[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / Transforms / Instrumentation / AddressSanitizer.cpp
blobd92ee11c2e1ab50301c643485bdac72b784fad3d
1 //===- AddressSanitizer.cpp - memory error detector -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of AddressSanitizer, an address sanity checker.
10 // Details of the algorithm:
11 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/BinaryFormat/MachO.h"
30 #include "llvm/IR/Argument.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/Comdat.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DIBuilder.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DebugInfoMetadata.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/GlobalAlias.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstVisitor.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/Intrinsics.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/MDBuilder.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Use.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/MC/MCSectionMachO.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/ScopedPrinter.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Transforms/Instrumentation.h"
72 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
73 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
74 #include "llvm/Transforms/Utils/Local.h"
75 #include "llvm/Transforms/Utils/ModuleUtils.h"
76 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
77 #include <algorithm>
78 #include <cassert>
79 #include <cstddef>
80 #include <cstdint>
81 #include <iomanip>
82 #include <limits>
83 #include <memory>
84 #include <sstream>
85 #include <string>
86 #include <tuple>
88 using namespace llvm;
90 #define DEBUG_TYPE "asan"
92 static const uint64_t kDefaultShadowScale = 3;
93 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
94 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
95 static const uint64_t kDynamicShadowSentinel =
96 std::numeric_limits<uint64_t>::max();
97 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G.
98 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL;
99 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000;
100 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44;
101 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52;
102 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
103 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
104 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
105 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
106 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
107 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30;
108 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46;
109 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000;
110 static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40;
111 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
112 static const uint64_t kEmscriptenShadowOffset = 0;
114 static const uint64_t kMyriadShadowScale = 5;
115 static const uint64_t kMyriadMemoryOffset32 = 0x80000000ULL;
116 static const uint64_t kMyriadMemorySize32 = 0x20000000ULL;
117 static const uint64_t kMyriadTagShift = 29;
118 static const uint64_t kMyriadDDRTag = 4;
119 static const uint64_t kMyriadCacheBitMask32 = 0x40000000ULL;
121 // The shadow memory space is dynamically allocated.
122 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel;
124 static const size_t kMinStackMallocSize = 1 << 6; // 64B
125 static const size_t kMaxStackMallocSize = 1 << 16; // 64K
126 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
127 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
129 static const char *const kAsanModuleCtorName = "asan.module_ctor";
130 static const char *const kAsanModuleDtorName = "asan.module_dtor";
131 static const uint64_t kAsanCtorAndDtorPriority = 1;
132 // On Emscripten, the system needs more than one priorities for constructors.
133 static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50;
134 static const char *const kAsanReportErrorTemplate = "__asan_report_";
135 static const char *const kAsanRegisterGlobalsName = "__asan_register_globals";
136 static const char *const kAsanUnregisterGlobalsName =
137 "__asan_unregister_globals";
138 static const char *const kAsanRegisterImageGlobalsName =
139 "__asan_register_image_globals";
140 static const char *const kAsanUnregisterImageGlobalsName =
141 "__asan_unregister_image_globals";
142 static const char *const kAsanRegisterElfGlobalsName =
143 "__asan_register_elf_globals";
144 static const char *const kAsanUnregisterElfGlobalsName =
145 "__asan_unregister_elf_globals";
146 static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init";
147 static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init";
148 static const char *const kAsanInitName = "__asan_init";
149 static const char *const kAsanVersionCheckNamePrefix =
150 "__asan_version_mismatch_check_v";
151 static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp";
152 static const char *const kAsanPtrSub = "__sanitizer_ptr_sub";
153 static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return";
154 static const int kMaxAsanStackMallocSizeClass = 10;
155 static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_";
156 static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_";
157 static const char *const kAsanGenPrefix = "___asan_gen_";
158 static const char *const kODRGenPrefix = "__odr_asan_gen_";
159 static const char *const kSanCovGenPrefix = "__sancov_gen_";
160 static const char *const kAsanSetShadowPrefix = "__asan_set_shadow_";
161 static const char *const kAsanPoisonStackMemoryName =
162 "__asan_poison_stack_memory";
163 static const char *const kAsanUnpoisonStackMemoryName =
164 "__asan_unpoison_stack_memory";
166 // ASan version script has __asan_* wildcard. Triple underscore prevents a
167 // linker (gold) warning about attempting to export a local symbol.
168 static const char *const kAsanGlobalsRegisteredFlagName =
169 "___asan_globals_registered";
171 static const char *const kAsanOptionDetectUseAfterReturn =
172 "__asan_option_detect_stack_use_after_return";
174 static const char *const kAsanShadowMemoryDynamicAddress =
175 "__asan_shadow_memory_dynamic_address";
177 static const char *const kAsanAllocaPoison = "__asan_alloca_poison";
178 static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison";
180 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
181 static const size_t kNumberOfAccessSizes = 5;
183 static const unsigned kAllocaRzSize = 32;
185 // Command-line flags.
187 static cl::opt<bool> ClEnableKasan(
188 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
189 cl::Hidden, cl::init(false));
191 static cl::opt<bool> ClRecover(
192 "asan-recover",
193 cl::desc("Enable recovery mode (continue-after-error)."),
194 cl::Hidden, cl::init(false));
196 static cl::opt<bool> ClInsertVersionCheck(
197 "asan-guard-against-version-mismatch",
198 cl::desc("Guard against compiler/runtime version mismatch."),
199 cl::Hidden, cl::init(true));
201 // This flag may need to be replaced with -f[no-]asan-reads.
202 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
203 cl::desc("instrument read instructions"),
204 cl::Hidden, cl::init(true));
206 static cl::opt<bool> ClInstrumentWrites(
207 "asan-instrument-writes", cl::desc("instrument write instructions"),
208 cl::Hidden, cl::init(true));
210 static cl::opt<bool> ClInstrumentAtomics(
211 "asan-instrument-atomics",
212 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
213 cl::init(true));
215 static cl::opt<bool> ClAlwaysSlowPath(
216 "asan-always-slow-path",
217 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden,
218 cl::init(false));
220 static cl::opt<bool> ClForceDynamicShadow(
221 "asan-force-dynamic-shadow",
222 cl::desc("Load shadow address into a local variable for each function"),
223 cl::Hidden, cl::init(false));
225 static cl::opt<bool>
226 ClWithIfunc("asan-with-ifunc",
227 cl::desc("Access dynamic shadow through an ifunc global on "
228 "platforms that support this"),
229 cl::Hidden, cl::init(true));
231 static cl::opt<bool> ClWithIfuncSuppressRemat(
232 "asan-with-ifunc-suppress-remat",
233 cl::desc("Suppress rematerialization of dynamic shadow address by passing "
234 "it through inline asm in prologue."),
235 cl::Hidden, cl::init(true));
237 // This flag limits the number of instructions to be instrumented
238 // in any given BB. Normally, this should be set to unlimited (INT_MAX),
239 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
240 // set it to 10000.
241 static cl::opt<int> ClMaxInsnsToInstrumentPerBB(
242 "asan-max-ins-per-bb", cl::init(10000),
243 cl::desc("maximal number of instructions to instrument in any given BB"),
244 cl::Hidden);
246 // This flag may need to be replaced with -f[no]asan-stack.
247 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
248 cl::Hidden, cl::init(true));
249 static cl::opt<uint32_t> ClMaxInlinePoisoningSize(
250 "asan-max-inline-poisoning-size",
251 cl::desc(
252 "Inline shadow poisoning for blocks up to the given size in bytes."),
253 cl::Hidden, cl::init(64));
255 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
256 cl::desc("Check stack-use-after-return"),
257 cl::Hidden, cl::init(true));
259 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args",
260 cl::desc("Create redzones for byval "
261 "arguments (extra copy "
262 "required)"), cl::Hidden,
263 cl::init(true));
265 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope",
266 cl::desc("Check stack-use-after-scope"),
267 cl::Hidden, cl::init(false));
269 // This flag may need to be replaced with -f[no]asan-globals.
270 static cl::opt<bool> ClGlobals("asan-globals",
271 cl::desc("Handle global objects"), cl::Hidden,
272 cl::init(true));
274 static cl::opt<bool> ClInitializers("asan-initialization-order",
275 cl::desc("Handle C++ initializer order"),
276 cl::Hidden, cl::init(true));
278 static cl::opt<bool> ClInvalidPointerPairs(
279 "asan-detect-invalid-pointer-pair",
280 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden,
281 cl::init(false));
283 static cl::opt<bool> ClInvalidPointerCmp(
284 "asan-detect-invalid-pointer-cmp",
285 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden,
286 cl::init(false));
288 static cl::opt<bool> ClInvalidPointerSub(
289 "asan-detect-invalid-pointer-sub",
290 cl::desc("Instrument - operations with pointer operands"), cl::Hidden,
291 cl::init(false));
293 static cl::opt<unsigned> ClRealignStack(
294 "asan-realign-stack",
295 cl::desc("Realign stack to the value of this flag (power of two)"),
296 cl::Hidden, cl::init(32));
298 static cl::opt<int> ClInstrumentationWithCallsThreshold(
299 "asan-instrumentation-with-call-threshold",
300 cl::desc(
301 "If the function being instrumented contains more than "
302 "this number of memory accesses, use callbacks instead of "
303 "inline checks (-1 means never use callbacks)."),
304 cl::Hidden, cl::init(7000));
306 static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
307 "asan-memory-access-callback-prefix",
308 cl::desc("Prefix for memory access callbacks"), cl::Hidden,
309 cl::init("__asan_"));
311 static cl::opt<bool>
312 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas",
313 cl::desc("instrument dynamic allocas"),
314 cl::Hidden, cl::init(true));
316 static cl::opt<bool> ClSkipPromotableAllocas(
317 "asan-skip-promotable-allocas",
318 cl::desc("Do not instrument promotable allocas"), cl::Hidden,
319 cl::init(true));
321 // These flags allow to change the shadow mapping.
322 // The shadow mapping looks like
323 // Shadow = (Mem >> scale) + offset
325 static cl::opt<int> ClMappingScale("asan-mapping-scale",
326 cl::desc("scale of asan shadow mapping"),
327 cl::Hidden, cl::init(0));
329 static cl::opt<uint64_t>
330 ClMappingOffset("asan-mapping-offset",
331 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"),
332 cl::Hidden, cl::init(0));
334 // Optimization flags. Not user visible, used mostly for testing
335 // and benchmarking the tool.
337 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
338 cl::Hidden, cl::init(true));
340 static cl::opt<bool> ClOptSameTemp(
341 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
342 cl::Hidden, cl::init(true));
344 static cl::opt<bool> ClOptGlobals("asan-opt-globals",
345 cl::desc("Don't instrument scalar globals"),
346 cl::Hidden, cl::init(true));
348 static cl::opt<bool> ClOptStack(
349 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
350 cl::Hidden, cl::init(false));
352 static cl::opt<bool> ClDynamicAllocaStack(
353 "asan-stack-dynamic-alloca",
354 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
355 cl::init(true));
357 static cl::opt<uint32_t> ClForceExperiment(
358 "asan-force-experiment",
359 cl::desc("Force optimization experiment (for testing)"), cl::Hidden,
360 cl::init(0));
362 static cl::opt<bool>
363 ClUsePrivateAlias("asan-use-private-alias",
364 cl::desc("Use private aliases for global variables"),
365 cl::Hidden, cl::init(false));
367 static cl::opt<bool>
368 ClUseOdrIndicator("asan-use-odr-indicator",
369 cl::desc("Use odr indicators to improve ODR reporting"),
370 cl::Hidden, cl::init(false));
372 static cl::opt<bool>
373 ClUseGlobalsGC("asan-globals-live-support",
374 cl::desc("Use linker features to support dead "
375 "code stripping of globals"),
376 cl::Hidden, cl::init(true));
378 // This is on by default even though there is a bug in gold:
379 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002
380 static cl::opt<bool>
381 ClWithComdat("asan-with-comdat",
382 cl::desc("Place ASan constructors in comdat sections"),
383 cl::Hidden, cl::init(true));
385 // Debug flags.
387 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
388 cl::init(0));
390 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
391 cl::Hidden, cl::init(0));
393 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden,
394 cl::desc("Debug func"));
396 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
397 cl::Hidden, cl::init(-1));
399 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"),
400 cl::Hidden, cl::init(-1));
402 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
403 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
404 STATISTIC(NumOptimizedAccessesToGlobalVar,
405 "Number of optimized accesses to global vars");
406 STATISTIC(NumOptimizedAccessesToStackVar,
407 "Number of optimized accesses to stack vars");
409 namespace {
411 /// This struct defines the shadow mapping using the rule:
412 /// shadow = (mem >> Scale) ADD-or-OR Offset.
413 /// If InGlobal is true, then
414 /// extern char __asan_shadow[];
415 /// shadow = (mem >> Scale) + &__asan_shadow
416 struct ShadowMapping {
417 int Scale;
418 uint64_t Offset;
419 bool OrShadowOffset;
420 bool InGlobal;
423 } // end anonymous namespace
425 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize,
426 bool IsKasan) {
427 bool IsAndroid = TargetTriple.isAndroid();
428 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS();
429 bool IsFreeBSD = TargetTriple.isOSFreeBSD();
430 bool IsNetBSD = TargetTriple.isOSNetBSD();
431 bool IsPS4CPU = TargetTriple.isPS4CPU();
432 bool IsLinux = TargetTriple.isOSLinux();
433 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 ||
434 TargetTriple.getArch() == Triple::ppc64le;
435 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz;
436 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
437 bool IsMIPS32 = TargetTriple.isMIPS32();
438 bool IsMIPS64 = TargetTriple.isMIPS64();
439 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb();
440 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64;
441 bool IsWindows = TargetTriple.isOSWindows();
442 bool IsFuchsia = TargetTriple.isOSFuchsia();
443 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad;
444 bool IsEmscripten = TargetTriple.isOSEmscripten();
446 ShadowMapping Mapping;
448 Mapping.Scale = IsMyriad ? kMyriadShadowScale : kDefaultShadowScale;
449 if (ClMappingScale.getNumOccurrences() > 0) {
450 Mapping.Scale = ClMappingScale;
453 if (LongSize == 32) {
454 if (IsAndroid)
455 Mapping.Offset = kDynamicShadowSentinel;
456 else if (IsMIPS32)
457 Mapping.Offset = kMIPS32_ShadowOffset32;
458 else if (IsFreeBSD)
459 Mapping.Offset = kFreeBSD_ShadowOffset32;
460 else if (IsNetBSD)
461 Mapping.Offset = kNetBSD_ShadowOffset32;
462 else if (IsIOS)
463 Mapping.Offset = kDynamicShadowSentinel;
464 else if (IsWindows)
465 Mapping.Offset = kWindowsShadowOffset32;
466 else if (IsEmscripten)
467 Mapping.Offset = kEmscriptenShadowOffset;
468 else if (IsMyriad) {
469 uint64_t ShadowOffset = (kMyriadMemoryOffset32 + kMyriadMemorySize32 -
470 (kMyriadMemorySize32 >> Mapping.Scale));
471 Mapping.Offset = ShadowOffset - (kMyriadMemoryOffset32 >> Mapping.Scale);
473 else
474 Mapping.Offset = kDefaultShadowOffset32;
475 } else { // LongSize == 64
476 // Fuchsia is always PIE, which means that the beginning of the address
477 // space is always available.
