[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / Transforms / InstCombine / InstCombineShifts.cpp
blob64294838644f31470d3061b61d69e9eb392ae17b
1 //===- InstCombineShifts.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitShl, visitLShr, and visitAShr functions.
11 //===----------------------------------------------------------------------===//
13 #include "InstCombineInternal.h"
14 #include "llvm/Analysis/ConstantFolding.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/IR/IntrinsicInst.h"
17 #include "llvm/IR/PatternMatch.h"
18 using namespace llvm;
19 using namespace PatternMatch;
21 #define DEBUG_TYPE "instcombine"
23 // Given pattern:
24 // (x shiftopcode Q) shiftopcode K
25 // we should rewrite it as
26 // x shiftopcode (Q+K) iff (Q+K) u< bitwidth(x)
27 // This is valid for any shift, but they must be identical.
29 // AnalyzeForSignBitExtraction indicates that we will only analyze whether this
30 // pattern has any 2 right-shifts that sum to 1 less than original bit width.
31 Value *InstCombiner::reassociateShiftAmtsOfTwoSameDirectionShifts(
32 BinaryOperator *Sh0, const SimplifyQuery &SQ,
33 bool AnalyzeForSignBitExtraction) {
34 // Look for a shift of some instruction, ignore zext of shift amount if any.
35 Instruction *Sh0Op0;
36 Value *ShAmt0;
37 if (!match(Sh0,
38 m_Shift(m_Instruction(Sh0Op0), m_ZExtOrSelf(m_Value(ShAmt0)))))
39 return nullptr;
41 // If there is a truncation between the two shifts, we must make note of it
42 // and look through it. The truncation imposes additional constraints on the
43 // transform.
44 Instruction *Sh1;
45 Value *Trunc = nullptr;
46 match(Sh0Op0,
47 m_CombineOr(m_CombineAnd(m_Trunc(m_Instruction(Sh1)), m_Value(Trunc)),
48 m_Instruction(Sh1)));
50 // Inner shift: (x shiftopcode ShAmt1)
51 // Like with other shift, ignore zext of shift amount if any.
52 Value *X, *ShAmt1;
53 if (!match(Sh1, m_Shift(m_Value(X), m_ZExtOrSelf(m_Value(ShAmt1)))))
54 return nullptr;
56 // We have two shift amounts from two different shifts. The types of those
57 // shift amounts may not match. If that's the case let's bailout now..
58 if (ShAmt0->getType() != ShAmt1->getType())
59 return nullptr;
61 // We are only looking for signbit extraction if we have two right shifts.
62 bool HadTwoRightShifts = match(Sh0, m_Shr(m_Value(), m_Value())) &&
63 match(Sh1, m_Shr(m_Value(), m_Value()));
64 // ... and if it's not two right-shifts, we know the answer already.
65 if (AnalyzeForSignBitExtraction && !HadTwoRightShifts)
66 return nullptr;
68 // The shift opcodes must be identical, unless we are just checking whether
69 // this pattern can be interpreted as a sign-bit-extraction.
70 Instruction::BinaryOps ShiftOpcode = Sh0->getOpcode();
71 bool IdenticalShOpcodes = Sh0->getOpcode() == Sh1->getOpcode();
72 if (!IdenticalShOpcodes && !AnalyzeForSignBitExtraction)
73 return nullptr;
75 // If we saw truncation, we'll need to produce extra instruction,
76 // and for that one of the operands of the shift must be one-use,
77 // unless of course we don't actually plan to produce any instructions here.
78 if (Trunc && !AnalyzeForSignBitExtraction &&
79 !match(Sh0, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
80 return nullptr;
82 // Can we fold (ShAmt0+ShAmt1) ?
83 auto *NewShAmt = dyn_cast_or_null<Constant>(
84 SimplifyAddInst(ShAmt0, ShAmt1, /*isNSW=*/false, /*isNUW=*/false,
85 SQ.getWithInstruction(Sh0)));
86 if (!NewShAmt)
87 return nullptr; // Did not simplify.
88 unsigned NewShAmtBitWidth = NewShAmt->getType()->getScalarSizeInBits();
89 unsigned XBitWidth = X->getType()->getScalarSizeInBits();
90 // Is the new shift amount smaller than the bit width of inner/new shift?
91 if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
92 APInt(NewShAmtBitWidth, XBitWidth))))
93 return nullptr; // FIXME: could perform constant-folding.
95 // If there was a truncation, and we have a right-shift, we can only fold if
96 // we are left with the original sign bit. Likewise, if we were just checking
97 // that this is a sighbit extraction, this is the place to check it.
98 // FIXME: zero shift amount is also legal here, but we can't *easily* check
99 // more than one predicate so it's not really worth it.
100 if (HadTwoRightShifts && (Trunc || AnalyzeForSignBitExtraction)) {
101 // If it's not a sign bit extraction, then we're done.
102 if (!match(NewShAmt,
103 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
104 APInt(NewShAmtBitWidth, XBitWidth - 1))))
105 return nullptr;
106 // If it is, and that was the question, return the base value.
107 if (AnalyzeForSignBitExtraction)
108 return X;
111 assert(IdenticalShOpcodes && "Should not get here with different shifts.");
113 // All good, we can do this fold.
114 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, X->getType());
116 BinaryOperator *NewShift = BinaryOperator::Create(ShiftOpcode, X, NewShAmt);
118 // The flags can only be propagated if there wasn't a trunc.
119 if (!Trunc) {
120 // If the pattern did not involve trunc, and both of the original shifts
121 // had the same flag set, preserve the flag.
122 if (ShiftOpcode == Instruction::BinaryOps::Shl) {
123 NewShift->setHasNoUnsignedWrap(Sh0->hasNoUnsignedWrap() &&
124 Sh1->hasNoUnsignedWrap());
125 NewShift->setHasNoSignedWrap(Sh0->hasNoSignedWrap() &&
126 Sh1->hasNoSignedWrap());
127 } else {
128 NewShift->setIsExact(Sh0->isExact() && Sh1->isExact());
132 Instruction *Ret = NewShift;
133 if (Trunc) {
134 Builder.Insert(NewShift);
135 Ret = CastInst::Create(Instruction::Trunc, NewShift, Sh0->getType());
138 return Ret;
141 // Try to replace `undef` constants in C with Replacement.
