[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / CodeGen / AsmPrinter / CodeViewDebug.cpp
blobc6457f3626d1bab740a1f1de6ea3007c57273f66
1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing Microsoft CodeView debug info.
11 //===----------------------------------------------------------------------===//
13 #include "CodeViewDebug.h"
14 #include "DwarfExpression.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/TinyPtrVector.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/BinaryFormat/COFF.h"
30 #include "llvm/BinaryFormat/Dwarf.h"
31 #include "llvm/CodeGen/AsmPrinter.h"
32 #include "llvm/CodeGen/LexicalScopes.h"
33 #include "llvm/CodeGen/MachineFrameInfo.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/TargetFrameLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
43 #include "llvm/DebugInfo/CodeView/CodeView.h"
44 #include "llvm/DebugInfo/CodeView/CodeViewRecordIO.h"
45 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h"
46 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h"
47 #include "llvm/DebugInfo/CodeView/EnumTables.h"
48 #include "llvm/DebugInfo/CodeView/Line.h"
49 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
50 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h"
51 #include "llvm/DebugInfo/CodeView/TypeIndex.h"
52 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
53 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h"
54 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbackPipeline.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DebugInfoMetadata.h"
58 #include "llvm/IR/DebugLoc.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/GlobalValue.h"
61 #include "llvm/IR/GlobalVariable.h"
62 #include "llvm/IR/Metadata.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/MC/MCAsmInfo.h"
65 #include "llvm/MC/MCContext.h"
66 #include "llvm/MC/MCSectionCOFF.h"
67 #include "llvm/MC/MCStreamer.h"
68 #include "llvm/MC/MCSymbol.h"
69 #include "llvm/Support/BinaryByteStream.h"
70 #include "llvm/Support/BinaryStreamReader.h"
71 #include "llvm/Support/BinaryStreamWriter.h"
72 #include "llvm/Support/Casting.h"
73 #include "llvm/Support/CommandLine.h"
74 #include "llvm/Support/Compiler.h"
75 #include "llvm/Support/Endian.h"
76 #include "llvm/Support/Error.h"
77 #include "llvm/Support/ErrorHandling.h"
78 #include "llvm/Support/FormatVariadic.h"
79 #include "llvm/Support/Path.h"
80 #include "llvm/Support/SMLoc.h"
81 #include "llvm/Support/ScopedPrinter.h"
82 #include "llvm/Target/TargetLoweringObjectFile.h"
83 #include "llvm/Target/TargetMachine.h"
84 #include <algorithm>
85 #include <cassert>
86 #include <cctype>
87 #include <cstddef>
88 #include <cstdint>
89 #include <iterator>
90 #include <limits>
91 #include <string>
92 #include <utility>
93 #include <vector>
95 using namespace llvm;
96 using namespace llvm::codeview;
98 namespace {
99 class CVMCAdapter : public CodeViewRecordStreamer {
100 public:
101 CVMCAdapter(MCStreamer &OS, TypeCollection &TypeTable)
102 : OS(&OS), TypeTable(TypeTable) {}
104 void EmitBytes(StringRef Data) { OS->EmitBytes(Data); }
106 void EmitIntValue(uint64_t Value, unsigned Size) {
107 OS->EmitIntValueInHex(Value, Size);
110 void EmitBinaryData(StringRef Data) { OS->EmitBinaryData(Data); }
112 void AddComment(const Twine &T) { OS->AddComment(T); }
114 void AddRawComment(const Twine &T) { OS->emitRawComment(T); }
116 bool isVerboseAsm() { return OS->isVerboseAsm(); }
118 std::string getTypeName(TypeIndex TI) {
119 std::string TypeName;
120 if (!TI.isNoneType()) {
121 if (TI.isSimple())
122 TypeName = TypeIndex::simpleTypeName(TI);
123 else
124 TypeName = TypeTable.getTypeName(TI);
126 return TypeName;
129 private:
130 MCStreamer *OS = nullptr;
131 TypeCollection &TypeTable;
133 } // namespace
135 static CPUType mapArchToCVCPUType(Triple::ArchType Type) {
136 switch (Type) {
137 case Triple::ArchType::x86:
138 return CPUType::Pentium3;
139 case Triple::ArchType::x86_64:
140 return CPUType::X64;
141 case Triple::ArchType::thumb:
142 return CPUType::Thumb;
143 case Triple::ArchType::aarch64:
144 return CPUType::ARM64;
145 default:
146 report_fatal_error("target architecture doesn't map to a CodeView CPUType");
150 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
151 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {
152 // If module doesn't have named metadata anchors or COFF debug section
153 // is not available, skip any debug info related stuff.
154 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
155 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) {
156 Asm = nullptr;
157 MMI->setDebugInfoAvailability(false);
158 return;
160 // Tell MMI that we have debug info.
161 MMI->setDebugInfoAvailability(true);
163 TheCPU =
164 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch());
166 collectGlobalVariableInfo();
168 // Check if we should emit type record hashes.
169 ConstantInt *GH = mdconst::extract_or_null<ConstantInt>(
170 MMI->getModule()->getModuleFlag("CodeViewGHash"));
171 EmitDebugGlobalHashes = GH && !GH->isZero();
174 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
175 std::string &Filepath = FileToFilepathMap[File];
176 if (!Filepath.empty())
177 return Filepath;
179 StringRef Dir = File->getDirectory(), Filename = File->getFilename();
181 // If this is a Unix-style path, just use it as is. Don't try to canonicalize
182 // it textually because one of the path components could be a symlink.
183 if (Dir.startswith("/") || Filename.startswith("/")) {
184 if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix))
185 return Filename;
186 Filepath = Dir;
187 if (Dir.back() != '/')
188 Filepath += '/';
189 Filepath += Filename;
190 return Filepath;
193 // Clang emits directory and relative filename info into the IR, but CodeView
194 // operates on full paths. We could change Clang to emit full paths too, but
195 // that would increase the IR size and probably not needed for other users.
196 // For now, just concatenate and canonicalize the path here.
197 if (Filename.find(':') == 1)
198 Filepath = Filename;
199 else
200 Filepath = (Dir + "\\" + Filename).str();
202 // Canonicalize the path. We have to do it textually because we may no longer
203 // have access the file in the filesystem.
204 // First, replace all slashes with backslashes.
205 std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
207 // Remove all "\.\" with "\".
208 size_t Cursor = 0;
209 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
210 Filepath.erase(Cursor, 2);
212 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original
213 // path should be well-formatted, e.g. start with a drive letter, etc.
214 Cursor = 0;
215 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
216 // Something's wrong if the path starts with "\..\", abort.
217 if (Cursor == 0)
218 break;
220 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
221 if (PrevSlash == std::string::npos)
222 // Something's wrong, abort.
223 break;
225 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
226 // The next ".." might be following the one we've just erased.
227 Cursor = PrevSlash;
230 // Remove all duplicate backslashes.
231 Cursor = 0;
232 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
233 Filepath.erase(Cursor, 1);
235 return Filepath;
238 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
239 StringRef FullPath = getFullFilepath(F);
240 unsigned NextId = FileIdMap.size() + 1;
241 auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId));
242 if (Insertion.second) {
243 // We have to compute the full filepath and emit a .cv_file directive.
244 ArrayRef<uint8_t> ChecksumAsBytes;
245 FileChecksumKind CSKind = FileChecksumKind::None;
246 if (F->getChecksum()) {
247 std::string Checksum = fromHex(F->getChecksum()->Value);
248 void *CKMem = OS.getContext().allocate(Checksum.size(), 1);
249 memcpy(CKMem, Checksum.data(), Checksum.size());
250 ChecksumAsBytes = ArrayRef<uint8_t>(
251 reinterpret_cast<const uint8_t *>(CKMem), Checksum.size());
252 switch (F->getChecksum()->Kind) {
253 case DIFile::CSK_MD5: CSKind = FileChecksumKind::MD5; break;
254 case DIFile::CSK_SHA1: CSKind = FileChecksumKind::SHA1; break;
257 bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes,
258 static_cast<unsigned>(CSKind));
259 (void)Success;
260 assert(Success && ".cv_file directive failed");
262 return Insertion.first->second;
265 CodeViewDebug::InlineSite &
266 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
267 const DISubprogram *Inlinee) {
268 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
269 InlineSite *Site = &SiteInsertion.first->second;
270 if (SiteInsertion.second) {
271 unsigned ParentFuncId = CurFn->FuncId;
272 if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
273 ParentFuncId =
274 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
275 .SiteFuncId;
277 Site->SiteFuncId = NextFuncId++;
278 OS.EmitCVInlineSiteIdDirective(
279 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
280 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
281 Site->Inlinee = Inlinee;
282 InlinedSubprograms.insert(Inlinee);
283 getFuncIdForSubprogram(Inlinee);
285 return *Site;
288 static StringRef getPrettyScopeName(const DIScope *Scope) {
289 StringRef ScopeName = Scope->getName();
290 if (!ScopeName.empty())
291 return ScopeName;
293 switch (Scope->getTag()) {
294 case dwarf::DW_TAG_enumeration_type:
295 case dwarf::DW_TAG_class_type:
296 case dwarf::DW_TAG_structure_type:
297 case dwarf::DW_TAG_union_type:
298 return "<unnamed-tag>";
299 case dwarf::DW_TAG_namespace:
300 return "`anonymous namespace'";
303 return StringRef();
306 static const DISubprogram *getQualifiedNameComponents(
307 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
308 const DISubprogram *ClosestSubprogram = nullptr;
309 while (Scope != nullptr) {
310 if (ClosestSubprogram == nullptr)
311 ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
312 StringRef ScopeName = getPrettyScopeName(Scope);
313 if (!ScopeName.empty())
314 QualifiedNameComponents.push_back(ScopeName);
315 Scope = Scope->getScope();
317 return ClosestSubprogram;
320 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents,
321 StringRef TypeName) {
322 std::string FullyQualifiedName;
323 for (StringRef QualifiedNameComponent :
324 llvm::reverse(QualifiedNameComponents)) {
325 FullyQualifiedName.append(QualifiedNameComponent);
326 FullyQualifiedName.append("::");
328 FullyQualifiedName.append(TypeName);
329 return FullyQualifiedName;
332 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) {
333 SmallVector<StringRef, 5> QualifiedNameComponents;
334 getQualifiedNameComponents(Scope, QualifiedNameComponents);
335 return getQualifiedName(QualifiedNameComponents, Name);
338 struct CodeViewDebug::TypeLoweringScope {
339 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
340 ~TypeLoweringScope() {
341 // Don't decrement TypeEmissionLevel until after emitting deferred types, so
342 // inner TypeLoweringScopes don't attempt to emit deferred types.
343 if (CVD.TypeEmissionLevel == 1)
344 CVD.emitDeferredCompleteTypes();
345 --CVD.TypeEmissionLevel;
347 CodeViewDebug &CVD;
350 static std::string getFullyQualifiedName(const DIScope *Ty) {
351 const DIScope *Scope = Ty->getScope();
352 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
355 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
356 // No scope means global scope and that uses the zero index.
357 if (!Scope || isa<DIFile>(Scope))
358 return TypeIndex();
360 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
362 // Check if we've already translated this scope.
363 auto I = TypeIndices.find({Scope, nullptr});
364 if (I != TypeIndices.end())
365 return I->second;
367 // Build the fully qualified name of the scope.
368 std::string ScopeName = getFullyQualifiedName(Scope);
369 StringIdRecord SID(TypeIndex(), ScopeName);
370 auto TI = TypeTable.writeLeafType(SID);
371 return recordTypeIndexForDINode(Scope, TI);
374 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
375 assert(SP);
377 // Check if we've already translated this subprogram.
378 auto I = TypeIndices.find({SP, nullptr});
379 if (I != TypeIndices.end())
380 return I->second;
382 // The display name includes function template arguments. Drop them to match
383 // MSVC.
384 StringRef DisplayName = SP->getName().split('<').first;
386 const DIScope *Scope = SP->getScope();
387 TypeIndex TI;
388 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
389 // If the scope is a DICompositeType, then this must be a method. Member
390 // function types take some special handling, and require access to the
391 // subprogram.
392 TypeIndex ClassType = getTypeIndex(Class);
393 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
394 DisplayName);
395 TI = TypeTable.writeLeafType(MFuncId);
396 } else {
397 // Otherwise, this must be a free function.
398 TypeIndex ParentScope = getScopeIndex(Scope);
399 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
400 TI = TypeTable.writeLeafType(FuncId);
403 return recordTypeIndexForDINode(SP, TI);
406 static bool isNonTrivial(const DICompositeType *DCTy) {
407 return ((DCTy->getFlags() & DINode::FlagNonTrivial) == DINode::FlagNonTrivial);
410 static FunctionOptions
411 getFunctionOptions(const DISubroutineType *Ty,
412 const DICompositeType *ClassTy = nullptr,
413 StringRef SPName = StringRef("")) {
414 FunctionOptions FO = FunctionOptions::None;
415 const DIType *ReturnTy = nullptr;
416 if (auto TypeArray = Ty->getTypeArray()) {
417 if (TypeArray.size())
418 ReturnTy = TypeArray[0];
421 if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy)) {
422 if (isNonTrivial(ReturnDCTy))
423 FO |= FunctionOptions::CxxReturnUdt;
426 // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison.
427 if (ClassTy && isNonTrivial(ClassTy) && SPName == ClassTy->getName()) {
428 FO |= FunctionOptions::Constructor;
430 // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag.
433 return FO;
436 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
437 const DICompositeType *Class) {
438 // Always use the method declaration as the key for the function type. The
439 // method declaration contains the this adjustment.
440 if (SP->getDeclaration())
441 SP = SP->getDeclaration();
442 assert(!SP->getDeclaration() && "should use declaration as key");
444 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
445 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
446 auto I = TypeIndices.find({SP, Class});
447 if (I != TypeIndices.end())
448 return I->second;
450 // Make sure complete type info for the class is emitted *after* the member
451 // function type, as the complete class type is likely to reference this
452 // member function type.
