal(VT)) &&
982 (getOperationAction(Op, VT) == Legal ||
983 getOperationAction(Op, VT) == Custom);
986 /// Return true if the specified operation is legal on this target or can be
987 /// made legal using promotion. This is used to help guide high-level lowering
988 /// decisions.
989 bool isOperationLegalOrPromote(unsigned Op, EVT VT) const {
990 return (VT == MVT::Other || isTypeLegal(VT)) &&
991 (getOperationAction(Op, VT) == Legal ||
992 getOperationAction(Op, VT) == Promote);
995 /// Return true if the specified operation is legal on this target or can be
996 /// made legal with custom lowering or using promotion. This is used to help
997 /// guide high-level lowering decisions.
998 bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT) const {
999 return (VT == MVT::Other || isTypeLegal(VT)) &&
1000 (getOperationAction(Op, VT) == Legal ||
1001 getOperationAction(Op, VT) == Custom ||
1002 getOperationAction(Op, VT) == Promote);
1005 /// Return true if the operation uses custom lowering, regardless of whether
1006 /// the type is legal or not.
1007 bool isOperationCustom(unsigned Op, EVT VT) const {
1008 return getOperationAction(Op, VT) == Custom;
1011 /// Return true if lowering to a jump table is allowed.
1012 virtual bool areJTsAllowed(const Function *Fn) const {
1013 if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
1014 return false;
1016 return isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1017 isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
1020 /// Check whether the range [Low,High] fits in a machine word.
1021 bool rangeFitsInWord(const APInt &Low, const APInt &High,
1022 const DataLayout &DL) const {
1023 // FIXME: Using the pointer type doesn't seem ideal.
1024 uint64_t BW = DL.getIndexSizeInBits(0u);
1025 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
1026 return Range <= BW;
1029 /// Return true if lowering to a jump table is suitable for a set of case
1030 /// clusters which may contain \p NumCases cases, \p Range range of values.
1031 virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases,
1032 uint64_t Range) const {
1033 // FIXME: This function check the maximum table size and density, but the
1034 // minimum size is not checked. It would be nice if the minimum size is
1035 // also combined within this function. Currently, the minimum size check is
1036 // performed in findJumpTable() in SelectionDAGBuiler and
1037 // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1038 const bool OptForSize = SI->getParent()->getParent()->hasOptSize();
1039 const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1040 const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1042 // Check whether the number of cases is small enough and
1043 // the range is dense enough for a jump table.
1044 if ((OptForSize || Range <= MaxJumpTableSize) &&
1045 (NumCases * 100 >= Range * MinDensity)) {
1046 return true;
1048 return false;
1051 /// Return true if lowering to a bit test is suitable for a set of case
1052 /// clusters which contains \p NumDests unique destinations, \p Low and
1053 /// \p High as its lowest and highest case values, and expects \p NumCmps
1054 /// case value comparisons. Check if the number of destinations, comparison
1055 /// metric, and range are all suitable.
1056 bool isSuitableForBitTests(unsigned NumDests, unsigned NumCmps,
1057 const APInt &Low, const APInt &High,
1058 const DataLayout &DL) const {
1059 // FIXME: I don't think NumCmps is the correct metric: a single case and a
1060 // range of cases both require only one branch to lower. Just looking at the
1061 // number of clusters and destinations should be enough to decide whether to
1062 // build bit tests.
1064 // To lower a range with bit tests, the range must fit the bitwidth of a
1065 // machine word.
1066 if (!rangeFitsInWord(Low, High, DL))
1067 return false;
1069 // Decide whether it's profitable to lower this range with bit tests. Each
1070 // destination requires a bit test and branch, and there is an overall range
1071 // check branch. For a small number of clusters, separate comparisons might
1072 // be cheaper, and for many destinations, splitting the range might be
1073 // better.
1074 return (NumDests == 1 && NumCmps >= 3) || (NumDests == 2 && NumCmps >= 5) ||
1075 (NumDests == 3 && NumCmps >= 6);
1078 /// Return true if the specified operation is illegal on this target or
1079 /// unlikely to be made legal with custom lowering. This is used to help guide
1080 /// high-level lowering decisions.
1081 bool isOperationExpand(unsigned Op, EVT VT) const {
1082 return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
1085 /// Return true if the specified operation is legal on this target.
1086 bool isOperationLegal(unsigned Op, EVT VT) const {
1087 return (VT == MVT::Other || isTypeLegal(VT)) &&
1088 getOperationAction(Op, VT) == Legal;
1091 /// Return how this load with extension should be treated: either it is legal,
1092 /// needs to be promoted to a larger size, needs to be expanded to some other
1093 /// code sequence, or the target has a custom expander for it.
1094 LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT,
1095 EVT MemVT) const {
1096 if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
1097 unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
1098 unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
1099 assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValI < MVT::LAST_VALUETYPE &&
1100 MemI < MVT::LAST_VALUETYPE && "Table isn't big enough!");
1101 unsigned Shift = 4 * ExtType;
1102 return (LegalizeAction)((LoadExtActions[ValI][MemI] >> Shift) & 0xf);
1105 /// Return true if the specified load with extension is legal on this target.
1106 bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const {
1107 return getLoadExtAction(ExtType, ValVT, MemVT) == Legal;
1110 /// Return true if the specified load with extension is legal or custom
1111 /// on this target.
1112 bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const {
1113 return getLoadExtAction(ExtType, ValVT, MemVT) == Legal ||
1114 getLoadExtAction(ExtType, ValVT, MemVT) == Custom;
1117 /// Return how this store with truncation should be treated: either it is
1118 /// legal, needs to be promoted to a larger size, needs to be expanded to some
1119 /// other code sequence, or the target has a custom expander for it.
1120 LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
1121 if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
1122 unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
1123 unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
1124 assert(ValI < MVT::LAST_VALUETYPE && MemI < MVT::LAST_VALUETYPE &&
1125 "Table isn't big enough!");
1126 return TruncStoreActions[ValI][MemI];
1129 /// Return true if the specified store with truncation is legal on this
1130 /// target.
1131 bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
1132 return isTypeLegal(ValVT) && getTruncStoreAction(ValVT, MemVT) == Legal;
1135 /// Return true if the specified store with truncation has solution on this
1136 /// target.
1137 bool isTruncStoreLegalOrCustom(EVT ValVT, EVT MemVT) const {
1138 return isTypeLegal(ValVT) &&
1139 (getTruncStoreAction(ValVT, MemVT) == Legal ||
1140 getTruncStoreAction(ValVT, MemVT) == Custom);
1143 /// Return how the indexed load should be treated: either it is legal, needs
1144 /// to be promoted to a larger size, needs to be expanded to some other code
1145 /// sequence, or the target has a custom expander for it.
1146 LegalizeAction
1147 getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
1148 assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
1149 "Table isn't big enough!");
1150 unsigned Ty = (unsigned)VT.SimpleTy;
1151 return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
1154 /// Return true if the specified indexed load is legal on this target.
1155 bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
1156 return VT.isSimple() &&
1157 (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
1158 getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
1161 /// Return how the indexed store should be treated: either it is legal, needs
1162 /// to be promoted to a larger size, needs to be expanded to some other code
1163 /// sequence, or the target has a custom expander for it.
1164 LegalizeAction
1165 getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
1166 assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
1167 "Table isn't big enough!");
1168 unsigned Ty = (unsigned)VT.SimpleTy;
1169 return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
1172 /// Return true if the specified indexed load is legal on this target.
1173 bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
1174 return VT.isSimple() &&
1175 (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
1176 getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
1179 /// Return how the condition code should be treated: either it is legal, needs
1180 /// to be expanded to some other code sequence, or the target has a custom
1181 /// expander for it.
1182 LegalizeAction
1183 getCondCodeAction(ISD::CondCode CC, MVT VT) const {
1184 assert((unsigned)CC < array_lengthof(CondCodeActions) &&
1185 ((unsigned)VT.SimpleTy >> 3) < array_lengthof(CondCodeActions[0]) &&
1186 "Table isn't big enough!");
1187 // See setCondCodeAction for how this is encoded.
1188 uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
1189 uint32_t Value = CondCodeActions[CC][VT.SimpleTy >> 3];
1190 LegalizeAction Action = (LegalizeAction) ((Value >> Shift) & 0xF);
1191 assert(Action != Promote && "Can't promote condition code!");
1192 return Action;
1195 /// Return true if the specified condition code is legal on this target.
1196 bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
1197 return getCondCodeAction(CC, VT) == Legal;
1200 /// Return true if the specified condition code is legal or custom on this
1201 /// target.
1202 bool isCondCodeLegalOrCustom(ISD::CondCode CC, MVT VT) const {
1203 return getCondCodeAction(CC, VT) == Legal ||
1204 getCondCodeAction(CC, VT) == Custom;
1207 /// If the action for this operation is to promote, this method returns the
1208 /// ValueType to promote to.
1209 MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
1210 assert(getOperationAction(Op, VT) == Promote &&
1211 "This operation isn't promoted!");
1213 // See if this has an explicit type specified.
1214 std::map<std::pair<unsigned, MVT::SimpleValueType>,
1215 MVT::SimpleValueType>::const_iterator PTTI =
1216 PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
1217 if (PTTI != PromoteToType.end()) return PTTI->second;
1219 assert((VT.isInteger() || VT.isFloatingPoint()) &&
1220 "Cannot autopromote this type, add it with AddPromotedToType.");
1222 MVT NVT = VT;
1223 do {
1224 NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
1225 assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
1226 "Didn't find type to promote to!");
1227 } while (!isTypeLegal(NVT) ||
1228 getOperationAction(Op, NVT) == Promote);
1229 return NVT;
1232 /// Return the EVT corresponding to this LLVM type. This is fixed by the LLVM
1233 /// operations except for the pointer size. If AllowUnknown is true, this
1234 /// will return MVT::Other for types with no EVT counterpart (e.g. structs),
1235 /// otherwise it will assert.
1236 EVT getValueType(const DataLayout &DL, Type *Ty,
1237 bool AllowUnknown = false) const {
1238 // Lower scalar pointers to native pointer types.
1239 if (auto *PTy = dyn_cast<PointerType>(Ty))
1240 return getPointerTy(DL, PTy->getAddressSpace());
1242 if (auto *VTy = dyn_cast<VectorType>(Ty)) {
1243 Type *EltTy = VTy->getElementType();
1244 // Lower vectors of pointers to native pointer types.
1245 if (auto *PTy = dyn_cast<PointerType>(EltTy)) {
1246 EVT PointerTy(getPointerTy(DL, PTy->getAddressSpace()));
1247 EltTy = PointerTy.getTypeForEVT(Ty->getContext());
1249 return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(EltTy, false),
1250 VTy->getElementCount());
1253 return EVT::getEVT(Ty, AllowUnknown);
1256 EVT getMemValueType(const DataLayout &DL, Type *Ty,
1257 bool AllowUnknown = false) const {
1258 // Lower scalar pointers to native pointer types.
1259 if (PointerType *PTy = dyn_cast<PointerType>(Ty))
1260 return getPointerMemTy(DL, PTy->getAddressSpace());
1261 else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1262 Type *Elm = VTy->getElementType();
1263 if (PointerType *PT = dyn_cast<PointerType>(Elm)) {
1264 EVT PointerTy(getPointerMemTy(DL, PT->getAddressSpace()));
1265 Elm = PointerTy.getTypeForEVT(Ty->getContext());
1267 return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
1268 VTy->getNumElements());
1271 return getValueType(DL, Ty, AllowUnknown);
1275 /// Return the MVT corresponding to this LLVM type. See getValueType.
1276 MVT getSimpleValueType(const DataLayout &DL, Type *Ty,
1277 bool AllowUnknown = false) const {
1278 return getValueType(DL, Ty, AllowUnknown).getSimpleVT();
1281 /// Return the desired alignment for ByVal or InAlloca aggregate function
1282 /// arguments in the caller parameter area. This is the actual alignment, not
1283 /// its logarithm.
1284 virtual unsigned getByValTypeAlignment(Type *Ty, const DataLayout &DL) const;
1286 /// Return the type of registers that this ValueType will eventually require.
1287 MVT getRegisterType(MVT VT) const {
1288 assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
1289 return RegisterTypeForVT[VT.SimpleTy];
1292 /// Return the type of registers that this ValueType will eventually require.
1293 MVT getRegisterType(LLVMContext &Context, EVT VT) const {
1294 if (VT.isSimple()) {
1295 assert((unsigned)VT.getSimpleVT().SimpleTy <
1296 array_lengthof(RegisterTypeForVT));
1297 return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
1299 if (VT.isVector()) {
1300 EVT VT1;
1301 MVT RegisterVT;
1302 unsigned NumIntermediates;
1303 (void)getVectorTypeBreakdown(Context, VT, VT1,
1304 NumIntermediates, RegisterVT);
1305 return RegisterVT;
1307 if (VT.isInteger()) {
1308 return getRegisterType(Context, getTypeToTransformTo(Context, VT));
1310 llvm_unreachable("Unsupported extended type!");
1313 /// Return the number of registers that this ValueType will eventually
1314 /// require.
1316 /// This is one for any types promoted to live in larger registers, but may be
1317 /// more than one for types (like i64) that are split into pieces. For types
1318 /// like i140, which are first promoted then expanded, it is the number of
1319 /// registers needed to hold all the bits of the original type. For an i140
1320 /// on a 32 bit machine this means 5 registers.
1321 unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
1322 if (VT.isSimple()) {
1323 assert((unsigned)VT.getSimpleVT().SimpleTy <
1324 array_lengthof(NumRegistersForVT));
1325 return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
1327 if (VT.isVector()) {
1328 EVT VT1;
1329 MVT VT2;
1330 unsigned NumIntermediates;
1331 return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
1333 if (VT.isInteger()) {
1334 unsigned BitWidth = VT.getSizeInBits();
1335 unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
1336 return (BitWidth + RegWidth - 1) / RegWidth;
1338 llvm_unreachable("Unsupported extended type!");
1341 /// Certain combinations of ABIs, Targets and features require that types
1342 /// are legal for some operations and not for other operations.
1343 /// For MIPS all vector types must be passed through the integer register set.
1344 virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context,
1345 CallingConv::ID CC, EVT VT) const {
1346 return getRegisterType(Context, VT);
1349 /// Certain targets require unusual breakdowns of certain types. For MIPS,
1350 /// this occurs when a vector type is used, as vector are passed through the
1351 /// integer register set.
1352 virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context,
1353 CallingConv::ID CC,
1354 EVT VT) const {
1355 return getNumRegisters(Context, VT);
1358 /// Certain targets have context senstive alignment requirements, where one
1359 /// type has the alignment requirement of another type.
1360 virtual Align getABIAlignmentForCallingConv(Type *ArgTy,
1361 DataLayout DL) const {
1362 return Align(DL.getABITypeAlignment(ArgTy));
1365 /// If true, then instruction selection should seek to shrink the FP constant
1366 /// of the specified type to a smaller type in order to save space and / or
1367 /// reduce runtime.
1368 virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
1370 /// Return true if it is profitable to reduce a load to a smaller type.
1371 /// Example: (i16 (trunc (i32 (load x))) -> i16 load x
1372 virtual bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy,
1373 EVT NewVT) const {
1374 // By default, assume that it is cheaper to extract a subvector from a wide
1375 // vector load rather than creating multiple narrow vector loads.
1376 if (NewVT.isVector() && !Load->hasOneUse())
1377 return false;
1379 return true;
1382 /// When splitting a value of the specified type into parts, does the Lo
1383 /// or Hi part come first? This usually follows the endianness, except
1384 /// for ppcf128, where the Hi part always comes first.
1385 bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const {
1386 return DL.isBigEndian() || VT == MVT::ppcf128;
1389 /// If true, the target has custom DAG combine transformations that it can
1390 /// perform for the specified node.
1391 bool hasTargetDAGCombine(ISD::NodeType NT) const {
1392 assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1393 return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
1396 unsigned getGatherAllAliasesMaxDepth() const {
1397 return GatherAllAliasesMaxDepth;
1400 /// Returns the size of the platform's va_list object.
1401 virtual unsigned getVaListSizeInBits(const DataLayout &DL) const {
1402 return getPointerTy(DL).getSizeInBits();
1405 /// Get maximum # of store operations permitted for llvm.memset
1407 /// This function returns the maximum number of store operations permitted
1408 /// to replace a call to llvm.memset. The value is set by the target at the
1409 /// performance threshold for such a replacement. If OptSize is true,
1410 /// return the limit for functions that have OptSize attribute.
1411 unsigned getMaxStoresPerMemset(bool OptSize) const {
1412 return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset;
1415 /// Get maximum # of store operations permitted for llvm.memcpy
1417 /// This function returns the maximum number of store operations permitted
1418 /// to replace a call to llvm.memcpy. The value is set by the target at the
1419 /// performance threshold for such a replacement. If OptSize is true,
1420 /// return the limit for functions that have OptSize attribute.
