[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / Target / ARM / ARMConstantIslandPass.cpp
blob24ca25f73e96dbca0a5108fd6ee56ecafc22ffbf
1 //===- ARMConstantIslandPass.cpp - ARM constant islands -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a pass that splits the constant pool up into 'islands'
10 // which are scattered through-out the function. This is required due to the
11 // limited pc-relative displacements that ARM has.
13 //===----------------------------------------------------------------------===//
15 #include "ARM.h"
16 #include "ARMBaseInstrInfo.h"
17 #include "ARMBasicBlockInfo.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMSubtarget.h"
20 #include "MCTargetDesc/ARMBaseInfo.h"
21 #include "Thumb2InstrInfo.h"
22 #include "Utils/ARMBaseInfo.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/CodeGen/LivePhysRegs.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineConstantPool.h"
32 #include "llvm/CodeGen/MachineDominators.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineJumpTableInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/Config/llvm-config.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/MC/MCInstrDesc.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/Format.h"
49 #include "llvm/Support/MathExtras.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include <algorithm>
52 #include <cassert>
53 #include <cstdint>
54 #include <iterator>
55 #include <utility>
56 #include <vector>
58 using namespace llvm;
60 #define DEBUG_TYPE "arm-cp-islands"
62 #define ARM_CP_ISLANDS_OPT_NAME \
63 "ARM constant island placement and branch shortening pass"
64 STATISTIC(NumCPEs, "Number of constpool entries");
65 STATISTIC(NumSplit, "Number of uncond branches inserted");
66 STATISTIC(NumCBrFixed, "Number of cond branches fixed");
67 STATISTIC(NumUBrFixed, "Number of uncond branches fixed");
68 STATISTIC(NumTBs, "Number of table branches generated");
69 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk");
70 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk");
71 STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed");
72 STATISTIC(NumJTMoved, "Number of jump table destination blocks moved");
73 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted");
74 STATISTIC(NumLEInserted, "Number of LE backwards branches inserted");
76 static cl::opt<bool>
77 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true),
78 cl::desc("Adjust basic block layout to better use TB[BH]"));
80 static cl::opt<unsigned>
81 CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden, cl::init(30),
82 cl::desc("The max number of iteration for converge"));
84 static cl::opt<bool> SynthesizeThumb1TBB(
85 "arm-synthesize-thumb-1-tbb", cl::Hidden, cl::init(true),
86 cl::desc("Use compressed jump tables in Thumb-1 by synthesizing an "
87 "equivalent to the TBB/TBH instructions"));
89 namespace {
91 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
92 /// requires constant pool entries to be scattered among the instructions
93 /// inside a function. To do this, it completely ignores the normal LLVM
94 /// constant pool; instead, it places constants wherever it feels like with
95 /// special instructions.
96 ///
97 /// The terminology used in this pass includes:
98 /// Islands - Clumps of constants placed in the function.
99 /// Water - Potential places where an island could be formed.
100 /// CPE - A constant pool entry that has been placed somewhere, which
101 /// tracks a list of users.
102 class ARMConstantIslands : public MachineFunctionPass {
103 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr;
105 /// WaterList - A sorted list of basic blocks where islands could be placed
106 /// (i.e. blocks that don't fall through to the following block, due
107 /// to a return, unreachable, or unconditional branch).
108 std::vector<MachineBasicBlock*> WaterList;
110 /// NewWaterList - The subset of WaterList that was created since the
111 /// previous iteration by inserting unconditional branches.
112 SmallSet<MachineBasicBlock*, 4> NewWaterList;
114 using water_iterator = std::vector<MachineBasicBlock *>::iterator;
116 /// CPUser - One user of a constant pool, keeping the machine instruction
117 /// pointer, the constant pool being referenced, and the max displacement
118 /// allowed from the instruction to the CP. The HighWaterMark records the
119 /// highest basic block where a new CPEntry can be placed. To ensure this
120 /// pass terminates, the CP entries are initially placed at the end of the
121 /// function and then move monotonically to lower addresses. The
122 /// exception to this rule is when the current CP entry for a particular
123 /// CPUser is out of range, but there is another CP entry for the same
124 /// constant value in range. We want to use the existing in-range CP
125 /// entry, but if it later moves out of range, the search for new water
126 /// should resume where it left off. The HighWaterMark is used to record
127 /// that point.
128 struct CPUser {
129 MachineInstr *MI;
130 MachineInstr *CPEMI;
131 MachineBasicBlock *HighWaterMark;
132 unsigned MaxDisp;
133 bool NegOk;
134 bool IsSoImm;
135 bool KnownAlignment = false;
137 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
138 bool neg, bool soimm)
139 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) {
140 HighWaterMark = CPEMI->getParent();
143 /// getMaxDisp - Returns the maximum displacement supported by MI.
144 /// Correct for unknown alignment.
145 /// Conservatively subtract 2 bytes to handle weird alignment effects.
146 unsigned getMaxDisp() const {
147 return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2;
151 /// CPUsers - Keep track of all of the machine instructions that use various
152 /// constant pools and their max displacement.
153 std::vector<CPUser> CPUsers;
155 /// CPEntry - One per constant pool entry, keeping the machine instruction
156 /// pointer, the constpool index, and the number of CPUser's which
157 /// reference this entry.
158 struct CPEntry {
159 MachineInstr *CPEMI;
160 unsigned CPI;
161 unsigned RefCount;
163 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
164 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
167 /// CPEntries - Keep track of all of the constant pool entry machine
168 /// instructions. For each original constpool index (i.e. those that existed
169 /// upon entry to this pass), it keeps a vector of entries. Original
170 /// elements are cloned as we go along; the clones are put in the vector of
171 /// the original element, but have distinct CPIs.
173 /// The first half of CPEntries contains generic constants, the second half
174 /// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up
175 /// which vector it will be in here.
176 std::vector<std::vector<CPEntry>> CPEntries;
178 /// Maps a JT index to the offset in CPEntries containing copies of that
179 /// table. The equivalent map for a CONSTPOOL_ENTRY is the identity.
180 DenseMap<int, int> JumpTableEntryIndices;
182 /// Maps a JT index to the LEA that actually uses the index to calculate its
183 /// base address.
184 DenseMap<int, int> JumpTableUserIndices;
186 /// ImmBranch - One per immediate branch, keeping the machine instruction
187 /// pointer, conditional or unconditional, the max displacement,
188 /// and (if isCond is true) the corresponding unconditional branch
189 /// opcode.
190 struct ImmBranch {
191 MachineInstr *MI;
192 unsigned MaxDisp : 31;
193 bool isCond : 1;
194 unsigned UncondBr;
196 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, unsigned ubr)
197 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
200 /// ImmBranches - Keep track of all the immediate branch instructions.
201 std::vector<ImmBranch> ImmBranches;
203 /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
204 SmallVector<MachineInstr*, 4> PushPopMIs;
206 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
207 SmallVector<MachineInstr*, 4> T2JumpTables;
209 /// HasFarJump - True if any far jump instruction has been emitted during
210 /// the branch fix up pass.
211 bool HasFarJump;
213 MachineFunction *MF;
214 MachineConstantPool *MCP;
215 const ARMBaseInstrInfo *TII;
216 const ARMSubtarget *STI;
217 ARMFunctionInfo *AFI;
218 MachineDominatorTree *DT = nullptr;
219 bool isThumb;
220 bool isThumb1;
221 bool isThumb2;
222 bool isPositionIndependentOrROPI;
224 public:
225 static char ID;
227 ARMConstantIslands() : MachineFunctionPass(ID) {}
229 bool runOnMachineFunction(MachineFunction &MF) override;
231 void getAnalysisUsage(AnalysisUsage &AU) const override {
232 AU.addRequired<MachineDominatorTree>();
233 MachineFunctionPass::getAnalysisUsage(AU);
236 MachineFunctionProperties getRequiredProperties() const override {
237 return MachineFunctionProperties().set(
238 MachineFunctionProperties::Property::NoVRegs);
241 StringRef getPassName() const override {
242 return ARM_CP_ISLANDS_OPT_NAME;
245 private:
246 void doInitialConstPlacement(std::vector<MachineInstr *> &CPEMIs);
247 void doInitialJumpTablePlacement(std::vector<MachineInstr *> &CPEMIs);
248 bool BBHasFallthrough(MachineBasicBlock *MBB);
249 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
250 Align getCPEAlign(const MachineInstr *CPEMI);
251 void scanFunctionJumpTables();
252 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
253 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI);
254 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
255 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
256 unsigned getCombinedIndex(const MachineInstr *CPEMI);
257 int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
258 bool findAvailableWater(CPUser&U, unsigned UserOffset,
259 water_iterator &WaterIter, bool CloserWater);
260 void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
261 MachineBasicBlock *&NewMBB);
262 bool handleConstantPoolUser(unsigned CPUserIndex, bool CloserWater);
263 void removeDeadCPEMI(MachineInstr *CPEMI);
264 bool removeUnusedCPEntries();
265 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
266 MachineInstr *CPEMI, unsigned Disp, bool NegOk,
267 bool DoDump = false);
268 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
269 CPUser &U, unsigned &Growth);
270 bool fixupImmediateBr(ImmBranch &Br);
271 bool fixupConditionalBr(ImmBranch &Br);
272 bool fixupUnconditionalBr(ImmBranch &Br);
273 bool undoLRSpillRestore();
274 bool optimizeThumb2Instructions();
275 bool optimizeThumb2Branches();
276 bool reorderThumb2JumpTables();
277 bool preserveBaseRegister(MachineInstr *JumpMI, MachineInstr *LEAMI,
278 unsigned &DeadSize, bool &CanDeleteLEA,
279 bool &BaseRegKill);
280 bool optimizeThumb2JumpTables();
281 MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB,
282 MachineBasicBlock *JTBB);
284 unsigned getUserOffset(CPUser&) const;
285 void dumpBBs();
286 void verify();
288 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
289 unsigned Disp, bool NegativeOK, bool IsSoImm = false);
290 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
291 const CPUser &U) {
292 return isOffsetInRange(UserOffset, TrialOffset,
293 U.getMaxDisp(), U.NegOk, U.IsSoImm);
297 } // end anonymous namespace
299 char ARMConstantIslands::ID = 0;
301 /// verify - check BBOffsets, BBSizes, alignment of islands
302 void ARMConstantIslands::verify() {
303 #ifndef NDEBUG
304 BBInfoVector &BBInfo = BBUtils->getBBInfo();
305 assert(std::is_sorted(MF->begin(), MF->end(),
306 [&BBInfo](const MachineBasicBlock &LHS,
307 const MachineBasicBlock &RHS) {
308 return BBInfo[LHS.getNumber()].postOffset() <
309 BBInfo[RHS.getNumber()].postOffset();
310 }));
311 LLVM_DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n");
312 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
313 CPUser &U = CPUsers[i];
314 unsigned UserOffset = getUserOffset(U);
315 // Verify offset using the real max displacement without the safety
316 // adjustment.
