[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / Target / AArch64 / AArch64AdvSIMDScalarPass.cpp
blob981b366c14b1e4c369a8d7b05335e3c53f6ab682
1 //===-- AArch64AdvSIMDScalar.cpp - Replace dead defs w/ zero reg --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // When profitable, replace GPR targeting i64 instructions with their
9 // AdvSIMD scalar equivalents. Generally speaking, "profitable" is defined
10 // as minimizing the number of cross-class register copies.
11 //===----------------------------------------------------------------------===//
13 //===----------------------------------------------------------------------===//
14 // TODO: Graph based predicate heuristics.
15 // Walking the instruction list linearly will get many, perhaps most, of
16 // the cases, but to do a truly thorough job of this, we need a more
17 // wholistic approach.
19 // This optimization is very similar in spirit to the register allocator's
20 // spill placement, only here we're determining where to place cross-class
21 // register copies rather than spills. As such, a similar approach is
22 // called for.
24 // We want to build up a set of graphs of all instructions which are candidates
25 // for transformation along with instructions which generate their inputs and
26 // consume their outputs. For each edge in the graph, we assign a weight
27 // based on whether there is a copy required there (weight zero if not) and
28 // the block frequency of the block containing the defining or using
29 // instruction, whichever is less. Our optimization is then a graph problem
30 // to minimize the total weight of all the graphs, then transform instructions
31 // and add or remove copy instructions as called for to implement the
32 // solution.
33 //===----------------------------------------------------------------------===//
35 #include "AArch64.h"
36 #include "AArch64InstrInfo.h"
37 #include "AArch64RegisterInfo.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineInstr.h"
42 #include "llvm/CodeGen/MachineInstrBuilder.h"
43 #include "llvm/CodeGen/MachineRegisterInfo.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/raw_ostream.h"
47 using namespace llvm;
49 #define DEBUG_TYPE "aarch64-simd-scalar"
51 // Allow forcing all i64 operations with equivalent SIMD instructions to use
52 // them. For stress-testing the transformation function.
53 static cl::opt<bool>
54 TransformAll("aarch64-simd-scalar-force-all",
55 cl::desc("Force use of AdvSIMD scalar instructions everywhere"),
56 cl::init(false), cl::Hidden);
58 STATISTIC(NumScalarInsnsUsed, "Number of scalar instructions used");
59 STATISTIC(NumCopiesDeleted, "Number of cross-class copies deleted");
60 STATISTIC(NumCopiesInserted, "Number of cross-class copies inserted");
62 #define AARCH64_ADVSIMD_NAME "AdvSIMD Scalar Operation Optimization"
64 namespace {
65 class AArch64AdvSIMDScalar : public MachineFunctionPass {
66 MachineRegisterInfo *MRI;
67 const TargetInstrInfo *TII;
69 private:
70 // isProfitableToTransform - Predicate function to determine whether an
71 // instruction should be transformed to its equivalent AdvSIMD scalar
72 // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example.
73 bool isProfitableToTransform(const MachineInstr &MI) const;
75 // transformInstruction - Perform the transformation of an instruction
76 // to its equivalant AdvSIMD scalar instruction. Update inputs and outputs
77 // to be the correct register class, minimizing cross-class copies.
78 void transformInstruction(MachineInstr &MI);
80 // processMachineBasicBlock - Main optimzation loop.
81 bool processMachineBasicBlock(MachineBasicBlock *MBB);
83 public:
84 static char ID; // Pass identification, replacement for typeid.
85 explicit AArch64AdvSIMDScalar() : MachineFunctionPass(ID) {
86 initializeAArch64AdvSIMDScalarPass(*PassRegistry::getPassRegistry());
89 bool runOnMachineFunction(MachineFunction &F) override;
91 StringRef getPassName() const override { return AARCH64_ADVSIMD_NAME; }
93 void getAnalysisUsage(AnalysisUsage &AU) const override {
94 AU.setPreservesCFG();
95 MachineFunctionPass::getAnalysisUsage(AU);
98 char AArch64AdvSIMDScalar::ID = 0;
99 } // end anonymous namespace
101 INITIALIZE_PASS(AArch64AdvSIMDScalar, "aarch64-simd-scalar",
102 AARCH64_ADVSIMD_NAME, false, false)
104 static bool isGPR64(unsigned Reg, unsigned SubReg,
105 const MachineRegisterInfo *MRI) {
106 if (SubReg)
107 return false;
108 if (Register::isVirtualRegister(Reg))
109 return MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::GPR64RegClass);
110 return AArch64::GPR64RegClass.contains(Reg);
113 static bool isFPR64(unsigned Reg, unsigned SubReg,
114 const MachineRegisterInfo *MRI) {
115 if (Register::isVirtualRegister(Reg))
116 return (MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::FPR64RegClass) &&
117 SubReg == 0) ||
118 (MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::FPR128RegClass) &&
119 SubReg == AArch64::dsub);
120 // Physical register references just check the register class directly.