1421 unsigned getMaxStoresPerMemcpy(bool OptSize) const {
1422 return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy;
1425 /// \brief Get maximum # of store operations to be glued together
1427 /// This function returns the maximum number of store operations permitted
1428 /// to glue together during lowering of llvm.memcpy. The value is set by
1429 // the target at the performance threshold for such a replacement.
1430 virtual unsigned getMaxGluedStoresPerMemcpy() const {
1431 return MaxGluedStoresPerMemcpy;
1434 /// Get maximum # of load operations permitted for memcmp
1436 /// This function returns the maximum number of load operations permitted
1437 /// to replace a call to memcmp. The value is set by the target at the
1438 /// performance threshold for such a replacement. If OptSize is true,
1439 /// return the limit for functions that have OptSize attribute.
1440 unsigned getMaxExpandSizeMemcmp(bool OptSize) const {
1441 return OptSize ? MaxLoadsPerMemcmpOptSize : MaxLoadsPerMemcmp;
1444 /// Get maximum # of store operations permitted for llvm.memmove
1446 /// This function returns the maximum number of store operations permitted
1447 /// to replace a call to llvm.memmove. The value is set by the target at the
1448 /// performance threshold for such a replacement. If OptSize is true,
1449 /// return the limit for functions that have OptSize attribute.
1450 unsigned getMaxStoresPerMemmove(bool OptSize) const {
1451 return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove;
1454 /// Determine if the target supports unaligned memory accesses.
1456 /// This function returns true if the target allows unaligned memory accesses
1457 /// of the specified type in the given address space. If true, it also returns
1458 /// whether the unaligned memory access is "fast" in the last argument by
1459 /// reference. This is used, for example, in situations where an array
1460 /// copy/move/set is converted to a sequence of store operations. Its use
1461 /// helps to ensure that such replacements don't generate code that causes an
1462 /// alignment error (trap) on the target machine.
1463 virtual bool allowsMisalignedMemoryAccesses(
1464 EVT, unsigned AddrSpace = 0, unsigned Align = 1,
1465 MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
1466 bool * /*Fast*/ = nullptr) const {
1467 return false;
1470 /// LLT handling variant.
1471 virtual bool allowsMisalignedMemoryAccesses(
1472 LLT, unsigned AddrSpace = 0, unsigned Align = 1,
1473 MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
1474 bool * /*Fast*/ = nullptr) const {
1475 return false;
1478 /// This function returns true if the memory access is aligned or if the
1479 /// target allows this specific unaligned memory access. If the access is
1480 /// allowed, the optional final parameter returns if the access is also fast
1481 /// (as defined by the target).
1482 bool allowsMemoryAccessForAlignment(
1483 LLVMContext &Context, const DataLayout &DL, EVT VT,
1484 unsigned AddrSpace = 0, unsigned Alignment = 1,
1485 MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
1486 bool *Fast = nullptr) const;
1488 /// Return true if the memory access of this type is aligned or if the target
1489 /// allows this specific unaligned access for the given MachineMemOperand.
1490 /// If the access is allowed, the optional final parameter returns if the
1491 /// access is also fast (as defined by the target).
1492 bool allowsMemoryAccessForAlignment(LLVMContext &Context,
1493 const DataLayout &DL, EVT VT,
1494 const MachineMemOperand &MMO,
1495 bool *Fast = nullptr) const;
1497 /// Return true if the target supports a memory access of this type for the
1498 /// given address space and alignment. If the access is allowed, the optional
1499 /// final parameter returns if the access is also fast (as defined by the
1500 /// target).
1501 virtual bool
1502 allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
1503 unsigned AddrSpace = 0, unsigned Alignment = 1,
1504 MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
1505 bool *Fast = nullptr) const;
1507 /// Return true if the target supports a memory access of this type for the
1508 /// given MachineMemOperand. If the access is allowed, the optional
1509 /// final parameter returns if the access is also fast (as defined by the
1510 /// target).
1511 bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
1512 const MachineMemOperand &MMO,
1513 bool *Fast = nullptr) const;
1515 /// Returns the target specific optimal type for load and store operations as
1516 /// a result of memset, memcpy, and memmove lowering.
1518 /// If DstAlign is zero that means it's safe to destination alignment can
1519 /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
1520 /// a need to check it against alignment requirement, probably because the
1521 /// source does not need to be loaded. If 'IsMemset' is true, that means it's
1522 /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
1523 /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
1524 /// does not need to be loaded. It returns EVT::Other if the type should be
1525 /// determined using generic target-independent logic.
1526 virtual EVT
1527 getOptimalMemOpType(uint64_t /*Size*/, unsigned /*DstAlign*/,
1528 unsigned /*SrcAlign*/, bool /*IsMemset*/,
1529 bool /*ZeroMemset*/, bool /*MemcpyStrSrc*/,
1530 const AttributeList & /*FuncAttributes*/) const {
1531 return MVT::Other;
1535 /// LLT returning variant.
1536 virtual LLT
1537 getOptimalMemOpLLT(uint64_t /*Size*/, unsigned /*DstAlign*/,
1538 unsigned /*SrcAlign*/, bool /*IsMemset*/,
1539 bool /*ZeroMemset*/, bool /*MemcpyStrSrc*/,
1540 const AttributeList & /*FuncAttributes*/) const {
1541 return LLT();
1544 /// Returns true if it's safe to use load / store of the specified type to
1545 /// expand memcpy / memset inline.
1547 /// This is mostly true for all types except for some special cases. For
1548 /// example, on X86 targets without SSE2 f64 load / store are done with fldl /
1549 /// fstpl which also does type conversion. Note the specified type doesn't
1550 /// have to be legal as the hook is used before type legalization.
1551 virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; }
1553 /// Determine if we should use _setjmp or setjmp to implement llvm.setjmp.
1554 bool usesUnderscoreSetJmp() const {
1555 return UseUnderscoreSetJmp;
1558 /// Determine if we should use _longjmp or longjmp to implement llvm.longjmp.
1559 bool usesUnderscoreLongJmp() const {
1560 return UseUnderscoreLongJmp;
1563 /// Return lower limit for number of blocks in a jump table.
1564 virtual unsigned getMinimumJumpTableEntries() const;
1566 /// Return lower limit of the density in a jump table.
1567 unsigned getMinimumJumpTableDensity(bool OptForSize) const;
1569 /// Return upper limit for number of entries in a jump table.
1570 /// Zero if no limit.
1571 unsigned getMaximumJumpTableSize() const;
1573 virtual bool isJumpTableRelative() const {
1574 return TM.isPositionIndependent();
1577 /// If a physical register, this specifies the register that
1578 /// llvm.savestack/llvm.restorestack should save and restore.
1579 unsigned getStackPointerRegisterToSaveRestore() const {
1580 return StackPointerRegisterToSaveRestore;
1583 /// If a physical register, this returns the register that receives the
1584 /// exception address on entry to an EH pad.
1585 virtual unsigned
1586 getExceptionPointerRegister(const Constant *PersonalityFn) const {
1587 // 0 is guaranteed to be the NoRegister value on all targets
1588 return 0;
1591 /// If a physical register, this returns the register that receives the
1592 /// exception typeid on entry to a landing pad.
1593 virtual unsigned
1594 getExceptionSelectorRegister(const Constant *PersonalityFn) const {
1595 // 0 is guaranteed to be the NoRegister value on all targets
1596 return 0;
1599 virtual bool needsFixedCatchObjects() const {
1600 report_fatal_error("Funclet EH is not implemented for this target");
1603 /// Return the minimum stack alignment of an argument.
1604 Align getMinStackArgumentAlignment() const {
1605 return MinStackArgumentAlignment;
1608 /// Return the minimum function alignment.
1609 Align getMinFunctionAlignment() const { return MinFunctionAlignment; }
1611 /// Return the preferred function alignment.
1612 Align getPrefFunctionAlignment() const { return PrefFunctionAlignment; }
1614 /// Return the preferred loop alignment.
1615 virtual Align getPrefLoopAlignment(MachineLoop *ML = nullptr) const {
1616 return PrefLoopAlignment;
1619 /// Should loops be aligned even when the function is marked OptSize (but not
1620 /// MinSize).
1621 virtual bool alignLoopsWithOptSize() const {
1622 return false;
1625 /// If the target has a standard location for the stack protector guard,
1626 /// returns the address of that location. Otherwise, returns nullptr.
1627 /// DEPRECATED: please override useLoadStackGuardNode and customize
1628 /// LOAD_STACK_GUARD, or customize \@llvm.stackguard().
1629 virtual Value *getIRStackGuard(IRBuilder<> &IRB) const;
1631 /// Inserts necessary declarations for SSP (stack protection) purpose.
1632 /// Should be used only when getIRStackGuard returns nullptr.
1633 virtual void insertSSPDeclarations(Module &M) const;
1635 /// Return the variable that's previously inserted by insertSSPDeclarations,
1636 /// if any, otherwise return nullptr. Should be used only when
1637 /// getIRStackGuard returns nullptr.
1638 virtual Value *getSDagStackGuard(const Module &M) const;
1640 /// If this function returns true, stack protection checks should XOR the
1641 /// frame pointer (or whichever pointer is used to address locals) into the
1642 /// stack guard value before checking it. getIRStackGuard must return nullptr
1643 /// if this returns true.
1644 virtual bool useStackGuardXorFP() const { return false; }
1646 /// If the target has a standard stack protection check function that
1647 /// performs validation and error handling, returns the function. Otherwise,
1648 /// returns nullptr. Must be previously inserted by insertSSPDeclarations.
1649 /// Should be used only when getIRStackGuard returns nullptr.
1650 virtual Function *getSSPStackGuardCheck(const Module &M) const;
1652 protected:
1653 Value *getDefaultSafeStackPointerLocation(IRBuilder<> &IRB,
1654 bool UseTLS) const;
1656 public:
1657 /// Returns the target-specific address of the unsafe stack pointer.
1658 virtual Value *getSafeStackPointerLocation(IRBuilder<> &IRB) const;
1660 /// Returns the name of the symbol used to emit stack probes or the empty
1661 /// string if not applicable.
1662 virtual StringRef getStackProbeSymbolName(MachineFunction &MF) const {
1663 return "";
1666 /// Returns true if a cast between SrcAS and DestAS is a noop.
1667 virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const {
1668 return false;
1671 /// Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g. we
1672 /// are happy to sink it into basic blocks. A cast may be free, but not
1673 /// necessarily a no-op. e.g. a free truncate from a 64-bit to 32-bit pointer.
1674 virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const {
1675 return isNoopAddrSpaceCast(SrcAS, DestAS);
1678 /// Return true if the pointer arguments to CI should be aligned by aligning
1679 /// the object whose address is being passed. If so then MinSize is set to the
1680 /// minimum size the object must be to be aligned and PrefAlign is set to the
1681 /// preferred alignment.
1682 virtual bool shouldAlignPointerArgs(CallInst * /*CI*/, unsigned & /*MinSize*/,
1683 unsigned & /*PrefAlign*/) const {
1684 return false;
1687 //===--------------------------------------------------------------------===//
1688 /// \name Helpers for TargetTransformInfo implementations
1689 /// @{
1691 /// Get the ISD node that corresponds to the Instruction class opcode.
1692 int InstructionOpcodeToISD(unsigned Opcode) const;
1694 /// Estimate the cost of type-legalization and the legalized type.
1695 std::pair<int, MVT> getTypeLegalizationCost(const DataLayout &DL,
1696 Type *Ty) const;
1698 /// @}
1700 //===--------------------------------------------------------------------===//
1701 /// \name Helpers for atomic expansion.
1702 /// @{
1704 /// Returns the maximum atomic operation size (in bits) supported by
1705 /// the backend. Atomic operations greater than this size (as well
1706 /// as ones that are not naturally aligned), will be expanded by
1707 /// AtomicExpandPass into an __atomic_* library call.
1708 unsigned getMaxAtomicSizeInBitsSupported() const {
1709 return MaxAtomicSizeInBitsSupported;
1712 /// Returns the size of the smallest cmpxchg or ll/sc instruction
1713 /// the backend supports. Any smaller operations are widened in
1714 /// AtomicExpandPass.
1716 /// Note that *unlike* operations above the maximum size, atomic ops
1717 /// are still natively supported below the minimum; they just
1718 /// require a more complex expansion.
1719 unsigned getMinCmpXchgSizeInBits() const { return MinCmpXchgSizeInBits; }
1721 /// Whether the target supports unaligned atomic operations.
1722 bool supportsUnalignedAtomics() const { return SupportsUnalignedAtomics; }
1724 /// Whether AtomicExpandPass should automatically insert fences and reduce
1725 /// ordering for this atomic. This should be true for most architectures with
1726 /// weak memory ordering. Defaults to false.
1727 virtual bool shouldInsertFencesForAtomic(const Instruction *I) const {
1728 return false;
1731 /// Perform a load-linked operation on Addr, returning a "Value *" with the
1732 /// corresponding pointee type. This may entail some non-trivial operations to
1733 /// truncate or reconstruct types that will be illegal in the backend. See
1734 /// ARMISelLowering for an example implementation.
1735 virtual Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
1736 AtomicOrdering Ord) const {
1737 llvm_unreachable("Load linked unimplemented on this target");
1740 /// Perform a store-conditional operation to Addr. Return the status of the
1741 /// store. This should be 0 if the store succeeded, non-zero otherwise.
1742 virtual Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val,
1743 Value *Addr, AtomicOrdering Ord) const {
1744 llvm_unreachable("Store conditional unimplemented on this target");
1747 /// Perform a masked atomicrmw using a target-specific intrinsic. This
1748 /// represents the core LL/SC loop which will be lowered at a late stage by
1749 /// the backend.
1750 virtual Value *emitMaskedAtomicRMWIntrinsic(IRBuilder<> &Builder,
1751 AtomicRMWInst *AI,
1752 Value *AlignedAddr, Value *Incr,
1753 Value *Mask, Value *ShiftAmt,
1754 AtomicOrdering Ord) const {
1755 llvm_unreachable("Masked atomicrmw expansion unimplemented on this target");
1758 /// Perform a masked cmpxchg using a target-specific intrinsic. This
1759 /// represents the core LL/SC loop which will be lowered at a late stage by
1760 /// the backend.
1761 virtual Value *emitMaskedAtomicCmpXchgIntrinsic(
1762 IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
1763 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
1764 llvm_unreachable("Masked cmpxchg expansion unimplemented on this target");
1767 /// Inserts in the IR a target-specific intrinsic specifying a fence.
1768 /// It is called by AtomicExpandPass before expanding an
1769 /// AtomicRMW/AtomicCmpXchg/AtomicStore/AtomicLoad
1770 /// if shouldInsertFencesForAtomic returns true.
1772 /// Inst is the original atomic instruction, prior to other expansions that
1773 /// may be performed.
1775 /// This function should either return a nullptr, or a pointer to an IR-level
1776 /// Instruction*. Even complex fence sequences can be represented by a
1777 /// single Instruction* through an intrinsic to be lowered later.
1778 /// Backends should override this method to produce target-specific intrinsic
1779 /// for their fences.
1780 /// FIXME: Please note that the default implementation here in terms of
1781 /// IR-level fences exists for historical/compatibility reasons and is
1782 /// *unsound* ! Fences cannot, in general, be used to restore sequential
1783 /// consistency. For example, consider the following example:
1784 /// atomic<int> x = y = 0;
1785 /// int r1, r2, r3, r4;
1786 /// Thread 0:
1787 /// x.store(1);
1788 /// Thread 1:
1789 /// y.store(1);
1790 /// Thread 2:
1791 /// r1 = x.load();
1792 /// r2 = y.load();
1793 /// Thread 3:
1794 /// r3 = y.load();
1795 /// r4 = x.load();
1796 /// r1 = r3 = 1 and r2 = r4 = 0 is impossible as long as the accesses are all
1797 /// seq_cst. But if they are lowered to monotonic accesses, no amount of
1798 /// IR-level fences can prevent it.
1799 /// @{
1800 virtual Instruction *emitLeadingFence(IRBuilder<> &Builder, Instruction *Inst,
1801 AtomicOrdering Ord) const {
1802 if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore())
1803 return Builder.CreateFence(Ord);
1804 else
1805 return nullptr;
1808 virtual Instruction *emitTrailingFence(IRBuilder<> &Builder,
1809 Instruction *Inst,
1810 AtomicOrdering Ord) const {
1811 if (isAcquireOrStronger(Ord))
1812 return Builder.CreateFence(Ord);
1813 else
1814 return nullptr;
1816 /// @}
1818 // Emits code that executes when the comparison result in the ll/sc
1819 // expansion of a cmpxchg instruction is such that the store-conditional will
1820 // not execute. This makes it possible to balance out the load-linked with
1821 // a dedicated instruction, if desired.
