[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / MC / MCAssembler.cpp
blobcf42fe85b8e5df584d1c1952591f26630345e71b
1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/MC/MCAssembler.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/ADT/Statistic.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/MC/MCAsmBackend.h"
17 #include "llvm/MC/MCAsmInfo.h"
18 #include "llvm/MC/MCAsmLayout.h"
19 #include "llvm/MC/MCCodeEmitter.h"
20 #include "llvm/MC/MCCodeView.h"
21 #include "llvm/MC/MCContext.h"
22 #include "llvm/MC/MCDwarf.h"
23 #include "llvm/MC/MCExpr.h"
24 #include "llvm/MC/MCFixup.h"
25 #include "llvm/MC/MCFixupKindInfo.h"
26 #include "llvm/MC/MCFragment.h"
27 #include "llvm/MC/MCInst.h"
28 #include "llvm/MC/MCObjectWriter.h"
29 #include "llvm/MC/MCSection.h"
30 #include "llvm/MC/MCSectionELF.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/MC/MCValue.h"
33 #include "llvm/Support/Alignment.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/LEB128.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <cassert>
41 #include <cstdint>
42 #include <cstring>
43 #include <tuple>
44 #include <utility>
46 using namespace llvm;
48 #define DEBUG_TYPE "assembler"
50 namespace {
51 namespace stats {
53 STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
54 STATISTIC(EmittedRelaxableFragments,
55 "Number of emitted assembler fragments - relaxable");
56 STATISTIC(EmittedDataFragments,
57 "Number of emitted assembler fragments - data");
58 STATISTIC(EmittedCompactEncodedInstFragments,
59 "Number of emitted assembler fragments - compact encoded inst");
60 STATISTIC(EmittedAlignFragments,
61 "Number of emitted assembler fragments - align");
62 STATISTIC(EmittedFillFragments,
63 "Number of emitted assembler fragments - fill");
64 STATISTIC(EmittedOrgFragments,
65 "Number of emitted assembler fragments - org");
66 STATISTIC(evaluateFixup, "Number of evaluated fixups");
67 STATISTIC(FragmentLayouts, "Number of fragment layouts");
68 STATISTIC(ObjectBytes, "Number of emitted object file bytes");
69 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
70 STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
71 STATISTIC(PaddingFragmentsRelaxations,
72 "Number of Padding Fragments relaxations");
73 STATISTIC(PaddingFragmentsBytes,
74 "Total size of all padding from adding Fragments");
76 } // end namespace stats
77 } // end anonymous namespace
79 // FIXME FIXME FIXME: There are number of places in this file where we convert
80 // what is a 64-bit assembler value used for computation into a value in the
81 // object file, which may truncate it. We should detect that truncation where
82 // invalid and report errors back.
84 /* *** */
86 MCAssembler::MCAssembler(MCContext &Context,
87 std::unique_ptr<MCAsmBackend> Backend,
88 std::unique_ptr<MCCodeEmitter> Emitter,
89 std::unique_ptr<MCObjectWriter> Writer)
90 : Context(Context), Backend(std::move(Backend)),
91 Emitter(std::move(Emitter)), Writer(std::move(Writer)),
92 BundleAlignSize(0), RelaxAll(false), SubsectionsViaSymbols(false),
93 IncrementalLinkerCompatible(false), ELFHeaderEFlags(0) {
94 VersionInfo.Major = 0; // Major version == 0 for "none specified"
97 MCAssembler::~MCAssembler() = default;
99 void MCAssembler::reset() {
100 Sections.clear();
101 Symbols.clear();
102 IndirectSymbols.clear();
103 DataRegions.clear();
104 LinkerOptions.clear();
105 FileNames.clear();
106 ThumbFuncs.clear();
107 BundleAlignSize = 0;
108 RelaxAll = false;
109 SubsectionsViaSymbols = false;
110 IncrementalLinkerCompatible = false;
111 ELFHeaderEFlags = 0;
112 LOHContainer.reset();
113 VersionInfo.Major = 0;
114 VersionInfo.SDKVersion = VersionTuple();
116 // reset objects owned by us
117 if (getBackendPtr())
118 getBackendPtr()->reset();
119 if (getEmitterPtr())
120 getEmitterPtr()->reset();
121 if (getWriterPtr())
122 getWriterPtr()->reset();
123 getLOHContainer().reset();
126 bool MCAssembler::registerSection(MCSection &Section) {
127 if (Section.isRegistered())
128 return false;
129 Sections.push_back(&Section);
130 Section.setIsRegistered(true);
131 return true;
134 bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const {
135 if (ThumbFuncs.count(Symbol))
136 return true;
138 if (!Symbol->isVariable())
139 return false;
141 const MCExpr *Expr = Symbol->getVariableValue();
143 MCValue V;
144 if (!Expr->evaluateAsRelocatable(V, nullptr, nullptr))
145 return false;
147 if (V.getSymB() || V.getRefKind() != MCSymbolRefExpr::VK_None)
148 return false;
150 const MCSymbolRefExpr *Ref = V.getSymA();
151 if (!Ref)
152 return false;
154 if (Ref->getKind() != MCSymbolRefExpr::VK_None)
155 return false;
157 const MCSymbol &Sym = Ref->getSymbol();
158 if (!isThumbFunc(&Sym))
159 return false;
161 ThumbFuncs.insert(Symbol); // Cache it.
162 return true;
165 bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
166 // Non-temporary labels should always be visible to the linker.