142 static Constant *replaceUndefsWith(Constant *C, Constant *Replacement) {
143 if (C && match(C, m_Undef()))
144 return Replacement;
146 if (auto *CV = dyn_cast<ConstantVector>(C)) {
147 llvm::SmallVector<Constant *, 32> NewOps(CV->getNumOperands());
148 for (unsigned i = 0, NumElts = NewOps.size(); i != NumElts; ++i) {
149 Constant *EltC = CV->getOperand(i);
150 NewOps[i] = EltC && match(EltC, m_Undef()) ? Replacement : EltC;
152 return ConstantVector::get(NewOps);
155 // Don't know how to deal with this constant.
156 return C;
159 // If we have some pattern that leaves only some low bits set, and then performs
160 // left-shift of those bits, if none of the bits that are left after the final
161 // shift are modified by the mask, we can omit the mask.
163 // There are many variants to this pattern:
164 // a) (x & ((1 << MaskShAmt) - 1)) << ShiftShAmt
165 // b) (x & (~(-1 << MaskShAmt))) << ShiftShAmt
166 // c) (x & (-1 >> MaskShAmt)) << ShiftShAmt
167 // d) (x & ((-1 << MaskShAmt) >> MaskShAmt)) << ShiftShAmt
168 // e) ((x << MaskShAmt) l>> MaskShAmt) << ShiftShAmt
169 // f) ((x << MaskShAmt) a>> MaskShAmt) << ShiftShAmt
170 // All these patterns can be simplified to just:
171 // x << ShiftShAmt
172 // iff:
173 // a,b) (MaskShAmt+ShiftShAmt) u>= bitwidth(x)
174 // c,d,e,f) (ShiftShAmt-MaskShAmt) s>= 0 (i.e. ShiftShAmt u>= MaskShAmt)
175 static Instruction *
176 dropRedundantMaskingOfLeftShiftInput(BinaryOperator *OuterShift,
177 const SimplifyQuery &Q,
178 InstCombiner::BuilderTy &Builder) {
179 assert(OuterShift->getOpcode() == Instruction::BinaryOps::Shl &&
180 "The input must be 'shl'!");
182 Value *Masked, *ShiftShAmt;
183 match(OuterShift, m_Shift(m_Value(Masked), m_Value(ShiftShAmt)));
185 Type *NarrowestTy = OuterShift->getType();
186 Type *WidestTy = Masked->getType();
187 // The mask must be computed in a type twice as wide to ensure
188 // that no bits are lost if the sum-of-shifts is wider than the base type.
189 Type *ExtendedTy = WidestTy->getExtendedType();
191 Value *MaskShAmt;
193 // ((1 << MaskShAmt) - 1)
194 auto MaskA = m_Add(m_Shl(m_One(), m_Value(MaskShAmt)), m_AllOnes());
195 // (~(-1 << maskNbits))
196 auto MaskB = m_Xor(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_AllOnes());
197 // (-1 >> MaskShAmt)
198 auto MaskC = m_Shr(m_AllOnes(), m_Value(MaskShAmt));
199 // ((-1 << MaskShAmt) >> MaskShAmt)
200 auto MaskD =
201 m_Shr(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_Deferred(MaskShAmt));
203 Value *X;
204 Constant *NewMask;
206 if (match(Masked, m_c_And(m_CombineOr(MaskA, MaskB), m_Value(X)))) {
207 // Can we simplify (MaskShAmt+ShiftShAmt) ?
208 auto *SumOfShAmts = dyn_cast_or_null<Constant>(SimplifyAddInst(
209 MaskShAmt, ShiftShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
210 if (!SumOfShAmts)
211 return nullptr; // Did not simplify.
212 // In this pattern SumOfShAmts correlates with the number of low bits
213 // that shall remain in the root value (OuterShift).
215 // An extend of an undef value becomes zero because the high bits are never
216 // completely unknown. Replace the the `undef` shift amounts with final
217 // shift bitwidth to ensure that the value remains undef when creating the
218 // subsequent shift op.
219 SumOfShAmts = replaceUndefsWith(
220 SumOfShAmts, ConstantInt::get(SumOfShAmts->getType()->getScalarType(),
221 ExtendedTy->getScalarSizeInBits()));
222 auto *ExtendedSumOfShAmts = ConstantExpr::getZExt(SumOfShAmts, ExtendedTy);
223 // And compute the mask as usual: ~(-1 << (SumOfShAmts))
224 auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
225 auto *ExtendedInvertedMask =
226 ConstantExpr::getShl(ExtendedAllOnes, ExtendedSumOfShAmts);
227 NewMask = ConstantExpr::getNot(ExtendedInvertedMask);
228 } else if (match(Masked, m_c_And(m_CombineOr(MaskC, MaskD), m_Value(X))) ||
229 match(Masked, m_Shr(m_Shl(m_Value(X), m_Value(MaskShAmt)),
230 m_Deferred(MaskShAmt)))) {
231 // Can we simplify (ShiftShAmt-MaskShAmt) ?
232 auto *ShAmtsDiff = dyn_cast_or_null<Constant>(SimplifySubInst(
233 ShiftShAmt, MaskShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
234 if (!ShAmtsDiff)
235 return nullptr; // Did not simplify.
236 // In this pattern ShAmtsDiff correlates with the number of high bits that
237 // shall be unset in the root value (OuterShift).
239 // An extend of an undef value becomes zero because the high bits are never
240 // completely unknown. Replace the the `undef` shift amounts with negated
241 // bitwidth of innermost shift to ensure that the value remains undef when
242 // creating the subsequent shift op.