1822 // E.g., on ARM, if ldrex isn't followed by strex, the exclusive monitor would
1823 // be unnecessarily held, except if clrex, inserted by this hook, is executed.
1824 virtual void emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> &Builder) const {}
1826 /// Returns true if the given (atomic) store should be expanded by the
1827 /// IR-level AtomicExpand pass into an "atomic xchg" which ignores its input.
1828 virtual bool shouldExpandAtomicStoreInIR(StoreInst *SI) const {
1829 return false;
1832 /// Returns true if arguments should be sign-extended in lib calls.
1833 virtual bool shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
1834 return IsSigned;
1837 /// Returns true if arguments should be extended in lib calls.
1838 virtual bool shouldExtendTypeInLibCall(EVT Type) const {
1839 return true;
1842 /// Returns how the given (atomic) load should be expanded by the
1843 /// IR-level AtomicExpand pass.
1844 virtual AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const {
1845 return AtomicExpansionKind::None;
1848 /// Returns how the given atomic cmpxchg should be expanded by the IR-level
1849 /// AtomicExpand pass.
1850 virtual AtomicExpansionKind
1851 shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
1852 return AtomicExpansionKind::None;
1855 /// Returns how the IR-level AtomicExpand pass should expand the given
1856 /// AtomicRMW, if at all. Default is to never expand.
1857 virtual AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
1858 return RMW->isFloatingPointOperation() ?
1859 AtomicExpansionKind::CmpXChg : AtomicExpansionKind::None;
1862 /// On some platforms, an AtomicRMW that never actually modifies the value
1863 /// (such as fetch_add of 0) can be turned into a fence followed by an
1864 /// atomic load. This may sound useless, but it makes it possible for the
1865 /// processor to keep the cacheline shared, dramatically improving
1866 /// performance. And such idempotent RMWs are useful for implementing some
1867 /// kinds of locks, see for example (justification + benchmarks):
1868 /// http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf
1869 /// This method tries doing that transformation, returning the atomic load if
1870 /// it succeeds, and nullptr otherwise.
1871 /// If shouldExpandAtomicLoadInIR returns true on that load, it will undergo
1872 /// another round of expansion.
1873 virtual LoadInst *
1874 lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *RMWI) const {
1875 return nullptr;
1878 /// Returns how the platform's atomic operations are extended (ZERO_EXTEND,
1879 /// SIGN_EXTEND, or ANY_EXTEND).
1880 virtual ISD::NodeType getExtendForAtomicOps() const {
1881 return ISD::ZERO_EXTEND;
1884 /// @}
1886 /// Returns true if we should normalize
1887 /// select(N0&N1, X, Y) => select(N0, select(N1, X, Y), Y) and
1888 /// select(N0|N1, X, Y) => select(N0, select(N1, X, Y, Y)) if it is likely
1889 /// that it saves us from materializing N0 and N1 in an integer register.
1890 /// Targets that are able to perform and/or on flags should return false here.
1891 virtual bool shouldNormalizeToSelectSequence(LLVMContext &Context,
1892 EVT VT) const {
1893 // If a target has multiple condition registers, then it likely has logical
1894 // operations on those registers.
1895 if (hasMultipleConditionRegisters())
1896 return false;
1897 // Only do the transform if the value won't be split into multiple
1898 // registers.
1899 LegalizeTypeAction Action = getTypeAction(Context, VT);
1900 return Action != TypeExpandInteger && Action != TypeExpandFloat &&
1901 Action != TypeSplitVector;
1904 virtual bool isProfitableToCombineMinNumMaxNum(EVT VT) const { return true; }
1906 /// Return true if a select of constants (select Cond, C1, C2) should be
1907 /// transformed into simple math ops with the condition value. For example:
1908 /// select Cond, C1, C1-1 --> add (zext Cond), C1-1
1909 virtual bool convertSelectOfConstantsToMath(EVT VT) const {
1910 return false;
1913 /// Return true if it is profitable to transform an integer
1914 /// multiplication-by-constant into simpler operations like shifts and adds.
1915 /// This may be true if the target does not directly support the
1916 /// multiplication operation for the specified type or the sequence of simpler
1917 /// ops is faster than the multiply.
1918 virtual bool decomposeMulByConstant(LLVMContext &Context,
1919 EVT VT, SDValue C) const {
1920 return false;
1923 /// Return true if it is more correct/profitable to use strict FP_TO_INT
1924 /// conversion operations - canonicalizing the FP source value instead of
1925 /// converting all cases and then selecting based on value.
1926 /// This may be true if the target throws exceptions for out of bounds
1927 /// conversions or has fast FP CMOV.
1928 virtual bool shouldUseStrictFP_TO_INT(EVT FpVT, EVT IntVT,
1929 bool IsSigned) const {
1930 return false;
1933 //===--------------------------------------------------------------------===//
1934 // TargetLowering Configuration Methods - These methods should be invoked by
1935 // the derived class constructor to configure this object for the target.
1937 protected:
1938 /// Specify how the target extends the result of integer and floating point
1939 /// boolean values from i1 to a wider type. See getBooleanContents.
1940 void setBooleanContents(BooleanContent Ty) {
1941 BooleanContents = Ty;
1942 BooleanFloatContents = Ty;
1945 /// Specify how the target extends the result of integer and floating point
1946 /// boolean values from i1 to a wider type. See getBooleanContents.
1947 void setBooleanContents(BooleanContent IntTy, BooleanContent FloatTy) {
1948 BooleanContents = IntTy;
1949 BooleanFloatContents = FloatTy;
1952 /// Specify how the target extends the result of a vector boolean value from a
1953 /// vector of i1 to a wider type. See getBooleanContents.
1954 void setBooleanVectorContents(BooleanContent Ty) {
1955 BooleanVectorContents = Ty;
1958 /// Specify the target scheduling preference.
1959 void setSchedulingPreference(Sched::Preference Pref) {
1960 SchedPreferenceInfo = Pref;
1963 /// Indicate whether this target prefers to use _setjmp to implement
1964 /// llvm.setjmp or the version without _. Defaults to false.
1965 void setUseUnderscoreSetJmp(bool Val) {
1966 UseUnderscoreSetJmp = Val;
1969 /// Indicate whether this target prefers to use _longjmp to implement
1970 /// llvm.longjmp or the version without _. Defaults to false.
1971 void setUseUnderscoreLongJmp(bool Val) {
1972 UseUnderscoreLongJmp = Val;
1975 /// Indicate the minimum number of blocks to generate jump tables.
1976 void setMinimumJumpTableEntries(unsigned Val);
1978 /// Indicate the maximum number of entries in jump tables.
1979 /// Set to zero to generate unlimited jump tables.
1980 void setMaximumJumpTableSize(unsigned);
1982 /// If set to a physical register, this specifies the register that
1983 /// llvm.savestack/llvm.restorestack should save and restore.
1984 void setStackPointerRegisterToSaveRestore(unsigned R) {
1985 StackPointerRegisterToSaveRestore = R;
1988 /// Tells the code generator that the target has multiple (allocatable)
1989 /// condition registers that can be used to store the results of comparisons
1990 /// for use by selects and conditional branches. With multiple condition
1991 /// registers, the code generator will not aggressively sink comparisons into
1992 /// the blocks of their users.
1993 void setHasMultipleConditionRegisters(bool hasManyRegs = true) {
1994 HasMultipleConditionRegisters = hasManyRegs;
1997 /// Tells the code generator that the target has BitExtract instructions.
1998 /// The code generator will aggressively sink "shift"s into the blocks of
1999 /// their users if the users will generate "and" instructions which can be
2000 /// combined with "shift" to BitExtract instructions.
2001 void setHasExtractBitsInsn(bool hasExtractInsn = true) {
2002 HasExtractBitsInsn = hasExtractInsn;
2005 /// Tells the code generator not to expand logic operations on comparison
2006 /// predicates into separate sequences that increase the amount of flow
2007 /// control.
2008 void setJumpIsExpensive(bool isExpensive = true);
2010 /// Tells the code generator which bitwidths to bypass.
2011 void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
2012 BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
2015 /// Add the specified register class as an available regclass for the
2016 /// specified value type. This indicates the selector can handle values of
2017 /// that class natively.
2018 void addRegisterClass(MVT VT, const TargetRegisterClass *RC) {
2019 assert((unsigned)VT.SimpleTy < array_lengthof(RegClassForVT));
2020 RegClassForVT[VT.SimpleTy] = RC;
2023 /// Return the largest legal super-reg register class of the register class
2024 /// for the specified type and its associated "cost".
2025 virtual std::pair<const TargetRegisterClass *, uint8_t>
2026 findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const;
2028 /// Once all of the register classes are added, this allows us to compute
2029 /// derived properties we expose.
2030 void computeRegisterProperties(const TargetRegisterInfo *TRI);
2032 /// Indicate that the specified operation does not work with the specified
2033 /// type and indicate what to do about it. Note that VT may refer to either
2034 /// the type of a result or that of an operand of Op.
2035 void setOperationAction(unsigned Op, MVT VT,
2036 LegalizeAction Action) {
2037 assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
2038 OpActions[(unsigned)VT.SimpleTy][Op] = Action;
2041 /// Indicate that the specified load with extension does not work with the
2042 /// specified type and indicate what to do about it.
2043 void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT,
2044 LegalizeAction Action) {
2045 assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValVT.isValid() &&
2046 MemVT.isValid() && "Table isn't big enough!");
2047 assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
2048 unsigned Shift = 4 * ExtType;
2049 LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] &= ~((uint16_t)0xF << Shift);
2050 LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] |= (uint16_t)Action << Shift;
2053 /// Indicate that the specified truncating store does not work with the
2054 /// specified type and indicate what to do about it.
2055 void setTruncStoreAction(MVT ValVT, MVT MemVT,
2056 LegalizeAction Action) {
2057 assert(ValVT.isValid() && MemVT.isValid() && "Table isn't big enough!");
2058 TruncStoreActions[(unsigned)ValVT.SimpleTy][MemVT.SimpleTy] = Action;
2061 /// Indicate that the specified indexed load does or does not work with the
2062 /// specified type and indicate what to do abort it.
2064 /// NOTE: All indexed mode loads are initialized to Expand in
2065 /// TargetLowering.cpp
2066 void setIndexedLoadAction(unsigned IdxMode, MVT VT,
2067 LegalizeAction Action) {
2068 assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
2069 (unsigned)Action < 0xf && "Table isn't big enough!");
2070 // Load action are kept in the upper half.
2071 IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
2072 IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
2075 /// Indicate that the specified indexed store does or does not work with the
2076 /// specified type and indicate what to do about it.
2078 /// NOTE: All indexed mode stores are initialized to Expand in
2079 /// TargetLowering.cpp
2080 void setIndexedStoreAction(unsigned IdxMode, MVT VT,
2081 LegalizeAction Action) {
2082 assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
2083 (unsigned)Action < 0xf && "Table isn't big enough!");
2084 // Store action are kept in the lower half.
2085 IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
2086 IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
2089 /// Indicate that the specified condition code is or isn't supported on the
2090 /// target and indicate what to do about it.
2091 void setCondCodeAction(ISD::CondCode CC, MVT VT,
2092 LegalizeAction Action) {
2093 assert(VT.isValid() && (unsigned)CC < array_lengthof(CondCodeActions) &&
2094 "Table isn't big enough!");
2095 assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
2096 /// The lower 3 bits of the SimpleTy index into Nth 4bit set from the 32-bit
2097 /// value and the upper 29 bits index into the second dimension of the array
2098 /// to select what 32-bit value to use.
2099 uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
2100 CondCodeActions[CC][VT.SimpleTy >> 3] &= ~((uint32_t)0xF << Shift);
2101 CondCodeActions[CC][VT.SimpleTy >> 3] |= (uint32_t)Action << Shift;
2104 /// If Opc/OrigVT is specified as being promoted, the promotion code defaults
2105 /// to trying a larger integer/fp until it can find one that works. If that
2106 /// default is insufficient, this method can be used by the target to override
2107 /// the default.
2108 void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
2109 PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
2112 /// Convenience method to set an operation to Promote and specify the type
2113 /// in a single call.
2114 void setOperationPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
2115 setOperationAction(Opc, OrigVT, Promote);
2116 AddPromotedToType(Opc, OrigVT, DestVT);
2119 /// Targets should invoke this method for each target independent node that
2120 /// they want to provide a custom DAG combiner for by implementing the
2121 /// PerformDAGCombine virtual method.
2122 void setTargetDAGCombine(ISD::NodeType NT) {
2123 assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
2124 TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
2127 /// Set the target's minimum function alignment.
2128 void setMinFunctionAlignment(Align Alignment) {
2129 MinFunctionAlignment = Alignment;
2132 /// Set the target's preferred function alignment. This should be set if
2133 /// there is a performance benefit to higher-than-minimum alignment
2134 void setPrefFunctionAlignment(Align Alignment) {
2135 PrefFunctionAlignment = Alignment;
2138 /// Set the target's preferred loop alignment. Default alignment is one, it
2139 /// means the target does not care about loop alignment. The target may also
2140 /// override getPrefLoopAlignment to provide per-loop values.
2141 void setPrefLoopAlignment(Align Alignment) { PrefLoopAlignment = Alignment; }
2143 /// Set the minimum stack alignment of an argument.
2144 void setMinStackArgumentAlignment(Align Alignment) {
2145 MinStackArgumentAlignment = Alignment;
2148 /// Set the maximum atomic operation size supported by the
2149 /// backend. Atomic operations greater than this size (as well as
2150 /// ones that are not naturally aligned), will be expanded by
2151 /// AtomicExpandPass into an __atomic_* library call.
2152 void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits) {
2153 MaxAtomicSizeInBitsSupported = SizeInBits;
2156 /// Sets the minimum cmpxchg or ll/sc size supported by the backend.
2157 void setMinCmpXchgSizeInBits(unsigned SizeInBits) {
2158 MinCmpXchgSizeInBits = SizeInBits;
2161 /// Sets whether unaligned atomic operations are supported.
2162 void setSupportsUnalignedAtomics(bool UnalignedSupported) {
2163 SupportsUnalignedAtomics = UnalignedSupported;
2166 public:
2167 //===--------------------------------------------------------------------===//
2168 // Addressing mode description hooks (used by LSR etc).
2171 /// CodeGenPrepare sinks address calculations into the same BB as Load/Store
2172 /// instructions reading the address. This allows as much computation as
2173 /// possible to be done in the address mode for that operand. This hook lets
2174 /// targets also pass back when this should be done on intrinsics which
2175 /// load/store.
2176 virtual bool getAddrModeArguments(IntrinsicInst * /*I*/,
2177 SmallVectorImpl<Value*> &/*Ops*/,
2178 Type *&/*AccessTy*/) const {
2179 return false;
2182 /// This represents an addressing mode of:
2183 /// BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
2184 /// If BaseGV is null, there is no BaseGV.
2185 /// If BaseOffs is zero, there is no base offset.
2186 /// If HasBaseReg is false, there is no base register.
2187 /// If Scale is zero, there is no ScaleReg. Scale of 1 indicates a reg with
2188 /// no scale.
2189 struct AddrMode {
2190 GlobalValue *BaseGV = nullptr;
2191 int64_t BaseOffs = 0;
2192 bool HasBaseReg = false;
2193 int64_t Scale = 0;
2194 AddrMode() = default;
2197 /// Return true if the addressing mode represented by AM is legal for this
2198 /// target, for a load/store of the specified type.
2200 /// The type may be VoidTy, in which case only return true if the addressing
2201 /// mode is legal for a load/store of any legal type. TODO: Handle
2202 /// pre/postinc as well.
2204 /// If the address space cannot be determined, it will be -1.
2206 /// TODO: Remove default argument
2207 virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
2208 Type *Ty, unsigned AddrSpace,
2209 Instruction *I = nullptr) const;
2211 /// Return the cost of the scaling factor used in the addressing mode
2212 /// represented by AM for this target, for a load/store of the specified type.
2214 /// If the AM is supported, the return value must be >= 0.
2215 /// If the AM is not supported, it returns a negative value.
2216 /// TODO: Handle pre/postinc as well.
2217 /// TODO: Remove default argument
2218 virtual int getScalingFactorCost(const DataLayout &DL, const AddrMode &AM,
2219 Type *Ty, unsigned AS = 0) const {
2220 // Default: assume that any scaling factor used in a legal AM is free.
2221 if (isLegalAddressingMode(DL, AM, Ty, AS))
2222 return 0;
2223 return -1;
2226 /// Return true if the specified immediate is legal icmp immediate, that is
2227 /// the target has icmp instructions which can compare a register against the
2228 /// immediate without having to materialize the immediate into a register.