167 if (!Symbol.isTemporary())
168 return true;
170 // Absolute temporary labels are never visible.
171 if (!Symbol.isInSection())
172 return false;
174 if (Symbol.isUsedInReloc())
175 return true;
177 return false;
180 const MCSymbol *MCAssembler::getAtom(const MCSymbol &S) const {
181 // Linker visible symbols define atoms.
182 if (isSymbolLinkerVisible(S))
183 return &S;
185 // Absolute and undefined symbols have no defining atom.
186 if (!S.isInSection())
187 return nullptr;
189 // Non-linker visible symbols in sections which can't be atomized have no
190 // defining atom.
191 if (!getContext().getAsmInfo()->isSectionAtomizableBySymbols(
192 *S.getFragment()->getParent()))
193 return nullptr;
195 // Otherwise, return the atom for the containing fragment.
196 return S.getFragment()->getAtom();
199 bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
200 const MCFixup &Fixup, const MCFragment *DF,
201 MCValue &Target, uint64_t &Value,
202 bool &WasForced) const {
203 ++stats::evaluateFixup;
205 // FIXME: This code has some duplication with recordRelocation. We should
206 // probably merge the two into a single callback that tries to evaluate a
207 // fixup and records a relocation if one is needed.
209 // On error claim to have completely evaluated the fixup, to prevent any
210 // further processing from being done.
211 const MCExpr *Expr = Fixup.getValue();
212 MCContext &Ctx = getContext();
213 Value = 0;
214 WasForced = false;
215 if (!Expr->evaluateAsRelocatable(Target, &Layout, &Fixup)) {
216 Ctx.reportError(Fixup.getLoc(), "expected relocatable expression");
217 return true;
219 if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
220 if (RefB->getKind() != MCSymbolRefExpr::VK_None) {
221 Ctx.reportError(Fixup.getLoc(),
222 "unsupported subtraction of qualified symbol");
223 return true;
227 assert(getBackendPtr() && "Expected assembler backend");
228 bool IsPCRel = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags &
229 MCFixupKindInfo::FKF_IsPCRel;
231 bool IsResolved = false;
232 if (IsPCRel) {
233 if (Target.getSymB()) {
234 IsResolved = false;
235 } else if (!Target.getSymA()) {
236 IsResolved = false;
237 } else {
238 const MCSymbolRefExpr *A = Target.getSymA();
239 const MCSymbol &SA = A->getSymbol();
240 if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) {
241 IsResolved = false;
242 } else if (auto *Writer = getWriterPtr()) {
243 IsResolved = Writer->isSymbolRefDifferenceFullyResolvedImpl(
244 *this, SA, *DF, false, true);
247 } else {
248 IsResolved = Target.isAbsolute();
251 Value = Target.getConstant();
253 if (const MCSymbolRefExpr *A = Target.getSymA()) {
254 const MCSymbol &Sym = A->getSymbol();
255 if (Sym.isDefined())
256 Value += Layout.getSymbolOffset(Sym);
258 if (const MCSymbolRefExpr *B = Target.getSymB()) {
259 const MCSymbol &Sym = B->getSymbol();
260 if (Sym.isDefined())
261 Value -= Layout.getSymbolOffset(Sym);
264 bool ShouldAlignPC = getBackend().getFixupKindInfo(Fixup.getKind()).Flags &
265 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
266 assert((ShouldAlignPC ? IsPCRel : true) &&
267 "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
269 if (IsPCRel) {
270 uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
272 // A number of ARM fixups in Thumb mode require that the effective PC
273 // address be determined as the 32-bit aligned version of the actual offset.
274 if (ShouldAlignPC) Offset &= ~0x3;
275 Value -= Offset;
278 // Let the backend force a relocation if needed.
279 if (IsResolved && getBackend().shouldForceRelocation(*this, Fixup, Target)) {
280 IsResolved = false;
281 WasForced = true;
284 return IsResolved;
287 uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout,
288 const MCFragment &F) const {
289 assert(getBackendPtr() && "Requires assembler backend");
290 switch (F.getKind()) {
291 case MCFragment::FT_Data:
292 return cast<MCDataFragment>(F).getContents().size();
293 case MCFragment::FT_Relaxable:
294 return cast<MCRelaxableFragment>(F).getContents().size();
295 case MCFragment::FT_CompactEncodedInst:
296 return cast<MCCompactEncodedInstFragment>(F).getContents().size();
297 case MCFragment::FT_Fill: {
298 auto &FF = cast<MCFillFragment>(F);
299 int64_t NumValues = 0;
300 if (!FF.getNumValues().evaluateAsAbsolute(NumValues, Layout)) {
301 getContext().reportError(FF.getLoc(),
302 "expected assembly-time absolute expression");
303 return 0;
305 int64_t Size = NumValues * FF.getValueSize();
306 if (Size < 0) {
307 getContext().reportError(FF.getLoc(), "invalid number of bytes");
308 return 0;
310 return Size;
313 case MCFragment::FT_LEB:
314 return cast<MCLEBFragment>(F).getContents().size();
316 case MCFragment::FT_Padding:
317 return cast<MCPaddingFragment>(F).getSize();
319 case MCFragment::FT_SymbolId:
320 return 4;
322 case MCFragment::FT_Align: {
323 const MCAlignFragment &AF = cast<MCAlignFragment>(F);
324 unsigned Offset = Layout.getFragmentOffset(&AF);
325 unsigned Size = offsetToAlignment(Offset, Align(AF.getAlignment()));
327 // Insert extra Nops for code alignment if the target define
328 // shouldInsertExtraNopBytesForCodeAlign target hook.