243 unsigned WidestTyBitWidth = WidestTy->getScalarSizeInBits();
244 ShAmtsDiff = replaceUndefsWith(
245 ShAmtsDiff, ConstantInt::get(ShAmtsDiff->getType()->getScalarType(),
246 -WidestTyBitWidth));
247 auto *ExtendedNumHighBitsToClear = ConstantExpr::getZExt(
248 ConstantExpr::getSub(ConstantInt::get(ShAmtsDiff->getType(),
249 WidestTyBitWidth,
250 /*isSigned=*/false),
251 ShAmtsDiff),
252 ExtendedTy);
253 // And compute the mask as usual: (-1 l>> (NumHighBitsToClear))
254 auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
255 NewMask =
256 ConstantExpr::getLShr(ExtendedAllOnes, ExtendedNumHighBitsToClear);
257 } else
258 return nullptr; // Don't know anything about this pattern.
260 NewMask = ConstantExpr::getTrunc(NewMask, NarrowestTy);
262 // Does this mask has any unset bits? If not then we can just not apply it.
263 bool NeedMask = !match(NewMask, m_AllOnes());
265 // If we need to apply a mask, there are several more restrictions we have.
266 if (NeedMask) {
267 // The old masking instruction must go away.
268 if (!Masked->hasOneUse())
269 return nullptr;
270 // The original "masking" instruction must not have been`ashr`.
271 if (match(Masked, m_AShr(m_Value(), m_Value())))
272 return nullptr;
275 // No 'NUW'/'NSW'! We no longer know that we won't shift-out non-0 bits.
276 auto *NewShift = BinaryOperator::Create(OuterShift->getOpcode(), X,
277 OuterShift->getOperand(1));
279 if (!NeedMask)
280 return NewShift;
282 Builder.Insert(NewShift);
283 return BinaryOperator::Create(Instruction::And, NewShift, NewMask);
286 Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
287 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
288 assert(Op0->getType() == Op1->getType());
290 // If the shift amount is a one-use `sext`, we can demote it to `zext`.
291 Value *Y;
292 if (match(Op1, m_OneUse(m_SExt(m_Value(Y))))) {
293 Value *NewExt = Builder.CreateZExt(Y, I.getType(), Op1->getName());
294 return BinaryOperator::Create(I.getOpcode(), Op0, NewExt);
297 // See if we can fold away this shift.
298 if (SimplifyDemandedInstructionBits(I))
299 return &I;
301 // Try to fold constant and into select arguments.
302 if (isa<Constant>(Op0))
303 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
304 if (Instruction *R = FoldOpIntoSelect(I, SI))
305 return R;
307 if (Constant *CUI = dyn_cast<Constant>(Op1))
308 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
309 return Res;
311 if (auto *NewShift = cast_or_null<Instruction>(
312 reassociateShiftAmtsOfTwoSameDirectionShifts(&I, SQ)))
313 return NewShift;
315 // (C1 shift (A add C2)) -> (C1 shift C2) shift A)
316 // iff A and C2 are both positive.
317 Value *A;
318 Constant *C;
319 if (match(Op0, m_Constant()) && match(Op1, m_Add(m_Value(A), m_Constant(C))))
320 if (isKnownNonNegative(A, DL, 0, &AC, &I, &DT) &&
321 isKnownNonNegative(C, DL, 0, &AC, &I, &DT))
322 return BinaryOperator::Create(
323 I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), Op0, C), A);
325 // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2.
326 // Because shifts by negative values (which could occur if A were negative)
327 // are undefined.
328 const APInt *B;
329 if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Power2(B)))) {
330 // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
331 // demand the sign bit (and many others) here??
332 Value *Rem = Builder.CreateAnd(A, ConstantInt::get(I.getType(), *B - 1),
333 Op1->getName());
334 I.setOperand(1, Rem);
335 return &I;
338 return nullptr;
341 /// Return true if we can simplify two logical (either left or right) shifts
342 /// that have constant shift amounts: OuterShift (InnerShift X, C1), C2.
343 static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl,
344 Instruction *InnerShift, InstCombiner &IC,
345 Instruction *CxtI) {
346 assert(InnerShift->isLogicalShift() && "Unexpected instruction type");
348 // We need constant scalar or constant splat shifts.
349 const APInt *InnerShiftConst;
350 if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst)))
351 return false;
353 // Two logical shifts in the same direction:
354 // shl (shl X, C1), C2 --> shl X, C1 + C2
355 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
356 bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
357 if (IsInnerShl == IsOuterShl)
358 return true;
360 // Equal shift amounts in opposite directions become bitwise 'and':
361 // lshr (shl X, C), C --> and X, C'
362 // shl (lshr X, C), C --> and X, C'
363 if (*InnerShiftConst == OuterShAmt)
364 return true;
366 // If the 2nd shift is bigger than the 1st, we can fold:
367 // lshr (shl X, C1), C2 --> and (shl X, C1 - C2), C3
368 // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3
369 // but it isn't profitable unless we know the and'd out bits are already zero.
370 // Also, check that the inner shift is valid (less than the type width) or
371 // we'll crash trying to produce the bit mask for the 'and'.
372 unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits();
373 if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) {
374 unsigned InnerShAmt = InnerShiftConst->getZExtValue();
375 unsigned MaskShift =
376 IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt;
377 APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift;
378 if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI))
379 return true;
382 return false;
385 /// See if we can compute the specified value, but shifted logically to the left
386 /// or right by some number of bits. This should return true if the expression
387 /// can be computed for the same cost as the current expression tree. This is
388 /// used to eliminate extraneous shifting from things like:
389 /// %C = shl i128 %A, 64
390 /// %D = shl i128 %B, 96
391 /// %E = or i128 %C, %D
392 /// %F = lshr i128 %E, 64
393 /// where the client will ask if E can be computed shifted right by 64-bits. If
394 /// this succeeds, getShiftedValue() will be called to produce the value.
395 static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift,
396 InstCombiner &IC, Instruction *CxtI) {
397 // We can always evaluate constants shifted.
