[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / utils / TableGen / DAGISelMatcherOpt.cpp
blob6746fdd676a7fd1a4aa11a2cdff1ff5e6ba4ddc2
1 //===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the DAG Matcher optimizer.
11 //===----------------------------------------------------------------------===//
13 #include "DAGISelMatcher.h"
14 #include "CodeGenDAGPatterns.h"
15 #include "llvm/ADT/StringSet.h"
16 #include "llvm/Support/Debug.h"
17 #include "llvm/Support/raw_ostream.h"
18 using namespace llvm;
20 #define DEBUG_TYPE "isel-opt"
22 /// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record'
23 /// into single compound nodes like RecordChild.
24 static void ContractNodes(std::unique_ptr<Matcher> &MatcherPtr,
25 const CodeGenDAGPatterns &CGP) {
26 // If we reached the end of the chain, we're done.
27 Matcher *N = MatcherPtr.get();
28 if (!N) return;
30 // If we have a scope node, walk down all of the children.
31 if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
32 for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
33 std::unique_ptr<Matcher> Child(Scope->takeChild(i));
34 ContractNodes(Child, CGP);
35 Scope->resetChild(i, Child.release());
37 return;
40 // If we found a movechild node with a node that comes in a 'foochild' form,
41 // transform it.
42 if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) {
43 Matcher *New = nullptr;
44 if (RecordMatcher *RM = dyn_cast<RecordMatcher>(MC->getNext()))
45 if (MC->getChildNo() < 8) // Only have RecordChild0...7
46 New = new RecordChildMatcher(MC->getChildNo(), RM->getWhatFor(),
47 RM->getResultNo());
49 if (CheckTypeMatcher *CT = dyn_cast<CheckTypeMatcher>(MC->getNext()))
50 if (MC->getChildNo() < 8 && // Only have CheckChildType0...7
51 CT->getResNo() == 0) // CheckChildType checks res #0
52 New = new CheckChildTypeMatcher(MC->getChildNo(), CT->getType());
54 if (CheckSameMatcher *CS = dyn_cast<CheckSameMatcher>(MC->getNext()))
55 if (MC->getChildNo() < 4) // Only have CheckChildSame0...3
56 New = new CheckChildSameMatcher(MC->getChildNo(), CS->getMatchNumber());
58 if (CheckIntegerMatcher *CI = dyn_cast<CheckIntegerMatcher>(MC->getNext()))
59 if (MC->getChildNo() < 5) // Only have CheckChildInteger0...4
60 New = new CheckChildIntegerMatcher(MC->getChildNo(), CI->getValue());
62 if (auto *CCC = dyn_cast<CheckCondCodeMatcher>(MC->getNext()))
63 if (MC->getChildNo() == 2) // Only have CheckChild2CondCode
64 New = new CheckChild2CondCodeMatcher(CCC->getCondCodeName());
66 if (New) {
67 // Insert the new node.
68 New->setNext(MatcherPtr.release());
69 MatcherPtr.reset(New);
70 // Remove the old one.
71 MC->setNext(MC->getNext()->takeNext());
72 return ContractNodes(MatcherPtr, CGP);
76 // Zap movechild -> moveparent.
77 if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N))
78 if (MoveParentMatcher *MP =
79 dyn_cast<MoveParentMatcher>(MC->getNext())) {
80 MatcherPtr.reset(MP->takeNext());
81 return ContractNodes(MatcherPtr, CGP);
84 // Turn EmitNode->CompleteMatch into MorphNodeTo if we can.
85 if (EmitNodeMatcher *EN = dyn_cast<EmitNodeMatcher>(N))
86 if (CompleteMatchMatcher *CM =
87 dyn_cast<CompleteMatchMatcher>(EN->getNext())) {
88 // We can only use MorphNodeTo if the result values match up.
89 unsigned RootResultFirst = EN->getFirstResultSlot();
90 bool ResultsMatch = true;
91 for (unsigned i = 0, e = CM->getNumResults(); i != e; ++i)
92 if (CM->getResult(i) != RootResultFirst+i)
93 ResultsMatch = false;
95 // If the selected node defines a subset of the glue/chain results, we
96 // can't use MorphNodeTo. For example, we can't use MorphNodeTo if the
97 // matched pattern has a chain but the root node doesn't.
98 const PatternToMatch &Pattern = CM->getPattern();
100 if (!EN->hasChain() &&
101 Pattern.getSrcPattern()->NodeHasProperty(SDNPHasChain, CGP))
102 ResultsMatch = false;
104 // If the matched node has glue and the output root doesn't, we can't
105 // use MorphNodeTo.
107 // NOTE: Strictly speaking, we don't have to check for glue here
108 // because the code in the pattern generator doesn't handle it right. We
109 // do it anyway for thoroughness.
