[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / Transforms / IPO / WholeProgramDevirt.cpp
blobf0cf5581ba8a0fe9818ad9565e5e72c620dee450
1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements whole program optimization of virtual calls in cases
10 // where we know (via !type metadata) that the list of callees is fixed. This
11 // includes the following:
12 // - Single implementation devirtualization: if a virtual call has a single
13 // possible callee, replace all calls with a direct call to that callee.
14 // - Virtual constant propagation: if the virtual function's return type is an
15 // integer <=64 bits and all possible callees are readnone, for each class and
16 // each list of constant arguments: evaluate the function, store the return
17 // value alongside the virtual table, and rewrite each virtual call as a load
18 // from the virtual table.
19 // - Uniform return value optimization: if the conditions for virtual constant
20 // propagation hold and each function returns the same constant value, replace
21 // each virtual call with that constant.
22 // - Unique return value optimization for i1 return values: if the conditions
23 // for virtual constant propagation hold and a single vtable's function
24 // returns 0, or a single vtable's function returns 1, replace each virtual
25 // call with a comparison of the vptr against that vtable's address.
27 // This pass is intended to be used during the regular and thin LTO pipelines:
29 // During regular LTO, the pass determines the best optimization for each
30 // virtual call and applies the resolutions directly to virtual calls that are
31 // eligible for virtual call optimization (i.e. calls that use either of the
32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics).
34 // During hybrid Regular/ThinLTO, the pass operates in two phases:
35 // - Export phase: this is run during the thin link over a single merged module
36 // that contains all vtables with !type metadata that participate in the link.
37 // The pass computes a resolution for each virtual call and stores it in the
38 // type identifier summary.
39 // - Import phase: this is run during the thin backends over the individual
40 // modules. The pass applies the resolutions previously computed during the
41 // import phase to each eligible virtual call.
43 // During ThinLTO, the pass operates in two phases:
44 // - Export phase: this is run during the thin link over the index which
45 // contains a summary of all vtables with !type metadata that participate in
46 // the link. It computes a resolution for each virtual call and stores it in
47 // the type identifier summary. Only single implementation devirtualization
48 // is supported.
49 // - Import phase: (same as with hybrid case above).
51 //===----------------------------------------------------------------------===//
53 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/DenseMap.h"
56 #include "llvm/ADT/DenseMapInfo.h"
57 #include "llvm/ADT/DenseSet.h"
58 #include "llvm/ADT/MapVector.h"
59 #include "llvm/ADT/SmallVector.h"
60 #include "llvm/ADT/iterator_range.h"
61 #include "llvm/Analysis/AliasAnalysis.h"
62 #include "llvm/Analysis/BasicAliasAnalysis.h"
63 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
64 #include "llvm/Analysis/TypeMetadataUtils.h"
65 #include "llvm/IR/CallSite.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DataLayout.h"
68 #include "llvm/IR/DebugLoc.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/Dominators.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GlobalAlias.h"
73 #include "llvm/IR/GlobalVariable.h"
74 #include "llvm/IR/IRBuilder.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instruction.h"
77 #include "llvm/IR/Instructions.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/LLVMContext.h"
80 #include "llvm/IR/Metadata.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/ModuleSummaryIndexYAML.h"
83 #include "llvm/Pass.h"
84 #include "llvm/PassRegistry.h"
85 #include "llvm/PassSupport.h"
86 #include "llvm/Support/Casting.h"
87 #include "llvm/Support/Error.h"
88 #include "llvm/Support/FileSystem.h"
89 #include "llvm/Support/MathExtras.h"
90 #include "llvm/Transforms/IPO.h"
91 #include "llvm/Transforms/IPO/FunctionAttrs.h"
92 #include "llvm/Transforms/Utils/Evaluator.h"
93 #include <algorithm>
94 #include <cstddef>
95 #include <map>
96 #include <set>
97 #include <string>
99 using namespace llvm;
100 using namespace wholeprogramdevirt;
102 #define DEBUG_TYPE "wholeprogramdevirt"
104 static cl::opt<PassSummaryAction> ClSummaryAction(
105 "wholeprogramdevirt-summary-action",
106 cl::desc("What to do with the summary when running this pass"),
107 cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
108 clEnumValN(PassSummaryAction::Import, "import",
109 "Import typeid resolutions from summary and globals"),
110 clEnumValN(PassSummaryAction::Export, "export",
111 "Export typeid resolutions to summary and globals")),
112 cl::Hidden);
114 static cl::opt<std::string> ClReadSummary(
115 "wholeprogramdevirt-read-summary",
116 cl::desc("Read summary from given YAML file before running pass"),
117 cl::Hidden);
119 static cl::opt<std::string> ClWriteSummary(
120 "wholeprogramdevirt-write-summary",
121 cl::desc("Write summary to given YAML file after running pass"),
122 cl::Hidden);
124 static cl::opt<unsigned>
125 ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden,
126 cl::init(10), cl::ZeroOrMore,
127 cl::desc("Maximum number of call targets per "
128 "call site to enable branch funnels"));
130 static cl::opt<bool>
131 PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden,
132 cl::init(false), cl::ZeroOrMore,
133 cl::desc("Print index-based devirtualization messages"));
135 // Find the minimum offset that we may store a value of size Size bits at. If
136 // IsAfter is set, look for an offset before the object, otherwise look for an
137 // offset after the object.
138 uint64_t
139 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
140 bool IsAfter, uint64_t Size) {
141 // Find a minimum offset taking into account only vtable sizes.
142 uint64_t MinByte = 0;
143 for (const VirtualCallTarget &Target : Targets) {
144 if (IsAfter)
145 MinByte = std::max(MinByte, Target.minAfterBytes());
146 else
147 MinByte = std::max(MinByte, Target.minBeforeBytes());
150 // Build a vector of arrays of bytes covering, for each target, a slice of the
151 // used region (see AccumBitVector::BytesUsed in
152 // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
153 // this aligns the used regions to start at MinByte.
155 // In this example, A, B and C are vtables, # is a byte already allocated for
156 // a virtual function pointer, AAAA... (etc.) are the used regions for the
157 // vtables and Offset(X) is the value computed for the Offset variable below
158 // for X.
160 // Offset(A)
161 // | |
162 // |MinByte
163 // A: ################AAAAAAAA|AAAAAAAA
164 // B: ########BBBBBBBBBBBBBBBB|BBBB
165 // C: ########################|CCCCCCCCCCCCCCCC
166 // | Offset(B) |
168 // This code produces the slices of A, B and C that appear after the divider
169 // at MinByte.
170 std::vector<ArrayRef<uint8_t>> Used;
171 for (const VirtualCallTarget &Target : Targets) {
172 ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed
173 : Target.TM->Bits->Before.BytesUsed;
174 uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
175 : MinByte - Target.minBeforeBytes();
177 // Disregard used regions that are smaller than Offset. These are
178 // effectively all-free regions that do not need to be checked.
179 if (VTUsed.size() > Offset)
180 Used.push_back(VTUsed.slice(Offset));
183 if (Size == 1) {
184 // Find a free bit in each member of Used.
185 for (unsigned I = 0;; ++I) {
186 uint8_t BitsUsed = 0;
187 for (auto &&B : Used)
188 if (I < B.size())
189 BitsUsed |= B[I];
190 if (BitsUsed != 0xff)
191 return (MinByte + I) * 8 +
192 countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
194 } else {
195 // Find a free (Size/8) byte region in each member of Used.
196 // FIXME: see if alignment helps.
197 for (unsigned I = 0;; ++I) {
198 for (auto &&B : Used) {
199 unsigned Byte = 0;
200 while ((I + Byte) < B.size() && Byte < (Size / 8)) {
201 if (B[I + Byte])
202 goto NextI;
203 ++Byte;
206 return (MinByte + I) * 8;
207 NextI:;
212 void wholeprogramdevirt::setBeforeReturnValues(
213 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
214 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
215 if (BitWidth == 1)
216 OffsetByte = -(AllocBefore / 8 + 1);
217 else
218 OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
219 OffsetBit = AllocBefore % 8;
221 for (VirtualCallTarget &Target : Targets) {
222 if (BitWidth == 1)
223 Target.setBeforeBit(AllocBefore);
224 else
225 Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
229 void wholeprogramdevirt::setAfterReturnValues(
230 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
231 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
232 if (BitWidth == 1)
233 OffsetByte = AllocAfter / 8;
234 else
235 OffsetByte = (AllocAfter + 7) / 8;
236 OffsetBit = AllocAfter % 8;
238 for (VirtualCallTarget &Target : Targets) {
239 if (BitWidth == 1)
240 Target.setAfterBit(AllocAfter);
241 else
242 Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
246 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM)
247 : Fn(Fn), TM(TM),
248 IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {}
250 namespace {
252 // A slot in a set of virtual tables. The TypeID identifies the set of virtual
253 // tables, and the ByteOffset is the offset in bytes from the address point to
254 // the virtual function pointer.
