1 //===- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ----------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file declares the SelectionDAG class, and transitively defines the
10 // SDNode class and subclasses.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_CODEGEN_SELECTIONDAG_H
15 #define LLVM_CODEGEN_SELECTIONDAG_H
17 #include "llvm/ADT/APFloat.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/FoldingSet.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringMap.h"
26 #include "llvm/ADT/ilist.h"
27 #include "llvm/ADT/iterator.h"
28 #include "llvm/ADT/iterator_range.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
31 #include "llvm/CodeGen/DAGCombine.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/Metadata.h"
41 #include "llvm/Support/Allocator.h"
42 #include "llvm/Support/ArrayRecycler.h"
43 #include "llvm/Support/AtomicOrdering.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/CodeGen.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/MachineValueType.h"
48 #include "llvm/Support/RecyclingAllocator.h"
70 class MachineBasicBlock
;
71 class MachineConstantPoolValue
;
73 class OptimizationRemarkEmitter
;
77 class SelectionDAGTargetInfo
;
78 class TargetLibraryInfo
;
81 class TargetSubtargetInfo
;
84 class SDVTListNode
: public FoldingSetNode
{
85 friend struct FoldingSetTrait
<SDVTListNode
>;
87 /// A reference to an Interned FoldingSetNodeID for this node.
88 /// The Allocator in SelectionDAG holds the data.
89 /// SDVTList contains all types which are frequently accessed in SelectionDAG.
90 /// The size of this list is not expected to be big so it won't introduce
92 FoldingSetNodeIDRef FastID
;
95 /// The hash value for SDVTList is fixed, so cache it to avoid
100 SDVTListNode(const FoldingSetNodeIDRef ID
, const EVT
*VT
, unsigned int Num
) :
101 FastID(ID
), VTs(VT
), NumVTs(Num
) {
102 HashValue
= ID
.ComputeHash();
105 SDVTList
getSDVTList() {
106 SDVTList result
= {VTs
, NumVTs
};
111 /// Specialize FoldingSetTrait for SDVTListNode
112 /// to avoid computing temp FoldingSetNodeID and hash value.
113 template<> struct FoldingSetTrait
<SDVTListNode
> : DefaultFoldingSetTrait
<SDVTListNode
> {
114 static void Profile(const SDVTListNode
&X
, FoldingSetNodeID
& ID
) {
118 static bool Equals(const SDVTListNode
&X
, const FoldingSetNodeID
&ID
,
119 unsigned IDHash
, FoldingSetNodeID
&TempID
) {
120 if (X
.HashValue
!= IDHash
)
122 return ID
== X
.FastID
;
125 static unsigned ComputeHash(const SDVTListNode
&X
, FoldingSetNodeID
&TempID
) {
130 template <> struct ilist_alloc_traits
<SDNode
> {
131 static void deleteNode(SDNode
*) {
132 llvm_unreachable("ilist_traits<SDNode> shouldn't see a deleteNode call!");
136 /// Keeps track of dbg_value information through SDISel. We do
137 /// not build SDNodes for these so as not to perturb the generated code;
138 /// instead the info is kept off to the side in this structure. Each SDNode may
139 /// have one or more associated dbg_value entries. This information is kept in
141 /// Byval parameters are handled separately because they don't use alloca's,
142 /// which busts the normal mechanism. There is good reason for handling all
143 /// parameters separately: they may not have code generated for them, they
144 /// should always go at the beginning of the function regardless of other code
145 /// motion, and debug info for them is potentially useful even if the parameter
146 /// is unused. Right now only byval parameters are handled separately.
148 BumpPtrAllocator Alloc
;
149 SmallVector
<SDDbgValue
*, 32> DbgValues
;
150 SmallVector
<SDDbgValue
*, 32> ByvalParmDbgValues
;
151 SmallVector
<SDDbgLabel
*, 4> DbgLabels
;
152 using DbgValMapType
= DenseMap
<const SDNode
*, SmallVector
<SDDbgValue
*, 2>>;
153 DbgValMapType DbgValMap
;
156 SDDbgInfo() = default;
157 SDDbgInfo(const SDDbgInfo
&) = delete;
158 SDDbgInfo
&operator=(const SDDbgInfo
&) = delete;
160 void add(SDDbgValue
*V
, const SDNode
*Node
, bool isParameter
) {
162 ByvalParmDbgValues
.push_back(V
);
163 } else DbgValues
.push_back(V
);
165 DbgValMap
[Node
].push_back(V
);
168 void add(SDDbgLabel
*L
) {
169 DbgLabels
.push_back(L
);
172 /// Invalidate all DbgValues attached to the node and remove
173 /// it from the Node-to-DbgValues map.
174 void erase(const SDNode
*Node
);
179 ByvalParmDbgValues
.clear();
184 BumpPtrAllocator
&getAlloc() { return Alloc
; }
187 return DbgValues
.empty() && ByvalParmDbgValues
.empty() && DbgLabels
.empty();
190 ArrayRef
<SDDbgValue
*> getSDDbgValues(const SDNode
*Node
) const {
191 auto I
= DbgValMap
.find(Node
);
192 if (I
!= DbgValMap
.end())
194 return ArrayRef
<SDDbgValue
*>();
197 using DbgIterator
= SmallVectorImpl
<SDDbgValue
*>::iterator
;
198 using DbgLabelIterator
= SmallVectorImpl
<SDDbgLabel
*>::iterator
;
200 DbgIterator
DbgBegin() { return DbgValues
.begin(); }
201 DbgIterator
DbgEnd() { return DbgValues
.end(); }
202 DbgIterator
ByvalParmDbgBegin() { return ByvalParmDbgValues
.begin(); }
203 DbgIterator
ByvalParmDbgEnd() { return ByvalParmDbgValues
.end(); }
204 DbgLabelIterator
DbgLabelBegin() { return DbgLabels
.begin(); }
205 DbgLabelIterator
DbgLabelEnd() { return DbgLabels
.end(); }
208 void checkForCycles(const SelectionDAG
*DAG
, bool force
= false);
210 /// This is used to represent a portion of an LLVM function in a low-level
211 /// Data Dependence DAG representation suitable for instruction selection.
212 /// This DAG is constructed as the first step of instruction selection in order
213 /// to allow implementation of machine specific optimizations
214 /// and code simplifications.
216 /// The representation used by the SelectionDAG is a target-independent
217 /// representation, which has some similarities to the GCC RTL representation,
218 /// but is significantly more simple, powerful, and is a graph form instead of a
222 const TargetMachine
&TM
;
223 const SelectionDAGTargetInfo
*TSI
= nullptr;
224 const TargetLowering
*TLI
= nullptr;
225 const TargetLibraryInfo
*LibInfo
= nullptr;
227 Pass
*SDAGISelPass
= nullptr;
228 LLVMContext
*Context
;
229 CodeGenOpt::Level OptLevel
;
231 LegacyDivergenceAnalysis
* DA
= nullptr;
232 FunctionLoweringInfo
* FLI
= nullptr;
234 /// The function-level optimization remark emitter. Used to emit remarks
235 /// whenever manipulating the DAG.
236 OptimizationRemarkEmitter
*ORE
;
238 /// The starting token.
241 /// The root of the entire DAG.
244 /// A linked list of nodes in the current DAG.
245 ilist
<SDNode
> AllNodes
;
247 /// The AllocatorType for allocating SDNodes. We use
248 /// pool allocation with recycling.
249 using NodeAllocatorType
= RecyclingAllocator
<BumpPtrAllocator
, SDNode
,
250 sizeof(LargestSDNode
),
251 alignof(MostAlignedSDNode
)>;
253 /// Pool allocation for nodes.
254 NodeAllocatorType NodeAllocator
;
256 /// This structure is used to memoize nodes, automatically performing
257 /// CSE with existing nodes when a duplicate is requested.
258 FoldingSet
<SDNode
> CSEMap
;
260 /// Pool allocation for machine-opcode SDNode operands.
261 BumpPtrAllocator OperandAllocator
;
262 ArrayRecycler
<SDUse
> OperandRecycler
;
264 /// Pool allocation for misc. objects that are created once per SelectionDAG.
265 BumpPtrAllocator Allocator
;
267 /// Tracks dbg_value and dbg_label information through SDISel.
270 uint16_t NextPersistentId
= 0;
273 /// Clients of various APIs that cause global effects on
274 /// the DAG can optionally implement this interface. This allows the clients
275 /// to handle the various sorts of updates that happen.
277 /// A DAGUpdateListener automatically registers itself with DAG when it is
278 /// constructed, and removes itself when destroyed in RAII fashion.
279 struct DAGUpdateListener
{
280 DAGUpdateListener
*const Next
;
283 explicit DAGUpdateListener(SelectionDAG
&D
)
284 : Next(D
.UpdateListeners
), DAG(D
) {
285 DAG
.UpdateListeners
= this;
288 virtual ~DAGUpdateListener() {
289 assert(DAG
.UpdateListeners
== this &&
290 "DAGUpdateListeners must be destroyed in LIFO order");
291 DAG
.UpdateListeners
= Next
;
294 /// The node N that was deleted and, if E is not null, an
295 /// equivalent node E that replaced it.
296 virtual void NodeDeleted(SDNode
*N
, SDNode
*E
);
298 /// The node N that was updated.
299 virtual void NodeUpdated(SDNode
*N
);
302 struct DAGNodeDeletedListener
: public DAGUpdateListener
{
303 std::function
<void(SDNode
*, SDNode
*)> Callback
;
305 DAGNodeDeletedListener(SelectionDAG
&DAG
,
306 std::function
<void(SDNode
*, SDNode
*)> Callback
)
307 : DAGUpdateListener(DAG
), Callback(std::move(Callback
)) {}
309 void NodeDeleted(SDNode
*N
, SDNode
*E
) override
{ Callback(N
, E
); }
312 virtual void anchor();
315 /// When true, additional steps are taken to
316 /// ensure that getConstant() and similar functions return DAG nodes that
317 /// have legal types. This is important after type legalization since
318 /// any illegally typed nodes generated after this point will not experience
319 /// type legalization.