453 TypeLoweringScope S(*this);
454 const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0;
456 FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName());
457 TypeIndex TI = lowerTypeMemberFunction(
458 SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO);
459 return recordTypeIndexForDINode(SP, TI, Class);
462 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
463 TypeIndex TI,
464 const DIType *ClassTy) {
465 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
466 (void)InsertResult;
467 assert(InsertResult.second && "DINode was already assigned a type index");
468 return TI;
471 unsigned CodeViewDebug::getPointerSizeInBytes() {
472 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
475 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
476 const LexicalScope *LS) {
477 if (const DILocation *InlinedAt = LS->getInlinedAt()) {
478 // This variable was inlined. Associate it with the InlineSite.
479 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
480 InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
481 Site.InlinedLocals.emplace_back(Var);
482 } else {
483 // This variable goes into the corresponding lexical scope.
484 ScopeVariables[LS].emplace_back(Var);
488 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
489 const DILocation *Loc) {
490 auto B = Locs.begin(), E = Locs.end();
491 if (std::find(B, E, Loc) == E)
492 Locs.push_back(Loc);
495 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
496 const MachineFunction *MF) {
497 // Skip this instruction if it has the same location as the previous one.
498 if (!DL || DL == PrevInstLoc)
499 return;
501 const DIScope *Scope = DL.get()->getScope();
502 if (!Scope)
503 return;
505 // Skip this line if it is longer than the maximum we can record.
506 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
507 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
508 LI.isNeverStepInto())
509 return;
511 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
512 if (CI.getStartColumn() != DL.getCol())
513 return;
515 if (!CurFn->HaveLineInfo)
516 CurFn->HaveLineInfo = true;
517 unsigned FileId = 0;
518 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile())
519 FileId = CurFn->LastFileId;
520 else
521 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
522 PrevInstLoc = DL;
524 unsigned FuncId = CurFn->FuncId;
525 if (const DILocation *SiteLoc = DL->getInlinedAt()) {
526 const DILocation *Loc = DL.get();
528 // If this location was actually inlined from somewhere else, give it the ID
529 // of the inline call site.
530 FuncId =
531 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
533 // Ensure we have links in the tree of inline call sites.
534 bool FirstLoc = true;
535 while ((SiteLoc = Loc->getInlinedAt())) {
536 InlineSite &Site =
537 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
538 if (!FirstLoc)
539 addLocIfNotPresent(Site.ChildSites, Loc);
540 FirstLoc = false;
541 Loc = SiteLoc;
543 addLocIfNotPresent(CurFn->ChildSites, Loc);
546 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
547 /*PrologueEnd=*/false, /*IsStmt=*/false,
548 DL->getFilename(), SMLoc());
551 void CodeViewDebug::emitCodeViewMagicVersion() {
552 OS.EmitValueToAlignment(4);
553 OS.AddComment("Debug section magic");
554 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4);
557 void CodeViewDebug::endModule() {
558 if (!Asm || !MMI->hasDebugInfo())
559 return;
561 assert(Asm != nullptr);
563 // The COFF .debug$S section consists of several subsections, each starting
564 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
565 // of the payload followed by the payload itself. The subsections are 4-byte
566 // aligned.
568 // Use the generic .debug$S section, and make a subsection for all the inlined
569 // subprograms.
570 switchToDebugSectionForSymbol(nullptr);
572 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols);
573 emitCompilerInformation();
574 endCVSubsection(CompilerInfo);
576 emitInlineeLinesSubsection();
578 // Emit per-function debug information.
579 for (auto &P : FnDebugInfo)
580 if (!P.first->isDeclarationForLinker())
581 emitDebugInfoForFunction(P.first, *P.second);
583 // Emit global variable debug information.
584 setCurrentSubprogram(nullptr);
585 emitDebugInfoForGlobals();
587 // Emit retained types.
588 emitDebugInfoForRetainedTypes();
590 // Switch back to the generic .debug$S section after potentially processing
591 // comdat symbol sections.
592 switchToDebugSectionForSymbol(nullptr);
594 // Emit UDT records for any types used by global variables.
595 if (!GlobalUDTs.empty()) {
596 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
597 emitDebugInfoForUDTs(GlobalUDTs);
598 endCVSubsection(SymbolsEnd);
601 // This subsection holds a file index to offset in string table table.
602 OS.AddComment("File index to string table offset subsection");
603 OS.EmitCVFileChecksumsDirective();
605 // This subsection holds the string table.
606 OS.AddComment("String table");
607 OS.EmitCVStringTableDirective();
609 // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol
610 // subsection in the generic .debug$S section at the end. There is no
611 // particular reason for this ordering other than to match MSVC.
612 emitBuildInfo();
614 // Emit type information and hashes last, so that any types we translate while
615 // emitting function info are included.
616 emitTypeInformation();
618 if (EmitDebugGlobalHashes)
619 emitTypeGlobalHashes();
621 clear();
624 static void
625 emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S,
626 unsigned MaxFixedRecordLength = 0xF00) {
627 // The maximum CV record length is 0xFF00. Most of the strings we emit appear
628 // after a fixed length portion of the record. The fixed length portion should
629 // always be less than 0xF00 (3840) bytes, so truncate the string so that the
630 // overall record size is less than the maximum allowed.
631 SmallString<32> NullTerminatedString(
632 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1));
633 NullTerminatedString.push_back('\0');
634 OS.EmitBytes(NullTerminatedString);
637 void CodeViewDebug::emitTypeInformation() {
638 if (TypeTable.empty())
639 return;
641 // Start the .debug$T or .debug$P section with 0x4.
642 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
643 emitCodeViewMagicVersion();
645 TypeTableCollection Table(TypeTable.records());
646 TypeVisitorCallbackPipeline Pipeline;
648 // To emit type record using Codeview MCStreamer adapter
649 CVMCAdapter CVMCOS(OS, Table);
650 TypeRecordMapping typeMapping(CVMCOS);
651 Pipeline.addCallbackToPipeline(typeMapping);
653 Optional<TypeIndex> B = Table.getFirst();
654 while (B) {
655 // This will fail if the record data is invalid.
656 CVType Record = Table.getType(*B);
658 Error E = codeview::visitTypeRecord(Record, *B, Pipeline);
660 if (E) {
661 logAllUnhandledErrors(std::move(E), errs(), "error: ");
662 llvm_unreachable("produced malformed type record");
665 B = Table.getNext(*B);
669 void CodeViewDebug::emitTypeGlobalHashes() {
670 if (TypeTable.empty())
671 return;
673 // Start the .debug$H section with the version and hash algorithm, currently
674 // hardcoded to version 0, SHA1.
675 OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection());
677 OS.EmitValueToAlignment(4);
678 OS.AddComment("Magic");
679 OS.EmitIntValue(COFF::DEBUG_HASHES_SECTION_MAGIC, 4);
680 OS.AddComment("Section Version");
681 OS.EmitIntValue(0, 2);
682 OS.AddComment("Hash Algorithm");
683 OS.EmitIntValue(uint16_t(GlobalTypeHashAlg::SHA1_8), 2);
685 TypeIndex TI(TypeIndex::FirstNonSimpleIndex);
686 for (const auto &GHR : TypeTable.hashes()) {
687 if (OS.isVerboseAsm()) {
688 // Emit an EOL-comment describing which TypeIndex this hash corresponds
689 // to, as well as the stringified SHA1 hash.
690 SmallString<32> Comment;
691 raw_svector_ostream CommentOS(Comment);
692 CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR);
693 OS.AddComment(Comment);
694 ++TI;
696 assert(GHR.Hash.size() == 8);
697 StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()),
698 GHR.Hash.size());
699 OS.EmitBinaryData(S);
703 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) {
704 switch (DWLang) {
705 case dwarf::DW_LANG_C:
706 case dwarf::DW_LANG_C89:
707 case dwarf::DW_LANG_C99:
708 case dwarf::DW_LANG_C11:
709 case dwarf::DW_LANG_ObjC:
710 return SourceLanguage::C;
711 case dwarf::DW_LANG_C_plus_plus:
712 case dwarf::DW_LANG_C_plus_plus_03:
713 case dwarf::DW_LANG_C_plus_plus_11:
714 case dwarf::DW_LANG_C_plus_plus_14:
715 return SourceLanguage::Cpp;
716 case dwarf::DW_LANG_Fortran77:
717 case dwarf::DW_LANG_Fortran90:
718 case dwarf::DW_LANG_Fortran03:
719 case dwarf::DW_LANG_Fortran08:
720 return SourceLanguage::Fortran;
721 case dwarf::DW_LANG_Pascal83:
722 return SourceLanguage::Pascal;
723 case dwarf::DW_LANG_Cobol74:
724 case dwarf::DW_LANG_Cobol85:
725 return SourceLanguage::Cobol;
726 case dwarf::DW_LANG_Java:
727 return SourceLanguage::Java;
728 case dwarf::DW_LANG_D:
729 return SourceLanguage::D;
730 case dwarf::DW_LANG_Swift:
731 return SourceLanguage::Swift;
732 default:
733 // There's no CodeView representation for this language, and CV doesn't
734 // have an "unknown" option for the language field, so we'll use MASM,
735 // as it's very low level.
736 return SourceLanguage::Masm;
740 namespace {
741 struct Version {
742 int Part[4];
744 } // end anonymous namespace
746 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
747 // the version number.
748 static Version parseVersion(StringRef Name) {
749 Version V = {{0}};
750 int N = 0;
751 for (const char C : Name) {
752 if (isdigit(C)) {
753 V.Part[N] *= 10;
754 V.Part[N] += C - '0';
755 } else if (C == '.') {
756 ++N;
757 if (N >= 4)
758 return V;
759 } else if (N > 0)
760 return V;
762 return V;
765 void CodeViewDebug::emitCompilerInformation() {
766 MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_COMPILE3);
767 uint32_t Flags = 0;
769 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
770 const MDNode *Node = *CUs->operands().begin();
771 const auto *CU = cast<DICompileUnit>(Node);
773 // The low byte of the flags indicates the source language.
774 Flags = MapDWLangToCVLang(CU->getSourceLanguage());
775 // TODO: Figure out which other flags need to be set.
777 OS.AddComment("Flags and language");
778 OS.EmitIntValue(Flags, 4);
780 OS.AddComment("CPUType");
781 OS.EmitIntValue(static_cast<uint64_t>(TheCPU), 2);
783 StringRef CompilerVersion = CU->getProducer();
784 Version FrontVer = parseVersion(CompilerVersion);
785 OS.AddComment("Frontend version");
786 for (int N = 0; N < 4; ++N)
787 OS.EmitIntValue(FrontVer.Part[N], 2);
789 // Some Microsoft tools, like Binscope, expect a backend version number of at
790 // least 8.something, so we'll coerce the LLVM version into a form that
791 // guarantees it'll be big enough without really lying about the version.
792 int Major = 1000 * LLVM_VERSION_MAJOR +
793 10 * LLVM_VERSION_MINOR +
794 LLVM_VERSION_PATCH;
795 // Clamp it for builds that use unusually large version numbers.
796 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max());
797 Version BackVer = {{ Major, 0, 0, 0 }};
798 OS.AddComment("Backend version");
799 for (int N = 0; N < 4; ++N)
800 OS.EmitIntValue(BackVer.Part[N], 2);
802 OS.AddComment("Null-terminated compiler version string");
803 emitNullTerminatedSymbolName(OS, CompilerVersion);
805 endSymbolRecord(CompilerEnd);
808 static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable,
809 StringRef S) {
810 StringIdRecord SIR(TypeIndex(0x0), S);
811 return TypeTable.writeLeafType(SIR);
814 void CodeViewDebug::emitBuildInfo() {
815 // First, make LF_BUILDINFO. It's a sequence of strings with various bits of
816 // build info. The known prefix is:
817 // - Absolute path of current directory
818 // - Compiler path
819 // - Main source file path, relative to CWD or absolute
820 // - Type server PDB file
821 // - Canonical compiler command line
822 // If frontend and backend compilation are separated (think llc or LTO), it's
823 // not clear if the compiler path should refer to the executable for the
824 // frontend or the backend. Leave it blank for now.
825 TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {};
826 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
827 const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs.
828 const auto *CU = cast<DICompileUnit>(Node);
829 const DIFile *MainSourceFile = CU->getFile();
830 BuildInfoArgs[BuildInfoRecord::CurrentDirectory] =
831 getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory());
832 BuildInfoArgs[BuildInfoRecord::SourceFile] =
833 getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename());
834 // FIXME: Path to compiler and command line. PDB is intentionally blank unless
835 // we implement /Zi type servers.
836 BuildInfoRecord BIR(BuildInfoArgs);
837 TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR);
839 // Make a new .debug$S subsection for the S_BUILDINFO record, which points
840 // from the module symbols into the type stream.
841 MCSymbol *BISubsecEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
842 MCSymbol *BIEnd = beginSymbolRecord(SymbolKind::S_BUILDINFO);
843 OS.AddComment("LF_BUILDINFO index");
844 OS.EmitIntValue(BuildInfoIndex.getIndex(), 4);
845 endSymbolRecord(BIEnd);
846 endCVSubsection(BISubsecEnd);
849 void CodeViewDebug::emitInlineeLinesSubsection() {
850 if (InlinedSubprograms.empty())
851 return;
853 OS.AddComment("Inlinee lines subsection");
854 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines);
856 // We emit the checksum info for files. This is used by debuggers to
857 // determine if a pdb matches the source before loading it. Visual Studio,
858 // for instance, will display a warning that the breakpoints are not valid if
859 // the pdb does not match the source.