329 if (AF.getParent()->UseCodeAlign() && AF.hasEmitNops() &&
330 getBackend().shouldInsertExtraNopBytesForCodeAlign(AF, Size))
331 return Size;
333 // If we are padding with nops, force the padding to be larger than the
334 // minimum nop size.
335 if (Size > 0 && AF.hasEmitNops()) {
336 while (Size % getBackend().getMinimumNopSize())
337 Size += AF.getAlignment();
339 if (Size > AF.getMaxBytesToEmit())
340 return 0;
341 return Size;
344 case MCFragment::FT_Org: {
345 const MCOrgFragment &OF = cast<MCOrgFragment>(F);
346 MCValue Value;
347 if (!OF.getOffset().evaluateAsValue(Value, Layout)) {
348 getContext().reportError(OF.getLoc(),
349 "expected assembly-time absolute expression");
350 return 0;
353 uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
354 int64_t TargetLocation = Value.getConstant();
355 if (const MCSymbolRefExpr *A = Value.getSymA()) {
356 uint64_t Val;
357 if (!Layout.getSymbolOffset(A->getSymbol(), Val)) {
358 getContext().reportError(OF.getLoc(), "expected absolute expression");
359 return 0;
361 TargetLocation += Val;
363 int64_t Size = TargetLocation - FragmentOffset;
364 if (Size < 0 || Size >= 0x40000000) {
365 getContext().reportError(
366 OF.getLoc(), "invalid .org offset '" + Twine(TargetLocation) +
367 "' (at offset '" + Twine(FragmentOffset) + "')");
368 return 0;
370 return Size;
373 case MCFragment::FT_Dwarf:
374 return cast<MCDwarfLineAddrFragment>(F).getContents().size();
375 case MCFragment::FT_DwarfFrame:
376 return cast<MCDwarfCallFrameFragment>(F).getContents().size();
377 case MCFragment::FT_CVInlineLines:
378 return cast<MCCVInlineLineTableFragment>(F).getContents().size();
379 case MCFragment::FT_CVDefRange:
380 return cast<MCCVDefRangeFragment>(F).getContents().size();
381 case MCFragment::FT_Dummy:
382 llvm_unreachable("Should not have been added");
385 llvm_unreachable("invalid fragment kind");
388 void MCAsmLayout::layoutFragment(MCFragment *F) {
389 MCFragment *Prev = F->getPrevNode();
391 // We should never try to recompute something which is valid.
392 assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!");
393 // We should never try to compute the fragment layout if its predecessor
394 // isn't valid.
395 assert((!Prev || isFragmentValid(Prev)) &&
396 "Attempt to compute fragment before its predecessor!");
398 ++stats::FragmentLayouts;
400 // Compute fragment offset and size.
401 if (Prev)
402 F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev);
403 else
404 F->Offset = 0;
405 LastValidFragment[F->getParent()] = F;
407 // If bundling is enabled and this fragment has instructions in it, it has to
408 // obey the bundling restrictions. With padding, we'll have:
411 // BundlePadding
412 // |||
413 // -------------------------------------
414 // Prev |##########| F |
415 // -------------------------------------
416 // ^
417 // |
418 // F->Offset
420 // The fragment's offset will point to after the padding, and its computed
421 // size won't include the padding.
423 // When the -mc-relax-all flag is used, we optimize bundling by writting the
424 // padding directly into fragments when the instructions are emitted inside
425 // the streamer. When the fragment is larger than the bundle size, we need to
426 // ensure that it's bundle aligned. This means that if we end up with
427 // multiple fragments, we must emit bundle padding between fragments.
429 // ".align N" is an example of a directive that introduces multiple
430 // fragments. We could add a special case to handle ".align N" by emitting
431 // within-fragment padding (which would produce less padding when N is less
432 // than the bundle size), but for now we don't.
434 if (Assembler.isBundlingEnabled() && F->hasInstructions()) {
435 assert(isa<MCEncodedFragment>(F) &&
436 "Only MCEncodedFragment implementations have instructions");
437 MCEncodedFragment *EF = cast<MCEncodedFragment>(F);
438 uint64_t FSize = Assembler.computeFragmentSize(*this, *EF);
440 if (!Assembler.getRelaxAll() && FSize > Assembler.getBundleAlignSize())
441 report_fatal_error("Fragment can't be larger than a bundle size");
443 uint64_t RequiredBundlePadding =
444 computeBundlePadding(Assembler, EF, EF->Offset, FSize);
445 if (RequiredBundlePadding > UINT8_MAX)
446 report_fatal_error("Padding cannot exceed 255 bytes");
447 EF->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
448 EF->Offset += RequiredBundlePadding;
452 void MCAssembler::registerSymbol(const MCSymbol &Symbol, bool *Created) {
453 bool New = !Symbol.isRegistered();
454 if (Created)
455 *Created = New;
456 if (New) {
457 Symbol.setIsRegistered(true);
458 Symbols.push_back(&Symbol);
462 void MCAssembler::writeFragmentPadding(raw_ostream &OS,
463 const MCEncodedFragment &EF,
464 uint64_t FSize) const {
465 assert(getBackendPtr() && "Expected assembler backend");
466 // Should NOP padding be written out before this fragment?
