1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 // This file implements a TargetTransformInfo analysis pass specific to the
11 // AMDGPU target machine. It uses the target's detailed information to provide
12 // more precise answers to certain TTI queries, while letting the target
13 // independent and default TTI implementations handle the rest.
15 //===----------------------------------------------------------------------===//
17 #include "AMDGPUTargetTransformInfo.h"
18 #include "AMDGPUSubtarget.h"
19 #include "Utils/AMDGPUBaseInfo.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/CodeGen/ISDOpcodes.h"
25 #include "llvm/CodeGen/ValueTypes.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CallingConv.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Module.h"
37 #include "llvm/IR/PatternMatch.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/MC/SubtargetFeature.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MachineValueType.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetMachine.h"
55 #define DEBUG_TYPE "AMDGPUtti"
57 static cl::opt
<unsigned> UnrollThresholdPrivate(
58 "amdgpu-unroll-threshold-private",
59 cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"),
60 cl::init(2500), cl::Hidden
);
62 static cl::opt
<unsigned> UnrollThresholdLocal(
63 "amdgpu-unroll-threshold-local",
64 cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"),
65 cl::init(1000), cl::Hidden
);
67 static cl::opt
<unsigned> UnrollThresholdIf(
68 "amdgpu-unroll-threshold-if",
69 cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"),
70 cl::init(150), cl::Hidden
);
72 static bool dependsOnLocalPhi(const Loop
*L
, const Value
*Cond
,
74 const Instruction
*I
= dyn_cast
<Instruction
>(Cond
);
78 for (const Value
*V
: I
->operand_values()) {
81 if (const PHINode
*PHI
= dyn_cast
<PHINode
>(V
)) {
82 if (llvm::none_of(L
->getSubLoops(), [PHI
](const Loop
* SubLoop
) {
83 return SubLoop
->contains(PHI
); }))
85 } else if (Depth
< 10 && dependsOnLocalPhi(L
, V
, Depth
+1))
91 void AMDGPUTTIImpl::getUnrollingPreferences(Loop
*L
, ScalarEvolution
&SE
,
92 TTI::UnrollingPreferences
&UP
) {
93 UP
.Threshold
= 300; // Twice the default.
94 UP
.MaxCount
= std::numeric_limits
<unsigned>::max();
97 // TODO: Do we want runtime unrolling?
99 // Maximum alloca size than can fit registers. Reserve 16 registers.
100 const unsigned MaxAlloca
= (256 - 16) * 4;
101 unsigned ThresholdPrivate
= UnrollThresholdPrivate
;
102 unsigned ThresholdLocal
= UnrollThresholdLocal
;
103 unsigned MaxBoost
= std::max(ThresholdPrivate
, ThresholdLocal
);
104 for (const BasicBlock
*BB
: L
->getBlocks()) {
105 const DataLayout
&DL
= BB
->getModule()->getDataLayout();
106 unsigned LocalGEPsSeen
= 0;
108 if (llvm::any_of(L
->getSubLoops(), [BB
](const Loop
* SubLoop
) {
109 return SubLoop
->contains(BB
); }))
110 continue; // Block belongs to an inner loop.
112 for (const Instruction
&I
: *BB
) {
113 // Unroll a loop which contains an "if" statement whose condition
114 // defined by a PHI belonging to the loop. This may help to eliminate
115 // if region and potentially even PHI itself, saving on both divergence
116 // and registers used for the PHI.
117 // Add a small bonus for each of such "if" statements.