255 struct VTableSlot {
256 Metadata *TypeID;
257 uint64_t ByteOffset;
260 } // end anonymous namespace
262 namespace llvm {
264 template <> struct DenseMapInfo<VTableSlot> {
265 static VTableSlot getEmptyKey() {
266 return {DenseMapInfo<Metadata *>::getEmptyKey(),
267 DenseMapInfo<uint64_t>::getEmptyKey()};
269 static VTableSlot getTombstoneKey() {
270 return {DenseMapInfo<Metadata *>::getTombstoneKey(),
271 DenseMapInfo<uint64_t>::getTombstoneKey()};
273 static unsigned getHashValue(const VTableSlot &I) {
274 return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^
275 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
277 static bool isEqual(const VTableSlot &LHS,
278 const VTableSlot &RHS) {
279 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
283 template <> struct DenseMapInfo<VTableSlotSummary> {
284 static VTableSlotSummary getEmptyKey() {
285 return {DenseMapInfo<StringRef>::getEmptyKey(),
286 DenseMapInfo<uint64_t>::getEmptyKey()};
288 static VTableSlotSummary getTombstoneKey() {
289 return {DenseMapInfo<StringRef>::getTombstoneKey(),
290 DenseMapInfo<uint64_t>::getTombstoneKey()};
292 static unsigned getHashValue(const VTableSlotSummary &I) {
293 return DenseMapInfo<StringRef>::getHashValue(I.TypeID) ^
294 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
296 static bool isEqual(const VTableSlotSummary &LHS,
297 const VTableSlotSummary &RHS) {
298 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
302 } // end namespace llvm
304 namespace {
306 // A virtual call site. VTable is the loaded virtual table pointer, and CS is
307 // the indirect virtual call.
308 struct VirtualCallSite {
309 Value *VTable;
310 CallSite CS;
312 // If non-null, this field points to the associated unsafe use count stored in
313 // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
314 // of that field for details.
315 unsigned *NumUnsafeUses;
317 void
318 emitRemark(const StringRef OptName, const StringRef TargetName,
319 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
320 Function *F = CS.getCaller();
321 DebugLoc DLoc = CS->getDebugLoc();
322 BasicBlock *Block = CS.getParent();
324 using namespace ore;
325 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block)
326 << NV("Optimization", OptName)
327 << ": devirtualized a call to "
328 << NV("FunctionName", TargetName));
331 void replaceAndErase(
332 const StringRef OptName, const StringRef TargetName, bool RemarksEnabled,
333 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
334 Value *New) {
335 if (RemarksEnabled)
336 emitRemark(OptName, TargetName, OREGetter);
337 CS->replaceAllUsesWith(New);
338 if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) {
339 BranchInst::Create(II->getNormalDest(), CS.getInstruction());
340 II->getUnwindDest()->removePredecessor(II->getParent());
342 CS->eraseFromParent();
343 // This use is no longer unsafe.
344 if (NumUnsafeUses)
345 --*NumUnsafeUses;
349 // Call site information collected for a specific VTableSlot and possibly a list
350 // of constant integer arguments. The grouping by arguments is handled by the
351 // VTableSlotInfo class.
352 struct CallSiteInfo {
353 /// The set of call sites for this slot. Used during regular LTO and the
354 /// import phase of ThinLTO (as well as the export phase of ThinLTO for any
355 /// call sites that appear in the merged module itself); in each of these
356 /// cases we are directly operating on the call sites at the IR level.
357 std::vector<VirtualCallSite> CallSites;
359 /// Whether all call sites represented by this CallSiteInfo, including those
360 /// in summaries, have been devirtualized. This starts off as true because a
361 /// default constructed CallSiteInfo represents no call sites.
362 bool AllCallSitesDevirted = true;
364 // These fields are used during the export phase of ThinLTO and reflect
365 // information collected from function summaries.
367 /// Whether any function summary contains an llvm.assume(llvm.type.test) for
368 /// this slot.
369 bool SummaryHasTypeTestAssumeUsers = false;
371 /// CFI-specific: a vector containing the list of function summaries that use
372 /// the llvm.type.checked.load intrinsic and therefore will require
373 /// resolutions for llvm.type.test in order to implement CFI checks if
374 /// devirtualization was unsuccessful. If devirtualization was successful, the
375 /// pass will clear this vector by calling markDevirt(). If at the end of the
376 /// pass the vector is non-empty, we will need to add a use of llvm.type.test
377 /// to each of the function summaries in the vector.
378 std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers;
379 std::vector<FunctionSummary *> SummaryTypeTestAssumeUsers;
381 bool isExported() const {
382 return SummaryHasTypeTestAssumeUsers ||
383 !SummaryTypeCheckedLoadUsers.empty();
386 void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) {
387 SummaryTypeCheckedLoadUsers.push_back(FS);
388 AllCallSitesDevirted = false;
391 void addSummaryTypeTestAssumeUser(FunctionSummary *FS) {
392 SummaryTypeTestAssumeUsers.push_back(FS);
393 SummaryHasTypeTestAssumeUsers = true;
394 AllCallSitesDevirted = false;
397 void markDevirt() {
398 AllCallSitesDevirted = true;
400 // As explained in the comment for SummaryTypeCheckedLoadUsers.
401 SummaryTypeCheckedLoadUsers.clear();
405 // Call site information collected for a specific VTableSlot.
406 struct VTableSlotInfo {
407 // The set of call sites which do not have all constant integer arguments
408 // (excluding "this").
409 CallSiteInfo CSInfo;
411 // The set of call sites with all constant integer arguments (excluding
412 // "this"), grouped by argument list.
413 std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo;
415 void addCallSite(Value *VTable, CallSite CS, unsigned *NumUnsafeUses);
417 private:
418 CallSiteInfo &findCallSiteInfo(CallSite CS);
421 CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallSite CS) {
422 std::vector<uint64_t> Args;
423 auto *CI = dyn_cast<IntegerType>(CS.getType());
424 if (!CI || CI->getBitWidth() > 64 || CS.arg_empty())
425 return CSInfo;
426 for (auto &&Arg : make_range(CS.arg_begin() + 1, CS.arg_end())) {
427 auto *CI = dyn_cast<ConstantInt>(Arg);
428 if (!CI || CI->getBitWidth() > 64)
429 return CSInfo;
430 Args.push_back(CI->getZExtValue());
432 return ConstCSInfo[Args];
435 void VTableSlotInfo::addCallSite(Value *VTable, CallSite CS,
436 unsigned *NumUnsafeUses) {
437 auto &CSI = findCallSiteInfo(CS);
438 CSI.AllCallSitesDevirted = false;
439 CSI.CallSites.push_back({VTable, CS, NumUnsafeUses});
442 struct DevirtModule {
443 Module &M;
444 function_ref<AAResults &(Function &)> AARGetter;
445 function_ref<DominatorTree &(Function &)> LookupDomTree;
447 ModuleSummaryIndex *ExportSummary;
448 const ModuleSummaryIndex *ImportSummary;
450 IntegerType *Int8Ty;
451 PointerType *Int8PtrTy;
452 IntegerType *Int32Ty;
453 IntegerType *Int64Ty;
454 IntegerType *IntPtrTy;
456 bool RemarksEnabled;
457 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter;
459 MapVector<VTableSlot, VTableSlotInfo> CallSlots;
461 // This map keeps track of the number of "unsafe" uses of a loaded function
462 // pointer. The key is the associated llvm.type.test intrinsic call generated
463 // by this pass. An unsafe use is one that calls the loaded function pointer
464 // directly. Every time we eliminate an unsafe use (for example, by
465 // devirtualizing it or by applying virtual constant propagation), we
466 // decrement the value stored in this map. If a value reaches zero, we can
467 // eliminate the type check by RAUWing the associated llvm.type.test call with
468 // true.