467 unsigned BundlePadding = EF.getBundlePadding();
468 if (BundlePadding > 0) {
469 assert(isBundlingEnabled() &&
470 "Writing bundle padding with disabled bundling");
471 assert(EF.hasInstructions() &&
472 "Writing bundle padding for a fragment without instructions");
474 unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize);
475 if (EF.alignToBundleEnd() && TotalLength > getBundleAlignSize()) {
476 // If the padding itself crosses a bundle boundary, it must be emitted
477 // in 2 pieces, since even nop instructions must not cross boundaries.
478 // v--------------v <- BundleAlignSize
479 // v---------v <- BundlePadding
480 // ----------------------------
481 // | Prev |####|####| F |
482 // ----------------------------
483 // ^-------------------^ <- TotalLength
484 unsigned DistanceToBoundary = TotalLength - getBundleAlignSize();
485 if (!getBackend().writeNopData(OS, DistanceToBoundary))
486 report_fatal_error("unable to write NOP sequence of " +
487 Twine(DistanceToBoundary) + " bytes");
488 BundlePadding -= DistanceToBoundary;
490 if (!getBackend().writeNopData(OS, BundlePadding))
491 report_fatal_error("unable to write NOP sequence of " +
492 Twine(BundlePadding) + " bytes");
496 /// Write the fragment \p F to the output file.
497 static void writeFragment(raw_ostream &OS, const MCAssembler &Asm,
498 const MCAsmLayout &Layout, const MCFragment &F) {
499 // FIXME: Embed in fragments instead?
500 uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F);
502 support::endianness Endian = Asm.getBackend().Endian;
504 if (const MCEncodedFragment *EF = dyn_cast<MCEncodedFragment>(&F))
505 Asm.writeFragmentPadding(OS, *EF, FragmentSize);
507 // This variable (and its dummy usage) is to participate in the assert at
508 // the end of the function.
509 uint64_t Start = OS.tell();
510 (void) Start;
512 ++stats::EmittedFragments;
514 switch (F.getKind()) {
515 case MCFragment::FT_Align: {
516 ++stats::EmittedAlignFragments;
517 const MCAlignFragment &AF = cast<MCAlignFragment>(F);
518 assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
520 uint64_t Count = FragmentSize / AF.getValueSize();
522 // FIXME: This error shouldn't actually occur (the front end should emit
523 // multiple .align directives to enforce the semantics it wants), but is
524 // severe enough that we want to report it. How to handle this?
525 if (Count * AF.getValueSize() != FragmentSize)
526 report_fatal_error("undefined .align directive, value size '" +
527 Twine(AF.getValueSize()) +
528 "' is not a divisor of padding size '" +
529 Twine(FragmentSize) + "'");
531 // See if we are aligning with nops, and if so do that first to try to fill
532 // the Count bytes. Then if that did not fill any bytes or there are any
533 // bytes left to fill use the Value and ValueSize to fill the rest.
534 // If we are aligning with nops, ask that target to emit the right data.
535 if (AF.hasEmitNops()) {
536 if (!Asm.getBackend().writeNopData(OS, Count))
537 report_fatal_error("unable to write nop sequence of " +
538 Twine(Count) + " bytes");
539 break;
542 // Otherwise, write out in multiples of the value size.
543 for (uint64_t i = 0; i != Count; ++i) {
544 switch (AF.getValueSize()) {
545 default: llvm_unreachable("Invalid size!");
546 case 1: OS << char(AF.getValue()); break;
547 case 2:
548 support::endian::write<uint16_t>(OS, AF.getValue(), Endian);
549 break;
550 case 4:
551 support::endian::write<uint32_t>(OS, AF.getValue(), Endian);
552 break;
553 case 8:
554 support::endian::write<uint64_t>(OS, AF.getValue(), Endian);
555 break;
558 break;
561 case MCFragment::FT_Data:
562 ++stats::EmittedDataFragments;
563 OS << cast<MCDataFragment>(F).getContents();
564 break;
566 case MCFragment::FT_Relaxable:
567 ++stats::EmittedRelaxableFragments;
568 OS << cast<MCRelaxableFragment>(F).getContents();
569 break;
571 case MCFragment::FT_CompactEncodedInst:
572 ++stats::EmittedCompactEncodedInstFragments;
573 OS << cast<MCCompactEncodedInstFragment>(F).getContents();
574 break;
576 case MCFragment::FT_Fill: {
577 ++stats::EmittedFillFragments;
578 const MCFillFragment &FF = cast<MCFillFragment>(F);
579 uint64_t V = FF.getValue();
580 unsigned VSize = FF.getValueSize();
581 const unsigned MaxChunkSize = 16;
582 char Data[MaxChunkSize];
583 // Duplicate V into Data as byte vector to reduce number of
584 // writes done. As such, do endian conversion here.
585 for (unsigned I = 0; I != VSize; ++I) {
586 unsigned index = Endian == support::little ? I : (VSize - I - 1);
587 Data[I] = uint8_t(V >> (index * 8));
589 for (unsigned I = VSize; I < MaxChunkSize; ++I)
590 Data[I] = Data[I - VSize];
592 // Set to largest multiple of VSize in Data.
593 const unsigned NumPerChunk = MaxChunkSize / VSize;
594 // Set ChunkSize to largest multiple of VSize in Data
595 const unsigned ChunkSize = VSize * NumPerChunk;
597 // Do copies by chunk.
598 StringRef Ref(Data, ChunkSize);
599 for (uint64_t I = 0, E = FragmentSize / ChunkSize; I != E; ++I)
600 OS << Ref;
602 // do remainder if needed.