2229 virtual bool isLegalICmpImmediate(int64_t) const {
2230 return true;
2233 /// Return true if the specified immediate is legal add immediate, that is the
2234 /// target has add instructions which can add a register with the immediate
2235 /// without having to materialize the immediate into a register.
2236 virtual bool isLegalAddImmediate(int64_t) const {
2237 return true;
2240 /// Return true if the specified immediate is legal for the value input of a
2241 /// store instruction.
2242 virtual bool isLegalStoreImmediate(int64_t Value) const {
2243 // Default implementation assumes that at least 0 works since it is likely
2244 // that a zero register exists or a zero immediate is allowed.
2245 return Value == 0;
2248 /// Return true if it's significantly cheaper to shift a vector by a uniform
2249 /// scalar than by an amount which will vary across each lane. On x86, for
2250 /// example, there is a "psllw" instruction for the former case, but no simple
2251 /// instruction for a general "a << b" operation on vectors.
2252 virtual bool isVectorShiftByScalarCheap(Type *Ty) const {
2253 return false;
2256 /// Returns true if the opcode is a commutative binary operation.
2257 virtual bool isCommutativeBinOp(unsigned Opcode) const {
2258 // FIXME: This should get its info from the td file.
2259 switch (Opcode) {
2260 case ISD::ADD:
2261 case ISD::SMIN:
2262 case ISD::SMAX:
2263 case ISD::UMIN:
2264 case ISD::UMAX:
2265 case ISD::MUL:
2266 case ISD::MULHU:
2267 case ISD::MULHS:
2268 case ISD::SMUL_LOHI:
2269 case ISD::UMUL_LOHI:
2270 case ISD::FADD:
2271 case ISD::FMUL:
2272 case ISD::AND:
2273 case ISD::OR:
2274 case ISD::XOR:
2275 case ISD::SADDO:
2276 case ISD::UADDO:
2277 case ISD::ADDC:
2278 case ISD::ADDE:
2279 case ISD::SADDSAT:
2280 case ISD::UADDSAT:
2281 case ISD::FMINNUM:
2282 case ISD::FMAXNUM:
2283 case ISD::FMINNUM_IEEE:
2284 case ISD::FMAXNUM_IEEE:
2285 case ISD::FMINIMUM:
2286 case ISD::FMAXIMUM:
2287 return true;
2288 default: return false;
2292 /// Return true if the node is a math/logic binary operator.
2293 virtual bool isBinOp(unsigned Opcode) const {
2294 // A commutative binop must be a binop.
2295 if (isCommutativeBinOp(Opcode))
2296 return true;
2297 // These are non-commutative binops.
2298 switch (Opcode) {
2299 case ISD::SUB:
2300 case ISD::SHL:
2301 case ISD::SRL:
2302 case ISD::SRA:
2303 case ISD::SDIV:
2304 case ISD::UDIV:
2305 case ISD::SREM:
2306 case ISD::UREM:
2307 case ISD::FSUB:
2308 case ISD::FDIV:
2309 case ISD::FREM:
2310 return true;
2311 default:
2312 return false;
2316 /// Return true if it's free to truncate a value of type FromTy to type
2317 /// ToTy. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
2318 /// by referencing its sub-register AX.
2319 /// Targets must return false when FromTy <= ToTy.
2320 virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const {
2321 return false;
2324 /// Return true if a truncation from FromTy to ToTy is permitted when deciding
2325 /// whether a call is in tail position. Typically this means that both results
2326 /// would be assigned to the same register or stack slot, but it could mean
2327 /// the target performs adequate checks of its own before proceeding with the
2328 /// tail call. Targets must return false when FromTy <= ToTy.
2329 virtual bool allowTruncateForTailCall(Type *FromTy, Type *ToTy) const {
2330 return false;
2333 virtual bool isTruncateFree(EVT FromVT, EVT ToVT) const {
2334 return false;
2337 virtual bool isProfitableToHoist(Instruction *I) const { return true; }
2339 /// Return true if the extension represented by \p I is free.
2340 /// Unlikely the is[Z|FP]ExtFree family which is based on types,
2341 /// this method can use the context provided by \p I to decide
2342 /// whether or not \p I is free.
2343 /// This method extends the behavior of the is[Z|FP]ExtFree family.
2344 /// In other words, if is[Z|FP]Free returns true, then this method
2345 /// returns true as well. The converse is not true.
2346 /// The target can perform the adequate checks by overriding isExtFreeImpl.
2347 /// \pre \p I must be a sign, zero, or fp extension.
2348 bool isExtFree(const Instruction *I) const {
2349 switch (I->getOpcode()) {
2350 case Instruction::FPExt:
2351 if (isFPExtFree(EVT::getEVT(I->getType()),
2352 EVT::getEVT(I->getOperand(0)->getType())))
2353 return true;
2354 break;
2355 case Instruction::ZExt:
2356 if (isZExtFree(I->getOperand(0)->getType(), I->getType()))
2357 return true;
2358 break;
2359 case Instruction::SExt:
2360 break;
2361 default:
2362 llvm_unreachable("Instruction is not an extension");
2364 return isExtFreeImpl(I);
2367 /// Return true if \p Load and \p Ext can form an ExtLoad.
2368 /// For example, in AArch64
2369 /// %L = load i8, i8* %ptr
2370 /// %E = zext i8 %L to i32
2371 /// can be lowered into one load instruction
2372 /// ldrb w0, [x0]
2373 bool isExtLoad(const LoadInst *Load, const Instruction *Ext,
2374 const DataLayout &DL) const {
2375 EVT VT = getValueType(DL, Ext->getType());
2376 EVT LoadVT = getValueType(DL, Load->getType());
2378 // If the load has other users and the truncate is not free, the ext
2379 // probably isn't free.
2380 if (!Load->hasOneUse() && (isTypeLegal(LoadVT) || !isTypeLegal(VT)) &&
2381 !isTruncateFree(Ext->getType(), Load->getType()))
2382 return false;
2384 // Check whether the target supports casts folded into loads.
2385 unsigned LType;
2386 if (isa<ZExtInst>(Ext))
2387 LType = ISD::ZEXTLOAD;
2388 else {
2389 assert(isa<SExtInst>(Ext) && "Unexpected ext type!");
2390 LType = ISD::SEXTLOAD;
2393 return isLoadExtLegal(LType, VT, LoadVT);
2396 /// Return true if any actual instruction that defines a value of type FromTy
2397 /// implicitly zero-extends the value to ToTy in the result register.
2399 /// The function should return true when it is likely that the truncate can
2400 /// be freely folded with an instruction defining a value of FromTy. If
2401 /// the defining instruction is unknown (because you're looking at a
2402 /// function argument, PHI, etc.) then the target may require an
2403 /// explicit truncate, which is not necessarily free, but this function
2404 /// does not deal with those cases.
2405 /// Targets must return false when FromTy >= ToTy.
2406 virtual bool isZExtFree(Type *FromTy, Type *ToTy) const {
2407 return false;
2410 virtual bool isZExtFree(EVT FromTy, EVT ToTy) const {
2411 return false;
2414 /// Return true if sign-extension from FromTy to ToTy is cheaper than
2415 /// zero-extension.
2416 virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const {
2417 return false;
2420 /// Return true if sinking I's operands to the same basic block as I is
2421 /// profitable, e.g. because the operands can be folded into a target
2422 /// instruction during instruction selection. After calling the function
2423 /// \p Ops contains the Uses to sink ordered by dominance (dominating users
2424 /// come first).
2425 virtual bool shouldSinkOperands(Instruction *I,
2426 SmallVectorImpl<Use *> &Ops) const {
2427 return false;
2430 /// Return true if the target supplies and combines to a paired load
2431 /// two loaded values of type LoadedType next to each other in memory.
2432 /// RequiredAlignment gives the minimal alignment constraints that must be met
2433 /// to be able to select this paired load.
2435 /// This information is *not* used to generate actual paired loads, but it is
2436 /// used to generate a sequence of loads that is easier to combine into a
2437 /// paired load.
2438 /// For instance, something like this:
2439 /// a = load i64* addr
2440 /// b = trunc i64 a to i32
2441 /// c = lshr i64 a, 32
2442 /// d = trunc i64 c to i32
2443 /// will be optimized into:
2444 /// b = load i32* addr1
2445 /// d = load i32* addr2
2446 /// Where addr1 = addr2 +/- sizeof(i32).
2448 /// In other words, unless the target performs a post-isel load combining,
2449 /// this information should not be provided because it will generate more
2450 /// loads.
2451 virtual bool hasPairedLoad(EVT /*LoadedType*/,
2452 unsigned & /*RequiredAlignment*/) const {
2453 return false;
2456 /// Return true if the target has a vector blend instruction.
2457 virtual bool hasVectorBlend() const { return false; }
2459 /// Get the maximum supported factor for interleaved memory accesses.
2460 /// Default to be the minimum interleave factor: 2.
2461 virtual unsigned getMaxSupportedInterleaveFactor() const { return 2; }
2463 /// Lower an interleaved load to target specific intrinsics. Return
2464 /// true on success.
2466 /// \p LI is the vector load instruction.
2467 /// \p Shuffles is the shufflevector list to DE-interleave the loaded vector.
2468 /// \p Indices is the corresponding indices for each shufflevector.
2469 /// \p Factor is the interleave factor.
2470 virtual bool lowerInterleavedLoad(LoadInst *LI,
2471 ArrayRef<ShuffleVectorInst *> Shuffles,
2472 ArrayRef<unsigned> Indices,
2473 unsigned Factor) const {
2474 return false;
2477 /// Lower an interleaved store to target specific intrinsics. Return
2478 /// true on success.
2480 /// \p SI is the vector store instruction.
2481 /// \p SVI is the shufflevector to RE-interleave the stored vector.
2482 /// \p Factor is the interleave factor.
2483 virtual bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI,
2484 unsigned Factor) const {
2485 return false;
2488 /// Return true if zero-extending the specific node Val to type VT2 is free
2489 /// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or
2490 /// because it's folded such as X86 zero-extending loads).
2491 virtual bool isZExtFree(SDValue Val, EVT VT2) const {
2492 return isZExtFree(Val.getValueType(), VT2);
2495 /// Return true if an fpext operation is free (for instance, because
2496 /// single-precision floating-point numbers are implicitly extended to
2497 /// double-precision).
2498 virtual bool isFPExtFree(EVT DestVT, EVT SrcVT) const {
2499 assert(SrcVT.isFloatingPoint() && DestVT.isFloatingPoint() &&
2500 "invalid fpext types");
2501 return false;
2504 /// Return true if an fpext operation input to an \p Opcode operation is free
2505 /// (for instance, because half-precision floating-point numbers are
2506 /// implicitly extended to float-precision) for an FMA instruction.
2507 virtual bool isFPExtFoldable(unsigned Opcode, EVT DestVT, EVT SrcVT) const {
2508 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
2509 "invalid fpext types");
2510 return isFPExtFree(DestVT, SrcVT);
2513 /// Return true if folding a vector load into ExtVal (a sign, zero, or any
2514 /// extend node) is profitable.
2515 virtual bool isVectorLoadExtDesirable(SDValue ExtVal) const { return false; }
2517 /// Return true if an fneg operation is free to the point where it is never
2518 /// worthwhile to replace it with a bitwise operation.
2519 virtual bool isFNegFree(EVT VT) const {
2520 assert(VT.isFloatingPoint());
2521 return false;
2524 /// Return true if an fabs operation is free to the point where it is never
2525 /// worthwhile to replace it with a bitwise operation.
2526 virtual bool isFAbsFree(EVT VT) const {
2527 assert(VT.isFloatingPoint());
2528 return false;
2531 /// Return true if an FMA operation is faster than a pair of fmul and fadd
2532 /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
2533 /// returns true, otherwise fmuladd is expanded to fmul + fadd.
2535 /// NOTE: This may be called before legalization on types for which FMAs are
2536 /// not legal, but should return true if those types will eventually legalize
2537 /// to types that support FMAs. After legalization, it will only be called on
2538 /// types that support FMAs (via Legal or Custom actions)
2539 virtual bool isFMAFasterThanFMulAndFAdd(EVT) const {
2540 return false;
2543 /// Return true if it's profitable to narrow operations of type VT1 to
2544 /// VT2. e.g. on x86, it's profitable to narrow from i32 to i8 but not from
2545 /// i32 to i16.
2546 virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
2547 return false;
2550 /// Return true if it is beneficial to convert a load of a constant to
2551 /// just the constant itself.
2552 /// On some targets it might be more efficient to use a combination of
2553 /// arithmetic instructions to materialize the constant instead of loading it
2554 /// from a constant pool.
2555 virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
2556 Type *Ty) const {
2557 return false;
2560 /// Return true if EXTRACT_SUBVECTOR is cheap for extracting this result type
2561 /// from this source type with this index. This is needed because
2562 /// EXTRACT_SUBVECTOR usually has custom lowering that depends on the index of
2563 /// the first element, and only the target knows which lowering is cheap.
2564 virtual bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
2565 unsigned Index) const {
2566 return false;
2569 /// Try to convert an extract element of a vector binary operation into an
2570 /// extract element followed by a scalar operation.
2571 virtual bool shouldScalarizeBinop(SDValue VecOp) const {
2572 return false;
2575 /// Return true if extraction of a scalar element from the given vector type
2576 /// at the given index is cheap. For example, if scalar operations occur on
2577 /// the same register file as vector operations, then an extract element may
2578 /// be a sub-register rename rather than an actual instruction.
2579 virtual bool isExtractVecEltCheap(EVT VT, unsigned Index) const {
2580 return false;
2583 /// Try to convert math with an overflow comparison into the corresponding DAG
2584 /// node operation. Targets may want to override this independently of whether
2585 /// the operation is legal/custom for the given type because it may obscure
2586 /// matching of other patterns.
2587 virtual bool shouldFormOverflowOp(unsigned Opcode, EVT VT) const {
2588 // TODO: The default logic is inherited from code in CodeGenPrepare.
2589 // The opcode should not make a difference by default?
2590 if (Opcode != ISD::UADDO)
2591 return false;
2593 // Allow the transform as long as we have an integer type that is not
2594 // obviously illegal and unsupported.
2595 if (VT.isVector())
2596 return false;
2597 return VT.isSimple() || !isOperationExpand(Opcode, VT);
2600 // Return true if it is profitable to use a scalar input to a BUILD_VECTOR
2601 // even if the vector itself has multiple uses.
2602 virtual bool aggressivelyPreferBuildVectorSources(EVT VecVT) const {
2603 return false;
2606 // Return true if CodeGenPrepare should consider splitting large offset of a
2607 // GEP to make the GEP fit into the addressing mode and can be sunk into the
2608 // same blocks of its users.
2609 virtual bool shouldConsiderGEPOffsetSplit() const { return false; }
2611 // Return the shift amount threshold for profitable transforms into shifts.
2612 // Transforms creating shifts above the returned value will be avoided.
2613 virtual unsigned getShiftAmountThreshold(EVT VT) const {
2614 return VT.getScalarSizeInBits();
2617 //===--------------------------------------------------------------------===//
2618 // Runtime Library hooks
2621 /// Rename the default libcall routine name for the specified libcall.
2622 void setLibcallName(RTLIB::Libcall Call, const char *Name) {
2623 LibcallRoutineNames[Call] = Name;
2626 /// Get the libcall routine name for the specified libcall.
2627 const char *getLibcallName(RTLIB::Libcall Call) const {
2628 return LibcallRoutineNames[Call];
2631 /// Override the default CondCode to be used to test the result of the
2632 /// comparison libcall against zero.
2633 void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
2634 CmpLibcallCCs[Call] = CC;
2637 /// Get the CondCode that's to be used to test the result of the comparison
2638 /// libcall against zero.
2639 ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
2640 return CmpLibcallCCs[Call];
2643 /// Set the CallingConv that should be used for the specified libcall.
2644 void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
2645 LibcallCallingConvs[Call] = CC;
2648 /// Get the CallingConv that should be used for the specified libcall.
2649 CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
2650 return LibcallCallingConvs[Call];
2653 /// Execute target specific actions to finalize target lowering.
2654 /// This is used to set extra flags in MachineFrameInformation and freezing
2655 /// the set of reserved registers.
2656 /// The default implementation just freezes the set of reserved registers.
2657 virtual void finalizeLowering(MachineFunction &MF) const;
2659 private:
2660 const TargetMachine &TM;
2662 /// Tells the code generator that the target has multiple (allocatable)
2663 /// condition registers that can be used to store the results of comparisons
2664 /// for use by selects and conditional branches. With multiple condition
2665 /// registers, the code generator will not aggressively sink comparisons into
2666 /// the blocks of their users.