469 std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest;
471 DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter,
472 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
473 function_ref<DominatorTree &(Function &)> LookupDomTree,
474 ModuleSummaryIndex *ExportSummary,
475 const ModuleSummaryIndex *ImportSummary)
476 : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree),
477 ExportSummary(ExportSummary), ImportSummary(ImportSummary),
478 Int8Ty(Type::getInt8Ty(M.getContext())),
479 Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
480 Int32Ty(Type::getInt32Ty(M.getContext())),
481 Int64Ty(Type::getInt64Ty(M.getContext())),
482 IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)),
483 RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) {
484 assert(!(ExportSummary && ImportSummary));
487 bool areRemarksEnabled();
489 void scanTypeTestUsers(Function *TypeTestFunc, Function *AssumeFunc);
490 void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc);
492 void buildTypeIdentifierMap(
493 std::vector<VTableBits> &Bits,
494 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
495 bool
496 tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
497 const std::set<TypeMemberInfo> &TypeMemberInfos,
498 uint64_t ByteOffset);
500 void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn,
501 bool &IsExported);
502 bool trySingleImplDevirt(ModuleSummaryIndex *ExportSummary,
503 MutableArrayRef<VirtualCallTarget> TargetsForSlot,
504 VTableSlotInfo &SlotInfo,
505 WholeProgramDevirtResolution *Res);
507 void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT,
508 bool &IsExported);
509 void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
510 VTableSlotInfo &SlotInfo,
511 WholeProgramDevirtResolution *Res, VTableSlot Slot);
513 bool tryEvaluateFunctionsWithArgs(
514 MutableArrayRef<VirtualCallTarget> TargetsForSlot,
515 ArrayRef<uint64_t> Args);
517 void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
518 uint64_t TheRetVal);
519 bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
520 CallSiteInfo &CSInfo,
521 WholeProgramDevirtResolution::ByArg *Res);
523 // Returns the global symbol name that is used to export information about the
524 // given vtable slot and list of arguments.
525 std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args,
526 StringRef Name);
528 bool shouldExportConstantsAsAbsoluteSymbols();
530 // This function is called during the export phase to create a symbol
531 // definition containing information about the given vtable slot and list of
532 // arguments.
533 void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
534 Constant *C);
535 void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
536 uint32_t Const, uint32_t &Storage);
538 // This function is called during the import phase to create a reference to
539 // the symbol definition created during the export phase.
540 Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
541 StringRef Name);
542 Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
543 StringRef Name, IntegerType *IntTy,
544 uint32_t Storage);
546 Constant *getMemberAddr(const TypeMemberInfo *M);
548 void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne,
549 Constant *UniqueMemberAddr);
550 bool tryUniqueRetValOpt(unsigned BitWidth,
551 MutableArrayRef<VirtualCallTarget> TargetsForSlot,
552 CallSiteInfo &CSInfo,
553 WholeProgramDevirtResolution::ByArg *Res,
554 VTableSlot Slot, ArrayRef<uint64_t> Args);
556 void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
557 Constant *Byte, Constant *Bit);
558 bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
559 VTableSlotInfo &SlotInfo,
560 WholeProgramDevirtResolution *Res, VTableSlot Slot);
562 void rebuildGlobal(VTableBits &B);
564 // Apply the summary resolution for Slot to all virtual calls in SlotInfo.
565 void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo);
567 // If we were able to eliminate all unsafe uses for a type checked load,
568 // eliminate the associated type tests by replacing them with true.
569 void removeRedundantTypeTests();
571 bool run();
573 // Lower the module using the action and summary passed as command line
574 // arguments. For testing purposes only.
575 static bool
576 runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter,
577 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
578 function_ref<DominatorTree &(Function &)> LookupDomTree);
581 struct DevirtIndex {
582 ModuleSummaryIndex &ExportSummary;
583 // The set in which to record GUIDs exported from their module by
584 // devirtualization, used by client to ensure they are not internalized.
585 std::set<GlobalValue::GUID> &ExportedGUIDs;
586 // A map in which to record the information necessary to locate the WPD
587 // resolution for local targets in case they are exported by cross module
588 // importing.
589 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap;
591 MapVector<VTableSlotSummary, VTableSlotInfo> CallSlots;
593 DevirtIndex(
594 ModuleSummaryIndex &ExportSummary,
595 std::set<GlobalValue::GUID> &ExportedGUIDs,
596 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap)
597 : ExportSummary(ExportSummary), ExportedGUIDs(ExportedGUIDs),
598 LocalWPDTargetsMap(LocalWPDTargetsMap) {}
600 bool tryFindVirtualCallTargets(std::vector<ValueInfo> &TargetsForSlot,
601 const TypeIdCompatibleVtableInfo TIdInfo,
602 uint64_t ByteOffset);
604 bool trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
605 VTableSlotSummary &SlotSummary,
606 VTableSlotInfo &SlotInfo,
607 WholeProgramDevirtResolution *Res,
608 std::set<ValueInfo> &DevirtTargets);
610 void run();
613 struct WholeProgramDevirt : public ModulePass {
614 static char ID;
616 bool UseCommandLine = false;
618 ModuleSummaryIndex *ExportSummary;
619 const ModuleSummaryIndex *ImportSummary;
621 WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) {
622 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
625 WholeProgramDevirt(ModuleSummaryIndex *ExportSummary,
626 const ModuleSummaryIndex *ImportSummary)
627 : ModulePass(ID), ExportSummary(ExportSummary),
628 ImportSummary(ImportSummary) {
629 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
632 bool runOnModule(Module &M) override {
633 if (skipModule(M))
634 return false;
636 // In the new pass manager, we can request the optimization
637 // remark emitter pass on a per-function-basis, which the
638 // OREGetter will do for us.
639 // In the old pass manager, this is harder, so we just build
640 // an optimization remark emitter on the fly, when we need it.
641 std::unique_ptr<OptimizationRemarkEmitter> ORE;
642 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
643 ORE = std::make_unique<OptimizationRemarkEmitter>(F);
644 return *ORE;
647 auto LookupDomTree = [this](Function &F) -> DominatorTree & {
648 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
651 if (UseCommandLine)
652 return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter,
653 LookupDomTree);
655 return DevirtModule(M, LegacyAARGetter(*this), OREGetter, LookupDomTree,
656 ExportSummary, ImportSummary)
657 .run();
660 void getAnalysisUsage(AnalysisUsage &AU) const override {
661 AU.addRequired<AssumptionCacheTracker>();
662 AU.addRequired<TargetLibraryInfoWrapperPass>();
663 AU.addRequired<DominatorTreeWrapperPass>();
667 } // end anonymous namespace
669 INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt",
670 "Whole program devirtualization", false, false)
671 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
672 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
673 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
674 INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt",
675 "Whole program devirtualization", false, false)
676 char WholeProgramDevirt::ID = 0;
678 ModulePass *
679 llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary,
680 const ModuleSummaryIndex *ImportSummary) {
681 return new WholeProgramDevirt(ExportSummary, ImportSummary);
684 PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
685 ModuleAnalysisManager &AM) {
686 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
687 auto AARGetter = [&](Function &F) -> AAResults & {
688 return FAM.getResult<AAManager>(F);
690 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
691 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
693 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & {
694 return FAM.getResult<DominatorTreeAnalysis>(F);
696 if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary,
697 ImportSummary)
698 .run())
699 return PreservedAnalyses::all();
700 return PreservedAnalyses::none();
703 namespace llvm {
704 void runWholeProgramDevirtOnIndex(
705 ModuleSummaryIndex &Summary, std::set<GlobalValue::GUID> &ExportedGUIDs,
706 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
707 DevirtIndex(Summary, ExportedGUIDs, LocalWPDTargetsMap).run();
710 void updateIndexWPDForExports(
711 ModuleSummaryIndex &Summary,
712 function_ref<bool(StringRef, GlobalValue::GUID)> isExported,
713 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
714 for (auto &T : LocalWPDTargetsMap) {
715 auto &VI = T.first;
716 // This was enforced earlier during trySingleImplDevirt.
717 assert(VI.getSummaryList().size() == 1 &&
718 "Devirt of local target has more than one copy");
719 auto &S = VI.getSummaryList()[0];
720 if (!isExported(S->modulePath(), VI.getGUID()))
721 continue;
723 // It's been exported by a cross module import.
724 for (auto &SlotSummary : T.second) {
725 auto *TIdSum = Summary.getTypeIdSummary(SlotSummary.TypeID);
726 assert(TIdSum);
727 auto WPDRes = TIdSum->WPDRes.find(SlotSummary.ByteOffset);
728 assert(WPDRes != TIdSum->WPDRes.end());
729 WPDRes->second.SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
730 WPDRes->second.SingleImplName,
731 Summary.getModuleHash(S->modulePath()));
736 } // end namespace llvm
738 bool DevirtModule::runForTesting(
739 Module &M, function_ref<AAResults &(Function &)> AARGetter,
740 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
741 function_ref<DominatorTree &(Function &)> LookupDomTree) {
742 ModuleSummaryIndex Summary(/*HaveGVs=*/false);
744 // Handle the command-line summary arguments. This code is for testing
745 // purposes only, so we handle errors directly.