317 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk,
318 /* DoDump = */ true)) {
319 LLVM_DEBUG(dbgs() << "OK\n");
320 continue;
322 LLVM_DEBUG(dbgs() << "Out of range.\n");
323 dumpBBs();
324 LLVM_DEBUG(MF->dump());
325 llvm_unreachable("Constant pool entry out of range!");
327 #endif
330 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
331 /// print block size and offset information - debugging
332 LLVM_DUMP_METHOD void ARMConstantIslands::dumpBBs() {
333 BBInfoVector &BBInfo = BBUtils->getBBInfo();
334 LLVM_DEBUG({
335 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
336 const BasicBlockInfo &BBI = BBInfo[J];
337 dbgs() << format("%08x %bb.%u\t", BBI.Offset, J)
338 << " kb=" << unsigned(BBI.KnownBits)
339 << " ua=" << unsigned(BBI.Unalign) << " pa=" << Log2(BBI.PostAlign)
340 << format(" size=%#x\n", BBInfo[J].Size);
344 #endif
346 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) {
347 MF = &mf;
348 MCP = mf.getConstantPool();
349 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(mf));
351 LLVM_DEBUG(dbgs() << "***** ARMConstantIslands: "
352 << MCP->getConstants().size() << " CP entries, aligned to "
353 << MCP->getConstantPoolAlignment() << " bytes *****\n");
355 STI = &static_cast<const ARMSubtarget &>(MF->getSubtarget());
356 TII = STI->getInstrInfo();
357 isPositionIndependentOrROPI =
358 STI->getTargetLowering()->isPositionIndependent() || STI->isROPI();
359 AFI = MF->getInfo<ARMFunctionInfo>();
360 DT = &getAnalysis<MachineDominatorTree>();
362 isThumb = AFI->isThumbFunction();
363 isThumb1 = AFI->isThumb1OnlyFunction();
364 isThumb2 = AFI->isThumb2Function();
366 HasFarJump = false;
367 bool GenerateTBB = isThumb2 || (isThumb1 && SynthesizeThumb1TBB);
369 // Renumber all of the machine basic blocks in the function, guaranteeing that
370 // the numbers agree with the position of the block in the function.
371 MF->RenumberBlocks();
373 // Try to reorder and otherwise adjust the block layout to make good use
374 // of the TB[BH] instructions.
375 bool MadeChange = false;
376 if (GenerateTBB && AdjustJumpTableBlocks) {
377 scanFunctionJumpTables();
378 MadeChange |= reorderThumb2JumpTables();
379 // Data is out of date, so clear it. It'll be re-computed later.
380 T2JumpTables.clear();
381 // Blocks may have shifted around. Keep the numbering up to date.
382 MF->RenumberBlocks();
385 // Perform the initial placement of the constant pool entries. To start with,
386 // we put them all at the end of the function.
387 std::vector<MachineInstr*> CPEMIs;
388 if (!MCP->isEmpty())
389 doInitialConstPlacement(CPEMIs);
391 if (MF->getJumpTableInfo())
392 doInitialJumpTablePlacement(CPEMIs);
394 /// The next UID to take is the first unused one.
395 AFI->initPICLabelUId(CPEMIs.size());
397 // Do the initial scan of the function, building up information about the
398 // sizes of each block, the location of all the water, and finding all of the
399 // constant pool users.
400 initializeFunctionInfo(CPEMIs);
401 CPEMIs.clear();
402 LLVM_DEBUG(dumpBBs());
404 // Functions with jump tables need an alignment of 4 because they use the ADR
405 // instruction, which aligns the PC to 4 bytes before adding an offset.
406 if (!T2JumpTables.empty())
407 MF->ensureAlignment(Align(4));
409 /// Remove dead constant pool entries.
410 MadeChange |= removeUnusedCPEntries();
412 // Iteratively place constant pool entries and fix up branches until there
413 // is no change.
414 unsigned NoCPIters = 0, NoBRIters = 0;
415 while (true) {
416 LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
417 bool CPChange = false;
418 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
419 // For most inputs, it converges in no more than 5 iterations.
420 // If it doesn't end in 10, the input may have huge BB or many CPEs.
421 // In this case, we will try different heuristics.
422 CPChange |= handleConstantPoolUser(i, NoCPIters >= CPMaxIteration / 2);
423 if (CPChange && ++NoCPIters > CPMaxIteration)
424 report_fatal_error("Constant Island pass failed to converge!");
425 LLVM_DEBUG(dumpBBs());
427 // Clear NewWaterList now. If we split a block for branches, it should
428 // appear as "new water" for the next iteration of constant pool placement.
429 NewWaterList.clear();
431 LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
432 bool BRChange = false;
433 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
434 BRChange |= fixupImmediateBr(ImmBranches[i]);
435 if (BRChange && ++NoBRIters > 30)
436 report_fatal_error("Branch Fix Up pass failed to converge!");
437 LLVM_DEBUG(dumpBBs());
439 if (!CPChange && !BRChange)
440 break;
441 MadeChange = true;
444 // Shrink 32-bit Thumb2 load and store instructions.
445 if (isThumb2 && !STI->prefers32BitThumb())
446 MadeChange |= optimizeThumb2Instructions();
448 // Shrink 32-bit branch instructions.
449 if (isThumb && STI->hasV8MBaselineOps())
450 MadeChange |= optimizeThumb2Branches();
452 // Optimize jump tables using TBB / TBH.
453 if (GenerateTBB && !STI->genExecuteOnly())
454 MadeChange |= optimizeThumb2JumpTables();
456 // After a while, this might be made debug-only, but it is not expensive.
457 verify();
459 // If LR has been forced spilled and no far jump (i.e. BL) has been issued,
460 // undo the spill / restore of LR if possible.
461 if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump())
462 MadeChange |= undoLRSpillRestore();
464 // Save the mapping between original and cloned constpool entries.
465 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
466 for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) {
467 const CPEntry & CPE = CPEntries[i][j];
468 if (CPE.CPEMI && CPE.CPEMI->getOperand(1).isCPI())
469 AFI->recordCPEClone(i, CPE.CPI);
473 LLVM_DEBUG(dbgs() << '\n'; dumpBBs());
475 BBUtils->clear();
476 WaterList.clear();
477 CPUsers.clear();
478 CPEntries.clear();
479 JumpTableEntryIndices.clear();
480 JumpTableUserIndices.clear();
481 ImmBranches.clear();
482 PushPopMIs.clear();
483 T2JumpTables.clear();
485 return MadeChange;
488 /// Perform the initial placement of the regular constant pool entries.
489 /// To start with, we put them all at the end of the function.
490 void
491 ARMConstantIslands::doInitialConstPlacement(std::vector<MachineInstr*> &CPEMIs) {
492 // Create the basic block to hold the CPE's.
493 MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
494 MF->push_back(BB);
496 // MachineConstantPool measures alignment in bytes.
497 const Align MaxAlign(MCP->getConstantPoolAlignment());
498 const unsigned MaxLogAlign = Log2(MaxAlign);
500 // Mark the basic block as required by the const-pool.
501 BB->setAlignment(MaxAlign);
503 // The function needs to be as aligned as the basic blocks. The linker may
504 // move functions around based on their alignment.
505 MF->ensureAlignment(BB->getAlignment());
507 // Order the entries in BB by descending alignment. That ensures correct
508 // alignment of all entries as long as BB is sufficiently aligned. Keep
509 // track of the insertion point for each alignment. We are going to bucket
510 // sort the entries as they are created.
511 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxLogAlign + 1,
512 BB->end());
514 // Add all of the constants from the constant pool to the end block, use an
515 // identity mapping of CPI's to CPE's.
516 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
518 const DataLayout &TD = MF->getDataLayout();
519 for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
520 unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
521 unsigned Align = CPs[i].getAlignment();
522 assert(isPowerOf2_32(Align) && "Invalid alignment");
523 // Verify that all constant pool entries are a multiple of their alignment.
524 // If not, we would have to pad them out so that instructions stay aligned.
525 assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
527 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
528 unsigned LogAlign = Log2_32(Align);
529 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
530 MachineInstr *CPEMI =
531 BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
532 .addImm(i).addConstantPoolIndex(i).addImm(Size);
533 CPEMIs.push_back(CPEMI);
535 // Ensure that future entries with higher alignment get inserted before
536 // CPEMI. This is bucket sort with iterators.
537 for (unsigned a = LogAlign + 1; a <= MaxLogAlign; ++a)
538 if (InsPoint[a] == InsAt)
539 InsPoint[a] = CPEMI;
541 // Add a new CPEntry, but no corresponding CPUser yet.
542 CPEntries.emplace_back(1, CPEntry(CPEMI, i));
543 ++NumCPEs;
544 LLVM_DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
545 << Size << ", align = " << Align << '\n');
547 LLVM_DEBUG(BB->dump());
550 /// Do initial placement of the jump tables. Because Thumb2's TBB and TBH
551 /// instructions can be made more efficient if the jump table immediately
552 /// follows the instruction, it's best to place them immediately next to their
553 /// jumps to begin with. In almost all cases they'll never be moved from that
554 /// position.
555 void ARMConstantIslands::doInitialJumpTablePlacement(
556 std::vector<MachineInstr *> &CPEMIs) {
557 unsigned i = CPEntries.size();
558 auto MJTI = MF->getJumpTableInfo();
559 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
561 MachineBasicBlock *LastCorrectlyNumberedBB = nullptr;
562 for (MachineBasicBlock &MBB : *MF) {
563 auto MI = MBB.getLastNonDebugInstr();
564 if (MI == MBB.end())
565 continue;
567 unsigned JTOpcode;
568 switch (MI->getOpcode()) {
569 default:
570 continue;
571 case ARM::BR_JTadd:
572 case ARM::BR_JTr:
573 case ARM::tBR_JTr:
574 case ARM::BR_JTm_i12:
575 case ARM::BR_JTm_rs:
576 JTOpcode = ARM::JUMPTABLE_ADDRS;
577 break;
578 case ARM::t2BR_JT:
579 JTOpcode = ARM::JUMPTABLE_INSTS;
580 break;
581 case ARM::tTBB_JT:
582 case ARM::t2TBB_JT:
583 JTOpcode = ARM::JUMPTABLE_TBB;
584 break;
585 case ARM::tTBH_JT:
586 case ARM::t2TBH_JT:
587 JTOpcode = ARM::JUMPTABLE_TBH;
588 break;
591 unsigned NumOps = MI->getDesc().getNumOperands();
592 MachineOperand JTOp =
593 MI->getOperand(NumOps - (MI->isPredicable() ? 2 : 1));
594 unsigned JTI = JTOp.getIndex();
595 unsigned Size = JT[JTI].MBBs.size() * sizeof(uint32_t);
596 MachineBasicBlock *JumpTableBB = MF->CreateMachineBasicBlock();
597 MF->insert(std::next(MachineFunction::iterator(MBB)), JumpTableBB);
598 MachineInstr *CPEMI = BuildMI(*JumpTableBB, JumpTableBB->begin(),
599 DebugLoc(), TII->get(JTOpcode))
600 .addImm(i++)
601 .addJumpTableIndex(JTI)
602 .addImm(Size);
603 CPEMIs.push_back(CPEMI);
604 CPEntries.emplace_back(1, CPEntry(CPEMI, JTI));
605 JumpTableEntryIndices.insert(std::make_pair(JTI, CPEntries.size() - 1));
606 if (!LastCorrectlyNumberedBB)
607 LastCorrectlyNumberedBB = &MBB;
610 // If we did anything then we need to renumber the subsequent blocks.
611 if (LastCorrectlyNumberedBB)
612 MF->RenumberBlocks(LastCorrectlyNumberedBB);
615 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
616 /// into the block immediately after it.
617 bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) {
618 // Get the next machine basic block in the function.
619 MachineFunction::iterator MBBI = MBB->getIterator();
620 // Can't fall off end of function.
621 if (std::next(MBBI) == MBB->getParent()->end())
622 return false;
624 MachineBasicBlock *NextBB = &*std::next(MBBI);
625 if (!MBB->isSuccessor(NextBB))
626 return false;
628 // Try to analyze the end of the block. A potential fallthrough may already
629 // have an unconditional branch for whatever reason.
630 MachineBasicBlock *TBB, *FBB;
631 SmallVector<MachineOperand, 4> Cond;
632 bool TooDifficult = TII->analyzeBranch(*MBB, TBB, FBB, Cond);
633 return TooDifficult || FBB == nullptr;
636 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
637 /// look up the corresponding CPEntry.
638 ARMConstantIslands::CPEntry *
639 ARMConstantIslands::findConstPoolEntry(unsigned CPI,
640 const MachineInstr *CPEMI) {
641 std::vector<CPEntry> &CPEs = CPEntries[CPI];
642 // Number of entries per constpool index should be small, just do a
643 // linear search.