118 if (const BranchInst
*Br
= dyn_cast
<BranchInst
>(&I
)) {
119 if (UP
.Threshold
< MaxBoost
&& Br
->isConditional()) {
120 BasicBlock
*Succ0
= Br
->getSuccessor(0);
121 BasicBlock
*Succ1
= Br
->getSuccessor(1);
122 if ((L
->contains(Succ0
) && L
->isLoopExiting(Succ0
)) ||
123 (L
->contains(Succ1
) && L
->isLoopExiting(Succ1
)))
125 if (dependsOnLocalPhi(L
, Br
->getCondition())) {
126 UP
.Threshold
+= UnrollThresholdIf
;
127 LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP
.Threshold
129 << *L
<< " due to " << *Br
<< '\n');
130 if (UP
.Threshold
>= MaxBoost
)
137 const GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(&I
);
141 unsigned AS
= GEP
->getAddressSpace();
142 unsigned Threshold
= 0;
143 if (AS
== AMDGPUAS::PRIVATE_ADDRESS
)
144 Threshold
= ThresholdPrivate
;
145 else if (AS
== AMDGPUAS::LOCAL_ADDRESS
|| AS
== AMDGPUAS::REGION_ADDRESS
)
146 Threshold
= ThresholdLocal
;
150 if (UP
.Threshold
>= Threshold
)
153 if (AS
== AMDGPUAS::PRIVATE_ADDRESS
) {
154 const Value
*Ptr
= GEP
->getPointerOperand();
155 const AllocaInst
*Alloca
=
156 dyn_cast
<AllocaInst
>(GetUnderlyingObject(Ptr
, DL
));
157 if (!Alloca
|| !Alloca
->isStaticAlloca())
159 Type
*Ty
= Alloca
->getAllocatedType();
160 unsigned AllocaSize
= Ty
->isSized() ? DL
.getTypeAllocSize(Ty
) : 0;
161 if (AllocaSize
> MaxAlloca
)
163 } else if (AS
== AMDGPUAS::LOCAL_ADDRESS
||
164 AS
== AMDGPUAS::REGION_ADDRESS
) {
166 // Inhibit unroll for local memory if we have seen addressing not to
167 // a variable, most likely we will be unable to combine it.
168 // Do not unroll too deep inner loops for local memory to give a chance
169 // to unroll an outer loop for a more important reason.
170 if (LocalGEPsSeen
> 1 || L
->getLoopDepth() > 2 ||
171 (!isa
<GlobalVariable
>(GEP
->getPointerOperand()) &&
172 !isa
<Argument
>(GEP
->getPointerOperand())))
176 // Check if GEP depends on a value defined by this loop itself.
177 bool HasLoopDef
= false;
178 for (const Value
*Op
: GEP
->operands()) {
179 const Instruction
*Inst
= dyn_cast
<Instruction
>(Op
);
180 if (!Inst
|| L
->isLoopInvariant(Op
))
183 if (llvm::any_of(L
->getSubLoops(), [Inst
](const Loop
* SubLoop
) {
184 return SubLoop
->contains(Inst
); }))
192 // We want to do whatever we can to limit the number of alloca
193 // instructions that make it through to the code generator. allocas
194 // require us to use indirect addressing, which is slow and prone to
195 // compiler bugs. If this loop does an address calculation on an
196 // alloca ptr, then we want to use a higher than normal loop unroll
197 // threshold. This will give SROA a better chance to eliminate these
200 // We also want to have more unrolling for local memory to let ds
201 // instructions with different offsets combine.
203 // Don't use the maximum allowed value here as it will make some
204 // programs way too big.
205 UP
.Threshold
= Threshold
;
206 LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold
208 << *L
<< " due to " << *GEP
<< '\n');
209 if (UP
.Threshold
>= MaxBoost
)
215 unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec
) const {
216 // The concept of vector registers doesn't really exist. Some packed vector
217 // operations operate on the normal 32-bit registers.
221 unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec
) const {
222 // This is really the number of registers to fill when vectorizing /
223 // interleaving loops, so we lie to avoid trying to use all registers.
224 return getHardwareNumberOfRegisters(Vec
) >> 3;
227 unsigned GCNTTIImpl::getRegisterBitWidth(bool Vector
) const {
231 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const {
235 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF
, unsigned LoadSize
,
236 unsigned ChainSizeInBytes
,
237 VectorType
*VecTy
) const {
238 unsigned VecRegBitWidth
= VF
* LoadSize
;
239 if (VecRegBitWidth
> 128 && VecTy
->getScalarSizeInBits() < 32)
240 // TODO: Support element-size less than 32bit?