398 if (isa<Constant>(V))
399 return true;
401 Instruction *I = dyn_cast<Instruction>(V);
402 if (!I) return false;
404 // If this is the opposite shift, we can directly reuse the input of the shift
405 // if the needed bits are already zero in the input. This allows us to reuse
406 // the value which means that we don't care if the shift has multiple uses.
407 // TODO: Handle opposite shift by exact value.
408 ConstantInt *CI = nullptr;
409 if ((IsLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) ||
410 (!IsLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) {
411 if (CI->getValue() == NumBits) {
412 // TODO: Check that the input bits are already zero with MaskedValueIsZero
413 #if 0
414 // If this is a truncate of a logical shr, we can truncate it to a smaller
415 // lshr iff we know that the bits we would otherwise be shifting in are
416 // already zeros.
417 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
418 uint32_t BitWidth = Ty->getScalarSizeInBits();
419 if (MaskedValueIsZero(I->getOperand(0),
420 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
421 CI->getLimitedValue(BitWidth) < BitWidth) {
422 return CanEvaluateTruncated(I->getOperand(0), Ty);
424 #endif
429 // We can't mutate something that has multiple uses: doing so would
430 // require duplicating the instruction in general, which isn't profitable.
431 if (!I->hasOneUse()) return false;
433 switch (I->getOpcode()) {
434 default: return false;
435 case Instruction::And:
436 case Instruction::Or:
437 case Instruction::Xor:
438 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
439 return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) &&
440 canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I);
442 case Instruction::Shl:
443 case Instruction::LShr:
444 return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI);
446 case Instruction::Select: {
447 SelectInst *SI = cast<SelectInst>(I);
448 Value *TrueVal = SI->getTrueValue();
449 Value *FalseVal = SI->getFalseValue();
450 return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) &&
451 canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI);
453 case Instruction::PHI: {
454 // We can change a phi if we can change all operands. Note that we never
455 // get into trouble with cyclic PHIs here because we only consider
456 // instructions with a single use.
457 PHINode *PN = cast<PHINode>(I);
458 for (Value *IncValue : PN->incoming_values())
459 if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN))
460 return false;
461 return true;
466 /// Fold OuterShift (InnerShift X, C1), C2.
467 /// See canEvaluateShiftedShift() for the constraints on these instructions.
468 static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt,
469 bool IsOuterShl,
470 InstCombiner::BuilderTy &Builder) {
471 bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
472 Type *ShType = InnerShift->getType();
473 unsigned TypeWidth = ShType->getScalarSizeInBits();
475 // We only accept shifts-by-a-constant in canEvaluateShifted().
476 const APInt *C1;
477 match(InnerShift->getOperand(1), m_APInt(C1));
478 unsigned InnerShAmt = C1->getZExtValue();
480 // Change the shift amount and clear the appropriate IR flags.
481 auto NewInnerShift = [&](unsigned ShAmt) {
482 InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt));
483 if (IsInnerShl) {
484 InnerShift->setHasNoUnsignedWrap(false);
485 InnerShift->setHasNoSignedWrap(false);
486 } else {
487 InnerShift->setIsExact(false);
489 return InnerShift;
492 // Two logical shifts in the same direction:
493 // shl (shl X, C1), C2 --> shl X, C1 + C2
494 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
495 if (IsInnerShl == IsOuterShl) {
496 // If this is an oversized composite shift, then unsigned shifts get 0.
497 if (InnerShAmt + OuterShAmt >= TypeWidth)
498 return Constant::getNullValue(ShType);
500 return NewInnerShift(InnerShAmt + OuterShAmt);
503 // Equal shift amounts in opposite directions become bitwise 'and':
504 // lshr (shl X, C), C --> and X, C'
505 // shl (lshr X, C), C --> and X, C'
506 if (InnerShAmt == OuterShAmt) {
507 APInt Mask = IsInnerShl
508 ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt)
509 : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt);
510 Value *And = Builder.CreateAnd(InnerShift->getOperand(0),
511 ConstantInt::get(ShType, Mask));
512 if (auto *AndI = dyn_cast<Instruction>(And)) {
513 AndI->moveBefore(InnerShift);
514 AndI->takeName(InnerShift);
516 return And;
519 assert(InnerShAmt > OuterShAmt &&
520 "Unexpected opposite direction logical shift pair");
522 // In general, we would need an 'and' for this transform, but
523 // canEvaluateShiftedShift() guarantees that the masked-off bits are not used.
524 // lshr (shl X, C1), C2 --> shl X, C1 - C2
525 // shl (lshr X, C1), C2 --> lshr X, C1 - C2
526 return NewInnerShift(InnerShAmt - OuterShAmt);
529 /// When canEvaluateShifted() returns true for an expression, this function
530 /// inserts the new computation that produces the shifted value.
531 static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
532 InstCombiner &IC, const DataLayout &DL) {
533 // We can always evaluate constants shifted.
534 if (Constant *C = dyn_cast<Constant>(V)) {
535 if (isLeftShift)
536 V = IC.Builder.CreateShl(C, NumBits);
537 else
538 V = IC.Builder.CreateLShr(C, NumBits);
539 // If we got a constantexpr back, try to simplify it with TD info.
540 if (auto *C = dyn_cast<Constant>(V))
541 if (auto *FoldedC =
542 ConstantFoldConstant(C, DL, &IC.getTargetLibraryInfo()))
543 V = FoldedC;
544 return V;
547 Instruction *I = cast<Instruction>(V);
548 IC.Worklist.Add(I);
550 switch (I->getOpcode()) {
551 default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
552 case Instruction::And:
553 case Instruction::Or:
554 case Instruction::Xor:
555 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
556 I->setOperand(
557 0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL));
558 I->setOperand(
559 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
560 return I;
562 case Instruction::Shl:
563 case Instruction::LShr:
564 return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift,
565 IC.Builder);
567 case Instruction::Select:
568 I->setOperand(
569 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
570 I->setOperand(
571 2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL));
572 return I;
573 case Instruction::PHI: {
574 // We can change a phi if we can change all operands. Note that we never
575 // get into trouble with cyclic PHIs here because we only consider
576 // instructions with a single use.