320 bool NewNodesMustHaveLegalTypes
= false;
323 /// DAGUpdateListener is a friend so it can manipulate the listener stack.
324 friend struct DAGUpdateListener
;
326 /// Linked list of registered DAGUpdateListener instances.
327 /// This stack is maintained by DAGUpdateListener RAII.
328 DAGUpdateListener
*UpdateListeners
= nullptr;
330 /// Implementation of setSubgraphColor.
331 /// Return whether we had to truncate the search.
332 bool setSubgraphColorHelper(SDNode
*N
, const char *Color
,
333 DenseSet
<SDNode
*> &visited
,
334 int level
, bool &printed
);
336 template <typename SDNodeT
, typename
... ArgTypes
>
337 SDNodeT
*newSDNode(ArgTypes
&&... Args
) {
338 return new (NodeAllocator
.template Allocate
<SDNodeT
>())
339 SDNodeT(std::forward
<ArgTypes
>(Args
)...);
342 /// Build a synthetic SDNodeT with the given args and extract its subclass
343 /// data as an integer (e.g. for use in a folding set).
345 /// The args to this function are the same as the args to SDNodeT's
346 /// constructor, except the second arg (assumed to be a const DebugLoc&) is
348 template <typename SDNodeT
, typename
... ArgTypes
>
349 static uint16_t getSyntheticNodeSubclassData(unsigned IROrder
,
350 ArgTypes
&&... Args
) {
351 // The compiler can reduce this expression to a constant iff we pass an
352 // empty DebugLoc. Thankfully, the debug location doesn't have any bearing
353 // on the subclass data.
354 return SDNodeT(IROrder
, DebugLoc(), std::forward
<ArgTypes
>(Args
)...)
355 .getRawSubclassData();
358 template <typename SDNodeTy
>
359 static uint16_t getSyntheticNodeSubclassData(unsigned Opc
, unsigned Order
,
360 SDVTList VTs
, EVT MemoryVT
,
361 MachineMemOperand
*MMO
) {
362 return SDNodeTy(Opc
, Order
, DebugLoc(), VTs
, MemoryVT
, MMO
)
363 .getRawSubclassData();
366 void createOperands(SDNode
*Node
, ArrayRef
<SDValue
> Vals
);
368 void removeOperands(SDNode
*Node
) {
369 if (!Node
->OperandList
)
371 OperandRecycler
.deallocate(
372 ArrayRecycler
<SDUse
>::Capacity::get(Node
->NumOperands
),
374 Node
->NumOperands
= 0;
375 Node
->OperandList
= nullptr;
377 void CreateTopologicalOrder(std::vector
<SDNode
*>& Order
);
379 explicit SelectionDAG(const TargetMachine
&TM
, CodeGenOpt::Level
);
380 SelectionDAG(const SelectionDAG
&) = delete;
381 SelectionDAG
&operator=(const SelectionDAG
&) = delete;
384 /// Prepare this SelectionDAG to process code in the given MachineFunction.
385 void init(MachineFunction
&NewMF
, OptimizationRemarkEmitter
&NewORE
,
386 Pass
*PassPtr
, const TargetLibraryInfo
*LibraryInfo
,
387 LegacyDivergenceAnalysis
* Divergence
);
389 void setFunctionLoweringInfo(FunctionLoweringInfo
* FuncInfo
) {
393 /// Clear state and free memory necessary to make this
394 /// SelectionDAG ready to process a new block.
397 MachineFunction
&getMachineFunction() const { return *MF
; }
398 const Pass
*getPass() const { return SDAGISelPass
; }
400 const DataLayout
&getDataLayout() const { return MF
->getDataLayout(); }
401 const TargetMachine
&getTarget() const { return TM
; }
402 const TargetSubtargetInfo
&getSubtarget() const { return MF
->getSubtarget(); }
403 const TargetLowering
&getTargetLoweringInfo() const { return *TLI
; }
404 const TargetLibraryInfo
&getLibInfo() const { return *LibInfo
; }
405 const SelectionDAGTargetInfo
&getSelectionDAGInfo() const { return *TSI
; }
406 LLVMContext
*getContext() const {return Context
; }
407 OptimizationRemarkEmitter
&getORE() const { return *ORE
; }
409 /// Pop up a GraphViz/gv window with the DAG rendered using 'dot'.
410 void viewGraph(const std::string
&Title
);
414 std::map
<const SDNode
*, std::string
> NodeGraphAttrs
;
417 /// Clear all previously defined node graph attributes.
418 /// Intended to be used from a debugging tool (eg. gdb).
419 void clearGraphAttrs();
421 /// Set graph attributes for a node. (eg. "color=red".)
422 void setGraphAttrs(const SDNode
*N
, const char *Attrs
);
424 /// Get graph attributes for a node. (eg. "color=red".)
425 /// Used from getNodeAttributes.
426 const std::string
getGraphAttrs(const SDNode
*N
) const;
428 /// Convenience for setting node color attribute.
429 void setGraphColor(const SDNode
*N
, const char *Color
);
431 /// Convenience for setting subgraph color attribute.
432 void setSubgraphColor(SDNode
*N
, const char *Color
);
434 using allnodes_const_iterator
= ilist
<SDNode
>::const_iterator
;
436 allnodes_const_iterator
allnodes_begin() const { return AllNodes
.begin(); }
437 allnodes_const_iterator
allnodes_end() const { return AllNodes
.end(); }
439 using allnodes_iterator
= ilist
<SDNode
>::iterator
;
441 allnodes_iterator
allnodes_begin() { return AllNodes
.begin(); }
442 allnodes_iterator
allnodes_end() { return AllNodes
.end(); }
444 ilist
<SDNode
>::size_type
allnodes_size() const {
445 return AllNodes
.size();
448 iterator_range
<allnodes_iterator
> allnodes() {
449 return make_range(allnodes_begin(), allnodes_end());
451 iterator_range
<allnodes_const_iterator
> allnodes() const {
452 return make_range(allnodes_begin(), allnodes_end());
455 /// Return the root tag of the SelectionDAG.
456 const SDValue
&getRoot() const { return Root
; }
458 /// Return the token chain corresponding to the entry of the function.
459 SDValue
getEntryNode() const {
460 return SDValue(const_cast<SDNode
*>(&EntryNode
), 0);
463 /// Set the current root tag of the SelectionDAG.
465 const SDValue
&setRoot(SDValue N
) {
466 assert((!N
.getNode() || N
.getValueType() == MVT::Other
) &&
467 "DAG root value is not a chain!");
469 checkForCycles(N
.getNode(), this);
472 checkForCycles(this);
477 void VerifyDAGDiverence();
480 /// This iterates over the nodes in the SelectionDAG, folding
481 /// certain types of nodes together, or eliminating superfluous nodes. The
482 /// Level argument controls whether Combine is allowed to produce nodes and
483 /// types that are illegal on the target.
484 void Combine(CombineLevel Level
, AliasAnalysis
*AA
,
485 CodeGenOpt::Level OptLevel
);
487 /// This transforms the SelectionDAG into a SelectionDAG that
488 /// only uses types natively supported by the target.
489 /// Returns "true" if it made any changes.
491 /// Note that this is an involved process that may invalidate pointers into
493 bool LegalizeTypes();
495 /// This transforms the SelectionDAG into a SelectionDAG that is
496 /// compatible with the target instruction selector, as indicated by the
497 /// TargetLowering object.
499 /// Note that this is an involved process that may invalidate pointers into
503 /// Transforms a SelectionDAG node and any operands to it into a node
504 /// that is compatible with the target instruction selector, as indicated by
505 /// the TargetLowering object.
507 /// \returns true if \c N is a valid, legal node after calling this.
509 /// This essentially runs a single recursive walk of the \c Legalize process
510 /// over the given node (and its operands). This can be used to incrementally
511 /// legalize the DAG. All of the nodes which are directly replaced,
512 /// potentially including N, are added to the output parameter \c
513 /// UpdatedNodes so that the delta to the DAG can be understood by the
516 /// When this returns false, N has been legalized in a way that make the
517 /// pointer passed in no longer valid. It may have even been deleted from the
518 /// DAG, and so it shouldn't be used further. When this returns true, the
519 /// N passed in is a legal node, and can be immediately processed as such.
520 /// This may still have done some work on the DAG, and will still populate
521 /// UpdatedNodes with any new nodes replacing those originally in the DAG.
522 bool LegalizeOp(SDNode
*N
, SmallSetVector
<SDNode
*, 16> &UpdatedNodes
);
524 /// This transforms the SelectionDAG into a SelectionDAG
525 /// that only uses vector math operations supported by the target. This is
526 /// necessary as a separate step from Legalize because unrolling a vector
527 /// operation can introduce illegal types, which requires running
528 /// LegalizeTypes again.
530 /// This returns true if it made any changes; in that case, LegalizeTypes
531 /// is called again before Legalize.
533 /// Note that this is an involved process that may invalidate pointers into
535 bool LegalizeVectors();
537 /// This method deletes all unreachable nodes in the SelectionDAG.
538 void RemoveDeadNodes();
540 /// Remove the specified node from the system. This node must
541 /// have no referrers.
542 void DeleteNode(SDNode
*N
);
544 /// Return an SDVTList that represents the list of values specified.
545 SDVTList
getVTList(EVT VT
);
546 SDVTList
getVTList(EVT VT1
, EVT VT2
);
547 SDVTList
getVTList(EVT VT1
, EVT VT2
, EVT VT3
);
548 SDVTList
getVTList(EVT VT1
, EVT VT2
, EVT VT3
, EVT VT4
);
549 SDVTList
getVTList(ArrayRef
<EVT
> VTs
);
551 //===--------------------------------------------------------------------===//
552 // Node creation methods.
554 /// Create a ConstantSDNode wrapping a constant value.
555 /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
557 /// If only legal types can be produced, this does the necessary
558 /// transformations (e.g., if the vector element type is illegal).