121 return (AArch64::FPR64RegClass.contains(Reg) && SubReg == 0) ||
122 (AArch64::FPR128RegClass.contains(Reg) && SubReg == AArch64::dsub);
125 // getSrcFromCopy - Get the original source register for a GPR64 <--> FPR64
126 // copy instruction. Return zero_reg if the instruction is not a copy.
127 static MachineOperand *getSrcFromCopy(MachineInstr *MI,
128 const MachineRegisterInfo *MRI,
129 unsigned &SubReg) {
130 SubReg = 0;
131 // The "FMOV Xd, Dn" instruction is the typical form.
132 if (MI->getOpcode() == AArch64::FMOVDXr ||
133 MI->getOpcode() == AArch64::FMOVXDr)
134 return &MI->getOperand(1);
135 // A lane zero extract "UMOV.d Xd, Vn[0]" is equivalent. We shouldn't see
136 // these at this stage, but it's easy to check for.
137 if (MI->getOpcode() == AArch64::UMOVvi64 && MI->getOperand(2).getImm() == 0) {
138 SubReg = AArch64::dsub;
139 return &MI->getOperand(1);
141 // Or just a plain COPY instruction. This can be directly to/from FPR64,
142 // or it can be a dsub subreg reference to an FPR128.
143 if (MI->getOpcode() == AArch64::COPY) {
144 if (isFPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(),
145 MRI) &&
146 isGPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(), MRI))
147 return &MI->getOperand(1);
148 if (isGPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(),
149 MRI) &&
150 isFPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(),
151 MRI)) {
152 SubReg = MI->getOperand(1).getSubReg();
153 return &MI->getOperand(1);
157 // Otherwise, this is some other kind of instruction.
158 return nullptr;
161 // getTransformOpcode - For any opcode for which there is an AdvSIMD equivalent
162 // that we're considering transforming to, return that AdvSIMD opcode. For all
163 // others, return the original opcode.
164 static unsigned getTransformOpcode(unsigned Opc) {
165 switch (Opc) {
166 default:
167 break;
168 // FIXME: Lots more possibilities.
169 case AArch64::ADDXrr:
170 return AArch64::ADDv1i64;
171 case AArch64::SUBXrr:
172 return AArch64::SUBv1i64;
173 case AArch64::ANDXrr:
174 return AArch64::ANDv8i8;
175 case AArch64::EORXrr:
176 return AArch64::EORv8i8;
177 case AArch64::ORRXrr:
178 return AArch64::ORRv8i8;
180 // No AdvSIMD equivalent, so just return the original opcode.
181 return Opc;
184 static bool isTransformable(const MachineInstr &MI) {
185 unsigned Opc = MI.getOpcode();
186 return Opc != getTransformOpcode(Opc);
189 // isProfitableToTransform - Predicate function to determine whether an
190 // instruction should be transformed to its equivalent AdvSIMD scalar
191 // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example.
192 bool AArch64AdvSIMDScalar::isProfitableToTransform(
193 const MachineInstr &MI) const {
194 // If this instruction isn't eligible to be transformed (no SIMD equivalent),
195 // early exit since that's the common case.
196 if (!isTransformable(MI))
197 return false;
199 // Count the number of copies we'll need to add and approximate the number
200 // of copies that a transform will enable us to remove.
201 unsigned NumNewCopies = 3;
202 unsigned NumRemovableCopies = 0;
204 Register OrigSrc0 = MI.getOperand(1).getReg();
205 Register OrigSrc1 = MI.getOperand(2).getReg();
206 unsigned SubReg0;
207 unsigned SubReg1;
208 if (!MRI->def_empty(OrigSrc0)) {
209 MachineRegisterInfo::def_instr_iterator Def =
210 MRI->def_instr_begin(OrigSrc0);
211 assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
212 MachineOperand *MOSrc0 = getSrcFromCopy(&*Def, MRI, SubReg0);
213 // If the source was from a copy, we don't need to insert a new copy.