603 unsigned TrailingCount = FragmentSize % ChunkSize;
604 if (TrailingCount)
605 OS.write(Data, TrailingCount);
606 break;
609 case MCFragment::FT_LEB: {
610 const MCLEBFragment &LF = cast<MCLEBFragment>(F);
611 OS << LF.getContents();
612 break;
615 case MCFragment::FT_Padding: {
616 if (!Asm.getBackend().writeNopData(OS, FragmentSize))
617 report_fatal_error("unable to write nop sequence of " +
618 Twine(FragmentSize) + " bytes");
619 break;
622 case MCFragment::FT_SymbolId: {
623 const MCSymbolIdFragment &SF = cast<MCSymbolIdFragment>(F);
624 support::endian::write<uint32_t>(OS, SF.getSymbol()->getIndex(), Endian);
625 break;
628 case MCFragment::FT_Org: {
629 ++stats::EmittedOrgFragments;
630 const MCOrgFragment &OF = cast<MCOrgFragment>(F);
632 for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
633 OS << char(OF.getValue());
635 break;
638 case MCFragment::FT_Dwarf: {
639 const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
640 OS << OF.getContents();
641 break;
643 case MCFragment::FT_DwarfFrame: {
644 const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
645 OS << CF.getContents();
646 break;
648 case MCFragment::FT_CVInlineLines: {
649 const auto &OF = cast<MCCVInlineLineTableFragment>(F);
650 OS << OF.getContents();
651 break;
653 case MCFragment::FT_CVDefRange: {
654 const auto &DRF = cast<MCCVDefRangeFragment>(F);
655 OS << DRF.getContents();
656 break;
658 case MCFragment::FT_Dummy:
659 llvm_unreachable("Should not have been added");
662 assert(OS.tell() - Start == FragmentSize &&
663 "The stream should advance by fragment size");
666 void MCAssembler::writeSectionData(raw_ostream &OS, const MCSection *Sec,
667 const MCAsmLayout &Layout) const {
668 assert(getBackendPtr() && "Expected assembler backend");
670 // Ignore virtual sections.
671 if (Sec->isVirtualSection()) {
672 assert(Layout.getSectionFileSize(Sec) == 0 && "Invalid size for section!");
674 // Check that contents are only things legal inside a virtual section.
675 for (const MCFragment &F : *Sec) {
676 switch (F.getKind()) {
677 default: llvm_unreachable("Invalid fragment in virtual section!");
678 case MCFragment::FT_Data: {
679 // Check that we aren't trying to write a non-zero contents (or fixups)
680 // into a virtual section. This is to support clients which use standard
681 // directives to fill the contents of virtual sections.
682 const MCDataFragment &DF = cast<MCDataFragment>(F);
683 if (DF.fixup_begin() != DF.fixup_end())
684 report_fatal_error("cannot have fixups in virtual section!");
685 for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
686 if (DF.getContents()[i]) {
687 if (auto *ELFSec = dyn_cast<const MCSectionELF>(Sec))
688 report_fatal_error("non-zero initializer found in section '" +
689 ELFSec->getSectionName() + "'");
690 else
691 report_fatal_error("non-zero initializer found in virtual section");
693 break;
695 case MCFragment::FT_Align:
696 // Check that we aren't trying to write a non-zero value into a virtual
697 // section.
698 assert((cast<MCAlignFragment>(F).getValueSize() == 0 ||
699 cast<MCAlignFragment>(F).getValue() == 0) &&
700 "Invalid align in virtual section!");
701 break;
702 case MCFragment::FT_Fill:
703 assert((cast<MCFillFragment>(F).getValue() == 0) &&
704 "Invalid fill in virtual section!");
705 break;
709 return;
712 uint64_t Start = OS.tell();
713 (void)Start;
715 for (const MCFragment &F : *Sec)
716 writeFragment(OS, *this, Layout, F);
718 assert(OS.tell() - Start == Layout.getSectionAddressSize(Sec));
721 std::tuple<MCValue, uint64_t, bool>
722 MCAssembler::handleFixup(const MCAsmLayout &Layout, MCFragment &F,
723 const MCFixup &Fixup) {
724 // Evaluate the fixup.
725 MCValue Target;
726 uint64_t FixedValue;
727 bool WasForced;
728 bool IsResolved = evaluateFixup(Layout, Fixup, &F, Target, FixedValue,
729 WasForced);
730 if (!IsResolved) {
731 // The fixup was unresolved, we need a relocation. Inform the object
732 // writer of the relocation, and give it an opportunity to adjust the
733 // fixup value if need be.
734 if (Target.getSymA() && Target.getSymB() &&
735 getBackend().requiresDiffExpressionRelocations()) {
736 // The fixup represents the difference between two symbols, which the
737 // backend has indicated must be resolved at link time. Split up the fixup
738 // into two relocations, one for the add, and one for the sub, and emit
739 // both of these. The constant will be associated with the add half of the
740 // expression.
741 MCFixup FixupAdd = MCFixup::createAddFor(Fixup);
742 MCValue TargetAdd =
743 MCValue::get(Target.getSymA(), nullptr, Target.getConstant());
744 getWriter().recordRelocation(*this, Layout, &F, FixupAdd, TargetAdd,
745 FixedValue);
746 MCFixup FixupSub = MCFixup::createSubFor(Fixup);
747 MCValue TargetSub = MCValue::get(Target.getSymB());
748 getWriter().recordRelocation(*this, Layout, &F, FixupSub, TargetSub,
749 FixedValue);
750 } else {
751 getWriter().recordRelocation(*this, Layout, &F, Fixup, Target,
752 FixedValue);
755 return std::make_tuple(Target, FixedValue, IsResolved);
758 void MCAssembler::layout(MCAsmLayout &Layout) {
759 assert(getBackendPtr() && "Expected assembler backend");
760 DEBUG_WITH_TYPE("mc-dump", {
761 errs() << "assembler backend - pre-layout\n--\n";
762 dump(); });
764 // Create dummy fragments and assign section ordinals.