560 SDValue
getConstant(uint64_t Val
, const SDLoc
&DL
, EVT VT
,
561 bool isTarget
= false, bool isOpaque
= false);
562 SDValue
getConstant(const APInt
&Val
, const SDLoc
&DL
, EVT VT
,
563 bool isTarget
= false, bool isOpaque
= false);
565 SDValue
getAllOnesConstant(const SDLoc
&DL
, EVT VT
, bool IsTarget
= false,
566 bool IsOpaque
= false) {
567 return getConstant(APInt::getAllOnesValue(VT
.getScalarSizeInBits()), DL
,
568 VT
, IsTarget
, IsOpaque
);
571 SDValue
getConstant(const ConstantInt
&Val
, const SDLoc
&DL
, EVT VT
,
572 bool isTarget
= false, bool isOpaque
= false);
573 SDValue
getIntPtrConstant(uint64_t Val
, const SDLoc
&DL
,
574 bool isTarget
= false);
575 SDValue
getTargetConstant(uint64_t Val
, const SDLoc
&DL
, EVT VT
,
576 bool isOpaque
= false) {
577 return getConstant(Val
, DL
, VT
, true, isOpaque
);
579 SDValue
getTargetConstant(const APInt
&Val
, const SDLoc
&DL
, EVT VT
,
580 bool isOpaque
= false) {
581 return getConstant(Val
, DL
, VT
, true, isOpaque
);
583 SDValue
getTargetConstant(const ConstantInt
&Val
, const SDLoc
&DL
, EVT VT
,
584 bool isOpaque
= false) {
585 return getConstant(Val
, DL
, VT
, true, isOpaque
);
588 /// Create a true or false constant of type \p VT using the target's
589 /// BooleanContent for type \p OpVT.
590 SDValue
getBoolConstant(bool V
, const SDLoc
&DL
, EVT VT
, EVT OpVT
);
593 /// Create a ConstantFPSDNode wrapping a constant value.
594 /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
596 /// If only legal types can be produced, this does the necessary
597 /// transformations (e.g., if the vector element type is illegal).
598 /// The forms that take a double should only be used for simple constants
599 /// that can be exactly represented in VT. No checks are made.
601 SDValue
getConstantFP(double Val
, const SDLoc
&DL
, EVT VT
,
602 bool isTarget
= false);
603 SDValue
getConstantFP(const APFloat
&Val
, const SDLoc
&DL
, EVT VT
,
604 bool isTarget
= false);
605 SDValue
getConstantFP(const ConstantFP
&V
, const SDLoc
&DL
, EVT VT
,
606 bool isTarget
= false);
607 SDValue
getTargetConstantFP(double Val
, const SDLoc
&DL
, EVT VT
) {
608 return getConstantFP(Val
, DL
, VT
, true);
610 SDValue
getTargetConstantFP(const APFloat
&Val
, const SDLoc
&DL
, EVT VT
) {
611 return getConstantFP(Val
, DL
, VT
, true);
613 SDValue
getTargetConstantFP(const ConstantFP
&Val
, const SDLoc
&DL
, EVT VT
) {
614 return getConstantFP(Val
, DL
, VT
, true);
618 SDValue
getGlobalAddress(const GlobalValue
*GV
, const SDLoc
&DL
, EVT VT
,
619 int64_t offset
= 0, bool isTargetGA
= false,
620 unsigned char TargetFlags
= 0);
621 SDValue
getTargetGlobalAddress(const GlobalValue
*GV
, const SDLoc
&DL
, EVT VT
,
623 unsigned char TargetFlags
= 0) {
624 return getGlobalAddress(GV
, DL
, VT
, offset
, true, TargetFlags
);
626 SDValue
getFrameIndex(int FI
, EVT VT
, bool isTarget
= false);
627 SDValue
getTargetFrameIndex(int FI
, EVT VT
) {
628 return getFrameIndex(FI
, VT
, true);
630 SDValue
getJumpTable(int JTI
, EVT VT
, bool isTarget
= false,
631 unsigned char TargetFlags
= 0);
632 SDValue
getTargetJumpTable(int JTI
, EVT VT
, unsigned char TargetFlags
= 0) {
633 return getJumpTable(JTI
, VT
, true, TargetFlags
);
635 SDValue
getConstantPool(const Constant
*C
, EVT VT
,
636 unsigned Align
= 0, int Offs
= 0, bool isT
=false,
637 unsigned char TargetFlags
= 0);
638 SDValue
getTargetConstantPool(const Constant
*C
, EVT VT
,
639 unsigned Align
= 0, int Offset
= 0,
640 unsigned char TargetFlags
= 0) {
641 return getConstantPool(C
, VT
, Align
, Offset
, true, TargetFlags
);
643 SDValue
getConstantPool(MachineConstantPoolValue
*C
, EVT VT
,
644 unsigned Align
= 0, int Offs
= 0, bool isT
=false,
645 unsigned char TargetFlags
= 0);
646 SDValue
getTargetConstantPool(MachineConstantPoolValue
*C
,
647 EVT VT
, unsigned Align
= 0,
648 int Offset
= 0, unsigned char TargetFlags
=0) {
649 return getConstantPool(C
, VT
, Align
, Offset
, true, TargetFlags
);
651 SDValue
getTargetIndex(int Index
, EVT VT
, int64_t Offset
= 0,
652 unsigned char TargetFlags
= 0);
653 // When generating a branch to a BB, we don't in general know enough
654 // to provide debug info for the BB at that time, so keep this one around.
655 SDValue
getBasicBlock(MachineBasicBlock
*MBB
);
656 SDValue
getBasicBlock(MachineBasicBlock
*MBB
, SDLoc dl
);
657 SDValue
getExternalSymbol(const char *Sym
, EVT VT
);
658 SDValue
getExternalSymbol(const char *Sym
, const SDLoc
&dl
, EVT VT
);
659 SDValue
getTargetExternalSymbol(const char *Sym
, EVT VT
,
660 unsigned char TargetFlags
= 0);
661 SDValue
getMCSymbol(MCSymbol
*Sym
, EVT VT
);
663 SDValue
getValueType(EVT
);
664 SDValue
getRegister(unsigned Reg
, EVT VT
);
665 SDValue
getRegisterMask(const uint32_t *RegMask
);
666 SDValue
getEHLabel(const SDLoc
&dl
, SDValue Root
, MCSymbol
*Label
);
667 SDValue
getLabelNode(unsigned Opcode
, const SDLoc
&dl
, SDValue Root
,
669 SDValue
getBlockAddress(const BlockAddress
*BA
, EVT VT
,
670 int64_t Offset
= 0, bool isTarget
= false,
671 unsigned char TargetFlags
= 0);
672 SDValue
getTargetBlockAddress(const BlockAddress
*BA
, EVT VT
,
674 unsigned char TargetFlags
= 0) {
675 return getBlockAddress(BA
, VT
, Offset
, true, TargetFlags
);
678 SDValue
getCopyToReg(SDValue Chain
, const SDLoc
&dl
, unsigned Reg
,
680 return getNode(ISD::CopyToReg
, dl
, MVT::Other
, Chain
,
681 getRegister(Reg
, N
.getValueType()), N
);
684 // This version of the getCopyToReg method takes an extra operand, which
685 // indicates that there is potentially an incoming glue value (if Glue is not
686 // null) and that there should be a glue result.
687 SDValue
getCopyToReg(SDValue Chain
, const SDLoc
&dl
, unsigned Reg
, SDValue N
,
689 SDVTList VTs
= getVTList(MVT::Other
, MVT::Glue
);
690 SDValue Ops
[] = { Chain
, getRegister(Reg
, N
.getValueType()), N
, Glue
};
691 return getNode(ISD::CopyToReg
, dl
, VTs
,
692 makeArrayRef(Ops
, Glue
.getNode() ? 4 : 3));
695 // Similar to last getCopyToReg() except parameter Reg is a SDValue
696 SDValue
getCopyToReg(SDValue Chain
, const SDLoc
&dl
, SDValue Reg
, SDValue N
,
698 SDVTList VTs
= getVTList(MVT::Other
, MVT::Glue
);
699 SDValue Ops
[] = { Chain
, Reg
, N
, Glue
};
700 return getNode(ISD::CopyToReg
, dl
, VTs
,
701 makeArrayRef(Ops
, Glue
.getNode() ? 4 : 3));
704 SDValue
getCopyFromReg(SDValue Chain
, const SDLoc
&dl
, unsigned Reg
, EVT VT
) {
705 SDVTList VTs
= getVTList(VT
, MVT::Other
);
706 SDValue Ops
[] = { Chain
, getRegister(Reg
, VT
) };
707 return getNode(ISD::CopyFromReg
, dl
, VTs
, Ops
);
710 // This version of the getCopyFromReg method takes an extra operand, which
711 // indicates that there is potentially an incoming glue value (if Glue is not
712 // null) and that there should be a glue result.
713 SDValue
getCopyFromReg(SDValue Chain
, const SDLoc
&dl
, unsigned Reg
, EVT VT
,
715 SDVTList VTs
= getVTList(VT
, MVT::Other
, MVT::Glue
);
716 SDValue Ops
[] = { Chain
, getRegister(Reg
, VT
), Glue
};
717 return getNode(ISD::CopyFromReg
, dl
, VTs
,
718 makeArrayRef(Ops
, Glue
.getNode() ? 3 : 2));
721 SDValue
getCondCode(ISD::CondCode Cond
);
723 /// Return an ISD::VECTOR_SHUFFLE node. The number of elements in VT,
724 /// which must be a vector type, must match the number of mask elements
725 /// NumElts. An integer mask element equal to -1 is treated as undefined.
726 SDValue
getVectorShuffle(EVT VT
, const SDLoc
&dl
, SDValue N1
, SDValue N2
,
729 /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
730 /// which must be a vector type, must match the number of operands in Ops.
731 /// The operands must have the same type as (or, for integers, a type wider
732 /// than) VT's element type.
733 SDValue
getBuildVector(EVT VT
, const SDLoc
&DL
, ArrayRef
<SDValue
> Ops
) {
734 // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
735 return getNode(ISD::BUILD_VECTOR
, DL
, VT
, Ops
);
738 /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
739 /// which must be a vector type, must match the number of operands in Ops.
740 /// The operands must have the same type as (or, for integers, a type wider
741 /// than) VT's element type.