241 return 128 / LoadSize
;
246 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF
, unsigned StoreSize
,
247 unsigned ChainSizeInBytes
,
248 VectorType
*VecTy
) const {
249 unsigned VecRegBitWidth
= VF
* StoreSize
;
250 if (VecRegBitWidth
> 128)
251 return 128 / StoreSize
;
256 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace
) const {
257 if (AddrSpace
== AMDGPUAS::GLOBAL_ADDRESS
||
258 AddrSpace
== AMDGPUAS::CONSTANT_ADDRESS
||
259 AddrSpace
== AMDGPUAS::CONSTANT_ADDRESS_32BIT
||
260 AddrSpace
== AMDGPUAS::BUFFER_FAT_POINTER
) {
264 if (AddrSpace
== AMDGPUAS::FLAT_ADDRESS
||
265 AddrSpace
== AMDGPUAS::LOCAL_ADDRESS
||
266 AddrSpace
== AMDGPUAS::REGION_ADDRESS
)
269 if (AddrSpace
== AMDGPUAS::PRIVATE_ADDRESS
)
270 return 8 * ST
->getMaxPrivateElementSize();
272 llvm_unreachable("unhandled address space");
275 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes
,
277 unsigned AddrSpace
) const {
278 // We allow vectorization of flat stores, even though we may need to decompose
279 // them later if they may access private memory. We don't have enough context
280 // here, and legalization can handle it.
281 if (AddrSpace
== AMDGPUAS::PRIVATE_ADDRESS
) {
282 return (Alignment
>= 4 || ST
->hasUnalignedScratchAccess()) &&
283 ChainSizeInBytes
<= ST
->getMaxPrivateElementSize();
288 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes
,
290 unsigned AddrSpace
) const {
291 return isLegalToVectorizeMemChain(ChainSizeInBytes
, Alignment
, AddrSpace
);
294 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes
,
296 unsigned AddrSpace
) const {
297 return isLegalToVectorizeMemChain(ChainSizeInBytes
, Alignment
, AddrSpace
);
300 unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF
) {
301 // Disable unrolling if the loop is not vectorized.
302 // TODO: Enable this again.
309 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst
*Inst
,
310 MemIntrinsicInfo
&Info
) const {
311 switch (Inst
->getIntrinsicID()) {
312 case Intrinsic::amdgcn_atomic_inc
:
313 case Intrinsic::amdgcn_atomic_dec
:
314 case Intrinsic::amdgcn_ds_ordered_add
:
315 case Intrinsic::amdgcn_ds_ordered_swap
:
316 case Intrinsic::amdgcn_ds_fadd
:
317 case Intrinsic::amdgcn_ds_fmin
:
318 case Intrinsic::amdgcn_ds_fmax
: {
319 auto *Ordering
= dyn_cast
<ConstantInt
>(Inst
->getArgOperand(2));
320 auto *Volatile
= dyn_cast
<ConstantInt
>(Inst
->getArgOperand(4));
321 if (!Ordering
|| !Volatile
)
322 return false; // Invalid.
324 unsigned OrderingVal
= Ordering
->getZExtValue();
325 if (OrderingVal
> static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent
))
328 Info
.PtrVal
= Inst
->getArgOperand(0);
329 Info
.Ordering
= static_cast<AtomicOrdering
>(OrderingVal
);
331 Info
.WriteMem
= true;
332 Info
.IsVolatile
= !Volatile
->isNullValue();
340 int GCNTTIImpl::getArithmeticInstrCost(
341 unsigned Opcode
, Type
*Ty
, TTI::OperandValueKind Opd1Info
,
342 TTI::OperandValueKind Opd2Info
, TTI::OperandValueProperties Opd1PropInfo
,
343 TTI::OperandValueProperties Opd2PropInfo
, ArrayRef
<const Value
*> Args
) {
344 EVT OrigTy
= TLI
->getValueType(DL
, Ty
);
345 if (!OrigTy
.isSimple()) {
346 return BaseT::getArithmeticInstrCost(Opcode
, Ty
, Opd1Info
, Opd2Info
,
347 Opd1PropInfo
, Opd2PropInfo
);
350 // Legalize the type.