214 if (MOSrc0)
215 --NumNewCopies;
216 // If there are no other users of the original source, we can delete
217 // that instruction.
218 if (MOSrc0 && MRI->hasOneNonDBGUse(OrigSrc0))
219 ++NumRemovableCopies;
221 if (!MRI->def_empty(OrigSrc1)) {
222 MachineRegisterInfo::def_instr_iterator Def =
223 MRI->def_instr_begin(OrigSrc1);
224 assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
225 MachineOperand *MOSrc1 = getSrcFromCopy(&*Def, MRI, SubReg1);
226 if (MOSrc1)
227 --NumNewCopies;
228 // If there are no other users of the original source, we can delete
229 // that instruction.
230 if (MOSrc1 && MRI->hasOneNonDBGUse(OrigSrc1))
231 ++NumRemovableCopies;
234 // If any of the uses of the original instructions is a cross class copy,
235 // that's a copy that will be removable if we transform. Likewise, if
236 // any of the uses is a transformable instruction, it's likely the tranforms
237 // will chain, enabling us to save a copy there, too. This is an aggressive
238 // heuristic that approximates the graph based cost analysis described above.
239 Register Dst = MI.getOperand(0).getReg();
240 bool AllUsesAreCopies = true;
241 for (MachineRegisterInfo::use_instr_nodbg_iterator
242 Use = MRI->use_instr_nodbg_begin(Dst),
243 E = MRI->use_instr_nodbg_end();
244 Use != E; ++Use) {
245 unsigned SubReg;
246 if (getSrcFromCopy(&*Use, MRI, SubReg) || isTransformable(*Use))
247 ++NumRemovableCopies;
248 // If the use is an INSERT_SUBREG, that's still something that can
249 // directly use the FPR64, so we don't invalidate AllUsesAreCopies. It's
250 // preferable to have it use the FPR64 in most cases, as if the source
251 // vector is an IMPLICIT_DEF, the INSERT_SUBREG just goes away entirely.
252 // Ditto for a lane insert.
253 else if (Use->getOpcode() == AArch64::INSERT_SUBREG ||
254 Use->getOpcode() == AArch64::INSvi64gpr)
256 else
257 AllUsesAreCopies = false;
259 // If all of the uses of the original destination register are copies to
260 // FPR64, then we won't end up having a new copy back to GPR64 either.
261 if (AllUsesAreCopies)
262 --NumNewCopies;
264 // If a transform will not increase the number of cross-class copies required,
265 // return true.
266 if (NumNewCopies <= NumRemovableCopies)
267 return true;
269 // Finally, even if we otherwise wouldn't transform, check if we're forcing
270 // transformation of everything.
271 return TransformAll;
274 static MachineInstr *insertCopy(const TargetInstrInfo *TII, MachineInstr &MI,
275 unsigned Dst, unsigned Src, bool IsKill) {
276 MachineInstrBuilder MIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
277 TII->get(AArch64::COPY), Dst)
278 .addReg(Src, getKillRegState(IsKill));
279 LLVM_DEBUG(dbgs() << " adding copy: " << *MIB);
280 ++NumCopiesInserted;
281 return MIB;
284 // transformInstruction - Perform the transformation of an instruction
285 // to its equivalant AdvSIMD scalar instruction. Update inputs and outputs
286 // to be the correct register class, minimizing cross-class copies.
287 void AArch64AdvSIMDScalar::transformInstruction(MachineInstr &MI) {
288 LLVM_DEBUG(dbgs() << "Scalar transform: " << MI);
290 MachineBasicBlock *MBB = MI.getParent();
291 unsigned OldOpc = MI.getOpcode();
292 unsigned NewOpc = getTransformOpcode(OldOpc);
293 assert(OldOpc != NewOpc && "transform an instruction to itself?!");
295 // Check if we need a copy for the source registers.