577 PHINode *PN = cast<PHINode>(I);
578 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
579 PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits,
580 isLeftShift, IC, DL));
581 return PN;
586 // If this is a bitwise operator or add with a constant RHS we might be able
587 // to pull it through a shift.
588 static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift,
589 BinaryOperator *BO) {
590 switch (BO->getOpcode()) {
591 default:
592 return false; // Do not perform transform!
593 case Instruction::Add:
594 return Shift.getOpcode() == Instruction::Shl;
595 case Instruction::Or:
596 case Instruction::Xor:
597 case Instruction::And:
598 return true;
602 Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, Constant *Op1,
603 BinaryOperator &I) {
604 bool isLeftShift = I.getOpcode() == Instruction::Shl;
606 const APInt *Op1C;
607 if (!match(Op1, m_APInt(Op1C)))
608 return nullptr;
610 // See if we can propagate this shift into the input, this covers the trivial
611 // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
612 if (I.getOpcode() != Instruction::AShr &&
613 canEvaluateShifted(Op0, Op1C->getZExtValue(), isLeftShift, *this, &I)) {
614 LLVM_DEBUG(
615 dbgs() << "ICE: GetShiftedValue propagating shift through expression"
616 " to eliminate shift:\n IN: "
617 << *Op0 << "\n SH: " << I << "\n");
619 return replaceInstUsesWith(
620 I, getShiftedValue(Op0, Op1C->getZExtValue(), isLeftShift, *this, DL));
623 // See if we can simplify any instructions used by the instruction whose sole
624 // purpose is to compute bits we don't care about.
625 unsigned TypeBits = Op0->getType()->getScalarSizeInBits();
627 assert(!Op1C->uge(TypeBits) &&
628 "Shift over the type width should have been removed already");
630 if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I))
631 return FoldedShift;
633 // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
634 if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
635 Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
636 // If 'shift2' is an ashr, we would have to get the sign bit into a funny
637 // place. Don't try to do this transformation in this case. Also, we
638 // require that the input operand is a shift-by-constant so that we have
639 // confidence that the shifts will get folded together. We could do this
640 // xform in more cases, but it is unlikely to be profitable.
641 if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
642 isa<ConstantInt>(TrOp->getOperand(1))) {
643 // Okay, we'll do this xform. Make the shift of shift.
644 Constant *ShAmt =
645 ConstantExpr::getZExt(cast<Constant>(Op1), TrOp->getType());
646 // (shift2 (shift1 & 0x00FF), c2)
647 Value *NSh = Builder.CreateBinOp(I.getOpcode(), TrOp, ShAmt, I.getName());
649 // For logical shifts, the truncation has the effect of making the high
650 // part of the register be zeros. Emulate this by inserting an AND to
651 // clear the top bits as needed. This 'and' will usually be zapped by
652 // other xforms later if dead.
653 unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
654 unsigned DstSize = TI->getType()->getScalarSizeInBits();
655 APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
657 // The mask we constructed says what the trunc would do if occurring
658 // between the shifts. We want to know the effect *after* the second
659 // shift. We know that it is a logical shift by a constant, so adjust the
660 // mask as appropriate.
661 if (I.getOpcode() == Instruction::Shl)
662 MaskV <<= Op1C->getZExtValue();
663 else {
664 assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
665 MaskV.lshrInPlace(Op1C->getZExtValue());
668 // shift1 & 0x00FF
669 Value *And = Builder.CreateAnd(NSh,
670 ConstantInt::get(I.getContext(), MaskV),
671 TI->getName());
673 // Return the value truncated to the interesting size.
674 return new TruncInst(And, I.getType());
678 if (Op0->hasOneUse()) {
679 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
680 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
681 Value *V1, *V2;
682 ConstantInt *CC;
683 switch (Op0BO->getOpcode()) {
684 default: break;
685 case Instruction::Add:
686 case Instruction::And:
687 case Instruction::Or:
688 case Instruction::Xor: {
689 // These operators commute.
690 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
691 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
692 match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
693 m_Specific(Op1)))) {
694 Value *YS = // (Y << C)
695 Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
696 // (X + (Y << C))
697 Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), YS, V1,
698 Op0BO->getOperand(1)->getName());
699 unsigned Op1Val = Op1C->getLimitedValue(TypeBits);
701 APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
702 Constant *Mask = ConstantInt::get(I.getContext(), Bits);
703 if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
704 Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
705 return BinaryOperator::CreateAnd(X, Mask);
708 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
709 Value *Op0BOOp1 = Op0BO->getOperand(1);
710 if (isLeftShift && Op0BOOp1->hasOneUse() &&
711 match(Op0BOOp1,
712 m_And(m_OneUse(m_Shr(m_Value(V1), m_Specific(Op1))),
713 m_ConstantInt(CC)))) {
714 Value *YS = // (Y << C)
715 Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
716 // X & (CC << C)
717 Value *XM = Builder.CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
718 V1->getName()+".mask");
719 return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
721 LLVM_FALLTHROUGH;
724 case Instruction::Sub: {
725 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
726 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
727 match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
728 m_Specific(Op1)))) {
729 Value *YS = // (Y << C)
730 Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
731 // (X + (Y << C))
732 Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), V1, YS,
733 Op0BO->getOperand(0)->getName());
734 unsigned Op1Val = Op1C->getLimitedValue(TypeBits);
736 APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
737 Constant *Mask = ConstantInt::get(I.getContext(), Bits);
738 if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
739 Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
740 return BinaryOperator::CreateAnd(X, Mask);
743 // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
744 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
745 match(Op0BO->getOperand(0),
746 m_And(m_OneUse(m_Shr(m_Value(V1), m_Value(V2))),
747 m_ConstantInt(CC))) && V2 == Op1) {
748 Value *YS = // (Y << C)
749 Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
750 // X & (CC << C)
751 Value *XM = Builder.CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
752 V1->getName()+".mask");
754 return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
757 break;
762 // If the operand is a bitwise operator with a constant RHS, and the
763 // shift is the only use, we can pull it out of the shift.