860 OS.AddComment("Inlinee lines signature");
861 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4);
863 for (const DISubprogram *SP : InlinedSubprograms) {
864 assert(TypeIndices.count({SP, nullptr}));
865 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
867 OS.AddBlankLine();
868 unsigned FileId = maybeRecordFile(SP->getFile());
869 OS.AddComment("Inlined function " + SP->getName() + " starts at " +
870 SP->getFilename() + Twine(':') + Twine(SP->getLine()));
871 OS.AddBlankLine();
872 OS.AddComment("Type index of inlined function");
873 OS.EmitIntValue(InlineeIdx.getIndex(), 4);
874 OS.AddComment("Offset into filechecksum table");
875 OS.EmitCVFileChecksumOffsetDirective(FileId);
876 OS.AddComment("Starting line number");
877 OS.EmitIntValue(SP->getLine(), 4);
880 endCVSubsection(InlineEnd);
883 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
884 const DILocation *InlinedAt,
885 const InlineSite &Site) {
886 assert(TypeIndices.count({Site.Inlinee, nullptr}));
887 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
889 // SymbolRecord
890 MCSymbol *InlineEnd = beginSymbolRecord(SymbolKind::S_INLINESITE);
892 OS.AddComment("PtrParent");
893 OS.EmitIntValue(0, 4);
894 OS.AddComment("PtrEnd");
895 OS.EmitIntValue(0, 4);
896 OS.AddComment("Inlinee type index");
897 OS.EmitIntValue(InlineeIdx.getIndex(), 4);
899 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
900 unsigned StartLineNum = Site.Inlinee->getLine();
902 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
903 FI.Begin, FI.End);
905 endSymbolRecord(InlineEnd);
907 emitLocalVariableList(FI, Site.InlinedLocals);
909 // Recurse on child inlined call sites before closing the scope.
910 for (const DILocation *ChildSite : Site.ChildSites) {
911 auto I = FI.InlineSites.find(ChildSite);
912 assert(I != FI.InlineSites.end() &&
913 "child site not in function inline site map");
914 emitInlinedCallSite(FI, ChildSite, I->second);
917 // Close the scope.
918 emitEndSymbolRecord(SymbolKind::S_INLINESITE_END);
921 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
922 // If we have a symbol, it may be in a section that is COMDAT. If so, find the
923 // comdat key. A section may be comdat because of -ffunction-sections or
924 // because it is comdat in the IR.
925 MCSectionCOFF *GVSec =
926 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
927 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
929 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
930 Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
931 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
933 OS.SwitchSection(DebugSec);
935 // Emit the magic version number if this is the first time we've switched to
936 // this section.
937 if (ComdatDebugSections.insert(DebugSec).second)
938 emitCodeViewMagicVersion();
941 // Emit an S_THUNK32/S_END symbol pair for a thunk routine.
942 // The only supported thunk ordinal is currently the standard type.
943 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV,
944 FunctionInfo &FI,
945 const MCSymbol *Fn) {
946 std::string FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName());
947 const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind.
949 OS.AddComment("Symbol subsection for " + Twine(FuncName));
950 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
952 // Emit S_THUNK32
953 MCSymbol *ThunkRecordEnd = beginSymbolRecord(SymbolKind::S_THUNK32);
954 OS.AddComment("PtrParent");
955 OS.EmitIntValue(0, 4);
956 OS.AddComment("PtrEnd");
957 OS.EmitIntValue(0, 4);
958 OS.AddComment("PtrNext");
959 OS.EmitIntValue(0, 4);
960 OS.AddComment("Thunk section relative address");
961 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
962 OS.AddComment("Thunk section index");
963 OS.EmitCOFFSectionIndex(Fn);
964 OS.AddComment("Code size");
965 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2);
966 OS.AddComment("Ordinal");
967 OS.EmitIntValue(unsigned(ordinal), 1);
968 OS.AddComment("Function name");
969 emitNullTerminatedSymbolName(OS, FuncName);
970 // Additional fields specific to the thunk ordinal would go here.
971 endSymbolRecord(ThunkRecordEnd);
973 // Local variables/inlined routines are purposely omitted here. The point of
974 // marking this as a thunk is so Visual Studio will NOT stop in this routine.
976 // Emit S_PROC_ID_END
977 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END);
979 endCVSubsection(SymbolsEnd);
982 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
983 FunctionInfo &FI) {
984 // For each function there is a separate subsection which holds the PC to
985 // file:line table.
986 const MCSymbol *Fn = Asm->getSymbol(GV);
987 assert(Fn);
989 // Switch to the to a comdat section, if appropriate.
990 switchToDebugSectionForSymbol(Fn);
992 std::string FuncName;
993 auto *SP = GV->getSubprogram();
994 assert(SP);
995 setCurrentSubprogram(SP);
997 if (SP->isThunk()) {
998 emitDebugInfoForThunk(GV, FI, Fn);
999 return;
1002 // If we have a display name, build the fully qualified name by walking the
1003 // chain of scopes.
1004 if (!SP->getName().empty())
1005 FuncName = getFullyQualifiedName(SP->getScope(), SP->getName());
1007 // If our DISubprogram name is empty, use the mangled name.
1008 if (FuncName.empty())
1009 FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName());
1011 // Emit FPO data, but only on 32-bit x86. No other platforms use it.
1012 if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86)
1013 OS.EmitCVFPOData(Fn);
1015 // Emit a symbol subsection, required by VS2012+ to find function boundaries.
1016 OS.AddComment("Symbol subsection for " + Twine(FuncName));
1017 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
1019 SymbolKind ProcKind = GV->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID
1020 : SymbolKind::S_GPROC32_ID;
1021 MCSymbol *ProcRecordEnd = beginSymbolRecord(ProcKind);
1023 // These fields are filled in by tools like CVPACK which run after the fact.
1024 OS.AddComment("PtrParent");
1025 OS.EmitIntValue(0, 4);
1026 OS.AddComment("PtrEnd");
1027 OS.EmitIntValue(0, 4);
1028 OS.AddComment("PtrNext");
1029 OS.EmitIntValue(0, 4);
1030 // This is the important bit that tells the debugger where the function
1031 // code is located and what's its size:
1032 OS.AddComment("Code size");
1033 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
1034 OS.AddComment("Offset after prologue");
1035 OS.EmitIntValue(0, 4);
1036 OS.AddComment("Offset before epilogue");
1037 OS.EmitIntValue(0, 4);
1038 OS.AddComment("Function type index");
1039 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4);
1040 OS.AddComment("Function section relative address");
1041 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
1042 OS.AddComment("Function section index");
1043 OS.EmitCOFFSectionIndex(Fn);
1044 OS.AddComment("Flags");
1045 OS.EmitIntValue(0, 1);
1046 // Emit the function display name as a null-terminated string.
1047 OS.AddComment("Function name");
1048 // Truncate the name so we won't overflow the record length field.
1049 emitNullTerminatedSymbolName(OS, FuncName);
1050 endSymbolRecord(ProcRecordEnd);
1052 MCSymbol *FrameProcEnd = beginSymbolRecord(SymbolKind::S_FRAMEPROC);
1053 // Subtract out the CSR size since MSVC excludes that and we include it.
1054 OS.AddComment("FrameSize");
1055 OS.EmitIntValue(FI.FrameSize - FI.CSRSize, 4);
1056 OS.AddComment("Padding");
1057 OS.EmitIntValue(0, 4);
1058 OS.AddComment("Offset of padding");
1059 OS.EmitIntValue(0, 4);
1060 OS.AddComment("Bytes of callee saved registers");
1061 OS.EmitIntValue(FI.CSRSize, 4);
1062 OS.AddComment("Exception handler offset");
1063 OS.EmitIntValue(0, 4);
1064 OS.AddComment("Exception handler section");
1065 OS.EmitIntValue(0, 2);
1066 OS.AddComment("Flags (defines frame register)");
1067 OS.EmitIntValue(uint32_t(FI.FrameProcOpts), 4);
1068 endSymbolRecord(FrameProcEnd);
1070 emitLocalVariableList(FI, FI.Locals);
1071 emitGlobalVariableList(FI.Globals);
1072 emitLexicalBlockList(FI.ChildBlocks, FI);
1074 // Emit inlined call site information. Only emit functions inlined directly
1075 // into the parent function. We'll emit the other sites recursively as part
1076 // of their parent inline site.
1077 for (const DILocation *InlinedAt : FI.ChildSites) {
1078 auto I = FI.InlineSites.find(InlinedAt);
1079 assert(I != FI.InlineSites.end() &&
1080 "child site not in function inline site map");
1081 emitInlinedCallSite(FI, InlinedAt, I->second);
1084 for (auto Annot : FI.Annotations) {
1085 MCSymbol *Label = Annot.first;
1086 MDTuple *Strs = cast<MDTuple>(Annot.second);
1087 MCSymbol *AnnotEnd = beginSymbolRecord(SymbolKind::S_ANNOTATION);
1088 OS.EmitCOFFSecRel32(Label, /*Offset=*/0);
1089 // FIXME: Make sure we don't overflow the max record size.
1090 OS.EmitCOFFSectionIndex(Label);
1091 OS.EmitIntValue(Strs->getNumOperands(), 2);
1092 for (Metadata *MD : Strs->operands()) {
1093 // MDStrings are null terminated, so we can do EmitBytes and get the
1094 // nice .asciz directive.
1095 StringRef Str = cast<MDString>(MD)->getString();
1096 assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString");
1097 OS.EmitBytes(StringRef(Str.data(), Str.size() + 1));
1099 endSymbolRecord(AnnotEnd);
1102 for (auto HeapAllocSite : FI.HeapAllocSites) {
1103 MCSymbol *BeginLabel = std::get<0>(HeapAllocSite);
1104 MCSymbol *EndLabel = std::get<1>(HeapAllocSite);
1106 // The labels might not be defined if the instruction was replaced
1107 // somewhere in the codegen pipeline.
1108 if (!BeginLabel->isDefined() || !EndLabel->isDefined())
1109 continue;
1111 const DIType *DITy = std::get<2>(HeapAllocSite);
1112 MCSymbol *HeapAllocEnd = beginSymbolRecord(SymbolKind::S_HEAPALLOCSITE);
1113 OS.AddComment("Call site offset");
1114 OS.EmitCOFFSecRel32(BeginLabel, /*Offset=*/0);
1115 OS.AddComment("Call site section index");
1116 OS.EmitCOFFSectionIndex(BeginLabel);
1117 OS.AddComment("Call instruction length");
1118 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2);
1119 OS.AddComment("Type index");
1120 OS.EmitIntValue(getCompleteTypeIndex(DITy).getIndex(), 4);
1121 endSymbolRecord(HeapAllocEnd);
1124 if (SP != nullptr)
1125 emitDebugInfoForUDTs(LocalUDTs);
1127 // We're done with this function.
1128 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END);
1130 endCVSubsection(SymbolsEnd);
1132 // We have an assembler directive that takes care of the whole line table.
1133 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End);
1136 CodeViewDebug::LocalVarDefRange
1137 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
1138 LocalVarDefRange DR;
1139 DR.InMemory = -1;
1140 DR.DataOffset = Offset;
1141 assert(DR.DataOffset == Offset && "truncation");
1142 DR.IsSubfield = 0;
1143 DR.StructOffset = 0;
1144 DR.CVRegister = CVRegister;
1145 return DR;
1148 void CodeViewDebug::collectVariableInfoFromMFTable(
1149 DenseSet<InlinedEntity> &Processed) {
1150 const MachineFunction &MF = *Asm->MF;
1151 const TargetSubtargetInfo &TSI = MF.getSubtarget();
1152 const TargetFrameLowering *TFI = TSI.getFrameLowering();
1153 const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
1155 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) {
1156 if (!VI.Var)
1157 continue;
1158 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1159 "Expected inlined-at fields to agree");
1161 Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt()));
1162 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1164 // If variable scope is not found then skip this variable.
1165 if (!Scope)
1166 continue;
1168 // If the variable has an attached offset expression, extract it.
1169 // FIXME: Try to handle DW_OP_deref as well.
1170 int64_t ExprOffset = 0;
1171 bool Deref = false;
1172 if (VI.Expr) {
1173 // If there is one DW_OP_deref element, use offset of 0 and keep going.
1174 if (VI.Expr->getNumElements() == 1 &&
1175 VI.Expr->getElement(0) == llvm::dwarf::DW_OP_deref)
1176 Deref = true;
1177 else if (!VI.Expr->extractIfOffset(ExprOffset))
1178 continue;
1181 // Get the frame register used and the offset.
1182 unsigned FrameReg = 0;
1183 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
1184 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
1186 // Calculate the label ranges.
1187 LocalVarDefRange DefRange =
1188 createDefRangeMem(CVReg, FrameOffset + ExprOffset);
1190 for (const InsnRange &Range : Scope->getRanges()) {
1191 const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
1192 const MCSymbol *End = getLabelAfterInsn(Range.second);
1193 End = End ? End : Asm->getFunctionEnd();
1194 DefRange.Ranges.emplace_back(Begin, End);
1197 LocalVariable Var;
1198 Var.DIVar = VI.Var;
1199 Var.DefRanges.emplace_back(std::move(DefRange));
1200 if (Deref)
1201 Var.UseReferenceType = true;
1203 recordLocalVariable(std::move(Var), Scope);
1207 static bool canUseReferenceType(const DbgVariableLocation &Loc) {
1208 return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0;
1211 static bool needsReferenceType(const DbgVariableLocation &Loc) {
1212 return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0;
1215 void CodeViewDebug::calculateRanges(
1216 LocalVariable &Var, const DbgValueHistoryMap::Entries &Entries) {
1217 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
1219 // Calculate the definition ranges.
1220 for (auto I = Entries.begin(), E = Entries.end(); I != E; ++I) {
1221 const auto &Entry = *I;
1222 if (!Entry.isDbgValue())
1223 continue;
1224 const MachineInstr *DVInst = Entry.getInstr();
1225 assert(DVInst->isDebugValue() && "Invalid History entry");
1226 // FIXME: Find a way to represent constant variables, since they are
1227 // relatively common.
1228 Optional<DbgVariableLocation> Location =
1229 DbgVariableLocation::extractFromMachineInstruction(*DVInst);
1230 if (!Location)
1231 continue;
1233 // CodeView can only express variables in register and variables in memory
1234 // at a constant offset from a register. However, for variables passed
1235 // indirectly by pointer, it is common for that pointer to be spilled to a
1236 // stack location. For the special case of one offseted load followed by a
1237 // zero offset load (a pointer spilled to the stack), we change the type of
1238 // the local variable from a value type to a reference type. This tricks the
1239 // debugger into doing the load for us.
1240 if (Var.UseReferenceType) {
1241 // We're using a reference type. Drop the last zero offset load.