765 unsigned SectionIndex = 0;
766 for (MCSection &Sec : *this) {
767 // Create dummy fragments to eliminate any empty sections, this simplifies
768 // layout.
769 if (Sec.getFragmentList().empty())
770 new MCDataFragment(&Sec);
772 Sec.setOrdinal(SectionIndex++);
775 // Assign layout order indices to sections and fragments.
776 for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
777 MCSection *Sec = Layout.getSectionOrder()[i];
778 Sec->setLayoutOrder(i);
780 unsigned FragmentIndex = 0;
781 for (MCFragment &Frag : *Sec)
782 Frag.setLayoutOrder(FragmentIndex++);
785 // Layout until everything fits.
786 while (layoutOnce(Layout))
787 if (getContext().hadError())
788 return;
790 DEBUG_WITH_TYPE("mc-dump", {
791 errs() << "assembler backend - post-relaxation\n--\n";
792 dump(); });
794 // Finalize the layout, including fragment lowering.
795 finishLayout(Layout);
797 DEBUG_WITH_TYPE("mc-dump", {
798 errs() << "assembler backend - final-layout\n--\n";
799 dump(); });
801 // Allow the object writer a chance to perform post-layout binding (for
802 // example, to set the index fields in the symbol data).
803 getWriter().executePostLayoutBinding(*this, Layout);
805 // Evaluate and apply the fixups, generating relocation entries as necessary.
806 for (MCSection &Sec : *this) {
807 for (MCFragment &Frag : Sec) {
808 // Data and relaxable fragments both have fixups. So only process
809 // those here.
810 // FIXME: Is there a better way to do this? MCEncodedFragmentWithFixups
811 // being templated makes this tricky.
812 if (isa<MCEncodedFragment>(&Frag) &&
813 isa<MCCompactEncodedInstFragment>(&Frag))
814 continue;
815 if (!isa<MCEncodedFragment>(&Frag) && !isa<MCCVDefRangeFragment>(&Frag) &&
816 !isa<MCAlignFragment>(&Frag))
817 continue;
818 ArrayRef<MCFixup> Fixups;
819 MutableArrayRef<char> Contents;
820 const MCSubtargetInfo *STI = nullptr;
821 if (auto *FragWithFixups = dyn_cast<MCDataFragment>(&Frag)) {
822 Fixups = FragWithFixups->getFixups();
823 Contents = FragWithFixups->getContents();
824 STI = FragWithFixups->getSubtargetInfo();
825 assert(!FragWithFixups->hasInstructions() || STI != nullptr);
826 } else if (auto *FragWithFixups = dyn_cast<MCRelaxableFragment>(&Frag)) {
827 Fixups = FragWithFixups->getFixups();
828 Contents = FragWithFixups->getContents();
829 STI = FragWithFixups->getSubtargetInfo();
830 assert(!FragWithFixups->hasInstructions() || STI != nullptr);
831 } else if (auto *FragWithFixups = dyn_cast<MCCVDefRangeFragment>(&Frag)) {
832 Fixups = FragWithFixups->getFixups();
833 Contents = FragWithFixups->getContents();
834 } else if (auto *FragWithFixups = dyn_cast<MCDwarfLineAddrFragment>(&Frag)) {
835 Fixups = FragWithFixups->getFixups();
836 Contents = FragWithFixups->getContents();
837 } else if (auto *AF = dyn_cast<MCAlignFragment>(&Frag)) {
838 // Insert fixup type for code alignment if the target define
839 // shouldInsertFixupForCodeAlign target hook.
840 if (Sec.UseCodeAlign() && AF->hasEmitNops()) {
841 getBackend().shouldInsertFixupForCodeAlign(*this, Layout, *AF);
843 continue;
844 } else if (auto *FragWithFixups =
845 dyn_cast<MCDwarfCallFrameFragment>(&Frag)) {
846 Fixups = FragWithFixups->getFixups();
847 Contents = FragWithFixups->getContents();
848 } else
849 llvm_unreachable("Unknown fragment with fixups!");
850 for (const MCFixup &Fixup : Fixups) {
851 uint64_t FixedValue;
852 bool IsResolved;
853 MCValue Target;
854 std::tie(Target, FixedValue, IsResolved) =
855 handleFixup(Layout, Frag, Fixup);
856 getBackend().applyFixup(*this, Fixup, Target, Contents, FixedValue,
857 IsResolved, STI);
863 void MCAssembler::Finish() {
864 // Create the layout object.
865 MCAsmLayout Layout(*this);
866 layout(Layout);
868 // Write the object file.