478 if (IsFuchsia)
479 Mapping.Offset = 0;
480 else if (IsPPC64)
481 Mapping.Offset = kPPC64_ShadowOffset64;
482 else if (IsSystemZ)
483 Mapping.Offset = kSystemZ_ShadowOffset64;
484 else if (IsFreeBSD && !IsMIPS64)
485 Mapping.Offset = kFreeBSD_ShadowOffset64;
486 else if (IsNetBSD) {
487 if (IsKasan)
488 Mapping.Offset = kNetBSDKasan_ShadowOffset64;
489 else
490 Mapping.Offset = kNetBSD_ShadowOffset64;
491 } else if (IsPS4CPU)
492 Mapping.Offset = kPS4CPU_ShadowOffset64;
493 else if (IsLinux && IsX86_64) {
494 if (IsKasan)
495 Mapping.Offset = kLinuxKasan_ShadowOffset64;
496 else
497 Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
498 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
499 } else if (IsWindows && IsX86_64) {
500 Mapping.Offset = kWindowsShadowOffset64;
501 } else if (IsMIPS64)
502 Mapping.Offset = kMIPS64_ShadowOffset64;
503 else if (IsIOS)
504 Mapping.Offset = kDynamicShadowSentinel;
505 else if (IsAArch64)
506 Mapping.Offset = kAArch64_ShadowOffset64;
507 else
508 Mapping.Offset = kDefaultShadowOffset64;
511 if (ClForceDynamicShadow) {
512 Mapping.Offset = kDynamicShadowSentinel;
515 if (ClMappingOffset.getNumOccurrences() > 0) {
516 Mapping.Offset = ClMappingOffset;
519 // OR-ing shadow offset if more efficient (at least on x86) if the offset
520 // is a power of two, but on ppc64 we have to use add since the shadow
521 // offset is not necessary 1/8-th of the address space. On SystemZ,
522 // we could OR the constant in a single instruction, but it's more
523 // efficient to load it once and use indexed addressing.
524 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU &&
525 !(Mapping.Offset & (Mapping.Offset - 1)) &&
526 Mapping.Offset != kDynamicShadowSentinel;
527 bool IsAndroidWithIfuncSupport =
528 IsAndroid && !TargetTriple.isAndroidVersionLT(21);
529 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb;
531 return Mapping;
534 static size_t RedzoneSizeForScale(int MappingScale) {
535 // Redzone used for stack and globals is at least 32 bytes.
536 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
537 return std::max(32U, 1U << MappingScale);
540 static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) {
541 if (TargetTriple.isOSEmscripten()) {
542 return kAsanEmscriptenCtorAndDtorPriority;
543 } else {
544 return kAsanCtorAndDtorPriority;
548 namespace {
550 /// Module analysis for getting various metadata about the module.
551 class ASanGlobalsMetadataWrapperPass : public ModulePass {
552 public:
553 static char ID;
555 ASanGlobalsMetadataWrapperPass() : ModulePass(ID) {
556 initializeASanGlobalsMetadataWrapperPassPass(
557 *PassRegistry::getPassRegistry());
560 bool runOnModule(Module &M) override {
561 GlobalsMD = GlobalsMetadata(M);
562 return false;
565 StringRef getPassName() const override {
566 return "ASanGlobalsMetadataWrapperPass";
569 void getAnalysisUsage(AnalysisUsage &AU) const override {
570 AU.setPreservesAll();
573 GlobalsMetadata &getGlobalsMD() { return GlobalsMD; }
575 private:
576 GlobalsMetadata GlobalsMD;
579 char ASanGlobalsMetadataWrapperPass::ID = 0;
581 /// AddressSanitizer: instrument the code in module to find memory bugs.
582 struct AddressSanitizer {
583 AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD,
584 bool CompileKernel = false, bool Recover = false,
585 bool UseAfterScope = false)
586 : UseAfterScope(UseAfterScope || ClUseAfterScope), GlobalsMD(*GlobalsMD) {
587 this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover;
588 this->CompileKernel =
589 ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan : CompileKernel;
591 C = &(M.getContext());
592 LongSize = M.getDataLayout().getPointerSizeInBits();
593 IntptrTy = Type::getIntNTy(*C, LongSize);
594 TargetTriple = Triple(M.getTargetTriple());
596 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
599 uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const {
600 uint64_t ArraySize = 1;
601 if (AI.isArrayAllocation()) {
602 const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize());
603 assert(CI && "non-constant array size");
604 ArraySize = CI->getZExtValue();
606 Type *Ty = AI.getAllocatedType();
607 uint64_t SizeInBytes =
608 AI.getModule()->getDataLayout().getTypeAllocSize(Ty);
609 return SizeInBytes * ArraySize;
612 /// Check if we want (and can) handle this alloca.
613 bool isInterestingAlloca(const AllocaInst &AI);
615 /// If it is an interesting memory access, return the PointerOperand
616 /// and set IsWrite/Alignment. Otherwise return nullptr.
617 /// MaybeMask is an output parameter for the mask Value, if we're looking at a
618 /// masked load/store.
619 Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite,
620 uint64_t *TypeSize, unsigned *Alignment,
621 Value **MaybeMask = nullptr);
623 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, Instruction *I,
624 bool UseCalls, const DataLayout &DL);
625 void instrumentPointerComparisonOrSubtraction(Instruction *I);
626 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
627 Value *Addr, uint32_t TypeSize, bool IsWrite,
628 Value *SizeArgument, bool UseCalls, uint32_t Exp);
629 void instrumentUnusualSizeOrAlignment(Instruction *I,
630 Instruction *InsertBefore, Value *Addr,
631 uint32_t TypeSize, bool IsWrite,
632 Value *SizeArgument, bool UseCalls,
633 uint32_t Exp);
634 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
635 Value *ShadowValue, uint32_t TypeSize);
636 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
637 bool IsWrite, size_t AccessSizeIndex,
638 Value *SizeArgument, uint32_t Exp);
639 void instrumentMemIntrinsic(MemIntrinsic *MI);
640 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
641 bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI);
642 bool maybeInsertAsanInitAtFunctionEntry(Function &F);
643 void maybeInsertDynamicShadowAtFunctionEntry(Function &F);
644 void markEscapedLocalAllocas(Function &F);
646 private:
647 friend struct FunctionStackPoisoner;
649 void initializeCallbacks(Module &M);
651 bool LooksLikeCodeInBug11395(Instruction *I);
652 bool GlobalIsLinkerInitialized(GlobalVariable *G);
653 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr,
654 uint64_t TypeSize) const;
656 /// Helper to cleanup per-function state.
657 struct FunctionStateRAII {
658 AddressSanitizer *Pass;
660 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) {
661 assert(Pass->ProcessedAllocas.empty() &&
662 "last pass forgot to clear cache");
663 assert(!Pass->LocalDynamicShadow);
666 ~FunctionStateRAII() {
667 Pass->LocalDynamicShadow = nullptr;
668 Pass->ProcessedAllocas.clear();
672 LLVMContext *C;
673 Triple TargetTriple;
674 int LongSize;
675 bool CompileKernel;
676 bool Recover;
677 bool UseAfterScope;
678 Type *IntptrTy;
679 ShadowMapping Mapping;
680 FunctionCallee AsanHandleNoReturnFunc;
681 FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction;
682 Constant *AsanShadowGlobal;
684 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize).
685 FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes];
686 FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes];
688 // These arrays is indexed by AccessIsWrite and Experiment.
689 FunctionCallee AsanErrorCallbackSized[2][2];
690 FunctionCallee AsanMemoryAccessCallbackSized[2][2];
692 FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset;
693 InlineAsm *EmptyAsm;
694 Value *LocalDynamicShadow = nullptr;
695 const GlobalsMetadata &GlobalsMD;
696 DenseMap<const AllocaInst *, bool> ProcessedAllocas;
699 class AddressSanitizerLegacyPass : public FunctionPass {
700 public:
701 static char ID;
703 explicit AddressSanitizerLegacyPass(bool CompileKernel = false,
704 bool Recover = false,
705 bool UseAfterScope = false)
706 : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover),
707 UseAfterScope(UseAfterScope) {
708 initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry());
711 StringRef getPassName() const override {
712 return "AddressSanitizerFunctionPass";
715 void getAnalysisUsage(AnalysisUsage &AU) const override {
716 AU.addRequired<ASanGlobalsMetadataWrapperPass>();
717 AU.addRequired<TargetLibraryInfoWrapperPass>();
720 bool runOnFunction(Function &F) override {
721 GlobalsMetadata &GlobalsMD =
722 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD();
723 const TargetLibraryInfo *TLI =
724 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
725 AddressSanitizer ASan(*F.getParent(), &GlobalsMD, CompileKernel, Recover,
726 UseAfterScope);
727 return ASan.instrumentFunction(F, TLI);
730 private:
731 bool CompileKernel;
732 bool Recover;
733 bool UseAfterScope;
736 class ModuleAddressSanitizer {
737 public:
738 ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD,
739 bool CompileKernel = false, bool Recover = false,
740 bool UseGlobalsGC = true, bool UseOdrIndicator = false)
741 : GlobalsMD(*GlobalsMD), UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC),
742 // Enable aliases as they should have no downside with ODR indicators.
743 UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias),
744 UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator),
745 // Not a typo: ClWithComdat is almost completely pointless without
746 // ClUseGlobalsGC (because then it only works on modules without
747 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC;
748 // and both suffer from gold PR19002 for which UseGlobalsGC constructor
749 // argument is designed as workaround. Therefore, disable both
750 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to
751 // do globals-gc.
752 UseCtorComdat(UseGlobalsGC && ClWithComdat) {
753 this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover;
754 this->CompileKernel =
755 ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan : CompileKernel;
757 C = &(M.getContext());
758 int LongSize = M.getDataLayout().getPointerSizeInBits();
759 IntptrTy = Type::getIntNTy(*C, LongSize);
760 TargetTriple = Triple(M.getTargetTriple());
761 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
764 bool instrumentModule(Module &);
766 private:
767 void initializeCallbacks(Module &M);
769 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat);
770 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M,
771 ArrayRef<GlobalVariable *> ExtendedGlobals,
772 ArrayRef<Constant *> MetadataInitializers);
773 void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M,
774 ArrayRef<GlobalVariable *> ExtendedGlobals,
775 ArrayRef<Constant *> MetadataInitializers,
776 const std::string &UniqueModuleId);
777 void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M,
778 ArrayRef<GlobalVariable *> ExtendedGlobals,
779 ArrayRef<Constant *> MetadataInitializers);
780 void
781 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M,
782 ArrayRef<GlobalVariable *> ExtendedGlobals,
783 ArrayRef<Constant *> MetadataInitializers);
785 GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer,
786 StringRef OriginalName);
787 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata,
788 StringRef InternalSuffix);
789 IRBuilder<> CreateAsanModuleDtor(Module &M);
791 bool ShouldInstrumentGlobal(GlobalVariable *G);
792 bool ShouldUseMachOGlobalsSection() const;
793 StringRef getGlobalMetadataSection() const;
794 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
795 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
796 size_t MinRedzoneSizeForGlobal() const {
797 return RedzoneSizeForScale(Mapping.Scale);
799 int GetAsanVersion(const Module &M) const;
801 const GlobalsMetadata &GlobalsMD;
802 bool CompileKernel;
803 bool Recover;
804 bool UseGlobalsGC;
805 bool UsePrivateAlias;
806 bool UseOdrIndicator;
807 bool UseCtorComdat;
808 Type *IntptrTy;
809 LLVMContext *C;
810 Triple TargetTriple;
811 ShadowMapping Mapping;
812 FunctionCallee AsanPoisonGlobals;
813 FunctionCallee AsanUnpoisonGlobals;
814 FunctionCallee AsanRegisterGlobals;
815 FunctionCallee AsanUnregisterGlobals;
816 FunctionCallee AsanRegisterImageGlobals;
817 FunctionCallee AsanUnregisterImageGlobals;
818 FunctionCallee AsanRegisterElfGlobals;
819 FunctionCallee AsanUnregisterElfGlobals;
821 Function *AsanCtorFunction = nullptr;
822 Function *AsanDtorFunction = nullptr;
825 class ModuleAddressSanitizerLegacyPass : public ModulePass {
826 public:
827 static char ID;
829 explicit ModuleAddressSanitizerLegacyPass(bool CompileKernel = false,
830 bool Recover = false,
831 bool UseGlobalGC = true,
832 bool UseOdrIndicator = false)
833 : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover),
834 UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator) {
835 initializeModuleAddressSanitizerLegacyPassPass(
836 *PassRegistry::getPassRegistry());
839 StringRef getPassName() const override { return "ModuleAddressSanitizer"; }
841 void getAnalysisUsage(AnalysisUsage &AU) const override {
842 AU.addRequired<ASanGlobalsMetadataWrapperPass>();
845 bool runOnModule(Module &M) override {
846 GlobalsMetadata &GlobalsMD =
847 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD();
848 ModuleAddressSanitizer ASanModule(M, &GlobalsMD, CompileKernel, Recover,
849 UseGlobalGC, UseOdrIndicator);
850 return ASanModule.instrumentModule(M);
853 private:
854 bool CompileKernel;
855 bool Recover;
856 bool UseGlobalGC;
857 bool UseOdrIndicator;
860 // Stack poisoning does not play well with exception handling.