1242 if (canUseReferenceType(*Location))
1243 Location->LoadChain.pop_back();
1244 else
1245 continue;
1246 } else if (needsReferenceType(*Location)) {
1247 // This location can't be expressed without switching to a reference type.
1248 // Start over using that.
1249 Var.UseReferenceType = true;
1250 Var.DefRanges.clear();
1251 calculateRanges(Var, Entries);
1252 return;
1255 // We can only handle a register or an offseted load of a register.
1256 if (Location->Register == 0 || Location->LoadChain.size() > 1)
1257 continue;
1259 LocalVarDefRange DR;
1260 DR.CVRegister = TRI->getCodeViewRegNum(Location->Register);
1261 DR.InMemory = !Location->LoadChain.empty();
1262 DR.DataOffset =
1263 !Location->LoadChain.empty() ? Location->LoadChain.back() : 0;
1264 if (Location->FragmentInfo) {
1265 DR.IsSubfield = true;
1266 DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8;
1267 } else {
1268 DR.IsSubfield = false;
1269 DR.StructOffset = 0;
1272 if (Var.DefRanges.empty() ||
1273 Var.DefRanges.back().isDifferentLocation(DR)) {
1274 Var.DefRanges.emplace_back(std::move(DR));
1278 // Compute the label range.
1279 const MCSymbol *Begin = getLabelBeforeInsn(Entry.getInstr());
1280 const MCSymbol *End;
1281 if (Entry.getEndIndex() != DbgValueHistoryMap::NoEntry) {
1282 auto &EndingEntry = Entries[Entry.getEndIndex()];
1283 End = EndingEntry.isDbgValue()
1284 ? getLabelBeforeInsn(EndingEntry.getInstr())
1285 : getLabelAfterInsn(EndingEntry.getInstr());
1286 } else
1287 End = Asm->getFunctionEnd();
1289 // If the last range end is our begin, just extend the last range.
1290 // Otherwise make a new range.
1291 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R =
1292 Var.DefRanges.back().Ranges;
1293 if (!R.empty() && R.back().second == Begin)
1294 R.back().second = End;
1295 else
1296 R.emplace_back(Begin, End);
1298 // FIXME: Do more range combining.
1302 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
1303 DenseSet<InlinedEntity> Processed;
1304 // Grab the variable info that was squirreled away in the MMI side-table.
1305 collectVariableInfoFromMFTable(Processed);
1307 for (const auto &I : DbgValues) {
1308 InlinedEntity IV = I.first;
1309 if (Processed.count(IV))
1310 continue;
1311 const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first);
1312 const DILocation *InlinedAt = IV.second;
1314 // Instruction ranges, specifying where IV is accessible.
1315 const auto &Entries = I.second;
1317 LexicalScope *Scope = nullptr;
1318 if (InlinedAt)
1319 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
1320 else
1321 Scope = LScopes.findLexicalScope(DIVar->getScope());
1322 // If variable scope is not found then skip this variable.
1323 if (!Scope)
1324 continue;
1326 LocalVariable Var;
1327 Var.DIVar = DIVar;
1329 calculateRanges(Var, Entries);
1330 recordLocalVariable(std::move(Var), Scope);
1334 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) {
1335 const TargetSubtargetInfo &TSI = MF->getSubtarget();
1336 const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
1337 const MachineFrameInfo &MFI = MF->getFrameInfo();
1338 const Function &GV = MF->getFunction();
1339 auto Insertion = FnDebugInfo.insert({&GV, std::make_unique<FunctionInfo>()});
1340 assert(Insertion.second && "function already has info");
1341 CurFn = Insertion.first->second.get();
1342 CurFn->FuncId = NextFuncId++;
1343 CurFn->Begin = Asm->getFunctionBegin();
1345 // The S_FRAMEPROC record reports the stack size, and how many bytes of
1346 // callee-saved registers were used. For targets that don't use a PUSH
1347 // instruction (AArch64), this will be zero.
1348 CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters();
1349 CurFn->FrameSize = MFI.getStackSize();
1350 CurFn->OffsetAdjustment = MFI.getOffsetAdjustment();
1351 CurFn->HasStackRealignment = TRI->needsStackRealignment(*MF);
1353 // For this function S_FRAMEPROC record, figure out which codeview register
1354 // will be the frame pointer.
1355 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None.
1356 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None.
1357 if (CurFn->FrameSize > 0) {
1358 if (!TSI.getFrameLowering()->hasFP(*MF)) {
1359 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr;
1360 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr;
1361 } else {
1362 // If there is an FP, parameters are always relative to it.
1363 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr;
1364 if (CurFn->HasStackRealignment) {
1365 // If the stack needs realignment, locals are relative to SP or VFRAME.
1366 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr;
1367 } else {
1368 // Otherwise, locals are relative to EBP, and we probably have VLAs or
1369 // other stack adjustments.
1370 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr;
1375 // Compute other frame procedure options.
1376 FrameProcedureOptions FPO = FrameProcedureOptions::None;
1377 if (MFI.hasVarSizedObjects())
1378 FPO |= FrameProcedureOptions::HasAlloca;
1379 if (MF->exposesReturnsTwice())
1380 FPO |= FrameProcedureOptions::HasSetJmp;
1381 // FIXME: Set HasLongJmp if we ever track that info.
1382 if (MF->hasInlineAsm())
1383 FPO |= FrameProcedureOptions::HasInlineAssembly;
1384 if (GV.hasPersonalityFn()) {
1385 if (isAsynchronousEHPersonality(
1386 classifyEHPersonality(GV.getPersonalityFn())))
1387 FPO |= FrameProcedureOptions::HasStructuredExceptionHandling;
1388 else
1389 FPO |= FrameProcedureOptions::HasExceptionHandling;
1391 if (GV.hasFnAttribute(Attribute::InlineHint))
1392 FPO |= FrameProcedureOptions::MarkedInline;
1393 if (GV.hasFnAttribute(Attribute::Naked))
1394 FPO |= FrameProcedureOptions::Naked;
1395 if (MFI.hasStackProtectorIndex())
1396 FPO |= FrameProcedureOptions::SecurityChecks;
1397 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U);
1398 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U);
1399 if (Asm->TM.getOptLevel() != CodeGenOpt::None &&
1400 !GV.hasOptSize() && !GV.hasOptNone())
1401 FPO |= FrameProcedureOptions::OptimizedForSpeed;
1402 // FIXME: Set GuardCfg when it is implemented.
1403 CurFn->FrameProcOpts = FPO;
1405 OS.EmitCVFuncIdDirective(CurFn->FuncId);
1407 // Find the end of the function prolog. First known non-DBG_VALUE and
1408 // non-frame setup location marks the beginning of the function body.
1409 // FIXME: is there a simpler a way to do this? Can we just search
1410 // for the first instruction of the function, not the last of the prolog?
1411 DebugLoc PrologEndLoc;
1412 bool EmptyPrologue = true;
1413 for (const auto &MBB : *MF) {
1414 for (const auto &MI : MBB) {
1415 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1416 MI.getDebugLoc()) {
1417 PrologEndLoc = MI.getDebugLoc();
1418 break;
1419 } else if (!MI.isMetaInstruction()) {
1420 EmptyPrologue = false;
1425 // Record beginning of function if we have a non-empty prologue.
1426 if (PrologEndLoc && !EmptyPrologue) {
1427 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
1428 maybeRecordLocation(FnStartDL, MF);
1432 static bool shouldEmitUdt(const DIType *T) {
1433 if (!T)
1434 return false;
1436 // MSVC does not emit UDTs for typedefs that are scoped to classes.
1437 if (T->getTag() == dwarf::DW_TAG_typedef) {
1438 if (DIScope *Scope = T->getScope()) {
1439 switch (Scope->getTag()) {
1440 case dwarf::DW_TAG_structure_type:
1441 case dwarf::DW_TAG_class_type:
1442 case dwarf::DW_TAG_union_type:
1443 return false;
1448 while (true) {
1449 if (!T || T->isForwardDecl())
1450 return false;
1452 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T);
1453 if (!DT)
1454 return true;
1455 T = DT->getBaseType();
1457 return true;
1460 void CodeViewDebug::addToUDTs(const DIType *Ty) {
1461 // Don't record empty UDTs.
1462 if (Ty->getName().empty())
1463 return;
1464 if (!shouldEmitUdt(Ty))
1465 return;
1467 SmallVector<StringRef, 5> QualifiedNameComponents;
1468 const DISubprogram *ClosestSubprogram =
1469 getQualifiedNameComponents(Ty->getScope(), QualifiedNameComponents);
1471 std::string FullyQualifiedName =
1472 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty));
1474 if (ClosestSubprogram == nullptr) {
1475 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1476 } else if (ClosestSubprogram == CurrentSubprogram) {
1477 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1480 // TODO: What if the ClosestSubprogram is neither null or the current
1481 // subprogram? Currently, the UDT just gets dropped on the floor.
1483 // The current behavior is not desirable. To get maximal fidelity, we would
1484 // need to perform all type translation before beginning emission of .debug$S
1485 // and then make LocalUDTs a member of FunctionInfo
1488 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
1489 // Generic dispatch for lowering an unknown type.
1490 switch (Ty->getTag()) {
1491 case dwarf::DW_TAG_array_type:
1492 return lowerTypeArray(cast<DICompositeType>(Ty));
1493 case dwarf::DW_TAG_typedef:
1494 return lowerTypeAlias(cast<DIDerivedType>(Ty));
1495 case dwarf::DW_TAG_base_type:
1496 return lowerTypeBasic(cast<DIBasicType>(Ty));
1497 case dwarf::DW_TAG_pointer_type:
1498 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
1499 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
1500 LLVM_FALLTHROUGH;
1501 case dwarf::DW_TAG_reference_type:
1502 case dwarf::DW_TAG_rvalue_reference_type:
1503 return lowerTypePointer(cast<DIDerivedType>(Ty));
1504 case dwarf::DW_TAG_ptr_to_member_type:
1505 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
1506 case dwarf::DW_TAG_restrict_type:
1507 case dwarf::DW_TAG_const_type:
1508 case dwarf::DW_TAG_volatile_type:
1509 // TODO: add support for DW_TAG_atomic_type here
1510 return lowerTypeModifier(cast<DIDerivedType>(Ty));
1511 case dwarf::DW_TAG_subroutine_type:
1512 if (ClassTy) {
1513 // The member function type of a member function pointer has no
1514 // ThisAdjustment.
1515 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
1516 /*ThisAdjustment=*/0,
1517 /*IsStaticMethod=*/false);
1519 return lowerTypeFunction(cast<DISubroutineType>(Ty));
1520 case dwarf::DW_TAG_enumeration_type:
1521 return lowerTypeEnum(cast<DICompositeType>(Ty));
1522 case dwarf::DW_TAG_class_type:
1523 case dwarf::DW_TAG_structure_type:
1524 return lowerTypeClass(cast<DICompositeType>(Ty));
1525 case dwarf::DW_TAG_union_type:
1526 return lowerTypeUnion(cast<DICompositeType>(Ty));
1527 case dwarf::DW_TAG_unspecified_type:
1528 if (Ty->getName() == "decltype(nullptr)")
1529 return TypeIndex::NullptrT();
1530 return TypeIndex::None();
1531 default:
1532 // Use the null type index.
1533 return TypeIndex();
1537 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
1538 TypeIndex UnderlyingTypeIndex = getTypeIndex(Ty->getBaseType());
1539 StringRef TypeName = Ty->getName();
1541 addToUDTs(Ty);
1543 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
1544 TypeName == "HRESULT")
1545 return TypeIndex(SimpleTypeKind::HResult);
1546 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
1547 TypeName == "wchar_t")
1548 return TypeIndex(SimpleTypeKind::WideCharacter);
1550 return UnderlyingTypeIndex;
1553 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
1554 const DIType *ElementType = Ty->getBaseType();
1555 TypeIndex ElementTypeIndex = getTypeIndex(ElementType);
1556 // IndexType is size_t, which depends on the bitness of the target.
1557 TypeIndex IndexType = getPointerSizeInBytes() == 8
1558 ? TypeIndex(SimpleTypeKind::UInt64Quad)
1559 : TypeIndex(SimpleTypeKind::UInt32Long);
1561 uint64_t ElementSize = getBaseTypeSize(ElementType) / 8;
1563 // Add subranges to array type.
1564 DINodeArray Elements = Ty->getElements();
1565 for (int i = Elements.size() - 1; i >= 0; --i) {
1566 const DINode *Element = Elements[i];
1567 assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1569 const DISubrange *Subrange = cast<DISubrange>(Element);
1570 assert(Subrange->getLowerBound() == 0 &&
1571 "codeview doesn't support subranges with lower bounds");
1572 int64_t Count = -1;
1573 if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt*>())
1574 Count = CI->getSExtValue();
1576 // Forward declarations of arrays without a size and VLAs use a count of -1.
1577 // Emit a count of zero in these cases to match what MSVC does for arrays
1578 // without a size. MSVC doesn't support VLAs, so it's not clear what we
1579 // should do for them even if we could distinguish them.
1580 if (Count == -1)
1581 Count = 0;
1583 // Update the element size and element type index for subsequent subranges.
1584 ElementSize *= Count;
1586 // If this is the outermost array, use the size from the array. It will be
1587 // more accurate if we had a VLA or an incomplete element type size.