746 if (!ClReadSummary.empty()) {
747 ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary +
748 ": ");
749 auto ReadSummaryFile =
750 ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
752 yaml::Input In(ReadSummaryFile->getBuffer());
753 In >> Summary;
754 ExitOnErr(errorCodeToError(In.error()));
757 bool Changed =
758 DevirtModule(
759 M, AARGetter, OREGetter, LookupDomTree,
760 ClSummaryAction == PassSummaryAction::Export ? &Summary : nullptr,
761 ClSummaryAction == PassSummaryAction::Import ? &Summary : nullptr)
762 .run();
764 if (!ClWriteSummary.empty()) {
765 ExitOnError ExitOnErr(
766 "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": ");
767 std::error_code EC;
768 raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_Text);
769 ExitOnErr(errorCodeToError(EC));
771 yaml::Output Out(OS);
772 Out << Summary;
775 return Changed;
778 void DevirtModule::buildTypeIdentifierMap(
779 std::vector<VTableBits> &Bits,
780 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
781 DenseMap<GlobalVariable *, VTableBits *> GVToBits;
782 Bits.reserve(M.getGlobalList().size());
783 SmallVector<MDNode *, 2> Types;
784 for (GlobalVariable &GV : M.globals()) {
785 Types.clear();
786 GV.getMetadata(LLVMContext::MD_type, Types);
787 if (GV.isDeclaration() || Types.empty())
788 continue;
790 VTableBits *&BitsPtr = GVToBits[&GV];
791 if (!BitsPtr) {
792 Bits.emplace_back();
793 Bits.back().GV = &GV;
794 Bits.back().ObjectSize =
795 M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType());
796 BitsPtr = &Bits.back();
799 for (MDNode *Type : Types) {
800 auto TypeID = Type->getOperand(1).get();
802 uint64_t Offset =
803 cast<ConstantInt>(
804 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
805 ->getZExtValue();
807 TypeIdMap[TypeID].insert({BitsPtr, Offset});
812 bool DevirtModule::tryFindVirtualCallTargets(
813 std::vector<VirtualCallTarget> &TargetsForSlot,
814 const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) {
815 for (const TypeMemberInfo &TM : TypeMemberInfos) {
816 if (!TM.Bits->GV->isConstant())
817 return false;
819 Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(),
820 TM.Offset + ByteOffset, M);
821 if (!Ptr)
822 return false;
824 auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts());
825 if (!Fn)
826 return false;
828 // We can disregard __cxa_pure_virtual as a possible call target, as
829 // calls to pure virtuals are UB.
830 if (Fn->getName() == "__cxa_pure_virtual")
831 continue;
833 TargetsForSlot.push_back({Fn, &TM});
836 // Give up if we couldn't find any targets.
837 return !TargetsForSlot.empty();
840 bool DevirtIndex::tryFindVirtualCallTargets(
841 std::vector<ValueInfo> &TargetsForSlot, const TypeIdCompatibleVtableInfo TIdInfo,
842 uint64_t ByteOffset) {
843 for (const TypeIdOffsetVtableInfo P : TIdInfo) {
844 // VTable initializer should have only one summary, or all copies must be
845 // linkonce/weak ODR.
846 assert(P.VTableVI.getSummaryList().size() == 1 ||
847 llvm::all_of(
848 P.VTableVI.getSummaryList(),
849 [&](const std::unique_ptr<GlobalValueSummary> &Summary) {
850 return GlobalValue::isLinkOnceODRLinkage(Summary->linkage()) ||
851 GlobalValue::isWeakODRLinkage(Summary->linkage());
852 }));
853 const auto *VS = cast<GlobalVarSummary>(P.VTableVI.getSummaryList()[0].get());
854 if (!P.VTableVI.getSummaryList()[0]->isLive())
855 continue;
856 for (auto VTP : VS->vTableFuncs()) {
857 if (VTP.VTableOffset != P.AddressPointOffset + ByteOffset)
858 continue;
860 TargetsForSlot.push_back(VTP.FuncVI);
864 // Give up if we couldn't find any targets.
865 return !TargetsForSlot.empty();
868 void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo,
869 Constant *TheFn, bool &IsExported) {
870 auto Apply = [&](CallSiteInfo &CSInfo) {
871 for (auto &&VCallSite : CSInfo.CallSites) {
872 if (RemarksEnabled)
873 VCallSite.emitRemark("single-impl",
874 TheFn->stripPointerCasts()->getName(), OREGetter);
875 VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast(
876 TheFn, VCallSite.CS.getCalledValue()->getType()));
877 // This use is no longer unsafe.
878 if (VCallSite.NumUnsafeUses)
879 --*VCallSite.NumUnsafeUses;
881 if (CSInfo.isExported())
882 IsExported = true;
883 CSInfo.markDevirt();
885 Apply(SlotInfo.CSInfo);
886 for (auto &P : SlotInfo.ConstCSInfo)
887 Apply(P.second);
890 static bool AddCalls(VTableSlotInfo &SlotInfo, const ValueInfo &Callee) {
891 // We can't add calls if we haven't seen a definition
892 if (Callee.getSummaryList().empty())
893 return false;
895 // Insert calls into the summary index so that the devirtualized targets
896 // are eligible for import.
897 // FIXME: Annotate type tests with hotness. For now, mark these as hot
898 // to better ensure we have the opportunity to inline them.
899 bool IsExported = false;
900 auto &S = Callee.getSummaryList()[0];
901 CalleeInfo CI(CalleeInfo::HotnessType::Hot, /* RelBF = */ 0);
902 auto AddCalls = [&](CallSiteInfo &CSInfo) {
903 for (auto *FS : CSInfo.SummaryTypeCheckedLoadUsers) {
904 FS->addCall({Callee, CI});
905 IsExported |= S->modulePath() != FS->modulePath();
907 for (auto *FS : CSInfo.SummaryTypeTestAssumeUsers) {
908 FS->addCall({Callee, CI});
909 IsExported |= S->modulePath() != FS->modulePath();
912 AddCalls(SlotInfo.CSInfo);
913 for (auto &P : SlotInfo.ConstCSInfo)
914 AddCalls(P.second);
915 return IsExported;
918 bool DevirtModule::trySingleImplDevirt(
919 ModuleSummaryIndex *ExportSummary,
920 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
921 WholeProgramDevirtResolution *Res) {
922 // See if the program contains a single implementation of this virtual
923 // function.
924 Function *TheFn = TargetsForSlot[0].Fn;
925 for (auto &&Target : TargetsForSlot)
926 if (TheFn != Target.Fn)
927 return false;
929 // If so, update each call site to call that implementation directly.
930 if (RemarksEnabled)
931 TargetsForSlot[0].WasDevirt = true;
933 bool IsExported = false;
934 applySingleImplDevirt(SlotInfo, TheFn, IsExported);
935 if (!IsExported)
936 return false;
938 // If the only implementation has local linkage, we must promote to external
939 // to make it visible to thin LTO objects. We can only get here during the
940 // ThinLTO export phase.
941 if (TheFn->hasLocalLinkage()) {
942 std::string NewName = (TheFn->getName() + "$merged").str();
944 // Since we are renaming the function, any comdats with the same name must
945 // also be renamed. This is required when targeting COFF, as the comdat name
946 // must match one of the names of the symbols in the comdat.
947 if (Comdat *C = TheFn->getComdat()) {
948 if (C->getName() == TheFn->getName()) {
949 Comdat *NewC = M.getOrInsertComdat(NewName);
950 NewC->setSelectionKind(C->getSelectionKind());
951 for (GlobalObject &GO : M.global_objects())
952 if (GO.getComdat() == C)
953 GO.setComdat(NewC);
957 TheFn->setLinkage(GlobalValue::ExternalLinkage);
958 TheFn->setVisibility(GlobalValue::HiddenVisibility);
959 TheFn->setName(NewName);
961 if (ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFn->getGUID()))
962 // Any needed promotion of 'TheFn' has already been done during
963 // LTO unit split, so we can ignore return value of AddCalls.
964 AddCalls(SlotInfo, TheFnVI);
966 Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
967 Res->SingleImplName = TheFn->getName();
969 return true;
972 bool DevirtIndex::trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
973 VTableSlotSummary &SlotSummary,
974 VTableSlotInfo &SlotInfo,
975 WholeProgramDevirtResolution *Res,
976 std::set<ValueInfo> &DevirtTargets) {
977 // See if the program contains a single implementation of this virtual
978 // function.
979 auto TheFn = TargetsForSlot[0];
980 for (auto &&Target : TargetsForSlot)
981 if (TheFn != Target)
982 return false;
984 // Don't devirtualize if we don't have target definition.
985 auto Size = TheFn.getSummaryList().size();
986 if (!Size)
987 return false;
989 // If the summary list contains multiple summaries where at least one is
990 // a local, give up, as we won't know which (possibly promoted) name to use.
991 for (auto &S : TheFn.getSummaryList())
992 if (GlobalValue::isLocalLinkage(S->linkage()) && Size > 1)
993 return false;
995 // Collect functions devirtualized at least for one call site for stats.
996 if (PrintSummaryDevirt)
997 DevirtTargets.insert(TheFn);
999 auto &S = TheFn.getSummaryList()[0];
1000 bool IsExported = AddCalls(SlotInfo, TheFn);
1001 if (IsExported)
1002 ExportedGUIDs.insert(TheFn.getGUID());
1004 // Record in summary for use in devirtualization during the ThinLTO import
1005 // step.