2667 bool HasMultipleConditionRegisters;
2669 /// Tells the code generator that the target has BitExtract instructions.
2670 /// The code generator will aggressively sink "shift"s into the blocks of
2671 /// their users if the users will generate "and" instructions which can be
2672 /// combined with "shift" to BitExtract instructions.
2673 bool HasExtractBitsInsn;
2675 /// Tells the code generator to bypass slow divide or remainder
2676 /// instructions. For example, BypassSlowDivWidths[32,8] tells the code
2677 /// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer
2678 /// div/rem when the operands are positive and less than 256.
2679 DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
2681 /// Tells the code generator that it shouldn't generate extra flow control
2682 /// instructions and should attempt to combine flow control instructions via
2683 /// predication.
2684 bool JumpIsExpensive;
2686 /// This target prefers to use _setjmp to implement llvm.setjmp.
2688 /// Defaults to false.
2689 bool UseUnderscoreSetJmp;
2691 /// This target prefers to use _longjmp to implement llvm.longjmp.
2693 /// Defaults to false.
2694 bool UseUnderscoreLongJmp;
2696 /// Information about the contents of the high-bits in boolean values held in
2697 /// a type wider than i1. See getBooleanContents.
2698 BooleanContent BooleanContents;
2700 /// Information about the contents of the high-bits in boolean values held in
2701 /// a type wider than i1. See getBooleanContents.
2702 BooleanContent BooleanFloatContents;
2704 /// Information about the contents of the high-bits in boolean vector values
2705 /// when the element type is wider than i1. See getBooleanContents.
2706 BooleanContent BooleanVectorContents;
2708 /// The target scheduling preference: shortest possible total cycles or lowest
2709 /// register usage.
2710 Sched::Preference SchedPreferenceInfo;
2712 /// The minimum alignment that any argument on the stack needs to have.
2713 Align MinStackArgumentAlignment;
2715 /// The minimum function alignment (used when optimizing for size, and to
2716 /// prevent explicitly provided alignment from leading to incorrect code).
2717 Align MinFunctionAlignment;
2719 /// The preferred function alignment (used when alignment unspecified and
2720 /// optimizing for speed).
2721 Align PrefFunctionAlignment;
2723 /// The preferred loop alignment (in log2 bot in bytes).
2724 Align PrefLoopAlignment;
2726 /// Size in bits of the maximum atomics size the backend supports.
2727 /// Accesses larger than this will be expanded by AtomicExpandPass.
2728 unsigned MaxAtomicSizeInBitsSupported;
2730 /// Size in bits of the minimum cmpxchg or ll/sc operation the
2731 /// backend supports.
2732 unsigned MinCmpXchgSizeInBits;
2734 /// This indicates if the target supports unaligned atomic operations.
2735 bool SupportsUnalignedAtomics;
2737 /// If set to a physical register, this specifies the register that
2738 /// llvm.savestack/llvm.restorestack should save and restore.
2739 unsigned StackPointerRegisterToSaveRestore;
2741 /// This indicates the default register class to use for each ValueType the
2742 /// target supports natively.
2743 const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
2744 unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
2745 MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
2747 /// This indicates the "representative" register class to use for each
2748 /// ValueType the target supports natively. This information is used by the
2749 /// scheduler to track register pressure. By default, the representative
2750 /// register class is the largest legal super-reg register class of the
2751 /// register class of the specified type. e.g. On x86, i8, i16, and i32's
2752 /// representative class would be GR32.
2753 const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
2755 /// This indicates the "cost" of the "representative" register class for each
2756 /// ValueType. The cost is used by the scheduler to approximate register
2757 /// pressure.
2758 uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
2760 /// For any value types we are promoting or expanding, this contains the value
2761 /// type that we are changing to. For Expanded types, this contains one step
2762 /// of the expand (e.g. i64 -> i32), even if there are multiple steps required
2763 /// (e.g. i64 -> i16). For types natively supported by the system, this holds
2764 /// the same type (e.g. i32 -> i32).
2765 MVT TransformToType[MVT::LAST_VALUETYPE];
2767 /// For each operation and each value type, keep a LegalizeAction that
2768 /// indicates how instruction selection should deal with the operation. Most
2769 /// operations are Legal (aka, supported natively by the target), but
2770 /// operations that are not should be described. Note that operations on
2771 /// non-legal value types are not described here.
2772 LegalizeAction OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
2774 /// For each load extension type and each value type, keep a LegalizeAction
2775 /// that indicates how instruction selection should deal with a load of a
2776 /// specific value type and extension type. Uses 4-bits to store the action
2777 /// for each of the 4 load ext types.
2778 uint16_t LoadExtActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
2780 /// For each value type pair keep a LegalizeAction that indicates whether a
2781 /// truncating store of a specific value type and truncating type is legal.
2782 LegalizeAction TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
2784 /// For each indexed mode and each value type, keep a pair of LegalizeAction
2785 /// that indicates how instruction selection should deal with the load /
2786 /// store.
2788 /// The first dimension is the value_type for the reference. The second
2789 /// dimension represents the various modes for load store.
2790 uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
2792 /// For each condition code (ISD::CondCode) keep a LegalizeAction that
2793 /// indicates how instruction selection should deal with the condition code.
2795 /// Because each CC action takes up 4 bits, we need to have the array size be
2796 /// large enough to fit all of the value types. This can be done by rounding
2797 /// up the MVT::LAST_VALUETYPE value to the next multiple of 8.
2798 uint32_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE + 7) / 8];
2800 ValueTypeActionImpl ValueTypeActions;
2802 private:
2803 LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const;
2805 /// Targets can specify ISD nodes that they would like PerformDAGCombine
2806 /// callbacks for by calling setTargetDAGCombine(), which sets a bit in this
2807 /// array.
2808 unsigned char
2809 TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
2811 /// For operations that must be promoted to a specific type, this holds the
2812 /// destination type. This map should be sparse, so don't hold it as an
2813 /// array.
2815 /// Targets add entries to this map with AddPromotedToType(..), clients access
2816 /// this with getTypeToPromoteTo(..).
2817 std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
2818 PromoteToType;
2820 /// Stores the name each libcall.
2821 const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL + 1];
2823 /// The ISD::CondCode that should be used to test the result of each of the
2824 /// comparison libcall against zero.
2825 ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
2827 /// Stores the CallingConv that should be used for each libcall.
2828 CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
2830 /// Set default libcall names and calling conventions.
2831 void InitLibcalls(const Triple &TT);
2833 protected:
2834 /// Return true if the extension represented by \p I is free.
2835 /// \pre \p I is a sign, zero, or fp extension and
2836 /// is[Z|FP]ExtFree of the related types is not true.
2837 virtual bool isExtFreeImpl(const Instruction *I) const { return false; }
2839 /// Depth that GatherAllAliases should should continue looking for chain
2840 /// dependencies when trying to find a more preferable chain. As an
2841 /// approximation, this should be more than the number of consecutive stores
2842 /// expected to be merged.
2843 unsigned GatherAllAliasesMaxDepth;
2845 /// \brief Specify maximum number of store instructions per memset call.
2847 /// When lowering \@llvm.memset this field specifies the maximum number of
2848 /// store operations that may be substituted for the call to memset. Targets
2849 /// must set this value based on the cost threshold for that target. Targets
2850 /// should assume that the memset will be done using as many of the largest
2851 /// store operations first, followed by smaller ones, if necessary, per
2852 /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
2853 /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
2854 /// store. This only applies to setting a constant array of a constant size.
2855 unsigned MaxStoresPerMemset;
2856 /// Likewise for functions with the OptSize attribute.
2857 unsigned MaxStoresPerMemsetOptSize;
2859 /// \brief Specify maximum number of store instructions per memcpy call.
2861 /// When lowering \@llvm.memcpy this field specifies the maximum number of
2862 /// store operations that may be substituted for a call to memcpy. Targets
2863 /// must set this value based on the cost threshold for that target. Targets
2864 /// should assume that the memcpy will be done using as many of the largest
2865 /// store operations first, followed by smaller ones, if necessary, per
2866 /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
2867 /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
2868 /// and one 1-byte store. This only applies to copying a constant array of
2869 /// constant size.
2870 unsigned MaxStoresPerMemcpy;
2871 /// Likewise for functions with the OptSize attribute.
2872 unsigned MaxStoresPerMemcpyOptSize;
2873 /// \brief Specify max number of store instructions to glue in inlined memcpy.
2875 /// When memcpy is inlined based on MaxStoresPerMemcpy, specify maximum number
2876 /// of store instructions to keep together. This helps in pairing and
2877 // vectorization later on.
2878 unsigned MaxGluedStoresPerMemcpy = 0;
2880 /// \brief Specify maximum number of load instructions per memcmp call.
2882 /// When lowering \@llvm.memcmp this field specifies the maximum number of
2883 /// pairs of load operations that may be substituted for a call to memcmp.
2884 /// Targets must set this value based on the cost threshold for that target.
2885 /// Targets should assume that the memcmp will be done using as many of the
2886 /// largest load operations first, followed by smaller ones, if necessary, per
2887 /// alignment restrictions. For example, loading 7 bytes on a 32-bit machine
2888 /// with 32-bit alignment would result in one 4-byte load, a one 2-byte load
2889 /// and one 1-byte load. This only applies to copying a constant array of
2890 /// constant size.
2891 unsigned MaxLoadsPerMemcmp;
2892 /// Likewise for functions with the OptSize attribute.
2893 unsigned MaxLoadsPerMemcmpOptSize;
2895 /// \brief Specify maximum number of store instructions per memmove call.
2897 /// When lowering \@llvm.memmove this field specifies the maximum number of
2898 /// store instructions that may be substituted for a call to memmove. Targets
2899 /// must set this value based on the cost threshold for that target. Targets
2900 /// should assume that the memmove will be done using as many of the largest
2901 /// store operations first, followed by smaller ones, if necessary, per
2902 /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
2903 /// with 8-bit alignment would result in nine 1-byte stores. This only
2904 /// applies to copying a constant array of constant size.
2905 unsigned MaxStoresPerMemmove;
2906 /// Likewise for functions with the OptSize attribute.
2907 unsigned MaxStoresPerMemmoveOptSize;
2909 /// Tells the code generator that select is more expensive than a branch if
2910 /// the branch is usually predicted right.
2911 bool PredictableSelectIsExpensive;
2913 /// \see enableExtLdPromotion.
2914 bool EnableExtLdPromotion;
2916 /// Return true if the value types that can be represented by the specified
2917 /// register class are all legal.
2918 bool isLegalRC(const TargetRegisterInfo &TRI,
2919 const TargetRegisterClass &RC) const;
2921 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
2922 /// sequence of memory operands that is recognized by PrologEpilogInserter.
2923 MachineBasicBlock *emitPatchPoint(MachineInstr &MI,
2924 MachineBasicBlock *MBB) const;
2926 /// Replace/modify the XRay custom event operands with target-dependent
2927 /// details.
2928 MachineBasicBlock *emitXRayCustomEvent(MachineInstr &MI,
2929 MachineBasicBlock *MBB) const;
2931 /// Replace/modify the XRay typed event operands with target-dependent
2932 /// details.
2933 MachineBasicBlock *emitXRayTypedEvent(MachineInstr &MI,
2934 MachineBasicBlock *MBB) const;
2937 /// This class defines information used to lower LLVM code to legal SelectionDAG
2938 /// operators that the target instruction selector can accept natively.
2940 /// This class also defines callbacks that targets must implement to lower
2941 /// target-specific constructs to SelectionDAG operators.
2942 class TargetLowering : public TargetLoweringBase {
2943 public:
2944 struct DAGCombinerInfo;
2945 struct MakeLibCallOptions;
2947 TargetLowering(const TargetLowering &) = delete;
2948 TargetLowering &operator=(const TargetLowering &) = delete;
2950 /// NOTE: The TargetMachine owns TLOF.
2951 explicit TargetLowering(const TargetMachine &TM);
2953 bool isPositionIndependent() const;
2955 virtual bool isSDNodeSourceOfDivergence(const SDNode *N,
2956 FunctionLoweringInfo *FLI,
2957 LegacyDivergenceAnalysis *DA) const {
2958 return false;
2961 virtual bool isSDNodeAlwaysUniform(const SDNode * N) const {
2962 return false;
2965 /// Returns true by value, base pointer and offset pointer and addressing mode
2966 /// by reference if the node's address can be legally represented as
2967 /// pre-indexed load / store address.
2968 virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
2969 SDValue &/*Offset*/,
2970 ISD::MemIndexedMode &/*AM*/,
2971 SelectionDAG &/*DAG*/) const {
2972 return false;
2975 /// Returns true by value, base pointer and offset pointer and addressing mode
2976 /// by reference if this node can be combined with a load / store to form a
2977 /// post-indexed load / store.
2978 virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
2979 SDValue &/*Base*/,
2980 SDValue &/*Offset*/,
2981 ISD::MemIndexedMode &/*AM*/,
2982 SelectionDAG &/*DAG*/) const {
2983 return false;
2986 /// Returns true if the specified base+offset is a legal indexed addressing
2987 /// mode for this target. \p MI is the load or store instruction that is being
2988 /// considered for transformation.
2989 virtual bool isIndexingLegal(MachineInstr &MI, Register Base, Register Offset,
2990 bool IsPre, MachineRegisterInfo &MRI) const {
2991 return false;
2994 /// Return the entry encoding for a jump table in the current function. The
2995 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
2996 virtual unsigned getJumpTableEncoding() const;
2998 virtual const MCExpr *
2999 LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
3000 const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
3001 MCContext &/*Ctx*/) const {
3002 llvm_unreachable("Need to implement this hook if target has custom JTIs");
3005 /// Returns relocation base for the given PIC jumptable.
3006 virtual SDValue getPICJumpTableRelocBase(SDValue Table,
3007 SelectionDAG &DAG) const;
3009 /// This returns the relocation base for the given PIC jumptable, the same as
3010 /// getPICJumpTableRelocBase, but as an MCExpr.
3011 virtual const MCExpr *
3012 getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
3013 unsigned JTI, MCContext &Ctx) const;
3015 /// Return true if folding a constant offset with the given GlobalAddress is
3016 /// legal. It is frequently not legal in PIC relocation models.
3017 virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
3019 bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
3020 SDValue &Chain) const;
3022 void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS,
3023 SDValue &NewRHS, ISD::CondCode &CCCode,
3024 const SDLoc &DL, const SDValue OldLHS,
3025 const SDValue OldRHS) const;
3027 /// Returns a pair of (return value, chain).
3028 /// It is an error to pass RTLIB::UNKNOWN_LIBCALL as \p LC.
3029 std::pair<SDValue, SDValue> makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC,
3030 EVT RetVT, ArrayRef<SDValue> Ops,
3031 MakeLibCallOptions CallOptions,
3032 const SDLoc &dl) const;
3034 /// Check whether parameters to a call that are passed in callee saved
3035 /// registers are the same as from the calling function. This needs to be
3036 /// checked for tail call eligibility.
3037 bool parametersInCSRMatch(const MachineRegisterInfo &MRI,
3038 const uint32_t *CallerPreservedMask,
3039 const SmallVectorImpl<CCValAssign> &ArgLocs,
3040 const SmallVectorImpl<SDValue> &OutVals) const;
3042 //===--------------------------------------------------------------------===//
3043 // TargetLowering Optimization Methods
3046 /// A convenience struct that encapsulates a DAG, and two SDValues for
3047 /// returning information from TargetLowering to its clients that want to
3048 /// combine.
3049 struct TargetLoweringOpt {
3050 SelectionDAG &DAG;
3051 bool LegalTys;
3052 bool LegalOps;
3053 SDValue Old;
3054 SDValue New;
3056 explicit TargetLoweringOpt(SelectionDAG &InDAG,
3057 bool LT, bool LO) :
3058 DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
3060 bool LegalTypes() const { return LegalTys; }
3061 bool LegalOperations() const { return LegalOps; }
3063 bool CombineTo(SDValue O, SDValue N) {
3064 Old = O;
3065 New = N;
3066 return true;
3070 /// Determines the optimal series of memory ops to replace the memset / memcpy.
3071 /// Return true if the number of memory ops is below the threshold (Limit).
3072 /// It returns the types of the sequence of memory ops to perform
3073 /// memset / memcpy by reference.
3074 bool findOptimalMemOpLowering(std::vector<EVT> &MemOps,
3075 unsigned Limit, uint64_t Size,
3076 unsigned DstAlign, unsigned SrcAlign,
3077 bool IsMemset,
3078 bool ZeroMemset,
3079 bool MemcpyStrSrc,
3080 bool AllowOverlap,
3081 unsigned DstAS, unsigned SrcAS,
3082 const AttributeList &FuncAttributes) const;
3084 /// Check to see if the specified operand of the specified instruction is a
3085 /// constant integer. If so, check to see if there are any bits set in the
3086 /// constant that are not demanded. If so, shrink the constant and return
3087 /// true.