1588 uint64_t ArraySize =
1589 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
1591 StringRef Name = (i == 0) ? Ty->getName() : "";
1592 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name);
1593 ElementTypeIndex = TypeTable.writeLeafType(AR);
1596 return ElementTypeIndex;
1599 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1600 TypeIndex Index;
1601 dwarf::TypeKind Kind;
1602 uint32_t ByteSize;
1604 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1605 ByteSize = Ty->getSizeInBits() / 8;
1607 SimpleTypeKind STK = SimpleTypeKind::None;
1608 switch (Kind) {
1609 case dwarf::DW_ATE_address:
1610 // FIXME: Translate
1611 break;
1612 case dwarf::DW_ATE_boolean:
1613 switch (ByteSize) {
1614 case 1: STK = SimpleTypeKind::Boolean8; break;
1615 case 2: STK = SimpleTypeKind::Boolean16; break;
1616 case 4: STK = SimpleTypeKind::Boolean32; break;
1617 case 8: STK = SimpleTypeKind::Boolean64; break;
1618 case 16: STK = SimpleTypeKind::Boolean128; break;
1620 break;
1621 case dwarf::DW_ATE_complex_float:
1622 switch (ByteSize) {
1623 case 2: STK = SimpleTypeKind::Complex16; break;
1624 case 4: STK = SimpleTypeKind::Complex32; break;
1625 case 8: STK = SimpleTypeKind::Complex64; break;
1626 case 10: STK = SimpleTypeKind::Complex80; break;
1627 case 16: STK = SimpleTypeKind::Complex128; break;
1629 break;
1630 case dwarf::DW_ATE_float:
1631 switch (ByteSize) {
1632 case 2: STK = SimpleTypeKind::Float16; break;
1633 case 4: STK = SimpleTypeKind::Float32; break;
1634 case 6: STK = SimpleTypeKind::Float48; break;
1635 case 8: STK = SimpleTypeKind::Float64; break;
1636 case 10: STK = SimpleTypeKind::Float80; break;
1637 case 16: STK = SimpleTypeKind::Float128; break;
1639 break;
1640 case dwarf::DW_ATE_signed:
1641 switch (ByteSize) {
1642 case 1: STK = SimpleTypeKind::SignedCharacter; break;
1643 case 2: STK = SimpleTypeKind::Int16Short; break;
1644 case 4: STK = SimpleTypeKind::Int32; break;
1645 case 8: STK = SimpleTypeKind::Int64Quad; break;
1646 case 16: STK = SimpleTypeKind::Int128Oct; break;
1648 break;
1649 case dwarf::DW_ATE_unsigned:
1650 switch (ByteSize) {
1651 case 1: STK = SimpleTypeKind::UnsignedCharacter; break;
1652 case 2: STK = SimpleTypeKind::UInt16Short; break;
1653 case 4: STK = SimpleTypeKind::UInt32; break;
1654 case 8: STK = SimpleTypeKind::UInt64Quad; break;
1655 case 16: STK = SimpleTypeKind::UInt128Oct; break;
1657 break;
1658 case dwarf::DW_ATE_UTF:
1659 switch (ByteSize) {
1660 case 2: STK = SimpleTypeKind::Character16; break;
1661 case 4: STK = SimpleTypeKind::Character32; break;
1663 break;
1664 case dwarf::DW_ATE_signed_char:
1665 if (ByteSize == 1)
1666 STK = SimpleTypeKind::SignedCharacter;
1667 break;
1668 case dwarf::DW_ATE_unsigned_char:
1669 if (ByteSize == 1)
1670 STK = SimpleTypeKind::UnsignedCharacter;
1671 break;
1672 default:
1673 break;
1676 // Apply some fixups based on the source-level type name.
1677 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
1678 STK = SimpleTypeKind::Int32Long;
1679 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
1680 STK = SimpleTypeKind::UInt32Long;
1681 if (STK == SimpleTypeKind::UInt16Short &&
1682 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1683 STK = SimpleTypeKind::WideCharacter;
1684 if ((STK == SimpleTypeKind::SignedCharacter ||
1685 STK == SimpleTypeKind::UnsignedCharacter) &&
1686 Ty->getName() == "char")
1687 STK = SimpleTypeKind::NarrowCharacter;
1689 return TypeIndex(STK);
1692 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty,
1693 PointerOptions PO) {
1694 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1696 // Pointers to simple types without any options can use SimpleTypeMode, rather
1697 // than having a dedicated pointer type record.
1698 if (PointeeTI.isSimple() && PO == PointerOptions::None &&
1699 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1700 Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1701 SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1702 ? SimpleTypeMode::NearPointer64
1703 : SimpleTypeMode::NearPointer32;
1704 return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1707 PointerKind PK =
1708 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1709 PointerMode PM = PointerMode::Pointer;
1710 switch (Ty->getTag()) {
1711 default: llvm_unreachable("not a pointer tag type");
1712 case dwarf::DW_TAG_pointer_type:
1713 PM = PointerMode::Pointer;
1714 break;
1715 case dwarf::DW_TAG_reference_type:
1716 PM = PointerMode::LValueReference;
1717 break;
1718 case dwarf::DW_TAG_rvalue_reference_type:
1719 PM = PointerMode::RValueReference;
1720 break;
1723 if (Ty->isObjectPointer())
1724 PO |= PointerOptions::Const;
1726 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1727 return TypeTable.writeLeafType(PR);
1730 static PointerToMemberRepresentation
1731 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1732 // SizeInBytes being zero generally implies that the member pointer type was
1733 // incomplete, which can happen if it is part of a function prototype. In this
1734 // case, use the unknown model instead of the general model.
1735 if (IsPMF) {
1736 switch (Flags & DINode::FlagPtrToMemberRep) {
1737 case 0:
1738 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1739 : PointerToMemberRepresentation::GeneralFunction;
1740 case DINode::FlagSingleInheritance:
1741 return PointerToMemberRepresentation::SingleInheritanceFunction;
1742 case DINode::FlagMultipleInheritance:
1743 return PointerToMemberRepresentation::MultipleInheritanceFunction;
1744 case DINode::FlagVirtualInheritance:
1745 return PointerToMemberRepresentation::VirtualInheritanceFunction;
1747 } else {
1748 switch (Flags & DINode::FlagPtrToMemberRep) {
1749 case 0:
1750 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1751 : PointerToMemberRepresentation::GeneralData;
1752 case DINode::FlagSingleInheritance:
1753 return PointerToMemberRepresentation::SingleInheritanceData;
1754 case DINode::FlagMultipleInheritance:
1755 return PointerToMemberRepresentation::MultipleInheritanceData;
1756 case DINode::FlagVirtualInheritance:
1757 return PointerToMemberRepresentation::VirtualInheritanceData;
1760 llvm_unreachable("invalid ptr to member representation");
1763 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty,
1764 PointerOptions PO) {
1765 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1766 TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1767 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType());
1768 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1769 : PointerKind::Near32;
1770 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1771 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1772 : PointerMode::PointerToDataMember;
1774 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1775 uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1776 MemberPointerInfo MPI(
1777 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1778 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1779 return TypeTable.writeLeafType(PR);
1782 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1783 /// have a translation, use the NearC convention.
1784 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1785 switch (DwarfCC) {
1786 case dwarf::DW_CC_normal: return CallingConvention::NearC;
1787 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1788 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall;
1789 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall;
1790 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal;
1791 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector;
1793 return CallingConvention::NearC;
1796 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1797 ModifierOptions Mods = ModifierOptions::None;
1798 PointerOptions PO = PointerOptions::None;
1799 bool IsModifier = true;
1800 const DIType *BaseTy = Ty;
1801 while (IsModifier && BaseTy) {
1802 // FIXME: Need to add DWARF tags for __unaligned and _Atomic
1803 switch (BaseTy->getTag()) {
1804 case dwarf::DW_TAG_const_type:
1805 Mods |= ModifierOptions::Const;
1806 PO |= PointerOptions::Const;
1807 break;
1808 case dwarf::DW_TAG_volatile_type:
1809 Mods |= ModifierOptions::Volatile;
1810 PO |= PointerOptions::Volatile;
1811 break;
1812 case dwarf::DW_TAG_restrict_type:
1813 // Only pointer types be marked with __restrict. There is no known flag
1814 // for __restrict in LF_MODIFIER records.
1815 PO |= PointerOptions::Restrict;
1816 break;
1817 default:
1818 IsModifier = false;
1819 break;
1821 if (IsModifier)
1822 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType();
1825 // Check if the inner type will use an LF_POINTER record. If so, the
1826 // qualifiers will go in the LF_POINTER record. This comes up for types like
1827 // 'int *const' and 'int *__restrict', not the more common cases like 'const
1828 // char *'.
1829 if (BaseTy) {
1830 switch (BaseTy->getTag()) {
1831 case dwarf::DW_TAG_pointer_type:
1832 case dwarf::DW_TAG_reference_type:
1833 case dwarf::DW_TAG_rvalue_reference_type:
1834 return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO);
1835 case dwarf::DW_TAG_ptr_to_member_type:
1836 return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO);
1837 default:
1838 break;
1842 TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1844 // Return the base type index if there aren't any modifiers. For example, the
1845 // metadata could contain restrict wrappers around non-pointer types.
1846 if (Mods == ModifierOptions::None)
1847 return ModifiedTI;
1849 ModifierRecord MR(ModifiedTI, Mods);
1850 return TypeTable.writeLeafType(MR);
1853 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1854 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1855 for (const DIType *ArgType : Ty->getTypeArray())
1856 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgType));
1858 // MSVC uses type none for variadic argument.
1859 if (ReturnAndArgTypeIndices.size() > 1 &&
1860 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) {
1861 ReturnAndArgTypeIndices.back() = TypeIndex::None();
1863 TypeIndex ReturnTypeIndex = TypeIndex::Void();
1864 ArrayRef<TypeIndex> ArgTypeIndices = None;
1865 if (!ReturnAndArgTypeIndices.empty()) {
1866 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1867 ReturnTypeIndex = ReturnAndArgTypesRef.front();
1868 ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1871 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1872 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
1874 CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1876 FunctionOptions FO = getFunctionOptions(Ty);
1877 ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(),
1878 ArgListIndex);
1879 return TypeTable.writeLeafType(Procedure);
1882 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1883 const DIType *ClassTy,
1884 int ThisAdjustment,
1885 bool IsStaticMethod,
1886 FunctionOptions FO) {
1887 // Lower the containing class type.
1888 TypeIndex ClassType = getTypeIndex(ClassTy);
1890 DITypeRefArray ReturnAndArgs = Ty->getTypeArray();
1892 unsigned Index = 0;
1893 SmallVector<TypeIndex, 8> ArgTypeIndices;
1894 TypeIndex ReturnTypeIndex = TypeIndex::Void();
1895 if (ReturnAndArgs.size() > Index) {
1896 ReturnTypeIndex = getTypeIndex(ReturnAndArgs[Index++]);
1899 // If the first argument is a pointer type and this isn't a static method,
1900 // treat it as the special 'this' parameter, which is encoded separately from
1901 // the arguments.
1902 TypeIndex ThisTypeIndex;
1903 if (!IsStaticMethod && ReturnAndArgs.size() > Index) {
1904 if (const DIDerivedType *PtrTy =
1905 dyn_cast_or_null<DIDerivedType>(ReturnAndArgs[Index])) {
1906 if (PtrTy->getTag() == dwarf::DW_TAG_pointer_type) {
1907 ThisTypeIndex = getTypeIndexForThisPtr(PtrTy, Ty);
1908 Index++;
1913 while (Index < ReturnAndArgs.size())
1914 ArgTypeIndices.push_back(getTypeIndex(ReturnAndArgs[Index++]));
1916 // MSVC uses type none for variadic argument.
1917 if (!ArgTypeIndices.empty() && ArgTypeIndices.back() == TypeIndex::Void())
1918 ArgTypeIndices.back() = TypeIndex::None();
1920 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1921 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
1923 CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1925 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO,
1926 ArgTypeIndices.size(), ArgListIndex, ThisAdjustment);
1927 return TypeTable.writeLeafType(MFR);
1930 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
1931 unsigned VSlotCount =
1932 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize());
1933 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
1935 VFTableShapeRecord VFTSR(Slots);
1936 return TypeTable.writeLeafType(VFTSR);
1939 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
1940 switch (Flags & DINode::FlagAccessibility) {
1941 case DINode::FlagPrivate: return MemberAccess::Private;
1942 case DINode::FlagPublic: return MemberAccess::Public;
1943 case DINode::FlagProtected: return MemberAccess::Protected;
1944 case 0:
1945 // If there was no explicit access control, provide the default for the tag.
1946 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
1947 : MemberAccess::Public;
1949 llvm_unreachable("access flags are exclusive");
1952 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
1953 if (SP->isArtificial())
1954 return MethodOptions::CompilerGenerated;
1956 // FIXME: Handle other MethodOptions.
1958 return MethodOptions::None;
1961 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
1962 bool Introduced) {
1963 if (SP->getFlags() & DINode::FlagStaticMember)
1964 return MethodKind::Static;
1966 switch (SP->getVirtuality()) {
1967 case dwarf::DW_VIRTUALITY_none:
1968 break;
1969 case dwarf::DW_VIRTUALITY_virtual:
1970 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
1971 case dwarf::DW_VIRTUALITY_pure_virtual:
1972 return Introduced ? MethodKind::PureIntroducingVirtual
1973 : MethodKind::PureVirtual;
1974 default:
1975 llvm_unreachable("unhandled virtuality case");
1978 return MethodKind::Vanilla;
1981 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
1982 switch (Ty->getTag()) {
1983 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class;
1984 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
1986 llvm_unreachable("unexpected tag");
1989 /// Return ClassOptions that should be present on both the forward declaration
1990 /// and the defintion of a tag type.
1991 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
1992 ClassOptions CO = ClassOptions::None;
1994 // MSVC always sets this flag, even for local types. Clang doesn't always
1995 // appear to give every type a linkage name, which may be problematic for us.
1996 // FIXME: Investigate the consequences of not following them here.
1997 if (!Ty->getIdentifier().empty())
1998 CO |= ClassOptions::HasUniqueName;
2000 // Put the Nested flag on a type if it appears immediately inside a tag type.
2001 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
2002 // here. That flag is only set on definitions, and not forward declarations.
2003 const DIScope *ImmediateScope = Ty->getScope();
2004 if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
2005 CO |= ClassOptions::Nested;
2007 // Put the Scoped flag on function-local types. MSVC puts this flag for enum
2008 // type only when it has an immediate function scope. Clang never puts enums
2009 // inside DILexicalBlock scopes. Enum types, as generated by clang, are
2010 // always in function, class, or file scopes.