644 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
645 if (CPEs[i].CPEMI == CPEMI)
646 return &CPEs[i];
648 return nullptr;
651 /// getCPEAlign - Returns the required alignment of the constant pool entry
652 /// represented by CPEMI.
653 Align ARMConstantIslands::getCPEAlign(const MachineInstr *CPEMI) {
654 switch (CPEMI->getOpcode()) {
655 case ARM::CONSTPOOL_ENTRY:
656 break;
657 case ARM::JUMPTABLE_TBB:
658 return isThumb1 ? Align(4) : Align(1);
659 case ARM::JUMPTABLE_TBH:
660 return isThumb1 ? Align(4) : Align(2);
661 case ARM::JUMPTABLE_INSTS:
662 return Align(2);
663 case ARM::JUMPTABLE_ADDRS:
664 return Align(4);
665 default:
666 llvm_unreachable("unknown constpool entry kind");
669 unsigned CPI = getCombinedIndex(CPEMI);
670 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
671 return Align(MCP->getConstants()[CPI].getAlignment());
674 /// scanFunctionJumpTables - Do a scan of the function, building up
675 /// information about the sizes of each block and the locations of all
676 /// the jump tables.
677 void ARMConstantIslands::scanFunctionJumpTables() {
678 for (MachineBasicBlock &MBB : *MF) {
679 for (MachineInstr &I : MBB)
680 if (I.isBranch() &&
681 (I.getOpcode() == ARM::t2BR_JT || I.getOpcode() == ARM::tBR_JTr))
682 T2JumpTables.push_back(&I);
686 /// initializeFunctionInfo - Do the initial scan of the function, building up
687 /// information about the sizes of each block, the location of all the water,
688 /// and finding all of the constant pool users.
689 void ARMConstantIslands::
690 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
692 BBUtils->computeAllBlockSizes();
693 BBInfoVector &BBInfo = BBUtils->getBBInfo();
694 // The known bits of the entry block offset are determined by the function
695 // alignment.
696 BBInfo.front().KnownBits = Log2(MF->getAlignment());
698 // Compute block offsets and known bits.
699 BBUtils->adjustBBOffsetsAfter(&MF->front());
701 // Now go back through the instructions and build up our data structures.
702 for (MachineBasicBlock &MBB : *MF) {
703 // If this block doesn't fall through into the next MBB, then this is
704 // 'water' that a constant pool island could be placed.
705 if (!BBHasFallthrough(&MBB))
706 WaterList.push_back(&MBB);
708 for (MachineInstr &I : MBB) {
709 if (I.isDebugInstr())
710 continue;
712 unsigned Opc = I.getOpcode();
713 if (I.isBranch()) {
714 bool isCond = false;
715 unsigned Bits = 0;
716 unsigned Scale = 1;
717 int UOpc = Opc;
718 switch (Opc) {
719 default:
720 continue; // Ignore other JT branches
721 case ARM::t2BR_JT:
722 case ARM::tBR_JTr:
723 T2JumpTables.push_back(&I);
724 continue; // Does not get an entry in ImmBranches
725 case ARM::Bcc:
726 isCond = true;
727 UOpc = ARM::B;
728 LLVM_FALLTHROUGH;
729 case ARM::B:
730 Bits = 24;
731 Scale = 4;
732 break;
733 case ARM::tBcc:
734 isCond = true;
735 UOpc = ARM::tB;
736 Bits = 8;
737 Scale = 2;
738 break;
739 case ARM::tB:
740 Bits = 11;
741 Scale = 2;
742 break;
743 case ARM::t2Bcc:
744 isCond = true;
745 UOpc = ARM::t2B;
746 Bits = 20;
747 Scale = 2;
748 break;
749 case ARM::t2B:
750 Bits = 24;
751 Scale = 2;
752 break;
755 // Record this immediate branch.
756 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
757 ImmBranches.push_back(ImmBranch(&I, MaxOffs, isCond, UOpc));
760 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
761 PushPopMIs.push_back(&I);
763 if (Opc == ARM::CONSTPOOL_ENTRY || Opc == ARM::JUMPTABLE_ADDRS ||
764 Opc == ARM::JUMPTABLE_INSTS || Opc == ARM::JUMPTABLE_TBB ||
765 Opc == ARM::JUMPTABLE_TBH)
766 continue;
768 // Scan the instructions for constant pool operands.
769 for (unsigned op = 0, e = I.getNumOperands(); op != e; ++op)
770 if (I.getOperand(op).isCPI() || I.getOperand(op).isJTI()) {
771 // We found one. The addressing mode tells us the max displacement
772 // from the PC that this instruction permits.
774 // Basic size info comes from the TSFlags field.
775 unsigned Bits = 0;
776 unsigned Scale = 1;
777 bool NegOk = false;
778 bool IsSoImm = false;
780 switch (Opc) {
781 default:
782 llvm_unreachable("Unknown addressing mode for CP reference!");
784 // Taking the address of a CP entry.
785 case ARM::LEApcrel:
786 case ARM::LEApcrelJT:
787 // This takes a SoImm, which is 8 bit immediate rotated. We'll
788 // pretend the maximum offset is 255 * 4. Since each instruction
789 // 4 byte wide, this is always correct. We'll check for other
790 // displacements that fits in a SoImm as well.
791 Bits = 8;
792 Scale = 4;
793 NegOk = true;
794 IsSoImm = true;
795 break;
796 case ARM::t2LEApcrel:
797 case ARM::t2LEApcrelJT:
798 Bits = 12;
799 NegOk = true;
800 break;
801 case ARM::tLEApcrel:
802 case ARM::tLEApcrelJT:
803 Bits = 8;
804 Scale = 4;
805 break;
807 case ARM::LDRBi12:
808 case ARM::LDRi12:
809 case ARM::LDRcp:
810 case ARM::t2LDRpci:
811 case ARM::t2LDRHpci:
812 case ARM::t2LDRBpci:
813 Bits = 12; // +-offset_12
814 NegOk = true;
815 break;
817 case ARM::tLDRpci:
818 Bits = 8;
819 Scale = 4; // +(offset_8*4)
820 break;
822 case ARM::VLDRD:
823 case ARM::VLDRS:
824 Bits = 8;
825 Scale = 4; // +-(offset_8*4)
826 NegOk = true;
827 break;
828 case ARM::VLDRH:
829 Bits = 8;
830 Scale = 2; // +-(offset_8*2)
831 NegOk = true;
832 break;
835 // Remember that this is a user of a CP entry.
836 unsigned CPI = I.getOperand(op).getIndex();
837 if (I.getOperand(op).isJTI()) {
838 JumpTableUserIndices.insert(std::make_pair(CPI, CPUsers.size()));
839 CPI = JumpTableEntryIndices[CPI];
842 MachineInstr *CPEMI = CPEMIs[CPI];
843 unsigned MaxOffs = ((1 << Bits)-1) * Scale;
844 CPUsers.push_back(CPUser(&I, CPEMI, MaxOffs, NegOk, IsSoImm));
846 // Increment corresponding CPEntry reference count.
847 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
848 assert(CPE && "Cannot find a corresponding CPEntry!");
849 CPE->RefCount++;
851 // Instructions can only use one CP entry, don't bother scanning the
852 // rest of the operands.
853 break;
859 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
860 /// ID.
861 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
862 const MachineBasicBlock *RHS) {
863 return LHS->getNumber() < RHS->getNumber();
866 /// updateForInsertedWaterBlock - When a block is newly inserted into the
867 /// machine function, it upsets all of the block numbers. Renumber the blocks
868 /// and update the arrays that parallel this numbering.
869 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
870 // Renumber the MBB's to keep them consecutive.
871 NewBB->getParent()->RenumberBlocks(NewBB);
873 // Insert an entry into BBInfo to align it properly with the (newly
874 // renumbered) block numbers.
875 BBUtils->insert(NewBB->getNumber(), BasicBlockInfo());
877 // Next, update WaterList. Specifically, we need to add NewMBB as having
878 // available water after it.
879 water_iterator IP = llvm::lower_bound(WaterList, NewBB, CompareMBBNumbers);
880 WaterList.insert(IP, NewBB);
883 /// Split the basic block containing MI into two blocks, which are joined by
884 /// an unconditional branch. Update data structures and renumber blocks to
885 /// account for this change and returns the newly created block.
886 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) {
887 MachineBasicBlock *OrigBB = MI->getParent();
889 // Collect liveness information at MI.
890 LivePhysRegs LRs(*MF->getSubtarget().getRegisterInfo());
891 LRs.addLiveOuts(*OrigBB);
892 auto LivenessEnd = ++MachineBasicBlock::iterator(MI).getReverse();
893 for (MachineInstr &LiveMI : make_range(OrigBB->rbegin(), LivenessEnd))
894 LRs.stepBackward(LiveMI);
896 // Create a new MBB for the code after the OrigBB.
897 MachineBasicBlock *NewBB =
898 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
899 MachineFunction::iterator MBBI = ++OrigBB->getIterator();
900 MF->insert(MBBI, NewBB);
902 // Splice the instructions starting with MI over to NewBB.
903 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
905 // Add an unconditional branch from OrigBB to NewBB.
906 // Note the new unconditional branch is not being recorded.
907 // There doesn't seem to be meaningful DebugInfo available; this doesn't
908 // correspond to anything in the source.
909 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
910 if (!isThumb)
911 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB);
912 else
913 BuildMI(OrigBB, DebugLoc(), TII->get(Opc))
914 .addMBB(NewBB)
915 .add(predOps(ARMCC::AL));
916 ++NumSplit;
918 // Update the CFG. All succs of OrigBB are now succs of NewBB.
919 NewBB->transferSuccessors(OrigBB);
921 // OrigBB branches to NewBB.
922 OrigBB->addSuccessor(NewBB);
924 // Update live-in information in the new block.
925 MachineRegisterInfo &MRI = MF->getRegInfo();
926 for (MCPhysReg L : LRs)
927 if (!MRI.isReserved(L))
928 NewBB->addLiveIn(L);
930 // Update internal data structures to account for the newly inserted MBB.
931 // This is almost the same as updateForInsertedWaterBlock, except that
932 // the Water goes after OrigBB, not NewBB.
933 MF->RenumberBlocks(NewBB);
935 // Insert an entry into BBInfo to align it properly with the (newly
936 // renumbered) block numbers.
937 BBUtils->insert(NewBB->getNumber(), BasicBlockInfo());
939 // Next, update WaterList. Specifically, we need to add OrigMBB as having
940 // available water after it (but not if it's already there, which happens
941 // when splitting before a conditional branch that is followed by an
942 // unconditional branch - in that case we want to insert NewBB).
943 water_iterator IP = llvm::lower_bound(WaterList, OrigBB, CompareMBBNumbers);
944 MachineBasicBlock* WaterBB = *IP;
945 if (WaterBB == OrigBB)
946 WaterList.insert(std::next(IP), NewBB);
947 else
948 WaterList.insert(IP, OrigBB);
949 NewWaterList.insert(OrigBB);
951 // Figure out how large the OrigBB is. As the first half of the original
952 // block, it cannot contain a tablejump. The size includes
953 // the new jump we added. (It should be possible to do this without
954 // recounting everything, but it's very confusing, and this is rarely
955 // executed.)
956 BBUtils->computeBlockSize(OrigBB);
958 // Figure out how large the NewMBB is. As the second half of the original
959 // block, it may contain a tablejump.
960 BBUtils->computeBlockSize(NewBB);
962 // All BBOffsets following these blocks must be modified.
963 BBUtils->adjustBBOffsetsAfter(OrigBB);
965 return NewBB;
968 /// getUserOffset - Compute the offset of U.MI as seen by the hardware
969 /// displacement computation. Update U.KnownAlignment to match its current
970 /// basic block location.