861 // When an exception is thrown, we essentially bypass the code
862 // that unpoisones the stack. This is why the run-time library has
863 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
864 // stack in the interceptor. This however does not work inside the
865 // actual function which catches the exception. Most likely because the
866 // compiler hoists the load of the shadow value somewhere too high.
867 // This causes asan to report a non-existing bug on 453.povray.
868 // It sounds like an LLVM bug.
869 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
870 Function &F;
871 AddressSanitizer &ASan;
872 DIBuilder DIB;
873 LLVMContext *C;
874 Type *IntptrTy;
875 Type *IntptrPtrTy;
876 ShadowMapping Mapping;
878 SmallVector<AllocaInst *, 16> AllocaVec;
879 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp;
880 SmallVector<Instruction *, 8> RetVec;
881 unsigned StackAlignment;
883 FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
884 AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
885 FunctionCallee AsanSetShadowFunc[0x100] = {};
886 FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc;
887 FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc;
889 // Stores a place and arguments of poisoning/unpoisoning call for alloca.
890 struct AllocaPoisonCall {
891 IntrinsicInst *InsBefore;
892 AllocaInst *AI;
893 uint64_t Size;
894 bool DoPoison;
896 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec;
897 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec;
898 bool HasUntracedLifetimeIntrinsic = false;
900 SmallVector<AllocaInst *, 1> DynamicAllocaVec;
901 SmallVector<IntrinsicInst *, 1> StackRestoreVec;
902 AllocaInst *DynamicAllocaLayout = nullptr;
903 IntrinsicInst *LocalEscapeCall = nullptr;
905 // Maps Value to an AllocaInst from which the Value is originated.
906 using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>;
907 AllocaForValueMapTy AllocaForValue;
909 bool HasNonEmptyInlineAsm = false;
910 bool HasReturnsTwiceCall = false;
911 std::unique_ptr<CallInst> EmptyInlineAsm;
913 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
914 : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false),
915 C(ASan.C), IntptrTy(ASan.IntptrTy),
916 IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping),
917 StackAlignment(1 << Mapping.Scale),
918 EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {}
920 bool runOnFunction() {
921 if (!ClStack) return false;
923 if (ClRedzoneByvalArgs)
924 copyArgsPassedByValToAllocas();
926 // Collect alloca, ret, lifetime instructions etc.
927 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);
929 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;
931 initializeCallbacks(*F.getParent());
933 if (HasUntracedLifetimeIntrinsic) {
934 // If there are lifetime intrinsics which couldn't be traced back to an
935 // alloca, we may not know exactly when a variable enters scope, and
936 // therefore should "fail safe" by not poisoning them.
937 StaticAllocaPoisonCallVec.clear();
938 DynamicAllocaPoisonCallVec.clear();
941 processDynamicAllocas();
942 processStaticAllocas();
944 if (ClDebugStack) {
945 LLVM_DEBUG(dbgs() << F);
947 return true;
950 // Arguments marked with the "byval" attribute are implicitly copied without
951 // using an alloca instruction. To produce redzones for those arguments, we
952 // copy them a second time into memory allocated with an alloca instruction.
953 void copyArgsPassedByValToAllocas();
955 // Finds all Alloca instructions and puts
956 // poisoned red zones around all of them.
957 // Then unpoison everything back before the function returns.
958 void processStaticAllocas();
959 void processDynamicAllocas();
961 void createDynamicAllocasInitStorage();
963 // ----------------------- Visitors.
964 /// Collect all Ret instructions.
965 void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); }
967 /// Collect all Resume instructions.
968 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); }
970 /// Collect all CatchReturnInst instructions.
971 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); }
973 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore,
974 Value *SavedStack) {
975 IRBuilder<> IRB(InstBefore);
976 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy);
977 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
978 // need to adjust extracted SP to compute the address of the most recent
979 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
980 // this purpose.
981 if (!isa<ReturnInst>(InstBefore)) {
982 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration(
983 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset,
984 {IntptrTy});
986 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {});
988 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy),
989 DynamicAreaOffset);
992 IRB.CreateCall(
993 AsanAllocasUnpoisonFunc,
994 {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr});
997 // Unpoison dynamic allocas redzones.
998 void unpoisonDynamicAllocas() {
999 for (auto &Ret : RetVec)
1000 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout);
1002 for (auto &StackRestoreInst : StackRestoreVec)
1003 unpoisonDynamicAllocasBeforeInst(StackRestoreInst,
1004 StackRestoreInst->getOperand(0));
1007 // Deploy and poison redzones around dynamic alloca call. To do this, we
1008 // should replace this call with another one with changed parameters and
1009 // replace all its uses with new address, so
1010 // addr = alloca type, old_size, align
1011 // is replaced by
1012 // new_size = (old_size + additional_size) * sizeof(type)
1013 // tmp = alloca i8, new_size, max(align, 32)
1014 // addr = tmp + 32 (first 32 bytes are for the left redzone).
1015 // Additional_size is added to make new memory allocation contain not only
1016 // requested memory, but also left, partial and right redzones.
1017 void handleDynamicAllocaCall(AllocaInst *AI);
1019 /// Collect Alloca instructions we want (and can) handle.
1020 void visitAllocaInst(AllocaInst &AI) {
1021 if (!ASan.isInterestingAlloca(AI)) {
1022 if (AI.isStaticAlloca()) {
1023 // Skip over allocas that are present *before* the first instrumented
1024 // alloca, we don't want to move those around.
1025 if (AllocaVec.empty())
1026 return;
1028 StaticAllocasToMoveUp.push_back(&AI);
1030 return;
1033 StackAlignment = std::max(StackAlignment, AI.getAlignment());
1034 if (!AI.isStaticAlloca())
1035 DynamicAllocaVec.push_back(&AI);
1036 else
1037 AllocaVec.push_back(&AI);
1040 /// Collect lifetime intrinsic calls to check for use-after-scope
1041 /// errors.
1042 void visitIntrinsicInst(IntrinsicInst &II) {
1043 Intrinsic::ID ID = II.getIntrinsicID();
1044 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II);
1045 if (ID == Intrinsic::localescape) LocalEscapeCall = &II;
1046 if (!ASan.UseAfterScope)
1047 return;
1048 if (!II.isLifetimeStartOrEnd())
1049 return;
1050 // Found lifetime intrinsic, add ASan instrumentation if necessary.
1051 auto *Size = cast<ConstantInt>(II.getArgOperand(0));
1052 // If size argument is undefined, don't do anything.
1053 if (Size->isMinusOne()) return;
1054 // Check that size doesn't saturate uint64_t and can
1055 // be stored in IntptrTy.
1056 const uint64_t SizeValue = Size->getValue().getLimitedValue();
1057 if (SizeValue == ~0ULL ||
1058 !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
1059 return;
1060 // Find alloca instruction that corresponds to llvm.lifetime argument.
1061 AllocaInst *AI =
1062 llvm::findAllocaForValue(II.getArgOperand(1), AllocaForValue);
1063 if (!AI) {
1064 HasUntracedLifetimeIntrinsic = true;
1065 return;
1067 // We're interested only in allocas we can handle.
1068 if (!ASan.isInterestingAlloca(*AI))
1069 return;
1070 bool DoPoison = (ID == Intrinsic::lifetime_end);
1071 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
1072 if (AI->isStaticAlloca())
1073 StaticAllocaPoisonCallVec.push_back(APC);
1074 else if (ClInstrumentDynamicAllocas)
1075 DynamicAllocaPoisonCallVec.push_back(APC);
1078 void visitCallSite(CallSite CS) {
1079 Instruction *I = CS.getInstruction();
1080 if (CallInst *CI = dyn_cast<CallInst>(I)) {
1081 HasNonEmptyInlineAsm |= CI->isInlineAsm() &&
1082 !CI->isIdenticalTo(EmptyInlineAsm.get()) &&
1083 I != ASan.LocalDynamicShadow;
1084 HasReturnsTwiceCall |= CI->canReturnTwice();
1088 // ---------------------- Helpers.
1089 void initializeCallbacks(Module &M);
1091 // Copies bytes from ShadowBytes into shadow memory for indexes where
1092 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that
1093 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten.
1094 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1095 IRBuilder<> &IRB, Value *ShadowBase);
1096 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1097 size_t Begin, size_t End, IRBuilder<> &IRB,
1098 Value *ShadowBase);
1099 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
1100 ArrayRef<uint8_t> ShadowBytes, size_t Begin,
1101 size_t End, IRBuilder<> &IRB, Value *ShadowBase);
1103 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
1105 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
1106 bool Dynamic);
1107 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
1108 Instruction *ThenTerm, Value *ValueIfFalse);
1111 } // end anonymous namespace
1113 void LocationMetadata::parse(MDNode *MDN) {
1114 assert(MDN->getNumOperands() == 3);
1115 MDString *DIFilename = cast<MDString>(MDN->getOperand(0));
1116 Filename = DIFilename->getString();
1117 LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue();
1118 ColumnNo =
1119 mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue();
1122 // FIXME: It would be cleaner to instead attach relevant metadata to the globals
1123 // we want to sanitize instead and reading this metadata on each pass over a
1124 // function instead of reading module level metadata at first.
1125 GlobalsMetadata::GlobalsMetadata(Module &M) {
1126 NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals");
1127 if (!Globals)
1128 return;
1129 for (auto MDN : Globals->operands()) {
1130 // Metadata node contains the global and the fields of "Entry".
1131 assert(MDN->getNumOperands() == 5);
1132 auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0));
1133 // The optimizer may optimize away a global entirely.
1134 if (!V)
1135 continue;
1136 auto *StrippedV = V->stripPointerCasts();
1137 auto *GV = dyn_cast<GlobalVariable>(StrippedV);
1138 if (!GV)
1139 continue;
1140 // We can already have an entry for GV if it was merged with another
1141 // global.
1142 Entry &E = Entries[GV];
1143 if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1)))
1144 E.SourceLoc.parse(Loc);
1145 if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2)))
1146 E.Name = Name->getString();
1147 ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3));
1148 E.IsDynInit |= IsDynInit->isOne();
1149 ConstantInt *IsBlacklisted =
1150 mdconst::extract<ConstantInt>(MDN->getOperand(4));
1151 E.IsBlacklisted |= IsBlacklisted->isOne();
1155 AnalysisKey ASanGlobalsMetadataAnalysis::Key;
1157 GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M,
1158 ModuleAnalysisManager &AM) {
1159 return GlobalsMetadata(M);
1162 AddressSanitizerPass::AddressSanitizerPass(bool CompileKernel, bool Recover,
1163 bool UseAfterScope)
1164 : CompileKernel(CompileKernel), Recover(Recover),
1165 UseAfterScope(UseAfterScope) {}
1167 PreservedAnalyses AddressSanitizerPass::run(Function &F,
1168 AnalysisManager<Function> &AM) {
1169 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1170 auto &MAM = MAMProxy.getManager();
1171 Module &M = *F.getParent();
1172 if (auto *R = MAM.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) {
1173 const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
1174 AddressSanitizer Sanitizer(M, R, CompileKernel, Recover, UseAfterScope);
1175 if (Sanitizer.instrumentFunction(F, TLI))
1176 return PreservedAnalyses::none();
1177 return PreservedAnalyses::all();
1180 report_fatal_error(
1181 "The ASanGlobalsMetadataAnalysis is required to run before "
1182 "AddressSanitizer can run");
1183 return PreservedAnalyses::all();
1186 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(bool CompileKernel,
1187 bool Recover,
1188 bool UseGlobalGC,
1189 bool UseOdrIndicator)
1190 : CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC),
1191 UseOdrIndicator(UseOdrIndicator) {}
1193 PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M,
1194 AnalysisManager<Module> &AM) {
1195 GlobalsMetadata &GlobalsMD = AM.getResult<ASanGlobalsMetadataAnalysis>(M);
1196 ModuleAddressSanitizer Sanitizer(M, &GlobalsMD, CompileKernel, Recover,
1197 UseGlobalGC, UseOdrIndicator);
1198 if (Sanitizer.instrumentModule(M))
1199 return PreservedAnalyses::none();
1200 return PreservedAnalyses::all();
1203 INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md",
1204 "Read metadata to mark which globals should be instrumented "
1205 "when running ASan.",
1206 false, true)
1208 char AddressSanitizerLegacyPass::ID = 0;
1210 INITIALIZE_PASS_BEGIN(
1211 AddressSanitizerLegacyPass, "asan",
1212 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1213 false)
1214 INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass)
1215 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1216 INITIALIZE_PASS_END(
1217 AddressSanitizerLegacyPass, "asan",
1218 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1219 false)
1221 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel,
1222 bool Recover,
1223 bool UseAfterScope) {
1224 assert(!CompileKernel || Recover);
1225 return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope);
1228 char ModuleAddressSanitizerLegacyPass::ID = 0;
1230 INITIALIZE_PASS(
1231 ModuleAddressSanitizerLegacyPass, "asan-module",
1232 "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
1233 "ModulePass",
1234 false, false)
1236 ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass(
1237 bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator) {
1238 assert(!CompileKernel || Recover);
1239 return new ModuleAddressSanitizerLegacyPass(CompileKernel, Recover,
1240 UseGlobalsGC, UseOdrIndicator);
1243 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
1244 size_t Res = countTrailingZeros(TypeSize / 8);
1245 assert(Res < kNumberOfAccessSizes);
1246 return Res;
1249 /// Create a global describing a source location.
1250 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M,
1251 LocationMetadata MD) {
1252 Constant *LocData[] = {
1253 createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix),
1254 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo),
1255 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo),
1257 auto LocStruct = ConstantStruct::getAnon(LocData);
1258 auto GV = new GlobalVariable(M, LocStruct->getType(), true,
1259 GlobalValue::PrivateLinkage, LocStruct,
1260 kAsanGenPrefix);
1261 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1262 return GV;
1265 /// Check if \p G has been created by a trusted compiler pass.
1266 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) {
1267 // Do not instrument @llvm.global_ctors, @llvm.used, etc.
1268 if (G->getName().startswith("llvm."))
1269 return true;
1271 // Do not instrument asan globals.
1272 if (G->getName().startswith(kAsanGenPrefix) ||
1273 G->getName().startswith(kSanCovGenPrefix) ||
1274 G->getName().startswith(kODRGenPrefix))
1275 return true;
1277 // Do not instrument gcov counter arrays.