742 SDValue
getBuildVector(EVT VT
, const SDLoc
&DL
, ArrayRef
<SDUse
> Ops
) {
743 // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
744 return getNode(ISD::BUILD_VECTOR
, DL
, VT
, Ops
);
747 /// Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all
748 /// elements. VT must be a vector type. Op's type must be the same as (or,
749 /// for integers, a type wider than) VT's element type.
750 SDValue
getSplatBuildVector(EVT VT
, const SDLoc
&DL
, SDValue Op
) {
751 // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
752 if (Op
.getOpcode() == ISD::UNDEF
) {
753 assert((VT
.getVectorElementType() == Op
.getValueType() ||
755 VT
.getVectorElementType().bitsLE(Op
.getValueType()))) &&
756 "A splatted value must have a width equal or (for integers) "
757 "greater than the vector element type!");
758 return getNode(ISD::UNDEF
, SDLoc(), VT
);
761 SmallVector
<SDValue
, 16> Ops(VT
.getVectorNumElements(), Op
);
762 return getNode(ISD::BUILD_VECTOR
, DL
, VT
, Ops
);
765 /// Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to
766 /// the shuffle node in input but with swapped operands.
768 /// Example: shuffle A, B, <0,5,2,7> -> shuffle B, A, <4,1,6,3>
769 SDValue
getCommutedVectorShuffle(const ShuffleVectorSDNode
&SV
);
771 /// Convert Op, which must be of float type, to the
772 /// float type VT, by either extending or rounding (by truncation).
773 SDValue
getFPExtendOrRound(SDValue Op
, const SDLoc
&DL
, EVT VT
);
775 /// Convert Op, which must be of integer type, to the
776 /// integer type VT, by either any-extending or truncating it.
777 SDValue
getAnyExtOrTrunc(SDValue Op
, const SDLoc
&DL
, EVT VT
);
779 /// Convert Op, which must be of integer type, to the
780 /// integer type VT, by either sign-extending or truncating it.
781 SDValue
getSExtOrTrunc(SDValue Op
, const SDLoc
&DL
, EVT VT
);
783 /// Convert Op, which must be of integer type, to the
784 /// integer type VT, by either zero-extending or truncating it.
785 SDValue
getZExtOrTrunc(SDValue Op
, const SDLoc
&DL
, EVT VT
);
787 /// Return the expression required to zero extend the Op
788 /// value assuming it was the smaller SrcTy value.
789 SDValue
getZeroExtendInReg(SDValue Op
, const SDLoc
&DL
, EVT VT
);
791 /// Convert Op, which must be of integer type, to the integer type VT,
792 /// by using an extension appropriate for the target's
793 /// BooleanContent for type OpVT or truncating it.
794 SDValue
getBoolExtOrTrunc(SDValue Op
, const SDLoc
&SL
, EVT VT
, EVT OpVT
);
796 /// Create a bitwise NOT operation as (XOR Val, -1).
797 SDValue
getNOT(const SDLoc
&DL
, SDValue Val
, EVT VT
);
799 /// Create a logical NOT operation as (XOR Val, BooleanOne).
800 SDValue
getLogicalNOT(const SDLoc
&DL
, SDValue Val
, EVT VT
);
802 /// Create an add instruction with appropriate flags when used for
803 /// addressing some offset of an object. i.e. if a load is split into multiple
804 /// components, create an add nuw from the base pointer to the offset.
805 SDValue
getObjectPtrOffset(const SDLoc
&SL
, SDValue Op
, int64_t Offset
) {
806 EVT VT
= Op
.getValueType();
807 return getObjectPtrOffset(SL
, Op
, getConstant(Offset
, SL
, VT
));
810 SDValue
getObjectPtrOffset(const SDLoc
&SL
, SDValue Op
, SDValue Offset
) {
811 EVT VT
= Op
.getValueType();
813 // The object itself can't wrap around the address space, so it shouldn't be
814 // possible for the adds of the offsets to the split parts to overflow.
816 Flags
.setNoUnsignedWrap(true);
817 return getNode(ISD::ADD
, SL
, VT
, Op
, Offset
, Flags
);
820 /// Return a new CALLSEQ_START node, that starts new call frame, in which
821 /// InSize bytes are set up inside CALLSEQ_START..CALLSEQ_END sequence and
822 /// OutSize specifies part of the frame set up prior to the sequence.
823 SDValue
getCALLSEQ_START(SDValue Chain
, uint64_t InSize
, uint64_t OutSize
,
825 SDVTList VTs
= getVTList(MVT::Other
, MVT::Glue
);
826 SDValue Ops
[] = { Chain
,
827 getIntPtrConstant(InSize
, DL
, true),
828 getIntPtrConstant(OutSize
, DL
, true) };
829 return getNode(ISD::CALLSEQ_START
, DL
, VTs
, Ops
);
832 /// Return a new CALLSEQ_END node, which always must have a
833 /// glue result (to ensure it's not CSE'd).
834 /// CALLSEQ_END does not have a useful SDLoc.
835 SDValue
getCALLSEQ_END(SDValue Chain
, SDValue Op1
, SDValue Op2
,
836 SDValue InGlue
, const SDLoc
&DL
) {
837 SDVTList NodeTys
= getVTList(MVT::Other
, MVT::Glue
);
838 SmallVector
<SDValue
, 4> Ops
;
839 Ops
.push_back(Chain
);
842 if (InGlue
.getNode())
843 Ops
.push_back(InGlue
);
844 return getNode(ISD::CALLSEQ_END
, DL
, NodeTys
, Ops
);
847 /// Return true if the result of this operation is always undefined.
848 bool isUndef(unsigned Opcode
, ArrayRef
<SDValue
> Ops
);
850 /// Return an UNDEF node. UNDEF does not have a useful SDLoc.
851 SDValue
getUNDEF(EVT VT
) {
852 return getNode(ISD::UNDEF
, SDLoc(), VT
);
855 /// Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc.
856 SDValue
getGLOBAL_OFFSET_TABLE(EVT VT
) {
857 return getNode(ISD::GLOBAL_OFFSET_TABLE
, SDLoc(), VT
);
860 /// Gets or creates the specified node.
862 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
863 ArrayRef
<SDUse
> Ops
);
864 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
865 ArrayRef
<SDValue
> Ops
, const SDNodeFlags Flags
= SDNodeFlags());
866 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, ArrayRef
<EVT
> ResultTys
,
867 ArrayRef
<SDValue
> Ops
);
868 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
,
869 ArrayRef
<SDValue
> Ops
);
871 // Specialize based on number of operands.
872 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
);
873 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
, SDValue Operand
,
874 const SDNodeFlags Flags
= SDNodeFlags());
875 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
, SDValue N1
,
876 SDValue N2
, const SDNodeFlags Flags
= SDNodeFlags());
877 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
, SDValue N1
,
878 SDValue N2
, SDValue N3
,
879 const SDNodeFlags Flags
= SDNodeFlags());
880 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
, SDValue N1
,
881 SDValue N2
, SDValue N3
, SDValue N4
);
882 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
, SDValue N1
,
883 SDValue N2
, SDValue N3
, SDValue N4
, SDValue N5
);
885 // Specialize again based on number of operands for nodes with a VTList
886 // rather than a single VT.
887 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
);
888 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
, SDValue N
);
889 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
, SDValue N1
,
891 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
, SDValue N1
,
892 SDValue N2
, SDValue N3
);
893 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
, SDValue N1
,
894 SDValue N2
, SDValue N3
, SDValue N4
);
895 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
, SDValue N1
,
896 SDValue N2
, SDValue N3
, SDValue N4
, SDValue N5
);
898 /// Compute a TokenFactor to force all the incoming stack arguments to be
899 /// loaded from the stack. This is used in tail call lowering to protect
900 /// stack arguments from being clobbered.
901 SDValue
getStackArgumentTokenFactor(SDValue Chain
);
903 SDValue
getMemcpy(SDValue Chain
, const SDLoc
&dl
, SDValue Dst
, SDValue Src
,
904 SDValue Size
, unsigned Align
, bool isVol
, bool AlwaysInline
,
905 bool isTailCall
, MachinePointerInfo DstPtrInfo
,
906 MachinePointerInfo SrcPtrInfo
);
908 SDValue
getMemmove(SDValue Chain
, const SDLoc
&dl
, SDValue Dst
, SDValue Src
,
909 SDValue Size
, unsigned Align
, bool isVol
, bool isTailCall
,
910 MachinePointerInfo DstPtrInfo
,
911 MachinePointerInfo SrcPtrInfo
);
913 SDValue
getMemset(SDValue Chain
, const SDLoc
&dl
, SDValue Dst
, SDValue Src
,
914 SDValue Size
, unsigned Align
, bool isVol
, bool isTailCall
,
915 MachinePointerInfo DstPtrInfo
);
917 SDValue
getAtomicMemcpy(SDValue Chain
, const SDLoc
&dl
, SDValue Dst
,
918 unsigned DstAlign
, SDValue Src
, unsigned SrcAlign
,
919 SDValue Size
, Type
*SizeTy
, unsigned ElemSz
,
920 bool isTailCall
, MachinePointerInfo DstPtrInfo
,
921 MachinePointerInfo SrcPtrInfo
);
923 SDValue
getAtomicMemmove(SDValue Chain
, const SDLoc
&dl
, SDValue Dst
,
924 unsigned DstAlign
, SDValue Src
, unsigned SrcAlign
,
925 SDValue Size
, Type
*SizeTy
, unsigned ElemSz
,
926 bool isTailCall
, MachinePointerInfo DstPtrInfo
,
927 MachinePointerInfo SrcPtrInfo
);
929 SDValue
getAtomicMemset(SDValue Chain
, const SDLoc
&dl
, SDValue Dst
,
930 unsigned DstAlign
, SDValue Value
, SDValue Size
,
931 Type
*SizeTy
, unsigned ElemSz
, bool isTailCall
,
932 MachinePointerInfo DstPtrInfo
);
934 /// Helper function to make it easier to build SetCC's if you just have an
935 /// ISD::CondCode instead of an SDValue.