3088 bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
3089 TargetLoweringOpt &TLO) const;
3091 // Target hook to do target-specific const optimization, which is called by
3092 // ShrinkDemandedConstant. This function should return true if the target
3093 // doesn't want ShrinkDemandedConstant to further optimize the constant.
3094 virtual bool targetShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
3095 TargetLoweringOpt &TLO) const {
3096 return false;
3099 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. This
3100 /// uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
3101 /// generalized for targets with other types of implicit widening casts.
3102 bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
3103 TargetLoweringOpt &TLO) const;
3105 /// Look at Op. At this point, we know that only the DemandedBits bits of the
3106 /// result of Op are ever used downstream. If we can use this information to
3107 /// simplify Op, create a new simplified DAG node and return true, returning
3108 /// the original and new nodes in Old and New. Otherwise, analyze the
3109 /// expression and return a mask of KnownOne and KnownZero bits for the
3110 /// expression (used to simplify the caller). The KnownZero/One bits may only
3111 /// be accurate for those bits in the Demanded masks.
3112 /// \p AssumeSingleUse When this parameter is true, this function will
3113 /// attempt to simplify \p Op even if there are multiple uses.
3114 /// Callers are responsible for correctly updating the DAG based on the
3115 /// results of this function, because simply replacing replacing TLO.Old
3116 /// with TLO.New will be incorrect when this parameter is true and TLO.Old
3117 /// has multiple uses.
3118 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
3119 const APInt &DemandedElts, KnownBits &Known,
3120 TargetLoweringOpt &TLO, unsigned Depth = 0,
3121 bool AssumeSingleUse = false) const;
3123 /// Helper wrapper around SimplifyDemandedBits, demanding all elements.
3124 /// Adds Op back to the worklist upon success.
3125 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
3126 KnownBits &Known, TargetLoweringOpt &TLO,
3127 unsigned Depth = 0,
3128 bool AssumeSingleUse = false) const;
3130 /// Helper wrapper around SimplifyDemandedBits.
3131 /// Adds Op back to the worklist upon success.
3132 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
3133 DAGCombinerInfo &DCI) const;
3135 /// More limited version of SimplifyDemandedBits that can be used to "look
3136 /// through" ops that don't contribute to the DemandedBits/DemandedElts -
3137 /// bitwise ops etc.
3138 SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits,
3139 const APInt &DemandedElts,
3140 SelectionDAG &DAG,
3141 unsigned Depth) const;
3143 /// Look at Vector Op. At this point, we know that only the DemandedElts
3144 /// elements of the result of Op are ever used downstream. If we can use
3145 /// this information to simplify Op, create a new simplified DAG node and
3146 /// return true, storing the original and new nodes in TLO.
3147 /// Otherwise, analyze the expression and return a mask of KnownUndef and
3148 /// KnownZero elements for the expression (used to simplify the caller).
3149 /// The KnownUndef/Zero elements may only be accurate for those bits
3150 /// in the DemandedMask.
3151 /// \p AssumeSingleUse When this parameter is true, this function will
3152 /// attempt to simplify \p Op even if there are multiple uses.
3153 /// Callers are responsible for correctly updating the DAG based on the
3154 /// results of this function, because simply replacing replacing TLO.Old
3155 /// with TLO.New will be incorrect when this parameter is true and TLO.Old
3156 /// has multiple uses.
3157 bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask,
3158 APInt &KnownUndef, APInt &KnownZero,
3159 TargetLoweringOpt &TLO, unsigned Depth = 0,
3160 bool AssumeSingleUse = false) const;
3162 /// Helper wrapper around SimplifyDemandedVectorElts.
3163 /// Adds Op back to the worklist upon success.
3164 bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts,
3165 APInt &KnownUndef, APInt &KnownZero,
3166 DAGCombinerInfo &DCI) const;
3168 /// Determine which of the bits specified in Mask are known to be either zero
3169 /// or one and return them in the KnownZero/KnownOne bitsets. The DemandedElts
3170 /// argument allows us to only collect the known bits that are shared by the
3171 /// requested vector elements.
3172 virtual void computeKnownBitsForTargetNode(const SDValue Op,
3173 KnownBits &Known,
3174 const APInt &DemandedElts,
3175 const SelectionDAG &DAG,
3176 unsigned Depth = 0) const;
3177 /// Determine which of the bits specified in Mask are known to be either zero
3178 /// or one and return them in the KnownZero/KnownOne bitsets. The DemandedElts
3179 /// argument allows us to only collect the known bits that are shared by the
3180 /// requested vector elements. This is for GISel.
3181 virtual void computeKnownBitsForTargetInstr(GISelKnownBits &Analysis,
3182 Register R, KnownBits &Known,
3183 const APInt &DemandedElts,
3184 const MachineRegisterInfo &MRI,
3185 unsigned Depth = 0) const;
3187 /// Determine which of the bits of FrameIndex \p FIOp are known to be 0.
3188 /// Default implementation computes low bits based on alignment
3189 /// information. This should preserve known bits passed into it.
3190 virtual void computeKnownBitsForFrameIndex(const SDValue FIOp,
3191 KnownBits &Known,
3192 const APInt &DemandedElts,
3193 const SelectionDAG &DAG,
3194 unsigned Depth = 0) const;
3196 /// This method can be implemented by targets that want to expose additional
3197 /// information about sign bits to the DAG Combiner. The DemandedElts
3198 /// argument allows us to only collect the minimum sign bits that are shared
3199 /// by the requested vector elements.
3200 virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
3201 const APInt &DemandedElts,
3202 const SelectionDAG &DAG,
3203 unsigned Depth = 0) const;
3205 /// Attempt to simplify any target nodes based on the demanded vector
3206 /// elements, returning true on success. Otherwise, analyze the expression and
3207 /// return a mask of KnownUndef and KnownZero elements for the expression
3208 /// (used to simplify the caller). The KnownUndef/Zero elements may only be
3209 /// accurate for those bits in the DemandedMask.
3210 virtual bool SimplifyDemandedVectorEltsForTargetNode(
3211 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef,
3212 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth = 0) const;
3214 /// Attempt to simplify any target nodes based on the demanded bits/elts,
3215 /// returning true on success. Otherwise, analyze the
3216 /// expression and return a mask of KnownOne and KnownZero bits for the
3217 /// expression (used to simplify the caller). The KnownZero/One bits may only
3218 /// be accurate for those bits in the Demanded masks.
3219 virtual bool SimplifyDemandedBitsForTargetNode(SDValue Op,
3220 const APInt &DemandedBits,
3221 const APInt &DemandedElts,
3222 KnownBits &Known,
3223 TargetLoweringOpt &TLO,
3224 unsigned Depth = 0) const;
3226 /// More limited version of SimplifyDemandedBits that can be used to "look
3227 /// through" ops that don't contribute to the DemandedBits/DemandedElts -
3228 /// bitwise ops etc.
3229 virtual SDValue SimplifyMultipleUseDemandedBitsForTargetNode(
3230 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3231 SelectionDAG &DAG, unsigned Depth) const;
3233 /// Tries to build a legal vector shuffle using the provided parameters
3234 /// or equivalent variations. The Mask argument maybe be modified as the
3235 /// function tries different variations.
3236 /// Returns an empty SDValue if the operation fails.
3237 SDValue buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3238 SDValue N1, MutableArrayRef<int> Mask,
3239 SelectionDAG &DAG) const;
3241 /// This method returns the constant pool value that will be loaded by LD.
3242 /// NOTE: You must check for implicit extensions of the constant by LD.
3243 virtual const Constant *getTargetConstantFromLoad(LoadSDNode *LD) const;
3245 /// If \p SNaN is false, \returns true if \p Op is known to never be any
3246 /// NaN. If \p sNaN is true, returns if \p Op is known to never be a signaling
3247 /// NaN.
3248 virtual bool isKnownNeverNaNForTargetNode(SDValue Op,
3249 const SelectionDAG &DAG,
3250 bool SNaN = false,
3251 unsigned Depth = 0) const;
3252 struct DAGCombinerInfo {
3253 void *DC; // The DAG Combiner object.
3254 CombineLevel Level;
3255 bool CalledByLegalizer;
3257 public:
3258 SelectionDAG &DAG;
3260 DAGCombinerInfo(SelectionDAG &dag, CombineLevel level, bool cl, void *dc)
3261 : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}
3263 bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; }
3264 bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; }
3265 bool isAfterLegalizeDAG() const {
3266 return Level == AfterLegalizeDAG;
3268 CombineLevel getDAGCombineLevel() { return Level; }
3269 bool isCalledByLegalizer() const { return CalledByLegalizer; }
3271 void AddToWorklist(SDNode *N);
3272 SDValue CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo = true);
3273 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
3274 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
3276 bool recursivelyDeleteUnusedNodes(SDNode *N);
3278 void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
3281 /// Return if the N is a constant or constant vector equal to the true value
3282 /// from getBooleanContents().
3283 bool isConstTrueVal(const SDNode *N) const;
3285 /// Return if the N is a constant or constant vector equal to the false value
3286 /// from getBooleanContents().
3287 bool isConstFalseVal(const SDNode *N) const;
3289 /// Return if \p N is a True value when extended to \p VT.
3290 bool isExtendedTrueVal(const ConstantSDNode *N, EVT VT, bool SExt) const;
3292 /// Try to simplify a setcc built with the specified operands and cc. If it is
3293 /// unable to simplify it, return a null SDValue.
3294 SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
3295 bool foldBooleans, DAGCombinerInfo &DCI,
3296 const SDLoc &dl) const;
3298 // For targets which wrap address, unwrap for analysis.
3299 virtual SDValue unwrapAddress(SDValue N) const { return N; }
3301 /// Returns true (and the GlobalValue and the offset) if the node is a
3302 /// GlobalAddress + offset.
3303 virtual bool
3304 isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
3306 /// This method will be invoked for all target nodes and for any
3307 /// target-independent nodes that the target has registered with invoke it
3308 /// for.
3310 /// The semantics are as follows:
3311 /// Return Value:
3312 /// SDValue.Val == 0 - No change was made
3313 /// SDValue.Val == N - N was replaced, is dead, and is already handled.
3314 /// otherwise - N should be replaced by the returned Operand.
3316 /// In addition, methods provided by DAGCombinerInfo may be used to perform
3317 /// more complex transformations.
3319 virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
3321 /// Return true if it is profitable to move this shift by a constant amount
3322 /// though its operand, adjusting any immediate operands as necessary to
3323 /// preserve semantics. This transformation may not be desirable if it
3324 /// disrupts a particularly auspicious target-specific tree (e.g. bitfield
3325 /// extraction in AArch64). By default, it returns true.
3327 /// @param N the shift node
3328 /// @param Level the current DAGCombine legalization level.
3329 virtual bool isDesirableToCommuteWithShift(const SDNode *N,
3330 CombineLevel Level) const {
3331 return true;
3334 // Return true if it is profitable to combine a BUILD_VECTOR with a stride-pattern
3335 // to a shuffle and a truncate.
3336 // Example of such a combine:
3337 // v4i32 build_vector((extract_elt V, 1),
3338 // (extract_elt V, 3),
3339 // (extract_elt V, 5),
3340 // (extract_elt V, 7))
3341 // -->
3342 // v4i32 truncate (bitcast (shuffle<1,u,3,u,5,u,7,u> V, u) to v4i64)
3343 virtual bool isDesirableToCombineBuildVectorToShuffleTruncate(
3344 ArrayRef<int> ShuffleMask, EVT SrcVT, EVT TruncVT) const {
3345 return false;
3348 /// Return true if the target has native support for the specified value type
3349 /// and it is 'desirable' to use the type for the given node type. e.g. On x86
3350 /// i16 is legal, but undesirable since i16 instruction encodings are longer
3351 /// and some i16 instructions are slow.
3352 virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
3353 // By default, assume all legal types are desirable.
3354 return isTypeLegal(VT);
3357 /// Return true if it is profitable for dag combiner to transform a floating
3358 /// point op of specified opcode to a equivalent op of an integer
3359 /// type. e.g. f32 load -> i32 load can be profitable on ARM.
3360 virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
3361 EVT /*VT*/) const {
3362 return false;
3365 /// This method query the target whether it is beneficial for dag combiner to
3366 /// promote the specified node. If true, it should return the desired
3367 /// promotion type by reference.
3368 virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
3369 return false;
3372 /// Return true if the target supports swifterror attribute. It optimizes
3373 /// loads and stores to reading and writing a specific register.
3374 virtual bool supportSwiftError() const {
3375 return false;
3378 /// Return true if the target supports that a subset of CSRs for the given
3379 /// machine function is handled explicitly via copies.
3380 virtual bool supportSplitCSR(MachineFunction *MF) const {
3381 return false;
3384 /// Perform necessary initialization to handle a subset of CSRs explicitly
3385 /// via copies. This function is called at the beginning of instruction
3386 /// selection.
3387 virtual void initializeSplitCSR(MachineBasicBlock *Entry) const {
3388 llvm_unreachable("Not Implemented");
3391 /// Insert explicit copies in entry and exit blocks. We copy a subset of
3392 /// CSRs to virtual registers in the entry block, and copy them back to
3393 /// physical registers in the exit blocks. This function is called at the end
3394 /// of instruction selection.
3395 virtual void insertCopiesSplitCSR(
3396 MachineBasicBlock *Entry,
3397 const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
3398 llvm_unreachable("Not Implemented");
3401 /// Return 1 if we can compute the negated form of the specified expression
3402 /// for the same cost as the expression itself, or 2 if we can compute the
3403 /// negated form more cheaply than the expression itself. Else return 0.
3404 virtual char isNegatibleForFree(SDValue Op, SelectionDAG &DAG,
3405 bool LegalOperations, bool ForCodeSize,
3406 unsigned Depth = 0) const;
3408 /// If isNegatibleForFree returns true, return the newly negated expression.
3409 virtual SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG,
3410 bool LegalOperations, bool ForCodeSize,
3411 unsigned Depth = 0) const;
3413 //===--------------------------------------------------------------------===//
3414 // Lowering methods - These methods must be implemented by targets so that
3415 // the SelectionDAGBuilder code knows how to lower these.
3418 /// This hook must be implemented to lower the incoming (formal) arguments,
3419 /// described by the Ins array, into the specified DAG. The implementation
3420 /// should fill in the InVals array with legal-type argument values, and
3421 /// return the resulting token chain value.
3422 virtual SDValue LowerFormalArguments(
3423 SDValue /*Chain*/, CallingConv::ID /*CallConv*/, bool /*isVarArg*/,
3424 const SmallVectorImpl<ISD::InputArg> & /*Ins*/, const SDLoc & /*dl*/,
3425 SelectionDAG & /*DAG*/, SmallVectorImpl<SDValue> & /*InVals*/) const {
3426 llvm_unreachable("Not Implemented");
3429 /// This structure contains all information that is necessary for lowering
3430 /// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder
3431 /// needs to lower a call, and targets will see this struct in their LowerCall
3432 /// implementation.
3433 struct CallLoweringInfo {
3434 SDValue Chain;
3435 Type *RetTy = nullptr;
3436 bool RetSExt : 1;
3437 bool RetZExt : 1;
3438 bool IsVarArg : 1;
3439 bool IsInReg : 1;
3440 bool DoesNotReturn : 1;
3441 bool IsReturnValueUsed : 1;
3442 bool IsConvergent : 1;
3443 bool IsPatchPoint : 1;
3445 // IsTailCall should be modified by implementations of
3446 // TargetLowering::LowerCall that perform tail call conversions.
3447 bool IsTailCall = false;
3449 // Is Call lowering done post SelectionDAG type legalization.