1278 if (G->getName() == "__llvm_gcov_ctr")
1279 return true;
1281 return false;
1284 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
1285 // Shadow >> scale
1286 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
1287 if (Mapping.Offset == 0) return Shadow;
1288 // (Shadow >> scale) | offset
1289 Value *ShadowBase;
1290 if (LocalDynamicShadow)
1291 ShadowBase = LocalDynamicShadow;
1292 else
1293 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset);
1294 if (Mapping.OrShadowOffset)
1295 return IRB.CreateOr(Shadow, ShadowBase);
1296 else
1297 return IRB.CreateAdd(Shadow, ShadowBase);
1300 // Instrument memset/memmove/memcpy
1301 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
1302 IRBuilder<> IRB(MI);
1303 if (isa<MemTransferInst>(MI)) {
1304 IRB.CreateCall(
1305 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
1306 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
1307 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
1308 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1309 } else if (isa<MemSetInst>(MI)) {
1310 IRB.CreateCall(
1311 AsanMemset,
1312 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
1313 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
1314 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1316 MI->eraseFromParent();
1319 /// Check if we want (and can) handle this alloca.
1320 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) {
1321 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI);
1323 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end())
1324 return PreviouslySeenAllocaInfo->getSecond();
1326 bool IsInteresting =
1327 (AI.getAllocatedType()->isSized() &&
1328 // alloca() may be called with 0 size, ignore it.
1329 ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) &&
1330 // We are only interested in allocas not promotable to registers.
1331 // Promotable allocas are common under -O0.
1332 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) &&
1333 // inalloca allocas are not treated as static, and we don't want
1334 // dynamic alloca instrumentation for them as well.
1335 !AI.isUsedWithInAlloca() &&
1336 // swifterror allocas are register promoted by ISel
1337 !AI.isSwiftError());
1339 ProcessedAllocas[&AI] = IsInteresting;
1340 return IsInteresting;
1343 Value *AddressSanitizer::isInterestingMemoryAccess(Instruction *I,
1344 bool *IsWrite,
1345 uint64_t *TypeSize,
1346 unsigned *Alignment,
1347 Value **MaybeMask) {
1348 // Skip memory accesses inserted by another instrumentation.
1349 if (I->hasMetadata("nosanitize")) return nullptr;
1351 // Do not instrument the load fetching the dynamic shadow address.
1352 if (LocalDynamicShadow == I)
1353 return nullptr;
1355 Value *PtrOperand = nullptr;
1356 const DataLayout &DL = I->getModule()->getDataLayout();
1357 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1358 if (!ClInstrumentReads) return nullptr;
1359 *IsWrite = false;
1360 *TypeSize = DL.getTypeStoreSizeInBits(LI->getType());
1361 *Alignment = LI->getAlignment();
1362 PtrOperand = LI->getPointerOperand();
1363 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1364 if (!ClInstrumentWrites) return nullptr;
1365 *IsWrite = true;
1366 *TypeSize = DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType());
1367 *Alignment = SI->getAlignment();
1368 PtrOperand = SI->getPointerOperand();
1369 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
1370 if (!ClInstrumentAtomics) return nullptr;
1371 *IsWrite = true;
1372 *TypeSize = DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType());
1373 *Alignment = 0;
1374 PtrOperand = RMW->getPointerOperand();
1375 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
1376 if (!ClInstrumentAtomics) return nullptr;
1377 *IsWrite = true;
1378 *TypeSize = DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType());
1379 *Alignment = 0;
1380 PtrOperand = XCHG->getPointerOperand();
1381 } else if (auto CI = dyn_cast<CallInst>(I)) {
1382 auto *F = dyn_cast<Function>(CI->getCalledValue());
1383 if (F && (F->getName().startswith("llvm.masked.load.") ||
1384 F->getName().startswith("llvm.masked.store."))) {
1385 unsigned OpOffset = 0;
1386 if (F->getName().startswith("llvm.masked.store.")) {
1387 if (!ClInstrumentWrites)
1388 return nullptr;
1389 // Masked store has an initial operand for the value.
1390 OpOffset = 1;
1391 *IsWrite = true;
1392 } else {
1393 if (!ClInstrumentReads)
1394 return nullptr;
1395 *IsWrite = false;
1398 auto BasePtr = CI->getOperand(0 + OpOffset);
1399 auto Ty = cast<PointerType>(BasePtr->getType())->getElementType();
1400 *TypeSize = DL.getTypeStoreSizeInBits(Ty);
1401 if (auto AlignmentConstant =
1402 dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset)))
1403 *Alignment = (unsigned)AlignmentConstant->getZExtValue();
1404 else
1405 *Alignment = 1; // No alignment guarantees. We probably got Undef
1406 if (MaybeMask)
1407 *MaybeMask = CI->getOperand(2 + OpOffset);
1408 PtrOperand = BasePtr;
1412 if (PtrOperand) {
1413 // Do not instrument acesses from different address spaces; we cannot deal
1414 // with them.
1415 Type *PtrTy = cast<PointerType>(PtrOperand->getType()->getScalarType());
1416 if (PtrTy->getPointerAddressSpace() != 0)
1417 return nullptr;
1419 // Ignore swifterror addresses.
1420 // swifterror memory addresses are mem2reg promoted by instruction
1421 // selection. As such they cannot have regular uses like an instrumentation
1422 // function and it makes no sense to track them as memory.
1423 if (PtrOperand->isSwiftError())
1424 return nullptr;
1427 // Treat memory accesses to promotable allocas as non-interesting since they
1428 // will not cause memory violations. This greatly speeds up the instrumented
1429 // executable at -O0.
1430 if (ClSkipPromotableAllocas)
1431 if (auto AI = dyn_cast_or_null<AllocaInst>(PtrOperand))
1432 return isInterestingAlloca(*AI) ? AI : nullptr;
1434 return PtrOperand;
1437 static bool isPointerOperand(Value *V) {
1438 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
1441 // This is a rough heuristic; it may cause both false positives and
1442 // false negatives. The proper implementation requires cooperation with
1443 // the frontend.
1444 static bool isInterestingPointerComparison(Instruction *I) {
1445 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
1446 if (!Cmp->isRelational())
1447 return false;
1448 } else {
1449 return false;
1451 return isPointerOperand(I->getOperand(0)) &&
1452 isPointerOperand(I->getOperand(1));
1455 // This is a rough heuristic; it may cause both false positives and
1456 // false negatives. The proper implementation requires cooperation with
1457 // the frontend.
1458 static bool isInterestingPointerSubtraction(Instruction *I) {
1459 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
1460 if (BO->getOpcode() != Instruction::Sub)
1461 return false;
1462 } else {
1463 return false;
1465 return isPointerOperand(I->getOperand(0)) &&
1466 isPointerOperand(I->getOperand(1));
1469 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
1470 // If a global variable does not have dynamic initialization we don't
1471 // have to instrument it. However, if a global does not have initializer
1472 // at all, we assume it has dynamic initializer (in other TU).
1474 // FIXME: Metadata should be attched directly to the global directly instead
1475 // of being added to llvm.asan.globals.
1476 return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit;
1479 void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
1480 Instruction *I) {
1481 IRBuilder<> IRB(I);
1482 FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
1483 Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
1484 for (Value *&i : Param) {
1485 if (i->getType()->isPointerTy())
1486 i = IRB.CreatePointerCast(i, IntptrTy);
1488 IRB.CreateCall(F, Param);
1491 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I,
1492 Instruction *InsertBefore, Value *Addr,
1493 unsigned Alignment, unsigned Granularity,
1494 uint32_t TypeSize, bool IsWrite,
1495 Value *SizeArgument, bool UseCalls,
1496 uint32_t Exp) {
1497 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
1498 // if the data is properly aligned.
1499 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 ||
1500 TypeSize == 128) &&
1501 (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8))
1502 return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite,
1503 nullptr, UseCalls, Exp);
1504 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize,
1505 IsWrite, nullptr, UseCalls, Exp);
1508 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass,
1509 const DataLayout &DL, Type *IntptrTy,
1510 Value *Mask, Instruction *I,
1511 Value *Addr, unsigned Alignment,
1512 unsigned Granularity, uint32_t TypeSize,
1513 bool IsWrite, Value *SizeArgument,
1514 bool UseCalls, uint32_t Exp) {
1515 auto *VTy = cast<PointerType>(Addr->getType())->getElementType();
1516 uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType());
1517 unsigned Num = VTy->getVectorNumElements();
1518 auto Zero = ConstantInt::get(IntptrTy, 0);
1519 for (unsigned Idx = 0; Idx < Num; ++Idx) {
1520 Value *InstrumentedAddress = nullptr;
1521 Instruction *InsertBefore = I;
1522 if (auto *Vector = dyn_cast<ConstantVector>(Mask)) {
1523 // dyn_cast as we might get UndefValue
1524 if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) {
1525 if (Masked->isZero())
1526 // Mask is constant false, so no instrumentation needed.
1527 continue;
1528 // If we have a true or undef value, fall through to doInstrumentAddress
1529 // with InsertBefore == I
1531 } else {
1532 IRBuilder<> IRB(I);
1533 Value *MaskElem = IRB.CreateExtractElement(Mask, Idx);
1534 Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false);
1535 InsertBefore = ThenTerm;
1538 IRBuilder<> IRB(InsertBefore);
1539 InstrumentedAddress =
1540 IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)});
1541 doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment,
1542 Granularity, ElemTypeSize, IsWrite, SizeArgument,
1543 UseCalls, Exp);
1547 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
1548 Instruction *I, bool UseCalls,
1549 const DataLayout &DL) {
1550 bool IsWrite = false;
1551 unsigned Alignment = 0;
1552 uint64_t TypeSize = 0;
1553 Value *MaybeMask = nullptr;
1554 Value *Addr =
1555 isInterestingMemoryAccess(I, &IsWrite, &TypeSize, &Alignment, &MaybeMask);
1556 assert(Addr);
1558 // Optimization experiments.
1559 // The experiments can be used to evaluate potential optimizations that remove
1560 // instrumentation (assess false negatives). Instead of completely removing
1561 // some instrumentation, you set Exp to a non-zero value (mask of optimization
1562 // experiments that want to remove instrumentation of this instruction).
1563 // If Exp is non-zero, this pass will emit special calls into runtime
1564 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
1565 // make runtime terminate the program in a special way (with a different
1566 // exit status). Then you run the new compiler on a buggy corpus, collect
1567 // the special terminations (ideally, you don't see them at all -- no false
1568 // negatives) and make the decision on the optimization.
1569 uint32_t Exp = ClForceExperiment;
1571 if (ClOpt && ClOptGlobals) {
1572 // If initialization order checking is disabled, a simple access to a
1573 // dynamically initialized global is always valid.
1574 GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL));
1575 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
1576 isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
1577 NumOptimizedAccessesToGlobalVar++;
1578 return;
1582 if (ClOpt && ClOptStack) {
1583 // A direct inbounds access to a stack variable is always valid.
1584 if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) &&
1585 isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
1586 NumOptimizedAccessesToStackVar++;
1587 return;
1591 if (IsWrite)
1592 NumInstrumentedWrites++;
1593 else
1594 NumInstrumentedReads++;
1596 unsigned Granularity = 1 << Mapping.Scale;
1597 if (MaybeMask) {
1598 instrumentMaskedLoadOrStore(this, DL, IntptrTy, MaybeMask, I, Addr,
1599 Alignment, Granularity, TypeSize, IsWrite,
1600 nullptr, UseCalls, Exp);
1601 } else {
1602 doInstrumentAddress(this, I, I, Addr, Alignment, Granularity, TypeSize,
1603 IsWrite, nullptr, UseCalls, Exp);
1607 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore,
1608 Value *Addr, bool IsWrite,
1609 size_t AccessSizeIndex,
1610 Value *SizeArgument,
1611 uint32_t Exp) {
1612 IRBuilder<> IRB(InsertBefore);
1613 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp);
1614 CallInst *Call = nullptr;
1615 if (SizeArgument) {
1616 if (Exp == 0)
1617 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0],
1618 {Addr, SizeArgument});
1619 else
1620 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1],
1621 {Addr, SizeArgument, ExpVal});
1622 } else {
1623 if (Exp == 0)
1624 Call =
1625 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr);
1626 else
1627 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex],
1628 {Addr, ExpVal});
1631 // We don't do Call->setDoesNotReturn() because the BB already has
1632 // UnreachableInst at the end.
1633 // This EmptyAsm is required to avoid callback merge.
1634 IRB.CreateCall(EmptyAsm, {});
1635 return Call;
1638 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
1639 Value *ShadowValue,
1640 uint32_t TypeSize) {
1641 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale;
1642 // Addr & (Granularity - 1)
1643 Value *LastAccessedByte =
1644 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
1645 // (Addr & (Granularity - 1)) + size - 1
1646 if (TypeSize / 8 > 1)
1647 LastAccessedByte = IRB.CreateAdd(
1648 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
1649 // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
1650 LastAccessedByte =
1651 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false);
1652 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
1653 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
1656 void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
1657 Instruction *InsertBefore, Value *Addr,
1658 uint32_t TypeSize, bool IsWrite,
1659 Value *SizeArgument, bool UseCalls,
1660 uint32_t Exp) {
1661 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad;
1663 IRBuilder<> IRB(InsertBefore);
1664 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1665 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
1667 if (UseCalls) {
1668 if (Exp == 0)
1669 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex],
1670 AddrLong);
1671 else
1672 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex],
1673 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1674 return;
1677 if (IsMyriad) {
1678 // Strip the cache bit and do range check.
1679 // AddrLong &= ~kMyriadCacheBitMask32
1680 AddrLong = IRB.CreateAnd(AddrLong, ~kMyriadCacheBitMask32);
1681 // Tag = AddrLong >> kMyriadTagShift
1682 Value *Tag = IRB.CreateLShr(AddrLong, kMyriadTagShift);
1683 // Tag == kMyriadDDRTag
1684 Value *TagCheck =
1685 IRB.CreateICmpEQ(Tag, ConstantInt::get(IntptrTy, kMyriadDDRTag));
1687 Instruction *TagCheckTerm =
1688 SplitBlockAndInsertIfThen(TagCheck, InsertBefore, false,
1689 MDBuilder(*C).createBranchWeights(1, 100000));
1690 assert(cast<BranchInst>(TagCheckTerm)->isUnconditional());
1691 IRB.SetInsertPoint(TagCheckTerm);
1692 InsertBefore = TagCheckTerm;
1695 Type *ShadowTy =
1696 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale));
1697 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
1698 Value *ShadowPtr = memToShadow(AddrLong, IRB);
1699 Value *CmpVal = Constant::getNullValue(ShadowTy);
1700 Value *ShadowValue =
1701 IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
1703 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
1704 size_t Granularity = 1ULL << Mapping.Scale;
1705 Instruction *CrashTerm = nullptr;
1707 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
1708 // We use branch weights for the slow path check, to indicate that the slow
1709 // path is rarely taken. This seems to be the case for SPEC benchmarks.