971 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const {
972 unsigned UserOffset = BBUtils->getOffsetOf(U.MI);
974 SmallVectorImpl<BasicBlockInfo> &BBInfo = BBUtils->getBBInfo();
975 const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()];
976 unsigned KnownBits = BBI.internalKnownBits();
978 // The value read from PC is offset from the actual instruction address.
979 UserOffset += (isThumb ? 4 : 8);
981 // Because of inline assembly, we may not know the alignment (mod 4) of U.MI.
982 // Make sure U.getMaxDisp() returns a constrained range.
983 U.KnownAlignment = (KnownBits >= 2);
985 // On Thumb, offsets==2 mod 4 are rounded down by the hardware for
986 // purposes of the displacement computation; compensate for that here.
987 // For unknown alignments, getMaxDisp() constrains the range instead.
988 if (isThumb && U.KnownAlignment)
989 UserOffset &= ~3u;
991 return UserOffset;
994 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
995 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
996 /// constant pool entry).
997 /// UserOffset is computed by getUserOffset above to include PC adjustments. If
998 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be
999 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that.
1000 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset,
1001 unsigned TrialOffset, unsigned MaxDisp,
1002 bool NegativeOK, bool IsSoImm) {
1003 if (UserOffset <= TrialOffset) {
1004 // User before the Trial.
1005 if (TrialOffset - UserOffset <= MaxDisp)
1006 return true;
1007 // FIXME: Make use full range of soimm values.
1008 } else if (NegativeOK) {
1009 if (UserOffset - TrialOffset <= MaxDisp)
1010 return true;
1011 // FIXME: Make use full range of soimm values.
1013 return false;
1016 /// isWaterInRange - Returns true if a CPE placed after the specified
1017 /// Water (a basic block) will be in range for the specific MI.
1019 /// Compute how much the function will grow by inserting a CPE after Water.
1020 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset,
1021 MachineBasicBlock* Water, CPUser &U,
1022 unsigned &Growth) {
1023 BBInfoVector &BBInfo = BBUtils->getBBInfo();
1024 const Align CPEAlign = getCPEAlign(U.CPEMI);
1025 const unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPEAlign);
1026 unsigned NextBlockOffset;
1027 Align NextBlockAlignment;
1028 MachineFunction::const_iterator NextBlock = Water->getIterator();
1029 if (++NextBlock == MF->end()) {
1030 NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
1031 } else {
1032 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
1033 NextBlockAlignment = NextBlock->getAlignment();
1035 unsigned Size = U.CPEMI->getOperand(2).getImm();
1036 unsigned CPEEnd = CPEOffset + Size;
1038 // The CPE may be able to hide in the alignment padding before the next
1039 // block. It may also cause more padding to be required if it is more aligned
1040 // that the next block.
1041 if (CPEEnd > NextBlockOffset) {
1042 Growth = CPEEnd - NextBlockOffset;
1043 // Compute the padding that would go at the end of the CPE to align the next
1044 // block.
1045 Growth += offsetToAlignment(CPEEnd, NextBlockAlignment);
1047 // If the CPE is to be inserted before the instruction, that will raise
1048 // the offset of the instruction. Also account for unknown alignment padding
1049 // in blocks between CPE and the user.
1050 if (CPEOffset < UserOffset)
1051 UserOffset += Growth + UnknownPadding(MF->getAlignment(), Log2(CPEAlign));
1052 } else
1053 // CPE fits in existing padding.
1054 Growth = 0;
1056 return isOffsetInRange(UserOffset, CPEOffset, U);
1059 /// isCPEntryInRange - Returns true if the distance between specific MI and
1060 /// specific ConstPool entry instruction can fit in MI's displacement field.
1061 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
1062 MachineInstr *CPEMI, unsigned MaxDisp,
1063 bool NegOk, bool DoDump) {
1064 unsigned CPEOffset = BBUtils->getOffsetOf(CPEMI);
1066 if (DoDump) {
1067 LLVM_DEBUG({
1068 BBInfoVector &BBInfo = BBUtils->getBBInfo();
1069 unsigned Block = MI->getParent()->getNumber();
1070 const BasicBlockInfo &BBI = BBInfo[Block];
1071 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
1072 << " max delta=" << MaxDisp
1073 << format(" insn address=%#x", UserOffset) << " in "
1074 << printMBBReference(*MI->getParent()) << ": "
1075 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
1076 << format("CPE address=%#x offset=%+d: ", CPEOffset,
1077 int(CPEOffset - UserOffset));
1081 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
1084 #ifndef NDEBUG
1085 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
1086 /// unconditionally branches to its only successor.
1087 static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
1088 if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
1089 return false;
1091 MachineBasicBlock *Succ = *MBB->succ_begin();
1092 MachineBasicBlock *Pred = *MBB->pred_begin();
1093 MachineInstr *PredMI = &Pred->back();
1094 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB
1095 || PredMI->getOpcode() == ARM::t2B)
1096 return PredMI->getOperand(0).getMBB() == Succ;
1097 return false;
1099 #endif // NDEBUG
1101 /// decrementCPEReferenceCount - find the constant pool entry with index CPI
1102 /// and instruction CPEMI, and decrement its refcount. If the refcount
1103 /// becomes 0 remove the entry and instruction. Returns true if we removed
1104 /// the entry, false if we didn't.
1105 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI,
1106 MachineInstr *CPEMI) {
1107 // Find the old entry. Eliminate it if it is no longer used.
1108 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
1109 assert(CPE && "Unexpected!");
1110 if (--CPE->RefCount == 0) {
1111 removeDeadCPEMI(CPEMI);
1112 CPE->CPEMI = nullptr;
1113 --NumCPEs;
1114 return true;
1116 return false;
1119 unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr *CPEMI) {
1120 if (CPEMI->getOperand(1).isCPI())
1121 return CPEMI->getOperand(1).getIndex();
1123 return JumpTableEntryIndices[CPEMI->getOperand(1).getIndex()];
1126 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1127 /// if not, see if an in-range clone of the CPE is in range, and if so,
1128 /// change the data structures so the user references the clone. Returns:
1129 /// 0 = no existing entry found
1130 /// 1 = entry found, and there were no code insertions or deletions
1131 /// 2 = entry found, and there were code insertions or deletions
1132 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) {
1133 MachineInstr *UserMI = U.MI;
1134 MachineInstr *CPEMI = U.CPEMI;
1136 // Check to see if the CPE is already in-range.
1137 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
1138 true)) {
1139 LLVM_DEBUG(dbgs() << "In range\n");
1140 return 1;
1143 // No. Look for previously created clones of the CPE that are in range.
1144 unsigned CPI = getCombinedIndex(CPEMI);
1145 std::vector<CPEntry> &CPEs = CPEntries[CPI];
1146 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1147 // We already tried this one
1148 if (CPEs[i].CPEMI == CPEMI)
1149 continue;
1150 // Removing CPEs can leave empty entries, skip
1151 if (CPEs[i].CPEMI == nullptr)
1152 continue;
1153 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
1154 U.NegOk)) {
1155 LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1156 << CPEs[i].CPI << "\n");
1157 // Point the CPUser node to the replacement
1158 U.CPEMI = CPEs[i].CPEMI;
1159 // Change the CPI in the instruction operand to refer to the clone.
1160 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1161 if (UserMI->getOperand(j).isCPI()) {
1162 UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1163 break;
1165 // Adjust the refcount of the clone...
1166 CPEs[i].RefCount++;
1167 // ...and the original. If we didn't remove the old entry, none of the
1168 // addresses changed, so we don't need another pass.
1169 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1172 return 0;
1175 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1176 /// the specific unconditional branch instruction.
1177 static inline unsigned getUnconditionalBrDisp(int Opc) {
1178 switch (Opc) {
1179 case ARM::tB:
1180 return ((1<<10)-1)*2;
1181 case ARM::t2B:
1182 return ((1<<23)-1)*2;
1183 default:
1184 break;
1187 return ((1<<23)-1)*4;
1190 /// findAvailableWater - Look for an existing entry in the WaterList in which
1191 /// we can place the CPE referenced from U so it's within range of U's MI.
1192 /// Returns true if found, false if not. If it returns true, WaterIter
1193 /// is set to the WaterList entry. For Thumb, prefer water that will not
1194 /// introduce padding to water that will. To ensure that this pass
1195 /// terminates, the CPE location for a particular CPUser is only allowed to
1196 /// move to a lower address, so search backward from the end of the list and
1197 /// prefer the first water that is in range.
1198 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
1199 water_iterator &WaterIter,
1200 bool CloserWater) {
1201 if (WaterList.empty())
1202 return false;
1204 unsigned BestGrowth = ~0u;
1205 // The nearest water without splitting the UserBB is right after it.
1206 // If the distance is still large (we have a big BB), then we need to split it
1207 // if we don't converge after certain iterations. This helps the following
1208 // situation to converge:
1209 // BB0:
1210 // Big BB
1211 // BB1:
1212 // Constant Pool
1213 // When a CP access is out of range, BB0 may be used as water. However,
1214 // inserting islands between BB0 and BB1 makes other accesses out of range.
1215 MachineBasicBlock *UserBB = U.MI->getParent();
1216 BBInfoVector &BBInfo = BBUtils->getBBInfo();
1217 const Align CPEAlign = getCPEAlign(U.CPEMI);
1218 unsigned MinNoSplitDisp = BBInfo[UserBB->getNumber()].postOffset(CPEAlign);
1219 if (CloserWater && MinNoSplitDisp > U.getMaxDisp() / 2)
1220 return false;
1221 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
1222 --IP) {
1223 MachineBasicBlock* WaterBB = *IP;
1224 // Check if water is in range and is either at a lower address than the
1225 // current "high water mark" or a new water block that was created since
1226 // the previous iteration by inserting an unconditional branch. In the
1227 // latter case, we want to allow resetting the high water mark back to
1228 // this new water since we haven't seen it before. Inserting branches
1229 // should be relatively uncommon and when it does happen, we want to be
1230 // sure to take advantage of it for all the CPEs near that block, so that
1231 // we don't insert more branches than necessary.
1232 // When CloserWater is true, we try to find the lowest address after (or
1233 // equal to) user MI's BB no matter of padding growth.
1234 unsigned Growth;
1235 if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
1236 (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1237 NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) &&
1238 Growth < BestGrowth) {
1239 // This is the least amount of required padding seen so far.
1240 BestGrowth = Growth;
1241 WaterIter = IP;
1242 LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB)
1243 << " Growth=" << Growth << '\n');
1245 if (CloserWater && WaterBB == U.MI->getParent())
1246 return true;
1247 // Keep looking unless it is perfect and we're not looking for the lowest
1248 // possible address.
1249 if (!CloserWater && BestGrowth == 0)
1250 return true;
1252 if (IP == B)
1253 break;
1255 return BestGrowth != ~0u;
1258 /// createNewWater - No existing WaterList entry will work for
1259 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the
1260 /// block is used if in range, and the conditional branch munged so control
1261 /// flow is correct. Otherwise the block is split to create a hole with an
1262 /// unconditional branch around it. In either case NewMBB is set to a
1263 /// block following which the new island can be inserted (the WaterList
1264 /// is not adjusted).
1265 void ARMConstantIslands::createNewWater(unsigned CPUserIndex,
1266 unsigned UserOffset,
1267 MachineBasicBlock *&NewMBB) {
1268 CPUser &U = CPUsers[CPUserIndex];
1269 MachineInstr *UserMI = U.MI;
1270 MachineInstr *CPEMI = U.CPEMI;
1271 const Align CPEAlign = getCPEAlign(CPEMI);
1272 MachineBasicBlock *UserMBB = UserMI->getParent();
1273 BBInfoVector &BBInfo = BBUtils->getBBInfo();
1274 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
1276 // If the block does not end in an unconditional branch already, and if the
1277 // end of the block is within range, make new water there. (The addition
1278 // below is for the unconditional branch we will be adding: 4 bytes on ARM +
1279 // Thumb2, 2 on Thumb1.