351 std::pair
<int, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, Ty
);
352 int ISD
= TLI
->InstructionOpcodeToISD(Opcode
);
354 // Because we don't have any legal vector operations, but the legal types, we
355 // need to account for split vectors.
356 unsigned NElts
= LT
.second
.isVector() ?
357 LT
.second
.getVectorNumElements() : 1;
359 MVT::SimpleValueType SLT
= LT
.second
.getScalarType().SimpleTy
;
366 return get64BitInstrCost() * LT
.first
* NElts
;
369 return getFullRateInstrCost() * LT
.first
* NElts
;
375 if (SLT
== MVT::i64
){
376 // and, or and xor are typically split into 2 VALU instructions.
377 return 2 * getFullRateInstrCost() * LT
.first
* NElts
;
380 return LT
.first
* NElts
* getFullRateInstrCost();
382 const int QuarterRateCost
= getQuarterRateInstrCost();
383 if (SLT
== MVT::i64
) {
384 const int FullRateCost
= getFullRateInstrCost();
385 return (4 * QuarterRateCost
+ (2 * 2) * FullRateCost
) * LT
.first
* NElts
;
389 return QuarterRateCost
* NElts
* LT
.first
;
395 return LT
.first
* NElts
* get64BitInstrCost();
397 if (SLT
== MVT::f32
|| SLT
== MVT::f16
)
398 return LT
.first
* NElts
* getFullRateInstrCost();
402 // FIXME: frem should be handled separately. The fdiv in it is most of it,
403 // but the current lowering is also not entirely correct.
404 if (SLT
== MVT::f64
) {
405 int Cost
= 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost();
406 // Add cost of workaround.
407 if (!ST
->hasUsableDivScaleConditionOutput())
408 Cost
+= 3 * getFullRateInstrCost();
410 return LT
.first
* Cost
* NElts
;
413 if (!Args
.empty() && match(Args
[0], PatternMatch::m_FPOne())) {
414 // TODO: This is more complicated, unsafe flags etc.
415 if ((SLT
== MVT::f32
&& !ST
->hasFP32Denormals()) ||
416 (SLT
== MVT::f16
&& ST
->has16BitInsts())) {
417 return LT
.first
* getQuarterRateInstrCost() * NElts
;
421 if (SLT
== MVT::f16
&& ST
->has16BitInsts()) {
427 int Cost
= 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost();
428 return LT
.first
* Cost
* NElts
;
431 if (SLT
== MVT::f32
|| SLT
== MVT::f16
) {
432 int Cost
= 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost();
434 if (!ST
->hasFP32Denormals()) {
436 Cost
+= 2 * getFullRateInstrCost();
439 return LT
.first
* NElts
* Cost
;
446 return BaseT::getArithmeticInstrCost(Opcode
, Ty
, Opd1Info
, Opd2Info
,
447 Opd1PropInfo
, Opd2PropInfo
);
450 unsigned GCNTTIImpl::getCFInstrCost(unsigned Opcode
) {
451 // XXX - For some reason this isn't called for switch.
453 case Instruction::Br
:
454 case Instruction::Ret
:
457 return BaseT::getCFInstrCost(Opcode
);
461 int GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode
, Type
*Ty
,
463 EVT OrigTy
= TLI
->getValueType(DL
, Ty
);
465 // Computes cost on targets that have packed math instructions(which support
466 // 16-bit types only).
468 !ST
->hasVOP3PInsts() ||
469 OrigTy
.getScalarSizeInBits() != 16)
470 return BaseT::getArithmeticReductionCost(Opcode
, Ty
, IsPairwise
);
472 std::pair
<int, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, Ty
);
473 return LT
.first
* getFullRateInstrCost();
476 int GCNTTIImpl::getMinMaxReductionCost(Type
*Ty
, Type
*CondTy
,
479 EVT OrigTy
= TLI
->getValueType(DL
, Ty
);
481 // Computes cost on targets that have packed math instructions(which support
482 // 16-bit types only).