936 SDValue
getSetCC(const SDLoc
&DL
, EVT VT
, SDValue LHS
, SDValue RHS
,
937 ISD::CondCode Cond
) {
938 assert(LHS
.getValueType().isVector() == RHS
.getValueType().isVector() &&
939 "Cannot compare scalars to vectors");
940 assert(LHS
.getValueType().isVector() == VT
.isVector() &&
941 "Cannot compare scalars to vectors");
942 assert(Cond
!= ISD::SETCC_INVALID
&&
943 "Cannot create a setCC of an invalid node.");
944 return getNode(ISD::SETCC
, DL
, VT
, LHS
, RHS
, getCondCode(Cond
));
947 /// Helper function to make it easier to build Select's if you just have
948 /// operands and don't want to check for vector.
949 SDValue
getSelect(const SDLoc
&DL
, EVT VT
, SDValue Cond
, SDValue LHS
,
951 assert(LHS
.getValueType() == RHS
.getValueType() &&
952 "Cannot use select on differing types");
953 assert(VT
.isVector() == LHS
.getValueType().isVector() &&
954 "Cannot mix vectors and scalars");
955 auto Opcode
= Cond
.getValueType().isVector() ? ISD::VSELECT
: ISD::SELECT
;
956 return getNode(Opcode
, DL
, VT
, Cond
, LHS
, RHS
);
959 /// Helper function to make it easier to build SelectCC's if you just have an
960 /// ISD::CondCode instead of an SDValue.
961 SDValue
getSelectCC(const SDLoc
&DL
, SDValue LHS
, SDValue RHS
, SDValue True
,
962 SDValue False
, ISD::CondCode Cond
) {
963 return getNode(ISD::SELECT_CC
, DL
, True
.getValueType(), LHS
, RHS
, True
,
964 False
, getCondCode(Cond
));
967 /// Try to simplify a select/vselect into 1 of its operands or a constant.
968 SDValue
simplifySelect(SDValue Cond
, SDValue TVal
, SDValue FVal
);
970 /// Try to simplify a shift into 1 of its operands or a constant.
971 SDValue
simplifyShift(SDValue X
, SDValue Y
);
973 /// VAArg produces a result and token chain, and takes a pointer
974 /// and a source value as input.
975 SDValue
getVAArg(EVT VT
, const SDLoc
&dl
, SDValue Chain
, SDValue Ptr
,
976 SDValue SV
, unsigned Align
);
978 /// Gets a node for an atomic cmpxchg op. There are two
979 /// valid Opcodes. ISD::ATOMIC_CMO_SWAP produces the value loaded and a
980 /// chain result. ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS produces the value loaded,
981 /// a success flag (initially i1), and a chain.
982 SDValue
getAtomicCmpSwap(unsigned Opcode
, const SDLoc
&dl
, EVT MemVT
,
983 SDVTList VTs
, SDValue Chain
, SDValue Ptr
,
984 SDValue Cmp
, SDValue Swp
, MachineMemOperand
*MMO
);
986 /// Gets a node for an atomic op, produces result (if relevant)
987 /// and chain and takes 2 operands.
988 SDValue
getAtomic(unsigned Opcode
, const SDLoc
&dl
, EVT MemVT
, SDValue Chain
,
989 SDValue Ptr
, SDValue Val
, MachineMemOperand
*MMO
);
991 /// Gets a node for an atomic op, produces result and chain and
993 SDValue
getAtomic(unsigned Opcode
, const SDLoc
&dl
, EVT MemVT
, EVT VT
,
994 SDValue Chain
, SDValue Ptr
, MachineMemOperand
*MMO
);
996 /// Gets a node for an atomic op, produces result and chain and takes N
998 SDValue
getAtomic(unsigned Opcode
, const SDLoc
&dl
, EVT MemVT
,
999 SDVTList VTList
, ArrayRef
<SDValue
> Ops
,
1000 MachineMemOperand
*MMO
);
1002 /// Creates a MemIntrinsicNode that may produce a
1003 /// result and takes a list of operands. Opcode may be INTRINSIC_VOID,
1004 /// INTRINSIC_W_CHAIN, or a target-specific opcode with a value not
1005 /// less than FIRST_TARGET_MEMORY_OPCODE.
1006 SDValue
getMemIntrinsicNode(
1007 unsigned Opcode
, const SDLoc
&dl
, SDVTList VTList
,
1008 ArrayRef
<SDValue
> Ops
, EVT MemVT
,
1009 MachinePointerInfo PtrInfo
,
1011 MachineMemOperand::Flags Flags
1012 = MachineMemOperand::MOLoad
| MachineMemOperand::MOStore
,
1015 SDValue
getMemIntrinsicNode(unsigned Opcode
, const SDLoc
&dl
, SDVTList VTList
,
1016 ArrayRef
<SDValue
> Ops
, EVT MemVT
,
1017 MachineMemOperand
*MMO
);
1019 /// Creates a LifetimeSDNode that starts (`IsStart==true`) or ends
1020 /// (`IsStart==false`) the lifetime of the portion of `FrameIndex` between
1021 /// offsets `Offset` and `Offset + Size`.
1022 SDValue
getLifetimeNode(bool IsStart
, const SDLoc
&dl
, SDValue Chain
,
1023 int FrameIndex
, int64_t Size
, int64_t Offset
= -1);
1025 /// Create a MERGE_VALUES node from the given operands.
1026 SDValue
getMergeValues(ArrayRef
<SDValue
> Ops
, const SDLoc
&dl
);
1028 /// Loads are not normal binary operators: their result type is not
1029 /// determined by their operands, and they produce a value AND a token chain.
1031 /// This function will set the MOLoad flag on MMOFlags, but you can set it if
1032 /// you want. The MOStore flag must not be set.
1033 SDValue
getLoad(EVT VT
, const SDLoc
&dl
, SDValue Chain
, SDValue Ptr
,
1034 MachinePointerInfo PtrInfo
, unsigned Alignment
= 0,
1035 MachineMemOperand::Flags MMOFlags
= MachineMemOperand::MONone
,
1036 const AAMDNodes
&AAInfo
= AAMDNodes(),
1037 const MDNode
*Ranges
= nullptr);
1038 SDValue
getLoad(EVT VT
, const SDLoc
&dl
, SDValue Chain
, SDValue Ptr
,
1039 MachineMemOperand
*MMO
);
1041 getExtLoad(ISD::LoadExtType ExtType
, const SDLoc
&dl
, EVT VT
, SDValue Chain
,
1042 SDValue Ptr
, MachinePointerInfo PtrInfo
, EVT MemVT
,
1043 unsigned Alignment
= 0,
1044 MachineMemOperand::Flags MMOFlags
= MachineMemOperand::MONone
,
1045 const AAMDNodes
&AAInfo
= AAMDNodes());
1046 SDValue
getExtLoad(ISD::LoadExtType ExtType
, const SDLoc
&dl
, EVT VT
,
1047 SDValue Chain
, SDValue Ptr
, EVT MemVT
,
1048 MachineMemOperand
*MMO
);
1049 SDValue
getIndexedLoad(SDValue OrigLoad
, const SDLoc
&dl
, SDValue Base
,
1050 SDValue Offset
, ISD::MemIndexedMode AM
);
1051 SDValue
getLoad(ISD::MemIndexedMode AM
, ISD::LoadExtType ExtType
, EVT VT
,
1052 const SDLoc
&dl
, SDValue Chain
, SDValue Ptr
, SDValue Offset
,
1053 MachinePointerInfo PtrInfo
, EVT MemVT
, unsigned Alignment
= 0,
1054 MachineMemOperand::Flags MMOFlags
= MachineMemOperand::MONone
,
1055 const AAMDNodes
&AAInfo
= AAMDNodes(),
1056 const MDNode
*Ranges
= nullptr);
1057 SDValue
getLoad(ISD::MemIndexedMode AM
, ISD::LoadExtType ExtType
, EVT VT
,
1058 const SDLoc
&dl
, SDValue Chain
, SDValue Ptr
, SDValue Offset
,
1059 EVT MemVT
, MachineMemOperand
*MMO
);
1061 /// Helper function to build ISD::STORE nodes.
1063 /// This function will set the MOStore flag on MMOFlags, but you can set it if
1064 /// you want. The MOLoad and MOInvariant flags must not be set.
1066 getStore(SDValue Chain
, const SDLoc
&dl
, SDValue Val
, SDValue Ptr
,
1067 MachinePointerInfo PtrInfo
, unsigned Alignment
= 0,
1068 MachineMemOperand::Flags MMOFlags
= MachineMemOperand::MONone
,
1069 const AAMDNodes
&AAInfo
= AAMDNodes());
1070 SDValue
getStore(SDValue Chain
, const SDLoc
&dl
, SDValue Val
, SDValue Ptr
,
1071 MachineMemOperand
*MMO
);
1073 getTruncStore(SDValue Chain
, const SDLoc
&dl
, SDValue Val
, SDValue Ptr
,
1074 MachinePointerInfo PtrInfo
, EVT SVT
, unsigned Alignment
= 0,
1075 MachineMemOperand::Flags MMOFlags
= MachineMemOperand::MONone
,
1076 const AAMDNodes
&AAInfo
= AAMDNodes());
1077 SDValue
getTruncStore(SDValue Chain
, const SDLoc
&dl
, SDValue Val
,
1078 SDValue Ptr
, EVT SVT
, MachineMemOperand
*MMO
);
1079 SDValue
getIndexedStore(SDValue OrigStore
, const SDLoc
&dl
, SDValue Base
,
1080 SDValue Offset
, ISD::MemIndexedMode AM
);
1082 /// Returns sum of the base pointer and offset.
1083 SDValue
getMemBasePlusOffset(SDValue Base
, unsigned Offset
, const SDLoc
&DL
);
1085 SDValue
getMaskedLoad(EVT VT
, const SDLoc
&dl
, SDValue Chain
, SDValue Ptr
,
1086 SDValue Mask
, SDValue Src0
, EVT MemVT
,
1087 MachineMemOperand
*MMO
, ISD::LoadExtType
,
1088 bool IsExpanding
= false);
1089 SDValue
getMaskedStore(SDValue Chain
, const SDLoc
&dl
, SDValue Val
,
1090 SDValue Ptr
, SDValue Mask
, EVT MemVT
,
1091 MachineMemOperand
*MMO
, bool IsTruncating
= false,
1092 bool IsCompressing
= false);
1093 SDValue
getMaskedGather(SDVTList VTs
, EVT VT
, const SDLoc
&dl
,
1094 ArrayRef
<SDValue
> Ops
, MachineMemOperand
*MMO
);
1095 SDValue
getMaskedScatter(SDVTList VTs
, EVT VT
, const SDLoc
&dl
,
1096 ArrayRef
<SDValue
> Ops
, MachineMemOperand
*MMO
);
1098 /// Return (create a new or find existing) a target-specific node.