3450 bool IsPostTypeLegalization = false;
3452 unsigned NumFixedArgs = -1;
3453 CallingConv::ID CallConv = CallingConv::C;
3454 SDValue Callee;
3455 ArgListTy Args;
3456 SelectionDAG &DAG;
3457 SDLoc DL;
3458 ImmutableCallSite CS;
3459 SmallVector<ISD::OutputArg, 32> Outs;
3460 SmallVector<SDValue, 32> OutVals;
3461 SmallVector<ISD::InputArg, 32> Ins;
3462 SmallVector<SDValue, 4> InVals;
3464 CallLoweringInfo(SelectionDAG &DAG)
3465 : RetSExt(false), RetZExt(false), IsVarArg(false), IsInReg(false),
3466 DoesNotReturn(false), IsReturnValueUsed(true), IsConvergent(false),
3467 IsPatchPoint(false), DAG(DAG) {}
3469 CallLoweringInfo &setDebugLoc(const SDLoc &dl) {
3470 DL = dl;
3471 return *this;
3474 CallLoweringInfo &setChain(SDValue InChain) {
3475 Chain = InChain;
3476 return *this;
3479 // setCallee with target/module-specific attributes
3480 CallLoweringInfo &setLibCallee(CallingConv::ID CC, Type *ResultType,
3481 SDValue Target, ArgListTy &&ArgsList) {
3482 RetTy = ResultType;
3483 Callee = Target;
3484 CallConv = CC;
3485 NumFixedArgs = ArgsList.size();
3486 Args = std::move(ArgsList);
3488 DAG.getTargetLoweringInfo().markLibCallAttributes(
3489 &(DAG.getMachineFunction()), CC, Args);
3490 return *this;
3493 CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultType,
3494 SDValue Target, ArgListTy &&ArgsList) {
3495 RetTy = ResultType;
3496 Callee = Target;
3497 CallConv = CC;
3498 NumFixedArgs = ArgsList.size();
3499 Args = std::move(ArgsList);
3500 return *this;
3503 CallLoweringInfo &setCallee(Type *ResultType, FunctionType *FTy,
3504 SDValue Target, ArgListTy &&ArgsList,
3505 ImmutableCallSite Call) {
3506 RetTy = ResultType;
3508 IsInReg = Call.hasRetAttr(Attribute::InReg);
3509 DoesNotReturn =
3510 Call.doesNotReturn() ||
3511 (!Call.isInvoke() &&
3512 isa<UnreachableInst>(Call.getInstruction()->getNextNode()));
3513 IsVarArg = FTy->isVarArg();
3514 IsReturnValueUsed = !Call.getInstruction()->use_empty();
3515 RetSExt = Call.hasRetAttr(Attribute::SExt);
3516 RetZExt = Call.hasRetAttr(Attribute::ZExt);
3518 Callee = Target;
3520 CallConv = Call.getCallingConv();
3521 NumFixedArgs = FTy->getNumParams();
3522 Args = std::move(ArgsList);
3524 CS = Call;
3526 return *this;
3529 CallLoweringInfo &setInRegister(bool Value = true) {
3530 IsInReg = Value;
3531 return *this;
3534 CallLoweringInfo &setNoReturn(bool Value = true) {
3535 DoesNotReturn = Value;
3536 return *this;
3539 CallLoweringInfo &setVarArg(bool Value = true) {
3540 IsVarArg = Value;
3541 return *this;
3544 CallLoweringInfo &setTailCall(bool Value = true) {
3545 IsTailCall = Value;
3546 return *this;
3549 CallLoweringInfo &setDiscardResult(bool Value = true) {
3550 IsReturnValueUsed = !Value;
3551 return *this;
3554 CallLoweringInfo &setConvergent(bool Value = true) {
3555 IsConvergent = Value;
3556 return *this;
3559 CallLoweringInfo &setSExtResult(bool Value = true) {
3560 RetSExt = Value;
3561 return *this;
3564 CallLoweringInfo &setZExtResult(bool Value = true) {
3565 RetZExt = Value;
3566 return *this;
3569 CallLoweringInfo &setIsPatchPoint(bool Value = true) {
3570 IsPatchPoint = Value;
3571 return *this;
3574 CallLoweringInfo &setIsPostTypeLegalization(bool Value=true) {
3575 IsPostTypeLegalization = Value;
3576 return *this;
3579 ArgListTy &getArgs() {
3580 return Args;
3584 /// This structure is used to pass arguments to makeLibCall function.
3585 struct MakeLibCallOptions {
3586 // By passing type list before soften to makeLibCall, the target hook
3587 // shouldExtendTypeInLibCall can get the original type before soften.
3588 ArrayRef<EVT> OpsVTBeforeSoften;
3589 EVT RetVTBeforeSoften;
3590 bool IsSExt : 1;
3591 bool DoesNotReturn : 1;
3592 bool IsReturnValueUsed : 1;
3593 bool IsPostTypeLegalization : 1;
3594 bool IsSoften : 1;
3596 MakeLibCallOptions()
3597 : IsSExt(false), DoesNotReturn(false), IsReturnValueUsed(true),
3598 IsPostTypeLegalization(false), IsSoften(false) {}
3600 MakeLibCallOptions &setSExt(bool Value = true) {
3601 IsSExt = Value;
3602 return *this;
3605 MakeLibCallOptions &setNoReturn(bool Value = true) {
3606 DoesNotReturn = Value;
3607 return *this;
3610 MakeLibCallOptions &setDiscardResult(bool Value = true) {
3611 IsReturnValueUsed = !Value;
3612 return *this;
3615 MakeLibCallOptions &setIsPostTypeLegalization(bool Value = true) {
3616 IsPostTypeLegalization = Value;
3617 return *this;
3620 MakeLibCallOptions &setTypeListBeforeSoften(ArrayRef<EVT> OpsVT, EVT RetVT,
3621 bool Value = true) {
3622 OpsVTBeforeSoften = OpsVT;
3623 RetVTBeforeSoften = RetVT;
3624 IsSoften = Value;
3625 return *this;
3629 /// This function lowers an abstract call to a function into an actual call.
3630 /// This returns a pair of operands. The first element is the return value
3631 /// for the function (if RetTy is not VoidTy). The second element is the
3632 /// outgoing token chain. It calls LowerCall to do the actual lowering.
3633 std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
3635 /// This hook must be implemented to lower calls into the specified
3636 /// DAG. The outgoing arguments to the call are described by the Outs array,
3637 /// and the values to be returned by the call are described by the Ins
3638 /// array. The implementation should fill in the InVals array with legal-type
3639 /// return values from the call, and return the resulting token chain value.
3640 virtual SDValue
3641 LowerCall(CallLoweringInfo &/*CLI*/,
3642 SmallVectorImpl<SDValue> &/*InVals*/) const {
3643 llvm_unreachable("Not Implemented");
3646 /// Target-specific cleanup for formal ByVal parameters.
3647 virtual void HandleByVal(CCState *, unsigned &, unsigned) const {}
3649 /// This hook should be implemented to check whether the return values
3650 /// described by the Outs array can fit into the return registers. If false
3651 /// is returned, an sret-demotion is performed.
3652 virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
3653 MachineFunction &/*MF*/, bool /*isVarArg*/,
3654 const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
3655 LLVMContext &/*Context*/) const
3657 // Return true by default to get preexisting behavior.
3658 return true;
3661 /// This hook must be implemented to lower outgoing return values, described
3662 /// by the Outs array, into the specified DAG. The implementation should
3663 /// return the resulting token chain value.
3664 virtual SDValue LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
3665 bool /*isVarArg*/,
3666 const SmallVectorImpl<ISD::OutputArg> & /*Outs*/,
3667 const SmallVectorImpl<SDValue> & /*OutVals*/,
3668 const SDLoc & /*dl*/,
3669 SelectionDAG & /*DAG*/) const {
3670 llvm_unreachable("Not Implemented");
3673 /// Return true if result of the specified node is used by a return node
3674 /// only. It also compute and return the input chain for the tail call.
3676 /// This is used to determine whether it is possible to codegen a libcall as
3677 /// tail call at legalization time.
3678 virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const {
3679 return false;
3682 /// Return true if the target may be able emit the call instruction as a tail
3683 /// call. This is used by optimization passes to determine if it's profitable
3684 /// to duplicate return instructions to enable tailcall optimization.
3685 virtual bool mayBeEmittedAsTailCall(const CallInst *) const {
3686 return false;
3689 /// Return the builtin name for the __builtin___clear_cache intrinsic
3690 /// Default is to invoke the clear cache library call
3691 virtual const char * getClearCacheBuiltinName() const {
3692 return "__clear_cache";
3695 /// Return the register ID of the name passed in. Used by named register
3696 /// global variables extension. There is no target-independent behaviour
3697 /// so the default action is to bail.
3698 virtual Register getRegisterByName(const char* RegName, EVT VT,
3699 const MachineFunction &MF) const {
3700 report_fatal_error("Named registers not implemented for this target");
3703 /// Return the type that should be used to zero or sign extend a
3704 /// zeroext/signext integer return value. FIXME: Some C calling conventions
3705 /// require the return type to be promoted, but this is not true all the time,
3706 /// e.g. i1/i8/i16 on x86/x86_64. It is also not necessary for non-C calling
3707 /// conventions. The frontend should handle this and include all of the
3708 /// necessary information.
3709 virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT,
3710 ISD::NodeType /*ExtendKind*/) const {
3711 EVT MinVT = getRegisterType(Context, MVT::i32);
3712 return VT.bitsLT(MinVT) ? MinVT : VT;
3715 /// For some targets, an LLVM struct type must be broken down into multiple
3716 /// simple types, but the calling convention specifies that the entire struct
3717 /// must be passed in a block of consecutive registers.
3718 virtual bool
3719 functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv,
3720 bool isVarArg) const {
3721 return false;
3724 /// For most targets, an LLVM type must be broken down into multiple
3725 /// smaller types. Usually the halves are ordered according to the endianness
3726 /// but for some platform that would break. So this method will default to
3727 /// matching the endianness but can be overridden.
3728 virtual bool
3729 shouldSplitFunctionArgumentsAsLittleEndian(const DataLayout &DL) const {
3730 return DL.isLittleEndian();
3733 /// Returns a 0 terminated array of registers that can be safely used as
3734 /// scratch registers.
3735 virtual const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const {
3736 return nullptr;
3739 /// This callback is used to prepare for a volatile or atomic load.
3740 /// It takes a chain node as input and returns the chain for the load itself.
3742 /// Having a callback like this is necessary for targets like SystemZ,
3743 /// which allows a CPU to reuse the result of a previous load indefinitely,
3744 /// even if a cache-coherent store is performed by another CPU. The default
3745 /// implementation does nothing.
3746 virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, const SDLoc &DL,
3747 SelectionDAG &DAG) const {
3748 return Chain;
3751 /// This callback is used to inspect load/store instructions and add
3752 /// target-specific MachineMemOperand flags to them. The default
3753 /// implementation does nothing.
3754 virtual MachineMemOperand::Flags getMMOFlags(const Instruction &I) const {
3755 return MachineMemOperand::MONone;
3758 /// Should SelectionDAG lower an atomic store of the given kind as a normal
3759 /// StoreSDNode (as opposed to an AtomicSDNode)? NOTE: The intention is to
3760 /// eventually migrate all targets to the using StoreSDNodes, but porting is
3761 /// being done target at a time.
3762 virtual bool lowerAtomicStoreAsStoreSDNode(const StoreInst &SI) const {
3763 assert(SI.isAtomic() && "violated precondition");
3764 return false;
3767 /// Should SelectionDAG lower an atomic load of the given kind as a normal
3768 /// LoadSDNode (as opposed to an AtomicSDNode)? NOTE: The intention is to
3769 /// eventually migrate all targets to the using LoadSDNodes, but porting is
3770 /// being done target at a time.
3771 virtual bool lowerAtomicLoadAsLoadSDNode(const LoadInst &LI) const {
3772 assert(LI.isAtomic() && "violated precondition");
3773 return false;
3777 /// This callback is invoked by the type legalizer to legalize nodes with an
3778 /// illegal operand type but legal result types. It replaces the
3779 /// LowerOperation callback in the type Legalizer. The reason we can not do
3780 /// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to
3781 /// use this callback.
3783 /// TODO: Consider merging with ReplaceNodeResults.
3785 /// The target places new result values for the node in Results (their number
3786 /// and types must exactly match those of the original return values of
3787 /// the node), or leaves Results empty, which indicates that the node is not
3788 /// to be custom lowered after all.
3789 /// The default implementation calls LowerOperation.
3790 virtual void LowerOperationWrapper(SDNode *N,
3791 SmallVectorImpl<SDValue> &Results,
3792 SelectionDAG &DAG) const;
3794 /// This callback is invoked for operations that are unsupported by the
3795 /// target, which are registered to use 'custom' lowering, and whose defined
3796 /// values are all legal. If the target has no operations that require custom
3797 /// lowering, it need not implement this. The default implementation of this
3798 /// aborts.
3799 virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
3801 /// This callback is invoked when a node result type is illegal for the
3802 /// target, and the operation was registered to use 'custom' lowering for that
3803 /// result type. The target places new result values for the node in Results
3804 /// (their number and types must exactly match those of the original return
3805 /// values of the node), or leaves Results empty, which indicates that the
3806 /// node is not to be custom lowered after all.
3808 /// If the target has no operations that require custom lowering, it need not
3809 /// implement this. The default implementation aborts.
3810 virtual void ReplaceNodeResults(SDNode * /*N*/,
3811 SmallVectorImpl<SDValue> &/*Results*/,
3812 SelectionDAG &/*DAG*/) const {
3813 llvm_unreachable("ReplaceNodeResults not implemented for this target!");
3816 /// This method returns the name of a target specific DAG node.
3817 virtual const char *getTargetNodeName(unsigned Opcode) const;
3819 /// This method returns a target specific FastISel object, or null if the
3820 /// target does not support "fast" ISel.
3821 virtual FastISel *createFastISel(FunctionLoweringInfo &,
3822 const TargetLibraryInfo *) const {
3823 return nullptr;
3826 bool verifyReturnAddressArgumentIsConstant(SDValue Op,
3827 SelectionDAG &DAG) const;
3829 //===--------------------------------------------------------------------===//
3830 // Inline Asm Support hooks
3833 /// This hook allows the target to expand an inline asm call to be explicit
3834 /// llvm code if it wants to. This is useful for turning simple inline asms
3835 /// into LLVM intrinsics, which gives the compiler more information about the
3836 /// behavior of the code.
3837 virtual bool ExpandInlineAsm(CallInst *) const {
3838 return false;
3841 enum ConstraintType {
3842 C_Register, // Constraint represents specific register(s).
3843 C_RegisterClass, // Constraint represents any of register(s) in class.
3844 C_Memory, // Memory constraint.
3845 C_Immediate, // Requires an immediate.
3846 C_Other, // Something else.
3847 C_Unknown // Unsupported constraint.
3850 enum ConstraintWeight {
3851 // Generic weights.
3852 CW_Invalid = -1, // No match.
3853 CW_Okay = 0, // Acceptable.
3854 CW_Good = 1, // Good weight.
3855 CW_Better = 2, // Better weight.
3856 CW_Best = 3, // Best weight.
3858 // Well-known weights.
3859 CW_SpecificReg = CW_Okay, // Specific register operands.
3860 CW_Register = CW_Good, // Register operands.
3861 CW_Memory = CW_Better, // Memory operands.
3862 CW_Constant = CW_Best, // Constant operand.
3863 CW_Default = CW_Okay // Default or don't know type.
3866 /// This contains information for each constraint that we are lowering.
3867 struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
3868 /// This contains the actual string for the code, like "m". TargetLowering
3869 /// picks the 'best' code from ConstraintInfo::Codes that most closely
3870 /// matches the operand.
3871 std::string ConstraintCode;
3873 /// Information about the constraint code, e.g. Register, RegisterClass,
3874 /// Memory, Other, Unknown.
3875 TargetLowering::ConstraintType ConstraintType = TargetLowering::C_Unknown;
3877 /// If this is the result output operand or a clobber, this is null,
3878 /// otherwise it is the incoming operand to the CallInst. This gets
3879 /// modified as the asm is processed.
3880 Value *CallOperandVal = nullptr;
3882 /// The ValueType for the operand value.
3883 MVT ConstraintVT = MVT::Other;
3885 /// Copy constructor for copying from a ConstraintInfo.
3886 AsmOperandInfo(InlineAsm::ConstraintInfo Info)
3887 : InlineAsm::ConstraintInfo(std::move(Info)) {}
3889 /// Return true of this is an input operand that is a matching constraint
3890 /// like "4".
3891 bool isMatchingInputConstraint() const;
3893 /// If this is an input matching constraint, this method returns the output
3894 /// operand it matches.
3895 unsigned getMatchedOperand() const;
3898 using AsmOperandInfoVector = std::vector<AsmOperandInfo>;
3900 /// Split up the constraint string from the inline assembly value into the
3901 /// specific constraints and their prefixes, and also tie in the associated
3902 /// operand values. If this returns an empty vector, and if the constraint
3903 /// string itself isn't empty, there was an error parsing.
3904 virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL,
3905 const TargetRegisterInfo *TRI,
3906 ImmutableCallSite CS) const;
3908 /// Examine constraint type and operand type and determine a weight value.
3909 /// The operand object must already have been set up with the operand type.
3910 virtual ConstraintWeight getMultipleConstraintMatchWeight(
3911 AsmOperandInfo &info, int maIndex) const;
3913 /// Examine constraint string and operand type and determine a weight value.
3914 /// The operand object must already have been set up with the operand type.