1280 if (BBHasFallthrough(UserMBB)) {
1281 // Size of branch to insert.
1282 unsigned Delta = isThumb1 ? 2 : 4;
1283 // Compute the offset where the CPE will begin.
1284 unsigned CPEOffset = UserBBI.postOffset(CPEAlign) + Delta;
1286 if (isOffsetInRange(UserOffset, CPEOffset, U)) {
1287 LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB)
1288 << format(", expected CPE offset %#x\n", CPEOffset));
1289 NewMBB = &*++UserMBB->getIterator();
1290 // Add an unconditional branch from UserMBB to fallthrough block. Record
1291 // it for branch lengthening; this new branch will not get out of range,
1292 // but if the preceding conditional branch is out of range, the targets
1293 // will be exchanged, and the altered branch may be out of range, so the
1294 // machinery has to know about it.
1295 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
1296 if (!isThumb)
1297 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1298 else
1299 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr))
1300 .addMBB(NewMBB)
1301 .add(predOps(ARMCC::AL));
1302 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1303 ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1304 MaxDisp, false, UncondBr));
1305 BBUtils->computeBlockSize(UserMBB);
1306 BBUtils->adjustBBOffsetsAfter(UserMBB);
1307 return;
1311 // What a big block. Find a place within the block to split it. This is a
1312 // little tricky on Thumb1 since instructions are 2 bytes and constant pool
1313 // entries are 4 bytes: if instruction I references island CPE, and
1314 // instruction I+1 references CPE', it will not work well to put CPE as far
1315 // forward as possible, since then CPE' cannot immediately follow it (that
1316 // location is 2 bytes farther away from I+1 than CPE was from I) and we'd
1317 // need to create a new island. So, we make a first guess, then walk through
1318 // the instructions between the one currently being looked at and the
1319 // possible insertion point, and make sure any other instructions that
1320 // reference CPEs will be able to use the same island area; if not, we back
1321 // up the insertion point.
1323 // Try to split the block so it's fully aligned. Compute the latest split
1324 // point where we can add a 4-byte branch instruction, and then align to
1325 // Align which is the largest possible alignment in the function.
1326 const Align Align = MF->getAlignment();
1327 assert(Align >= CPEAlign && "Over-aligned constant pool entry");
1328 unsigned KnownBits = UserBBI.internalKnownBits();
1329 unsigned UPad = UnknownPadding(Align, KnownBits);
1330 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad;
1331 LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x",
1332 BaseInsertOffset));
1334 // The 4 in the following is for the unconditional branch we'll be inserting
1335 // (allows for long branch on Thumb1). Alignment of the island is handled
1336 // inside isOffsetInRange.
1337 BaseInsertOffset -= 4;
1339 LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
1340 << " la=" << Log2(Align) << " kb=" << KnownBits
1341 << " up=" << UPad << '\n');
1343 // This could point off the end of the block if we've already got constant
1344 // pool entries following this block; only the last one is in the water list.
1345 // Back past any possible branches (allow for a conditional and a maximally
1346 // long unconditional).
1347 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
1348 // Ensure BaseInsertOffset is larger than the offset of the instruction
1349 // following UserMI so that the loop which searches for the split point
1350 // iterates at least once.
1351 BaseInsertOffset =
1352 std::max(UserBBI.postOffset() - UPad - 8,
1353 UserOffset + TII->getInstSizeInBytes(*UserMI) + 1);
1354 // If the CP is referenced(ie, UserOffset) is in first four instructions
1355 // after IT, this recalculated BaseInsertOffset could be in the middle of
1356 // an IT block. If it is, change the BaseInsertOffset to just after the
1357 // IT block. This still make the CP Entry is in range becuase of the
1358 // following reasons.
1359 // 1. The initial BaseseInsertOffset calculated is (UserOffset +
1360 // U.getMaxDisp() - UPad).
1361 // 2. An IT block is only at most 4 instructions plus the "it" itself (18
1362 // bytes).
1363 // 3. All the relevant instructions support much larger Maximum
1364 // displacement.
1365 MachineBasicBlock::iterator I = UserMI;
1366 ++I;
1367 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI),
1368 PredReg = 0;
1369 I->getOpcode() != ARM::t2IT &&
1370 getITInstrPredicate(*I, PredReg) != ARMCC::AL;
1371 Offset += TII->getInstSizeInBytes(*I), I = std::next(I)) {
1372 BaseInsertOffset =
1373 std::max(BaseInsertOffset, Offset + TII->getInstSizeInBytes(*I) + 1);
1374 assert(I != UserMBB->end() && "Fell off end of block");
1376 LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
1378 unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad +
1379 CPEMI->getOperand(2).getImm();
1380 MachineBasicBlock::iterator MI = UserMI;
1381 ++MI;
1382 unsigned CPUIndex = CPUserIndex+1;
1383 unsigned NumCPUsers = CPUsers.size();
1384 MachineInstr *LastIT = nullptr;
1385 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI);
1386 Offset < BaseInsertOffset;
1387 Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) {
1388 assert(MI != UserMBB->end() && "Fell off end of block");
1389 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == &*MI) {
1390 CPUser &U = CPUsers[CPUIndex];
1391 if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
1392 // Shift intertion point by one unit of alignment so it is within reach.
1393 BaseInsertOffset -= Align.value();
1394 EndInsertOffset -= Align.value();
1396 // This is overly conservative, as we don't account for CPEMIs being
1397 // reused within the block, but it doesn't matter much. Also assume CPEs
1398 // are added in order with alignment padding. We may eventually be able
1399 // to pack the aligned CPEs better.
1400 EndInsertOffset += U.CPEMI->getOperand(2).getImm();
1401 CPUIndex++;
1404 // Remember the last IT instruction.
1405 if (MI->getOpcode() == ARM::t2IT)
1406 LastIT = &*MI;
1409 --MI;
1411 // Avoid splitting an IT block.
1412 if (LastIT) {
1413 unsigned PredReg = 0;
1414 ARMCC::CondCodes CC = getITInstrPredicate(*MI, PredReg);
1415 if (CC != ARMCC::AL)
1416 MI = LastIT;
1419 // Avoid splitting a MOVW+MOVT pair with a relocation on Windows.
1420 // On Windows, this instruction pair is covered by one single
1421 // IMAGE_REL_ARM_MOV32T relocation which covers both instructions. If a
1422 // constant island is injected inbetween them, the relocation will clobber
1423 // the instruction and fail to update the MOVT instruction.
1424 // (These instructions are bundled up until right before the ConstantIslands
1425 // pass.)
1426 if (STI->isTargetWindows() && isThumb && MI->getOpcode() == ARM::t2MOVTi16 &&
1427 (MI->getOperand(2).getTargetFlags() & ARMII::MO_OPTION_MASK) ==
1428 ARMII::MO_HI16) {
1429 --MI;
1430 assert(MI->getOpcode() == ARM::t2MOVi16 &&
1431 (MI->getOperand(1).getTargetFlags() & ARMII::MO_OPTION_MASK) ==
1432 ARMII::MO_LO16);
1435 // We really must not split an IT block.
1436 #ifndef NDEBUG
1437 unsigned PredReg;
1438 assert(!isThumb || getITInstrPredicate(*MI, PredReg) == ARMCC::AL);
1439 #endif
1440 NewMBB = splitBlockBeforeInstr(&*MI);
1443 /// handleConstantPoolUser - Analyze the specified user, checking to see if it
1444 /// is out-of-range. If so, pick up the constant pool value and move it some
1445 /// place in-range. Return true if we changed any addresses (thus must run
1446 /// another pass of branch lengthening), false otherwise.
1447 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex,
1448 bool CloserWater) {
1449 CPUser &U = CPUsers[CPUserIndex];
1450 MachineInstr *UserMI = U.MI;
1451 MachineInstr *CPEMI = U.CPEMI;
1452 unsigned CPI = getCombinedIndex(CPEMI);
1453 unsigned Size = CPEMI->getOperand(2).getImm();
1454 // Compute this only once, it's expensive.
1455 unsigned UserOffset = getUserOffset(U);
1457 // See if the current entry is within range, or there is a clone of it
1458 // in range.
1459 int result = findInRangeCPEntry(U, UserOffset);
1460 if (result==1) return false;
1461 else if (result==2) return true;
1463 // No existing clone of this CPE is within range.
1464 // We will be generating a new clone. Get a UID for it.
1465 unsigned ID = AFI->createPICLabelUId();
1467 // Look for water where we can place this CPE.
1468 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
1469 MachineBasicBlock *NewMBB;
1470 water_iterator IP;
1471 if (findAvailableWater(U, UserOffset, IP, CloserWater)) {
1472 LLVM_DEBUG(dbgs() << "Found water in range\n");
1473 MachineBasicBlock *WaterBB = *IP;
1475 // If the original WaterList entry was "new water" on this iteration,
1476 // propagate that to the new island. This is just keeping NewWaterList
1477 // updated to match the WaterList, which will be updated below.
1478 if (NewWaterList.erase(WaterBB))
1479 NewWaterList.insert(NewIsland);
1481 // The new CPE goes before the following block (NewMBB).
1482 NewMBB = &*++WaterBB->getIterator();
1483 } else {
1484 // No water found.
1485 LLVM_DEBUG(dbgs() << "No water found\n");
1486 createNewWater(CPUserIndex, UserOffset, NewMBB);
1488 // splitBlockBeforeInstr adds to WaterList, which is important when it is
1489 // called while handling branches so that the water will be seen on the
1490 // next iteration for constant pools, but in this context, we don't want
1491 // it. Check for this so it will be removed from the WaterList.
1492 // Also remove any entry from NewWaterList.
1493 MachineBasicBlock *WaterBB = &*--NewMBB->getIterator();
1494 IP = find(WaterList, WaterBB);
1495 if (IP != WaterList.end())
1496 NewWaterList.erase(WaterBB);
1498 // We are adding new water. Update NewWaterList.
1499 NewWaterList.insert(NewIsland);
1501 // Always align the new block because CP entries can be smaller than 4
1502 // bytes. Be careful not to decrease the existing alignment, e.g. NewMBB may
1503 // be an already aligned constant pool block.
1504 const Align Alignment = isThumb ? Align(2) : Align(4);
1505 if (NewMBB->getAlignment() < Alignment)
1506 NewMBB->setAlignment(Alignment);
1508 // Remove the original WaterList entry; we want subsequent insertions in
1509 // this vicinity to go after the one we're about to insert. This
1510 // considerably reduces the number of times we have to move the same CPE
1511 // more than once and is also important to ensure the algorithm terminates.
1512 if (IP != WaterList.end())
1513 WaterList.erase(IP);
1515 // Okay, we know we can put an island before NewMBB now, do it!
1516 MF->insert(NewMBB->getIterator(), NewIsland);
1518 // Update internal data structures to account for the newly inserted MBB.
1519 updateForInsertedWaterBlock(NewIsland);
1521 // Now that we have an island to add the CPE to, clone the original CPE and
1522 // add it to the island.
1523 U.HighWaterMark = NewIsland;
1524 U.CPEMI = BuildMI(NewIsland, DebugLoc(), CPEMI->getDesc())
1525 .addImm(ID)
1526 .add(CPEMI->getOperand(1))
1527 .addImm(Size);
1528 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1529 ++NumCPEs;
1531 // Decrement the old entry, and remove it if refcount becomes 0.
1532 decrementCPEReferenceCount(CPI, CPEMI);
1534 // Mark the basic block as aligned as required by the const-pool entry.
1535 NewIsland->setAlignment(getCPEAlign(U.CPEMI));
1537 // Increase the size of the island block to account for the new entry.
1538 BBUtils->adjustBBSize(NewIsland, Size);
1539 BBUtils->adjustBBOffsetsAfter(&*--NewIsland->getIterator());
1541 // Finally, change the CPI in the instruction operand to be ID.