1099 /// TargetMemSDNode should be derived class from MemSDNode.
1100 template <class TargetMemSDNode
>
1101 SDValue
getTargetMemSDNode(SDVTList VTs
, ArrayRef
<SDValue
> Ops
,
1102 const SDLoc
&dl
, EVT MemVT
,
1103 MachineMemOperand
*MMO
);
1105 /// Construct a node to track a Value* through the backend.
1106 SDValue
getSrcValue(const Value
*v
);
1108 /// Return an MDNodeSDNode which holds an MDNode.
1109 SDValue
getMDNode(const MDNode
*MD
);
1111 /// Return a bitcast using the SDLoc of the value operand, and casting to the
1112 /// provided type. Use getNode to set a custom SDLoc.
1113 SDValue
getBitcast(EVT VT
, SDValue V
);
1115 /// Return an AddrSpaceCastSDNode.
1116 SDValue
getAddrSpaceCast(const SDLoc
&dl
, EVT VT
, SDValue Ptr
, unsigned SrcAS
,
1119 /// Return the specified value casted to
1120 /// the target's desired shift amount type.
1121 SDValue
getShiftAmountOperand(EVT LHSTy
, SDValue Op
);
1123 /// Expand the specified \c ISD::VAARG node as the Legalize pass would.
1124 SDValue
expandVAArg(SDNode
*Node
);
1126 /// Expand the specified \c ISD::VACOPY node as the Legalize pass would.
1127 SDValue
expandVACopy(SDNode
*Node
);
1129 /// Returs an GlobalAddress of the function from the current module with
1130 /// name matching the given ExternalSymbol. Additionally can provide the
1131 /// matched function.
1132 /// Panics the function doesn't exists.
1133 SDValue
getSymbolFunctionGlobalAddress(SDValue Op
,
1134 Function
**TargetFunction
= nullptr);
1136 /// *Mutate* the specified node in-place to have the
1137 /// specified operands. If the resultant node already exists in the DAG,
1138 /// this does not modify the specified node, instead it returns the node that
1139 /// already exists. If the resultant node does not exist in the DAG, the
1140 /// input node is returned. As a degenerate case, if you specify the same
1141 /// input operands as the node already has, the input node is returned.
1142 SDNode
*UpdateNodeOperands(SDNode
*N
, SDValue Op
);
1143 SDNode
*UpdateNodeOperands(SDNode
*N
, SDValue Op1
, SDValue Op2
);
1144 SDNode
*UpdateNodeOperands(SDNode
*N
, SDValue Op1
, SDValue Op2
,
1146 SDNode
*UpdateNodeOperands(SDNode
*N
, SDValue Op1
, SDValue Op2
,
1147 SDValue Op3
, SDValue Op4
);
1148 SDNode
*UpdateNodeOperands(SDNode
*N
, SDValue Op1
, SDValue Op2
,
1149 SDValue Op3
, SDValue Op4
, SDValue Op5
);
1150 SDNode
*UpdateNodeOperands(SDNode
*N
, ArrayRef
<SDValue
> Ops
);
1152 /// Creates a new TokenFactor containing \p Vals. If \p Vals contains 64k
1153 /// values or more, move values into new TokenFactors in 64k-1 blocks, until
1154 /// the final TokenFactor has less than 64k operands.
1155 SDValue
getTokenFactor(const SDLoc
&DL
, SmallVectorImpl
<SDValue
> &Vals
);
1157 /// *Mutate* the specified machine node's memory references to the provided
1159 void setNodeMemRefs(MachineSDNode
*N
,
1160 ArrayRef
<MachineMemOperand
*> NewMemRefs
);
1162 // Propagates the change in divergence to users
1163 void updateDivergence(SDNode
* N
);
1165 /// These are used for target selectors to *mutate* the
1166 /// specified node to have the specified return type, Target opcode, and
1167 /// operands. Note that target opcodes are stored as
1168 /// ~TargetOpcode in the node opcode field. The resultant node is returned.
1169 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, EVT VT
);
1170 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, EVT VT
, SDValue Op1
);
1171 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, EVT VT
,
1172 SDValue Op1
, SDValue Op2
);
1173 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, EVT VT
,
1174 SDValue Op1
, SDValue Op2
, SDValue Op3
);
1175 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, EVT VT
,
1176 ArrayRef
<SDValue
> Ops
);
1177 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, EVT VT1
, EVT VT2
);
1178 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, EVT VT1
,
1179 EVT VT2
, ArrayRef
<SDValue
> Ops
);
1180 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, EVT VT1
,
1181 EVT VT2
, EVT VT3
, ArrayRef
<SDValue
> Ops
);
1182 SDNode
*SelectNodeTo(SDNode
*N
, unsigned TargetOpc
, EVT VT1
,
1183 EVT VT2
, SDValue Op1
);
1184 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, EVT VT1
,
1185 EVT VT2
, SDValue Op1
, SDValue Op2
);
1186 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, SDVTList VTs
,
1187 ArrayRef
<SDValue
> Ops
);
1189 /// This *mutates* the specified node to have the specified
1190 /// return type, opcode, and operands.
1191 SDNode
*MorphNodeTo(SDNode
*N
, unsigned Opc
, SDVTList VTs
,
1192 ArrayRef
<SDValue
> Ops
);
1194 /// Mutate the specified strict FP node to its non-strict equivalent,
1195 /// unlinking the node from its chain and dropping the metadata arguments.
1196 /// The node must be a strict FP node.
1197 SDNode
*mutateStrictFPToFP(SDNode
*Node
);
1199 /// These are used for target selectors to create a new node
1200 /// with specified return type(s), MachineInstr opcode, and operands.
1202 /// Note that getMachineNode returns the resultant node. If there is already
1203 /// a node of the specified opcode and operands, it returns that node instead
1204 /// of the current one.
1205 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT
);
1206 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT
,
1208 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT
,
1209 SDValue Op1
, SDValue Op2
);
1210 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT
,
1211 SDValue Op1
, SDValue Op2
, SDValue Op3
);
1212 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT
,
1213 ArrayRef
<SDValue
> Ops
);
1214 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT1
,
1215 EVT VT2
, SDValue Op1
, SDValue Op2
);
1216 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT1
,
1217 EVT VT2
, SDValue Op1
, SDValue Op2
, SDValue Op3
);
1218 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT1
,
1219 EVT VT2
, ArrayRef
<SDValue
> Ops
);
1220 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT1
,
1221 EVT VT2
, EVT VT3
, SDValue Op1
, SDValue Op2
);
1222 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT1
,
1223 EVT VT2
, EVT VT3
, SDValue Op1
, SDValue Op2
,
1225 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT1
,
1226 EVT VT2
, EVT VT3
, ArrayRef
<SDValue
> Ops
);
1227 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
1228 ArrayRef
<EVT
> ResultTys
, ArrayRef
<SDValue
> Ops
);
1229 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, SDVTList VTs
,
1230 ArrayRef
<SDValue
> Ops
);
1232 /// A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
1233 SDValue
getTargetExtractSubreg(int SRIdx
, const SDLoc
&DL
, EVT VT
,
1236 /// A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
1237 SDValue
getTargetInsertSubreg(int SRIdx
, const SDLoc
&DL
, EVT VT
,
1238 SDValue Operand
, SDValue Subreg
);
1240 /// Get the specified node if it's already available, or else return NULL.
1241 SDNode
*getNodeIfExists(unsigned Opcode
, SDVTList VTList
, ArrayRef
<SDValue
> Ops
,
1242 const SDNodeFlags Flags
= SDNodeFlags());
1244 /// Creates a SDDbgValue node.
1245 SDDbgValue
*getDbgValue(DIVariable
*Var
, DIExpression
*Expr
, SDNode
*N
,
1246 unsigned R
, bool IsIndirect
, const DebugLoc
&DL
,
1249 /// Creates a constant SDDbgValue node.
1250 SDDbgValue
*getConstantDbgValue(DIVariable
*Var
, DIExpression
*Expr
,
1251 const Value
*C
, const DebugLoc
&DL
,
1254 /// Creates a FrameIndex SDDbgValue node.
1255 SDDbgValue
*getFrameIndexDbgValue(DIVariable
*Var
, DIExpression
*Expr
,
1256 unsigned FI
, bool IsIndirect
,
1257 const DebugLoc
&DL
, unsigned O
);
1259 /// Creates a VReg SDDbgValue node.
1260 SDDbgValue
*getVRegDbgValue(DIVariable
*Var
, DIExpression
*Expr
,
1261 unsigned VReg
, bool IsIndirect
,
1262 const DebugLoc
&DL
, unsigned O
);
1264 /// Creates a SDDbgLabel node.
1265 SDDbgLabel
*getDbgLabel(DILabel
*Label
, const DebugLoc
&DL
, unsigned O
);
1267 /// Transfer debug values from one node to another, while optionally
1268 /// generating fragment expressions for split-up values. If \p InvalidateDbg
1269 /// is set, debug values are invalidated after they are transferred.
1270 void transferDbgValues(SDValue From
, SDValue To
, unsigned OffsetInBits
= 0,
1271 unsigned SizeInBits
= 0, bool InvalidateDbg
= true);
1273 /// Remove the specified node from the system. If any of its
1274 /// operands then becomes dead, remove them as well. Inform UpdateListener
1275 /// for each node deleted.
1276 void RemoveDeadNode(SDNode
*N
);
1278 /// This method deletes the unreachable nodes in the
1279 /// given list, and any nodes that become unreachable as a result.