296 Register OrigSrc0 = MI.getOperand(1).getReg();
297 Register OrigSrc1 = MI.getOperand(2).getReg();
298 unsigned Src0 = 0, SubReg0;
299 unsigned Src1 = 0, SubReg1;
300 bool KillSrc0 = false, KillSrc1 = false;
301 if (!MRI->def_empty(OrigSrc0)) {
302 MachineRegisterInfo::def_instr_iterator Def =
303 MRI->def_instr_begin(OrigSrc0);
304 assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
305 MachineOperand *MOSrc0 = getSrcFromCopy(&*Def, MRI, SubReg0);
306 // If there are no other users of the original source, we can delete
307 // that instruction.
308 if (MOSrc0) {
309 Src0 = MOSrc0->getReg();
310 KillSrc0 = MOSrc0->isKill();
311 // Src0 is going to be reused, thus, it cannot be killed anymore.
312 MOSrc0->setIsKill(false);
313 if (MRI->hasOneNonDBGUse(OrigSrc0)) {
314 assert(MOSrc0 && "Can't delete copy w/o a valid original source!");
315 Def->eraseFromParent();
316 ++NumCopiesDeleted;
320 if (!MRI->def_empty(OrigSrc1)) {
321 MachineRegisterInfo::def_instr_iterator Def =
322 MRI->def_instr_begin(OrigSrc1);
323 assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
324 MachineOperand *MOSrc1 = getSrcFromCopy(&*Def, MRI, SubReg1);
325 // If there are no other users of the original source, we can delete
326 // that instruction.
327 if (MOSrc1) {
328 Src1 = MOSrc1->getReg();
329 KillSrc1 = MOSrc1->isKill();
330 // Src0 is going to be reused, thus, it cannot be killed anymore.
331 MOSrc1->setIsKill(false);
332 if (MRI->hasOneNonDBGUse(OrigSrc1)) {
333 assert(MOSrc1 && "Can't delete copy w/o a valid original source!");
334 Def->eraseFromParent();
335 ++NumCopiesDeleted;
339 // If we weren't able to reference the original source directly, create a
340 // copy.
341 if (!Src0) {
342 SubReg0 = 0;
343 Src0 = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
344 insertCopy(TII, MI, Src0, OrigSrc0, KillSrc0);
345 KillSrc0 = true;
347 if (!Src1) {
348 SubReg1 = 0;
349 Src1 = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
350 insertCopy(TII, MI, Src1, OrigSrc1, KillSrc1);
351 KillSrc1 = true;
354 // Create a vreg for the destination.
355 // FIXME: No need to do this if the ultimate user expects an FPR64.
356 // Check for that and avoid the copy if possible.
357 Register Dst = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
359 // For now, all of the new instructions have the same simple three-register
360 // form, so no need to special case based on what instruction we're
361 // building.
362 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(NewOpc), Dst)
363 .addReg(Src0, getKillRegState(KillSrc0), SubReg0)
364 .addReg(Src1, getKillRegState(KillSrc1), SubReg1);
366 // Now copy the result back out to a GPR.
367 // FIXME: Try to avoid this if all uses could actually just use the FPR64
368 // directly.
369 insertCopy(TII, MI, MI.getOperand(0).getReg(), Dst, true);
371 // Erase the old instruction.
372 MI.eraseFromParent();
374 ++NumScalarInsnsUsed;
377 // processMachineBasicBlock - Main optimzation loop.
378 bool AArch64AdvSIMDScalar::processMachineBasicBlock(MachineBasicBlock *MBB) {
379 bool Changed = false;
380 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) {
381 MachineInstr &MI = *I++;
382 if (isProfitableToTransform(MI)) {
383 transformInstruction(MI);
384 Changed = true;
387 return Changed;
390 // runOnMachineFunction - Pass entry point from PassManager.
391 bool AArch64AdvSIMDScalar::runOnMachineFunction(MachineFunction &mf) {
392 bool Changed = false;
393 LLVM_DEBUG(dbgs() << "***** AArch64AdvSIMDScalar *****\n");
395 if (skipFunction(mf.getFunction()))
396 return false;
398 MRI = &mf.getRegInfo();
399 TII = mf.getSubtarget().getInstrInfo();
401 // Just check things on a one-block-at-a-time basis.
402 for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I)
403 if (processMachineBasicBlock(&*I))
404 Changed = true;
405 return Changed;
408 // createAArch64AdvSIMDScalar - Factory function used by AArch64TargetMachine
409 // to add the pass to the PassManager.
410 FunctionPass *llvm::createAArch64AdvSIMDScalar() {
411 return new AArch64AdvSIMDScalar();