1542 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1543 if (UserMI->getOperand(i).isCPI()) {
1544 UserMI->getOperand(i).setIndex(ID);
1545 break;
1548 LLVM_DEBUG(
1549 dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI
1550 << format(" offset=%#x\n",
1551 BBUtils->getBBInfo()[NewIsland->getNumber()].Offset));
1553 return true;
1556 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
1557 /// sizes and offsets of impacted basic blocks.
1558 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
1559 MachineBasicBlock *CPEBB = CPEMI->getParent();
1560 unsigned Size = CPEMI->getOperand(2).getImm();
1561 CPEMI->eraseFromParent();
1562 BBInfoVector &BBInfo = BBUtils->getBBInfo();
1563 BBUtils->adjustBBSize(CPEBB, -Size);
1564 // All succeeding offsets have the current size value added in, fix this.
1565 if (CPEBB->empty()) {
1566 BBInfo[CPEBB->getNumber()].Size = 0;
1568 // This block no longer needs to be aligned.
1569 CPEBB->setAlignment(Align::None());
1570 } else {
1571 // Entries are sorted by descending alignment, so realign from the front.
1572 CPEBB->setAlignment(getCPEAlign(&*CPEBB->begin()));
1575 BBUtils->adjustBBOffsetsAfter(CPEBB);
1576 // An island has only one predecessor BB and one successor BB. Check if
1577 // this BB's predecessor jumps directly to this BB's successor. This
1578 // shouldn't happen currently.
1579 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1580 // FIXME: remove the empty blocks after all the work is done?
1583 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts
1584 /// are zero.
1585 bool ARMConstantIslands::removeUnusedCPEntries() {
1586 unsigned MadeChange = false;
1587 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1588 std::vector<CPEntry> &CPEs = CPEntries[i];
1589 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1590 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1591 removeDeadCPEMI(CPEs[j].CPEMI);
1592 CPEs[j].CPEMI = nullptr;
1593 MadeChange = true;
1597 return MadeChange;
1601 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far
1602 /// away to fit in its displacement field.
1603 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) {
1604 MachineInstr *MI = Br.MI;
1605 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1607 // Check to see if the DestBB is already in-range.
1608 if (BBUtils->isBBInRange(MI, DestBB, Br.MaxDisp))
1609 return false;
1611 if (!Br.isCond)
1612 return fixupUnconditionalBr(Br);
1613 return fixupConditionalBr(Br);
1616 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
1617 /// too far away to fit in its displacement field. If the LR register has been
1618 /// spilled in the epilogue, then we can use BL to implement a far jump.
1619 /// Otherwise, add an intermediate branch instruction to a branch.
1620 bool
1621 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
1622 MachineInstr *MI = Br.MI;
1623 MachineBasicBlock *MBB = MI->getParent();
1624 if (!isThumb1)
1625 llvm_unreachable("fixupUnconditionalBr is Thumb1 only!");
1627 if (!AFI->isLRSpilled())
1628 report_fatal_error("underestimated function size");
1630 // Use BL to implement far jump.
1631 Br.MaxDisp = (1 << 21) * 2;
1632 MI->setDesc(TII->get(ARM::tBfar));
1633 BBInfoVector &BBInfo = BBUtils->getBBInfo();
1634 BBInfo[MBB->getNumber()].Size += 2;
1635 BBUtils->adjustBBOffsetsAfter(MBB);
1636 HasFarJump = true;
1637 ++NumUBrFixed;
1639 LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI);
1641 return true;
1644 /// fixupConditionalBr - Fix up a conditional branch whose destination is too
1645 /// far away to fit in its displacement field. It is converted to an inverse
1646 /// conditional branch + an unconditional branch to the destination.
1647 bool
1648 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) {
1649 MachineInstr *MI = Br.MI;
1650 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1652 // Add an unconditional branch to the destination and invert the branch
1653 // condition to jump over it:
1654 // blt L1
1655 // =>
1656 // bge L2
1657 // b L1
1658 // L2:
1659 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm();
1660 CC = ARMCC::getOppositeCondition(CC);
1661 Register CCReg = MI->getOperand(2).getReg();
1663 // If the branch is at the end of its MBB and that has a fall-through block,
1664 // direct the updated conditional branch to the fall-through block. Otherwise,
1665 // split the MBB before the next instruction.
1666 MachineBasicBlock *MBB = MI->getParent();
1667 MachineInstr *BMI = &MBB->back();
1668 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1670 ++NumCBrFixed;
1671 if (BMI != MI) {
1672 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
1673 BMI->getOpcode() == Br.UncondBr) {
1674 // Last MI in the BB is an unconditional branch. Can we simply invert the
1675 // condition and swap destinations:
1676 // beq L1
1677 // b L2
1678 // =>
1679 // bne L2
1680 // b L1
1681 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
1682 if (BBUtils->isBBInRange(MI, NewDest, Br.MaxDisp)) {
1683 LLVM_DEBUG(
1684 dbgs() << " Invert Bcc condition and swap its destination with "
1685 << *BMI);
1686 BMI->getOperand(0).setMBB(DestBB);
1687 MI->getOperand(0).setMBB(NewDest);
1688 MI->getOperand(1).setImm(CC);
1689 return true;
1694 if (NeedSplit) {
1695 splitBlockBeforeInstr(MI);
1696 // No need for the branch to the next block. We're adding an unconditional
1697 // branch to the destination.
1698 int delta = TII->getInstSizeInBytes(MBB->back());
1699 BBUtils->adjustBBSize(MBB, -delta);
1700 MBB->back().eraseFromParent();
1702 // The conditional successor will be swapped between the BBs after this, so
1703 // update CFG.
1704 MBB->addSuccessor(DestBB);
1705 std::next(MBB->getIterator())->removeSuccessor(DestBB);
1707 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1709 MachineBasicBlock *NextBB = &*++MBB->getIterator();
1711 LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB)
1712 << " also invert condition and change dest. to "
1713 << printMBBReference(*NextBB) << "\n");
1715 // Insert a new conditional branch and a new unconditional branch.
1716 // Also update the ImmBranch as well as adding a new entry for the new branch.
1717 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode()))
1718 .addMBB(NextBB).addImm(CC).addReg(CCReg);
1719 Br.MI = &MBB->back();
1720 BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back()));
1721 if (isThumb)
1722 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr))
1723 .addMBB(DestBB)
1724 .add(predOps(ARMCC::AL));
1725 else
1726 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1727 BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back()));
1728 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1729 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1731 // Remove the old conditional branch. It may or may not still be in MBB.
1732 BBUtils->adjustBBSize(MI->getParent(), -TII->getInstSizeInBytes(*MI));
1733 MI->eraseFromParent();
1734 BBUtils->adjustBBOffsetsAfter(MBB);
1735 return true;
1738 /// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills
1739 /// LR / restores LR to pc. FIXME: This is done here because it's only possible
1740 /// to do this if tBfar is not used.
1741 bool ARMConstantIslands::undoLRSpillRestore() {
1742 bool MadeChange = false;
1743 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) {
1744 MachineInstr *MI = PushPopMIs[i];
1745 // First two operands are predicates.
1746 if (MI->getOpcode() == ARM::tPOP_RET &&
1747 MI->getOperand(2).getReg() == ARM::PC &&
1748 MI->getNumExplicitOperands() == 3) {
1749 // Create the new insn and copy the predicate from the old.
1750 BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET))
1751 .add(MI->getOperand(0))
1752 .add(MI->getOperand(1));
1753 MI->eraseFromParent();
1754 MadeChange = true;
1755 } else if (MI->getOpcode() == ARM::tPUSH &&
1756 MI->getOperand(2).getReg() == ARM::LR &&
1757 MI->getNumExplicitOperands() == 3) {
1758 // Just remove the push.
1759 MI->eraseFromParent();
1760 MadeChange = true;
1763 return MadeChange;
1766 bool ARMConstantIslands::optimizeThumb2Instructions() {
1767 bool MadeChange = false;
1769 // Shrink ADR and LDR from constantpool.
1770 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
1771 CPUser &U = CPUsers[i];
1772 unsigned Opcode = U.MI->getOpcode();
1773 unsigned NewOpc = 0;
1774 unsigned Scale = 1;
1775 unsigned Bits = 0;
1776 switch (Opcode) {
1777 default: break;
1778 case ARM::t2LEApcrel:
1779 if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1780 NewOpc = ARM::tLEApcrel;
1781 Bits = 8;
1782 Scale = 4;
1784 break;
1785 case ARM::t2LDRpci:
1786 if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1787 NewOpc = ARM::tLDRpci;
1788 Bits = 8;
1789 Scale = 4;
1791 break;
1794 if (!NewOpc)
1795 continue;
1797 unsigned UserOffset = getUserOffset(U);
1798 unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
1800 // Be conservative with inline asm.
1801 if (!U.KnownAlignment)
1802 MaxOffs -= 2;
1804 // FIXME: Check if offset is multiple of scale if scale is not 4.
1805 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) {
1806 LLVM_DEBUG(dbgs() << "Shrink: " << *U.MI);
1807 U.MI->setDesc(TII->get(NewOpc));
1808 MachineBasicBlock *MBB = U.MI->getParent();
1809 BBUtils->adjustBBSize(MBB, -2);
1810 BBUtils->adjustBBOffsetsAfter(MBB);
1811 ++NumT2CPShrunk;
1812 MadeChange = true;
1816 return MadeChange;
1820 bool ARMConstantIslands::optimizeThumb2Branches() {
1822 auto TryShrinkBranch = [this](ImmBranch &Br) {
1823 unsigned Opcode = Br.MI->getOpcode();
1824 unsigned NewOpc = 0;
1825 unsigned Scale = 1;
1826 unsigned Bits = 0;
1827 switch (Opcode) {
1828 default: break;
1829 case ARM::t2B:
1830 NewOpc = ARM::tB;
1831 Bits = 11;
1832 Scale = 2;
1833 break;
1834 case ARM::t2Bcc:
1835 NewOpc = ARM::tBcc;
1836 Bits = 8;
1837 Scale = 2;
1838 break;
1840 if (NewOpc) {
1841 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
1842 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1843 if (BBUtils->isBBInRange(Br.MI, DestBB, MaxOffs)) {
1844 LLVM_DEBUG(dbgs() << "Shrink branch: " << *Br.MI);
1845 Br.MI->setDesc(TII->get(NewOpc));
1846 MachineBasicBlock *MBB = Br.MI->getParent();
1847 BBUtils->adjustBBSize(MBB, -2);
1848 BBUtils->adjustBBOffsetsAfter(MBB);
1849 ++NumT2BrShrunk;
1850 return true;
1853 return false;
1856 struct ImmCompare {
1857 MachineInstr* MI = nullptr;
1858 unsigned NewOpc = 0;
1861 auto FindCmpForCBZ = [this](ImmBranch &Br, ImmCompare &ImmCmp,
1862 MachineBasicBlock *DestBB) {
1863 ImmCmp.MI = nullptr;
1864 ImmCmp.NewOpc = 0;
1866 // If the conditional branch doesn't kill CPSR, then CPSR can be liveout
1867 // so this transformation is not safe.
1868 if (!Br.MI->killsRegister(ARM::CPSR))
1869 return false;
1871 unsigned PredReg = 0;
1872 unsigned NewOpc = 0;
1873 ARMCC::CondCodes Pred = getInstrPredicate(*Br.MI, PredReg);
1874 if (Pred == ARMCC::EQ)
1875 NewOpc = ARM::tCBZ;
1876 else if (Pred == ARMCC::NE)
1877 NewOpc = ARM::tCBNZ;
1878 else
1879 return false;
1881 // Check if the distance is within 126. Subtract starting offset by 2
1882 // because the cmp will be eliminated.