484 !ST
->hasVOP3PInsts() ||
485 OrigTy
.getScalarSizeInBits() != 16)
486 return BaseT::getMinMaxReductionCost(Ty
, CondTy
, IsPairwise
, IsUnsigned
);
488 std::pair
<int, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, Ty
);
489 return LT
.first
* getHalfRateInstrCost();
492 int GCNTTIImpl::getVectorInstrCost(unsigned Opcode
, Type
*ValTy
,
495 case Instruction::ExtractElement
:
496 case Instruction::InsertElement
: {
498 = DL
.getTypeSizeInBits(cast
<VectorType
>(ValTy
)->getElementType());
500 if (EltSize
== 16 && Index
== 0 && ST
->has16BitInsts())
502 return BaseT::getVectorInstrCost(Opcode
, ValTy
, Index
);
505 // Extracts are just reads of a subregister, so are free. Inserts are
506 // considered free because we don't want to have any cost for scalarizing
507 // operations, and we don't have to copy into a different register class.
509 // Dynamic indexing isn't free and is best avoided.
510 return Index
== ~0u ? 2 : 0;
513 return BaseT::getVectorInstrCost(Opcode
, ValTy
, Index
);
519 static bool isArgPassedInSGPR(const Argument
*A
) {
520 const Function
*F
= A
->getParent();
522 // Arguments to compute shaders are never a source of divergence.
523 CallingConv::ID CC
= F
->getCallingConv();
525 case CallingConv::AMDGPU_KERNEL
:
526 case CallingConv::SPIR_KERNEL
:
528 case CallingConv::AMDGPU_VS
:
529 case CallingConv::AMDGPU_LS
:
530 case CallingConv::AMDGPU_HS
:
531 case CallingConv::AMDGPU_ES
:
532 case CallingConv::AMDGPU_GS
:
533 case CallingConv::AMDGPU_PS
:
534 case CallingConv::AMDGPU_CS
:
535 // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
536 // Everything else is in VGPRs.
537 return F
->getAttributes().hasParamAttribute(A
->getArgNo(), Attribute::InReg
) ||
538 F
->getAttributes().hasParamAttribute(A
->getArgNo(), Attribute::ByVal
);
540 // TODO: Should calls support inreg for SGPR inputs?
545 /// \returns true if the result of the value could potentially be
546 /// different across workitems in a wavefront.
547 bool GCNTTIImpl::isSourceOfDivergence(const Value
*V
) const {
548 if (const Argument
*A
= dyn_cast
<Argument
>(V
))
549 return !isArgPassedInSGPR(A
);
551 // Loads from the private and flat address spaces are divergent, because
552 // threads can execute the load instruction with the same inputs and get
553 // different results.
555 // All other loads are not divergent, because if threads issue loads with the
556 // same arguments, they will always get the same result.
557 if (const LoadInst
*Load
= dyn_cast
<LoadInst
>(V
))
558 return Load
->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS
||
559 Load
->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS
;
561 // Atomics are divergent because they are executed sequentially: when an
562 // atomic operation refers to the same address in each thread, then each
563 // thread after the first sees the value written by the previous thread as
565 if (isa
<AtomicRMWInst
>(V
) || isa
<AtomicCmpXchgInst
>(V
))
568 if (const IntrinsicInst
*Intrinsic
= dyn_cast
<IntrinsicInst
>(V
))
569 return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic
->getIntrinsicID());
571 // Assume all function calls are a source of divergence.