1006 Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
1007 if (GlobalValue::isLocalLinkage(S->linkage())) {
1008 if (IsExported)
1009 // If target is a local function and we are exporting it by
1010 // devirtualizing a call in another module, we need to record the
1011 // promoted name.
1012 Res->SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
1013 TheFn.name(), ExportSummary.getModuleHash(S->modulePath()));
1014 else {
1015 LocalWPDTargetsMap[TheFn].push_back(SlotSummary);
1016 Res->SingleImplName = TheFn.name();
1018 } else
1019 Res->SingleImplName = TheFn.name();
1021 // Name will be empty if this thin link driven off of serialized combined
1022 // index (e.g. llvm-lto). However, WPD is not supported/invoked for the
1023 // legacy LTO API anyway.
1024 assert(!Res->SingleImplName.empty());
1026 return true;
1029 void DevirtModule::tryICallBranchFunnel(
1030 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1031 WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1032 Triple T(M.getTargetTriple());
1033 if (T.getArch() != Triple::x86_64)
1034 return;
1036 if (TargetsForSlot.size() > ClThreshold)
1037 return;
1039 bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted;
1040 if (!HasNonDevirt)
1041 for (auto &P : SlotInfo.ConstCSInfo)
1042 if (!P.second.AllCallSitesDevirted) {
1043 HasNonDevirt = true;
1044 break;
1047 if (!HasNonDevirt)
1048 return;
1050 FunctionType *FT =
1051 FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true);
1052 Function *JT;
1053 if (isa<MDString>(Slot.TypeID)) {
1054 JT = Function::Create(FT, Function::ExternalLinkage,
1055 M.getDataLayout().getProgramAddressSpace(),
1056 getGlobalName(Slot, {}, "branch_funnel"), &M);
1057 JT->setVisibility(GlobalValue::HiddenVisibility);
1058 } else {
1059 JT = Function::Create(FT, Function::InternalLinkage,
1060 M.getDataLayout().getProgramAddressSpace(),
1061 "branch_funnel", &M);
1063 JT->addAttribute(1, Attribute::Nest);
1065 std::vector<Value *> JTArgs;
1066 JTArgs.push_back(JT->arg_begin());
1067 for (auto &T : TargetsForSlot) {
1068 JTArgs.push_back(getMemberAddr(T.TM));
1069 JTArgs.push_back(T.Fn);
1072 BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr);
1073 Function *Intr =
1074 Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {});
1076 auto *CI = CallInst::Create(Intr, JTArgs, "", BB);
1077 CI->setTailCallKind(CallInst::TCK_MustTail);
1078 ReturnInst::Create(M.getContext(), nullptr, BB);
1080 bool IsExported = false;
1081 applyICallBranchFunnel(SlotInfo, JT, IsExported);
1082 if (IsExported)
1083 Res->TheKind = WholeProgramDevirtResolution::BranchFunnel;
1086 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo,
1087 Constant *JT, bool &IsExported) {
1088 auto Apply = [&](CallSiteInfo &CSInfo) {
1089 if (CSInfo.isExported())
1090 IsExported = true;
1091 if (CSInfo.AllCallSitesDevirted)
1092 return;
1093 for (auto &&VCallSite : CSInfo.CallSites) {
1094 CallSite CS = VCallSite.CS;
1096 // Jump tables are only profitable if the retpoline mitigation is enabled.
1097 Attribute FSAttr = CS.getCaller()->getFnAttribute("target-features");
1098 if (FSAttr.hasAttribute(Attribute::None) ||
1099 !FSAttr.getValueAsString().contains("+retpoline"))
1100 continue;
1102 if (RemarksEnabled)
1103 VCallSite.emitRemark("branch-funnel",
1104 JT->stripPointerCasts()->getName(), OREGetter);
1106 // Pass the address of the vtable in the nest register, which is r10 on
1107 // x86_64.
1108 std::vector<Type *> NewArgs;
1109 NewArgs.push_back(Int8PtrTy);
1110 for (Type *T : CS.getFunctionType()->params())
1111 NewArgs.push_back(T);
1112 FunctionType *NewFT =
1113 FunctionType::get(CS.getFunctionType()->getReturnType(), NewArgs,
1114 CS.getFunctionType()->isVarArg());
1115 PointerType *NewFTPtr = PointerType::getUnqual(NewFT);
1117 IRBuilder<> IRB(CS.getInstruction());
1118 std::vector<Value *> Args;
1119 Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy));
1120 for (unsigned I = 0; I != CS.getNumArgOperands(); ++I)
1121 Args.push_back(CS.getArgOperand(I));
1123 CallSite NewCS;
1124 if (CS.isCall())
1125 NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args);
1126 else
1127 NewCS = IRB.CreateInvoke(
1128 NewFT, IRB.CreateBitCast(JT, NewFTPtr),
1129 cast<InvokeInst>(CS.getInstruction())->getNormalDest(),
1130 cast<InvokeInst>(CS.getInstruction())->getUnwindDest(), Args);
1131 NewCS.setCallingConv(CS.getCallingConv());
1133 AttributeList Attrs = CS.getAttributes();
1134 std::vector<AttributeSet> NewArgAttrs;
1135 NewArgAttrs.push_back(AttributeSet::get(
1136 M.getContext(), ArrayRef<Attribute>{Attribute::get(
1137 M.getContext(), Attribute::Nest)}));
1138 for (unsigned I = 0; I + 2 < Attrs.getNumAttrSets(); ++I)
1139 NewArgAttrs.push_back(Attrs.getParamAttributes(I));
1140 NewCS.setAttributes(
1141 AttributeList::get(M.getContext(), Attrs.getFnAttributes(),
1142 Attrs.getRetAttributes(), NewArgAttrs));
1144 CS->replaceAllUsesWith(NewCS.getInstruction());
1145 CS->eraseFromParent();
1147 // This use is no longer unsafe.
1148 if (VCallSite.NumUnsafeUses)
1149 --*VCallSite.NumUnsafeUses;
1151 // Don't mark as devirtualized because there may be callers compiled without
1152 // retpoline mitigation, which would mean that they are lowered to
1153 // llvm.type.test and therefore require an llvm.type.test resolution for the
1154 // type identifier.
1156 Apply(SlotInfo.CSInfo);
1157 for (auto &P : SlotInfo.ConstCSInfo)
1158 Apply(P.second);
1161 bool DevirtModule::tryEvaluateFunctionsWithArgs(
1162 MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1163 ArrayRef<uint64_t> Args) {
1164 // Evaluate each function and store the result in each target's RetVal
1165 // field.
1166 for (VirtualCallTarget &Target : TargetsForSlot) {
1167 if (Target.Fn->arg_size() != Args.size() + 1)
1168 return false;
1170 Evaluator Eval(M.getDataLayout(), nullptr);
1171 SmallVector<Constant *, 2> EvalArgs;
1172 EvalArgs.push_back(
1173 Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
1174 for (unsigned I = 0; I != Args.size(); ++I) {
1175 auto *ArgTy = dyn_cast<IntegerType>(
1176 Target.Fn->getFunctionType()->getParamType(I + 1));
1177 if (!ArgTy)
1178 return false;
1179 EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I]));
1182 Constant *RetVal;
1183 if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
1184 !isa<ConstantInt>(RetVal))
1185 return false;
1186 Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
1188 return true;
1191 void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1192 uint64_t TheRetVal) {
1193 for (auto Call : CSInfo.CallSites)
1194 Call.replaceAndErase(
1195 "uniform-ret-val", FnName, RemarksEnabled, OREGetter,
1196 ConstantInt::get(cast<IntegerType>(Call.CS.getType()), TheRetVal));
1197 CSInfo.markDevirt();
1200 bool DevirtModule::tryUniformRetValOpt(
1201 MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo,
1202 WholeProgramDevirtResolution::ByArg *Res) {
1203 // Uniform return value optimization. If all functions return the same
1204 // constant, replace all calls with that constant.