1883 unsigned BrOffset = BBUtils->getOffsetOf(Br.MI) + 4 - 2;
1884 BBInfoVector &BBInfo = BBUtils->getBBInfo();
1885 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1886 if (BrOffset >= DestOffset || (DestOffset - BrOffset) > 126)
1887 return false;
1889 // Search backwards to find a tCMPi8
1890 auto *TRI = STI->getRegisterInfo();
1891 MachineInstr *CmpMI = findCMPToFoldIntoCBZ(Br.MI, TRI);
1892 if (!CmpMI || CmpMI->getOpcode() != ARM::tCMPi8)
1893 return false;
1895 ImmCmp.MI = CmpMI;
1896 ImmCmp.NewOpc = NewOpc;
1897 return true;
1900 auto TryConvertToLE = [this](ImmBranch &Br, ImmCompare &Cmp) {
1901 if (Br.MI->getOpcode() != ARM::t2Bcc || !STI->hasLOB() ||
1902 STI->hasMinSize())
1903 return false;
1905 MachineBasicBlock *MBB = Br.MI->getParent();
1906 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1907 if (BBUtils->getOffsetOf(MBB) < BBUtils->getOffsetOf(DestBB) ||
1908 !BBUtils->isBBInRange(Br.MI, DestBB, 4094))
1909 return false;
1911 if (!DT->dominates(DestBB, MBB))
1912 return false;
1914 // We queried for the CBN?Z opcode based upon the 'ExitBB', the opposite
1915 // target of Br. So now we need to reverse the condition.
1916 Cmp.NewOpc = Cmp.NewOpc == ARM::tCBZ ? ARM::tCBNZ : ARM::tCBZ;
1918 MachineInstrBuilder MIB = BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(),
1919 TII->get(ARM::t2LE));
1920 MIB.add(Br.MI->getOperand(0));
1921 Br.MI->eraseFromParent();
1922 Br.MI = MIB;
1923 ++NumLEInserted;
1924 return true;
1927 bool MadeChange = false;
1929 // The order in which branches appear in ImmBranches is approximately their
1930 // order within the function body. By visiting later branches first, we reduce
1931 // the distance between earlier forward branches and their targets, making it
1932 // more likely that the cbn?z optimization, which can only apply to forward
1933 // branches, will succeed.
1934 for (ImmBranch &Br : reverse(ImmBranches)) {
1935 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1936 MachineBasicBlock *MBB = Br.MI->getParent();
1937 MachineBasicBlock *ExitBB = &MBB->back() == Br.MI ?
1938 MBB->getFallThrough() :
1939 MBB->back().getOperand(0).getMBB();
1941 ImmCompare Cmp;
1942 if (FindCmpForCBZ(Br, Cmp, ExitBB) && TryConvertToLE(Br, Cmp)) {
1943 DestBB = ExitBB;
1944 MadeChange = true;
1945 } else {
1946 FindCmpForCBZ(Br, Cmp, DestBB);
1947 MadeChange |= TryShrinkBranch(Br);
1950 unsigned Opcode = Br.MI->getOpcode();
1951 if ((Opcode != ARM::tBcc && Opcode != ARM::t2LE) || !Cmp.NewOpc)
1952 continue;
1954 Register Reg = Cmp.MI->getOperand(0).getReg();
1956 // Check for Kill flags on Reg. If they are present remove them and set kill
1957 // on the new CBZ.
1958 auto *TRI = STI->getRegisterInfo();
1959 MachineBasicBlock::iterator KillMI = Br.MI;
1960 bool RegKilled = false;
1961 do {
1962 --KillMI;
1963 if (KillMI->killsRegister(Reg, TRI)) {
1964 KillMI->clearRegisterKills(Reg, TRI);
1965 RegKilled = true;
1966 break;
1968 } while (KillMI != Cmp.MI);
1970 // Create the new CBZ/CBNZ
1971 LLVM_DEBUG(dbgs() << "Fold: " << *Cmp.MI << " and: " << *Br.MI);
1972 MachineInstr *NewBR =
1973 BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(), TII->get(Cmp.NewOpc))
1974 .addReg(Reg, getKillRegState(RegKilled))
1975 .addMBB(DestBB, Br.MI->getOperand(0).getTargetFlags());
1977 Cmp.MI->eraseFromParent();
1978 BBInfoVector &BBInfo = BBUtils->getBBInfo();
1979 BBInfo[MBB->getNumber()].Size -= 2;
1981 if (Br.MI->getOpcode() == ARM::tBcc) {
1982 Br.MI->eraseFromParent();
1983 Br.MI = NewBR;
1984 } else if (&MBB->back() != Br.MI) {
1985 // We've generated an LE and already erased the original conditional
1986 // branch. The CBN?Z is now used to branch to the other successor, so an
1987 // unconditional branch terminator is now redundant.
1988 MachineInstr *LastMI = &MBB->back();
1989 if (LastMI != Br.MI) {
1990 BBInfo[MBB->getNumber()].Size -= LastMI->getDesc().getSize();
1991 LastMI->eraseFromParent();
1994 BBUtils->adjustBBOffsetsAfter(MBB);
1995 ++NumCBZ;
1996 MadeChange = true;
1999 return MadeChange;
2002 static bool isSimpleIndexCalc(MachineInstr &I, unsigned EntryReg,
2003 unsigned BaseReg) {
2004 if (I.getOpcode() != ARM::t2ADDrs)
2005 return false;
2007 if (I.getOperand(0).getReg() != EntryReg)
2008 return false;
2010 if (I.getOperand(1).getReg() != BaseReg)
2011 return false;
2013 // FIXME: what about CC and IdxReg?
2014 return true;
2017 /// While trying to form a TBB/TBH instruction, we may (if the table
2018 /// doesn't immediately follow the BR_JT) need access to the start of the
2019 /// jump-table. We know one instruction that produces such a register; this
2020 /// function works out whether that definition can be preserved to the BR_JT,
2021 /// possibly by removing an intervening addition (which is usually needed to
2022 /// calculate the actual entry to jump to).
2023 bool ARMConstantIslands::preserveBaseRegister(MachineInstr *JumpMI,
2024 MachineInstr *LEAMI,
2025 unsigned &DeadSize,
2026 bool &CanDeleteLEA,
2027 bool &BaseRegKill) {
2028 if (JumpMI->getParent() != LEAMI->getParent())
2029 return false;
2031 // Now we hope that we have at least these instructions in the basic block:
2032 // BaseReg = t2LEA ...
2033 // [...]
2034 // EntryReg = t2ADDrs BaseReg, ...
2035 // [...]
2036 // t2BR_JT EntryReg
2038 // We have to be very conservative about what we recognise here though. The
2039 // main perturbing factors to watch out for are:
2040 // + Spills at any point in the chain: not direct problems but we would
2041 // expect a blocking Def of the spilled register so in practice what we
2042 // can do is limited.
2043 // + EntryReg == BaseReg: this is the one situation we should allow a Def
2044 // of BaseReg, but only if the t2ADDrs can be removed.
2045 // + Some instruction other than t2ADDrs computing the entry. Not seen in
2046 // the wild, but we should be careful.
2047 Register EntryReg = JumpMI->getOperand(0).getReg();
2048 Register BaseReg = LEAMI->getOperand(0).getReg();
2050 CanDeleteLEA = true;
2051 BaseRegKill = false;
2052 MachineInstr *RemovableAdd = nullptr;
2053 MachineBasicBlock::iterator I(LEAMI);
2054 for (++I; &*I != JumpMI; ++I) {
2055 if (isSimpleIndexCalc(*I, EntryReg, BaseReg)) {
2056 RemovableAdd = &*I;
2057 break;
2060 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) {
2061 const MachineOperand &MO = I->getOperand(K);
2062 if (!MO.isReg() || !MO.getReg())
2063 continue;
2064 if (MO.isDef() && MO.getReg() == BaseReg)
2065 return false;
2066 if (MO.isUse() && MO.getReg() == BaseReg) {
2067 BaseRegKill = BaseRegKill || MO.isKill();
2068 CanDeleteLEA = false;
2073 if (!RemovableAdd)
2074 return true;
2076 // Check the add really is removable, and that nothing else in the block
2077 // clobbers BaseReg.
2078 for (++I; &*I != JumpMI; ++I) {
2079 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) {
2080 const MachineOperand &MO = I->getOperand(K);
2081 if (!MO.isReg() || !MO.getReg())
2082 continue;
2083 if (MO.isDef() && MO.getReg() == BaseReg)
2084 return false;
2085 if (MO.isUse() && MO.getReg() == EntryReg)
2086 RemovableAdd = nullptr;
2090 if (RemovableAdd) {
2091 RemovableAdd->eraseFromParent();
2092 DeadSize += isThumb2 ? 4 : 2;
2093 } else if (BaseReg == EntryReg) {
2094 // The add wasn't removable, but clobbered the base for the TBB. So we can't
2095 // preserve it.
2096 return false;
2099 // We reached the end of the block without seeing another definition of
2100 // BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be
2101 // used in the TBB/TBH if necessary.
2102 return true;
2105 /// Returns whether CPEMI is the first instruction in the block
2106 /// immediately following JTMI (assumed to be a TBB or TBH terminator). If so,
2107 /// we can switch the first register to PC and usually remove the address
2108 /// calculation that preceded it.
2109 static bool jumpTableFollowsTB(MachineInstr *JTMI, MachineInstr *CPEMI) {
2110 MachineFunction::iterator MBB = JTMI->getParent()->getIterator();
2111 MachineFunction *MF = MBB->getParent();
2112 ++MBB;
2114 return MBB != MF->end() && MBB->begin() != MBB->end() &&
2115 &*MBB->begin() == CPEMI;
2118 static void RemoveDeadAddBetweenLEAAndJT(MachineInstr *LEAMI,
2119 MachineInstr *JumpMI,
2120 unsigned &DeadSize) {
2121 // Remove a dead add between the LEA and JT, which used to compute EntryReg,
2122 // but the JT now uses PC. Finds the last ADD (if any) that def's EntryReg
2123 // and is not clobbered / used.
2124 MachineInstr *RemovableAdd = nullptr;
2125 Register EntryReg = JumpMI->getOperand(0).getReg();
2127 // Find the last ADD to set EntryReg
2128 MachineBasicBlock::iterator I(LEAMI);
2129 for (++I; &*I != JumpMI; ++I) {
2130 if (I->getOpcode() == ARM::t2ADDrs && I->getOperand(0).getReg() == EntryReg)
2131 RemovableAdd = &*I;
2134 if (!RemovableAdd)
2135 return;
2137 // Ensure EntryReg is not clobbered or used.
2138 MachineBasicBlock::iterator J(RemovableAdd);
2139 for (++J; &*J != JumpMI; ++J) {
2140 for (unsigned K = 0, E = J->getNumOperands(); K != E; ++K) {
2141 const MachineOperand &MO = J->getOperand(K);
2142 if (!MO.isReg() || !MO.getReg())
2143 continue;
2144 if (MO.isDef() && MO.getReg() == EntryReg)
2145 return;
2146 if (MO.isUse() && MO.getReg() == EntryReg)
2147 return;
2151 LLVM_DEBUG(dbgs() << "Removing Dead Add: " << *RemovableAdd);
2152 RemovableAdd->eraseFromParent();
2153 DeadSize += 4;
2156 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
2157 /// jumptables when it's possible.
2158 bool ARMConstantIslands::optimizeThumb2JumpTables() {
2159 bool MadeChange = false;
2161 // FIXME: After the tables are shrunk, can we get rid some of the
2162 // constantpool tables?
2163 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2164 if (!MJTI) return false;
2166 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2167 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
2168 MachineInstr *MI = T2JumpTables[i];
2169 const MCInstrDesc &MCID = MI->getDesc();
2170 unsigned NumOps = MCID.getNumOperands();
2171 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1);
2172 MachineOperand JTOP = MI->getOperand(JTOpIdx);
2173 unsigned JTI = JTOP.getIndex();
2174 assert(JTI < JT.size());
2176 bool ByteOk = true;
2177 bool HalfWordOk = true;
2178 unsigned JTOffset = BBUtils->getOffsetOf(MI) + 4;
2179 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2180 BBInfoVector &BBInfo = BBUtils->getBBInfo();
2181 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
2182 MachineBasicBlock *MBB = JTBBs[j];
2183 unsigned DstOffset = BBInfo[MBB->getNumber()].Offset;
2184 // Negative offset is not ok. FIXME: We should change BB layout to make
2185 // sure all the branches are forward.