1710 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1711 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000));
1712 assert(cast<BranchInst>(CheckTerm)->isUnconditional());
1713 BasicBlock *NextBB = CheckTerm->getSuccessor(0);
1714 IRB.SetInsertPoint(CheckTerm);
1715 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
1716 if (Recover) {
1717 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false);
1718 } else {
1719 BasicBlock *CrashBlock =
1720 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
1721 CrashTerm = new UnreachableInst(*C, CrashBlock);
1722 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
1723 ReplaceInstWithInst(CheckTerm, NewTerm);
1725 } else {
1726 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover);
1729 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite,
1730 AccessSizeIndex, SizeArgument, Exp);
1731 Crash->setDebugLoc(OrigIns->getDebugLoc());
1734 // Instrument unusual size or unusual alignment.
1735 // We can not do it with a single check, so we do 1-byte check for the first
1736 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
1737 // to report the actual access size.
1738 void AddressSanitizer::instrumentUnusualSizeOrAlignment(
1739 Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize,
1740 bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) {
1741 IRBuilder<> IRB(InsertBefore);
1742 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
1743 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1744 if (UseCalls) {
1745 if (Exp == 0)
1746 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0],
1747 {AddrLong, Size});
1748 else
1749 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1],
1750 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1751 } else {
1752 Value *LastByte = IRB.CreateIntToPtr(
1753 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
1754 Addr->getType());
1755 instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp);
1756 instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp);
1760 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit,
1761 GlobalValue *ModuleName) {
1762 // Set up the arguments to our poison/unpoison functions.
1763 IRBuilder<> IRB(&GlobalInit.front(),
1764 GlobalInit.front().getFirstInsertionPt());
1766 // Add a call to poison all external globals before the given function starts.
1767 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
1768 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
1770 // Add calls to unpoison all globals before each return instruction.
1771 for (auto &BB : GlobalInit.getBasicBlockList())
1772 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
1773 CallInst::Create(AsanUnpoisonGlobals, "", RI);
1776 void ModuleAddressSanitizer::createInitializerPoisonCalls(
1777 Module &M, GlobalValue *ModuleName) {
1778 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
1779 if (!GV)
1780 return;
1782 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer());
1783 if (!CA)
1784 return;
1786 for (Use &OP : CA->operands()) {
1787 if (isa<ConstantAggregateZero>(OP)) continue;
1788 ConstantStruct *CS = cast<ConstantStruct>(OP);
1790 // Must have a function or null ptr.
1791 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) {
1792 if (F->getName() == kAsanModuleCtorName) continue;
1793 auto *Priority = cast<ConstantInt>(CS->getOperand(0));
1794 // Don't instrument CTORs that will run before asan.module_ctor.
1795 if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple))
1796 continue;
1797 poisonOneInitializer(*F, ModuleName);
1802 bool ModuleAddressSanitizer::ShouldInstrumentGlobal(GlobalVariable *G) {
1803 Type *Ty = G->getValueType();
1804 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
1806 // FIXME: Metadata should be attched directly to the global directly instead
1807 // of being added to llvm.asan.globals.
1808 if (GlobalsMD.get(G).IsBlacklisted) return false;
1809 if (!Ty->isSized()) return false;
1810 if (!G->hasInitializer()) return false;
1811 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals.
1812 // Two problems with thread-locals:
1813 // - The address of the main thread's copy can't be computed at link-time.
1814 // - Need to poison all copies, not just the main thread's one.
1815 if (G->isThreadLocal()) return false;
1816 // For now, just ignore this Global if the alignment is large.
1817 if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false;
1819 // For non-COFF targets, only instrument globals known to be defined by this
1820 // TU.
1821 // FIXME: We can instrument comdat globals on ELF if we are using the
1822 // GC-friendly metadata scheme.
1823 if (!TargetTriple.isOSBinFormatCOFF()) {
1824 if (!G->hasExactDefinition() || G->hasComdat())
1825 return false;
1826 } else {
1827 // On COFF, don't instrument non-ODR linkages.
1828 if (G->isInterposable())
1829 return false;
1832 // If a comdat is present, it must have a selection kind that implies ODR
1833 // semantics: no duplicates, any, or exact match.
1834 if (Comdat *C = G->getComdat()) {
1835 switch (C->getSelectionKind()) {
1836 case Comdat::Any:
1837 case Comdat::ExactMatch:
1838 case Comdat::NoDuplicates:
1839 break;
1840 case Comdat::Largest:
1841 case Comdat::SameSize:
1842 return false;
1846 if (G->hasSection()) {
1847 StringRef Section = G->getSection();
1849 // Globals from llvm.metadata aren't emitted, do not instrument them.
1850 if (Section == "llvm.metadata") return false;
1851 // Do not instrument globals from special LLVM sections.
1852 if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false;
1854 // Do not instrument function pointers to initialization and termination
1855 // routines: dynamic linker will not properly handle redzones.
1856 if (Section.startswith(".preinit_array") ||
1857 Section.startswith(".init_array") ||
1858 Section.startswith(".fini_array")) {
1859 return false;
1862 // On COFF, if the section name contains '$', it is highly likely that the
1863 // user is using section sorting to create an array of globals similar to
1864 // the way initialization callbacks are registered in .init_array and
1865 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones
1866 // to such globals is counterproductive, because the intent is that they
1867 // will form an array, and out-of-bounds accesses are expected.
1868 // See https://github.com/google/sanitizers/issues/305
1869 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
1870 if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) {
1871 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): "
1872 << *G << "\n");
1873 return false;
1876 if (TargetTriple.isOSBinFormatMachO()) {
1877 StringRef ParsedSegment, ParsedSection;
1878 unsigned TAA = 0, StubSize = 0;
1879 bool TAAParsed;
1880 std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier(
1881 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize);
1882 assert(ErrorCode.empty() && "Invalid section specifier.");
1884 // Ignore the globals from the __OBJC section. The ObjC runtime assumes
1885 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
1886 // them.
1887 if (ParsedSegment == "__OBJC" ||
1888 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) {
1889 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
1890 return false;
1892 // See https://github.com/google/sanitizers/issues/32
1893 // Constant CFString instances are compiled in the following way:
1894 // -- the string buffer is emitted into
1895 // __TEXT,__cstring,cstring_literals
1896 // -- the constant NSConstantString structure referencing that buffer
1897 // is placed into __DATA,__cfstring
1898 // Therefore there's no point in placing redzones into __DATA,__cfstring.
1899 // Moreover, it causes the linker to crash on OS X 10.7
1900 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
1901 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
1902 return false;
1904 // The linker merges the contents of cstring_literals and removes the
1905 // trailing zeroes.
1906 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
1907 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
1908 return false;
1913 return true;
1916 // On Mach-O platforms, we emit global metadata in a separate section of the
1917 // binary in order to allow the linker to properly dead strip. This is only
1918 // supported on recent versions of ld64.
1919 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const {
1920 if (!TargetTriple.isOSBinFormatMachO())
1921 return false;
1923 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11))
1924 return true;
1925 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9))
1926 return true;
1927 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2))
1928 return true;
1930 return false;
1933 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const {
1934 switch (TargetTriple.getObjectFormat()) {
1935 case Triple::COFF: return ".ASAN$GL";
1936 case Triple::ELF: return "asan_globals";
1937 case Triple::MachO: return "__DATA,__asan_globals,regular";
1938 case Triple::Wasm:
1939 case Triple::XCOFF:
1940 report_fatal_error(
1941 "ModuleAddressSanitizer not implemented for object file format.");
1942 case Triple::UnknownObjectFormat:
1943 break;
1945 llvm_unreachable("unsupported object format");
1948 void ModuleAddressSanitizer::initializeCallbacks(Module &M) {
1949 IRBuilder<> IRB(*C);
1951 // Declare our poisoning and unpoisoning functions.
1952 AsanPoisonGlobals =
1953 M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy);
1954 AsanUnpoisonGlobals =
1955 M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy());
1957 // Declare functions that register/unregister globals.
1958 AsanRegisterGlobals = M.getOrInsertFunction(
1959 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
1960 AsanUnregisterGlobals = M.getOrInsertFunction(
1961 kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
1963 // Declare the functions that find globals in a shared object and then invoke
1964 // the (un)register function on them.
1965 AsanRegisterImageGlobals = M.getOrInsertFunction(
1966 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
1967 AsanUnregisterImageGlobals = M.getOrInsertFunction(
1968 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
1970 AsanRegisterElfGlobals =
1971 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(),
1972 IntptrTy, IntptrTy, IntptrTy);
1973 AsanUnregisterElfGlobals =
1974 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(),
1975 IntptrTy, IntptrTy, IntptrTy);
1978 // Put the metadata and the instrumented global in the same group. This ensures
1979 // that the metadata is discarded if the instrumented global is discarded.
1980 void ModuleAddressSanitizer::SetComdatForGlobalMetadata(
1981 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) {
1982 Module &M = *G->getParent();
1983 Comdat *C = G->getComdat();
1984 if (!C) {
1985 if (!G->hasName()) {
1986 // If G is unnamed, it must be internal. Give it an artificial name
1987 // so we can put it in a comdat.
1988 assert(G->hasLocalLinkage());
1989 G->setName(Twine(kAsanGenPrefix) + "_anon_global");
1992 if (!InternalSuffix.empty() && G->hasLocalLinkage()) {
1993 std::string Name = G->getName();
1994 Name += InternalSuffix;
1995 C = M.getOrInsertComdat(Name);
1996 } else {
1997 C = M.getOrInsertComdat(G->getName());
2000 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private
2001 // linkage to internal linkage so that a symbol table entry is emitted. This
2002 // is necessary in order to create the comdat group.
2003 if (TargetTriple.isOSBinFormatCOFF()) {
2004 C->setSelectionKind(Comdat::NoDuplicates);
2005 if (G->hasPrivateLinkage())
2006 G->setLinkage(GlobalValue::InternalLinkage);
2008 G->setComdat(C);
2011 assert(G->hasComdat());
2012 Metadata->setComdat(G->getComdat());
2015 // Create a separate metadata global and put it in the appropriate ASan
2016 // global registration section.
2017 GlobalVariable *
2018 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer,
2019 StringRef OriginalName) {
2020 auto Linkage = TargetTriple.isOSBinFormatMachO()
2021 ? GlobalVariable::InternalLinkage
2022 : GlobalVariable::PrivateLinkage;
2023 GlobalVariable *Metadata = new GlobalVariable(
2024 M, Initializer->getType(), false, Linkage, Initializer,
2025 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName));
2026 Metadata->setSection(getGlobalMetadataSection());
2027 return Metadata;
2030 IRBuilder<> ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) {
2031 AsanDtorFunction =
2032 Function::Create(FunctionType::get(Type::getVoidTy(*C), false),
2033 GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
2034 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
2036 return IRBuilder<>(ReturnInst::Create(*C, AsanDtorBB));
2039 void ModuleAddressSanitizer::InstrumentGlobalsCOFF(
2040 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2041 ArrayRef<Constant *> MetadataInitializers) {
2042 assert(ExtendedGlobals.size() == MetadataInitializers.size());
2043 auto &DL = M.getDataLayout();
2045 for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2046 Constant *Initializer = MetadataInitializers[i];
2047 GlobalVariable *G = ExtendedGlobals[i];
2048 GlobalVariable *Metadata =
2049 CreateMetadataGlobal(M, Initializer, G->getName());
2051 // The MSVC linker always inserts padding when linking incrementally. We
2052 // cope with that by aligning each struct to its size, which must be a power
2053 // of two.
2054 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType());
2055 assert(isPowerOf2_32(SizeOfGlobalStruct) &&
2056 "global metadata will not be padded appropriately");
2057 Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct));
2059 SetComdatForGlobalMetadata(G, Metadata, "");
2063 void ModuleAddressSanitizer::InstrumentGlobalsELF(
2064 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2065 ArrayRef<Constant *> MetadataInitializers,
2066 const std::string &UniqueModuleId) {
2067 assert(ExtendedGlobals.size() == MetadataInitializers.size());
2069 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
2070 for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2071 GlobalVariable *G = ExtendedGlobals[i];
2072 GlobalVariable *Metadata =
2073 CreateMetadataGlobal(M, MetadataInitializers[i], G->getName());
2074 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
2075 Metadata->setMetadata(LLVMContext::MD_associated, MD);
2076 MetadataGlobals[i] = Metadata;
2078 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId);
2081 // Update llvm.compiler.used, adding the new metadata globals. This is
2082 // needed so that during LTO these variables stay alive.
2083 if (!MetadataGlobals.empty())
2084 appendToCompilerUsed(M, MetadataGlobals);
2086 // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2087 // to look up the loaded image that contains it. Second, we can store in it
2088 // whether registration has already occurred, to prevent duplicate
2089 // registration.
2091 // Common linkage ensures that there is only one global per shared library.
2092 GlobalVariable *RegisteredFlag = new GlobalVariable(
2093 M, IntptrTy, false, GlobalVariable::CommonLinkage,
2094 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2095 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2097 // Create start and stop symbols.
2098 GlobalVariable *StartELFMetadata = new GlobalVariable(
2099 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2100 "__start_" + getGlobalMetadataSection());
2101 StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
2102 GlobalVariable *StopELFMetadata = new GlobalVariable(
2103 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2104 "__stop_" + getGlobalMetadataSection());
2105 StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
2107 // Create a call to register the globals with the runtime.
2108 IRB.CreateCall(AsanRegisterElfGlobals,
2109 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2110 IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2111 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2113 // We also need to unregister globals at the end, e.g., when a shared library
2114 // gets closed.