764 const APInt *Op0C;
765 if (match(Op0BO->getOperand(1), m_APInt(Op0C))) {
766 if (canShiftBinOpWithConstantRHS(I, Op0BO)) {
767 Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
768 cast<Constant>(Op0BO->getOperand(1)), Op1);
770 Value *NewShift =
771 Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
772 NewShift->takeName(Op0BO);
774 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
775 NewRHS);
779 // If the operand is a subtract with a constant LHS, and the shift
780 // is the only use, we can pull it out of the shift.
781 // This folds (shl (sub C1, X), C2) -> (sub (C1 << C2), (shl X, C2))
782 if (isLeftShift && Op0BO->getOpcode() == Instruction::Sub &&
783 match(Op0BO->getOperand(0), m_APInt(Op0C))) {
784 Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
785 cast<Constant>(Op0BO->getOperand(0)), Op1);
787 Value *NewShift = Builder.CreateShl(Op0BO->getOperand(1), Op1);
788 NewShift->takeName(Op0BO);
790 return BinaryOperator::CreateSub(NewRHS, NewShift);
794 // If we have a select that conditionally executes some binary operator,
795 // see if we can pull it the select and operator through the shift.
797 // For example, turning:
798 // shl (select C, (add X, C1), X), C2
799 // Into:
800 // Y = shl X, C2
801 // select C, (add Y, C1 << C2), Y
802 Value *Cond;
803 BinaryOperator *TBO;
804 Value *FalseVal;
805 if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)),
806 m_Value(FalseVal)))) {
807 const APInt *C;
808 if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal &&
809 match(TBO->getOperand(1), m_APInt(C)) &&
810 canShiftBinOpWithConstantRHS(I, TBO)) {
811 Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
812 cast<Constant>(TBO->getOperand(1)), Op1);
814 Value *NewShift =
815 Builder.CreateBinOp(I.getOpcode(), FalseVal, Op1);
816 Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift,
817 NewRHS);
818 return SelectInst::Create(Cond, NewOp, NewShift);
822 BinaryOperator *FBO;
823 Value *TrueVal;
824 if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal),
825 m_OneUse(m_BinOp(FBO))))) {
826 const APInt *C;
827 if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal &&
828 match(FBO->getOperand(1), m_APInt(C)) &&
829 canShiftBinOpWithConstantRHS(I, FBO)) {
830 Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
831 cast<Constant>(FBO->getOperand(1)), Op1);
833 Value *NewShift =
834 Builder.CreateBinOp(I.getOpcode(), TrueVal, Op1);
835 Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift,
836 NewRHS);
837 return SelectInst::Create(Cond, NewShift, NewOp);
842 return nullptr;
845 Instruction *InstCombiner::visitShl(BinaryOperator &I) {
846 const SimplifyQuery Q = SQ.getWithInstruction(&I);
848 if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1),
849 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), Q))
850 return replaceInstUsesWith(I, V);
852 if (Instruction *X = foldVectorBinop(I))
853 return X;
855 if (Instruction *V = commonShiftTransforms(I))
856 return V;
858 if (Instruction *V = dropRedundantMaskingOfLeftShiftInput(&I, Q, Builder))
859 return V;
861 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
862 Type *Ty = I.getType();
863 unsigned BitWidth = Ty->getScalarSizeInBits();
865 const APInt *ShAmtAPInt;
866 if (match(Op1, m_APInt(ShAmtAPInt))) {
867 unsigned ShAmt = ShAmtAPInt->getZExtValue();
869 // shl (zext X), ShAmt --> zext (shl X, ShAmt)
870 // This is only valid if X would have zeros shifted out.
871 Value *X;
872 if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
873 unsigned SrcWidth = X->getType()->getScalarSizeInBits();
874 if (ShAmt < SrcWidth &&
875 MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmt), 0, &I))
876 return new ZExtInst(Builder.CreateShl(X, ShAmt), Ty);
879 // (X >> C) << C --> X & (-1 << C)
880 if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) {
881 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt));
882 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
885 // FIXME: we do not yet transform non-exact shr's. The backend (DAGCombine)
886 // needs a few fixes for the rotate pattern recognition first.
887 const APInt *ShOp1;
888 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(ShOp1))))) {
889 unsigned ShrAmt = ShOp1->getZExtValue();
890 if (ShrAmt < ShAmt) {
891 // If C1 < C2: (X >>?,exact C1) << C2 --> X << (C2 - C1)
892 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShrAmt);
893 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
894 NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
895 NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
896 return NewShl;
898 if (ShrAmt > ShAmt) {
899 // If C1 > C2: (X >>?exact C1) << C2 --> X >>?exact (C1 - C2)
900 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmt);
901 auto *NewShr = BinaryOperator::Create(
902 cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff);
903 NewShr->setIsExact(true);
904 return NewShr;
908 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1)))) {
909 unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
910 // Oversized shifts are simplified to zero in InstSimplify.
911 if (AmtSum < BitWidth)
912 // (X << C1) << C2 --> X << (C1 + C2)
913 return BinaryOperator::CreateShl(X, ConstantInt::get(Ty, AmtSum));
916 // If the shifted-out value is known-zero, then this is a NUW shift.
917 if (!I.hasNoUnsignedWrap() &&
918 MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, ShAmt), 0, &I)) {
919 I.setHasNoUnsignedWrap();
920 return &I;
923 // If the shifted-out value is all signbits, then this is a NSW shift.
924 if (!I.hasNoSignedWrap() && ComputeNumSignBits(Op0, 0, &I) > ShAmt) {
925 I.setHasNoSignedWrap();
926 return &I;
930 // Transform (x >> y) << y to x & (-1 << y)
931 // Valid for any type of right-shift.