3915 virtual ConstraintWeight getSingleConstraintMatchWeight(
3916 AsmOperandInfo &info, const char *constraint) const;
3918 /// Determines the constraint code and constraint type to use for the specific
3919 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
3920 /// If the actual operand being passed in is available, it can be passed in as
3921 /// Op, otherwise an empty SDValue can be passed.
3922 virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
3923 SDValue Op,
3924 SelectionDAG *DAG = nullptr) const;
3926 /// Given a constraint, return the type of constraint it is for this target.
3927 virtual ConstraintType getConstraintType(StringRef Constraint) const;
3929 /// Given a physical register constraint (e.g. {edx}), return the register
3930 /// number and the register class for the register.
3932 /// Given a register class constraint, like 'r', if this corresponds directly
3933 /// to an LLVM register class, return a register of 0 and the register class
3934 /// pointer.
3936 /// This should only be used for C_Register constraints. On error, this
3937 /// returns a register number of 0 and a null register class pointer.
3938 virtual std::pair<unsigned, const TargetRegisterClass *>
3939 getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
3940 StringRef Constraint, MVT VT) const;
3942 virtual unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const {
3943 if (ConstraintCode == "i")
3944 return InlineAsm::Constraint_i;
3945 else if (ConstraintCode == "m")
3946 return InlineAsm::Constraint_m;
3947 return InlineAsm::Constraint_Unknown;
3950 /// Try to replace an X constraint, which matches anything, with another that
3951 /// has more specific requirements based on the type of the corresponding
3952 /// operand. This returns null if there is no replacement to make.
3953 virtual const char *LowerXConstraint(EVT ConstraintVT) const;
3955 /// Lower the specified operand into the Ops vector. If it is invalid, don't
3956 /// add anything to Ops.
3957 virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
3958 std::vector<SDValue> &Ops,
3959 SelectionDAG &DAG) const;
3961 // Lower custom output constraints. If invalid, return SDValue().
3962 virtual SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Flag,
3963 SDLoc DL,
3964 const AsmOperandInfo &OpInfo,
3965 SelectionDAG &DAG) const;
3967 //===--------------------------------------------------------------------===//
3968 // Div utility functions
3970 SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
3971 SmallVectorImpl<SDNode *> &Created) const;
3972 SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
3973 SmallVectorImpl<SDNode *> &Created) const;
3975 /// Targets may override this function to provide custom SDIV lowering for
3976 /// power-of-2 denominators. If the target returns an empty SDValue, LLVM
3977 /// assumes SDIV is expensive and replaces it with a series of other integer
3978 /// operations.
3979 virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor,
3980 SelectionDAG &DAG,
3981 SmallVectorImpl<SDNode *> &Created) const;
3983 /// Indicate whether this target prefers to combine FDIVs with the same
3984 /// divisor. If the transform should never be done, return zero. If the
3985 /// transform should be done, return the minimum number of divisor uses
3986 /// that must exist.
3987 virtual unsigned combineRepeatedFPDivisors() const {
3988 return 0;
3991 /// Hooks for building estimates in place of slower divisions and square
3992 /// roots.
3994 /// Return either a square root or its reciprocal estimate value for the input
3995 /// operand.
3996 /// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or
3997 /// 'Enabled' as set by a potential default override attribute.
3998 /// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson
3999 /// refinement iterations required to generate a sufficient (though not
4000 /// necessarily IEEE-754 compliant) estimate is returned in that parameter.
4001 /// The boolean UseOneConstNR output is used to select a Newton-Raphson
4002 /// algorithm implementation that uses either one or two constants.
4003 /// The boolean Reciprocal is used to select whether the estimate is for the
4004 /// square root of the input operand or the reciprocal of its square root.
4005 /// A target may choose to implement its own refinement within this function.
4006 /// If that's true, then return '0' as the number of RefinementSteps to avoid
4007 /// any further refinement of the estimate.
4008 /// An empty SDValue return means no estimate sequence can be created.
4009 virtual SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
4010 int Enabled, int &RefinementSteps,
4011 bool &UseOneConstNR, bool Reciprocal) const {
4012 return SDValue();
4015 /// Return a reciprocal estimate value for the input operand.
4016 /// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or
4017 /// 'Enabled' as set by a potential default override attribute.
4018 /// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson
4019 /// refinement iterations required to generate a sufficient (though not
4020 /// necessarily IEEE-754 compliant) estimate is returned in that parameter.
4021 /// A target may choose to implement its own refinement within this function.
4022 /// If that's true, then return '0' as the number of RefinementSteps to avoid
4023 /// any further refinement of the estimate.
4024 /// An empty SDValue return means no estimate sequence can be created.
4025 virtual SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
4026 int Enabled, int &RefinementSteps) const {
4027 return SDValue();
4030 //===--------------------------------------------------------------------===//
4031 // Legalization utility functions
4034 /// Expand a MUL or [US]MUL_LOHI of n-bit values into two or four nodes,
4035 /// respectively, each computing an n/2-bit part of the result.
4036 /// \param Result A vector that will be filled with the parts of the result
4037 /// in little-endian order.
4038 /// \param LL Low bits of the LHS of the MUL. You can use this parameter
4039 /// if you want to control how low bits are extracted from the LHS.
4040 /// \param LH High bits of the LHS of the MUL. See LL for meaning.
4041 /// \param RL Low bits of the RHS of the MUL. See LL for meaning
4042 /// \param RH High bits of the RHS of the MUL. See LL for meaning.
4043 /// \returns true if the node has been expanded, false if it has not
4044 bool expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, SDValue LHS,
4045 SDValue RHS, SmallVectorImpl<SDValue> &Result, EVT HiLoVT,
4046 SelectionDAG &DAG, MulExpansionKind Kind,
4047 SDValue LL = SDValue(), SDValue LH = SDValue(),
4048 SDValue RL = SDValue(), SDValue RH = SDValue()) const;
4050 /// Expand a MUL into two nodes. One that computes the high bits of
4051 /// the result and one that computes the low bits.
4052 /// \param HiLoVT The value type to use for the Lo and Hi nodes.
4053 /// \param LL Low bits of the LHS of the MUL. You can use this parameter
4054 /// if you want to control how low bits are extracted from the LHS.
4055 /// \param LH High bits of the LHS of the MUL. See LL for meaning.
4056 /// \param RL Low bits of the RHS of the MUL. See LL for meaning
4057 /// \param RH High bits of the RHS of the MUL. See LL for meaning.
4058 /// \returns true if the node has been expanded. false if it has not
4059 bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
4060 SelectionDAG &DAG, MulExpansionKind Kind,
4061 SDValue LL = SDValue(), SDValue LH = SDValue(),
4062 SDValue RL = SDValue(), SDValue RH = SDValue()) const;
4064 /// Expand funnel shift.
4065 /// \param N Node to expand
4066 /// \param Result output after conversion
4067 /// \returns True, if the expansion was successful, false otherwise
4068 bool expandFunnelShift(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
4070 /// Expand rotations.
4071 /// \param N Node to expand
4072 /// \param Result output after conversion
4073 /// \returns True, if the expansion was successful, false otherwise
4074 bool expandROT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
4076 /// Expand float(f32) to SINT(i64) conversion
4077 /// \param N Node to expand
4078 /// \param Result output after conversion
4079 /// \returns True, if the expansion was successful, false otherwise
4080 bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
4082 /// Expand float to UINT conversion
4083 /// \param N Node to expand
4084 /// \param Result output after conversion
4085 /// \returns True, if the expansion was successful, false otherwise
4086 bool expandFP_TO_UINT(SDNode *N, SDValue &Result, SDValue &Chain, SelectionDAG &DAG) const;
4088 /// Expand UINT(i64) to double(f64) conversion
4089 /// \param N Node to expand
4090 /// \param Result output after conversion
4091 /// \returns True, if the expansion was successful, false otherwise
4092 bool expandUINT_TO_FP(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
4094 /// Expand fminnum/fmaxnum into fminnum_ieee/fmaxnum_ieee with quieted inputs.
4095 SDValue expandFMINNUM_FMAXNUM(SDNode *N, SelectionDAG &DAG) const;
4097 /// Expand CTPOP nodes. Expands vector/scalar CTPOP nodes,
4098 /// vector nodes can only succeed if all operations are legal/custom.
4099 /// \param N Node to expand
4100 /// \param Result output after conversion
4101 /// \returns True, if the expansion was successful, false otherwise
4102 bool expandCTPOP(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
4104 /// Expand CTLZ/CTLZ_ZERO_UNDEF nodes. Expands vector/scalar CTLZ nodes,
4105 /// vector nodes can only succeed if all operations are legal/custom.
4106 /// \param N Node to expand
4107 /// \param Result output after conversion
4108 /// \returns True, if the expansion was successful, false otherwise
4109 bool expandCTLZ(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
4111 /// Expand CTTZ/CTTZ_ZERO_UNDEF nodes. Expands vector/scalar CTTZ nodes,
4112 /// vector nodes can only succeed if all operations are legal/custom.
4113 /// \param N Node to expand
4114 /// \param Result output after conversion
4115 /// \returns True, if the expansion was successful, false otherwise
4116 bool expandCTTZ(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
4118 /// Expand ABS nodes. Expands vector/scalar ABS nodes,
4119 /// vector nodes can only succeed if all operations are legal/custom.
4120 /// (ABS x) -> (XOR (ADD x, (SRA x, type_size)), (SRA x, type_size))
4121 /// \param N Node to expand
4122 /// \param Result output after conversion
4123 /// \returns True, if the expansion was successful, false otherwise
4124 bool expandABS(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
4126 /// Turn load of vector type into a load of the individual elements.
4127 /// \param LD load to expand
4128 /// \returns MERGE_VALUEs of the scalar loads with their chains.
4129 SDValue scalarizeVectorLoad(LoadSDNode *LD, SelectionDAG &DAG) const;
4131 // Turn a store of a vector type into stores of the individual elements.
4132 /// \param ST Store with a vector value type
4133 /// \returns MERGE_VALUs of the individual store chains.
4134 SDValue scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const;
4136 /// Expands an unaligned load to 2 half-size loads for an integer, and
4137 /// possibly more for vectors.
4138 std::pair<SDValue, SDValue> expandUnalignedLoad(LoadSDNode *LD,
4139 SelectionDAG &DAG) const;
4141 /// Expands an unaligned store to 2 half-size stores for integer values, and
4142 /// possibly more for vectors.
4143 SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const;
4145 /// Increments memory address \p Addr according to the type of the value
4146 /// \p DataVT that should be stored. If the data is stored in compressed
4147 /// form, the memory address should be incremented according to the number of
4148 /// the stored elements. This number is equal to the number of '1's bits
4149 /// in the \p Mask.
4150 /// \p DataVT is a vector type. \p Mask is a vector value.
4151 /// \p DataVT and \p Mask have the same number of vector elements.
4152 SDValue IncrementMemoryAddress(SDValue Addr, SDValue Mask, const SDLoc &DL,
4153 EVT DataVT, SelectionDAG &DAG,
4154 bool IsCompressedMemory) const;
4156 /// Get a pointer to vector element \p Idx located in memory for a vector of
4157 /// type \p VecVT starting at a base address of \p VecPtr. If \p Idx is out of
4158 /// bounds the returned pointer is unspecified, but will be within the vector
4159 /// bounds.
4160 SDValue getVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT,
4161 SDValue Index) const;
4163 /// Method for building the DAG expansion of ISD::[US][ADD|SUB]SAT. This
4164 /// method accepts integers as its arguments.
4165 SDValue expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const;
4167 /// Method for building the DAG expansion of ISD::[U|S]MULFIX[SAT]. This
4168 /// method accepts integers as its arguments.
4169 SDValue expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const;
4171 /// Method for building the DAG expansion of ISD::U(ADD|SUB)O. Expansion
4172 /// always suceeds and populates the Result and Overflow arguments.
4173 void expandUADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow,
4174 SelectionDAG &DAG) const;
4176 /// Method for building the DAG expansion of ISD::S(ADD|SUB)O. Expansion
4177 /// always suceeds and populates the Result and Overflow arguments.
4178 void expandSADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow,
4179 SelectionDAG &DAG) const;
4181 /// Method for building the DAG expansion of ISD::[US]MULO. Returns whether
4182 /// expansion was successful and populates the Result and Overflow arguments.
4183 bool expandMULO(SDNode *Node, SDValue &Result, SDValue &Overflow,
4184 SelectionDAG &DAG) const;
4186 /// Expand a VECREDUCE_* into an explicit calculation. If Count is specified,
4187 /// only the first Count elements of the vector are used.
4188 SDValue expandVecReduce(SDNode *Node, SelectionDAG &DAG) const;
4190 //===--------------------------------------------------------------------===//
4191 // Instruction Emitting Hooks
4194 /// This method should be implemented by targets that mark instructions with
4195 /// the 'usesCustomInserter' flag. These instructions are special in various
4196 /// ways, which require special support to insert. The specified MachineInstr
4197 /// is created but not inserted into any basic blocks, and this method is
4198 /// called to expand it into a sequence of instructions, potentially also
4199 /// creating new basic blocks and control flow.
4200 /// As long as the returned basic block is different (i.e., we created a new
4201 /// one), the custom inserter is free to modify the rest of \p MBB.
4202 virtual MachineBasicBlock *
4203 EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const;
4205 /// This method should be implemented by targets that mark instructions with
4206 /// the 'hasPostISelHook' flag. These instructions must be adjusted after
4207 /// instruction selection by target hooks. e.g. To fill in optional defs for
4208 /// ARM 's' setting instructions.
4209 virtual void AdjustInstrPostInstrSelection(MachineInstr &MI,
4210 SDNode *Node) const;
4212 /// If this function returns true, SelectionDAGBuilder emits a
4213 /// LOAD_STACK_GUARD node when it is lowering Intrinsic::stackprotector.
4214 virtual bool useLoadStackGuardNode() const {
4215 return false;
4218 virtual SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val,
4219 const SDLoc &DL) const {
4220 llvm_unreachable("not implemented for this target");
4223 /// Lower TLS global address SDNode for target independent emulated TLS model.
4224 virtual SDValue LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
4225 SelectionDAG &DAG) const;
4227 /// Expands target specific indirect branch for the case of JumpTable
4228 /// expanasion.
4229 virtual SDValue expandIndirectJTBranch(const SDLoc& dl, SDValue Value, SDValue Addr,
4230 SelectionDAG &DAG) const {
4231 return DAG.getNode(ISD::BRIND, dl, MVT::Other, Value, Addr);
4234 // seteq(x, 0) -> truncate(srl(ctlz(zext(x)), log2(#bits)))
4235 // If we're comparing for equality to zero and isCtlzFast is true, expose the
4236 // fact that this can be implemented as a ctlz/srl pair, so that the dag
4237 // combiner can fold the new nodes.
4238 SDValue lowerCmpEqZeroToCtlzSrl(SDValue Op, SelectionDAG &DAG) const;
4240 private:
4241 SDValue foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
4242 const SDLoc &DL, DAGCombinerInfo &DCI) const;
4243 SDValue foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
4244 const SDLoc &DL, DAGCombinerInfo &DCI) const;
4246 SDValue optimizeSetCCOfSignedTruncationCheck(EVT SCCVT, SDValue N0,
4247 SDValue N1, ISD::CondCode Cond,
4248 DAGCombinerInfo &DCI,
4249 const SDLoc &DL) const;
4251 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
4252 SDValue optimizeSetCCByHoistingAndByConstFromLogicalShift(
4253 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
4254 DAGCombinerInfo &DCI, const SDLoc &DL) const;
4256 SDValue prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
4257 SDValue CompTargetNode, ISD::CondCode Cond,
4258 DAGCombinerInfo &DCI, const SDLoc &DL,
4259 SmallVectorImpl<SDNode *> &Created) const;
4260 SDValue buildUREMEqFold(EVT SETCCVT, SDValue REMNode, SDValue CompTargetNode,
4261 ISD::CondCode Cond, DAGCombinerInfo &DCI,
4262 const SDLoc &DL) const;
4264 SDValue prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
4265 SDValue CompTargetNode, ISD::CondCode Cond,
4266 DAGCombinerInfo &DCI, const SDLoc &DL,
4267 SmallVectorImpl<SDNode *> &Created) const;
4268 SDValue buildSREMEqFold(EVT SETCCVT, SDValue REMNode, SDValue CompTargetNode,
4269 ISD::CondCode Cond, DAGCombinerInfo &DCI,
4270 const SDLoc &DL) const;
4273 /// Given an LLVM IR type and return type attributes, compute the return value
4274 /// EVTs and flags, and optionally also the offsets, if the return value is
4275 /// being lowered to memory.
4276 void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr,
4277 SmallVectorImpl<ISD::OutputArg> &Outs,
4278 const TargetLowering &TLI, const DataLayout &DL);
4280 } // end namespace llvm
4282 #endif // LLVM_CODEGEN_TARGETLOWERING_H