2115 IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M);
2116 IRB_Dtor.CreateCall(AsanUnregisterElfGlobals,
2117 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2118 IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2119 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2122 void ModuleAddressSanitizer::InstrumentGlobalsMachO(
2123 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2124 ArrayRef<Constant *> MetadataInitializers) {
2125 assert(ExtendedGlobals.size() == MetadataInitializers.size());
2127 // On recent Mach-O platforms, use a structure which binds the liveness of
2128 // the global variable to the metadata struct. Keep the list of "Liveness" GV
2129 // created to be added to llvm.compiler.used
2130 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy);
2131 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size());
2133 for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2134 Constant *Initializer = MetadataInitializers[i];
2135 GlobalVariable *G = ExtendedGlobals[i];
2136 GlobalVariable *Metadata =
2137 CreateMetadataGlobal(M, Initializer, G->getName());
2139 // On recent Mach-O platforms, we emit the global metadata in a way that
2140 // allows the linker to properly strip dead globals.
2141 auto LivenessBinder =
2142 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u),
2143 ConstantExpr::getPointerCast(Metadata, IntptrTy));
2144 GlobalVariable *Liveness = new GlobalVariable(
2145 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder,
2146 Twine("__asan_binder_") + G->getName());
2147 Liveness->setSection("__DATA,__asan_liveness,regular,live_support");
2148 LivenessGlobals[i] = Liveness;
2151 // Update llvm.compiler.used, adding the new liveness globals. This is
2152 // needed so that during LTO these variables stay alive. The alternative
2153 // would be to have the linker handling the LTO symbols, but libLTO
2154 // current API does not expose access to the section for each symbol.
2155 if (!LivenessGlobals.empty())
2156 appendToCompilerUsed(M, LivenessGlobals);
2158 // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2159 // to look up the loaded image that contains it. Second, we can store in it
2160 // whether registration has already occurred, to prevent duplicate
2161 // registration.
2163 // common linkage ensures that there is only one global per shared library.
2164 GlobalVariable *RegisteredFlag = new GlobalVariable(
2165 M, IntptrTy, false, GlobalVariable::CommonLinkage,
2166 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2167 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2169 IRB.CreateCall(AsanRegisterImageGlobals,
2170 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2172 // We also need to unregister globals at the end, e.g., when a shared library
2173 // gets closed.
2174 IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M);
2175 IRB_Dtor.CreateCall(AsanUnregisterImageGlobals,
2176 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2179 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray(
2180 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2181 ArrayRef<Constant *> MetadataInitializers) {
2182 assert(ExtendedGlobals.size() == MetadataInitializers.size());
2183 unsigned N = ExtendedGlobals.size();
2184 assert(N > 0);
2186 // On platforms that don't have a custom metadata section, we emit an array
2187 // of global metadata structures.
2188 ArrayType *ArrayOfGlobalStructTy =
2189 ArrayType::get(MetadataInitializers[0]->getType(), N);
2190 auto AllGlobals = new GlobalVariable(
2191 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
2192 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), "");
2193 if (Mapping.Scale > 3)
2194 AllGlobals->setAlignment(Align(1ULL << Mapping.Scale));
2196 IRB.CreateCall(AsanRegisterGlobals,
2197 {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2198 ConstantInt::get(IntptrTy, N)});
2200 // We also need to unregister globals at the end, e.g., when a shared library
2201 // gets closed.
2202 IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M);
2203 IRB_Dtor.CreateCall(AsanUnregisterGlobals,
2204 {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2205 ConstantInt::get(IntptrTy, N)});
2208 // This function replaces all global variables with new variables that have
2209 // trailing redzones. It also creates a function that poisons
2210 // redzones and inserts this function into llvm.global_ctors.
2211 // Sets *CtorComdat to true if the global registration code emitted into the
2212 // asan constructor is comdat-compatible.
2213 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M,
2214 bool *CtorComdat) {
2215 *CtorComdat = false;
2217 SmallVector<GlobalVariable *, 16> GlobalsToChange;
2219 for (auto &G : M.globals()) {
2220 if (ShouldInstrumentGlobal(&G)) GlobalsToChange.push_back(&G);
2223 size_t n = GlobalsToChange.size();
2224 if (n == 0) {
2225 *CtorComdat = true;
2226 return false;
2229 auto &DL = M.getDataLayout();
2231 // A global is described by a structure
2232 // size_t beg;
2233 // size_t size;
2234 // size_t size_with_redzone;
2235 // const char *name;
2236 // const char *module_name;
2237 // size_t has_dynamic_init;
2238 // void *source_location;
2239 // size_t odr_indicator;
2240 // We initialize an array of such structures and pass it to a run-time call.
2241 StructType *GlobalStructTy =
2242 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
2243 IntptrTy, IntptrTy, IntptrTy);
2244 SmallVector<GlobalVariable *, 16> NewGlobals(n);
2245 SmallVector<Constant *, 16> Initializers(n);
2247 bool HasDynamicallyInitializedGlobals = false;
2249 // We shouldn't merge same module names, as this string serves as unique
2250 // module ID in runtime.
2251 GlobalVariable *ModuleName = createPrivateGlobalForString(
2252 M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix);
2254 for (size_t i = 0; i < n; i++) {
2255 static const uint64_t kMaxGlobalRedzone = 1 << 18;
2256 GlobalVariable *G = GlobalsToChange[i];
2258 // FIXME: Metadata should be attched directly to the global directly instead
2259 // of being added to llvm.asan.globals.
2260 auto MD = GlobalsMD.get(G);
2261 StringRef NameForGlobal = G->getName();
2262 // Create string holding the global name (use global name from metadata
2263 // if it's available, otherwise just write the name of global variable).
2264 GlobalVariable *Name = createPrivateGlobalForString(
2265 M, MD.Name.empty() ? NameForGlobal : MD.Name,
2266 /*AllowMerging*/ true, kAsanGenPrefix);
2268 Type *Ty = G->getValueType();
2269 uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
2270 uint64_t MinRZ = MinRedzoneSizeForGlobal();
2271 // MinRZ <= RZ <= kMaxGlobalRedzone
2272 // and trying to make RZ to be ~ 1/4 of SizeInBytes.
2273 uint64_t RZ = std::max(
2274 MinRZ, std::min(kMaxGlobalRedzone, (SizeInBytes / MinRZ / 4) * MinRZ));
2275 uint64_t RightRedzoneSize = RZ;
2276 // Round up to MinRZ
2277 if (SizeInBytes % MinRZ) RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ);
2278 assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0);
2279 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
2281 StructType *NewTy = StructType::get(Ty, RightRedZoneTy);
2282 Constant *NewInitializer = ConstantStruct::get(
2283 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy));
2285 // Create a new global variable with enough space for a redzone.
2286 GlobalValue::LinkageTypes Linkage = G->getLinkage();
2287 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
2288 Linkage = GlobalValue::InternalLinkage;
2289 GlobalVariable *NewGlobal =
2290 new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer,
2291 "", G, G->getThreadLocalMode());
2292 NewGlobal->copyAttributesFrom(G);
2293 NewGlobal->setComdat(G->getComdat());
2294 NewGlobal->setAlignment(MaybeAlign(MinRZ));
2295 // Don't fold globals with redzones. ODR violation detector and redzone
2296 // poisoning implicitly creates a dependence on the global's address, so it
2297 // is no longer valid for it to be marked unnamed_addr.
2298 NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None);
2300 // Move null-terminated C strings to "__asan_cstring" section on Darwin.
2301 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() &&
2302 G->isConstant()) {
2303 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer());
2304 if (Seq && Seq->isCString())
2305 NewGlobal->setSection("__TEXT,__asan_cstring,regular");
2308 // Transfer the debug info. The payload starts at offset zero so we can
2309 // copy the debug info over as is.
2310 SmallVector<DIGlobalVariableExpression *, 1> GVs;
2311 G->getDebugInfo(GVs);
2312 for (auto *GV : GVs)
2313 NewGlobal->addDebugInfo(GV);
2315 Value *Indices2[2];
2316 Indices2[0] = IRB.getInt32(0);
2317 Indices2[1] = IRB.getInt32(0);
2319 G->replaceAllUsesWith(
2320 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true));
2321 NewGlobal->takeName(G);
2322 G->eraseFromParent();
2323 NewGlobals[i] = NewGlobal;
2325 Constant *SourceLoc;
2326 if (!MD.SourceLoc.empty()) {
2327 auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc);
2328 SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy);
2329 } else {
2330 SourceLoc = ConstantInt::get(IntptrTy, 0);
2333 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy());
2334 GlobalValue *InstrumentedGlobal = NewGlobal;
2336 bool CanUsePrivateAliases =
2337 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() ||
2338 TargetTriple.isOSBinFormatWasm();
2339 if (CanUsePrivateAliases && UsePrivateAlias) {
2340 // Create local alias for NewGlobal to avoid crash on ODR between
2341 // instrumented and non-instrumented libraries.
2342 InstrumentedGlobal =
2343 GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal);
2346 // ODR should not happen for local linkage.
2347 if (NewGlobal->hasLocalLinkage()) {
2348 ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1),
2349 IRB.getInt8PtrTy());
2350 } else if (UseOdrIndicator) {
2351 // With local aliases, we need to provide another externally visible
2352 // symbol __odr_asan_XXX to detect ODR violation.
2353 auto *ODRIndicatorSym =
2354 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage,
2355 Constant::getNullValue(IRB.getInt8Ty()),
2356 kODRGenPrefix + NameForGlobal, nullptr,
2357 NewGlobal->getThreadLocalMode());
2359 // Set meaningful attributes for indicator symbol.
2360 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility());
2361 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass());
2362 ODRIndicatorSym->setAlignment(Align::None());
2363 ODRIndicator = ODRIndicatorSym;
2366 Constant *Initializer = ConstantStruct::get(
2367 GlobalStructTy,
2368 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy),
2369 ConstantInt::get(IntptrTy, SizeInBytes),
2370 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
2371 ConstantExpr::getPointerCast(Name, IntptrTy),
2372 ConstantExpr::getPointerCast(ModuleName, IntptrTy),
2373 ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc,
2374 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy));
2376 if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true;
2378 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
2380 Initializers[i] = Initializer;
2383 // Add instrumented globals to llvm.compiler.used list to avoid LTO from
2384 // ConstantMerge'ing them.
2385 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList;
2386 for (size_t i = 0; i < n; i++) {
2387 GlobalVariable *G = NewGlobals[i];
2388 if (G->getName().empty()) continue;
2389 GlobalsToAddToUsedList.push_back(G);
2391 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList));
2393 std::string ELFUniqueModuleId =
2394 (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M)
2395 : "";
2397 if (!ELFUniqueModuleId.empty()) {
2398 InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId);
2399 *CtorComdat = true;
2400 } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) {
2401 InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers);
2402 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) {
2403 InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers);
2404 } else {
2405 InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers);
2408 // Create calls for poisoning before initializers run and unpoisoning after.
2409 if (HasDynamicallyInitializedGlobals)
2410 createInitializerPoisonCalls(M, ModuleName);
2412 LLVM_DEBUG(dbgs() << M);
2413 return true;
2416 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const {
2417 int LongSize = M.getDataLayout().getPointerSizeInBits();
2418 bool isAndroid = Triple(M.getTargetTriple()).isAndroid();
2419 int Version = 8;
2420 // 32-bit Android is one version ahead because of the switch to dynamic
2421 // shadow.
2422 Version += (LongSize == 32 && isAndroid);
2423 return Version;
2426 bool ModuleAddressSanitizer::instrumentModule(Module &M) {
2427 initializeCallbacks(M);
2429 if (CompileKernel)
2430 return false;
2432 // Create a module constructor. A destructor is created lazily because not all
2433 // platforms, and not all modules need it.
2434 std::string AsanVersion = std::to_string(GetAsanVersion(M));
2435 std::string VersionCheckName =
2436 ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : "";
2437 std::tie(AsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions(
2438 M, kAsanModuleCtorName, kAsanInitName, /*InitArgTypes=*/{},
2439 /*InitArgs=*/{}, VersionCheckName);
2441 bool CtorComdat = true;
2442 // TODO(glider): temporarily disabled globals instrumentation for KASan.
2443 if (ClGlobals) {
2444 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator());
2445 InstrumentGlobals(IRB, M, &CtorComdat);
2448 const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple);
2450 // Put the constructor and destructor in comdat if both
2451 // (1) global instrumentation is not TU-specific
2452 // (2) target is ELF.
2453 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) {
2454 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName));
2455 appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction);
2456 if (AsanDtorFunction) {
2457 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName));
2458 appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction);
2460 } else {
2461 appendToGlobalCtors(M, AsanCtorFunction, Priority);
2462 if (AsanDtorFunction)
2463 appendToGlobalDtors(M, AsanDtorFunction, Priority);
2466 return true;
2469 void AddressSanitizer::initializeCallbacks(Module &M) {
2470 IRBuilder<> IRB(*C);
2471 // Create __asan_report* callbacks.
2472 // IsWrite, TypeSize and Exp are encoded in the function name.
2473 for (int Exp = 0; Exp < 2; Exp++) {
2474 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
2475 const std::string TypeStr = AccessIsWrite ? "store" : "load";
2476 const std::string ExpStr = Exp ? "exp_" : "";
2477 const std::string EndingStr = Recover ? "_noabort" : "";
2479 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy};
2480 SmallVector<Type *, 2> Args1{1, IntptrTy};
2481 if (Exp) {
2482 Type *ExpType = Type::getInt32Ty(*C);
2483 Args2.push_back(ExpType);
2484 Args1.push_back(ExpType);
2486 AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2487 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr,
2488 FunctionType::get(IRB.getVoidTy(), Args2, false));
2490 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2491 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr,
2492 FunctionType::get(IRB.getVoidTy(), Args2, false));
2494 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
2495 AccessSizeIndex++) {
2496 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex);
2497 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2498 M.getOrInsertFunction(
2499 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr,
2500 FunctionType::get(IRB.getVoidTy(), Args1, false));
2502 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2503 M.getOrInsertFunction(
2504 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr,
2505 FunctionType::get(IRB.getVoidTy(), Args1, false));
2510 const std::string MemIntrinCallbackPrefix =
2511 CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix;
2512 AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove",
2513 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2514 IRB.getInt8PtrTy(), IntptrTy);
2515 AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy",
2516 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2517 IRB.getInt8PtrTy(), IntptrTy);
2518 AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset",
2519 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2520 IRB.getInt32Ty(), IntptrTy);
2522 AsanHandleNoReturnFunc =
2523 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy());
2525 AsanPtrCmpFunction =
2526 M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy);
2527 AsanPtrSubFunction =
2528 M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy);
2529 // We insert an empty inline asm after __asan_report* to avoid callback merge.