1280 void RemoveDeadNodes(SmallVectorImpl
<SDNode
*> &DeadNodes
);
1282 /// Modify anything using 'From' to use 'To' instead.
1283 /// This can cause recursive merging of nodes in the DAG. Use the first
1284 /// version if 'From' is known to have a single result, use the second
1285 /// if you have two nodes with identical results (or if 'To' has a superset
1286 /// of the results of 'From'), use the third otherwise.
1288 /// These methods all take an optional UpdateListener, which (if not null) is
1289 /// informed about nodes that are deleted and modified due to recursive
1290 /// changes in the dag.
1292 /// These functions only replace all existing uses. It's possible that as
1293 /// these replacements are being performed, CSE may cause the From node
1294 /// to be given new uses. These new uses of From are left in place, and
1295 /// not automatically transferred to To.
1297 void ReplaceAllUsesWith(SDValue From
, SDValue To
);
1298 void ReplaceAllUsesWith(SDNode
*From
, SDNode
*To
);
1299 void ReplaceAllUsesWith(SDNode
*From
, const SDValue
*To
);
1301 /// Replace any uses of From with To, leaving
1302 /// uses of other values produced by From.getNode() alone.
1303 void ReplaceAllUsesOfValueWith(SDValue From
, SDValue To
);
1305 /// Like ReplaceAllUsesOfValueWith, but for multiple values at once.
1306 /// This correctly handles the case where
1307 /// there is an overlap between the From values and the To values.
1308 void ReplaceAllUsesOfValuesWith(const SDValue
*From
, const SDValue
*To
,
1311 /// If an existing load has uses of its chain, create a token factor node with
1312 /// that chain and the new memory node's chain and update users of the old
1313 /// chain to the token factor. This ensures that the new memory node will have
1314 /// the same relative memory dependency position as the old load. Returns the
1315 /// new merged load chain.
1316 SDValue
makeEquivalentMemoryOrdering(LoadSDNode
*Old
, SDValue New
);
1318 /// Topological-sort the AllNodes list and a
1319 /// assign a unique node id for each node in the DAG based on their
1320 /// topological order. Returns the number of nodes.
1321 unsigned AssignTopologicalOrder();
1323 /// Move node N in the AllNodes list to be immediately
1324 /// before the given iterator Position. This may be used to update the
1325 /// topological ordering when the list of nodes is modified.
1326 void RepositionNode(allnodes_iterator Position
, SDNode
*N
) {
1327 AllNodes
.insert(Position
, AllNodes
.remove(N
));
1330 /// Returns an APFloat semantics tag appropriate for the given type. If VT is
1331 /// a vector type, the element semantics are returned.
1332 static const fltSemantics
&EVTToAPFloatSemantics(EVT VT
) {
1333 switch (VT
.getScalarType().getSimpleVT().SimpleTy
) {
1334 default: llvm_unreachable("Unknown FP format");
1335 case MVT::f16
: return APFloat::IEEEhalf();
1336 case MVT::f32
: return APFloat::IEEEsingle();
1337 case MVT::f64
: return APFloat::IEEEdouble();
1338 case MVT::f80
: return APFloat::x87DoubleExtended();
1339 case MVT::f128
: return APFloat::IEEEquad();
1340 case MVT::ppcf128
: return APFloat::PPCDoubleDouble();
1344 /// Add a dbg_value SDNode. If SD is non-null that means the
1345 /// value is produced by SD.
1346 void AddDbgValue(SDDbgValue
*DB
, SDNode
*SD
, bool isParameter
);
1348 /// Add a dbg_label SDNode.
1349 void AddDbgLabel(SDDbgLabel
*DB
);
1351 /// Get the debug values which reference the given SDNode.
1352 ArrayRef
<SDDbgValue
*> GetDbgValues(const SDNode
* SD
) const {
1353 return DbgInfo
->getSDDbgValues(SD
);
1357 /// Return true if there are any SDDbgValue nodes associated
1358 /// with this SelectionDAG.
1359 bool hasDebugValues() const { return !DbgInfo
->empty(); }
1361 SDDbgInfo::DbgIterator
DbgBegin() const { return DbgInfo
->DbgBegin(); }
1362 SDDbgInfo::DbgIterator
DbgEnd() const { return DbgInfo
->DbgEnd(); }
1364 SDDbgInfo::DbgIterator
ByvalParmDbgBegin() const {
1365 return DbgInfo
->ByvalParmDbgBegin();
1367 SDDbgInfo::DbgIterator
ByvalParmDbgEnd() const {
1368 return DbgInfo
->ByvalParmDbgEnd();
1371 SDDbgInfo::DbgLabelIterator
DbgLabelBegin() const {
1372 return DbgInfo
->DbgLabelBegin();
1374 SDDbgInfo::DbgLabelIterator
DbgLabelEnd() const {
1375 return DbgInfo
->DbgLabelEnd();
1378 /// To be invoked on an SDNode that is slated to be erased. This
1379 /// function mirrors \c llvm::salvageDebugInfo.
1380 void salvageDebugInfo(SDNode
&N
);
1384 /// Create a stack temporary, suitable for holding the specified value type.
1385 /// If minAlign is specified, the slot size will have at least that alignment.
1386 SDValue
CreateStackTemporary(EVT VT
, unsigned minAlign
= 1);
1388 /// Create a stack temporary suitable for holding either of the specified
1390 SDValue
CreateStackTemporary(EVT VT1
, EVT VT2
);
1392 SDValue
FoldSymbolOffset(unsigned Opcode
, EVT VT
,
1393 const GlobalAddressSDNode
*GA
,
1396 SDValue
FoldConstantArithmetic(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
1397 SDNode
*N1
, SDNode
*N2
);
1399 SDValue
FoldConstantArithmetic(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
1400 const ConstantSDNode
*C1
,
1401 const ConstantSDNode
*C2
);
1403 SDValue
FoldConstantVectorArithmetic(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
1404 ArrayRef
<SDValue
> Ops
,
1405 const SDNodeFlags Flags
= SDNodeFlags());
1407 /// Constant fold a setcc to true or false.
1408 SDValue
FoldSetCC(EVT VT
, SDValue N1
, SDValue N2
, ISD::CondCode Cond
,
1411 /// See if the specified operand can be simplified with the knowledge that only
1412 /// the bits specified by Mask are used. If so, return the simpler operand,
1413 /// otherwise return a null SDValue.
1415 /// (This exists alongside SimplifyDemandedBits because GetDemandedBits can
1416 /// simplify nodes with multiple uses more aggressively.)
1417 SDValue
GetDemandedBits(SDValue V
, const APInt
&Mask
);
1419 /// Return true if the sign bit of Op is known to be zero.
1420 /// We use this predicate to simplify operations downstream.
1421 bool SignBitIsZero(SDValue Op
, unsigned Depth
= 0) const;
1423 /// Return true if 'Op & Mask' is known to be zero. We
1424 /// use this predicate to simplify operations downstream. Op and Mask are
1425 /// known to be the same type.
1426 bool MaskedValueIsZero(SDValue Op
, const APInt
&Mask
, unsigned Depth
= 0)
1429 /// Determine which bits of Op are known to be either zero or one and return
1430 /// them in Known. For vectors, the known bits are those that are shared by
1431 /// every vector element.
1432 /// Targets can implement the computeKnownBitsForTargetNode method in the
1433 /// TargetLowering class to allow target nodes to be understood.
1434 KnownBits
computeKnownBits(SDValue Op
, unsigned Depth
= 0) const;
1436 /// Determine which bits of Op are known to be either zero or one and return
1437 /// them in Known. The DemandedElts argument allows us to only collect the
1438 /// known bits that are shared by the requested vector elements.
1439 /// Targets can implement the computeKnownBitsForTargetNode method in the
1440 /// TargetLowering class to allow target nodes to be understood.
1441 KnownBits
computeKnownBits(SDValue Op
, const APInt
&DemandedElts
,
1442 unsigned Depth
= 0) const;
1444 /// Used to represent the possible overflow behavior of an operation.
1445 /// Never: the operation cannot overflow.
1446 /// Always: the operation will always overflow.
1447 /// Sometime: the operation may or may not overflow.
1454 /// Determine if the result of the addition of 2 node can overflow.
1455 OverflowKind
computeOverflowKind(SDValue N0
, SDValue N1
) const;
1457 /// Test if the given value is known to have exactly one bit set. This differs
1458 /// from computeKnownBits in that it doesn't necessarily determine which bit
1460 bool isKnownToBeAPowerOfTwo(SDValue Val
) const;
1462 /// Return the number of times the sign bit of the register is replicated into
1463 /// the other bits. We know that at least 1 bit is always equal to the sign
1464 /// bit (itself), but other cases can give us information. For example,
1465 /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
1466 /// to each other, so we return 3. Targets can implement the
1467 /// ComputeNumSignBitsForTarget method in the TargetLowering class to allow
1468 /// target nodes to be understood.
1469 unsigned ComputeNumSignBits(SDValue Op
, unsigned Depth
= 0) const;
1471 /// Return the number of times the sign bit of the register is replicated into
1472 /// the other bits. We know that at least 1 bit is always equal to the sign
1473 /// bit (itself), but other cases can give us information. For example,
1474 /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
1475 /// to each other, so we return 3. The DemandedElts argument allows
1476 /// us to only collect the minimum sign bits of the requested vector elements.
1477 /// Targets can implement the ComputeNumSignBitsForTarget method in the
1478 /// TargetLowering class to allow target nodes to be understood.
1479 unsigned ComputeNumSignBits(SDValue Op
, const APInt
&DemandedElts
,
1480 unsigned Depth
= 0) const;
1482 /// Return true if the specified operand is an ISD::ADD with a ConstantSDNode
1483 /// on the right-hand side, or if it is an ISD::OR with a ConstantSDNode that
1484 /// is guaranteed to have the same semantics as an ADD. This handles the
1486 /// X|Cst == X+Cst iff X&Cst = 0.
1487 bool isBaseWithConstantOffset(SDValue Op
) const;
1489 /// Test whether the given SDValue is known to never be NaN. If \p SNaN is
1490 /// true, returns if \p Op is known to never be a signaling NaN (it may still
1492 bool isKnownNeverNaN(SDValue Op
, bool SNaN
= false, unsigned Depth
= 0) const;
1494 /// \returns true if \p Op is known to never be a signaling NaN.