869 stats::ObjectBytes += getWriter().writeObject(*this, Layout);
872 bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
873 const MCRelaxableFragment *DF,
874 const MCAsmLayout &Layout) const {
875 assert(getBackendPtr() && "Expected assembler backend");
876 MCValue Target;
877 uint64_t Value;
878 bool WasForced;
879 bool Resolved = evaluateFixup(Layout, Fixup, DF, Target, Value, WasForced);
880 if (Target.getSymA() &&
881 Target.getSymA()->getKind() == MCSymbolRefExpr::VK_X86_ABS8 &&
882 Fixup.getKind() == FK_Data_1)
883 return false;
884 return getBackend().fixupNeedsRelaxationAdvanced(Fixup, Resolved, Value, DF,
885 Layout, WasForced);
888 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F,
889 const MCAsmLayout &Layout) const {
890 assert(getBackendPtr() && "Expected assembler backend");
891 // If this inst doesn't ever need relaxation, ignore it. This occurs when we
892 // are intentionally pushing out inst fragments, or because we relaxed a
893 // previous instruction to one that doesn't need relaxation.
894 if (!getBackend().mayNeedRelaxation(F->getInst(), *F->getSubtargetInfo()))
895 return false;
897 for (const MCFixup &Fixup : F->getFixups())
898 if (fixupNeedsRelaxation(Fixup, F, Layout))
899 return true;
901 return false;
904 bool MCAssembler::relaxInstruction(MCAsmLayout &Layout,
905 MCRelaxableFragment &F) {
906 assert(getEmitterPtr() &&
907 "Expected CodeEmitter defined for relaxInstruction");
908 if (!fragmentNeedsRelaxation(&F, Layout))
909 return false;
911 ++stats::RelaxedInstructions;
913 // FIXME-PERF: We could immediately lower out instructions if we can tell
914 // they are fully resolved, to avoid retesting on later passes.
916 // Relax the fragment.
918 MCInst Relaxed;
919 getBackend().relaxInstruction(F.getInst(), *F.getSubtargetInfo(), Relaxed);
921 // Encode the new instruction.
923 // FIXME-PERF: If it matters, we could let the target do this. It can
924 // probably do so more efficiently in many cases.
925 SmallVector<MCFixup, 4> Fixups;
926 SmallString<256> Code;
927 raw_svector_ostream VecOS(Code);
928 getEmitter().encodeInstruction(Relaxed, VecOS, Fixups, *F.getSubtargetInfo());
930 // Update the fragment.
931 F.setInst(Relaxed);
932 F.getContents() = Code;
933 F.getFixups() = Fixups;
935 return true;
938 bool MCAssembler::relaxPaddingFragment(MCAsmLayout &Layout,
939 MCPaddingFragment &PF) {
940 assert(getBackendPtr() && "Expected assembler backend");
941 uint64_t OldSize = PF.getSize();
942 if (!getBackend().relaxFragment(&PF, Layout))
943 return false;
944 uint64_t NewSize = PF.getSize();
946 ++stats::PaddingFragmentsRelaxations;
947 stats::PaddingFragmentsBytes += NewSize;
948 stats::PaddingFragmentsBytes -= OldSize;
949 return true;
952 bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
953 uint64_t OldSize = LF.getContents().size();
954 int64_t Value;
955 bool Abs = LF.getValue().evaluateKnownAbsolute(Value, Layout);
956 if (!Abs)
957 report_fatal_error("sleb128 and uleb128 expressions must be absolute");
958 SmallString<8> &Data = LF.getContents();
959 Data.clear();
960 raw_svector_ostream OSE(Data);
961 // The compiler can generate EH table assembly that is impossible to assemble
962 // without either adding padding to an LEB fragment or adding extra padding
963 // to a later alignment fragment. To accommodate such tables, relaxation can
964 // only increase an LEB fragment size here, not decrease it. See PR35809.
965 if (LF.isSigned())
966 encodeSLEB128(Value, OSE, OldSize);
967 else
968 encodeULEB128(Value, OSE, OldSize);
969 return OldSize != LF.getContents().size();
972 bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
973 MCDwarfLineAddrFragment &DF) {
974 MCContext &Context = Layout.getAssembler().getContext();
975 uint64_t OldSize = DF.getContents().size();
976 int64_t AddrDelta;
977 bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
978 assert(Abs && "We created a line delta with an invalid expression");
979 (void)Abs;
980 int64_t LineDelta;
981 LineDelta = DF.getLineDelta();
982 SmallVectorImpl<char> &Data = DF.getContents();
983 Data.clear();
984 raw_svector_ostream OSE(Data);
985 DF.getFixups().clear();
987 if (!getBackend().requiresDiffExpressionRelocations()) {
988 MCDwarfLineAddr::Encode(Context, getDWARFLinetableParams(), LineDelta,
989 AddrDelta, OSE);
990 } else {
991 uint32_t Offset;
992 uint32_t Size;
993 bool SetDelta = MCDwarfLineAddr::FixedEncode(Context,
994 getDWARFLinetableParams(),
995 LineDelta, AddrDelta,
996 OSE, &Offset, &Size);
997 // Add Fixups for address delta or new address.