2011 if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) {
2012 if (ImmediateScope && isa<DISubprogram>(ImmediateScope))
2013 CO |= ClassOptions::Scoped;
2014 } else {
2015 for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
2016 Scope = Scope->getScope()) {
2017 if (isa<DISubprogram>(Scope)) {
2018 CO |= ClassOptions::Scoped;
2019 break;
2024 return CO;
2027 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) {
2028 switch (Ty->getTag()) {
2029 case dwarf::DW_TAG_class_type:
2030 case dwarf::DW_TAG_structure_type:
2031 case dwarf::DW_TAG_union_type:
2032 case dwarf::DW_TAG_enumeration_type:
2033 break;
2034 default:
2035 return;
2038 if (const auto *File = Ty->getFile()) {
2039 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File));
2040 TypeIndex SIDI = TypeTable.writeLeafType(SIDR);
2042 UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine());
2043 TypeTable.writeLeafType(USLR);
2047 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
2048 ClassOptions CO = getCommonClassOptions(Ty);
2049 TypeIndex FTI;
2050 unsigned EnumeratorCount = 0;
2052 if (Ty->isForwardDecl()) {
2053 CO |= ClassOptions::ForwardReference;
2054 } else {
2055 ContinuationRecordBuilder ContinuationBuilder;
2056 ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
2057 for (const DINode *Element : Ty->getElements()) {
2058 // We assume that the frontend provides all members in source declaration
2059 // order, which is what MSVC does.
2060 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
2061 EnumeratorRecord ER(MemberAccess::Public,
2062 APSInt::getUnsigned(Enumerator->getValue()),
2063 Enumerator->getName());
2064 ContinuationBuilder.writeMemberType(ER);
2065 EnumeratorCount++;
2068 FTI = TypeTable.insertRecord(ContinuationBuilder);
2071 std::string FullName = getFullyQualifiedName(Ty);
2073 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(),
2074 getTypeIndex(Ty->getBaseType()));
2075 TypeIndex EnumTI = TypeTable.writeLeafType(ER);
2077 addUDTSrcLine(Ty, EnumTI);
2079 return EnumTI;
2082 //===----------------------------------------------------------------------===//
2083 // ClassInfo
2084 //===----------------------------------------------------------------------===//
2086 struct llvm::ClassInfo {
2087 struct MemberInfo {
2088 const DIDerivedType *MemberTypeNode;
2089 uint64_t BaseOffset;
2091 // [MemberInfo]
2092 using MemberList = std::vector<MemberInfo>;
2094 using MethodsList = TinyPtrVector<const DISubprogram *>;
2095 // MethodName -> MethodsList
2096 using MethodsMap = MapVector<MDString *, MethodsList>;
2098 /// Base classes.
2099 std::vector<const DIDerivedType *> Inheritance;
2101 /// Direct members.
2102 MemberList Members;
2103 // Direct overloaded methods gathered by name.
2104 MethodsMap Methods;
2106 TypeIndex VShapeTI;
2108 std::vector<const DIType *> NestedTypes;
2111 void CodeViewDebug::clear() {
2112 assert(CurFn == nullptr);
2113 FileIdMap.clear();
2114 FnDebugInfo.clear();
2115 FileToFilepathMap.clear();
2116 LocalUDTs.clear();
2117 GlobalUDTs.clear();
2118 TypeIndices.clear();
2119 CompleteTypeIndices.clear();
2120 ScopeGlobals.clear();
2123 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
2124 const DIDerivedType *DDTy) {
2125 if (!DDTy->getName().empty()) {
2126 Info.Members.push_back({DDTy, 0});
2127 return;
2130 // An unnamed member may represent a nested struct or union. Attempt to
2131 // interpret the unnamed member as a DICompositeType possibly wrapped in
2132 // qualifier types. Add all the indirect fields to the current record if that
2133 // succeeds, and drop the member if that fails.
2134 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
2135 uint64_t Offset = DDTy->getOffsetInBits();
2136 const DIType *Ty = DDTy->getBaseType();
2137 bool FullyResolved = false;
2138 while (!FullyResolved) {
2139 switch (Ty->getTag()) {
2140 case dwarf::DW_TAG_const_type:
2141 case dwarf::DW_TAG_volatile_type:
2142 // FIXME: we should apply the qualifier types to the indirect fields
2143 // rather than dropping them.
2144 Ty = cast<DIDerivedType>(Ty)->getBaseType();
2145 break;
2146 default:
2147 FullyResolved = true;
2148 break;
2152 const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty);
2153 if (!DCTy)
2154 return;
2156 ClassInfo NestedInfo = collectClassInfo(DCTy);
2157 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
2158 Info.Members.push_back(
2159 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
2162 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
2163 ClassInfo Info;
2164 // Add elements to structure type.
2165 DINodeArray Elements = Ty->getElements();
2166 for (auto *Element : Elements) {
2167 // We assume that the frontend provides all members in source declaration
2168 // order, which is what MSVC does.
2169 if (!Element)
2170 continue;
2171 if (auto *SP = dyn_cast<DISubprogram>(Element)) {
2172 Info.Methods[SP->getRawName()].push_back(SP);
2173 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
2174 if (DDTy->getTag() == dwarf::DW_TAG_member) {
2175 collectMemberInfo(Info, DDTy);
2176 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
2177 Info.Inheritance.push_back(DDTy);
2178 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
2179 DDTy->getName() == "__vtbl_ptr_type") {
2180 Info.VShapeTI = getTypeIndex(DDTy);
2181 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) {
2182 Info.NestedTypes.push_back(DDTy);
2183 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
2184 // Ignore friend members. It appears that MSVC emitted info about
2185 // friends in the past, but modern versions do not.
2187 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
2188 Info.NestedTypes.push_back(Composite);
2190 // Skip other unrecognized kinds of elements.
2192 return Info;
2195 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) {
2196 // This routine is used by lowerTypeClass and lowerTypeUnion to determine
2197 // if a complete type should be emitted instead of a forward reference.
2198 return Ty->getName().empty() && Ty->getIdentifier().empty() &&
2199 !Ty->isForwardDecl();
2202 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
2203 // Emit the complete type for unnamed structs. C++ classes with methods
2204 // which have a circular reference back to the class type are expected to
2205 // be named by the front-end and should not be "unnamed". C unnamed
2206 // structs should not have circular references.
2207 if (shouldAlwaysEmitCompleteClassType(Ty)) {
2208 // If this unnamed complete type is already in the process of being defined
2209 // then the description of the type is malformed and cannot be emitted
2210 // into CodeView correctly so report a fatal error.
2211 auto I = CompleteTypeIndices.find(Ty);
2212 if (I != CompleteTypeIndices.end() && I->second == TypeIndex())
2213 report_fatal_error("cannot debug circular reference to unnamed type");
2214 return getCompleteTypeIndex(Ty);
2217 // First, construct the forward decl. Don't look into Ty to compute the
2218 // forward decl options, since it might not be available in all TUs.
2219 TypeRecordKind Kind = getRecordKind(Ty);
2220 ClassOptions CO =
2221 ClassOptions::ForwardReference | getCommonClassOptions(Ty);
2222 std::string FullName = getFullyQualifiedName(Ty);
2223 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0,
2224 FullName, Ty->getIdentifier());
2225 TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR);
2226 if (!Ty->isForwardDecl())
2227 DeferredCompleteTypes.push_back(Ty);
2228 return FwdDeclTI;
2231 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
2232 // Construct the field list and complete type record.
2233 TypeRecordKind Kind = getRecordKind(Ty);
2234 ClassOptions CO = getCommonClassOptions(Ty);
2235 TypeIndex FieldTI;
2236 TypeIndex VShapeTI;
2237 unsigned FieldCount;
2238 bool ContainsNestedClass;
2239 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
2240 lowerRecordFieldList(Ty);
2242 if (ContainsNestedClass)
2243 CO |= ClassOptions::ContainsNestedClass;
2245 // MSVC appears to set this flag by searching any destructor or method with
2246 // FunctionOptions::Constructor among the emitted members. Clang AST has all
2247 // the members, however special member functions are not yet emitted into
2248 // debug information. For now checking a class's non-triviality seems enough.
2249 // FIXME: not true for a nested unnamed struct.
2250 if (isNonTrivial(Ty))
2251 CO |= ClassOptions::HasConstructorOrDestructor;
2253 std::string FullName = getFullyQualifiedName(Ty);
2255 uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
2257 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI,
2258 SizeInBytes, FullName, Ty->getIdentifier());
2259 TypeIndex ClassTI = TypeTable.writeLeafType(CR);
2261 addUDTSrcLine(Ty, ClassTI);
2263 addToUDTs(Ty);
2265 return ClassTI;
2268 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
2269 // Emit the complete type for unnamed unions.
2270 if (shouldAlwaysEmitCompleteClassType(Ty))
2271 return getCompleteTypeIndex(Ty);
2273 ClassOptions CO =
2274 ClassOptions::ForwardReference | getCommonClassOptions(Ty);
2275 std::string FullName = getFullyQualifiedName(Ty);
2276 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier());
2277 TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR);
2278 if (!Ty->isForwardDecl())
2279 DeferredCompleteTypes.push_back(Ty);
2280 return FwdDeclTI;
2283 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
2284 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
2285 TypeIndex FieldTI;
2286 unsigned FieldCount;
2287 bool ContainsNestedClass;
2288 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
2289 lowerRecordFieldList(Ty);
2291 if (ContainsNestedClass)
2292 CO |= ClassOptions::ContainsNestedClass;
2294 uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
2295 std::string FullName = getFullyQualifiedName(Ty);
2297 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName,
2298 Ty->getIdentifier());
2299 TypeIndex UnionTI = TypeTable.writeLeafType(UR);
2301 addUDTSrcLine(Ty, UnionTI);
2303 addToUDTs(Ty);
2305 return UnionTI;
2308 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
2309 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
2310 // Manually count members. MSVC appears to count everything that generates a
2311 // field list record. Each individual overload in a method overload group
2312 // contributes to this count, even though the overload group is a single field
2313 // list record.
2314 unsigned MemberCount = 0;
2315 ClassInfo Info = collectClassInfo(Ty);
2316 ContinuationRecordBuilder ContinuationBuilder;
2317 ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
2319 // Create base classes.
2320 for (const DIDerivedType *I : Info.Inheritance) {
2321 if (I->getFlags() & DINode::FlagVirtual) {
2322 // Virtual base.
2323 unsigned VBPtrOffset = I->getVBPtrOffset();
2324 // FIXME: Despite the accessor name, the offset is really in bytes.
2325 unsigned VBTableIndex = I->getOffsetInBits() / 4;
2326 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase
2327 ? TypeRecordKind::IndirectVirtualBaseClass
2328 : TypeRecordKind::VirtualBaseClass;
2329 VirtualBaseClassRecord VBCR(
2330 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()),
2331 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
2332 VBTableIndex);
2334 ContinuationBuilder.writeMemberType(VBCR);
2335 MemberCount++;
2336 } else {
2337 assert(I->getOffsetInBits() % 8 == 0 &&
2338 "bases must be on byte boundaries");
2339 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()),
2340 getTypeIndex(I->getBaseType()),
2341 I->getOffsetInBits() / 8);
2342 ContinuationBuilder.writeMemberType(BCR);
2343 MemberCount++;
2347 // Create members.
2348 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
2349 const DIDerivedType *Member = MemberInfo.MemberTypeNode;
2350 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
2351 StringRef MemberName = Member->getName();
2352 MemberAccess Access =
2353 translateAccessFlags(Ty->getTag(), Member->getFlags());
2355 if (Member->isStaticMember()) {
2356 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName);
2357 ContinuationBuilder.writeMemberType(SDMR);
2358 MemberCount++;
2359 continue;
2362 // Virtual function pointer member.
2363 if ((Member->getFlags() & DINode::FlagArtificial) &&
2364 Member->getName().startswith("_vptr$")) {
2365 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType()));
2366 ContinuationBuilder.writeMemberType(VFPR);
2367 MemberCount++;
2368 continue;
2371 // Data member.
2372 uint64_t MemberOffsetInBits =
2373 Member->getOffsetInBits() + MemberInfo.BaseOffset;
2374 if (Member->isBitField()) {
2375 uint64_t StartBitOffset = MemberOffsetInBits;
2376 if (const auto *CI =
2377 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
2378 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
2380 StartBitOffset -= MemberOffsetInBits;
2381 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(),
2382 StartBitOffset);
2383 MemberBaseType = TypeTable.writeLeafType(BFR);
2385 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
2386 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes,
2387 MemberName);
2388 ContinuationBuilder.writeMemberType(DMR);
2389 MemberCount++;
2392 // Create methods
2393 for (auto &MethodItr : Info.Methods) {
2394 StringRef Name = MethodItr.first->getString();
2396 std::vector<OneMethodRecord> Methods;
2397 for (const DISubprogram *SP : MethodItr.second) {
2398 TypeIndex MethodType = getMemberFunctionType(SP, Ty);
2399 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
2401 unsigned VFTableOffset = -1;
2402 if (Introduced)
2403 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
2405 Methods.push_back(OneMethodRecord(
2406 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()),
2407 translateMethodKindFlags(SP, Introduced),
2408 translateMethodOptionFlags(SP), VFTableOffset, Name));
2409 MemberCount++;
2411 assert(!Methods.empty() && "Empty methods map entry");
2412 if (Methods.size() == 1)
2413 ContinuationBuilder.writeMemberType(Methods[0]);
2414 else {
2415 // FIXME: Make this use its own ContinuationBuilder so that
2416 // MethodOverloadList can be split correctly.
2417 MethodOverloadListRecord MOLR(Methods);
2418 TypeIndex MethodList = TypeTable.writeLeafType(MOLR);
2420 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name);
2421 ContinuationBuilder.writeMemberType(OMR);
2425 // Create nested classes.
2426 for (const DIType *Nested : Info.NestedTypes) {
2427 NestedTypeRecord R(getTypeIndex(Nested), Nested->getName());
2428 ContinuationBuilder.writeMemberType(R);
2429 MemberCount++;
2432 TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder);
2433 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
2434 !Info.NestedTypes.empty());
2437 TypeIndex CodeViewDebug::getVBPTypeIndex() {
2438 if (!VBPType.getIndex()) {
2439 // Make a 'const int *' type.