1495 bool isKnownNeverSNaN(SDValue Op
, unsigned Depth
= 0) const {
1496 return isKnownNeverNaN(Op
, true, Depth
);
1499 /// Test whether the given floating point SDValue is known to never be
1500 /// positive or negative zero.
1501 bool isKnownNeverZeroFloat(SDValue Op
) const;
1503 /// Test whether the given SDValue is known to contain non-zero value(s).
1504 bool isKnownNeverZero(SDValue Op
) const;
1506 /// Test whether two SDValues are known to compare equal. This
1507 /// is true if they are the same value, or if one is negative zero and the
1508 /// other positive zero.
1509 bool isEqualTo(SDValue A
, SDValue B
) const;
1511 /// Return true if A and B have no common bits set. As an example, this can
1512 /// allow an 'add' to be transformed into an 'or'.
1513 bool haveNoCommonBitsSet(SDValue A
, SDValue B
) const;
1515 /// Test whether \p V has a splatted value for all the demanded elements.
1517 /// On success \p UndefElts will indicate the elements that have UNDEF
1518 /// values instead of the splat value, this is only guaranteed to be correct
1519 /// for \p DemandedElts.
1521 /// NOTE: The function will return true for a demanded splat of UNDEF values.
1522 bool isSplatValue(SDValue V
, const APInt
&DemandedElts
, APInt
&UndefElts
);
1524 /// Test whether \p V has a splatted value.
1525 bool isSplatValue(SDValue V
, bool AllowUndefs
= false);
1527 /// Match a binop + shuffle pyramid that represents a horizontal reduction
1528 /// over the elements of a vector starting from the EXTRACT_VECTOR_ELT node /p
1529 /// Extract. The reduction must use one of the opcodes listed in /p
1530 /// CandidateBinOps and on success /p BinOp will contain the matching opcode.
1531 /// Returns the vector that is being reduced on, or SDValue() if a reduction
1532 /// was not matched.
1533 SDValue
matchBinOpReduction(SDNode
*Extract
, ISD::NodeType
&BinOp
,
1534 ArrayRef
<ISD::NodeType
> CandidateBinOps
);
1536 /// Utility function used by legalize and lowering to
1537 /// "unroll" a vector operation by splitting out the scalars and operating
1538 /// on each element individually. If the ResNE is 0, fully unroll the vector
1539 /// op. If ResNE is less than the width of the vector op, unroll up to ResNE.
1540 /// If the ResNE is greater than the width of the vector op, unroll the
1541 /// vector op and fill the end of the resulting vector with UNDEFS.
1542 SDValue
UnrollVectorOp(SDNode
*N
, unsigned ResNE
= 0);
1544 /// Return true if loads are next to each other and can be
1545 /// merged. Check that both are nonvolatile and if LD is loading
1546 /// 'Bytes' bytes from a location that is 'Dist' units away from the
1547 /// location that the 'Base' load is loading from.
1548 bool areNonVolatileConsecutiveLoads(LoadSDNode
*LD
, LoadSDNode
*Base
,
1549 unsigned Bytes
, int Dist
) const;
1551 /// Infer alignment of a load / store address. Return 0 if
1552 /// it cannot be inferred.
1553 unsigned InferPtrAlignment(SDValue Ptr
) const;
1555 /// Compute the VTs needed for the low/hi parts of a type
1556 /// which is split (or expanded) into two not necessarily identical pieces.
1557 std::pair
<EVT
, EVT
> GetSplitDestVTs(const EVT
&VT
) const;
1559 /// Split the vector with EXTRACT_SUBVECTOR using the provides
1560 /// VTs and return the low/high part.
1561 std::pair
<SDValue
, SDValue
> SplitVector(const SDValue
&N
, const SDLoc
&DL
,
1562 const EVT
&LoVT
, const EVT
&HiVT
);
1564 /// Split the vector with EXTRACT_SUBVECTOR and return the low/high part.
1565 std::pair
<SDValue
, SDValue
> SplitVector(const SDValue
&N
, const SDLoc
&DL
) {
1567 std::tie(LoVT
, HiVT
) = GetSplitDestVTs(N
.getValueType());
1568 return SplitVector(N
, DL
, LoVT
, HiVT
);
1571 /// Split the node's operand with EXTRACT_SUBVECTOR and
1572 /// return the low/high part.
1573 std::pair
<SDValue
, SDValue
> SplitVectorOperand(const SDNode
*N
, unsigned OpNo
)
1575 return SplitVector(N
->getOperand(OpNo
), SDLoc(N
));
1578 /// Append the extracted elements from Start to Count out of the vector Op
1579 /// in Args. If Count is 0, all of the elements will be extracted.
1580 void ExtractVectorElements(SDValue Op
, SmallVectorImpl
<SDValue
> &Args
,
1581 unsigned Start
= 0, unsigned Count
= 0);
1583 /// Compute the default alignment value for the given type.
1584 unsigned getEVTAlignment(EVT MemoryVT
) const;
1586 /// Test whether the given value is a constant int or similar node.
1587 SDNode
*isConstantIntBuildVectorOrConstantInt(SDValue N
);
1589 /// Test whether the given value is a constant FP or similar node.
1590 SDNode
*isConstantFPBuildVectorOrConstantFP(SDValue N
);
1592 /// \returns true if \p N is any kind of constant or build_vector of
1593 /// constants, int or float. If a vector, it may not necessarily be a splat.
1594 inline bool isConstantValueOfAnyType(SDValue N
) {
1595 return isConstantIntBuildVectorOrConstantInt(N
) ||
1596 isConstantFPBuildVectorOrConstantFP(N
);
1600 void InsertNode(SDNode
*N
);
1601 bool RemoveNodeFromCSEMaps(SDNode
*N
);
1602 void AddModifiedNodeToCSEMaps(SDNode
*N
);
1603 SDNode
*FindModifiedNodeSlot(SDNode
*N
, SDValue Op
, void *&InsertPos
);
1604 SDNode
*FindModifiedNodeSlot(SDNode
*N
, SDValue Op1
, SDValue Op2
,
1606 SDNode
*FindModifiedNodeSlot(SDNode
*N
, ArrayRef
<SDValue
> Ops
,
1608 SDNode
*UpdateSDLocOnMergeSDNode(SDNode
*N
, const SDLoc
&loc
);
1610 void DeleteNodeNotInCSEMaps(SDNode
*N
);
1611 void DeallocateNode(SDNode
*N
);
1613 void allnodes_clear();
1615 /// Look up the node specified by ID in CSEMap. If it exists, return it. If
1616 /// not, return the insertion token that will make insertion faster. This
1617 /// overload is for nodes other than Constant or ConstantFP, use the other one
1619 SDNode
*FindNodeOrInsertPos(const FoldingSetNodeID
&ID
, void *&InsertPos
);
1621 /// Look up the node specified by ID in CSEMap. If it exists, return it. If
1622 /// not, return the insertion token that will make insertion faster. Performs
1623 /// additional processing for constant nodes.
1624 SDNode
*FindNodeOrInsertPos(const FoldingSetNodeID
&ID
, const SDLoc
&DL
,
1627 /// List of non-single value types.
1628 FoldingSet
<SDVTListNode
> VTListMap
;
1630 /// Maps to auto-CSE operations.
1631 std::vector
<CondCodeSDNode
*> CondCodeNodes
;
1633 std::vector
<SDNode
*> ValueTypeNodes
;
1634 std::map
<EVT
, SDNode
*, EVT::compareRawBits
> ExtendedValueTypeNodes
;
1635 StringMap
<SDNode
*> ExternalSymbols
;
1637 std::map
<std::pair
<std::string
, unsigned char>,SDNode
*> TargetExternalSymbols
;
1638 DenseMap
<MCSymbol
*, SDNode
*> MCSymbols
;
1641 template <> struct GraphTraits
<SelectionDAG
*> : public GraphTraits
<SDNode
*> {
1642 using nodes_iterator
= pointer_iterator
<SelectionDAG::allnodes_iterator
>;
1644 static nodes_iterator
nodes_begin(SelectionDAG
*G
) {
1645 return nodes_iterator(G
->allnodes_begin());
1648 static nodes_iterator
nodes_end(SelectionDAG
*G
) {
1649 return nodes_iterator(G
->allnodes_end());
1653 template <class TargetMemSDNode
>
1654 SDValue
SelectionDAG::getTargetMemSDNode(SDVTList VTs
,
1655 ArrayRef
<SDValue
> Ops
,
1656 const SDLoc
&dl
, EVT MemVT
,
1657 MachineMemOperand
*MMO
) {
1658 /// Compose node ID and try to find an existing node.
1659 FoldingSetNodeID ID
;
1661 TargetMemSDNode(dl
.getIROrder(), DebugLoc(), VTs
, MemVT
, MMO
).getOpcode();
1662 ID
.AddInteger(Opcode
);
1663 ID
.AddPointer(VTs
.VTs
);
1664 for (auto& Op
: Ops
) {
1665 ID
.AddPointer(Op
.getNode());
1666 ID
.AddInteger(Op
.getResNo());
1668 ID
.AddInteger(MemVT
.getRawBits());
1669 ID
.AddInteger(MMO
->getPointerInfo().getAddrSpace());
1670 ID
.AddInteger(getSyntheticNodeSubclassData
<TargetMemSDNode
>(
1671 dl
.getIROrder(), VTs
, MemVT
, MMO
));
1674 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
)) {
1675 cast
<TargetMemSDNode
>(E
)->refineAlignment(MMO
);
1676 return SDValue(E
, 0);
1679 /// Existing node was not found. Create a new one.
1680 auto *N
= newSDNode
<TargetMemSDNode
>(dl
.getIROrder(), dl
.getDebugLoc(), VTs
,
1682 createOperands(N
, Ops
);
1683 CSEMap
.InsertNode(N
, IP
);
1685 return SDValue(N
, 0);
1688 } // end namespace llvm
1690 #endif // LLVM_CODEGEN_SELECTIONDAG_H