572 if (isa
<CallInst
>(V
) || isa
<InvokeInst
>(V
))
578 bool GCNTTIImpl::isAlwaysUniform(const Value
*V
) const {
579 if (const IntrinsicInst
*Intrinsic
= dyn_cast
<IntrinsicInst
>(V
)) {
580 switch (Intrinsic
->getIntrinsicID()) {
583 case Intrinsic::amdgcn_readfirstlane
:
584 case Intrinsic::amdgcn_readlane
:
585 case Intrinsic::amdgcn_icmp
:
586 case Intrinsic::amdgcn_fcmp
:
593 bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl
<int> &OpIndexes
,
594 Intrinsic::ID IID
) const {
596 case Intrinsic::amdgcn_atomic_inc
:
597 case Intrinsic::amdgcn_atomic_dec
:
598 case Intrinsic::amdgcn_ds_fadd
:
599 case Intrinsic::amdgcn_ds_fmin
:
600 case Intrinsic::amdgcn_ds_fmax
:
601 case Intrinsic::amdgcn_is_shared
:
602 case Intrinsic::amdgcn_is_private
:
603 OpIndexes
.push_back(0);
610 bool GCNTTIImpl::rewriteIntrinsicWithAddressSpace(
611 IntrinsicInst
*II
, Value
*OldV
, Value
*NewV
) const {
612 auto IntrID
= II
->getIntrinsicID();
614 case Intrinsic::amdgcn_atomic_inc
:
615 case Intrinsic::amdgcn_atomic_dec
:
616 case Intrinsic::amdgcn_ds_fadd
:
617 case Intrinsic::amdgcn_ds_fmin
:
618 case Intrinsic::amdgcn_ds_fmax
: {
619 const ConstantInt
*IsVolatile
= cast
<ConstantInt
>(II
->getArgOperand(4));
620 if (!IsVolatile
->isZero())
622 Module
*M
= II
->getParent()->getParent()->getParent();
623 Type
*DestTy
= II
->getType();
624 Type
*SrcTy
= NewV
->getType();
626 Intrinsic::getDeclaration(M
, II
->getIntrinsicID(), {DestTy
, SrcTy
});
627 II
->setArgOperand(0, NewV
);
628 II
->setCalledFunction(NewDecl
);
631 case Intrinsic::amdgcn_is_shared
:
632 case Intrinsic::amdgcn_is_private
: {
633 unsigned TrueAS
= IntrID
== Intrinsic::amdgcn_is_shared
?
634 AMDGPUAS::LOCAL_ADDRESS
: AMDGPUAS::PRIVATE_ADDRESS
;
635 unsigned NewAS
= NewV
->getType()->getPointerAddressSpace();
636 LLVMContext
&Ctx
= NewV
->getType()->getContext();
637 ConstantInt
*NewVal
= (TrueAS
== NewAS
) ?
638 ConstantInt::getTrue(Ctx
) : ConstantInt::getFalse(Ctx
);
639 II
->replaceAllUsesWith(NewVal
);
640 II
->eraseFromParent();
648 unsigned GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind
, Type
*Tp
, int Index
,
650 if (ST
->hasVOP3PInsts()) {
651 VectorType
*VT
= cast
<VectorType
>(Tp
);
652 if (VT
->getNumElements() == 2 &&
653 DL
.getTypeSizeInBits(VT
->getElementType()) == 16) {
654 // With op_sel VOP3P instructions freely can access the low half or high
655 // half of a register, so any swizzle is free.
658 case TTI::SK_Broadcast
:
659 case TTI::SK_Reverse
:
660 case TTI::SK_PermuteSingleSrc
:
668 return BaseT::getShuffleCost(Kind
, Tp
, Index
, SubTp
);
671 bool GCNTTIImpl::areInlineCompatible(const Function
*Caller
,
672 const Function
*Callee
) const {
673 const TargetMachine
&TM
= getTLI()->getTargetMachine();
674 const FeatureBitset
&CallerBits
=
675 TM
.getSubtargetImpl(*Caller
)->getFeatureBits();
676 const FeatureBitset
&CalleeBits
=
677 TM
.getSubtargetImpl(*Callee
)->getFeatureBits();
679 FeatureBitset RealCallerBits
= CallerBits
& ~InlineFeatureIgnoreList
;
680 FeatureBitset RealCalleeBits
= CalleeBits
& ~InlineFeatureIgnoreList
;
681 if ((RealCallerBits
& RealCalleeBits
) != RealCalleeBits
)
684 // FIXME: dx10_clamp can just take the caller setting, but there seems to be
685 // no way to support merge for backend defined attributes.