1205 uint64_t TheRetVal = TargetsForSlot[0].RetVal;
1206 for (const VirtualCallTarget &Target : TargetsForSlot)
1207 if (Target.RetVal != TheRetVal)
1208 return false;
1210 if (CSInfo.isExported()) {
1211 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
1212 Res->Info = TheRetVal;
1215 applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal);
1216 if (RemarksEnabled)
1217 for (auto &&Target : TargetsForSlot)
1218 Target.WasDevirt = true;
1219 return true;
1222 std::string DevirtModule::getGlobalName(VTableSlot Slot,
1223 ArrayRef<uint64_t> Args,
1224 StringRef Name) {
1225 std::string FullName = "__typeid_";
1226 raw_string_ostream OS(FullName);
1227 OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset;
1228 for (uint64_t Arg : Args)
1229 OS << '_' << Arg;
1230 OS << '_' << Name;
1231 return OS.str();
1234 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
1235 Triple T(M.getTargetTriple());
1236 return (T.getArch() == Triple::x86 || T.getArch() == Triple::x86_64) &&
1237 T.getObjectFormat() == Triple::ELF;
1240 void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1241 StringRef Name, Constant *C) {
1242 GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
1243 getGlobalName(Slot, Args, Name), C, &M);
1244 GA->setVisibility(GlobalValue::HiddenVisibility);
1247 void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1248 StringRef Name, uint32_t Const,
1249 uint32_t &Storage) {
1250 if (shouldExportConstantsAsAbsoluteSymbols()) {
1251 exportGlobal(
1252 Slot, Args, Name,
1253 ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy));
1254 return;
1257 Storage = Const;
1260 Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1261 StringRef Name) {
1262 Constant *C = M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Ty);
1263 auto *GV = dyn_cast<GlobalVariable>(C);
1264 if (GV)
1265 GV->setVisibility(GlobalValue::HiddenVisibility);
1266 return C;
1269 Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1270 StringRef Name, IntegerType *IntTy,
1271 uint32_t Storage) {
1272 if (!shouldExportConstantsAsAbsoluteSymbols())
1273 return ConstantInt::get(IntTy, Storage);
1275 Constant *C = importGlobal(Slot, Args, Name);
1276 auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
1277 C = ConstantExpr::getPtrToInt(C, IntTy);
1279 // We only need to set metadata if the global is newly created, in which
1280 // case it would not have hidden visibility.
1281 if (GV->hasMetadata(LLVMContext::MD_absolute_symbol))
1282 return C;
1284 auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
1285 auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
1286 auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
1287 GV->setMetadata(LLVMContext::MD_absolute_symbol,
1288 MDNode::get(M.getContext(), {MinC, MaxC}));
1290 unsigned AbsWidth = IntTy->getBitWidth();
1291 if (AbsWidth == IntPtrTy->getBitWidth())
1292 SetAbsRange(~0ull, ~0ull); // Full set.
1293 else
1294 SetAbsRange(0, 1ull << AbsWidth);
1295 return C;
1298 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1299 bool IsOne,
1300 Constant *UniqueMemberAddr) {
1301 for (auto &&Call : CSInfo.CallSites) {
1302 IRBuilder<> B(Call.CS.getInstruction());
1303 Value *Cmp =
1304 B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
1305 B.CreateBitCast(Call.VTable, Int8PtrTy), UniqueMemberAddr);
1306 Cmp = B.CreateZExt(Cmp, Call.CS->getType());
1307 Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter,
1308 Cmp);
1310 CSInfo.markDevirt();
1313 Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) {
1314 Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy);
1315 return ConstantExpr::getGetElementPtr(Int8Ty, C,
1316 ConstantInt::get(Int64Ty, M->Offset));
1319 bool DevirtModule::tryUniqueRetValOpt(
1320 unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1321 CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res,
1322 VTableSlot Slot, ArrayRef<uint64_t> Args) {
1323 // IsOne controls whether we look for a 0 or a 1.
1324 auto tryUniqueRetValOptFor = [&](bool IsOne) {
1325 const TypeMemberInfo *UniqueMember = nullptr;
1326 for (const VirtualCallTarget &Target : TargetsForSlot) {
1327 if (Target.RetVal == (IsOne ? 1 : 0)) {
1328 if (UniqueMember)
1329 return false;
1330 UniqueMember = Target.TM;
1334 // We should have found a unique member or bailed out by now. We already
1335 // checked for a uniform return value in tryUniformRetValOpt.
1336 assert(UniqueMember);
1338 Constant *UniqueMemberAddr = getMemberAddr(UniqueMember);
1339 if (CSInfo.isExported()) {
1340 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
1341 Res->Info = IsOne;
1343 exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr);
1346 // Replace each call with the comparison.
1347 applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne,
1348 UniqueMemberAddr);
1350 // Update devirtualization statistics for targets.
1351 if (RemarksEnabled)
1352 for (auto &&Target : TargetsForSlot)
1353 Target.WasDevirt = true;
1355 return true;
1358 if (BitWidth == 1) {
1359 if (tryUniqueRetValOptFor(true))
1360 return true;
1361 if (tryUniqueRetValOptFor(false))
1362 return true;
1364 return false;
1367 void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
1368 Constant *Byte, Constant *Bit) {
1369 for (auto Call : CSInfo.CallSites) {
1370 auto *RetType = cast<IntegerType>(Call.CS.getType());
1371 IRBuilder<> B(Call.CS.getInstruction());
1372 Value *Addr =
1373 B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte);
1374 if (RetType->getBitWidth() == 1) {
1375 Value *Bits = B.CreateLoad(Int8Ty, Addr);
1376 Value *BitsAndBit = B.CreateAnd(Bits, Bit);
1377 auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
1378 Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled,
1379 OREGetter, IsBitSet);
1380 } else {
1381 Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
1382 Value *Val = B.CreateLoad(RetType, ValAddr);
1383 Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled,
1384 OREGetter, Val);
1387 CSInfo.markDevirt();
1390 bool DevirtModule::tryVirtualConstProp(
1391 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1392 WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1393 // This only works if the function returns an integer.
1394 auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
1395 if (!RetType)
1396 return false;
1397 unsigned BitWidth = RetType->getBitWidth();
1398 if (BitWidth > 64)
1399 return false;
1401 // Make sure that each function is defined, does not access memory, takes at
1402 // least one argument, does not use its first argument (which we assume is
1403 // 'this'), and has the same return type.
1405 // Note that we test whether this copy of the function is readnone, rather
1406 // than testing function attributes, which must hold for any copy of the
1407 // function, even a less optimized version substituted at link time. This is
1408 // sound because the virtual constant propagation optimizations effectively
1409 // inline all implementations of the virtual function into each call site,
1410 // rather than using function attributes to perform local optimization.
1411 for (VirtualCallTarget &Target : TargetsForSlot) {
1412 if (Target.Fn->isDeclaration() ||
1413 computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) !=
1414 MAK_ReadNone ||
1415 Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() ||
1416 Target.Fn->getReturnType() != RetType)
1417 return false;
1420 for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) {
1421 if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
1422 continue;
1424 WholeProgramDevirtResolution::ByArg *ResByArg = nullptr;
1425 if (Res)
1426 ResByArg = &Res->ResByArg[CSByConstantArg.first];
1428 if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg))
1429 continue;
1431 if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second,
1432 ResByArg, Slot, CSByConstantArg.first))
1433 continue;
1435 // Find an allocation offset in bits in all vtables associated with the
1436 // type.
1437 uint64_t AllocBefore =
1438 findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
1439 uint64_t AllocAfter =
1440 findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
1442 // Calculate the total amount of padding needed to store a value at both
1443 // ends of the object.
1444 uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
1445 for (auto &&Target : TargetsForSlot) {
1446 TotalPaddingBefore += std::max<int64_t>(
1447 (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
1448 TotalPaddingAfter += std::max<int64_t>(
1449 (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
1452 // If the amount of padding is too large, give up.
1453 // FIXME: do something smarter here.
1454 if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
1455 continue;
1457 // Calculate the offset to the value as a (possibly negative) byte offset
1458 // and (if applicable) a bit offset, and store the values in the targets.
1459 int64_t OffsetByte;
1460 uint64_t OffsetBit;
1461 if (TotalPaddingBefore <= TotalPaddingAfter)
1462 setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
1463 OffsetBit);
1464 else
1465 setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
1466 OffsetBit);
1468 if (RemarksEnabled)
1469 for (auto &&Target : TargetsForSlot)
1470 Target.WasDevirt = true;
1473 if (CSByConstantArg.second.isExported()) {
1474 ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
1475 exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte,
1476 ResByArg->Byte);
1477 exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit,
1478 ResByArg->Bit);
1481 // Rewrite each call to a load from OffsetByte/OffsetBit.
1482 Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte);
1483 Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
1484 applyVirtualConstProp(CSByConstantArg.second,
1485 TargetsForSlot[0].Fn->getName(), ByteConst, BitConst);
1487 return true;
1490 void DevirtModule::rebuildGlobal(VTableBits &B) {
1491 if (B.Before.Bytes.empty() && B.After.Bytes.empty())
1492 return;
1494 // Align the before byte array to the global's minimum alignment so that we
1495 // don't break any alignment requirements on the global.
1496 MaybeAlign Alignment(B.GV->getAlignment());
1497 if (!Alignment)
1498 Alignment =
1499 Align(M.getDataLayout().getABITypeAlignment(B.GV->getValueType()));
1500 B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), Alignment));
1502 // Before was stored in reverse order; flip it now.