998 const MCExpr *FixupExpr;
999 if (SetDelta) {
1000 FixupExpr = &DF.getAddrDelta();
1001 } else {
1002 const MCBinaryExpr *ABE = cast<MCBinaryExpr>(&DF.getAddrDelta());
1003 FixupExpr = ABE->getLHS();
1005 DF.getFixups().push_back(
1006 MCFixup::create(Offset, FixupExpr,
1007 MCFixup::getKindForSize(Size, false /*isPCRel*/)));
1010 return OldSize != Data.size();
1013 bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
1014 MCDwarfCallFrameFragment &DF) {
1015 MCContext &Context = Layout.getAssembler().getContext();
1016 uint64_t OldSize = DF.getContents().size();
1017 int64_t AddrDelta;
1018 bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
1019 assert(Abs && "We created call frame with an invalid expression");
1020 (void) Abs;
1021 SmallVectorImpl<char> &Data = DF.getContents();
1022 Data.clear();
1023 raw_svector_ostream OSE(Data);
1024 DF.getFixups().clear();
1026 if (getBackend().requiresDiffExpressionRelocations()) {
1027 uint32_t Offset;
1028 uint32_t Size;
1029 MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE, &Offset,
1030 &Size);
1031 if (Size) {
1032 DF.getFixups().push_back(MCFixup::create(
1033 Offset, &DF.getAddrDelta(),
1034 MCFixup::getKindForSizeInBits(Size /*In bits.*/, false /*isPCRel*/)));
1036 } else {
1037 MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE);
1040 return OldSize != Data.size();
1043 bool MCAssembler::relaxCVInlineLineTable(MCAsmLayout &Layout,
1044 MCCVInlineLineTableFragment &F) {
1045 unsigned OldSize = F.getContents().size();
1046 getContext().getCVContext().encodeInlineLineTable(Layout, F);
1047 return OldSize != F.getContents().size();
1050 bool MCAssembler::relaxCVDefRange(MCAsmLayout &Layout,
1051 MCCVDefRangeFragment &F) {
1052 unsigned OldSize = F.getContents().size();
1053 getContext().getCVContext().encodeDefRange(Layout, F);
1054 return OldSize != F.getContents().size();
1057 bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSection &Sec) {
1058 // Holds the first fragment which needed relaxing during this layout. It will
1059 // remain NULL if none were relaxed.
1060 // When a fragment is relaxed, all the fragments following it should get
1061 // invalidated because their offset is going to change.
1062 MCFragment *FirstRelaxedFragment = nullptr;
1064 // Attempt to relax all the fragments in the section.
1065 for (MCSection::iterator I = Sec.begin(), IE = Sec.end(); I != IE; ++I) {
1066 // Check if this is a fragment that needs relaxation.
1067 bool RelaxedFrag = false;
1068 switch(I->getKind()) {
1069 default:
1070 break;
1071 case MCFragment::FT_Relaxable:
1072 assert(!getRelaxAll() &&
1073 "Did not expect a MCRelaxableFragment in RelaxAll mode");
1074 RelaxedFrag = relaxInstruction(Layout, *cast<MCRelaxableFragment>(I));
1075 break;
1076 case MCFragment::FT_Dwarf:
1077 RelaxedFrag = relaxDwarfLineAddr(Layout,
1078 *cast<MCDwarfLineAddrFragment>(I));
1079 break;
1080 case MCFragment::FT_DwarfFrame:
1081 RelaxedFrag =
1082 relaxDwarfCallFrameFragment(Layout,
1083 *cast<MCDwarfCallFrameFragment>(I));
1084 break;
1085 case MCFragment::FT_LEB:
1086 RelaxedFrag = relaxLEB(Layout, *cast<MCLEBFragment>(I));
1087 break;
1088 case MCFragment::FT_Padding:
1089 RelaxedFrag = relaxPaddingFragment(Layout, *cast<MCPaddingFragment>(I));
1090 break;
1091 case MCFragment::FT_CVInlineLines:
1092 RelaxedFrag =
1093 relaxCVInlineLineTable(Layout, *cast<MCCVInlineLineTableFragment>(I));
1094 break;
1095 case MCFragment::FT_CVDefRange:
1096 RelaxedFrag = relaxCVDefRange(Layout, *cast<MCCVDefRangeFragment>(I));
1097 break;
1099 if (RelaxedFrag && !FirstRelaxedFragment)
1100 FirstRelaxedFragment = &*I;
1102 if (FirstRelaxedFragment) {
1103 Layout.invalidateFragmentsFrom(FirstRelaxedFragment);
1104 return true;
1106 return false;
1109 bool MCAssembler::layoutOnce(MCAsmLayout &Layout) {
1110 ++stats::RelaxationSteps;
1112 bool WasRelaxed = false;
1113 for (iterator it = begin(), ie = end(); it != ie; ++it) {
1114 MCSection &Sec = *it;
1115 while (layoutSectionOnce(Layout, Sec))
1116 WasRelaxed = true;
1119 return WasRelaxed;
1122 void MCAssembler::finishLayout(MCAsmLayout &Layout) {
1123 assert(getBackendPtr() && "Expected assembler backend");
1124 // The layout is done. Mark every fragment as valid.
1125 for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
1126 MCSection &Section = *Layout.getSectionOrder()[i];
1127 Layout.getFragmentOffset(&*Section.rbegin());
1128 computeFragmentSize(Layout, *Section.rbegin());
1130 getBackend().finishLayout(*this, Layout);
1133 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1134 LLVM_DUMP_METHOD void MCAssembler::dump() const{
1135 raw_ostream &OS = errs();
1137 OS << "<MCAssembler\n";
1138 OS << " Sections:[\n ";
1139 for (const_iterator it = begin(), ie = end(); it != ie; ++it) {
1140 if (it != begin()) OS << ",\n ";
1141 it->dump();
1143 OS << "],\n";
1144 OS << " Symbols:[";
1146 for (const_symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
1147 if (it != symbol_begin()) OS << ",\n ";
1148 OS << "(";
1149 it->dump();
1150 OS << ", Index:" << it->getIndex() << ", ";
1151 OS << ")";
1153 OS << "]>\n";
1155 #endif