2186 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2)
2187 ByteOk = false;
2188 unsigned TBHLimit = ((1<<16)-1)*2;
2189 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit)
2190 HalfWordOk = false;
2191 if (!ByteOk && !HalfWordOk)
2192 break;
2195 if (!ByteOk && !HalfWordOk)
2196 continue;
2198 CPUser &User = CPUsers[JumpTableUserIndices[JTI]];
2199 MachineBasicBlock *MBB = MI->getParent();
2200 if (!MI->getOperand(0).isKill()) // FIXME: needed now?
2201 continue;
2203 unsigned DeadSize = 0;
2204 bool CanDeleteLEA = false;
2205 bool BaseRegKill = false;
2207 unsigned IdxReg = ~0U;
2208 bool IdxRegKill = true;
2209 if (isThumb2) {
2210 IdxReg = MI->getOperand(1).getReg();
2211 IdxRegKill = MI->getOperand(1).isKill();
2213 bool PreservedBaseReg =
2214 preserveBaseRegister(MI, User.MI, DeadSize, CanDeleteLEA, BaseRegKill);
2215 if (!jumpTableFollowsTB(MI, User.CPEMI) && !PreservedBaseReg)
2216 continue;
2217 } else {
2218 // We're in thumb-1 mode, so we must have something like:
2219 // %idx = tLSLri %idx, 2
2220 // %base = tLEApcrelJT
2221 // %t = tLDRr %base, %idx
2222 Register BaseReg = User.MI->getOperand(0).getReg();
2224 if (User.MI->getIterator() == User.MI->getParent()->begin())
2225 continue;
2226 MachineInstr *Shift = User.MI->getPrevNode();
2227 if (Shift->getOpcode() != ARM::tLSLri ||
2228 Shift->getOperand(3).getImm() != 2 ||
2229 !Shift->getOperand(2).isKill())
2230 continue;
2231 IdxReg = Shift->getOperand(2).getReg();
2232 Register ShiftedIdxReg = Shift->getOperand(0).getReg();
2234 // It's important that IdxReg is live until the actual TBB/TBH. Most of
2235 // the range is checked later, but the LEA might still clobber it and not
2236 // actually get removed.
2237 if (BaseReg == IdxReg && !jumpTableFollowsTB(MI, User.CPEMI))
2238 continue;
2240 MachineInstr *Load = User.MI->getNextNode();
2241 if (Load->getOpcode() != ARM::tLDRr)
2242 continue;
2243 if (Load->getOperand(1).getReg() != BaseReg ||
2244 Load->getOperand(2).getReg() != ShiftedIdxReg ||
2245 !Load->getOperand(2).isKill())
2246 continue;
2248 // If we're in PIC mode, there should be another ADD following.
2249 auto *TRI = STI->getRegisterInfo();
2251 // %base cannot be redefined after the load as it will appear before
2252 // TBB/TBH like:
2253 // %base =
2254 // %base =
2255 // tBB %base, %idx
2256 if (registerDefinedBetween(BaseReg, Load->getNextNode(), MBB->end(), TRI))
2257 continue;
2259 if (isPositionIndependentOrROPI) {
2260 MachineInstr *Add = Load->getNextNode();
2261 if (Add->getOpcode() != ARM::tADDrr ||
2262 Add->getOperand(2).getReg() != BaseReg ||
2263 Add->getOperand(3).getReg() != Load->getOperand(0).getReg() ||
2264 !Add->getOperand(3).isKill())
2265 continue;
2266 if (Add->getOperand(0).getReg() != MI->getOperand(0).getReg())
2267 continue;
2268 if (registerDefinedBetween(IdxReg, Add->getNextNode(), MI, TRI))
2269 // IdxReg gets redefined in the middle of the sequence.
2270 continue;
2271 Add->eraseFromParent();
2272 DeadSize += 2;
2273 } else {
2274 if (Load->getOperand(0).getReg() != MI->getOperand(0).getReg())
2275 continue;
2276 if (registerDefinedBetween(IdxReg, Load->getNextNode(), MI, TRI))
2277 // IdxReg gets redefined in the middle of the sequence.
2278 continue;
2281 // Now safe to delete the load and lsl. The LEA will be removed later.
2282 CanDeleteLEA = true;
2283 Shift->eraseFromParent();
2284 Load->eraseFromParent();
2285 DeadSize += 4;
2288 LLVM_DEBUG(dbgs() << "Shrink JT: " << *MI);
2289 MachineInstr *CPEMI = User.CPEMI;
2290 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT;
2291 if (!isThumb2)
2292 Opc = ByteOk ? ARM::tTBB_JT : ARM::tTBH_JT;
2294 MachineBasicBlock::iterator MI_JT = MI;
2295 MachineInstr *NewJTMI =
2296 BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc))
2297 .addReg(User.MI->getOperand(0).getReg(),
2298 getKillRegState(BaseRegKill))
2299 .addReg(IdxReg, getKillRegState(IdxRegKill))
2300 .addJumpTableIndex(JTI, JTOP.getTargetFlags())
2301 .addImm(CPEMI->getOperand(0).getImm());
2302 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << ": " << *NewJTMI);
2304 unsigned JTOpc = ByteOk ? ARM::JUMPTABLE_TBB : ARM::JUMPTABLE_TBH;
2305 CPEMI->setDesc(TII->get(JTOpc));
2307 if (jumpTableFollowsTB(MI, User.CPEMI)) {
2308 NewJTMI->getOperand(0).setReg(ARM::PC);
2309 NewJTMI->getOperand(0).setIsKill(false);
2311 if (CanDeleteLEA) {
2312 if (isThumb2)
2313 RemoveDeadAddBetweenLEAAndJT(User.MI, MI, DeadSize);
2315 User.MI->eraseFromParent();
2316 DeadSize += isThumb2 ? 4 : 2;
2318 // The LEA was eliminated, the TBB instruction becomes the only new user
2319 // of the jump table.
2320 User.MI = NewJTMI;
2321 User.MaxDisp = 4;
2322 User.NegOk = false;
2323 User.IsSoImm = false;
2324 User.KnownAlignment = false;
2325 } else {
2326 // The LEA couldn't be eliminated, so we must add another CPUser to
2327 // record the TBB or TBH use.
2328 int CPEntryIdx = JumpTableEntryIndices[JTI];
2329 auto &CPEs = CPEntries[CPEntryIdx];
2330 auto Entry =
2331 find_if(CPEs, [&](CPEntry &E) { return E.CPEMI == User.CPEMI; });
2332 ++Entry->RefCount;
2333 CPUsers.emplace_back(CPUser(NewJTMI, User.CPEMI, 4, false, false));
2337 unsigned NewSize = TII->getInstSizeInBytes(*NewJTMI);
2338 unsigned OrigSize = TII->getInstSizeInBytes(*MI);
2339 MI->eraseFromParent();
2341 int Delta = OrigSize - NewSize + DeadSize;
2342 BBInfo[MBB->getNumber()].Size -= Delta;
2343 BBUtils->adjustBBOffsetsAfter(MBB);
2345 ++NumTBs;
2346 MadeChange = true;
2349 return MadeChange;
2352 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that
2353 /// jump tables always branch forwards, since that's what tbb and tbh need.
2354 bool ARMConstantIslands::reorderThumb2JumpTables() {
2355 bool MadeChange = false;
2357 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2358 if (!MJTI) return false;
2360 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2361 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
2362 MachineInstr *MI = T2JumpTables[i];
2363 const MCInstrDesc &MCID = MI->getDesc();
2364 unsigned NumOps = MCID.getNumOperands();
2365 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1);
2366 MachineOperand JTOP = MI->getOperand(JTOpIdx);
2367 unsigned JTI = JTOP.getIndex();
2368 assert(JTI < JT.size());
2370 // We prefer if target blocks for the jump table come after the jump
2371 // instruction so we can use TB[BH]. Loop through the target blocks
2372 // and try to adjust them such that that's true.
2373 int JTNumber = MI->getParent()->getNumber();
2374 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2375 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
2376 MachineBasicBlock *MBB = JTBBs[j];
2377 int DTNumber = MBB->getNumber();
2379 if (DTNumber < JTNumber) {
2380 // The destination precedes the switch. Try to move the block forward
2381 // so we have a positive offset.
2382 MachineBasicBlock *NewBB =
2383 adjustJTTargetBlockForward(MBB, MI->getParent());
2384 if (NewBB)
2385 MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB);
2386 MadeChange = true;
2391 return MadeChange;
2394 MachineBasicBlock *ARMConstantIslands::
2395 adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) {
2396 // If the destination block is terminated by an unconditional branch,
2397 // try to move it; otherwise, create a new block following the jump
2398 // table that branches back to the actual target. This is a very simple
2399 // heuristic. FIXME: We can definitely improve it.
2400 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
2401 SmallVector<MachineOperand, 4> Cond;
2402 SmallVector<MachineOperand, 4> CondPrior;
2403 MachineFunction::iterator BBi = BB->getIterator();
2404 MachineFunction::iterator OldPrior = std::prev(BBi);
2406 // If the block terminator isn't analyzable, don't try to move the block
2407 bool B = TII->analyzeBranch(*BB, TBB, FBB, Cond);
2409 // If the block ends in an unconditional branch, move it. The prior block
2410 // has to have an analyzable terminator for us to move this one. Be paranoid
2411 // and make sure we're not trying to move the entry block of the function.
2412 if (!B && Cond.empty() && BB != &MF->front() &&
2413 !TII->analyzeBranch(*OldPrior, TBB, FBB, CondPrior)) {
2414 BB->moveAfter(JTBB);
2415 OldPrior->updateTerminator();
2416 BB->updateTerminator();
2417 // Update numbering to account for the block being moved.
2418 MF->RenumberBlocks();
2419 ++NumJTMoved;
2420 return nullptr;
2423 // Create a new MBB for the code after the jump BB.
2424 MachineBasicBlock *NewBB =
2425 MF->CreateMachineBasicBlock(JTBB->getBasicBlock());
2426 MachineFunction::iterator MBBI = ++JTBB->getIterator();
2427 MF->insert(MBBI, NewBB);
2429 // Copy live-in information to new block.
2430 for (const MachineBasicBlock::RegisterMaskPair &RegMaskPair : BB->liveins())
2431 NewBB->addLiveIn(RegMaskPair);
2433 // Add an unconditional branch from NewBB to BB.
2434 // There doesn't seem to be meaningful DebugInfo available; this doesn't
2435 // correspond directly to anything in the source.
2436 if (isThumb2)
2437 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B))
2438 .addMBB(BB)
2439 .add(predOps(ARMCC::AL));
2440 else
2441 BuildMI(NewBB, DebugLoc(), TII->get(ARM::tB))
2442 .addMBB(BB)
2443 .add(predOps(ARMCC::AL));
2445 // Update internal data structures to account for the newly inserted MBB.
2446 MF->RenumberBlocks(NewBB);
2448 // Update the CFG.
2449 NewBB->addSuccessor(BB);
2450 JTBB->replaceSuccessor(BB, NewBB);
2452 ++NumJTInserted;
2453 return NewBB;
2456 /// createARMConstantIslandPass - returns an instance of the constpool
2457 /// island pass.
2458 FunctionPass *llvm::createARMConstantIslandPass() {
2459 return new ARMConstantIslands();
2462 INITIALIZE_PASS(ARMConstantIslands, "arm-cp-islands", ARM_CP_ISLANDS_OPT_NAME,
2463 false, false)