110 if (!EN->hasOutFlag() &&
111 Pattern.getSrcPattern()->NodeHasProperty(SDNPOutGlue, CGP))
112 ResultsMatch = false;
115 // If the root result node defines more results than the source root node
116 // *and* has a chain or glue input, then we can't match it because it
117 // would end up replacing the extra result with the chain/glue.
118 #if 0
119 if ((EN->hasGlue() || EN->hasChain()) &&
120 EN->getNumNonChainGlueVTs() > ... need to get no results reliably ...)
121 ResultMatch = false;
122 #endif
124 if (ResultsMatch) {
125 const SmallVectorImpl<MVT::SimpleValueType> &VTs = EN->getVTList();
126 const SmallVectorImpl<unsigned> &Operands = EN->getOperandList();
127 MatcherPtr.reset(new MorphNodeToMatcher(EN->getOpcodeName(),
128 VTs, Operands,
129 EN->hasChain(), EN->hasInFlag(),
130 EN->hasOutFlag(),
131 EN->hasMemRefs(),
132 EN->getNumFixedArityOperands(),
133 Pattern));
134 return;
137 // FIXME2: Kill off all the SelectionDAG::SelectNodeTo and getMachineNode
138 // variants.
141 ContractNodes(N->getNextPtr(), CGP);
144 // If we have a CheckType/CheckChildType/Record node followed by a
145 // CheckOpcode, invert the two nodes. We prefer to do structural checks
146 // before type checks, as this opens opportunities for factoring on targets
147 // like X86 where many operations are valid on multiple types.
148 if ((isa<CheckTypeMatcher>(N) || isa<CheckChildTypeMatcher>(N) ||
149 isa<RecordMatcher>(N)) &&
150 isa<CheckOpcodeMatcher>(N->getNext())) {
151 // Unlink the two nodes from the list.
152 Matcher *CheckType = MatcherPtr.release();
153 Matcher *CheckOpcode = CheckType->takeNext();
154 Matcher *Tail = CheckOpcode->takeNext();
156 // Relink them.
157 MatcherPtr.reset(CheckOpcode);
158 CheckOpcode->setNext(CheckType);
159 CheckType->setNext(Tail);
160 return ContractNodes(MatcherPtr, CGP);
164 /// FindNodeWithKind - Scan a series of matchers looking for a matcher with a
165 /// specified kind. Return null if we didn't find one otherwise return the
166 /// matcher.
167 static Matcher *FindNodeWithKind(Matcher *M, Matcher::KindTy Kind) {
168 for (; M; M = M->getNext())
169 if (M->getKind() == Kind)
170 return M;
171 return nullptr;
175 /// FactorNodes - Turn matches like this:
176 /// Scope
177 /// OPC_CheckType i32
178 /// ABC
179 /// OPC_CheckType i32
180 /// XYZ
181 /// into:
182 /// OPC_CheckType i32
183 /// Scope
184 /// ABC
185 /// XYZ
187 static void FactorNodes(std::unique_ptr<Matcher> &InputMatcherPtr) {
188 // Look for a push node. Iterates instead of recurses to reduce stack usage.
189 ScopeMatcher *Scope = nullptr;
190 std::unique_ptr<Matcher> *RebindableMatcherPtr = &InputMatcherPtr;
191 while (!Scope) {
192 // If we reached the end of the chain, we're done.
193 Matcher *N = RebindableMatcherPtr->get();
194 if (!N) return;
196 // If this is not a push node, just scan for one.
197 Scope = dyn_cast<ScopeMatcher>(N);
198 if (!Scope)
199 RebindableMatcherPtr = &(N->getNextPtr());
201 std::unique_ptr<Matcher> &MatcherPtr = *RebindableMatcherPtr;
203 // Okay, pull together the children of the scope node into a vector so we can
204 // inspect it more easily.
205 SmallVector<Matcher*, 32> OptionsToMatch;
207 for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
208 // Factor the subexpression.
209 std::unique_ptr<Matcher> Child(Scope->takeChild(i));
210 FactorNodes(Child);
212 if (Child) {
213 // If the child is a ScopeMatcher we can just merge its contents.
214 if (auto *SM = dyn_cast<ScopeMatcher>(Child.get())) {
215 for (unsigned j = 0, e = SM->getNumChildren(); j != e; ++j)
216 OptionsToMatch.push_back(SM->takeChild(j));
217 } else {
218 OptionsToMatch.push_back(Child.release());
223 SmallVector<Matcher*, 32> NewOptionsToMatch;
225 // Loop over options to match, merging neighboring patterns with identical
226 // starting nodes into a shared matcher.
227 for (unsigned OptionIdx = 0, e = OptionsToMatch.size(); OptionIdx != e;) {
228 // Find the set of matchers that start with this node.