2440 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
2441 TypeIndex ModifiedTI = TypeTable.writeLeafType(MR);
2443 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
2444 : PointerKind::Near32;
2445 PointerMode PM = PointerMode::Pointer;
2446 PointerOptions PO = PointerOptions::None;
2447 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
2448 VBPType = TypeTable.writeLeafType(PR);
2451 return VBPType;
2454 TypeIndex CodeViewDebug::getTypeIndex(const DIType *Ty, const DIType *ClassTy) {
2455 // The null DIType is the void type. Don't try to hash it.
2456 if (!Ty)
2457 return TypeIndex::Void();
2459 // Check if we've already translated this type. Don't try to do a
2460 // get-or-create style insertion that caches the hash lookup across the
2461 // lowerType call. It will update the TypeIndices map.
2462 auto I = TypeIndices.find({Ty, ClassTy});
2463 if (I != TypeIndices.end())
2464 return I->second;
2466 TypeLoweringScope S(*this);
2467 TypeIndex TI = lowerType(Ty, ClassTy);
2468 return recordTypeIndexForDINode(Ty, TI, ClassTy);
2471 codeview::TypeIndex
2472 CodeViewDebug::getTypeIndexForThisPtr(const DIDerivedType *PtrTy,
2473 const DISubroutineType *SubroutineTy) {
2474 assert(PtrTy->getTag() == dwarf::DW_TAG_pointer_type &&
2475 "this type must be a pointer type");
2477 PointerOptions Options = PointerOptions::None;
2478 if (SubroutineTy->getFlags() & DINode::DIFlags::FlagLValueReference)
2479 Options = PointerOptions::LValueRefThisPointer;
2480 else if (SubroutineTy->getFlags() & DINode::DIFlags::FlagRValueReference)
2481 Options = PointerOptions::RValueRefThisPointer;
2483 // Check if we've already translated this type. If there is no ref qualifier
2484 // on the function then we look up this pointer type with no associated class
2485 // so that the TypeIndex for the this pointer can be shared with the type
2486 // index for other pointers to this class type. If there is a ref qualifier
2487 // then we lookup the pointer using the subroutine as the parent type.
2488 auto I = TypeIndices.find({PtrTy, SubroutineTy});
2489 if (I != TypeIndices.end())
2490 return I->second;
2492 TypeLoweringScope S(*this);
2493 TypeIndex TI = lowerTypePointer(PtrTy, Options);
2494 return recordTypeIndexForDINode(PtrTy, TI, SubroutineTy);
2497 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(const DIType *Ty) {
2498 PointerRecord PR(getTypeIndex(Ty),
2499 getPointerSizeInBytes() == 8 ? PointerKind::Near64
2500 : PointerKind::Near32,
2501 PointerMode::LValueReference, PointerOptions::None,
2502 Ty->getSizeInBits() / 8);
2503 return TypeTable.writeLeafType(PR);
2506 TypeIndex CodeViewDebug::getCompleteTypeIndex(const DIType *Ty) {
2507 // The null DIType is the void type. Don't try to hash it.
2508 if (!Ty)
2509 return TypeIndex::Void();
2511 // Look through typedefs when getting the complete type index. Call
2512 // getTypeIndex on the typdef to ensure that any UDTs are accumulated and are
2513 // emitted only once.
2514 if (Ty->getTag() == dwarf::DW_TAG_typedef)
2515 (void)getTypeIndex(Ty);
2516 while (Ty->getTag() == dwarf::DW_TAG_typedef)
2517 Ty = cast<DIDerivedType>(Ty)->getBaseType();
2519 // If this is a non-record type, the complete type index is the same as the
2520 // normal type index. Just call getTypeIndex.
2521 switch (Ty->getTag()) {
2522 case dwarf::DW_TAG_class_type:
2523 case dwarf::DW_TAG_structure_type:
2524 case dwarf::DW_TAG_union_type:
2525 break;
2526 default:
2527 return getTypeIndex(Ty);
2530 const auto *CTy = cast<DICompositeType>(Ty);
2532 TypeLoweringScope S(*this);
2534 // Make sure the forward declaration is emitted first. It's unclear if this
2535 // is necessary, but MSVC does it, and we should follow suit until we can show
2536 // otherwise.
2537 // We only emit a forward declaration for named types.
2538 if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) {
2539 TypeIndex FwdDeclTI = getTypeIndex(CTy);
2541 // Just use the forward decl if we don't have complete type info. This
2542 // might happen if the frontend is using modules and expects the complete
2543 // definition to be emitted elsewhere.
2544 if (CTy->isForwardDecl())
2545 return FwdDeclTI;
2548 // Check if we've already translated the complete record type.
2549 // Insert the type with a null TypeIndex to signify that the type is currently
2550 // being lowered.
2551 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
2552 if (!InsertResult.second)
2553 return InsertResult.first->second;
2555 TypeIndex TI;
2556 switch (CTy->getTag()) {
2557 case dwarf::DW_TAG_class_type:
2558 case dwarf::DW_TAG_structure_type:
2559 TI = lowerCompleteTypeClass(CTy);
2560 break;
2561 case dwarf::DW_TAG_union_type:
2562 TI = lowerCompleteTypeUnion(CTy);
2563 break;
2564 default:
2565 llvm_unreachable("not a record");
2568 // Update the type index associated with this CompositeType. This cannot
2569 // use the 'InsertResult' iterator above because it is potentially
2570 // invalidated by map insertions which can occur while lowering the class
2571 // type above.
2572 CompleteTypeIndices[CTy] = TI;
2573 return TI;
2576 /// Emit all the deferred complete record types. Try to do this in FIFO order,
2577 /// and do this until fixpoint, as each complete record type typically
2578 /// references
2579 /// many other record types.
2580 void CodeViewDebug::emitDeferredCompleteTypes() {
2581 SmallVector<const DICompositeType *, 4> TypesToEmit;
2582 while (!DeferredCompleteTypes.empty()) {
2583 std::swap(DeferredCompleteTypes, TypesToEmit);
2584 for (const DICompositeType *RecordTy : TypesToEmit)
2585 getCompleteTypeIndex(RecordTy);
2586 TypesToEmit.clear();
2590 void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI,
2591 ArrayRef<LocalVariable> Locals) {
2592 // Get the sorted list of parameters and emit them first.
2593 SmallVector<const LocalVariable *, 6> Params;
2594 for (const LocalVariable &L : Locals)
2595 if (L.DIVar->isParameter())
2596 Params.push_back(&L);
2597 llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) {
2598 return L->DIVar->getArg() < R->DIVar->getArg();
2600 for (const LocalVariable *L : Params)
2601 emitLocalVariable(FI, *L);
2603 // Next emit all non-parameters in the order that we found them.
2604 for (const LocalVariable &L : Locals)
2605 if (!L.DIVar->isParameter())
2606 emitLocalVariable(FI, L);
2609 void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI,
2610 const LocalVariable &Var) {
2611 // LocalSym record, see SymbolRecord.h for more info.
2612 MCSymbol *LocalEnd = beginSymbolRecord(SymbolKind::S_LOCAL);
2614 LocalSymFlags Flags = LocalSymFlags::None;
2615 if (Var.DIVar->isParameter())
2616 Flags |= LocalSymFlags::IsParameter;
2617 if (Var.DefRanges.empty())
2618 Flags |= LocalSymFlags::IsOptimizedOut;
2620 OS.AddComment("TypeIndex");
2621 TypeIndex TI = Var.UseReferenceType
2622 ? getTypeIndexForReferenceTo(Var.DIVar->getType())
2623 : getCompleteTypeIndex(Var.DIVar->getType());
2624 OS.EmitIntValue(TI.getIndex(), 4);
2625 OS.AddComment("Flags");
2626 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2);
2627 // Truncate the name so we won't overflow the record length field.
2628 emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
2629 endSymbolRecord(LocalEnd);
2631 // Calculate the on disk prefix of the appropriate def range record. The
2632 // records and on disk formats are described in SymbolRecords.h. BytePrefix
2633 // should be big enough to hold all forms without memory allocation.
2634 SmallString<20> BytePrefix;
2635 for (const LocalVarDefRange &DefRange : Var.DefRanges) {
2636 BytePrefix.clear();
2637 if (DefRange.InMemory) {
2638 int Offset = DefRange.DataOffset;
2639 unsigned Reg = DefRange.CVRegister;
2641 // 32-bit x86 call sequences often use PUSH instructions, which disrupt
2642 // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0,
2643 // instead. In frames without stack realignment, $T0 will be the CFA.
2644 if (RegisterId(Reg) == RegisterId::ESP) {
2645 Reg = unsigned(RegisterId::VFRAME);
2646 Offset += FI.OffsetAdjustment;
2649 // If we can use the chosen frame pointer for the frame and this isn't a
2650 // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record.
2651 // Otherwise, use S_DEFRANGE_REGISTER_REL.
2652 EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU);
2653 if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None &&
2654 (bool(Flags & LocalSymFlags::IsParameter)
2655 ? (EncFP == FI.EncodedParamFramePtrReg)
2656 : (EncFP == FI.EncodedLocalFramePtrReg))) {
2657 DefRangeFramePointerRelHeader DRHdr;
2658 DRHdr.Offset = Offset;
2659 OS.EmitCVDefRangeDirective(DefRange.Ranges, DRHdr);
2660 } else {
2661 uint16_t RegRelFlags = 0;
2662 if (DefRange.IsSubfield) {
2663 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag |
2664 (DefRange.StructOffset
2665 << DefRangeRegisterRelSym::OffsetInParentShift);
2667 DefRangeRegisterRelHeader DRHdr;
2668 DRHdr.Register = Reg;
2669 DRHdr.Flags = RegRelFlags;
2670 DRHdr.BasePointerOffset = Offset;
2671 OS.EmitCVDefRangeDirective(DefRange.Ranges, DRHdr);
2673 } else {
2674 assert(DefRange.DataOffset == 0 && "unexpected offset into register");
2675 if (DefRange.IsSubfield) {
2676 DefRangeSubfieldRegisterHeader DRHdr;
2677 DRHdr.Register = DefRange.CVRegister;
2678 DRHdr.MayHaveNoName = 0;
2679 DRHdr.OffsetInParent = DefRange.StructOffset;
2680 OS.EmitCVDefRangeDirective(DefRange.Ranges, DRHdr);
2681 } else {
2682 DefRangeRegisterHeader DRHdr;
2683 DRHdr.Register = DefRange.CVRegister;
2684 DRHdr.MayHaveNoName = 0;
2685 OS.EmitCVDefRangeDirective(DefRange.Ranges, DRHdr);
2691 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks,
2692 const FunctionInfo& FI) {
2693 for (LexicalBlock *Block : Blocks)
2694 emitLexicalBlock(*Block, FI);
2697 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a
2698 /// lexical block scope.
2699 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block,
2700 const FunctionInfo& FI) {
2701 MCSymbol *RecordEnd = beginSymbolRecord(SymbolKind::S_BLOCK32);
2702 OS.AddComment("PtrParent");
2703 OS.EmitIntValue(0, 4); // PtrParent
2704 OS.AddComment("PtrEnd");
2705 OS.EmitIntValue(0, 4); // PtrEnd
2706 OS.AddComment("Code size");
2707 OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4); // Code Size
2708 OS.AddComment("Function section relative address");
2709 OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0); // Func Offset
2710 OS.AddComment("Function section index");
2711 OS.EmitCOFFSectionIndex(FI.Begin); // Func Symbol
2712 OS.AddComment("Lexical block name");
2713 emitNullTerminatedSymbolName(OS, Block.Name); // Name
2714 endSymbolRecord(RecordEnd);
2716 // Emit variables local to this lexical block.
2717 emitLocalVariableList(FI, Block.Locals);
2718 emitGlobalVariableList(Block.Globals);
2720 // Emit lexical blocks contained within this block.
2721 emitLexicalBlockList(Block.Children, FI);
2723 // Close the lexical block scope.
2724 emitEndSymbolRecord(SymbolKind::S_END);
2727 /// Convenience routine for collecting lexical block information for a list
2728 /// of lexical scopes.
2729 void CodeViewDebug::collectLexicalBlockInfo(
2730 SmallVectorImpl<LexicalScope *> &Scopes,
2731 SmallVectorImpl<LexicalBlock *> &Blocks,
2732 SmallVectorImpl<LocalVariable> &Locals,
2733 SmallVectorImpl<CVGlobalVariable> &Globals) {
2734 for (LexicalScope *Scope : Scopes)
2735 collectLexicalBlockInfo(*Scope, Blocks, Locals, Globals);
2738 /// Populate the lexical blocks and local variable lists of the parent with
2739 /// information about the specified lexical scope.
2740 void CodeViewDebug::collectLexicalBlockInfo(
2741 LexicalScope &Scope,
2742 SmallVectorImpl<LexicalBlock *> &ParentBlocks,
2743 SmallVectorImpl<LocalVariable> &ParentLocals,
2744 SmallVectorImpl<CVGlobalVariable> &ParentGlobals) {
2745 if (Scope.isAbstractScope())
2746 return;
2748 // Gather information about the lexical scope including local variables,
2749 // global variables, and address ranges.
2750 bool IgnoreScope = false;
2751 auto LI = ScopeVariables.find(&Scope);
2752 SmallVectorImpl<LocalVariable> *Locals =
2753 LI != ScopeVariables.end() ? &LI->second : nullptr;
2754 auto GI = ScopeGlobals.find(Scope.getScopeNode());
2755 SmallVectorImpl<CVGlobalVariable> *Globals =
2756 GI != ScopeGlobals.end() ? GI->second.get() : nullptr;
2757 const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode());
2758 const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges();
2760 // Ignore lexical scopes which do not contain variables.
2761 if (!Locals && !Globals)
2762 IgnoreScope = true;
2764 // Ignore lexical scopes which are not lexical blocks.
2765 if (!DILB)
2766 IgnoreScope = true;
2768 // Ignore scopes which have too many address ranges to represent in the
2769 // current CodeView format or do not have a valid address range.