2530 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
2531 StringRef(""), StringRef(""),
2532 /*hasSideEffects=*/true);
2533 if (Mapping.InGlobal)
2534 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow",
2535 ArrayType::get(IRB.getInt8Ty(), 0));
2538 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
2539 // For each NSObject descendant having a +load method, this method is invoked
2540 // by the ObjC runtime before any of the static constructors is called.
2541 // Therefore we need to instrument such methods with a call to __asan_init
2542 // at the beginning in order to initialize our runtime before any access to
2543 // the shadow memory.
2544 // We cannot just ignore these methods, because they may call other
2545 // instrumented functions.
2546 if (F.getName().find(" load]") != std::string::npos) {
2547 FunctionCallee AsanInitFunction =
2548 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {});
2549 IRBuilder<> IRB(&F.front(), F.front().begin());
2550 IRB.CreateCall(AsanInitFunction, {});
2551 return true;
2553 return false;
2556 void AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) {
2557 // Generate code only when dynamic addressing is needed.
2558 if (Mapping.Offset != kDynamicShadowSentinel)
2559 return;
2561 IRBuilder<> IRB(&F.front().front());
2562 if (Mapping.InGlobal) {
2563 if (ClWithIfuncSuppressRemat) {
2564 // An empty inline asm with input reg == output reg.
2565 // An opaque pointer-to-int cast, basically.
2566 InlineAsm *Asm = InlineAsm::get(
2567 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false),
2568 StringRef(""), StringRef("=r,0"),
2569 /*hasSideEffects=*/false);
2570 LocalDynamicShadow =
2571 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow");
2572 } else {
2573 LocalDynamicShadow =
2574 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow");
2576 } else {
2577 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal(
2578 kAsanShadowMemoryDynamicAddress, IntptrTy);
2579 LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress);
2583 void AddressSanitizer::markEscapedLocalAllocas(Function &F) {
2584 // Find the one possible call to llvm.localescape and pre-mark allocas passed
2585 // to it as uninteresting. This assumes we haven't started processing allocas
2586 // yet. This check is done up front because iterating the use list in
2587 // isInterestingAlloca would be algorithmically slower.
2588 assert(ProcessedAllocas.empty() && "must process localescape before allocas");
2590 // Try to get the declaration of llvm.localescape. If it's not in the module,
2591 // we can exit early.
2592 if (!F.getParent()->getFunction("llvm.localescape")) return;
2594 // Look for a call to llvm.localescape call in the entry block. It can't be in
2595 // any other block.
2596 for (Instruction &I : F.getEntryBlock()) {
2597 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
2598 if (II && II->getIntrinsicID() == Intrinsic::localescape) {
2599 // We found a call. Mark all the allocas passed in as uninteresting.
2600 for (Value *Arg : II->arg_operands()) {
2601 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
2602 assert(AI && AI->isStaticAlloca() &&
2603 "non-static alloca arg to localescape");
2604 ProcessedAllocas[AI] = false;
2606 break;
2611 bool AddressSanitizer::instrumentFunction(Function &F,
2612 const TargetLibraryInfo *TLI) {
2613 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
2614 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false;
2615 if (F.getName().startswith("__asan_")) return false;
2617 bool FunctionModified = false;
2619 // If needed, insert __asan_init before checking for SanitizeAddress attr.
2620 // This function needs to be called even if the function body is not
2621 // instrumented.
2622 if (maybeInsertAsanInitAtFunctionEntry(F))
2623 FunctionModified = true;
2625 // Leave if the function doesn't need instrumentation.
2626 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified;
2628 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
2630 initializeCallbacks(*F.getParent());
2632 FunctionStateRAII CleanupObj(this);
2634 maybeInsertDynamicShadowAtFunctionEntry(F);
2636 // We can't instrument allocas used with llvm.localescape. Only static allocas
2637 // can be passed to that intrinsic.
2638 markEscapedLocalAllocas(F);
2640 // We want to instrument every address only once per basic block (unless there
2641 // are calls between uses).
2642 SmallPtrSet<Value *, 16> TempsToInstrument;
2643 SmallVector<Instruction *, 16> ToInstrument;
2644 SmallVector<Instruction *, 8> NoReturnCalls;
2645 SmallVector<BasicBlock *, 16> AllBlocks;
2646 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts;
2647 int NumAllocas = 0;
2648 bool IsWrite;
2649 unsigned Alignment;
2650 uint64_t TypeSize;
2652 // Fill the set of memory operations to instrument.
2653 for (auto &BB : F) {
2654 AllBlocks.push_back(&BB);
2655 TempsToInstrument.clear();
2656 int NumInsnsPerBB = 0;
2657 for (auto &Inst : BB) {
2658 if (LooksLikeCodeInBug11395(&Inst)) return false;
2659 Value *MaybeMask = nullptr;
2660 if (Value *Addr = isInterestingMemoryAccess(&Inst, &IsWrite, &TypeSize,
2661 &Alignment, &MaybeMask)) {
2662 if (ClOpt && ClOptSameTemp) {
2663 // If we have a mask, skip instrumentation if we've already
2664 // instrumented the full object. But don't add to TempsToInstrument
2665 // because we might get another load/store with a different mask.
2666 if (MaybeMask) {
2667 if (TempsToInstrument.count(Addr))
2668 continue; // We've seen this (whole) temp in the current BB.
2669 } else {
2670 if (!TempsToInstrument.insert(Addr).second)
2671 continue; // We've seen this temp in the current BB.
2674 } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) &&
2675 isInterestingPointerComparison(&Inst)) ||
2676 ((ClInvalidPointerPairs || ClInvalidPointerSub) &&
2677 isInterestingPointerSubtraction(&Inst))) {
2678 PointerComparisonsOrSubtracts.push_back(&Inst);
2679 continue;
2680 } else if (isa<MemIntrinsic>(Inst)) {
2681 // ok, take it.
2682 } else {
2683 if (isa<AllocaInst>(Inst)) NumAllocas++;
2684 CallSite CS(&Inst);
2685 if (CS) {
2686 // A call inside BB.
2687 TempsToInstrument.clear();
2688 if (CS.doesNotReturn() && !CS->hasMetadata("nosanitize"))
2689 NoReturnCalls.push_back(CS.getInstruction());
2691 if (CallInst *CI = dyn_cast<CallInst>(&Inst))
2692 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI);
2693 continue;
2695 ToInstrument.push_back(&Inst);
2696 NumInsnsPerBB++;
2697 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break;
2701 bool UseCalls =
2702 (ClInstrumentationWithCallsThreshold >= 0 &&
2703 ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold);
2704 const DataLayout &DL = F.getParent()->getDataLayout();
2705 ObjectSizeOpts ObjSizeOpts;
2706 ObjSizeOpts.RoundToAlign = true;
2707 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts);
2709 // Instrument.
2710 int NumInstrumented = 0;
2711 for (auto Inst : ToInstrument) {
2712 if (ClDebugMin < 0 || ClDebugMax < 0 ||
2713 (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
2714 if (isInterestingMemoryAccess(Inst, &IsWrite, &TypeSize, &Alignment))
2715 instrumentMop(ObjSizeVis, Inst, UseCalls,
2716 F.getParent()->getDataLayout());
2717 else
2718 instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
2720 NumInstrumented++;
2723 FunctionStackPoisoner FSP(F, *this);
2724 bool ChangedStack = FSP.runOnFunction();
2726 // We must unpoison the stack before NoReturn calls (throw, _exit, etc).
2727 // See e.g. https://github.com/google/sanitizers/issues/37
2728 for (auto CI : NoReturnCalls) {
2729 IRBuilder<> IRB(CI);
2730 IRB.CreateCall(AsanHandleNoReturnFunc, {});
2733 for (auto Inst : PointerComparisonsOrSubtracts) {
2734 instrumentPointerComparisonOrSubtraction(Inst);
2735 NumInstrumented++;
2738 if (NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty())
2739 FunctionModified = true;
2741 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " "
2742 << F << "\n");
2744 return FunctionModified;
2747 // Workaround for bug 11395: we don't want to instrument stack in functions
2748 // with large assembly blobs (32-bit only), otherwise reg alloc may crash.
2749 // FIXME: remove once the bug 11395 is fixed.
2750 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
2751 if (LongSize != 32) return false;
2752 CallInst *CI = dyn_cast<CallInst>(I);
2753 if (!CI || !CI->isInlineAsm()) return false;
2754 if (CI->getNumArgOperands() <= 5) return false;
2755 // We have inline assembly with quite a few arguments.
2756 return true;
2759 void FunctionStackPoisoner::initializeCallbacks(Module &M) {
2760 IRBuilder<> IRB(*C);
2761 for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) {
2762 std::string Suffix = itostr(i);
2763 AsanStackMallocFunc[i] = M.getOrInsertFunction(
2764 kAsanStackMallocNameTemplate + Suffix, IntptrTy, IntptrTy);
2765 AsanStackFreeFunc[i] =
2766 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
2767 IRB.getVoidTy(), IntptrTy, IntptrTy);
2769 if (ASan.UseAfterScope) {
2770 AsanPoisonStackMemoryFunc = M.getOrInsertFunction(
2771 kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2772 AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction(
2773 kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2776 for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) {
2777 std::ostringstream Name;
2778 Name << kAsanSetShadowPrefix;
2779 Name << std::setw(2) << std::setfill('0') << std::hex << Val;
2780 AsanSetShadowFunc[Val] =
2781 M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy);
2784 AsanAllocaPoisonFunc = M.getOrInsertFunction(
2785 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
2786 AsanAllocasUnpoisonFunc = M.getOrInsertFunction(
2787 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
2790 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
2791 ArrayRef<uint8_t> ShadowBytes,
2792 size_t Begin, size_t End,
2793 IRBuilder<> &IRB,
2794 Value *ShadowBase) {
2795 if (Begin >= End)
2796 return;
2798 const size_t LargestStoreSizeInBytes =
2799 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8);
2801 const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian();
2803 // Poison given range in shadow using larges store size with out leading and
2804 // trailing zeros in ShadowMask. Zeros never change, so they need neither
2805 // poisoning nor up-poisoning. Still we don't mind if some of them get into a
2806 // middle of a store.
2807 for (size_t i = Begin; i < End;) {
2808 if (!ShadowMask[i]) {
2809 assert(!ShadowBytes[i]);
2810 ++i;
2811 continue;
2814 size_t StoreSizeInBytes = LargestStoreSizeInBytes;
2815 // Fit store size into the range.
2816 while (StoreSizeInBytes > End - i)
2817 StoreSizeInBytes /= 2;
2819 // Minimize store size by trimming trailing zeros.
2820 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) {
2821 while (j <= StoreSizeInBytes / 2)
2822 StoreSizeInBytes /= 2;
2825 uint64_t Val = 0;
2826 for (size_t j = 0; j < StoreSizeInBytes; j++) {
2827 if (IsLittleEndian)
2828 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
2829 else
2830 Val = (Val << 8) | ShadowBytes[i + j];
2833 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
2834 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val);
2835 IRB.CreateAlignedStore(
2836 Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 1);
2838 i += StoreSizeInBytes;
2842 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
2843 ArrayRef<uint8_t> ShadowBytes,
2844 IRBuilder<> &IRB, Value *ShadowBase) {
2845 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase);
2848 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
2849 ArrayRef<uint8_t> ShadowBytes,
2850 size_t Begin, size_t End,
2851 IRBuilder<> &IRB, Value *ShadowBase) {
2852 assert(ShadowMask.size() == ShadowBytes.size());
2853 size_t Done = Begin;
2854 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) {
2855 if (!ShadowMask[i]) {
2856 assert(!ShadowBytes[i]);
2857 continue;
2859 uint8_t Val = ShadowBytes[i];
2860 if (!AsanSetShadowFunc[Val])
2861 continue;
2863 // Skip same values.
2864 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) {
2867 if (j - i >= ClMaxInlinePoisoningSize) {
2868 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase);
2869 IRB.CreateCall(AsanSetShadowFunc[Val],
2870 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)),
2871 ConstantInt::get(IntptrTy, j - i)});
2872 Done = j;
2876 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase);
2879 // Fake stack allocator (asan_fake_stack.h) has 11 size classes
2880 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
2881 static int StackMallocSizeClass(uint64_t LocalStackSize) {
2882 assert(LocalStackSize <= kMaxStackMallocSize);
2883 uint64_t MaxSize = kMinStackMallocSize;
2884 for (int i = 0;; i++, MaxSize *= 2)
2885 if (LocalStackSize <= MaxSize) return i;
2886 llvm_unreachable("impossible LocalStackSize");
2889 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() {
2890 Instruction *CopyInsertPoint = &F.front().front();
2891 if (CopyInsertPoint == ASan.LocalDynamicShadow) {
2892 // Insert after the dynamic shadow location is determined
2893 CopyInsertPoint = CopyInsertPoint->getNextNode();
2894 assert(CopyInsertPoint);
2896 IRBuilder<> IRB(CopyInsertPoint);
2897 const DataLayout &DL = F.getParent()->getDataLayout();
2898 for (Argument &Arg : F.args()) {
2899 if (Arg.hasByValAttr()) {
2900 Type *Ty = Arg.getType()->getPointerElementType();
2901 unsigned Alignment = Arg.getParamAlignment();
2902 if (Alignment == 0)
2903 Alignment = DL.getABITypeAlignment(Ty);
2905 AllocaInst *AI = IRB.CreateAlloca(
2906 Ty, nullptr,
2907 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) +
2908 ".byval");
2909 AI->setAlignment(Align(Alignment));
2910 Arg.replaceAllUsesWith(AI);
2912 uint64_t AllocSize = DL.getTypeAllocSize(Ty);
2913 IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize);
2918 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
2919 Value *ValueIfTrue,
2920 Instruction *ThenTerm,
2921 Value *ValueIfFalse) {
2922 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
2923 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
2924 PHI->addIncoming(ValueIfFalse, CondBlock);
2925 BasicBlock *ThenBlock = ThenTerm->getParent();
2926 PHI->addIncoming(ValueIfTrue, ThenBlock);
2927 return PHI;
2930 Value *FunctionStackPoisoner::createAllocaForLayout(
2931 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
2932 AllocaInst *Alloca;
2933 if (Dynamic) {
2934 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
2935 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
2936 "MyAlloca");
2937 } else {
2938 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
2939 nullptr, "MyAlloca");
2940 assert(Alloca->isStaticAlloca());
2942 assert((ClRealignStack & (ClRealignStack - 1)) == 0);
2943 size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack);
2944 Alloca->setAlignment(MaybeAlign(FrameAlignment));
2945 return IRB.CreatePointerCast(Alloca, IntptrTy);
2948 void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
2949 BasicBlock &FirstBB = *F.begin();
2950 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin()));
2951 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr);
2952 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout);
2953 DynamicAllocaLayout->setAlignment(Align(32));
2956 void FunctionStackPoisoner::processDynamicAllocas() {
2957 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) {
2958 assert(DynamicAllocaPoisonCallVec.empty());
2959 return;
2962 // Insert poison calls for lifetime intrinsics for dynamic allocas.