229 Matcher *Optn = OptionsToMatch[OptionIdx++];
231 if (OptionIdx == e) {
232 NewOptionsToMatch.push_back(Optn);
233 continue;
236 // See if the next option starts with the same matcher. If the two
237 // neighbors *do* start with the same matcher, we can factor the matcher out
238 // of at least these two patterns. See what the maximal set we can merge
239 // together is.
240 SmallVector<Matcher*, 8> EqualMatchers;
241 EqualMatchers.push_back(Optn);
243 // Factor all of the known-equal matchers after this one into the same
244 // group.
245 while (OptionIdx != e && OptionsToMatch[OptionIdx]->isEqual(Optn))
246 EqualMatchers.push_back(OptionsToMatch[OptionIdx++]);
248 // If we found a non-equal matcher, see if it is contradictory with the
249 // current node. If so, we know that the ordering relation between the
250 // current sets of nodes and this node don't matter. Look past it to see if
251 // we can merge anything else into this matching group.
252 unsigned Scan = OptionIdx;
253 while (1) {
254 // If we ran out of stuff to scan, we're done.
255 if (Scan == e) break;
257 Matcher *ScanMatcher = OptionsToMatch[Scan];
259 // If we found an entry that matches out matcher, merge it into the set to
260 // handle.
261 if (Optn->isEqual(ScanMatcher)) {
262 // If is equal after all, add the option to EqualMatchers and remove it
263 // from OptionsToMatch.
264 EqualMatchers.push_back(ScanMatcher);
265 OptionsToMatch.erase(OptionsToMatch.begin()+Scan);
266 --e;
267 continue;
270 // If the option we're checking for contradicts the start of the list,
271 // skip over it.
272 if (Optn->isContradictory(ScanMatcher)) {
273 ++Scan;
274 continue;
277 // If we're scanning for a simple node, see if it occurs later in the
278 // sequence. If so, and if we can move it up, it might be contradictory
279 // or the same as what we're looking for. If so, reorder it.
280 if (Optn->isSimplePredicateOrRecordNode()) {
281 Matcher *M2 = FindNodeWithKind(ScanMatcher, Optn->getKind());
282 if (M2 && M2 != ScanMatcher &&
283 M2->canMoveBefore(ScanMatcher) &&
284 (M2->isEqual(Optn) || M2->isContradictory(Optn))) {
285 Matcher *MatcherWithoutM2 = ScanMatcher->unlinkNode(M2);
286 M2->setNext(MatcherWithoutM2);
287 OptionsToMatch[Scan] = M2;
288 continue;
292 // Otherwise, we don't know how to handle this entry, we have to bail.
293 break;
296 if (Scan != e &&
297 // Don't print it's obvious nothing extra could be merged anyway.
298 Scan+1 != e) {
299 LLVM_DEBUG(errs() << "Couldn't merge this:\n"; Optn->print(errs(), 4);
300 errs() << "into this:\n";
301 OptionsToMatch[Scan]->print(errs(), 4);
302 if (Scan + 1 != e) OptionsToMatch[Scan + 1]->printOne(errs());
303 if (Scan + 2 < e) OptionsToMatch[Scan + 2]->printOne(errs());
304 errs() << "\n");
307 // If we only found one option starting with this matcher, no factoring is
308 // possible.
309 if (EqualMatchers.size() == 1) {
310 NewOptionsToMatch.push_back(EqualMatchers[0]);
311 continue;
314 // Factor these checks by pulling the first node off each entry and
315 // discarding it. Take the first one off the first entry to reuse.
316 Matcher *Shared = Optn;
317 Optn = Optn->takeNext();
318 EqualMatchers[0] = Optn;
320 // Remove and delete the first node from the other matchers we're factoring.
321 for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) {
322 Matcher *Tmp = EqualMatchers[i]->takeNext();
323 delete EqualMatchers[i];
324 EqualMatchers[i] = Tmp;
327 Shared->setNext(new ScopeMatcher(EqualMatchers));
329 // Recursively factor the newly created node.
330 FactorNodes(Shared->getNextPtr());
332 NewOptionsToMatch.push_back(Shared);
335 // If we're down to a single pattern to match, then we don't need this scope
336 // anymore.
337 if (NewOptionsToMatch.size() == 1) {
338 MatcherPtr.reset(NewOptionsToMatch[0]);
339 return;
342 if (NewOptionsToMatch.empty()) {
343 MatcherPtr.reset();
344 return;
347 // If our factoring failed (didn't achieve anything) see if we can simplify in
348 // other ways.
350 // Check to see if all of the leading entries are now opcode checks. If so,
351 // we can convert this Scope to be a OpcodeSwitch instead.
352 bool AllOpcodeChecks = true, AllTypeChecks = true;
353 for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
354 // Check to see if this breaks a series of CheckOpcodeMatchers.