2771 // For lexical scopes with multiple address ranges you may be tempted to
2772 // construct a single range covering every instruction where the block is
2773 // live and everything in between. Unfortunately, Visual Studio only
2774 // displays variables from the first matching lexical block scope. If the
2775 // first lexical block contains exception handling code or cold code which
2776 // is moved to the bottom of the routine creating a single range covering
2777 // nearly the entire routine, then it will hide all other lexical blocks
2778 // and the variables they contain.
2779 if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second))
2780 IgnoreScope = true;
2782 if (IgnoreScope) {
2783 // This scope can be safely ignored and eliminating it will reduce the
2784 // size of the debug information. Be sure to collect any variable and scope
2785 // information from the this scope or any of its children and collapse them
2786 // into the parent scope.
2787 if (Locals)
2788 ParentLocals.append(Locals->begin(), Locals->end());
2789 if (Globals)
2790 ParentGlobals.append(Globals->begin(), Globals->end());
2791 collectLexicalBlockInfo(Scope.getChildren(),
2792 ParentBlocks,
2793 ParentLocals,
2794 ParentGlobals);
2795 return;
2798 // Create a new CodeView lexical block for this lexical scope. If we've
2799 // seen this DILexicalBlock before then the scope tree is malformed and
2800 // we can handle this gracefully by not processing it a second time.
2801 auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()});
2802 if (!BlockInsertion.second)
2803 return;
2805 // Create a lexical block containing the variables and collect the the
2806 // lexical block information for the children.
2807 const InsnRange &Range = Ranges.front();
2808 assert(Range.first && Range.second);
2809 LexicalBlock &Block = BlockInsertion.first->second;
2810 Block.Begin = getLabelBeforeInsn(Range.first);
2811 Block.End = getLabelAfterInsn(Range.second);
2812 assert(Block.Begin && "missing label for scope begin");
2813 assert(Block.End && "missing label for scope end");
2814 Block.Name = DILB->getName();
2815 if (Locals)
2816 Block.Locals = std::move(*Locals);
2817 if (Globals)
2818 Block.Globals = std::move(*Globals);
2819 ParentBlocks.push_back(&Block);
2820 collectLexicalBlockInfo(Scope.getChildren(),
2821 Block.Children,
2822 Block.Locals,
2823 Block.Globals);
2826 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) {
2827 const Function &GV = MF->getFunction();
2828 assert(FnDebugInfo.count(&GV));
2829 assert(CurFn == FnDebugInfo[&GV].get());
2831 collectVariableInfo(GV.getSubprogram());
2833 // Build the lexical block structure to emit for this routine.
2834 if (LexicalScope *CFS = LScopes.getCurrentFunctionScope())
2835 collectLexicalBlockInfo(*CFS,
2836 CurFn->ChildBlocks,
2837 CurFn->Locals,
2838 CurFn->Globals);
2840 // Clear the scope and variable information from the map which will not be
2841 // valid after we have finished processing this routine. This also prepares
2842 // the map for the subsequent routine.
2843 ScopeVariables.clear();
2845 // Don't emit anything if we don't have any line tables.
2846 // Thunks are compiler-generated and probably won't have source correlation.
2847 if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) {
2848 FnDebugInfo.erase(&GV);
2849 CurFn = nullptr;
2850 return;
2853 CurFn->Annotations = MF->getCodeViewAnnotations();
2854 CurFn->HeapAllocSites = MF->getCodeViewHeapAllocSites();
2856 CurFn->End = Asm->getFunctionEnd();
2858 CurFn = nullptr;
2861 // Usable locations are valid with non-zero line numbers. A line number of zero
2862 // corresponds to optimized code that doesn't have a distinct source location.
2863 // In this case, we try to use the previous or next source location depending on
2864 // the context.
2865 static bool isUsableDebugLoc(DebugLoc DL) {
2866 return DL && DL.getLine() != 0;
2869 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
2870 DebugHandlerBase::beginInstruction(MI);
2872 // Ignore DBG_VALUE and DBG_LABEL locations and function prologue.
2873 if (!Asm || !CurFn || MI->isDebugInstr() ||
2874 MI->getFlag(MachineInstr::FrameSetup))
2875 return;
2877 // If the first instruction of a new MBB has no location, find the first
2878 // instruction with a location and use that.
2879 DebugLoc DL = MI->getDebugLoc();
2880 if (!isUsableDebugLoc(DL) && MI->getParent() != PrevInstBB) {
2881 for (const auto &NextMI : *MI->getParent()) {
2882 if (NextMI.isDebugInstr())
2883 continue;
2884 DL = NextMI.getDebugLoc();
2885 if (isUsableDebugLoc(DL))
2886 break;
2888 // FIXME: Handle the case where the BB has no valid locations. This would
2889 // probably require doing a real dataflow analysis.
2891 PrevInstBB = MI->getParent();
2893 // If we still don't have a debug location, don't record a location.
2894 if (!isUsableDebugLoc(DL))
2895 return;
2897 maybeRecordLocation(DL, Asm->MF);
2900 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) {
2901 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
2902 *EndLabel = MMI->getContext().createTempSymbol();
2903 OS.EmitIntValue(unsigned(Kind), 4);
2904 OS.AddComment("Subsection size");
2905 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
2906 OS.EmitLabel(BeginLabel);
2907 return EndLabel;
2910 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
2911 OS.EmitLabel(EndLabel);
2912 // Every subsection must be aligned to a 4-byte boundary.
2913 OS.EmitValueToAlignment(4);
2916 static StringRef getSymbolName(SymbolKind SymKind) {
2917 for (const EnumEntry<SymbolKind> &EE : getSymbolTypeNames())
2918 if (EE.Value == SymKind)
2919 return EE.Name;
2920 return "";
2923 MCSymbol *CodeViewDebug::beginSymbolRecord(SymbolKind SymKind) {
2924 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
2925 *EndLabel = MMI->getContext().createTempSymbol();
2926 OS.AddComment("Record length");
2927 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2);
2928 OS.EmitLabel(BeginLabel);
2929 if (OS.isVerboseAsm())
2930 OS.AddComment("Record kind: " + getSymbolName(SymKind));
2931 OS.EmitIntValue(unsigned(SymKind), 2);
2932 return EndLabel;
2935 void CodeViewDebug::endSymbolRecord(MCSymbol *SymEnd) {
2936 // MSVC does not pad out symbol records to four bytes, but LLVM does to avoid
2937 // an extra copy of every symbol record in LLD. This increases object file
2938 // size by less than 1% in the clang build, and is compatible with the Visual
2939 // C++ linker.
2940 OS.EmitValueToAlignment(4);
2941 OS.EmitLabel(SymEnd);
2944 void CodeViewDebug::emitEndSymbolRecord(SymbolKind EndKind) {
2945 OS.AddComment("Record length");
2946 OS.EmitIntValue(2, 2);
2947 if (OS.isVerboseAsm())
2948 OS.AddComment("Record kind: " + getSymbolName(EndKind));
2949 OS.EmitIntValue(unsigned(EndKind), 2); // Record Kind
2952 void CodeViewDebug::emitDebugInfoForUDTs(
2953 ArrayRef<std::pair<std::string, const DIType *>> UDTs) {
2954 for (const auto &UDT : UDTs) {
2955 const DIType *T = UDT.second;
2956 assert(shouldEmitUdt(T));
2958 MCSymbol *UDTRecordEnd = beginSymbolRecord(SymbolKind::S_UDT);
2959 OS.AddComment("Type");
2960 OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4);
2961 emitNullTerminatedSymbolName(OS, UDT.first);
2962 endSymbolRecord(UDTRecordEnd);
2966 void CodeViewDebug::collectGlobalVariableInfo() {
2967 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *>
2968 GlobalMap;
2969 for (const GlobalVariable &GV : MMI->getModule()->globals()) {
2970 SmallVector<DIGlobalVariableExpression *, 1> GVEs;
2971 GV.getDebugInfo(GVEs);
2972 for (const auto *GVE : GVEs)
2973 GlobalMap[GVE] = &GV;
2976 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2977 for (const MDNode *Node : CUs->operands()) {
2978 const auto *CU = cast<DICompileUnit>(Node);
2979 for (const auto *GVE : CU->getGlobalVariables()) {
2980 const DIGlobalVariable *DIGV = GVE->getVariable();
2981 const DIExpression *DIE = GVE->getExpression();
2983 // Emit constant global variables in a global symbol section.
2984 if (GlobalMap.count(GVE) == 0 && DIE->isConstant()) {
2985 CVGlobalVariable CVGV = {DIGV, DIE};
2986 GlobalVariables.emplace_back(std::move(CVGV));
2989 const auto *GV = GlobalMap.lookup(GVE);
2990 if (!GV || GV->isDeclarationForLinker())
2991 continue;
2993 DIScope *Scope = DIGV->getScope();
2994 SmallVector<CVGlobalVariable, 1> *VariableList;
2995 if (Scope && isa<DILocalScope>(Scope)) {
2996 // Locate a global variable list for this scope, creating one if
2997 // necessary.
2998 auto Insertion = ScopeGlobals.insert(
2999 {Scope, std::unique_ptr<GlobalVariableList>()});
3000 if (Insertion.second)
3001 Insertion.first->second = std::make_unique<GlobalVariableList>();
3002 VariableList = Insertion.first->second.get();
3003 } else if (GV->hasComdat())
3004 // Emit this global variable into a COMDAT section.
3005 VariableList = &ComdatVariables;
3006 else
3007 // Emit this global variable in a single global symbol section.
3008 VariableList = &GlobalVariables;
3009 CVGlobalVariable CVGV = {DIGV, GV};
3010 VariableList->emplace_back(std::move(CVGV));
3015 void CodeViewDebug::emitDebugInfoForGlobals() {
3016 // First, emit all globals that are not in a comdat in a single symbol
3017 // substream. MSVC doesn't like it if the substream is empty, so only open
3018 // it if we have at least one global to emit.
3019 switchToDebugSectionForSymbol(nullptr);
3020 if (!GlobalVariables.empty()) {
3021 OS.AddComment("Symbol subsection for globals");
3022 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
3023 emitGlobalVariableList(GlobalVariables);
3024 endCVSubsection(EndLabel);
3027 // Second, emit each global that is in a comdat into its own .debug$S
3028 // section along with its own symbol substream.
3029 for (const CVGlobalVariable &CVGV : ComdatVariables) {
3030 const GlobalVariable *GV = CVGV.GVInfo.get<const GlobalVariable *>();
3031 MCSymbol *GVSym = Asm->getSymbol(GV);
3032 OS.AddComment("Symbol subsection for " +
3033 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName())));
3034 switchToDebugSectionForSymbol(GVSym);
3035 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
3036 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
3037 emitDebugInfoForGlobal(CVGV);
3038 endCVSubsection(EndLabel);
3042 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
3043 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
3044 for (const MDNode *Node : CUs->operands()) {
3045 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
3046 if (DIType *RT = dyn_cast<DIType>(Ty)) {
3047 getTypeIndex(RT);
3048 // FIXME: Add to global/local DTU list.
3054 // Emit each global variable in the specified array.
3055 void CodeViewDebug::emitGlobalVariableList(ArrayRef<CVGlobalVariable> Globals) {
3056 for (const CVGlobalVariable &CVGV : Globals) {
3057 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
3058 emitDebugInfoForGlobal(CVGV);
3062 void CodeViewDebug::emitDebugInfoForGlobal(const CVGlobalVariable &CVGV) {
3063 const DIGlobalVariable *DIGV = CVGV.DIGV;
3064 if (const GlobalVariable *GV =
3065 CVGV.GVInfo.dyn_cast<const GlobalVariable *>()) {
3066 // DataSym record, see SymbolRecord.h for more info. Thread local data
3067 // happens to have the same format as global data.
3068 MCSymbol *GVSym = Asm->getSymbol(GV);
3069 SymbolKind DataSym = GV->isThreadLocal()
3070 ? (DIGV->isLocalToUnit() ? SymbolKind::S_LTHREAD32
3071 : SymbolKind::S_GTHREAD32)
3072 : (DIGV->isLocalToUnit() ? SymbolKind::S_LDATA32
3073 : SymbolKind::S_GDATA32);
3074 MCSymbol *DataEnd = beginSymbolRecord(DataSym);
3075 OS.AddComment("Type");
3076 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4);
3077 OS.AddComment("DataOffset");
3078 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0);
3079 OS.AddComment("Segment");
3080 OS.EmitCOFFSectionIndex(GVSym);
3081 OS.AddComment("Name");
3082 const unsigned LengthOfDataRecord = 12;
3083 emitNullTerminatedSymbolName(OS, DIGV->getName(), LengthOfDataRecord);
3084 endSymbolRecord(DataEnd);
3085 } else {
3086 // FIXME: Currently this only emits the global variables in the IR metadata.
3087 // This should also emit enums and static data members.
3088 const DIExpression *DIE = CVGV.GVInfo.get<const DIExpression *>();
3089 assert(DIE->isConstant() &&
3090 "Global constant variables must contain a constant expression.");
3091 uint64_t Val = DIE->getElement(1);
3093 MCSymbol *SConstantEnd = beginSymbolRecord(SymbolKind::S_CONSTANT);
3094 OS.AddComment("Type");
3095 OS.EmitIntValue(getTypeIndex(DIGV->getType()).getIndex(), 4);
3096 OS.AddComment("Value");
3098 // Encoded integers shouldn't need more than 10 bytes.
3099 uint8_t data[10];
3100 BinaryStreamWriter Writer(data, llvm::support::endianness::little);
3101 CodeViewRecordIO IO(Writer);
3102 cantFail(IO.mapEncodedInteger(Val));
3103 StringRef SRef((char *)data, Writer.getOffset());
3104 OS.EmitBinaryData(SRef);
3106 OS.AddComment("Name");
3107 const DIScope *Scope = DIGV->getScope();
3108 // For static data members, get the scope from the declaration.
3109 if (const auto *MemberDecl = dyn_cast_or_null<DIDerivedType>(
3110 DIGV->getRawStaticDataMemberDeclaration()))
3111 Scope = MemberDecl->getScope();
3112 emitNullTerminatedSymbolName(OS,
3113 getFullyQualifiedName(Scope, DIGV->getName()));
3114 endSymbolRecord(SConstantEnd);