2963 for (const auto &APC : DynamicAllocaPoisonCallVec) {
2964 assert(APC.InsBefore);
2965 assert(APC.AI);
2966 assert(ASan.isInterestingAlloca(*APC.AI));
2967 assert(!APC.AI->isStaticAlloca());
2969 IRBuilder<> IRB(APC.InsBefore);
2970 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
2971 // Dynamic allocas will be unpoisoned unconditionally below in
2972 // unpoisonDynamicAllocas.
2973 // Flag that we need unpoison static allocas.
2976 // Handle dynamic allocas.
2977 createDynamicAllocasInitStorage();
2978 for (auto &AI : DynamicAllocaVec)
2979 handleDynamicAllocaCall(AI);
2980 unpoisonDynamicAllocas();
2983 void FunctionStackPoisoner::processStaticAllocas() {
2984 if (AllocaVec.empty()) {
2985 assert(StaticAllocaPoisonCallVec.empty());
2986 return;
2989 int StackMallocIdx = -1;
2990 DebugLoc EntryDebugLocation;
2991 if (auto SP = F.getSubprogram())
2992 EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP);
2994 Instruction *InsBefore = AllocaVec[0];
2995 IRBuilder<> IRB(InsBefore);
2996 IRB.SetCurrentDebugLocation(EntryDebugLocation);
2998 // Make sure non-instrumented allocas stay in the entry block. Otherwise,
2999 // debug info is broken, because only entry-block allocas are treated as
3000 // regular stack slots.
3001 auto InsBeforeB = InsBefore->getParent();
3002 assert(InsBeforeB == &F.getEntryBlock());
3003 for (auto *AI : StaticAllocasToMoveUp)
3004 if (AI->getParent() == InsBeforeB)
3005 AI->moveBefore(InsBefore);
3007 // If we have a call to llvm.localescape, keep it in the entry block.
3008 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore);
3010 SmallVector<ASanStackVariableDescription, 16> SVD;
3011 SVD.reserve(AllocaVec.size());
3012 for (AllocaInst *AI : AllocaVec) {
3013 ASanStackVariableDescription D = {AI->getName().data(),
3014 ASan.getAllocaSizeInBytes(*AI),
3016 AI->getAlignment(),
3020 SVD.push_back(D);
3023 // Minimal header size (left redzone) is 4 pointers,
3024 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
3025 size_t Granularity = 1ULL << Mapping.Scale;
3026 size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity);
3027 const ASanStackFrameLayout &L =
3028 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize);
3030 // Build AllocaToSVDMap for ASanStackVariableDescription lookup.
3031 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap;
3032 for (auto &Desc : SVD)
3033 AllocaToSVDMap[Desc.AI] = &Desc;
3035 // Update SVD with information from lifetime intrinsics.
3036 for (const auto &APC : StaticAllocaPoisonCallVec) {
3037 assert(APC.InsBefore);
3038 assert(APC.AI);
3039 assert(ASan.isInterestingAlloca(*APC.AI));
3040 assert(APC.AI->isStaticAlloca());
3042 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3043 Desc.LifetimeSize = Desc.Size;
3044 if (const DILocation *FnLoc = EntryDebugLocation.get()) {
3045 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) {
3046 if (LifetimeLoc->getFile() == FnLoc->getFile())
3047 if (unsigned Line = LifetimeLoc->getLine())
3048 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line);
3053 auto DescriptionString = ComputeASanStackFrameDescription(SVD);
3054 LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n");
3055 uint64_t LocalStackSize = L.FrameSize;
3056 bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel &&
3057 LocalStackSize <= kMaxStackMallocSize;
3058 bool DoDynamicAlloca = ClDynamicAllocaStack;
3059 // Don't do dynamic alloca or stack malloc if:
3060 // 1) There is inline asm: too often it makes assumptions on which registers
3061 // are available.
3062 // 2) There is a returns_twice call (typically setjmp), which is
3063 // optimization-hostile, and doesn't play well with introduced indirect
3064 // register-relative calculation of local variable addresses.
3065 DoDynamicAlloca &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
3066 DoStackMalloc &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
3068 Value *StaticAlloca =
3069 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);
3071 Value *FakeStack;
3072 Value *LocalStackBase;
3073 Value *LocalStackBaseAlloca;
3074 uint8_t DIExprFlags = DIExpression::ApplyOffset;
3076 if (DoStackMalloc) {
3077 LocalStackBaseAlloca =
3078 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base");
3079 // void *FakeStack = __asan_option_detect_stack_use_after_return
3080 // ? __asan_stack_malloc_N(LocalStackSize)
3081 // : nullptr;
3082 // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize);
3083 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal(
3084 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty());
3085 Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE(
3086 IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn),
3087 Constant::getNullValue(IRB.getInt32Ty()));
3088 Instruction *Term =
3089 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false);
3090 IRBuilder<> IRBIf(Term);
3091 IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
3092 StackMallocIdx = StackMallocSizeClass(LocalStackSize);
3093 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
3094 Value *FakeStackValue =
3095 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx],
3096 ConstantInt::get(IntptrTy, LocalStackSize));
3097 IRB.SetInsertPoint(InsBefore);
3098 IRB.SetCurrentDebugLocation(EntryDebugLocation);
3099 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term,
3100 ConstantInt::get(IntptrTy, 0));
3102 Value *NoFakeStack =
3103 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
3104 Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
3105 IRBIf.SetInsertPoint(Term);
3106 IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
3107 Value *AllocaValue =
3108 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
3110 IRB.SetInsertPoint(InsBefore);
3111 IRB.SetCurrentDebugLocation(EntryDebugLocation);
3112 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
3113 IRB.SetCurrentDebugLocation(EntryDebugLocation);
3114 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca);
3115 DIExprFlags |= DIExpression::DerefBefore;
3116 } else {
3117 // void *FakeStack = nullptr;
3118 // void *LocalStackBase = alloca(LocalStackSize);
3119 FakeStack = ConstantInt::get(IntptrTy, 0);
3120 LocalStackBase =
3121 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
3122 LocalStackBaseAlloca = LocalStackBase;
3125 // Replace Alloca instructions with base+offset.
3126 for (const auto &Desc : SVD) {
3127 AllocaInst *AI = Desc.AI;
3128 replaceDbgDeclareForAlloca(AI, LocalStackBaseAlloca, DIB, DIExprFlags,
3129 Desc.Offset);
3130 Value *NewAllocaPtr = IRB.CreateIntToPtr(
3131 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
3132 AI->getType());
3133 AI->replaceAllUsesWith(NewAllocaPtr);
3136 // The left-most redzone has enough space for at least 4 pointers.
3137 // Write the Magic value to redzone[0].
3138 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
3139 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
3140 BasePlus0);
3141 // Write the frame description constant to redzone[1].
3142 Value *BasePlus1 = IRB.CreateIntToPtr(
3143 IRB.CreateAdd(LocalStackBase,
3144 ConstantInt::get(IntptrTy, ASan.LongSize / 8)),
3145 IntptrPtrTy);
3146 GlobalVariable *StackDescriptionGlobal =
3147 createPrivateGlobalForString(*F.getParent(), DescriptionString,
3148 /*AllowMerging*/ true, kAsanGenPrefix);
3149 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
3150 IRB.CreateStore(Description, BasePlus1);
3151 // Write the PC to redzone[2].
3152 Value *BasePlus2 = IRB.CreateIntToPtr(
3153 IRB.CreateAdd(LocalStackBase,
3154 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)),
3155 IntptrPtrTy);
3156 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
3158 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L);
3160 // Poison the stack red zones at the entry.
3161 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
3162 // As mask we must use most poisoned case: red zones and after scope.
3163 // As bytes we can use either the same or just red zones only.
3164 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase);
3166 if (!StaticAllocaPoisonCallVec.empty()) {
3167 const auto &ShadowInScope = GetShadowBytes(SVD, L);
3169 // Poison static allocas near lifetime intrinsics.
3170 for (const auto &APC : StaticAllocaPoisonCallVec) {
3171 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3172 assert(Desc.Offset % L.Granularity == 0);
3173 size_t Begin = Desc.Offset / L.Granularity;
3174 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity;
3176 IRBuilder<> IRB(APC.InsBefore);
3177 copyToShadow(ShadowAfterScope,
3178 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End,
3179 IRB, ShadowBase);
3183 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0);
3184 SmallVector<uint8_t, 64> ShadowAfterReturn;
3186 // (Un)poison the stack before all ret instructions.
3187 for (auto Ret : RetVec) {
3188 IRBuilder<> IRBRet(Ret);
3189 // Mark the current frame as retired.
3190 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
3191 BasePlus0);
3192 if (DoStackMalloc) {
3193 assert(StackMallocIdx >= 0);
3194 // if FakeStack != 0 // LocalStackBase == FakeStack
3195 // // In use-after-return mode, poison the whole stack frame.
3196 // if StackMallocIdx <= 4
3197 // // For small sizes inline the whole thing:
3198 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
3199 // **SavedFlagPtr(FakeStack) = 0
3200 // else
3201 // __asan_stack_free_N(FakeStack, LocalStackSize)
3202 // else
3203 // <This is not a fake stack; unpoison the redzones>
3204 Value *Cmp =
3205 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
3206 Instruction *ThenTerm, *ElseTerm;
3207 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
3209 IRBuilder<> IRBPoison(ThenTerm);
3210 if (StackMallocIdx <= 4) {
3211 int ClassSize = kMinStackMallocSize << StackMallocIdx;
3212 ShadowAfterReturn.resize(ClassSize / L.Granularity,
3213 kAsanStackUseAfterReturnMagic);
3214 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison,
3215 ShadowBase);
3216 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
3217 FakeStack,
3218 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
3219 Value *SavedFlagPtr = IRBPoison.CreateLoad(
3220 IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
3221 IRBPoison.CreateStore(
3222 Constant::getNullValue(IRBPoison.getInt8Ty()),
3223 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
3224 } else {
3225 // For larger frames call __asan_stack_free_*.
3226 IRBPoison.CreateCall(
3227 AsanStackFreeFunc[StackMallocIdx],
3228 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)});
3231 IRBuilder<> IRBElse(ElseTerm);
3232 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase);
3233 } else {
3234 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase);
3238 // We are done. Remove the old unused alloca instructions.
3239 for (auto AI : AllocaVec) AI->eraseFromParent();
3242 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
3243 IRBuilder<> &IRB, bool DoPoison) {
3244 // For now just insert the call to ASan runtime.
3245 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
3246 Value *SizeArg = ConstantInt::get(IntptrTy, Size);
3247 IRB.CreateCall(
3248 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc,
3249 {AddrArg, SizeArg});
3252 // Handling llvm.lifetime intrinsics for a given %alloca:
3253 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
3254 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
3255 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory
3256 // could be poisoned by previous llvm.lifetime.end instruction, as the
3257 // variable may go in and out of scope several times, e.g. in loops).
3258 // (3) if we poisoned at least one %alloca in a function,
3259 // unpoison the whole stack frame at function exit.
3260 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) {
3261 IRBuilder<> IRB(AI);
3263 const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment());
3264 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;
3266 Value *Zero = Constant::getNullValue(IntptrTy);
3267 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
3268 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
3270 // Since we need to extend alloca with additional memory to locate
3271 // redzones, and OldSize is number of allocated blocks with
3272 // ElementSize size, get allocated memory size in bytes by
3273 // OldSize * ElementSize.
3274 const unsigned ElementSize =
3275 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType());
3276 Value *OldSize =
3277 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false),
3278 ConstantInt::get(IntptrTy, ElementSize));
3280 // PartialSize = OldSize % 32
3281 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);
3283 // Misalign = kAllocaRzSize - PartialSize;
3284 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);
3286 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
3287 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
3288 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);
3290 // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize
3291 // Align is added to locate left redzone, PartialPadding for possible
3292 // partial redzone and kAllocaRzSize for right redzone respectively.
3293 Value *AdditionalChunkSize = IRB.CreateAdd(
3294 ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding);
3296 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);
3298 // Insert new alloca with new NewSize and Align params.
3299 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
3300 NewAlloca->setAlignment(MaybeAlign(Align));
3302 // NewAddress = Address + Align
3303 Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
3304 ConstantInt::get(IntptrTy, Align));
3306 // Insert __asan_alloca_poison call for new created alloca.
3307 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize});
3309 // Store the last alloca's address to DynamicAllocaLayout. We'll need this
3310 // for unpoisoning stuff.
3311 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout);
3313 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());
3315 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
3316 AI->replaceAllUsesWith(NewAddressPtr);
3318 // We are done. Erase old alloca from parent.
3319 AI->eraseFromParent();
3322 // isSafeAccess returns true if Addr is always inbounds with respect to its
3323 // base object. For example, it is a field access or an array access with
3324 // constant inbounds index.
3325 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis,
3326 Value *Addr, uint64_t TypeSize) const {
3327 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr);
3328 if (!ObjSizeVis.bothKnown(SizeOffset)) return false;
3329 uint64_t Size = SizeOffset.first.getZExtValue();
3330 int64_t Offset = SizeOffset.second.getSExtValue();
3331 // Three checks are required to ensure safety:
3332 // . Offset >= 0 (since the offset is given from the base ptr)
3333 // . Size >= Offset (unsigned)
3334 // . Size - Offset >= NeededSize (unsigned)
3335 return Offset >= 0 && Size >= uint64_t(Offset) &&
3336 Size - uint64_t(Offset) >= TypeSize / 8;