355 if (AllOpcodeChecks &&
356 !isa<CheckOpcodeMatcher>(NewOptionsToMatch[i])) {
357 #if 0
358 if (i > 3) {
359 errs() << "FAILING OPC #" << i << "\n";
360 NewOptionsToMatch[i]->dump();
362 #endif
363 AllOpcodeChecks = false;
366 // Check to see if this breaks a series of CheckTypeMatcher's.
367 if (AllTypeChecks) {
368 CheckTypeMatcher *CTM =
369 cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i],
370 Matcher::CheckType));
371 if (!CTM ||
372 // iPTR checks could alias any other case without us knowing, don't
373 // bother with them.
374 CTM->getType() == MVT::iPTR ||
375 // SwitchType only works for result #0.
376 CTM->getResNo() != 0 ||
377 // If the CheckType isn't at the start of the list, see if we can move
378 // it there.
379 !CTM->canMoveBefore(NewOptionsToMatch[i])) {
380 #if 0
381 if (i > 3 && AllTypeChecks) {
382 errs() << "FAILING TYPE #" << i << "\n";
383 NewOptionsToMatch[i]->dump();
385 #endif
386 AllTypeChecks = false;
391 // If all the options are CheckOpcode's, we can form the SwitchOpcode, woot.
392 if (AllOpcodeChecks) {
393 StringSet<> Opcodes;
394 SmallVector<std::pair<const SDNodeInfo*, Matcher*>, 8> Cases;
395 for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
396 CheckOpcodeMatcher *COM = cast<CheckOpcodeMatcher>(NewOptionsToMatch[i]);
397 assert(Opcodes.insert(COM->getOpcode().getEnumName()).second &&
398 "Duplicate opcodes not factored?");
399 Cases.push_back(std::make_pair(&COM->getOpcode(), COM->takeNext()));
400 delete COM;
403 MatcherPtr.reset(new SwitchOpcodeMatcher(Cases));
404 return;
407 // If all the options are CheckType's, we can form the SwitchType, woot.
408 if (AllTypeChecks) {
409 DenseMap<unsigned, unsigned> TypeEntry;
410 SmallVector<std::pair<MVT::SimpleValueType, Matcher*>, 8> Cases;
411 for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
412 Matcher* M = FindNodeWithKind(NewOptionsToMatch[i], Matcher::CheckType);
413 assert(M && isa<CheckTypeMatcher>(M) && "Unknown Matcher type");
415 auto *CTM = cast<CheckTypeMatcher>(M);
416 Matcher *MatcherWithoutCTM = NewOptionsToMatch[i]->unlinkNode(CTM);
417 MVT::SimpleValueType CTMTy = CTM->getType();
418 delete CTM;
420 unsigned &Entry = TypeEntry[CTMTy];
421 if (Entry != 0) {
422 // If we have unfactored duplicate types, then we should factor them.
423 Matcher *PrevMatcher = Cases[Entry-1].second;
424 if (ScopeMatcher *SM = dyn_cast<ScopeMatcher>(PrevMatcher)) {
425 SM->setNumChildren(SM->getNumChildren()+1);
426 SM->resetChild(SM->getNumChildren()-1, MatcherWithoutCTM);
427 continue;
430 Matcher *Entries[2] = { PrevMatcher, MatcherWithoutCTM };
431 Cases[Entry-1].second = new ScopeMatcher(Entries);
432 continue;
435 Entry = Cases.size()+1;
436 Cases.push_back(std::make_pair(CTMTy, MatcherWithoutCTM));
439 // Make sure we recursively factor any scopes we may have created.
440 for (auto &M : Cases) {
441 if (ScopeMatcher *SM = dyn_cast<ScopeMatcher>(M.second)) {
442 std::unique_ptr<Matcher> Scope(SM);
443 FactorNodes(Scope);
444 M.second = Scope.release();
445 assert(M.second && "null matcher");
449 if (Cases.size() != 1) {
450 MatcherPtr.reset(new SwitchTypeMatcher(Cases));
451 } else {
452 // If we factored and ended up with one case, create it now.
453 MatcherPtr.reset(new CheckTypeMatcher(Cases[0].first, 0));
454 MatcherPtr->setNext(Cases[0].second);
456 return;
460 // Reassemble the Scope node with the adjusted children.
461 Scope->setNumChildren(NewOptionsToMatch.size());
462 for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i)
463 Scope->resetChild(i, NewOptionsToMatch[i]);
466 void
467 llvm::OptimizeMatcher(std::unique_ptr<Matcher> &MatcherPtr,
468 const CodeGenDAGPatterns &CGP) {
469 ContractNodes(MatcherPtr, CGP);
470 FactorNodes(MatcherPtr);