1503 for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
1504 std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
1506 // Build an anonymous global containing the before bytes, followed by the
1507 // original initializer, followed by the after bytes.
1508 auto NewInit = ConstantStruct::getAnon(
1509 {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
1510 B.GV->getInitializer(),
1511 ConstantDataArray::get(M.getContext(), B.After.Bytes)});
1512 auto NewGV =
1513 new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
1514 GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
1515 NewGV->setSection(B.GV->getSection());
1516 NewGV->setComdat(B.GV->getComdat());
1517 NewGV->setAlignment(MaybeAlign(B.GV->getAlignment()));
1519 // Copy the original vtable's metadata to the anonymous global, adjusting
1520 // offsets as required.
1521 NewGV->copyMetadata(B.GV, B.Before.Bytes.size());
1523 // Build an alias named after the original global, pointing at the second
1524 // element (the original initializer).
1525 auto Alias = GlobalAlias::create(
1526 B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
1527 ConstantExpr::getGetElementPtr(
1528 NewInit->getType(), NewGV,
1529 ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
1530 ConstantInt::get(Int32Ty, 1)}),
1531 &M);
1532 Alias->setVisibility(B.GV->getVisibility());
1533 Alias->takeName(B.GV);
1535 B.GV->replaceAllUsesWith(Alias);
1536 B.GV->eraseFromParent();
1539 bool DevirtModule::areRemarksEnabled() {
1540 const auto &FL = M.getFunctionList();
1541 for (const Function &Fn : FL) {
1542 const auto &BBL = Fn.getBasicBlockList();
1543 if (BBL.empty())
1544 continue;
1545 auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front());
1546 return DI.isEnabled();
1548 return false;
1551 void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc,
1552 Function *AssumeFunc) {
1553 // Find all virtual calls via a virtual table pointer %p under an assumption
1554 // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
1555 // points to a member of the type identifier %md. Group calls by (type ID,
1556 // offset) pair (effectively the identity of the virtual function) and store
1557 // to CallSlots.
1558 DenseSet<CallSite> SeenCallSites;
1559 for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end();
1560 I != E;) {
1561 auto CI = dyn_cast<CallInst>(I->getUser());
1562 ++I;
1563 if (!CI)
1564 continue;
1566 // Search for virtual calls based on %p and add them to DevirtCalls.
1567 SmallVector<DevirtCallSite, 1> DevirtCalls;
1568 SmallVector<CallInst *, 1> Assumes;
1569 auto &DT = LookupDomTree(*CI->getFunction());
1570 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
1572 // If we found any, add them to CallSlots.
1573 if (!Assumes.empty()) {
1574 Metadata *TypeId =
1575 cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
1576 Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
1577 for (DevirtCallSite Call : DevirtCalls) {
1578 // Only add this CallSite if we haven't seen it before. The vtable
1579 // pointer may have been CSE'd with pointers from other call sites,
1580 // and we don't want to process call sites multiple times. We can't
1581 // just skip the vtable Ptr if it has been seen before, however, since
1582 // it may be shared by type tests that dominate different calls.
1583 if (SeenCallSites.insert(Call.CS).second)
1584 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, nullptr);
1588 // We no longer need the assumes or the type test.
1589 for (auto Assume : Assumes)
1590 Assume->eraseFromParent();
1591 // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
1592 // may use the vtable argument later.
1593 if (CI->use_empty())
1594 CI->eraseFromParent();
1598 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) {
1599 Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test);
1601 for (auto I = TypeCheckedLoadFunc->use_begin(),
1602 E = TypeCheckedLoadFunc->use_end();
1603 I != E;) {
1604 auto CI = dyn_cast<CallInst>(I->getUser());
1605 ++I;
1606 if (!CI)
1607 continue;
1609 Value *Ptr = CI->getArgOperand(0);
1610 Value *Offset = CI->getArgOperand(1);
1611 Value *TypeIdValue = CI->getArgOperand(2);
1612 Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
1614 SmallVector<DevirtCallSite, 1> DevirtCalls;
1615 SmallVector<Instruction *, 1> LoadedPtrs;
1616 SmallVector<Instruction *, 1> Preds;
1617 bool HasNonCallUses = false;
1618 auto &DT = LookupDomTree(*CI->getFunction());
1619 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
1620 HasNonCallUses, CI, DT);
1622 // Start by generating "pessimistic" code that explicitly loads the function
1623 // pointer from the vtable and performs the type check. If possible, we will
1624 // eliminate the load and the type check later.
1626 // If possible, only generate the load at the point where it is used.
1627 // This helps avoid unnecessary spills.
1628 IRBuilder<> LoadB(
1629 (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI);
1630 Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset);
1631 Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy));
1632 Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr);
1634 for (Instruction *LoadedPtr : LoadedPtrs) {
1635 LoadedPtr->replaceAllUsesWith(LoadedValue);
1636 LoadedPtr->eraseFromParent();
1639 // Likewise for the type test.
1640 IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI);
1641 CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue});
1643 for (Instruction *Pred : Preds) {
1644 Pred->replaceAllUsesWith(TypeTestCall);
1645 Pred->eraseFromParent();
1648 // We have already erased any extractvalue instructions that refer to the
1649 // intrinsic call, but the intrinsic may have other non-extractvalue uses
1650 // (although this is unlikely). In that case, explicitly build a pair and
1651 // RAUW it.
1652 if (!CI->use_empty()) {
1653 Value *Pair = UndefValue::get(CI->getType());
1654 IRBuilder<> B(CI);
1655 Pair = B.CreateInsertValue(Pair, LoadedValue, {0});
1656 Pair = B.CreateInsertValue(Pair, TypeTestCall, {1});
1657 CI->replaceAllUsesWith(Pair);
1660 // The number of unsafe uses is initially the number of uses.
1661 auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall];
1662 NumUnsafeUses = DevirtCalls.size();
1664 // If the function pointer has a non-call user, we cannot eliminate the type
1665 // check, as one of those users may eventually call the pointer. Increment
1666 // the unsafe use count to make sure it cannot reach zero.
1667 if (HasNonCallUses)
1668 ++NumUnsafeUses;
1669 for (DevirtCallSite Call : DevirtCalls) {
1670 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS,
1671 &NumUnsafeUses);
1674 CI->eraseFromParent();
1678 void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) {
1679 auto *TypeId = dyn_cast<MDString>(Slot.TypeID);
1680 if (!TypeId)
1681 return;
1682 const TypeIdSummary *TidSummary =
1683 ImportSummary->getTypeIdSummary(TypeId->getString());
1684 if (!TidSummary)
1685 return;
1686 auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset);
1687 if (ResI == TidSummary->WPDRes.end())
1688 return;
1689 const WholeProgramDevirtResolution &Res = ResI->second;
1691 if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) {
1692 assert(!Res.SingleImplName.empty());
1693 // The type of the function in the declaration is irrelevant because every
1694 // call site will cast it to the correct type.
1695 Constant *SingleImpl =
1696 cast<Constant>(M.getOrInsertFunction(Res.SingleImplName,
1697 Type::getVoidTy(M.getContext()))
1698 .getCallee());
1700 // This is the import phase so we should not be exporting anything.
1701 bool IsExported = false;
1702 applySingleImplDevirt(SlotInfo, SingleImpl, IsExported);
1703 assert(!IsExported);
1706 for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) {
1707 auto I = Res.ResByArg.find(CSByConstantArg.first);
1708 if (I == Res.ResByArg.end())
1709 continue;
1710 auto &ResByArg = I->second;
1711 // FIXME: We should figure out what to do about the "function name" argument
1712 // to the apply* functions, as the function names are unavailable during the
1713 // importing phase. For now we just pass the empty string. This does not
1714 // impact correctness because the function names are just used for remarks.
1715 switch (ResByArg.TheKind) {
1716 case WholeProgramDevirtResolution::ByArg::UniformRetVal:
1717 applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info);
1718 break;
1719 case WholeProgramDevirtResolution::ByArg::UniqueRetVal: {
1720 Constant *UniqueMemberAddr =
1721 importGlobal(Slot, CSByConstantArg.first, "unique_member");
1722 applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info,
1723 UniqueMemberAddr);
1724 break;
1726 case WholeProgramDevirtResolution::ByArg::VirtualConstProp: {
1727 Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte",
1728 Int32Ty, ResByArg.Byte);
1729 Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty,
1730 ResByArg.Bit);
1731 applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit);
1732 break;
1734 default:
1735 break;
1739 if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) {
1740 // The type of the function is irrelevant, because it's bitcast at calls
1741 // anyhow.