932 Value *X;
933 if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
934 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
935 Value *Mask = Builder.CreateShl(AllOnes, Op1);
936 return BinaryOperator::CreateAnd(Mask, X);
939 Constant *C1;
940 if (match(Op1, m_Constant(C1))) {
941 Constant *C2;
942 Value *X;
943 // (C2 << X) << C1 --> (C2 << C1) << X
944 if (match(Op0, m_OneUse(m_Shl(m_Constant(C2), m_Value(X)))))
945 return BinaryOperator::CreateShl(ConstantExpr::getShl(C2, C1), X);
947 // (X * C2) << C1 --> X * (C2 << C1)
948 if (match(Op0, m_Mul(m_Value(X), m_Constant(C2))))
949 return BinaryOperator::CreateMul(X, ConstantExpr::getShl(C2, C1));
951 // shl (zext i1 X), C1 --> select (X, 1 << C1, 0)
952 if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
953 auto *NewC = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C1);
954 return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty));
958 // (1 << (C - x)) -> ((1 << C) >> x) if C is bitwidth - 1
959 if (match(Op0, m_One()) &&
960 match(Op1, m_Sub(m_SpecificInt(BitWidth - 1), m_Value(X))))
961 return BinaryOperator::CreateLShr(
962 ConstantInt::get(Ty, APInt::getSignMask(BitWidth)), X);
964 return nullptr;
967 Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
968 if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
969 SQ.getWithInstruction(&I)))
970 return replaceInstUsesWith(I, V);
972 if (Instruction *X = foldVectorBinop(I))
973 return X;
975 if (Instruction *R = commonShiftTransforms(I))
976 return R;
978 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
979 Type *Ty = I.getType();
980 const APInt *ShAmtAPInt;
981 if (match(Op1, m_APInt(ShAmtAPInt))) {
982 unsigned ShAmt = ShAmtAPInt->getZExtValue();
983 unsigned BitWidth = Ty->getScalarSizeInBits();
984 auto *II = dyn_cast<IntrinsicInst>(Op0);
985 if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmt &&
986 (II->getIntrinsicID() == Intrinsic::ctlz ||
987 II->getIntrinsicID() == Intrinsic::cttz ||
988 II->getIntrinsicID() == Intrinsic::ctpop)) {
989 // ctlz.i32(x)>>5 --> zext(x == 0)
990 // cttz.i32(x)>>5 --> zext(x == 0)
991 // ctpop.i32(x)>>5 --> zext(x == -1)
992 bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop;
993 Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0);
994 Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS);
995 return new ZExtInst(Cmp, Ty);
998 Value *X;
999 const APInt *ShOp1;
1000 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1))) && ShOp1->ult(BitWidth)) {
1001 if (ShOp1->ult(ShAmt)) {
1002 unsigned ShlAmt = ShOp1->getZExtValue();
1003 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
1004 if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
1005 // (X <<nuw C1) >>u C2 --> X >>u (C2 - C1)
1006 auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff);
1007 NewLShr->setIsExact(I.isExact());
1008 return NewLShr;
1010 // (X << C1) >>u C2 --> (X >>u (C2 - C1)) & (-1 >> C2)
1011 Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact());
1012 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
1013 return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask));
1015 if (ShOp1->ugt(ShAmt)) {
1016 unsigned ShlAmt = ShOp1->getZExtValue();
1017 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
1018 if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
1019 // (X <<nuw C1) >>u C2 --> X <<nuw (C1 - C2)
1020 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
1021 NewShl->setHasNoUnsignedWrap(true);
1022 return NewShl;
1024 // (X << C1) >>u C2 --> X << (C1 - C2) & (-1 >> C2)
1025 Value *NewShl = Builder.CreateShl(X, ShiftDiff);
1026 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
1027 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
1029 assert(*ShOp1 == ShAmt);
1030 // (X << C) >>u C --> X & (-1 >>u C)
1031 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
1032 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
1035 if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) &&
1036 (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
1037 assert(ShAmt < X->getType()->getScalarSizeInBits() &&
1038 "Big shift not simplified to zero?");
1039 // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN
1040 Value *NewLShr = Builder.CreateLShr(X, ShAmt);
1041 return new ZExtInst(NewLShr, Ty);
1044 if (match(Op0, m_SExt(m_Value(X))) &&
1045 (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
1046 // Are we moving the sign bit to the low bit and widening with high zeros?
1047 unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits();
1048 if (ShAmt == BitWidth - 1) {
1049 // lshr (sext i1 X to iN), N-1 --> zext X to iN
1050 if (SrcTyBitWidth == 1)
1051 return new ZExtInst(X, Ty);
1053 // lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN
1054 if (Op0->hasOneUse()) {
1055 Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1);
1056 return new ZExtInst(NewLShr, Ty);
1060 // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN
1061 if (ShAmt == BitWidth - SrcTyBitWidth && Op0->hasOneUse()) {
1062 // The new shift amount can't be more than the narrow source type.
1063 unsigned NewShAmt = std::min(ShAmt, SrcTyBitWidth - 1);
1064 Value *AShr = Builder.CreateAShr(X, NewShAmt);
1065 return new ZExtInst(AShr, Ty);
1069 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShOp1)))) {
1070 unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
1071 // Oversized shifts are simplified to zero in InstSimplify.
1072 if (AmtSum < BitWidth)
1073 // (X >>u C1) >>u C2 --> X >>u (C1 + C2)
1074 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
1077 // If the shifted-out value is known-zero, then this is an exact shift.
1078 if (!I.isExact() &&
1079 MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
1080 I.setIsExact();
1081 return &I;
1085 // Transform (x << y) >> y to x & (-1 >> y)
1086 Value *X;
1087 if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) {
1088 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
1089 Value *Mask = Builder.CreateLShr(AllOnes, Op1);
1090 return BinaryOperator::CreateAnd(Mask, X);
1093 return nullptr;
1096 Instruction *
1097 InstCombiner::foldVariableSignZeroExtensionOfVariableHighBitExtract(
1098 BinaryOperator &OldAShr) {
1099 assert(OldAShr.getOpcode() == Instruction::AShr &&
1100 "Must be called with arithmetic right-shift instruction only.");
1102 // Check that constant C is a splat of the element-wise bitwidth of V.