686 AMDGPU::SIModeRegisterDefaults
CallerMode(*Caller
);
687 AMDGPU::SIModeRegisterDefaults
CalleeMode(*Callee
);
688 return CallerMode
.isInlineCompatible(CalleeMode
);
691 void GCNTTIImpl::getUnrollingPreferences(Loop
*L
, ScalarEvolution
&SE
,
692 TTI::UnrollingPreferences
&UP
) {
693 CommonTTI
.getUnrollingPreferences(L
, SE
, UP
);
696 unsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec
) const {
697 return 4 * 128; // XXX - 4 channels. Should these count as vector instead?
700 unsigned R600TTIImpl::getNumberOfRegisters(bool Vec
) const {
701 return getHardwareNumberOfRegisters(Vec
);
704 unsigned R600TTIImpl::getRegisterBitWidth(bool Vector
) const {
708 unsigned R600TTIImpl::getMinVectorRegisterBitWidth() const {
712 unsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace
) const {
713 if (AddrSpace
== AMDGPUAS::GLOBAL_ADDRESS
||
714 AddrSpace
== AMDGPUAS::CONSTANT_ADDRESS
)
716 if (AddrSpace
== AMDGPUAS::LOCAL_ADDRESS
||
717 AddrSpace
== AMDGPUAS::REGION_ADDRESS
)
719 if (AddrSpace
== AMDGPUAS::PRIVATE_ADDRESS
)
722 if ((AddrSpace
== AMDGPUAS::PARAM_D_ADDRESS
||
723 AddrSpace
== AMDGPUAS::PARAM_I_ADDRESS
||
724 (AddrSpace
>= AMDGPUAS::CONSTANT_BUFFER_0
&&
725 AddrSpace
<= AMDGPUAS::CONSTANT_BUFFER_15
)))
727 llvm_unreachable("unhandled address space");
730 bool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes
,
732 unsigned AddrSpace
) const {
733 // We allow vectorization of flat stores, even though we may need to decompose
734 // them later if they may access private memory. We don't have enough context
735 // here, and legalization can handle it.
736 return (AddrSpace
!= AMDGPUAS::PRIVATE_ADDRESS
);
739 bool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes
,
741 unsigned AddrSpace
) const {
742 return isLegalToVectorizeMemChain(ChainSizeInBytes
, Alignment
, AddrSpace
);
745 bool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes
,
747 unsigned AddrSpace
) const {
748 return isLegalToVectorizeMemChain(ChainSizeInBytes
, Alignment
, AddrSpace
);
751 unsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF
) {
752 // Disable unrolling if the loop is not vectorized.
753 // TODO: Enable this again.
760 unsigned R600TTIImpl::getCFInstrCost(unsigned Opcode
) {
761 // XXX - For some reason this isn't called for switch.
763 case Instruction::Br
:
764 case Instruction::Ret
:
767 return BaseT::getCFInstrCost(Opcode
);
771 int R600TTIImpl::getVectorInstrCost(unsigned Opcode
, Type
*ValTy
,
774 case Instruction::ExtractElement
:
775 case Instruction::InsertElement
: {
777 = DL
.getTypeSizeInBits(cast
<VectorType
>(ValTy
)->getElementType());
779 return BaseT::getVectorInstrCost(Opcode
, ValTy
, Index
);
782 // Extracts are just reads of a subregister, so are free. Inserts are
783 // considered free because we don't want to have any cost for scalarizing
784 // operations, and we don't have to copy into a different register class.
786 // Dynamic indexing isn't free and is best avoided.
787 return Index
== ~0u ? 2 : 0;
790 return BaseT::getVectorInstrCost(Opcode
, ValTy
, Index
);
794 void R600TTIImpl::getUnrollingPreferences(Loop
*L
, ScalarEvolution
&SE
,
795 TTI::UnrollingPreferences
&UP
) {
796 CommonTTI
.getUnrollingPreferences(L
, SE
, UP
);