1742 Constant *JT = cast<Constant>(
1743 M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"),
1744 Type::getVoidTy(M.getContext()))
1745 .getCallee());
1746 bool IsExported = false;
1747 applyICallBranchFunnel(SlotInfo, JT, IsExported);
1748 assert(!IsExported);
1752 void DevirtModule::removeRedundantTypeTests() {
1753 auto True = ConstantInt::getTrue(M.getContext());
1754 for (auto &&U : NumUnsafeUsesForTypeTest) {
1755 if (U.second == 0) {
1756 U.first->replaceAllUsesWith(True);
1757 U.first->eraseFromParent();
1762 bool DevirtModule::run() {
1763 // If only some of the modules were split, we cannot correctly perform
1764 // this transformation. We already checked for the presense of type tests
1765 // with partially split modules during the thin link, and would have emitted
1766 // an error if any were found, so here we can simply return.
1767 if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) ||
1768 (ImportSummary && ImportSummary->partiallySplitLTOUnits()))
1769 return false;
1771 Function *TypeTestFunc =
1772 M.getFunction(Intrinsic::getName(Intrinsic::type_test));
1773 Function *TypeCheckedLoadFunc =
1774 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
1775 Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
1777 // Normally if there are no users of the devirtualization intrinsics in the
1778 // module, this pass has nothing to do. But if we are exporting, we also need
1779 // to handle any users that appear only in the function summaries.
1780 if (!ExportSummary &&
1781 (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc ||
1782 AssumeFunc->use_empty()) &&
1783 (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty()))
1784 return false;
1786 if (TypeTestFunc && AssumeFunc)
1787 scanTypeTestUsers(TypeTestFunc, AssumeFunc);
1789 if (TypeCheckedLoadFunc)
1790 scanTypeCheckedLoadUsers(TypeCheckedLoadFunc);
1792 if (ImportSummary) {
1793 for (auto &S : CallSlots)
1794 importResolution(S.first, S.second);
1796 removeRedundantTypeTests();
1798 // The rest of the code is only necessary when exporting or during regular
1799 // LTO, so we are done.
1800 return true;
1803 // Rebuild type metadata into a map for easy lookup.
1804 std::vector<VTableBits> Bits;
1805 DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap;
1806 buildTypeIdentifierMap(Bits, TypeIdMap);
1807 if (TypeIdMap.empty())
1808 return true;
1810 // Collect information from summary about which calls to try to devirtualize.
1811 if (ExportSummary) {
1812 DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
1813 for (auto &P : TypeIdMap) {
1814 if (auto *TypeId = dyn_cast<MDString>(P.first))
1815 MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
1816 TypeId);
1819 for (auto &P : *ExportSummary) {
1820 for (auto &S : P.second.SummaryList) {
1821 auto *FS = dyn_cast<FunctionSummary>(S.get());
1822 if (!FS)
1823 continue;
1824 // FIXME: Only add live functions.
1825 for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
1826 for (Metadata *MD : MetadataByGUID[VF.GUID]) {
1827 CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
1830 for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
1831 for (Metadata *MD : MetadataByGUID[VF.GUID]) {
1832 CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
1835 for (const FunctionSummary::ConstVCall &VC :
1836 FS->type_test_assume_const_vcalls()) {
1837 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
1838 CallSlots[{MD, VC.VFunc.Offset}]
1839 .ConstCSInfo[VC.Args]
1840 .addSummaryTypeTestAssumeUser(FS);
1843 for (const FunctionSummary::ConstVCall &VC :
1844 FS->type_checked_load_const_vcalls()) {
1845 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
1846 CallSlots[{MD, VC.VFunc.Offset}]
1847 .ConstCSInfo[VC.Args]
1848 .addSummaryTypeCheckedLoadUser(FS);
1855 // For each (type, offset) pair:
1856 bool DidVirtualConstProp = false;
1857 std::map<std::string, Function*> DevirtTargets;
1858 for (auto &S : CallSlots) {
1859 // Search each of the members of the type identifier for the virtual
1860 // function implementation at offset S.first.ByteOffset, and add to
1861 // TargetsForSlot.
1862 std::vector<VirtualCallTarget> TargetsForSlot;
1863 if (tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID],
1864 S.first.ByteOffset)) {
1865 WholeProgramDevirtResolution *Res = nullptr;
1866 if (ExportSummary && isa<MDString>(S.first.TypeID))
1867 Res = &ExportSummary
1868 ->getOrInsertTypeIdSummary(
1869 cast<MDString>(S.first.TypeID)->getString())
1870 .WPDRes[S.first.ByteOffset];
1872 if (!trySingleImplDevirt(ExportSummary, TargetsForSlot, S.second, Res)) {
1873 DidVirtualConstProp |=
1874 tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first);
1876 tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first);
1879 // Collect functions devirtualized at least for one call site for stats.
1880 if (RemarksEnabled)
1881 for (const auto &T : TargetsForSlot)
1882 if (T.WasDevirt)
1883 DevirtTargets[T.Fn->getName()] = T.Fn;
1886 // CFI-specific: if we are exporting and any llvm.type.checked.load
1887 // intrinsics were *not* devirtualized, we need to add the resulting
1888 // llvm.type.test intrinsics to the function summaries so that the
1889 // LowerTypeTests pass will export them.
1890 if (ExportSummary && isa<MDString>(S.first.TypeID)) {
1891 auto GUID =
1892 GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString());
1893 for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers)
1894 FS->addTypeTest(GUID);
1895 for (auto &CCS : S.second.ConstCSInfo)
1896 for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers)
1897 FS->addTypeTest(GUID);
1901 if (RemarksEnabled) {
1902 // Generate remarks for each devirtualized function.
1903 for (const auto &DT : DevirtTargets) {
1904 Function *F = DT.second;
1906 using namespace ore;
1907 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F)
1908 << "devirtualized "
1909 << NV("FunctionName", DT.first));
1913 removeRedundantTypeTests();
1915 // Rebuild each global we touched as part of virtual constant propagation to
1916 // include the before and after bytes.
1917 if (DidVirtualConstProp)
1918 for (VTableBits &B : Bits)
1919 rebuildGlobal(B);
1921 // We have lowered or deleted the type checked load intrinsics, so we no
1922 // longer have enough information to reason about the liveness of virtual
1923 // function pointers in GlobalDCE.
1924 for (GlobalVariable &GV : M.globals())
1925 GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
1927 return true;
1930 void DevirtIndex::run() {
1931 if (ExportSummary.typeIdCompatibleVtableMap().empty())
1932 return;
1934 DenseMap<GlobalValue::GUID, std::vector<StringRef>> NameByGUID;
1935 for (auto &P : ExportSummary.typeIdCompatibleVtableMap()) {
1936 NameByGUID[GlobalValue::getGUID(P.first)].push_back(P.first);
1939 // Collect information from summary about which calls to try to devirtualize.
1940 for (auto &P : ExportSummary) {
1941 for (auto &S : P.second.SummaryList) {
1942 auto *FS = dyn_cast<FunctionSummary>(S.get());
1943 if (!FS)
1944 continue;
1945 // FIXME: Only add live functions.
1946 for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
1947 for (StringRef Name : NameByGUID[VF.GUID]) {
1948 CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
1951 for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
1952 for (StringRef Name : NameByGUID[VF.GUID]) {
1953 CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
1956 for (const FunctionSummary::ConstVCall &VC :
1957 FS->type_test_assume_const_vcalls()) {
1958 for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
1959 CallSlots[{Name, VC.VFunc.Offset}]
1960 .ConstCSInfo[VC.Args]
1961 .addSummaryTypeTestAssumeUser(FS);
1964 for (const FunctionSummary::ConstVCall &VC :
1965 FS->type_checked_load_const_vcalls()) {
1966 for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
1967 CallSlots[{Name, VC.VFunc.Offset}]
1968 .ConstCSInfo[VC.Args]
1969 .addSummaryTypeCheckedLoadUser(FS);
1975 std::set<ValueInfo> DevirtTargets;
1976 // For each (type, offset) pair:
1977 for (auto &S : CallSlots) {
1978 // Search each of the members of the type identifier for the virtual
1979 // function implementation at offset S.first.ByteOffset, and add to
1980 // TargetsForSlot.
1981 std::vector<ValueInfo> TargetsForSlot;
1982 auto TidSummary = ExportSummary.getTypeIdCompatibleVtableSummary(S.first.TypeID);
1983 assert(TidSummary);
1984 if (tryFindVirtualCallTargets(TargetsForSlot, *TidSummary,
1985 S.first.ByteOffset)) {
1986 WholeProgramDevirtResolution *Res =
1987 &ExportSummary.getOrInsertTypeIdSummary(S.first.TypeID)
1988 .WPDRes[S.first.ByteOffset];
1990 if (!trySingleImplDevirt(TargetsForSlot, S.first, S.second, Res,
1991 DevirtTargets))
1992 continue;
1996 // Optionally have the thin link print message for each devirtualized
1997 // function.
1998 if (PrintSummaryDevirt)
1999 for (const auto &DT : DevirtTargets)
2000 errs() << "Devirtualized call to " << DT << "\n";
2002 return;