1103 auto BitWidthSplat = [](Constant *C, Value *V) {
1104 return match(
1105 C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1106 APInt(C->getType()->getScalarSizeInBits(),
1107 V->getType()->getScalarSizeInBits())));
1110 // It should look like variable-length sign-extension on the outside:
1111 // (Val << (bitwidth(Val)-Nbits)) a>> (bitwidth(Val)-Nbits)
1112 Value *NBits;
1113 Instruction *MaybeTrunc;
1114 Constant *C1, *C2;
1115 if (!match(&OldAShr,
1116 m_AShr(m_Shl(m_Instruction(MaybeTrunc),
1117 m_ZExtOrSelf(m_Sub(m_Constant(C1),
1118 m_ZExtOrSelf(m_Value(NBits))))),
1119 m_ZExtOrSelf(m_Sub(m_Constant(C2),
1120 m_ZExtOrSelf(m_Deferred(NBits)))))) ||
1121 !BitWidthSplat(C1, &OldAShr) || !BitWidthSplat(C2, &OldAShr))
1122 return nullptr;
1124 // There may or may not be a truncation after outer two shifts.
1125 Instruction *HighBitExtract;
1126 match(MaybeTrunc, m_TruncOrSelf(m_Instruction(HighBitExtract)));
1127 bool HadTrunc = MaybeTrunc != HighBitExtract;
1129 // And finally, the innermost part of the pattern must be a right-shift.
1130 Value *X, *NumLowBitsToSkip;
1131 if (!match(HighBitExtract, m_Shr(m_Value(X), m_Value(NumLowBitsToSkip))))
1132 return nullptr;
1134 // Said right-shift must extract high NBits bits - C0 must be it's bitwidth.
1135 Constant *C0;
1136 if (!match(NumLowBitsToSkip,
1137 m_ZExtOrSelf(
1138 m_Sub(m_Constant(C0), m_ZExtOrSelf(m_Specific(NBits))))) ||
1139 !BitWidthSplat(C0, HighBitExtract))
1140 return nullptr;
1142 // Since the NBits is identical for all shifts, if the outermost and
1143 // innermost shifts are identical, then outermost shifts are redundant.
1144 // If we had truncation, do keep it though.
1145 if (HighBitExtract->getOpcode() == OldAShr.getOpcode())
1146 return replaceInstUsesWith(OldAShr, MaybeTrunc);
1148 // Else, if there was a truncation, then we need to ensure that one
1149 // instruction will go away.
1150 if (HadTrunc && !match(&OldAShr, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
1151 return nullptr;
1153 // Finally, bypass two innermost shifts, and perform the outermost shift on
1154 // the operands of the innermost shift.
1155 Instruction *NewAShr =
1156 BinaryOperator::Create(OldAShr.getOpcode(), X, NumLowBitsToSkip);
1157 NewAShr->copyIRFlags(HighBitExtract); // We can preserve 'exact'-ness.
1158 if (!HadTrunc)
1159 return NewAShr;
1161 Builder.Insert(NewAShr);
1162 return TruncInst::CreateTruncOrBitCast(NewAShr, OldAShr.getType());
1165 Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
1166 if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1167 SQ.getWithInstruction(&I)))
1168 return replaceInstUsesWith(I, V);
1170 if (Instruction *X = foldVectorBinop(I))
1171 return X;
1173 if (Instruction *R = commonShiftTransforms(I))
1174 return R;
1176 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1177 Type *Ty = I.getType();
1178 unsigned BitWidth = Ty->getScalarSizeInBits();
1179 const APInt *ShAmtAPInt;
1180 if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) {
1181 unsigned ShAmt = ShAmtAPInt->getZExtValue();
1183 // If the shift amount equals the difference in width of the destination
1184 // and source scalar types:
1185 // ashr (shl (zext X), C), C --> sext X
1186 Value *X;
1187 if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) &&
1188 ShAmt == BitWidth - X->getType()->getScalarSizeInBits())
1189 return new SExtInst(X, Ty);
1191 // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However,
1192 // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
1193 const APInt *ShOp1;
1194 if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) &&
1195 ShOp1->ult(BitWidth)) {
1196 unsigned ShlAmt = ShOp1->getZExtValue();
1197 if (ShlAmt < ShAmt) {
1198 // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1)
1199 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
1200 auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff);
1201 NewAShr->setIsExact(I.isExact());
1202 return NewAShr;
1204 if (ShlAmt > ShAmt) {
1205 // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2)
1206 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
1207 auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff);
1208 NewShl->setHasNoSignedWrap(true);
1209 return NewShl;
1213 if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) &&
1214 ShOp1->ult(BitWidth)) {
1215 unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
1216 // Oversized arithmetic shifts replicate the sign bit.
1217 AmtSum = std::min(AmtSum, BitWidth - 1);
1218 // (X >>s C1) >>s C2 --> X >>s (C1 + C2)
1219 return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
1222 if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) &&
1223 (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) {
1224 // ashr (sext X), C --> sext (ashr X, C')
1225 Type *SrcTy = X->getType();
1226 ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1);
1227 Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt));
1228 return new SExtInst(NewSh, Ty);
1231 // If the shifted-out value is known-zero, then this is an exact shift.
1232 if (!I.isExact() &&
1233 MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
1234 I.setIsExact();
1235 return &I;
1239 if (Instruction *R = foldVariableSignZeroExtensionOfVariableHighBitExtract(I))
1240 return R;
1242 // See if we can turn a signed shr into an unsigned shr.
1243 if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I))
1244 return BinaryOperator::CreateLShr(Op0, Op1);
1246 return nullptr;